Appendix 4: Structural Engineers Calculations

Baxter Glaysher Consulting Ltd – CALC 01 Preliminary Retaining Wall Design

Baxter Glaysher Consulting 33-35 Bell Street Reigate Surrey RH2 7AW Tel: +44 (0) 1737 240241

Email: contact@bg-consulting.co.uk Web: www.bg-consulting.co.uk

civil and structural engineers

JOB NUMBER: 222162

JOB TITLE: 20 Howitt Road. London. NW3

CLIENT:

KO Architects

CALCULATION TITLE:

Preliminary Retaining Wall Design

REFERENCE: CALC 01

Rev	Description	Prepared by	Checked by	Date
-	Initial Issue	AO	RP	Jan-23

0 Howitt Road. London. NW3				Calc Ref				
	Preliminary Retaining Wall Design	222162		CALC 01		-		
he attached Calculation sheet	s have been prepared by:							
lame: Alex Ogunmola	Qualifications: HND (Structures)	9	Signed	AO	Date:	Jan-23		
he attached calculation sheets	s have been approved by:							
lame: Richard Price	Qualifications: IEng, AMIStructE	, MICE.	Signed	RP	Date:	Jan-23		
Design Risk Class: RC1								
Design Risk Class: RC1 Design Check Level: 1 The design Risk Class (RC) and required Design Check Level (DCL) are identified above based on the proposed guidance within BS EN 1990 The following calculations are in respect of those structural elements to which they specifically refer. No responsibility or liability is accepted in respect of any other element or part of the building. Any assumed dimensions or bearing stresses must be confirmed on site to the satisfaction of the building control officer. Weights of building materials are in accordance with BS EN 1991. The Engineer shall check that weights of building materials not listed below but used in the following calculations are clearly referenced and are in accordance with the Manufacturers latest product data. The Engineer shall clearly reference all specific project design data used in the following calculations provided by external sources. The following loads are characteristic values (unless noted otherwise) Partial safety factors should be applied where necessary in accordance with appropriate standards								

This structural calculation was made for a preliminary design of a retaining wall.

Standards and References			Date:
20 Howitt Road. London. NW3 Preliminary Retaining Wall Design	222162	CALC 01	-
Job Title: Calculation Title:	Job No.	Calc Ref	Rev

Standards used in calculations:

BS 648: Schedule of Weights of Building Materials

BS 6399: Loadings for Buildings

BS 8110: Structural use of Concrete

BS 8004: Code of Practice for Foundations

References used in calculations:

Job Title:	Calculation Title:	Job No).	Calc Ref	Rev
20 Howitt Road. London. NW3	Preliminary Retaining Wall Design	222162	2 (CALC 01	-
Londing					Date:
Loading					Jan-23
			All loadi (Unle	ngs are SLS ss noted othe	in kN/m² rwise)
			Permanent	Variable	Total
Roof Loads					
Pitched tiled roof					
Roof pitch	=	<mark>30</mark> °			
Permanent loads					
Slate Tiles	=	0.5			
Felt and Battens	=	0.15			
Rafters and Insu	lation =	0.2			
Ceiling & Service	es =	0.15			
Plan load	=	1.15			
Variable loads					
Imposed pitch ro	of load =	0.6			
Plan Load		0.6			
			1.15	0.60	1.75

Job Title:	Calculation Title:	Job No). (Calc Ref	Rev	
20 Howitt Road. London. NW3	Preliminary Retaining Wall Design	22216	2 (CALC 01	-	
Loading					Date: Jan-23	
	All loadings are SL (Unless noted ot					
			Permanent	Variable	Total	
Floor Loads						
Timber Floor						
Permanent loads						
Boards (19mm)	=	0.2				
Joists	=	0.2				
Ceiling	=	0.15				
Services	=	0.15				
		0.7				
<u>Variable loads</u>						
A1 - Residential	=	1.5				
		1.5	0.7	1 5	2 20	
			0.7	1.5	2.20	

Job Title:	Calculation Title:	Job No	Job No. 0		Rev
20 Howitt Road. London. NW3	Preliminary Retaining Wall Design	222162			-
Loading					Date:
Loading					Jan-23
			All loadi ı (Unle	ngs are SLS i ss noted othe	in kN/m ² rwise)
			Permanent	Variable	Total
330 Wall Loads					
Permanent loads 330 mm brickv 1 faces plaster	vork = =	6.93 0.2 7.1	7.13	0	7.13
225 Wall Loads					
Solid Brickwork Cons Permanent loads	struction				
225 mm brickv	vork =	4.73			
1 faces plaster	=	0.2 4.9			
			4.93	0	4.93

Specification Note	S		Date: Jan-23	
20 Howitt Road. London. N	Preliminary Retaining Wall Design	222162	CALC 01	-
Job Title:	Calculation Title:	Job No.	Calc Ref	Rev

