Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.41 *Printed on 22 June 2021 at 09:38:58*

	e 2021 al 09.30.00			
Project Information				
Assessed By:	Neil Ingham (STF	RO010943)	Building Type:	Semi-detached House
Dwelling Details:				
_	DESIGN STAGE		Total Floor Area: 1	-
Site Reference :	Hilltop Road - GF	REEN	Plot Reference:	Hilltop Road
Address :				
Client Details:				
Name:				
Address :				
This report cover	s items included v	within the SAP calculations.		
•		tions compliance.		
1a TER and DER	R			
	ing system: Electric	ity		
Fuel factor: 1.55 (e	•			
-	xide Emission Rate		26.42 kg/m ²	01/
Dwelling Carbon L 1b TFEE and DF	Dioxide Emission Ra	ate (DER)	11.55 kg/m²	OK
	rgy Efficiency (TFE	=)	65.4 kWh/m²	
-	nergy Efficiency (DF		58.3 kWh/m ²	
	lengy Enletency (Dr		30.3 KWI/III	ОК
2 Fabric U-value	s			
Element		Average	Highest	
External		0.15 (max. 0.30)	0.15 (max. 0.70)	OK
Party wal	I	0.00 (max. 0.20)	-	OK
Floor		0.15 (max. 0.25)	0.15 (max. 0.70)	OK
Roof		0.12 (max. 0.20)	0.12 (max. 0.35)	OK
Openings		1.40 (max. 2.00)	1.40 (max. 3.30)	OK
2a Thermal brid		ferene line en the energy there existen	ees fan oosh innetien	
3 Air permeabili		from linear thermal transmittan	ices for each junction	
•	bility at 50 pascals		5.00 (design val	
Maximum	onity at 50 pascals		10.0	OK
4 Heating efficie	encv			
Main Heatir				
	<u> </u>	Heat pumps with warm air o	distribution - electric	
		Mitsubishi ECODAN 8.5kW	1	
Secondary	heating system:	None		
Secondary	heating system:	INUTIE		
5 Cylinder insula	ation			
5 Cylinder insula Hot water S		Measured cylinder loss: 1.4	I7 kWh/day	

Regulations Compliance Report

Primary pipework insulated: Controls	Yes		ОК
Space heating controls Hot water controls: Boiler interlock:	Time and temperature zone Cylinderstat Independent timer for DHW Yes		ОК ОК ОК ОК
/ Low energy lights			
Percentage of fixed lights wi Minimum	h low-energy fittings	100.0% 75.0%	ок
Mechanical ventilation			
Not applicable			
Summertime temperature			
Overheating risk (Thames va	alley):	Medium	ОК
ased on:			
Overshading:		Average or unknown	
Windows facing: East		18.74m²	
Windows facing: West		13.99m²	
Windows facing: North		0.26m ²	
Windows facing: South		5.43m ²	
Roof windows facing: Horizo	ntal	6.31m ²	
Ventilation rate:		4.00	
0 Key features			
Roofs U-value		0.12 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array		-	

				User D	etails:						
Assessor Name:	STRO	010943									
Software Name:	Stroma FS	SAP 2012	2		Softwa	are Vei	rsion:		Versio	n: 1.0.5.41	
			Р	roperty .	Address	: Hilltop	Road				
Address :											
1. Overall dwelling dimer	isions:										
Ground floor					a(m²)	(10) ×	Av. Hei			Volume(m ³)	_
				5		(1a) x	2	2.4	(2a) =	131.42	(3a)
First floor				4	9.73	(1b) x	2	2.9	(2b) =	144.22	(3b)
Second floor				2	7.75	(1c) x	2	2.7	(2c) =	74.93	(3c)
Total floor area TFA = (1a)+(1b)+(1c)+	(1d)+(1e))+(1r	n) 1:	32.24	(4)					
Dwelling volume						(3a)+(3b)+(3c)+(3d)+(3e)+	.(3n) =	350.57	(5)
2. Ventilation rate:			•		4					<u> </u>	
	main heating		condar eating	У	other	_	total			m ³ per hour	
Number of chimneys	0	+	0	+	0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s					- Ē	4	x 1	0 =	40	(7a)
Number of passive vents						Ē	0	x 1	0 =	0	(7b)
Number of flueless gas fire	es					Г	0	x 4	40 =	0	(7c)
										_	_
						_			Air ch	anges per ho	ur –
Infiltration due to chimney						<i>(</i>	40		÷ (5) =	0.11	(8)
If a pressurisation test has be Number of storeys in the			a, procee	a to (17), (otherwise (continue fr	om (9) to (16)		0	(9)
Additional infiltration	o an oning (in	- /						[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel o	r timber f	rame or	0.35 fo	r masoni	y constr	ruction			0	(11)
