Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.41 *Printed on 22 June 2021 at 09:42:22*

ssessed By:	Neil Ingham (STF	20010943)	Building Type:	Semi-detached House
•	_ ·	(0010943)	Building Type.	Semi-delached House
Dwelling Details:	DESIGN STAGE		Total Floor Area: 2	132 2/m²
ite Reference :	Hilltop Road - BA	SE	Plot Reference:	Hilltop Road
ddress :				
Client Details:				
ame: ddress :				
-	rs items included vete report of regula	vithin the SAP calculations.		
a TER and DEI				
	ting system: Mains	nas		
uel factor: 1.00 (•••	300		
,	oxide Emission Rate	e (TER)	17.98 kg/m²	
-	Dioxide Emission Ra	ate (DER)	15.98 kg/m²	O
Ib TFEE and D				
-	ergy Efficiency (TFE		65.4 kWh/m ²	
welling Fabric E	nergy Efficiency (DF	·EE)	58.3 kWh/m²	OI
2 Fabric U-value	es			
Element		Average	Highest	
External	wall	0.15 (max. 0.30)	0.15 (max. 0.70)	OI
Party wa	II	0.00 (max. 0.20)	-	OI
Floor		0.15 (max. 0.25)	0.15 (max. 0.70)	0
Roof Opening	e	0.12 (max. 0.20) 1.40 (max. 2.00)	0.12 (max. 0.35) 1.40 (max. 3.30)	01 01
2a Thermal brid		1.40 (max. 2.00)	1.40 (max. 5.50)	U.
		from linear thermal transmittan	ces for each junction	
3 Air permeabil				
Air permea	bility at 50 pascals		5.00 (design val	
Maximum			10.0	OI
4 Heating efficie	ency			
Main Heati	ng system:	Boiler systems with radiator	s or underfloor heating - m	ains gas
		Data from manufacturer		
		Combi boiler Efficiency 89.5 % SEDBUK	2000	
		Minimum 88.0 %	2009	OI
				0.
Secondary	heating system:	None		
5 Cylinder insul	ation			
Hot water S		No cylinder		
	storago.			N/

Regulations Compliance Report

6 Controls			
Space heating controls Hot water controls:	TTZC by plumbing and No cylinder thermostat No cylinder	electrical services	ОК
Boiler interlock:	Yes		ОК
7 Low energy lights			
Percentage of fixed lights with Minimum	n low-energy fittings	100.0% 75.0%	ок
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (Thames val	ley):	Medium	ОК
Based on:			
Overshading:		Average or unknown	
Windows facing: East		18.74m ²	
Windows facing: West		13.99m ²	
Windows facing: North		0.26m ²	
Windows facing: South		5.43m ²	
Roof windows facing: Horizor	Ital	6.31m ²	
Ventilation rate:		4.00	
10 Key features			
Roofs U-value		0.12 W/m²K	
Party Walls U-value		0 W/m²K	

				User D	etails:						
Assessor Name:	Neil Ingha	m			Strom	a Num	ber:		STRO	010943	
Software Name:	Stroma FS	SAP 2012	2		Softwa	are Vei	rsion:		Versio	n: 1.0.5.41	
			Р	roperty .	Address	: Hilltop	Road				
Address :											
1. Overall dwelling dimer	isions:										
Ground floor					a(m²)	(10) ×	Av. Hei			Volume(m ³)	_
				5		(1a) x	2	2.4	(2a) =	131.42	(3a)
First floor				4	9.73	(1b) x	2	2.9	(2b) =	144.22	(3b)
Second floor				2	7.75	(1c) x	2	2.7	(2c) =	74.93	(3c)
Total floor area TFA = (1a)+(1b)+(1c)+	(1d)+(1e))+(1r	n) 1:	32.24	(4)					
Dwelling volume						(3a)+(3b)+(3c)+(3d)+(3e)+	.(3n) =	350.57	(5)
2. Ventilation rate:			•		4					<u> </u>	
	main heating		condar eating	У	other	_	total			m ³ per hour	
Number of chimneys	0	+	0	+	0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s					- Ē	4	x 1	0 =	40	(7a)
Number of passive vents						Ē	0	x 1	0 =	0	(7b)
Number of flueless gas fire	es					Г	0	x 4	40 =	0	(7c)
										_	_
						_			Air ch	anges per ho	ur –
Infiltration due to chimney						<i>(</i>	40		÷ (5) =	0.11	(8)
If a pressurisation test has be Number of storeys in the			a, procee	a to (17), (otherwise (continue fr	om (9) to (16)		0	(9)
Additional infiltration	o an oning (in	- /						[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel o	r timber f	rame or	0.35 fo	r masoni	y constr	ruction			0	(11)
if both types of wall are pre deducting areas of opening			onding to	the great	er wall are	a (after					_
If suspended wooden flo			ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else	enter 0								0	(13)
Percentage of windows	and doors di	aught str	ipped							0	(14)
Window infiltration					0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate							2) + (13) +			0	(16)
Air permeability value, c				•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeabilit Air permeability value applies							ia haina w	ad		0.36	(18)
Number of sides sheltered		Un lest nas	been don		jiee ali pe	ineability	is being us	seu		0	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	9)] =			1	(10)
Infiltration rate incorporation	ng shelter fac	ctor			(21) = (18) x (20) =				0.36	(21)
Infiltration rate modified fo	r monthly wir	nd speed									
Jan Feb N	vlar Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Tab	le 7									