Cantilever Retaining Wall

Stem: 325mm wide x 2800mm height

Base: 300mm thick

Toe: 2500mm

Heel: 150mm

Appendices				Date: Jan-23
20 Howitt Road. London. N	Preliminary Retaining Wall Design	222162	CALC 01	-
Job Title:	Calculation Title:	Job No.	Calc Ref	Rev

Reinforcement details

20 HOWITT ROAD. LOMDON	Job No. 22216	2		
Design Element RETAINING WALL PREI	IMINARY	DESIGN	Sheet No. Prepared AO Revision	Date JAM Date
VERTICAL LOADS Ditched Mrof (30°) 17 1.15 × 0.80 2) 0.60 × 0.80 Suspended Horr 3) 0.70 × 0.8 × 4 4) 1.50 × 0.8 × 4 Masmry (330fml) 5 M13 × 3.10 Masmry (225 thu)	= 0.92 = 2.29 = 2.29 = 2.29 = -100 = -1000 = -10000 = -10000 = -10000 = -10000 = -100000 = -1000000000000000000000000000000000000	KM/M CC CC C C C C C C C C C C		
6) 4.93 × 8.0 Point Loads on P/wall 7) 11.08/6-5 8) 10.55/6.5 72 Point Loads on P/wall 73 Point Loads on P/wall 74 Point Loads on P/wall 75 Point Loads on P/wall 76 Point Loads on P/wall 77 Point Loads on P/wall 78 Point Loads on P/wall 78 Point Loads on P/wall 79 Point Loads on P/wall 70 Point Loads on P/wall 71 Point Loads on P/wall 71 Point Loads on P/wall 72 Point Loads on P/wall 73 Point Loads on P/wall 74 Point Loads on P/wall 74 Point Loads on P/wall 74 Point Loads on P/wall 75 Point Loads on P/wall 76 Point Loads on P/wall 77 Point Loads on P/wall 77 Point Loads on P/wall 77 Point Loads on P/wall 78 Point Loads on P/wall 78 Point Loads on P/wall 78 Point Loads on P/wall 78 Point Loads on P/wall 79 Point Loads on P/wall 79 Point Loads on P/wall 79 Point Loads on P/wall 70 P	= 39.0 = 1.70 = - - 14	t¶		

Baxter Glaysher Consulting BG-QF-0006

Tekla. Tedds	Project 20 Howitt Road. London. NW3			Job no. 222162		
Baxter Glaysher Consulting Limited 33/35 Bell Street	Calcs for	Retaining Wall P	reliminary Desig	n	Start page no./Re	evision 2
RH2 7AW	Calcs by AO	Calcs date 24/01/2023	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.12

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 2800 mm
Stem thickness	t _{stem} = 325 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ_{stem} = 25 kN/m ³
Toe length	I _{toe} = 2500 mm
Heel length	I _{heel} = 150 mm
Base thickness	t _{base} = 300 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 2800 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2700 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Stiff clay
Moist density	γmr = 19 kN/m ³
Saturated density	γ _{sr} = 19 kN/m ³
Base soil properties	
Soil type	Stiff clay
Soil density	γ _b = 19 kN/m ³
Loading details	
Permanent surcharge load	Surcharge _G = 10 kN/m ²
Variable surcharge load	Surcharge _Q = 10 kN/m ²
Vertical line load at 2663 mm	P _{G1} = 66.4 kN/m
	P _{Q1} = 6.9 kN/m