if both types of wall are pre deducting areas of opening			onding to	the great	er wall are	a (after					_
If suspended wooden flo			ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else	enter 0								0	(13)
Percentage of windows	and doors di	aught str	ipped							0	(14)
Window infiltration					0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate							2) + (13) +			0	(16)
Air permeability value, c				•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeabilit Air permeability value applies							ia haina w	ad		0.36	(18)
Number of sides sheltered		Un lest nas	been don		jiee ali pe	ineability	is being us	seu		0	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	9)] =			1	(10)
Infiltration rate incorporation	ng shelter fac	ctor			(21) = (18) x (20) =				0.36	(21)
Infiltration rate modified fo	r monthly wir	nd speed									
Jan Feb N	vlar Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Tab	le 7									
(22)m= 5.1 5 4	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltr	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
-	0.46	0.46	0.45	0.4	0.39	0.35	0.35	0.34	0.36	0.39	0.41	0.43		
			•	rate for t	he appli	cable ca	se	•	•	•	•	 г		
		al ventila		ondix N (2	(22h) = (22c)		quation	(N5)) , othe	nuico (22k	(220)		Ļ	0	(23a)
		• •	0 11	. (, ,	, ,	•	m Table 4h	``)) = (23a)		Ĺ	0	(23b)
			-	-	-					2h)m i ((JJ) V [1 (22a)	0	(23c)
(24a)m=									$\frac{1}{2} = \frac{1}{2}$		230) × [1 - (23c)	÷ 100]	(24a)
			I	I				 MV) (24t				Ŭ		(210)
(24b)m=								0			0	0		(24b)
								on from (Ů	Ŭ	Ů		()
,					•	•		4c) = (22l		.5 × (23t	c)			
(24c)m=	· ,	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilati	on or wh	iole hous	se positiv	/e input	ventilat	ion from	I loft	I	Į	11		
								0.5 + [(2		0.5]				
(24d)m=	0.61	0.6	0.6	0.58	0.58	0.56	0.56	0.56	0.57	0.58	0.58	0.59		(24d)
Effe	ctive air	change	rate - er	nter (24a	a) or (24b	o) or (24	c) or (2	4d) in bo	x (25)					
(25)m=	0.61	0.6	0.6	0.58	0.58	0.56	0.56	0.56	0.57	0.58	0.58	0.59		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros		Openin	igs	Net Ar		U-val		ΑXU		k-value		A X k
_		area	(m²)	r	²	A ,r	m²	W/m2	2K	(W/	K)	kJ/m²∙k	(k	J/K
Doors						2.19			=	3.066				(26)
	ws Type					18.74	1 X	1/[1/(1.4)+	- 0.04] =	24.84				(27)
	ws Type					13.99) ×	1/[1/(1.4)+	- 0.04] =	18.55				(27)
Windo	ws Type	e 3				0.26	x	1/[1/(1.4)+	- 0.04] =	0.34				(27)
Windo	ws Type	e 4				5.43	x	1/[1/(1.4)+	- 0.04] =	7.2				(27)
Rooflig	phts					6.31	x	1/[1/(1.4) +	0.04] =	8.834				(27b)
Floor						54.76	3 X	0.15	=	8.214		110	6023	3.6 <mark>(28)</mark>
Walls		238.	59	40.6	1	197.9	8 X	0.15	=	29.7		60	1187	8.8 (29)
Roof		54.7	76	6.31	 I	48.45	5 X	0.12	=	5.81		9	436.	05 (30)
Total a	rea of e	elements	s, m²			348.1	1							(31)
Party v	vall					7.06	x	0	=	0		45	317.	.7 (32)
				effective wi nternal wal			ated usin	g formula 1	1/[(1/U-valu	ue)+0.04] a	as given in	n paragraph	3.2	
Fabric	heat los	ss, W/K	= S (A x	U)				(26)(30) + (32) =]	106.09	(33)
Heat c	apacity	Cm = S	(Axk)						((28).	(30) + (3	2) + (32a)	(32e) =	18656.15	(34)

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

 $= (34) \div (4) =$ For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

(35)

141.08

	-	es : S (L	•		• •	•	<					[30.56	(36)
	of therma abric he	al bridging	are not kn	own (36) =	= 0.05 x (3	1)			(22)	(36) =		г	100.05	
		at loss ca	alculated	l monthly	v						25)m x (5)	L	136.65	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	70.31	69.83	69.35	67.12	66.71	64.76	64.76	64.4	65.51	66.71	67.55	68.43		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	206.96	206.48	206.01	203.78	203.36	201.42	201.42	201.06	202.17	203.36	204.2	205.08		
Heatla	ee para	meter (H		/m2k	1	1	1			Average = = (39)m ÷	Sum(39) _{1.}	12 /12=	203.77	(39)