(22)m= 5.1 5 4	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltr	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
-	0.46	0.46	0.45	0.4	0.39	0.35	0.35	0.34	0.36	0.39	0.41	0.43		
			•	rate for t	he appli	cable ca	se	•	•	•	•	 г		
		al ventila		ondix N (2	(22h) = (22c)		quation	(N5)) , othe	nuico (22k	(220)		Ļ	0	(23a)
		• •	0 11	. (, ,	, ,	•	m Table 4h	``)) = (23a)		Ĺ	0	(23b)
			-	-	-					2h)m i ((JJ) V [1 (22a)	0	(23c)
(24a)m=									$\frac{1}{2} = \frac{1}{2}$		230) × [1 – (23c)	÷ 100]	(24a)
			I	I				 MV) (24t				Ŭ		(210)
(24b)m=								0			0	0		(24b)
								on from (Ů	Ŭ	Ů		()
,					•	•		4c) = (22l		.5 × (23t	c)			
(24c)m=	· ,	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilati	on or wh	iole hous	se positiv	/e input	ventilat	ion from	I loft	I	Į	11		
								0.5 + [(2		0.5]				
(24d)m=	0.61	0.6	0.6	0.58	0.58	0.56	0.56	0.56	0.57	0.58	0.58	0.59		(24d)
Effe	ctive air	change	rate - er	nter (24a	a) or (24b	o) or (24	c) or (2	4d) in bo	x (25)					
(25)m=	0.61	0.6	0.6	0.58	0.58	0.56	0.56	0.56	0.57	0.58	0.58	0.59		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros		Openin	igs	Net Ar		U-val		ΑXU		k-value		A X k
_		area	(m²)	r	²	A ,r	m²	W/m2	2K	(W/	K)	kJ/m²∙k	(k	J/K
Doors						2.19			=	3.066				(26)
	ws Type					18.74	1 ×	1/[1/(1.4)+	- 0.04] =	24.84				(27)
	ws Type					13.99) ×	1/[1/(1.4)+	- 0.04] =	18.55				(27)
Windo	ws Type	e 3				0.26	x	1/[1/(1.4)+	- 0.04] =	0.34				(27)
Windo	ws Type	e 4				5.43	x	1/[1/(1.4)+	- 0.04] =	7.2				(27)
Rooflig	phts					6.31	x	1/[1/(1.4) +	0.04] =	8.834				(27b)
Floor						54.76	3 X	0.15	=	8.214		110	6023	3.6 <mark>(28)</mark>
Walls		238.	59	40.6	1	197.9	8 X	0.15	=	29.7		60	1187	8.8 (29)
Roof		54.7	76	6.31	 I	48.45	5 X	0.12	=	5.81		9	436.	05 (30)
Total a	rea of e	elements	s, m²			348.1	1							(31)
Party v	vall					7.06	x	0	=	0		45	317.	.7 (32)
				effective wi nternal wal			ated usin	g formula 1	1/[(1/U-valu	ue)+0.04] a	as given in	n paragraph	3.2	
Fabric	heat los	ss, W/K	= S (A x	U)				(26)(30) + (32) =]	106.09	(33)
Heat capacity $Cm = S(A \times k)$								((28).	(30) + (3	2) + (32a)	(32e) =	18656.15	(34)	

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

 $= (34) \div (4) =$ For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

(35)

141.08

	-	es : S (L	,		• •	•	<					[30.56	(36)
	of therma abric he	al bridging at loss	are not kr	own (36) =	= 0.05 x (3	1)			(33) +	(36) =		Г	136.65	(37)
		at loss ca	alculated	d monthly	v						25)m x (5)	L	130.03	(0,)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	70.31	69.83	69.35	67.12	66.71	64.76	64.76	64.4	65.51	66.71	67.55	68.43		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	- 38)m			
(39)m=	206.96	206.48	206.01	203.78	203.36	201.42	201.42	201.06	202.17	203.36	204.2	205.08		
Heat lo	oss para	meter (H	HLP). W	/m²K						Average = = (39)m ÷	Sum(39)1. (4)	12 /12=	203.77	(39)
(40)m=	1.57	1.56	1.56	1.54	1.54	1.52	1.52	1.52	1.53	1.54	1.54	1.55		
									,	Average =	Sum(40)1.	12 /12=	1.54	(40)
Numbe	er of day Jan	/s in moi Feb	nth (Tab Mar	le 1a) Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter hea	ting enei	rgy requ	irement:								kWh/ye	ar:	
Accum		ipancy, I	N											(40)
if TF	A > 13.	9, N = 1		[1 - exp	(-0.0003	49 x (TF	- A -13.9)2)] + 0.0	0013 x (⁻	FFA -13.		.9		(42)
	A £ 13.													
		je hot wa al average								se target o		3.09		(43)
not more	e that 125	litres per	person pe	r day (all w	ater use, l	not and co	ld)	-			-			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	-	n litres per	-				r							
(44)m=	113.4	109.27	105.15	101.03	96.9	92.78	92.78	96.9	101.03	105.15	109.27	113.4	4007.00	(44)
Energy o	content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1237.06	(44)
(45)m=	168.17	147.08	151.77	132.32	126.96	109.56	101.52	116.5	117.89	137.39	149.97	162.86		
lf instan	taneous v	vater heatii	na at poini	of use (no	o hot water	storage).	enter 0 in	boxes (46		Fotal = Su	m(45) ₁₁₂ =	-	1621.98	(45)
(46)m=	25.22	22.06	22.77	19.85	19.04	16.43	15.23	17.47	17.68	20.61	22.5	24.43		(46)
1 (L	storage													
Storag	e volum	e (litres)	includir	ng any se	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
	•	neating a			-			. ,		or (0) in (47)			
	nse i no storage	o stored loss:	not wate	er (this ir	iciudes i	nstantar	ieous co	inod idmi	ers) ente	er u in (47)			
	•	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
•••		om water	-					(48) x (49)) =			0		(50)
		urer's de age loss		•										(54)
		eating s				n/nu €/uð	·y <i>)</i>					0		(51)
Volum	e factor	from Ta	ble 2a									0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)