Tekla Tedds	Project 20 Howitt Road, London, NW3			Job no. 222162		
Baxter Glavsher Consulting Limited	Calas far	20110000110000		•	Ctart name no /D	
33/35 Bell Street	Retaining Wall Preliminary Design			4		
RH2 7AW	Calcs by AO	Calcs date 24/01/2023	Checked by	Checked date	Approved by	Approved date
Design approach 1						
Partial factors on actions - Ta	ble A.3 - Con	nbination 1				
Partial factor set		A1				
Permanent unfavourable action		γ _G = 1.35				
Permanent favourable action		γ _{Gf} = 1.00				
Variable unfavourable action		γ _Q = 1.50				
Variable favourable action		$\gamma_{Qf} = 0.00$				
Partial factors for soil parame	ters – Table	A.4 - Combinatio	n 1			
Soil parameter set		M1				
Angle of shearing resistance		$\gamma_{\Phi'} = 1.00$				
Effective cohesion		γ _{c'} = 1.00				
Weight density		$\gamma_{\gamma} = 1.00$				
					Library item Pa	artial factors output
Retained soil properties						
Design moist density		$\gamma_{mr}' = \gamma_{mr} / \gamma_{r}$	_r = 19 kN/m ³			
Design saturated density		γ_{sr} ' = γ_{sr} / γ_{γ}	= 19 kN/m³			
Base soil properties						
Design soil density		$\gamma_{b}' = \gamma_{b} / \gamma_{\gamma} =$	= 19 kN/m³			
Soil coefficients						
Coefficient of friction to back of	wall	K _{fr} = 0.325				
Coefficient of friction to front of v	wall	K _{fb} = 0.325				
Coefficient of friction beneath ba	ase	K _{fbb} = 0.325	5			
Active pressure coefficient		K _A = 0.333				
Passive pressure coefficient		K _P = 4.977				
Overturning check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_{Gf} \times$	$A_{stem} \times \gamma_{stem} =$	22.8 kN/m		
Wall base		$F_{base} = \gamma_{Gf} \times$	$A_{base} \times \gamma_{base} =$	22.3 kN/m		
Line loads		$F_{P_v} = \gamma_{Gf} \times$	$P_{G1} + \gamma_{Qf} \times P_{Q1}$	= 66.4 kN/m		
Saturated retained soil		$F_{sat_v} = \gamma_{Gf}$	< A _{sat} × (γ _{sr} ' - γ _w '	') = 3.7 kN/m		
Water		$F_{water_v} = \gamma_{Gf}$	f × A _{water} × γ _w ' =	4 kN/m		
Water uplift		$F_{water_u} = \gamma_{G}$	$f \times (h_{sat} + t_{base})$	\times I _{base} / 2 \times γ_w ' = 4	43.8 kN/m	
Moist retained soil		$F_{moist_v} = \gamma_{Gi}$	r × A _{moist} × γ _{mr} ' =	= 0.3 kN/m		
Total		F _{total_v} = F _{ste} kN/m	em + F _{base} + F _{P_}	v + F _{sat_} v + F _{water_}	v - F _{water_} u + F _{mo}	_{bist_v} = 75.7
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	< (γ _G × Surchar	$ge_G + \gamma_Q \times Surch$	arge _Q) × h _{eff} =	29.5 kN/m
Saturated retained soil		$F_{sat_h} = \gamma_G \times$	$K_A \times (\gamma_{sr} ' - \gamma_w ')$	\times (h _{sat} + h _{base}) ² /	2 = 18.6 kN/m	
Water		F _{water_h} = γ _G	$\times \gamma_w' \times (h_{water} +$	d _{cover} + h _{base}) ² / 2	2 = 59.6 kN/m	
Moist retained soil		$F_{moist_h} = \gamma_G$ + h_{base})) = 2	× K _A × γ _{mr} ' × ((l 2.6 kN/m	h _{eff} - h _{sat} - h _{base}) ²	/ 2 + (h _{eff} - h _{sat} -	- h _{base}) × (h _{sat}
Base soil		$F_{exc h} = -\gamma_{Gf}$	\times K _P \times γ_{b} ' \times (h _n	$_{ass} + h_{base})^2 / 2 =$	-4.3 kN/m	
Total		$F_{\text{total h}} = F_{\text{su}}$	r h + F _{sat h} + F _w	ater h + Fmoist h + F	exc h = 106 kN/	′m