(40)m=	1.57	1.56	1.56	1.54	1.54	1.52	1.52	1.52	1.53	1.54	(-)	1.55		
(10)	1.07	1.00	1.00			1.02	1.02	1.02			Sum(40)1.		1.54	(40)
Numbe	er of day	/s in mor	nth (Tab	le 1a)					-					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ener	gy requi	irement:								kWh/ye	ear:	
if TF		-		[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.()013 x (TFA -13.		.9		(42)
			ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		103	3.09		(43)
		al average litres per p				-	-	to achieve	a water us	se target o				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate		n litres per			,			Ŭ Ŭ				Dee		
(44)m=	113.4	109.27	105.15	101.03	96.9	92.78	92.78	96.9	101.03	105.15	109.27	113.4		
_			· · ·								m(44) ₁₁₂ =	L	1237.06	(44)
					-			0Tm / 3600						
(45)m=	168.17	147.08	151.77	132.32	126.96	109.56	101.52	116.5	117.89	137.39	149.97	162.86		
lf instant	aneous w	vater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46		l otal = Su	m(45) ₁₁₂ =	• L	1621.98	(45)
(46)m=	25.22	22.06	22.77	19.85	19.04	16.43	15.23	17.47	17.68	20.61	22.5	24.43		(46)
	storage		ingludin				otorogo	within or						
0		, ,		0			•	within sa	ame ves	Sei		250		(47)
	•	eating a stored			-			(47) mbi boil	ers) ente	er '0' in (47)			
Water	storage	loss:												
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				1.	47		(48)
Tempe	rature f	actor fro	m Table	2b							0.	54		(49)
•••		m water	-	•		or io not		(48) x (49)) =		0.	79		(50)
,		urer's de age loss		•								0		(51)
		eating s			``	-	• /					-		. ,
		from Tal									(0		(52)
Tempe	rature f	actor fro	m Table	2b								0		(53)

Energy lost from water storage, kWh/year								(47) x (51) x (52) x (53) =		0	(54)
	. ,	(54) in (8									0.	.79	(55)
Water	storage	loss cal	culated	for each	month	-		((56)m =)	(55) × (41)	m	-	-	
(56)m=	24.61	22.23	24.61	23.81	24.61	23.81	24.61	24.61	23.81	24.61	23.81	24.61	(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – ((H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H
(57)m=	24.61	22.23	24.61	23.81	24.61	23.81	24.61	24.61	23.81	24.61	23.81	24.61	(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0	(58)
Primar	y circuit	loss cal	lculated	for each	month (59)m =	(58) ÷ 36	65 × (41)	m				
(mo	dified by	/ factor f	rom Tab	le H5 if t	here is s	solar wa	ter heati	ng and a	a cylinde	r thermo	stat)		1
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 3	65 × (41)m					
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0	(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m
(62)m=	216.04	190.32	199.64	178.64	174.83	155.88	149.39	164.37	164.22	185.26	196.3	210.73	(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	KH (negati	ve quantity	/) (enter 'C	' if no sola	r contribut	ion to wate	er heating)	
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)			-	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0	(63)
Output	t from w	ater hea	iter	-				-		-	-	-	
(64)m=	216.04	190.32	199.64	178.64	174.83	155.88	149.39	164.37	164.22	185.26	196.3	210.73	
								Out	out from wa	ater heate	r (annual)	12	2185.62 (64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)n	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]
(65)m=	94.21	83.49	88.76	81.06	80.51	73.49	72.05	77.03	76.26	83.98	86.93	92.45	(65)
inclu	ude (57)	m in cale	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	neating
5. Int	ternal ga	ains (see	e Table 5	and 5a):								
Metab	olic gair	ns (Table	e 5), Wat	ts									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m=	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				
(67)m=	26.78	23.79	19.34	14.65	10.95	9.24	9.99	12.98	17.42	22.12	25.82	27.53	(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		•	