Energy	lost fro	m water	storage	k\//b/v/	əar			(47) x (51)) x (52) x (53) -		0		(54)
•••		(54) in (5	-	,, y				(47) X (01)	/ x (02) x (00) -		0		(55)
	. ,	loss cal	,	for each	month			((56)m = (55) × (41)	m		-		
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
						-			-	m where (ix H	. ,
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
														(58)
	•	loss (ar	,			50)m - ((58) ÷ 36	5 🗸 (11)	m			0		(30)
	•					,	. ,	• •		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
		loulated	for each	month ((61)m –	(60) · 34	65 × (41)	l		I				
(61)m=	50.96	46.03	50.96	49.32	49.38	45.75	47.28	49.38	49.32	50.96	49.32	50.96		(61)
													(50)	(01)
	219.12	193.11	202.73	181.63	176.34	155.31	148.8	(62)m = 165.88	167.2	(45)m + 188.35	(46)m + 199.29	(57)m + 213.82	(59)m + (61)m	(62)
(62)m=														(02)
							, see Ap			r contribut	ion to wate	er neating)		
(63)m=		0			0				0	0	0	0		(63)
FHRS	119.11	110	108.5	96.27	80.74	3.35	3.16	3.49	3.51	98.91	110.22	117.15		(63) (G2)
				50.27	00.74	0.00	0.10	0.40	0.01	50.51	110.22	117.10		(00) (02)
•		ater hea		05.26	05.6	151.06	145.64	162.20	162.60	00.42	89.07	06.67		
(64)m=	100.02	83.11	94.23	85.36	95.6	151.96	145.64	162.39	163.69	89.43 ater heater		96.67	1357.17	(64)
	-: f		h											
-		1	neating, 63.2	1			· · ·	· ,	-	k [(46)m		. ,]	(65)
(65)m=	68.65	60.41		56.32	54.56	47.87	45.58	51.08	51.53	58.42	62.19	66.89		(03)
	. ,			. ,	-	sylinder is	s in the d	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	Table 5	and 5a):									
Metab		s (Table				i	i				· · · · · ·		1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		()
(66)m=	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03	145.03		(66)
Lightin		È		·	· · ·	· · · · · ·	r L9a), a		Table 5					
(67)m=	26.78	23.79	19.34	14.65	10.95	9.24	9.99	12.98	17.42	22.12	25.82	27.53		(67)
Applia	nces ga	· · · · · · · · · · · · · · · · · · ·			· · · ·	i	13 or L1	3a), also	see Ta	ble 5				
(68)m=	300.4	303.52	295.66	278.94	257.83	237.99	224.74	221.62	229.47	246.2	267.31	287.15		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m=	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5		(69)
Pumps	and fai	ns gains	(Table s	ōa)				-	-					
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02	-116.02		(71)
Water	heating	gains (T	able 5)											
(72)m=	92.28	89.9	84.95	78.23	73.33	66.48	61.26	68.66	71.57	78.52	86.38	89.91		(72)
Total i	nternal	gains =		•	•	(66)	- m + (67)m	n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	488.97	486.71	469.47	441.32	411.62	383.22	365.49	372.76	387.97	416.35	449.02	474.09		(73)
	-	-			-	-	-	-	-		-			

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-		Access Facto		Area m ²	a and	Flux Table 6a	tions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	0.26	×	10.63	x	0.63	x	0.7	=	0.84	(74)
North	0.9x	0.77	×	0.26	×	20.32	x	0.63	x	0.7	=	1.61	(74)
North	0.9x	0.77	x	0.26	×	34.53	x	0.63	x	0.7	=	2.74	(74)
North	0.9x	0.77	x	0.26	x	55.46	x	0.63	x	0.7	=	4.41	(74)
North	0.9x	0.77	x	0.26	×	74.72	x	0.63	x	0.7	=	5.94	(74)
North	0.9x	0.77	x	0.26	×	79.99	x	0.63	x	0.7	=	6.36	(74)
North	0.9x	0.77	x	0.26	×	74.68	x	0.63	x	0.7	=	5.93	(74)
North	0.9x	0.77	x	0.26	×	59.25	x	0.63	x	0.7	=	4.71	(74)
North	0.9x	0.77	x	0.26	×	41.52	x	0.63	x	0.7	=	3.3	(74)
North	0.9x	0.77	x	0.26	×	24.19	x	0.63	x	0.7	=	1.92	(74)
North	0.9x	0.77	x	0.26	×	13.12	x	0.63	x	0.7	=	1.04	(74)
North	0.9x	0.77	x	0.26	×	8.86	x	0.63	x	0.7	=	0.7	(74)
East	0.9x	0.77	x	18.74	×	19.64	x	0.63	x	0.7	=	112.48	(76)
East	0.9x	0.77	x	18.74	x	38.42	x	0.63	x	0.7	=	220.04	(76)
East	0.9x	0.77	x	18.74	×	63.27	x	0.63	x	0.7	=	362.38	(76)
East	0.9x	0.77	x	18.74	×	92.28	x	0.63	x	0.7	=	528.51	(76)
East	0.9x	0.77	x	18.74	x	113.09	x	0.63	x	0.7	=	647.7	(76)
East	0.9x	0.77	x	18.74	×	115.77	x	0.63	x	0.7	=	663.04	(76)
East	0.9x	0.77	x	18.74	x	110.22	x	0.63	x	0.7	=	631.24	(76)
East	0.9x	0.77	x	18.74	×	94.68	x	0.63	x	0.7	=	542.23	(76)
East	0.9x	0.77	x	18.74	×	73.59	x	0.63	x	0.7	=	421.46	(76)
East	0.9x	0.77	x	18.74	×	45.59	x	0.63	x	0.7	=	261.1	(76)
East	0.9x	0.77	x	18.74	×	24.49	x	0.63	x	0.7	=	140.25	(76)
East	0.9x	0.77	x	18.74	×	16.15	x	0.63	x	0.7	=	92.5	(76)
South	0.9x	0.77	x	5.43	×	46.75	x	0.63	x	0.7	=	77.58	(78)
South	0.9x	0.77	x	5.43	×	76.57	x	0.63	x	0.7	=	127.06	(78)
South	0.9x	0.77	x	5.43	x	97.53	x	0.63	x	0.7	=	161.86	(78)
South	0.9x	0.77	x	5.43	x	110.23	x	0.63	x	0.7	=	182.93	(78)
South	0.9x	0.77	x	5.43	×	114.87	x	0.63	x	0.7	=	190.63	(78)
South	0.9x	0.77	x	5.43	x	110.55	x	0.63	x	0.7	=	183.45	(78)
South	0.9x	0.77	x	5.43	×	108.01	x	0.63	x	0.7	=	179.24	(78)