Tekla Tedds	Project		Job no.				
	20 Howitt Road. London. NW3				222162		
33/35 Bell Street	Calcs for	Retaining Wall F	Preliminary Des	ian	Start page no./R	evision 5	
Reigate	Calcs by	Calcs date	Checked by	Checked date	Approved by		
RH2 7AW	AO	24/01/2023	Checked by	Checked date	Approved by	Approved date	
	•				+	•	
Overturning moments on wall							
Surcharge load		$M_{sur_OT} = F_s$	$sur_h \times \mathbf{X}_{sur_h} = 4$	5.6 kNm/m			
Saturated retained soil		$M_{sat_{OT}} = F_{s}$	sat_h × X sat_h = 18	3.6 kNm/m			
Water		$M_{water_{OT}} =$	F _{water_h} × X water_r	+ F _{water_u} × x _{water_u}	_u = 146.4 kNm	/m	
Moist retained soil	$M_{moist_OT} = F_{moist_h} \times x_{moist_h} = 4 \text{ kNm/m}$						
Total		$M_{total_{OT}} = N$	/I _{sur_ОТ} + M _{sat_ОТ}	+ M _{water_OT} + M _{moi}	_{ist_OT} = 214.7 k	Nm/m	
Restoring moments on wall							
Wall stem		$M_{\text{stem}_R} = F_{\text{stem}_R}$	$_{\rm stem} imes x_{ m stem} = 60$.6 kNm/m			
Wall base		$M_{base_R} = F$	$_{base} imes \mathbf{x}_{base} = 33$.2 kNm/m			
Line loads		$M_{P_R} = (abs)$	s(γ _{Gf} × P _{G1} + γ _Q	$(x \times P_{Q1}) \times p_1 = 17$	6.8 kNm/m		
Saturated retained soil		$M_{sat_R} = F_{sa}$	$x_{sat_v} \times x_{sat_v} = 10$	8 kNm/m			
Water		$M_{water_R} = F$	water_v \times Xwater_v	= 11.5 kNm/m			
Moist retained soil		$M_{moist_R} = F$	$moist_v imes X_{moist_v}$	= 0.8 kNm/m			
Total		M _{total_R} = M	_{stem_R} + M _{base_R}	+ M _{P_R} + M _{sat_R} +	M _{water_R} + M _{mo}	ist_R = 293.7	
		KINM/M					
Check stability against overtu	rning	- - - - - - - - - -					
Factor of safety		$FoS_{ot} = M_{to}$	tal_R / Mtotal_OT =	1.368	46		
		PASS - Maximul	n restoring m	oment is greater	than overtur	ning moment	
Bearing pressure check							
Vertical forces on wall							
Wall stem		$F_{stem} = \gamma_G \times$	$A_{stem} \times \gamma_{stem} = 1$	30.7 kN/m			
Wall base		$F_{base} = \gamma_G \times$	$A_{\text{base}} \times \gamma_{\text{base}} =$	30.1 kN/m			
Surcharge load		$F_{sur_v} = (\gamma_G)$	× Surcharge _G -	⊦ γ _Q × Surcharge _Q	$) \times I_{heel} = 4.3 k$	N/m	
Line loads		$F_{P_v} = \gamma_G \times$	P _{G1} + γ _Q × P _{Q1}	= 100 kN/m			
Saturated retained soil		$F_{sat_v} = \gamma_G >$	< A _{sat} × (γ _{sr} ' - γ _w ') = 5 kN/m			
Water		$F_{water_v} = \gamma_G$	i × A _{water} × γ _w ' =	5.4 kN/m			
Moist retained soil		$F_{moist_v} = \gamma_G$	× A _{moist} × γ _{mr} ' =	0.4 kN/m			
Total		F _{total_v} = F _{stem} + F _{base} + F _{sur_v} + F _{P_v} + F _{sat_v} + F _{water_v} + F _{moist_v} : kN/m				st_v = 175.9	
Horizontal forces on wall							
Surcharge load		F _{sur h} = K _A	× (γ _G × Surchar	ge _G + γ _Q × Surcha	arge _Q) × h _{eff} = :	29.5 kN/m	
Saturated retained soil		$F_{sat h} = \gamma_G >$	< Κ Α × (γsr' - γw')	\times (h _{sat} + h _{base}) ² / 2	2 = 18.6 kN/m		
Water		$F_{water h} = \gamma_G$	$x \times \gamma_w' \times (h_{water} +$	· d _{cover} + h _{base}) ² / 2	= 59.6 kN/m		
Moist retained soil		$F_{\text{moist h}} = \gamma_{\text{G}}$	$\times K_A \times \gamma_{mr} \times (($, h _{eff} - h _{sat} - h _{base}) ² /	2 + (h _{eff} - h _{sat}	- h _{base}) × (h _{sat}	
		+ h _{base})) = 2	2.6 kN/m	,	,	, (
Base soil		$F_{pass_h} = -\gamma_0$	$_{\mathrm{Gf}} \times \mathrm{K}_{\mathrm{P}} \times \gamma_{\mathrm{b}}' \times \mathrm{C}$	l _{cover} + h _{base})² / 2 =	- 4.3 kN/m		
Total		F _{total_h} = F _{su}	ո _{_h} + F _{sat_h} + Fտ	_{rater_h} + F _{moist_h} + F	_{pass_h} = 106 kN	l/m	
Moments on wall							
Wall stem		M _{stem} = F _{ste}	m × X _{stem} = 81.8	kNm/m			
Wall base	M _{base} = F _{base} × x _{base} = 44.8 kNm/m						
Surcharge load		$M_{sur} = F_{sur}$	$v \times \mathbf{X}_{sur_v} - \mathbf{F}_{sur_h}$	× x _{sur_h} = -33.3 kN	Nm/m		
Line loads		MΡ = (γ _G ×	P _{G1} + γ _Q × P _{Q1})	× p1 = 266.2 kNm	n/m		
Saturated retained soil		M _{sat} = F _{sat_v}	$v \times \mathbf{x}_{sat_v} - \mathbf{F}_{sat_h}$	× x _{sat_h} = -4 kNm/	m		
Water		M _{water} = F _{wa}	$_{ter_v} \times \mathbf{X}_{water_v} - \mathbf{F}$	water_h × Xwater_h =	-44 kNm/m		