(68)m=	300.4	303.52	295.66	278.94	257.83	237.99	224.74	221.62	229.47	246.2	267.31	287.15	(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a), also s	ee Table	5			1
(69)m=	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	(69)
Pumps	s and fa	ns gains	(Table (5a)									1
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0	(70)
Losses	s e.g. e\	, aporatio	n (nega	tive valu	es) (Tab	le 5)	1						1
(71)m=	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	(71)
Water	heating	gains (1	rable 5)				!						ı
(72)m=	126.63	124.25	, 119.3	112.58	108.21	102.07	96.84	103.54	105.92	112.87	120.73	124.26	(72)
Total i	internal	gains =	:	I	•	. (66)	ا)m + (67)m	• n + (68)m ·	• + (69)m + ((70)m + (7	1)m + (72))m	I
(73)m=	520.32	518.06	500.82	472.67	443.5	415.81	398.07	404.64	419.32	447.7	480.37	505.44	(73)
	lar gains	S:	1	1	1	1	1		1	1		1	<u> </u>

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientat	ion:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	0.26	x	10.63	x	0.63	x	0.7	=	0.84	(74)
North	0.9x	0.77	x	0.26	x	20.32	x	0.63	x	0.7	=	1.61	(74)
North	0.9x	0.77	x	0.26	x	34.53	x	0.63	x	0.7	=	2.74	(74)
North	0.9x	0.77	x	0.26	x	55.46	x	0.63	x	0.7	=	4.41	(74)
North	0.9x	0.77	x	0.26	x	74.72	x	0.63	x	0.7	=	5.94	(74)
North	0.9x	0.77	x	0.26	x	79.99	x	0.63	x	0.7	=	6.36	(74)
North	0.9x	0.77	x	0.26	x	74.68	x	0.63	x	0.7	=	5.93	(74)
North	0.9x	0.77	x	0.26	x	59.25	x	0.63	x	0.7	=	4.71	(74)
North	0.9x	0.77	x	0.26	x	41.52	x	0.63	x	0.7	=	3.3	(74)
North	0.9x	0.77	x	0.26	x	24.19	x	0.63	x	0.7	=	1.92	(74)
North	0.9x	0.77	x	0.26	x	13.12	x	0.63	x	0.7	=	1.04	(74)
North	0.9x	0.77	x	0.26	x	8.86	x	0.63	x	0.7	=	0.7	(74)
East	0.9x	0.77	x	18.74	x	19.64	x	0.63	x	0.7	=	112.48	(76)
East	0.9x	0.77	x	18.74	x	38.42	x	0.63	x	0.7	=	220.04	(76)
East	0.9x	0.77	x	18.74	x	63.27	x	0.63	x	0.7	=	362.38	(76)
East	0.9x	0.77	x	18.74	x	92.28	x	0.63	x	0.7	=	528.51	(76)
East	0.9x	0.77	x	18.74	x	113.09	x	0.63	x	0.7	=	647.7	(76)
East	0.9x	0.77	x	18.74	x	115.77	x	0.63	x	0.7	=	663.04	(76)
East	0.9x	0.77	x	18.74	x	110.22	x	0.63	x	0.7	=	631.24	(76)
East	0.9x	0.77	x	18.74	x	94.68	x	0.63	x	0.7	=	542.23	(76)
East	0.9x	0.77	x	18.74	x	73.59	x	0.63	x	0.7	=	421.46	(76)
East	0.9x	0.77	x	18.74	x	45.59	x	0.63	x	0.7	=	261.1	(76)
East	0.9x	0.77	x	18.74	x	24.49	x	0.63	x	0.7	=	140.25	(76)
East	0.9x	0.77	x	18.74	x	16.15	x	0.63	x	0.7	=	92.5	(76)
South	0.9x	0.77	x	5.43	x	46.75	x	0.63	x	0.7	=	77.58	(78)
South	0.9x	0.77	x	5.43	x	76.57	x	0.63	x	0.7	=	127.06	(78)
South	0.9x	0.77	x	5.43	x	97.53	x	0.63	x	0.7	=	161.86	(78)
South	0.9x	0.77	x	5.43	x	110.23	x	0.63	x	0.7	=	182.93	(78)
South	0.9x	0.77	x	5.43	x	114.87	x	0.63	x	0.7	=	190.63	(78)
South	0.9x	0.77	x	5.43	x	110.55	x	0.63	x	0.7	=	183.45	(78)
South	0.9x	0.77	x	5.43	x	108.01	x	0.63	x	0.7	=	179.24	(78)
South	0.9x		x	5.43	×	104.89	x	0.63	x	0.7	=	174.07	(78)
South	0.9x	0.77	x	5.43	x	101.89	x	0.63	x	0.7	=	169.08	(78)
South	0.9x	0.77	x	5.43	x	82.59	x	0.63	x	0.7	=	137.05	(78)
South	0.9x		x	5.43	x	55.42	x	0.63	x	0.7	=	91.96	(78)
South	0.9x	-	x	5.43	×	40.4	x	0.63	x	0.7	=	67.04	(78)
West	0.9x		x	13.99	×	19.64	x	0.63	x	0.7	=	83.97	(80)
West	0.9x		x	13.99	x	38.42	x	0.63	x	0.7	=	164.27	(80)
West	0.9x	0.77	x	13.99	×	63.27	x	0.63	x	0.7	=	270.53	(80)

$ \begin{array}{c} \text{vest} & 0.8 \\ 0.9 \\ 0.97 \\ $									1						r	_
West 0.0 0.00 0.000 0.	West 0.9x	0.77	×	13.	99	x		2.28	×		0.63	×	0.7	=	394.55	(80)
West 0.0 0.0 0.00	o.o.r	0.77	x	13.	99	x	1	13.09	x		0.63	x	0.7	=	483.53	(80)
West 0.0 0.00 0.000 0.	West 0.9x	0.77	×	13.	99	x	1	15.77	x		0.63	x	0.7	=	494.98	(80)
West 0.00 0.000	West 0.9x	0.77	x	13.	99	x	1	10.22	x		0.63	x	0.7	=	471.24	(80)
West 0.00 0.000	West 0.9x	0.77	x	13.	99	x	9	4.68	x		0.63	x	0.7	=	404.79	(80)