South	0.9x	0.77	x	5.43	×	104.89	x	0.63	x	0.7	=	174.07	(78)
South	0.9x	0.77	×	5.43	×	101.89	x	0.63	x	0.7	=	169.08	(78)
South	0.9x	0.77	×	5.43	×	82.59	x	0.63	x	0.7	=	137.05	(78)
South	0.9x	0.77	×	5.43	×	55.42	x	0.63	x	0.7	=	91.96	(78)
South	0.9x	0.77	×	5.43	×	40.4	x	0.63	x	0.7	=	67.04	(78)

Viest 0.8x 0.77 × 13.99 × 19.64 × 0.63 × 0.77 = 19.37 (00) West 0.4x 0.77 × 13.99 × 38.42 × 0.63 × 0.77 = 19.347 (00) West 0.4x 0.77 × 13.99 × 22.82 × 0.63 × 0.77 = 344.455 (60) West 0.4x 0.77 × 13.39 × 115.77 × 0.63 × 0.77 = 444.53 (60) West 0.4x 0.77 × 13.39 × 44.68 × 0.63 × 0.77 = 144.62 (60) West 0.4x 0.77 × 13.99 × 2.44.9 × 0.63 × 0.77 = 144.62 (60) West 0.4x 0.77 × 13.39 × <	West	0.9x	0.77		x	120	00	x	1	9.64] x	—	0.63	x	0.7		=	83.97	(80)
West 0.97 × 13.09 × 0.63 × 0.77 = 270.53 (60) West 0.3 0.77 × 13.99 × 0.63 × 0.77 = 394.65 (60) West 0.3 0.77 × 13.99 × 10.22 × 0.63 × 0.77 = 448.98 (60) West 0.3 0.77 × 13.99 × 115.77 × 0.63 × 0.77 = 444.98 (60) West 0.3 0.77 × 13.99 × 13.59 × 0.63 × 0.77 = 314.63 (60) West 0.4 0.77 × 13.99 × 24.94 × 0.63 × 0.77 = 314.63 (61) West 0.63 × 0.77 = 63.1 × 0.63 × 0.77 = 63.1 × 0.63 × 0.77 = 63.1 × 0.63 × 0.77		L L							<u> </u>] 1			4					
West 0.0 0.000 0] 1	<u> </u>		4					
West 0.07 × 13.09 × 0.63 × 0.77 = 4483.65 (B0) West 0.3x 0.77 × 13.99 × 115.77 × 0.63 × 0.77 = 444.99 (B0) West 0.3x 0.77 × 13.99 × 10.62 × 0.63 × 0.77 = 444.99 (B0) West 0.3x 0.77 × 13.99 × 44.65 × 0.63 × 0.77 = 444.97 (B0) West 0.3x 0.77 × 13.99 × 44.59 × 0.63 × 0.77 = 144.35 (B0) West 0.3x 0.77 × 13.99 × 16.15 × 0.63 × 0.77 = 64.12 (B2) Rodights 0.3x 1 × 6.31 × 16.63 × 0.63 × 0.77 = 46.14 (B2) Rodights 0.3x 0.77 =											1	<u> </u>		4					-
West 0.82 0.77 × 113.99 × 115.77 × 0.63 × 0.77 = 444.98 (60) West 0.92 0.77 × 13.99 × 110.22 × 0.63 × 0.77 = 444.98 (60) West 0.92 0.77 × 13.99 × 110.22 × 0.63 × 0.77 = 444.79 (60) West 0.92 0.77 × 13.99 × 24.58 × 0.63 × 0.77 = 144.82 (60) West 0.92 0.77 × 13.99 × 26.54 0.63 × 0.77 = 194.92 (60) West 0.92 0.77 × 13.99 × 16.15 × 0.63 × 0.77 = 194.92 (60) No 0.77 = 135.24 (62) No 0.77 = 136.24 (62) No 0.77 = 136.24 (62) No No		L L] 1	<u> </u>		4					=
West 0.9x 0.77 x 11.9.99 x 110.22 x 0.63 x 0.77 = 447.124 (60) West 0.9x 0.77 x 13.99 x 94.68 x 0.63 x 0.77 = 434.63 (60) West 0.9x 0.77 x 13.99 x 45.59 x 0.63 x 0.77 = 194.82 (60) West 0.9x 0.77 x 13.99 x 44.55 x 0.63 x 0.77 = 69.05 (60) West 0.9x 0.77 x 13.99 x 16.15 x 0.63 x 0.77 = 69.05 (60) Rootlights 0.9x 1 x 6.31 x 192 x 0.63 x 0.77 = 240.43 (62) Rootlights 0.9x 1 x 6.31 x 192 x 0.63 x 0.77 = 440.85 (62) Rootlights 0.9x <td></td> <td>] 1</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>] 1			4					
West 0.3x 0.77 x 13.99 x 94.68 x 0.63 x 0.77 = 404.79 (60) West 0.9x 0.77 x 13.99 x 73.59 x 0.63 x 0.77 = 134.83 (60) West 0.9x 0.77 x 13.99 x 24.49 x 0.63 x 0.77 = 194.422 (60) West 0.9x 0.77 x 13.99 x 16.15 x 0.63 x 0.77 = 69.05 (60) Rootlights 0.9x 1 x 6.31 x 26 x 0.63 x 0.7 = 136.24 (82) Rootlights 0.9x 1 x 6.31 x 192 x 0.63 x 0.7 = 240.43 (82) Rootlights 0.9x 1 x 6.31 x 192 x 0.63 x 0.7 = 240.61 (82) Rootlights 0.9x	West										1			4					
West 0.84 0.77 x 13.99 x 73.69 x 0.63 x 0.77 = 514.63 (60) West 0.97 0.77 x 13.99 x 45.59 x 0.63 x 0.77 = 194.92 (60) West 0.97 x 13.99 x 16.15 x 0.63 x 0.77 = 194.92 (60) Rooflights 0.97 x 13.99 x 16.15 x 0.63 x 0.77 = 69.06 (60) Rooflights 0.97 1 x 6.31 x 26 x 0.63 x 0.77 = 69.06 (62) Rooflights 0.97 1 x 6.31 x 192 x 0.63 x 0.77 = 240.43 (62) Rooflights 0.97 1 x 6.31 x 192 x 0.63 x 0.77 = 63.08 (62) Rooflights 0.97		L L							<u> </u>] 1			4					
West 0.4k 0.77 x 13.99 x 45.59 x 0.63 x 0.77 = 194.92 (60) West 0.5k 0.77 x 13.99 x 16.15 x 0.63 x 0.77 = 69.05 (60) Rooflights 0.5k 1 x 6.31 x 26 x 0.63 x 0.77 = 69.05 (60) Rooflights 0.5k 1 x 6.31 x 26 x 0.63 x 0.77 = 69.05 (62) Rooflights 0.5k 1 x 6.31 x 150 x 0.63 x 0.77 = 42.04.33 (62) Rooflights 0.5k 1 x 6.31 x 150 x 0.63 x 0.77 = 480.85 (62) Rooflights 0.5k 1 x 6.31 x 115 x 0.63 x 0.77 = 288.01 (62) Rooflights	West								<u> </u>] 1			4		\exists	=		
West 0.94 0.77 × 13.99 × 24.49 × 0.63 × 0.77 = 104.7 (60) West 0.94 0.77 × 13.99 × 16.15 × 0.63 × 0.77 = 66.05 (60) Rooflights 0.94 1 × 6.31 × 26 × 0.63 × 0.77 = 66.12 (62) Rooflights 0.94 1 × 6.31 × 196 × 0.63 × 0.77 = 240.43 (62) Rooflights 0.94 1 × 6.31 × 192 × 0.63 × 0.77 = 440.85 (62) Rooflights 0.94 1 × 6.31 × 1192 × 0.63 × 0.77 = 440.85 (62) Rooflights 0.94 1 × 6.31 × 1157 × 0.63 × 0.77 = 280.01 (62)	West	0.9x			x			x	<u> </u>		x			x			=		4