Tekla Tedds	Project				Job no.	
		20 Howitt Road	d. London. NV	V3	22	22162
Baxter Glaysher Consulting Limited 33/35 Bell Street	Calcs for	Retaining Wall F	Preliminary De	sian	Start page no./f	Revision 6
Reigate	O al a a hu					
RH2 7AW	AO	24/01/2023	Спескей by	Checked date	Approved by	Approved date
Moist retained soil		M _{moist} = F _{mo}	pist v × Xmoist v -	F _{moist h} × X _{moist h} =	-2.9 kNm/m	
Total		M _{total} = M _{ste}	_m + M _{base} + M _s	_{sur} + M _P + M _{sat} + M	I _{water} + M _{moist} =	308.6 kNm/m
Check bearing pressure						
Propping force		F _{prop_base} =	F _{total_h} = 106 k	N/m		
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}}$ /	F _{total_v} = 1755	mm		
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	_e / 2 = 267 mm	n		
Loaded length of base		$I_{load} = 2 \times (I$	$_{\text{base}} - \overline{x}) = 244$	41 mm		
Bearing pressure at toe		$q_{toe} = 0 kN/$	′m²			
Bearing pressure at heel		$q_{heel} = F_{total}$	_v / I _{load} = 72.1	kN/m ²		
Factor of safety		$FoS_{bp} = P_{bc}$	_{earing} / max(q _{toe}	a, q _{heel}) = 1.735		
	PASS -	Allowable bearin	g pressure e	xceeds maximu	m applied bea	aring pressure
Design approach 1						
Partial factors on actions - Ta	ble A.3 - Com	bination 2				
Partial factor set		A2				
Permanent unfavourable action		γ _G = 1.00				
Permanent favourable action		γ _{Gf} = 1.00				
Variable unfavourable action		γ _Q = 1.30				
Variable favourable action		$\gamma_{Qf} = 0.00$				
Partial factors for sail parama	toro Toblo	A A Combinatio	n)			
Soil parameter set		M2	11 2			
Angle of shearing resistance		ver = 1.25				
Effective cohesion		$\gamma_{\phi} = 1.25$				
Weight density		γc 1.20 γ _x = 1.00				
		11 1100			Library item P	artial factors output
Retained soil properties						
Design moist density		γmr' = γmr / γ	γ = 19 kN/m ³			
Design saturated density		γ_{sr} ' = γ_{sr} / γ_{γ}	= 19 kN/m ³			
Base soil properties						
Design soil density		$\gamma_{b}' = \gamma_{b} / \gamma_{\gamma}$	= 19 kN/m³			
Soil coefficients						
Coefficient of friction to back of	wall	K _{fr} = 0.325				
Coefficient of friction to front of	wall	Kfb = 0.325				
Coefficient of friction beneath ba	ase	K _{fbb} = 0.32	5			
Active pressure coefficient		K _A = 0.333				
Passive pressure coefficient		K _P = 4.977				
Overturning check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_{Gf}$ >	< A _{stem} × γ _{stem} =	= 22.8 kN/m		
Wall base		$F_{base} = \gamma_{Gf}$ >	< A _{base} × γ _{base} =	= 22.3 kN/m		
Line loads		$F_{P_v} = \gamma_{Gf} \times$	$P_{G1} + \gamma_{Qf} \times P_{G}$	a1 = 66.4 kN/m		
Saturated retained soil		$F_{sat_v} = \gamma_{Gf}$	× A _{sat} × (γ _{sr} ' - γ	"') = 3.7 kN/m		
Water		$F_{water_v} = \gamma_G$	$f \times A_{water} \times \gamma_w'$	= 4 kN/m		
Water uplift		$F_{water_u} = \gamma_G$	if × (h _{sat} + t _{base})) × I _{base} / 2 × γ_w ' =	43.8 kN/m	