West 0.00	West 0.9x	0.77	x	13.	99	x	7	3.59	x		0.63	x	0.7	=	314.63	(80)
West 0.01 x 1000 x 0.02 x 0.02 x 0.07 x 1000 (63) Rooflights 0.9x 1 x 6.31 x 26 x 0.63 x 0.7 = 66.12 (62) Rooflights 0.9x 1 x 6.31 x 54 x 0.63 x 0.7 = 66.12 (62) Rooflights 0.9x 1 x 6.31 x 150 x 0.63 x 0.7 = 240.43 (62) Rooflights 0.9x 1 x 6.31 x 150 x 0.63 x 0.7 = 440.85 (62) Rooflights 0.9x 1 x 6.31 x 157 x 0.63 x 0.7 = 288.01 (62) Rooflights 0.9x 1 x 6.31 x 157 x 0.63 x 0.7 = 288.01 (62) Rooflights 0.9x 1 x 6.31 x 157 0.63 x 0.	West 0.9x	0.77	x	13.	99	x	4	5.59	x		0.63	×	0.7	=	194.92	(80)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	West 0.9x	0.77	x	13.	99	x	2	4.49	x		0.63	x	0.7	=	104.7	(80)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	West 0.9x	0.77	x	13.	99	x	1	6.15	x		0.63	x	0.7	=	69.05	(80)
Rooflights 0.9x 1 x 6.31 x 96 x 0.01 1 100 <	Rooflights 0.9x	1	x	6.3	51	x		26	x		0.63	x	0.7	=	65.12	(82)
Rooflights $0.9x$ 1 x 6.31 x 150 x 0.02 x 0.7 = 375.67 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 440.85 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = $447.3.44$ (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = $447.3.34$ (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 248.01 (62) Rooflights $0.9x$ 1 x 6.31 x 133 0.63 x 0.7 = 22.66 (62) Rooflights $0.9x$ 1 x 6.31 x 133 20.63 x 0.7 = 22.69 (62) Rooflights $0.9x$ 0.7 $=$	Rooflights 0.9x	1	x	6.3	1	x		54	x		0.63	x	0.7	=	135.24	(82)
Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 440.85 (62) Rooflights $0.9x$ 1 x 6.31 x 200 x 0.63 x 0.7 = 500.89 (62) Rooflights $0.9x$ 1 x 6.31 x 157 x 0.63 x 0.7 = 473.34 (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 473.34 (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 288.01 (82) Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 288.01 (82) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 286.66 (82) Rooflights $0.9x$ 1 x 6.31 x	Rooflights 0.9x	1	x	6.3	51	x		96	x		0.63	x	0.7	=	240.43	(82)
Rooflights $0.3x$ 1 x 6.31 x 200 x 0.63 x 0.7 = 500.89 (82) Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 473.34 (82) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 473.34 (82) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 288.01 (82) Rooflights $0.9x$ 1 x 6.31 x 157 x 0.63 x 0.7 = 288.01 (82) Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 33 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 21	Rooflights 0.9x	1	x	6.3	51	x		150	x		0.63	×	0.7	=	375.67	(82)
Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 473.34 (82) Rooflights $0.9x$ 1 x 6.31 x 157 x 0.63 x 0.7 = 473.34 (82) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 473.34 (82) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 288.01 (82) Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 17 195.43 196.43 70.28 420.61 281.89 (83) Total gains - internal and solar (84)m = (73)m + (83)m , wats (83)m = \$	Rooflights 0.9x	1	x	6.3	1	x		192	x		0.63	×	0.7	=	480.85	(82)
Rooflights $_{0.9x}$ 1 x 6.31 x 157 x 0.63 x 0.7 = 393.2 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 0.63 x 0.7 = 288.01 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 0.63 x 0.7 = 82.65 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (62) Rooflights $_{0.9x}$ 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (62) 62 136.26 184.71 1761 1518.99 1196.4 186.29 19.64 184.	Rooflights 0.9x	1	x	6.3	51	x		200	x		0.63	×	0.7	= =	500.89	(82)
Rooflights 0.9* 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (82) Rooflights 0.9* 1 x 6.31 x 66 x 0.63 x 0.7 = 288.01 (82) Rooflights 0.9* 1 x 6.31 x 33 x 0.63 x 0.7 = 288.01 (82) Rooflights 0.9* 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (82) Rooflights 0.9* 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (82) Rooflights 0.9* 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (82) Rooflights 0.9* 1 x 6.31 x 21 151.89 1196.48 760.28 420.61 281.99 (63) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m = (73)m + (82)m + (73	Rooflights 0.9x	1	x	6.3	1	x		189	x		0.63	×	0.7	=	473.34	(82)