West 0.94 0.77 x 13.99 x 16.15 x 0.63 x 0.7 = 60.05 (60) Rooflights 0.94 1 x 6.31 x 26 x 0.63 x 0.7 = 65.12 (62) Rooflights 0.94 1 x 6.31 x 54 x 0.63 x 0.7 = 240.43 (62) Rooflights 0.94 1 x 6.31 x 192 x 0.63 x 0.7 = 240.43 (62) Rooflights 0.94 1 x 6.31 x 192 x 0.63 x 0.7 = 440.45 (62) Rooflights 0.94 1 x 6.31 x 1157 X 0.63 x 0.7 = 393.2 (62) Rooflights 0.94 1 x 6.31 x 1157 X 0.63 x 0.7 = 288.01 (62) Roofligh	West	0.9x			x	13.9	99	x	r		x		0.63	x			=		(80)
Rooflights $0.9x$ 1 x 6.31 x 54 x 0.63 x 0.7 = 135.24 (62) Rooflights $0.9x$ 1 x 6.31 x 96 x 0.63 x 0.7 = 240.43 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 375.67 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 480.85 (62) Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 473.34 (62) Rooflights $0.9x$ 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (62) Rooflights $0.9x$ 1 x 6.31 x 135 x 0.63 x 0.7 = 62.66 (62) Rooflights $0.9x$ 1 x 6.31 x	West	0.9x	0.77		x	13.9	99	x	1	6.15	×		0.63	x	0.7		=	69.05	(80)
Rooflights $0.9x$ 1 x 6.31 x 96 x 0.63 x 0.7 = 240.43 (62) Rooflights $0.9x$ 1 x 6.31 x 160 x 0.63 x 0.7 = 240.43 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 480.85 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 480.85 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 473.34 (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 288.01 (62) Rooflights $0.9x$ 1 x 6.31 x 1157 x 0.63 x 0.7 = 288.01 (62) Rooflights $0.9x$ 1 x 6.31 x	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		26	x		0.63	x	0.7		=	65.12	(82)
Rooflights $0.9x$ 1 x 6.31 x 150 x 0.63 x 0.7 = 375.67 (62) Rooflights $0.9x$ 1 x 6.31 x 192 x 0.63 x 0.7 = 480.85 (62) Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 480.85 (62) Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 437.34 (62) Rooflights $0.9x$ 1 x 6.31 x 157 x 0.63 x 0.7 = 393.2 (62) Rooflights $0.9x$ 1 x 6.31 x 115 x 0.63 x 0.7 = 82.61 (82) Rooflights $0.9x$ 1 x 6.31 x 33 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 17 1 <	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		54	x		0.63	x	0.7		=	135.24	(82)
Rooflights $_{0.9k}$ 1 x 6.31 x 192 x 0.63 x 0.7 = 480.85 (62) Rooflights $_{0.9k}$ 1 x 6.31 x 1200 x 0.63 x 0.7 = 500.89 (62) Rooflights $_{0.9k}$ 1 x 6.31 x 157 x 0.63 x 0.7 = 440.85 (62) Rooflights $_{0.9k}$ 1 x 6.31 x 157 x 0.63 x 0.7 = 393.2 (62) Rooflights $_{0.9k}$ 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (82) Rooflights $_{0.9k}$ 1 x 6.31 x 33 0.63 x 0.7 = 82.65 (82) (82) Rooflights $_{0.9k}$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (82) (82) Rooflights 0.9k 10.7 9.82.65 (Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		96	x		0.63	x	0.7		=	240.43	(82)
Rooflights 0.9* 1 × 6.31 × 200 × 0.63 × 0.7 = 500.89 (f2) Rooflights 0.9* 1 × 6.31 × 189 × 0.63 × 0.7 = 473.34 (f2) Rooflights 0.9* 1 × 6.31 × 157 × 0.63 × 0.7 = 473.34 (f2) Rooflights 0.9* 1 × 6.31 × 115 × 0.63 × 0.7 = 288.01 (f2) Rooflights 0.9* 1 × 6.31 × 115 × 0.63 × 0.7 = 288.01 (f2) Rooflights 0.9* 1 × 6.31 × 115 × 0.63 × 0.7 = 288.01 (f2) Rooflights 0.9* 1 × 6.31 × 174 162 86.01 86.01 86.01 1176.1 1518.94 106.1 281.65 (f2) Rooflights 0.9* 114.94 <td< td=""><td>Roofligh</td><td>ts <u>0.9</u>x</td><td>1</td><td></td><td>x</td><td>6.3</td><td>1</td><td>x</td><td></td><td>150</td><td>x</td><td></td><td>0.63</td><td>x</td><td>0.7</td><td></td><td>=</td><td>375.67</td><td>(82)</td></td<>	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		150	x		0.63	x	0.7		=	375.67	(82)
Rooflights $0.9x$ 1 x 6.31 x 189 x 0.63 x 0.7 = 473.34 (62) Rooflights $0.9x$ 1 x 6.31 x 157 x 0.63 x 0.7 = 393.2 (62) Rooflights $0.9x$ 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (62) Rooflights $0.9x$ 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (62) Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (62) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 62.69 (62) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 62.69 (62) Rooflights $0.9x$ 1 x 6.31 x <td< td=""><td>Roofligh</td><td>ts <u>0.9</u>x</td><td>1</td><td></td><td>x</td><td>6.3</td><td>1</td><td>x</td><td></td><td>192</td><td>×</td><td></td><td>0.63</td><td>x</td><td>0.7</td><td></td><td>=</td><td>480.85</td><td>(82)</td></td<>	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		192	×		0.63	x	0.7		=	480.85	(82)
Rooflights 0.9x 1 x 6.31 x 157 x 0.63 x 0.7 = 393.2 (62) Rooflights 0.9x 1 x 6.31 x 115 x 0.63 x 0.7 = 288.01 (62) Rooflights 0.9x 1 x 6.31 x 66 x 0.63 x 0.7 = 288.01 (62) Rooflights 0.9x 1 x 6.31 x 66 x 0.63 x 0.7 = 288.01 (62) Rooflights 0.9x 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (62) Rooflights 0.9x 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (62) Rooflights 0.9x 1 x 6.31 x 0.63 x 0.7 = 52.59 (62) Rooflights 0.9x 1 x 6.31 x 0.63 x 0.7	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		200	x		0.63	x	0.7		=	500.89	(82)