Baxter Glaysher Consulting Limited Calc 33/35 Bell Street Calc Reigate Calc RH2 7AW Calc Moist retained soil Total	From the form of t	Preliminary Design) Checked date	Start page no./R	evision 7			
33/35 Bell Street Reigate RH2 7AW Moist retained soil Total	Retaining Wall s by Calcs date AO 24/01/2023 Fmoist_v = γ	Checked by	Checked date		7			
Moist retained soil Total	s by Calcs date AO 24/01/2023 F _{moist_v} = γ	Checked by	Checked date					
Moist retained soil Total	AO 24/01/2023 F _{moist_v} = γ			Approved by	Approved date			
Moist retained soil Total	F _{moist_} v = γ							
Total	_ , F _ F	$\gamma_{\rm Gf} \times A_{\rm moist} \times \gamma_{\rm mr}' = 0.$. 3 kN/m					
	$F_{total v} = F$	stem + F _{base} + F _{P v} +	F _{sat v} + F _{water v}	- F _{water u} + F _m	_{pist v} = 75.7			
	kN/m	_		_	_			
Horizontal forces on wall								
Surcharge load	F _{sur_h} = KA	$X \times (\gamma_{\rm G} \times {\rm Surcharge})$	ց + γο × Surcha	arge _Q) × h _{eff} =	23.8 kN/m			
Saturated retained soil	F _{sat_h} = γ _G	$ imes$ KA $ imes$ (γ_{sr} ' - γ_{w} ') $ imes$ (h _{sat} + h _{base})² / 2	2 = 13.8 kN/m				
Water	$F_{water_h} = \gamma$	$v_G \times \gamma_w' \times (h_{water} + d_{col})$	_{over} + h _{base}) ² / 2	= 44.1 kN/m	• 44.1 kN/m			
Moist retained soil	$F_{moist_h} = \gamma$	$V_{G} imes K_{A} imes \gamma_{mr}' imes ((h_{eff}$	- h _{sat} - h _{base}) ² /	2 + (h _{eff} - h _{sat}	- h _{base}) × (h _{sat}			
	+ h _{base})) =	1.9 kN/m						
Base soil	$F_{exc_h} = -\gamma$	$_{\text{Gf}} \times \text{K}_{\text{P}} \times \gamma_{\text{b}}' \times (h_{\text{pass}}$	$+ h_{base})^2 / 2 = -$	4.3 kN/m				
Total	F _{total_h} = F	sur_h + F _{sat_h} + F _{water_}	_h + F _{moist_h} + F _e	_{exc_h} = 79.4 kN	l/m			
Overturning moments on wall								
Surcharge load	$M_{sur_OT} = I$	=sur_h × xsur_h = 36.8	kNm/m					
Saturated retained soil	M _{sat_OT} = I	=sat_h × xsat_h = 13.8	kNm/m					
Water	M _{water_OT} =	F _{water_h} × x _{water_h} + I	F _{water_u} × x _{water_u}	. = 131 kNm/n	n			
Moist retained soil	$M_{moist_OT} =$	$M_{moist_OT} = F_{moist_h} \times x_{moist_h} = 2.9 \text{ kNm/m}$						
Total	$M_{total_{OT}} = M_{sur_{OT}} + M_{sat_{OT}} + M_{water_{OT}}$				Nm/m			
Restoring moments on wall								
Wall stem	Wall stem M _{stem_R} = F _{stem} × x _{stem} = 60.6 kNm/m							
Wall base	M _{base_R} =	$M_{base_R} = F_{base} \times x_{base} = 33.2 \text{ kNm/m}$						
Line loads	M_{P_R} = (abs($\gamma_{Gf} \times P_{G1} + \gamma_{Qf} \times P_{Q1}$)) × p ₁ = 176.8 kNm/			6.8 kNm/m				
Saturated retained soil	M _{sat_R} = F	_{sat_v} × x _{sat_v} = 10.8 k	:Nm/m					
Water	M _{water_R} =	$F_{water_v} \times x_{water_v} = 1$	1.5 kNm/m					
Moist retained soil	$M_{moist_R} =$	$F_{\text{moist}_v} \times \mathbf{x}_{\text{moist}_v} = 0$.8 kNm/m					
Total	M _{total_R} = M kNm/m	$M_{\text{stem}_R} + M_{\text{base}_R} + N$	M _{P_R} + M _{sat_R} +	M _{water_R} + M _{mo}	ist_R = 293.7			
Check stability against overturning	4							
Factor of safety	FoS _{ot} = M	total_R / Mtotal_OT = 1.5	591					
	PASS - Maximu	ım restoring mom	ent is greater	than overtur	ning moment			
Bearing pressure check								
Vertical forces on wall								
Wall stem	F _{stem} = γ _G	× A _{stem} × γ _{stem} = 22.3	8 kN/m					
Wall base	$F_{base} = \gamma_G$	\times A _{base} \times γ _{base} = 22.	3 kN/m					
Surcharge load	F _{sur_v} = (γα	$F_{sur v} = (\gamma_G \times Surcharge_G + \gamma_Q \times Surcharge_Q) \times I_{heel} = 3.5 \text{ kN/m}$						
Line loads	$F_{P_v} = \gamma_G$	< P _{G1} + γ _Q × P _{Q1} = 7	′ 5.4 kN/m					
Saturated retained soil	$F_{sat_v} = \gamma_G$	\times A _{sat} \times (γ _{sr} ' - γ _w ') =	3.7 kN/m					
Water	$F_{water_v} = \gamma$	ν _G × A _{water} × γ _w ' = 4 k	κN/m					
Moist retained soil	$F_{moist_v} = \gamma$	$r_G \times A_{moist} \times \gamma_{mr}$ ' = 0.3	3 kN/m	1				
Total	F _{total_v} = F kN/m	_{stem} + F _{base} + F _{sur_v} +	+ F _{P_v} + F _{sat_v} +	F _{water_v} + F _{mois}	_{st_v} = 131.9			
Horizontal forces on wall								
Surcharge load	F _{sur_h} = KA	$x \times (\gamma_G \times Surchargeoderic$	_G + γ _Q × Surcha	$arge_Q) \times h_{eff} =$	23.8 kN/m			
Saturated retained soil	F _{sat_h} = γ _G	$ imes$ KA $ imes$ (γ_{sr} ' - γ_{w} ') $ imes$ (h _{sat} + h _{base})² / 2	2 = 13.8 kN/m				
Water	$F_{water_h} = \gamma$	$v_{G} \times \gamma_{w}' \times (h_{water} + d_{co})$	_{over} + h _{base})² / 2	= 44.1 kN/m				