Rooflights 0.9x 1 x 6.31 x 66 x 0.63 x 0.7 = 165.29 (12) Rooflights 0.9x 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (12) Rooflights 0.9x 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (12) Rooflights 0.9x 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (182) Rooflights 0.9x 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (182) Rooflights 0.9x 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (182) Solar gains in watts, calculated for each month (83)m = Sum(74)m (82)m (82)m (82)m (82)m (82)m (82)m (83)m (82)m (82)m (82)m (82)m (82)m (83)	Rooflights 0.9x	1	x	6.3	51	x		157	x		0.63	×	0.7	= =	393.2	(82)
Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (82) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (82)m (82)m (82)m (82)m (83)m = 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains - internal and solar (84)m = (73)m + (83)m, watts	Rooflights 0.9x	1	x	6.3	;1	x		115	×		0.63	×	0.7	=	288.01	(82)
Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (62) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (62) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m	Rooflights 0.9x	1	×	6.3	;1	x		66	x		0.63	- X	0.7	=	165.29	(82)
Rooflights $_{0.9x}$ 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (62) Solar gains in watts, calculated for each month (63)m = Sum(74)m(82)m (63)m (63)m = Sum(74)m(82)m (63)m (63)m = 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (63) Total gains - internal and solar (84)m = (73)m + (83)m, watts (84)m (86.32 1166.29 1538.75 1958.73 2252.15 2264.52 2159.07 1923.63 1615.8 1207.98 900.98 787.33 (84) Total gains - internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m= 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21 21 21 21	Rooflights 0.9x	1	×	6.3	51	x		33	x		0.63	- x	0.7	=	82.65	(82)
(83)m= 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 860.32 1166.29 1538.75 1958.73 2252.15 2264.52 2159.07 1923.63 1615.8 1207.98 900.98 787.33 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) 340 648 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21 21 21 21 21 21 21 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.66 19.67 19.67 19.67 19.66 19.65 (88) Utilisation factor for gains	Rooflights 0.9x	1	x	6.3	51	x		21	×		0.63	- x	0.7	=	52.59	(82)
(83)m= 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 860.32 1166.29 1538.75 1958.73 2252.15 2264.52 2159.07 1923.63 1615.8 1207.98 900.98 787.33 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) 340 648 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21 21 21 21 21 21 21 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.66 19.67 19.67 19.67 19.66 19.65 (88) Utilisation factor for gains									1							
(83)m= 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 860.32 1166.29 1538.75 1958.73 2252.15 2264.52 2159.07 1923.63 1615.8 1207.98 900.98 787.33 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) 340 648 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21 21 21 21 21 21 21 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.66 19.67 19.67 19.67 19.66 19.65 (88) Utilisation factor for gains	Solar gains in	watts. ca	alculated	for eac	h month	ı			(83)m	า = Su	m(74)m	.(82)m				