Rooflights $0.9x$ 1 × 6.31 × 115 × 0.63 × 0.7 = 288.01 (82) Rooflights $0.9x$ 1 × 6.31 × 66 × 0.63 × 0.7 = 165.29 (82) Rooflights $0.9x$ 1 × 6.31 × 33 × 0.63 × 0.7 = 82.65 (82) Rooflights $0.9x$ 1 × 6.31 × 21 × 0.63 × 0.7 = 82.65 (82) Rooflights $0.9x$ 1 × 6.31 × 21 × 0.63 × 0.7 = 82.65 (82) Rooflights $0.9x$ 1 × 6.31 × 21 × 0.63 × 0.7 = 52.59 (82) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m (83)m (83)m 116.48 760.28 420.61 281.89 (83) Total gains - internal wat solar (84)m = (73)m + (83)m, watts (83)m -	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		189	x		0.63	x	0.7		=	473.34	(82)
Rooflights $0.9x$ 1 x 6.31 x 66 x 0.63 x 0.7 = 165.29 (62) Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (62) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (62) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (62) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m 0.63 x 0.7 = 52.59 (82) Solar gains - internal and solar (84)m = (73)m + (83)m, watts (83)m = Sum(74)m(82)m (83) (84) (84)m= 82.87 1134.94 1507.4 1927.38 220.27 2231.94 2126.49 1891.75 1584.45 1176.63 869.63 755.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) <t< td=""><td>Roofligh</td><td>ts <u>0.9</u>x</td><td>1</td><td></td><td>x</td><td>6.3</td><td>1</td><td>x</td><td></td><td>157</td><td>x</td><td></td><td>0.63</td><td>x</td><td>0.7</td><td></td><td>=</td><td>393.2</td><td>(82)</td></t<>	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		157	x		0.63	x	0.7		=	393.2	(82)
Rooflights $0.9x$ 1 x 6.31 x 33 x 0.63 x 0.7 = 82.65 (82) Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 82.65 (82) Solar gains in watts, calculated for each month (83)m = Sum(74)m (82)m (82)m (82)m (82)m (82)m (83)m = 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains – internal and solar (84)m = (73)m + (83)m, watts	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		115	x		0.63	x	0.7		=	288.01	(82)
Rooflights $0.9x$ 1 x 6.31 x 21 x 0.63 x 0.7 = 52.59 (82) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m = Sum(74)m(82)m (83)m = Sum(74)m(82)m (83) Total gains - internal and solar (84)m = (73)m + (83)m, watts (83)m = Sec.97 1134.94 1507.4 1927.38 2220.27 2231.94 2126.49 1891.75 1584.45 1176.63 869.63 755.98 (84) Comperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m = 18.43 18.43 19.43 20.12 20.6 20.86 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		66	x		0.63	x	0.7		=	165.29	(82)
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m= 340 648.23 1037.93 1486.06 1808.65 1848.71 1761 1518.99 1196.48 760.28 420.61 281.89 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m= $\overline{828.97}$ 1134.94 1507.4 1927.38 2220.27 2231.94 2126.49 1891.75 1584.45 1176.63 869.63 755.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87) (87)m= 18.43 18.83 19.43 20.12 20.6 20.95 20.93 20.69 </td <td>Roofligh</td> <td>ts <u>0.9</u>x</td> <td>1</td> <td></td> <td>x</td> <td>6.3</td> <td>1</td> <td>x</td> <td></td> <td>33</td> <td>×</td> <td></td> <td>0.63</td> <td>x</td> <td>0.7</td> <td></td> <td>=</td> <td>82.65</td> <td>(82)</td>	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		33	×		0.63	x	0.7		=	82.65	(82)
$\begin{array}{c} \text{(83)} m= & 340 & 648.23 & 1037.93 & 1486.06 & 1808.65 & 1848.71 & 1761 & 1518.99 & 1196.48 & 760.28 & 420.61 & 281.89 \\ \hline \text{(84)} m= & 340 & 648.23 & 1037.93 & 1486.06 & 1808.65 & 1848.71 & 1761 & 1518.99 & 1196.48 & 760.28 & 420.61 & 281.89 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & \text{(atmost read to the leading season)} \\ \hline \text{Temperature during heating periods in the living area from Table 9, Th1 (°C)} \\ \hline \text{Utilisation factor for gains for living area, h1,m (see Table 9a)} \\ \hline \text{(86)} m= & \frac{13.43 & 18.83 & 19.43 & 20.12 & 20.6 & 20.86 & 20.95 & 20.93 & 20.69 & 19.96 & 19.05 & 18.37 \\ \hline \text{(87)} m= & 18.43 & 18.83 & 19.43 & 20.12 & 20.6 & 20.86 & 20.95 & 20.93 & 20.69 & 19.96 & 19.05 & 18.37 \\ \hline \text{Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)} \\ \hline \text{(88)} m= & 19.64 & 19.64 & 19.64 & 19.66 & 19.66 & 19.67 & 19.67 & 19.67 & 19.67 & 19.65 & 19.65 \\ \hline \text{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)} \\ \hline \text{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)} \\ \hline \end{array}$	Roofligh	ts <u>0.9</u> x	1		x	6.3	1	x		21	x		0.63	x	0.7		=	52.59	(82)