Tekla Tedds	Project	20 Howitt Road	Job no. 222	162			
Baxter Glaysher Consulting Limited	Calcs for				Start page no./Revision		
33/35 Bell Street		Retaining Wall P	reliminary Desig	ŋn	8		
Reigate RH2 7AW	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	AO	24/01/2023					
Moist retained soil	$F_{moist_h} = \gamma_G \times K_A \times \gamma_{mr}' \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{theta})^2$					$h_{base}) \times (h_{sat})$	
	+ h _{base})) = 1.9 kN/m						
Base soil		$F_{pass_h} = -\gamma_G$	$_{\rm bf} imes K_{\rm P} imes \gamma_{\rm b}' imes (d_{\rm control})$	$_{\rm over} + h_{\rm base})^2 / 2 =$	-4.3 kN/m		
Total		F _{total_h} = F _{su}	r_h + F _{sat_h} + F _{wat}	er_h + F _{moist_h} + F _i	_{bass_h} = 79.4 kN	/m	
Moments on wall							
Wall stem	M _{stem} = F _{stem} × x _{stem} = 60.6 kNm/m						
Wall base	M _{base} = F _{base} × x _{base} = 33.2 kNm/m						
Surcharge load	$M_{sur} = F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -26.8 \text{ kNm/m}$						
Line loads	$M_{P} = (\gamma_{G} \times P_{G1} + \gamma_{Q} \times P_{Q1}) \times p_{1} = 200.7 \text{ kNm/m}$						
Saturated retained soil		$M_{sat} = F_{sat_v}$	\times x _{sat_v} - F _{sat_h} \times	x _{sat_h} = -3 kNm/i	n		
Water		M _{water} = F _{wat}	_{ter_v} × x _{water_v} - F _w	$_{vater_h} \times \mathbf{X}_{water_h} = \mathbf{A}$	32.6 kNm/m		
Moist retained soil		M _{moist} = F _{mo}	$_{ist_v} \times x_{moist_v} - F_m$	$moist_h \times \mathbf{X}_{moist_h} = -$	2.1 kNm/m		
Total		$M_{total} = M_{ster}$	m + M _{base} + M _{sur} ·	+ M _P + M _{sat} + M _w	_{ater} + M _{moist} = 2	29.9 kNm/m	
Check bearing pressure							
Propping force		F _{prop_base} = I	F _{total_h} = 79.4 kN	/m			
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}}$ /	F _{total_v} = 1743 m	m			
Eccentricity of reaction	e = x - I _{base} / 2 = 256 mm						
Loaded length of base	$I_{\text{load}} = 2 \times (I_{\text{base}} - \overline{x}) = 2464 \text{ mm}$						
Bearing pressure at toe	$q_{toe} = 0 \text{ kN/m}^2$						
Bearing pressure at heel		$q_{heel} = F_{total}$	_v / I _{load} = 53.5 kN	l/m²			
Factor of safety		$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 2.335$					
	PASS - Allowable bearing pressure exceeds maximum applied bearing pressure						

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.12

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete						
Concrete strength class	C35/45					
Characteristic compressive cylinder strength	f _{ck} = 35 N/mm ²					
Characteristic compressive cube strength	f _{ck,cube} = 45 N/mm ²					
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 N/mm^2 = 43 N/mm^2$					
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²					
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.2 \text{ N/mm}^2$					
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 34077 N/mm ²					
Partial factor for concrete - Table 2.1N	γc = 1.50					
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85					
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 19.8 \text{ N/mm}^2$					
Maximum aggregate size	h _{agg} = 20 mm					
Ultimate strain - Table 3.1	ε _{cu2} = 0.0035					
Shortening strain - Table 3.1	ε _{cu3} = 0.0035					
Effective compression zone height factor	$\lambda = 0.80$					
Effective strength factor	η = 1.00					
Bending coefficient k1	K ₁ = 0.40					
Bending coefficient k ₂	$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$					
Bending coefficient k ₃	K ₃ =0.40					