(84)m= 860.32 1166.29 1538.75 1958.73 2252.15 2264.52 2159.07 1923.63 1615.8 1207.98 900.98 787.33 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86) (86)m= 0.98 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean Internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87) 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) <td>ŭ</td> <td>T (</td> <td>r</td> <td></td> <td>[</td> <td>1</td> <td>348.71</td> <td></td> <td>ŕ</td> <td></td> <td><u> </u></td> <td></td> <td>420.61</td> <td>281.89</td> <td>]</td> <td>(83)</td>	ŭ	T (r		[1	348.71		ŕ		<u> </u>		420.61	281.89]	(83)
Tends react reac	Total gains –	internal a	nd solar	(84)m =	= (73)m	+ (83)m	, watts			Į		-!		-	
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m= $Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0.98 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21$	(84)m= 860.32	1166.29	1538.75	1958.73	2252.15	22	264.52	2159.07	1923	3.63	1615.8	1207.9	8 900.98	787.33]	(84)
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m= $Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0.98 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 21$	7. Mean inte	rnal temp	berature	(heating	seasor	ר)			•				•		-	
Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jun Aug Sep Oct Nov Dec (86) Jan Feb Mar Apr May Jun Jul Aug Aug Oct Nov Dec (86) (86)m= 0.98 0.96 0.91 0.81 0.66 0.51 0.39 0.44 0.67 0.89 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87) (87)m= 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>area</td><td>from Tab</td><td>ole 9.</td><td>. Th1</td><td>(°C)</td><td></td><td></td><td></td><td>21</td><td>(85)</td></th<>							area	from Tab	ole 9.	. Th1	(°C)				21	(85)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•	•	0.			Ŭ					、 ,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>						, 	A	ug	Sep	Oct	Nov	Dec]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.96			,			0.39					-	0.99		(86)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean intern:	l temper	ature in	living ar			w sto	ns 3 to 7	I 7 in T	 Table	9c)				4	
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) $(88)m=$ 19.6419.6419.6619.6619.6719.6719.6719.6619.6519.65(88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) $(89)m=$ 0.980.950.890.770.60.420.280.330.590.860.960.98(89)Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) $(90)m=$ 19.6419.6419.6619.6619.6719.6719.6719.6619.6519.65(90)		· · ·	i 1		· · ·	T		i				21	21	21]	(87)
(88)m= 19.64 19.64 19.64 19.66 19.67 19.67 19.67 19.67 19.65 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.98 0.95 0.89 0.77 0.6 0.42 0.28 0.33 0.59 0.86 0.96 0.98 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 19.64 19.64 19.66 19.66 19.67 19.67 19.67 19.66 19.65 (90)															1	
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.98 0.95 0.89 0.77 0.6 0.42 0.28 0.33 0.59 0.86 0.96 0.98 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 19.64 19.64 19.66 19.66 19.67 19.67 19.67 19.65 19.65 (90)	-	1				-			r	-		10.66	10.65	10.65	1	(88)
(89)m= 0.98 0.95 0.89 0.77 0.6 0.42 0.28 0.33 0.59 0.86 0.96 0.98 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 19.64 19.64 19.66 19.66 19.67 19.67 19.67 19.65 19.65 (90)						-				07	19.07	19.00	19.05	19.05]	(00)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.65 19.65 (90)		<u> </u>				-		r	r Ó						1	(00)
(90)m= 19.64 19.64 19.64 19.66 19.66 19.67 19.67 19.67 19.67 19.67 19.66 19.65 19.65 (90)	(89)m= 0.98	0.95	0.89	0.77	0.6		0.42	0.28	0.3	33	0.59	0.86	0.96	0.98		(89)
	Mean interna	al temper	ature in	the rest	of dwel	ling	T2 (f	ollow ste	eps 3	8 to 7	in Table	e 9c)			-	
$fLA = Living area \div (4) = 0.1$ (91)	(90)m= 19.64	19.64	19.64	19.66	19.66	1	19.67	19.67	19.	67						
											fL	.A = Liv	ing area ÷ (4	4) =	0.1	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

(92)m=	19.77	19.77	19.78	19.79	19.79	19.8	19.8	19.8	19.8	19.79	19.79	19.78		(92)