$\begin{array}{c} \text{(83)} m= & 340 & 648.23 & 1037.93 & 1486.06 & 1808.65 & 1848.71 & 1761 & 1518.99 & 1196.48 & 760.28 & 420.61 & 281.89 \\ \hline \text{(84)} m= & 340 & 648.23 & 1037.93 & 1486.06 & 1808.65 & 1848.71 & 1761 & 1518.99 & 1196.48 & 760.28 & 420.61 & 281.89 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & 328.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \text{(84)} m= & \text{(atmost read to the leading season)} \\ \hline \text{Temperature during heating periods in the living area from Table 9, Th1 (°C)} \\ \hline \text{Utilisation factor for gains for living area, h1,m (see Table 9a)} \\ \hline \text{(86)} m= & \frac{13.43 & 18.83 & 19.43 & 20.12 & 20.6 & 20.86 & 20.95 & 20.93 & 20.69 & 19.96 & 19.05 & 18.37 \\ \hline \text{(87)} m= & 18.43 & 18.83 & 19.43 & 20.12 & 20.6 & 20.86 & 20.95 & 20.93 & 20.69 & 19.96 & 19.05 & 18.37 \\ \hline \text{Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)} \\ \hline \text{(88)} m= & 19.64 & 19.64 & 19.64 & 19.66 & 19.66 & 19.67 & 19.67 & 19.67 & 19.67 & 19.65 & 19.65 \\ \hline \text{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)} \\ \hline \text{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)} \\ \hline \end{array}$																			
Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m= 828.97 1134.94 1507.4 1927.38 2220.27 2231.94 2126.49 1891.75 1584.45 1176.63 869.63 755.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86) Oct Nov Dec 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.43 18.83 19.43 20.12 20.6 20.86 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 (88)<	7		1					1			ŕŕ	-	· ,	· · ·				1	(00)
$ \begin{array}{c} (84)m= \hline 828.97 & 1134.94 & 1507.4 & 1927.38 & 2220.27 & 2231.94 & 2126.49 & 1891.75 & 1584.45 & 1176.63 & 869.63 & 755.98 \\ \hline \textbf{(84)} \\ \hline \textbf{(86)} \\ \hline \textbf{(87)} \\ \hline \textbf{(88)} \\ \hline \textbf{(9.6)} \\ \hline \textbf{(9.6)} \\ \hline \textbf{(9.6)} \\ \hline \textbf{(9.6)} \hline ($											151	8.99	1196.48	760.2	420.61	281	.89		(83)
7. Mean internal temperature (heating season)Temperature during heating periods in the living area from Table 9, Th1 (°C)21 (85)Utilisation factor for gains for living area, h1,m (see Table 9a)Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec(86)m=0.980.960.910.810.670.510.390.450.680.90.970.99(86)Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)(87)m=18.4318.8319.4320.1220.620.9520.9320.6919.9619.0518.37(87)Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)(88)m=19.6419.6419.6619.6719.6719.6719.6619.6519.65(88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Г		1			、 <i>,</i>	()	``	,	,	180	1 75	1584.45	1176	869 63	755	98	ן	(84)
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.43 18.83 19.43 20.12 20.6 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Ľ								201.04	2120.49	103	1.75	1304.43	1170.	009.00	100	.30	J	(01)
Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87) (87)m= 18.43 18.83 19.43 20.12 20.6 20.86 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.66 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)										· · · ·			4 (00)						
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.43 18.83 19.43 20.12 20.6 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	•		-		• ·			-			ble 9	, Ih	1 (°C)					21	(85)
(86)m= 0.98 0.96 0.91 0.81 0.67 0.51 0.39 0.45 0.68 0.9 0.97 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.43 18.83 19.43 20.12 20.6 20.86 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Utilisat		<u> </u>	· · · · ·				Ť		,			San	0			~~	1	
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.43 18.83 19.43 20.12 20.6 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	(86)m-							+				Ŭ							(86)
(87)m= 18.43 18.83 19.43 20.12 20.6 20.86 20.95 20.93 20.69 19.96 19.05 18.37 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)								_						0.0	0.07	0.5		J	(00)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) 19.67 19.67 19.67 19.67 19.67 19.65 (88)	г		<u> </u>		-			-			1		, í	40.0	10.05		07	1	(97)
(88)m= 19.64 19.64 19.66 19.67 19.67 19.67 19.66 19.65 19.65 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (see Table 9a) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>19.9</td><td>5 19.05</td><td>18.</td><td>37</td><td></td><td>(07)</td></td<>								_						19.9	5 19.05	18.	37		(07)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	. Г		<u> </u>		<u> </u>			-			<u> </u>		<u>, , ,</u>	4.8.5		1 14	0.5	1	(00)
	(88)m=	19.64	19.64	19.6	54	19.66	19.66	1	9.67	19.67	19.	.67	19.67	19.6	19.65	19.0	65	J	(୪୪)
(89)m= 0.98 0.95 0.9 0.77 0.61 0.43 0.28 0.33 0.6 0.87 0.96 0.98 (89)			<u> </u>		-			-			r Ó					-		1	(22)
	(89)m=	0.98	0.95	0.9	9	0.77	0.61		0.43	0.28	0.3	33	0.6	0.87	0.96	0.9	98	J	(89)

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	16.28	16.85	17.71	18.66	19.27	19.57	19.65	19.64	19.41	18.48	17.19	16.19		(90)
									f	iLA = Livin	g area ÷ (4	4) =	0.1	(91)
Maan	interne		atura /fa		مام ماسما	lline ar) fi	L A T 4	. (4 4	A) TO			I		
(92)m=	16.49	17.04	17.88	or the wh	19.4	19.69	LA X 11 19.77	+ (1 – 1L 19.76	A) × 12 19.53	18.63	17.37	16.4		(92)
					_						17.57	10.4		(52)
(93)m=	16.34	16.89	17.73	18.65	19.25	19.54	19.62	4e, wrie 19.61	19.38	18.48	17.22	16.25		(93)
· ·		ting requ			10.20	10.04	10.02	10.01	10.00	10.40	17.22	10.20		()
					e obtair	ed at st	en 11 of	Table Q	n so tha	t Ti m–('	76)m an	d re-calc	ulate	
				using Ta					5, 50 tha	u 11,111–(<i>i</i> ojin an		ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm											
(94)m=	0.96	0.93	0.86	0.74	0.59	0.42	0.28	0.33	0.58	0.83	0.94	0.97		(94)
Usefu	I gains,	hmGm	W = (94	4)m x (84	4)m									
(95)m=	799.12	1053.93	1296.88	1426.85	1300.29	931.07	594.45	622.47	912.41	976.96	818.5	733.87		(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	able 8	•							
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	2491.24	2475.97	2312.71	1986.44	1535.41	995.98	609.18	645.81	1068.04	1601.55	2066.04	2471.16		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Nh/mon	$\frac{1}{1000}$ th = 0.02	24 x [(97))m – (95)m] x (4	1)m			
(98)m=	1258.94	955.61	755.77	402.9	174.93	0	0	0	0	464.69	898.23	1292.54		
								Tota	l per year	(kWh/year	·) = Sum(9	8)15,912 =	6203.62	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								46.91	(99)
9a, En	erav rea	uiremer	nts – Ind	ividual h	eating s	vstems i	ncludina	micro-C	(HP)			I		
	e heatir													
•		-	t from s	econdar	y/supple	mentary	system						0	(201)
Fracti	ion of sp	ace hea	it from m	nain syst	em(s)			(202) = 1 -	- (201) =			ĺ	1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
			-	ing syste									90.4	(206)
		•		ementar		n evetor	o %					l	0	(208)
LIIICI			<i>,</i> , , ,				, 						-	
•	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space		<u> </u>	<u> </u>		,							4000 54		
	1258.94	955.61	755.77	402.9	174.93	0	0	0	0	464.69	898.23	1292.54		
(211)m	n = {[(98		4)]	00 ÷ (20	6)		1							(211)
	1392.64	1057.1	836.03	445.69	193.5	0	0	0	0	514.04	993.62	1429.8		_
								Tota	I (kWh/yea	ar) =Sum(2	211) _{15,1012}	F	6862.41	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month									
= {[(98)m x (20	1)]}x 1	00 ÷ (20	8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		_
								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	F	0	(215)
Water	heating	I										-		
Output				ulated a			1					,		
	100.02	83.11	94.23	85.36	95.6	151.96	145.64	162.39	163.69	89.43	89.07	96.67		_
Efficier	ncy of w	ater hea	ter										80.3	(216)

(217)m= 89.57 89.5 89.16 88.4	45 86.55	80.3	80.3	80.3	80.3	88.6	89.39	89.62		(217)
Fuel for water heating, kWh/month										
$(219)m = (64)m \times 100 \div (217)m$ (219)m = 111.66 92.86 105.69 96.	.5 110.45	189.25	181.37	202.23	203.85	100.94	99.65	107.87		
			1	Tota	l = Sum(2	19a) ₁₁₂ =		1	1602.31	(219)
Annual totals						k	Wh/yea	r	kWh/year	_
Space heating fuel used, main syste	em 1								6862.41	
Water heating fuel used									1602.31]
Electricity for pumps, fans and elect	tric keep-ho	t								
central heating pump:								30		(230c)
boiler with a fan-assisted flue								45		(230e)
Total electricity for the above, kWh/	year			sum	of (230a).	(230g) =			75	(231)
Electricity for lighting									472.96	(232)
Total delivered energy for all uses (211)(221)	+ (231)	+ (232).	(237b)	=				9012.69	(338)
12a. CO2 emissions – Individual h	eating syste	ems inclu	uding mi	cro-CHF)					_
			ergy /h/year			Emiss kg CO	ion fac 2/k\\/h	tor	Emissions kg CO2/yea	ar
Space heating (main system 1)			1) x			0.2		=	1482.28	(261)
Space heating (secondary)			5) x			0.2		=	0	(263)
						r				
Water heating			9) x			0.2	16	=	346.1	(264)
Space and water heating		(26	1) + (262)	+ (263) + (264) =				1828.38	(265)
Electricity for pumps, fans and elect	tric keep-ho	t (23 ⁻	1) x			0.5	19	=	38.93	(267)
Electricity for lighting		(232	2) x			0.5	19	=	245.47	(268)
Total CO2, kg/year					sum o	f (265)(2	271) =		2112.77	(272)
Dwelling CO2 Emission Rate					(272)	÷ (4) =			15.98	(273)
EI rating (section 14)									84	(274)
									0.	