Apply	adjustr	nent to t	he mear	interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.77	19.77	19.78	19.79	19.79	19.8	19.8	19.8	19.8	19.79	19.79	19.78		(93)
8. Sp	ace hea	ting requ	uirement											
				•		ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut		i	<u> </u>	using Ta						Q (
1.14:1:	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	0.98	tor for g	1	0.77	0.61	0.43	0.29	0.34	0.0	0.86	0.00	0.00		(94)
(94)m=			0.89			0.43	0.29	0.34	0.6	0.86	0.96	0.98		(34)
(95)m=	841.32		, VV = (94 1374.62	4)m x (8 1514.25	r <u> </u>	973.7	627.25	656.76	966.7	1043.71	866.03	773.44		(95)
				perature			027.20	030.70	300.7	1043.71	000.00	113.44		(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		-				Lm , W =		-						()
(97)m=	3201.98	i	2734.93	· · ·	1	1047.24		683.83	<u> </u>	1868.76	2590.35	3195.37		(97)
						Wh/mont								
(98)m=	r	1317.64	i	507.12	205.7	0	0.02			613.84	1241.51	1801.91		
()						-	-	-	l per year			L	8456.13	(98)
0								1010	i por your	(ittin#joui) – Cam(c	C /15,912 -		
Space	e heatin	g require	ement in	kWh/m²	/year								63.95	(99)
9a. En	ergy rec	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
•	e heatii	•												_
Fract	ion of sp	bace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fract	ion of sp	bace hea	at from m	nain syst	em(s)			(202) = 1 ·	– (201) =				1	(202)
Fract	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								389.96	(206)
Efficie	ency of	seconda	ry/suppl	ementar	y heatin	g system	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space	e heatin	g require	ement (c	alculate	d above)								
	1756.33	1317.64	1012.07	507.12	205.7	0	0	0	0	613.84	1241.51	1801.91		
(211)m	າ = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)									(211)
	450.39	337.89	259.53	130.04	52.75	0	0	0	0	157.41	318.37	462.08		
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	2168.47	(211)
Spac	e heatin	a fuel (s	econdar	y), kWh/	month							I		
•))1)]}x 1												
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,10} 12	=	0	(215)
Water	heating	1										I		
			ter (calc	ulated a	bove)			-			-			
	216.04	190.32	199.64	178.64	174.83	155.88	149.39	164.37	164.22	185.26	196.3	210.73		
Efficie	ncy of w	ater hea	iter										188.96	(216)
(217)m=	188.96	188.96	188.96	188.96	188.96	188.96	188.96	188.96	188.96	188.96	188.96	188.96		(217)
		heating,											1	
. ,		<u>m x 100</u>			00.5-	<u> </u>	70.0-	0.0.4.5		00.0	400	· · · 1		
(219)m=	114.33	100.72	105.66	94.54	92.53	82.5	79.06	86.99	86.91	98.04	103.89	111.52		-
								Tota	I = Sum(2)	19a) ₁₁₂ =			1156.69	(219)

Annual totals Space heating fuel used, main system 1	kWh/year	[kWh/year 2168.47		
Water heating fuel used			[1156.69]
Electricity for pumps, fans and electric keep-hot			L		J
Total electricity for the above, kWh/year	sum of (2	230a)(230g) =	[0	(231)
Electricity for lighting			ĺ	472.96	(232)
Electricity generated by PVs			[-854.98	(233)
Total delivered energy for all uses (211)(221) + (23)	31) + (232)(237b) =		[2943.13	(338)
12a. CO2 emissions – Individual heating systems in	ncluding micro-CHP		L		_
	Energy kWh/year	Emission fact kg CO2/kWh	or	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.519	= [1125.44	(261)
Space heating (secondary)	(215) x	0.519	= [0	(263)
Water heating	(219) x	0.519	= [600.32	(264)
Space and water heating	(261) + (262) + (263) + (264)) =	[1725.76	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	= [0	(267)
Electricity for lighting	(232) x	0.519	= [245.47	(268)
Energy saving/generation technologies Item 1		0.519	= [-443.74	(269)
Total CO2, kg/year		sum of (265)(271) =]	1527.49	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =	[11.55	(273)
EI rating (section 14)			[88	(274)