Tekla Tedds	Project	20 Howitt Boo	d London NW	2	Job no.			
				2102				
33/35 Bell Street	Calcs for	Retaining Wall F	Preliminary Des	ign	Start page no./F	Revision 10		
Reigate RH2 7AW	Calcs by AO	Calcs date 24/01/2023	Checked by	Checked date	Approved by	Approved date		
Rectangular section in flexure	- Section 6.	1	. ,					
Design bending moment combi	nation 1	M = 97.5 k	Nm/m					
Depth to tension reinforcement		d = h - c _{sr} -	φ _{sr} / 2 = 277 m	m				
		$K = M / (d^2)$	× f _{ck}) = 0.036					
		K' = (2 × η K' = 0.207	$\times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda$	× (δ - K ₁)/(2 × K ₂	2))×(λ × (δ - Κ ₁))/(2 × K ₂))		
			K' > K - 1	No compression	n reinforceme	ent is required		
Lever arm		z = min(0.5)	5 + 0.5 × (1 - 2 :	× K / (η × α_{cc} / γ_{C})) ^{0.3} , 0.95) × d	= 263 mm		
Depth of neutral axis		$\mathbf{x} = 2.5 \times (0$	d – z) = 35 mm	0 .				
Area of tension reinforcement re	equired	A _{sr.req} = M /	$(f_{yd} \times z) = 852$	mm²/m				
Tension reinforcement provided	I	16 dia.bars	s @ 150 c/c	_				
Area of tension reinforcement p	rovided	$A_{sr.prov} = \pi$	$\times \phi_{\rm sr}^2 / (4 \times s_{\rm sr})$	= 1340 mm²/m				
Minimum area of reinforcement	- exp.9.1N	A _{sr.min} = ma	$x(0.26 \times f_{ctm} / f_y)$	_{/k} , 0.0013) × d =	462 mm²/m			
Maximum area of reinforcement	t - cl.9.2.1.1(3) $A_{sr.max} = 0.0$	04 × h = 13000	mm²/m				
		max(A _{sr.req} ,	A _{sr.min}) / A _{sr.prov}	= 0.636				
	PASS - Area	of reinforcemen	t provided is g	reater than area	a of reinforce	ment required		
Deflection control Section 7	4			L	library item: Rectar	igular single output		
Deflection control - Section 7	.4	$a_{1} = \sqrt{f_{1}}$	$1 \text{N}/\text{mm}^2$ / 100	0 - 0 006				
Reference remorcement ratio	ratio	$p_0 = v(lck)$	d = 0.003	0 - 0.008				
Required tension reinforcement		$\rho = A_{sr.req} /$						
		$\rho' = A_{sr.2.req}$	/ d ₂ = 0.000					
Structural system factor - Table	7.4N	$K_b = 0.4$	00 11/2022 1/5					
Reinforcement factor - exp.7.17	7.40	$K_s = min(5)$	$K_s = 11111(500 \text{ N/11111}^2 / (lyk \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$					
Limiting span to depth ratio - ex	р.7.16.а	min(K _s × K	_b × [11 + 1.5 × ⁻	V(f _{ck} / 1 N/mm²) >	< ρ ₀ / ρ + 3.2 ×	√(f _{ck} / 1		
		N/mm²) × (N/mm^2 × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 16					
Actual span to depth ratio		$h_{stem} / d = 1$	$n_{\text{stem}} / d = 10.1$					
		PASS	- Span to dep	th ratio is less t	nan deflectio	n control limit		
Crack control - Section 7.3								
Limiting crack width		w _{max} = 0.3	mm					
Variable load factor - EN1990 –	Table A1.1	ψ2 = 0.6						
Serviceability bending moment		M _{sls} = 65.5	kNm/m	_				
Tensile stress in reinforcement		$\sigma_{\rm s} = M_{\rm sls} / ($	$\sigma_s = M_{sls} / (A_{sr,prov} \times z) = 185.8 \text{ N/mm}^2$					
Load duration		Long term						
Load duration factor		k _t = 0.4	$k_{t} = 0.4$					
Effective area of concrete in ter	ision	$A_{c.eff} = min$	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)					
		A _{c.eff} = 967	92 mm²/m					
Mean value of concrete tensile	strength	t _{ct.eff} = t _{ctm} =	= 3.2 N/mm ²					
Reinforcement ratio		$\rho_{p.eff} = A_{sr.pr}$	$_{\rm rov}$ / $A_{\rm c.eff} = 0.01$	4				
Modular ratio		$\alpha_{\rm e} = E_{\rm s} / E_{\rm c}$	_{cm} = 5.869					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		$K_2 = 0.5$						
		$K_3 = 3.4$						
Maximum grack appoint our 7	· 11	$\kappa_4 = 0.425$		k. v. h / a - 7	32 mm			
Maximum crack spacing - exp./	.11	$s_{r,max} = K_3 >$	$U_{sr} \neq K_1 \times K_2 \times$	$\mathbf{r}_4 \times \varphi_{\rm sr} / \rho_{\rm p.eff} = 3$	J∠ (1)[]]			
Maximum crack width - exp.7.8		w _k = s _{r.max} : w _k = 0.185	$\begin{split} & w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) \ / \ E_s \\ & w_k = \textbf{0.185} \ mm \end{split}$					

Tekla Tedds	Project	20 Howitt Roa	d. London, NW	3	Job no.	2162			
Baxter Glavsher Consulting Limited	Calcs for			•	Start page no /Revision				
33/35 Bell Street	F	Retaining Wall F	Preliminary Des	ign	otart page no.//	11			
Reigate	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
RH2 7AW	AO	24/01/2023							
	I								
		$w_k / w_{max} =$	0.618						
		PASS	- Maximum cr	ack width is les	s than limiting	g crack width			
Rectangular section in shear ·	- Section 6.2								
Design shear force		V = 92.3 ki	N/m						
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120						
		k = min(1 +	- √(200 mm / d)	, 2) = 1.850					
Longitudinal reinforcement ratio		ρι = min(A _s	_{r.prov} / d, 0.02) =	0.005					
		v _{min} = 0.03	5 N ^{1/2} /mm × k ^{3/2}	× f _{ck} ^{0.5} = 0.521 N	/mm²				
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$0 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_l$	$_{\rm ck})^{1/3}, V_{\rm min}) \times d$				
		V _{Rd.c} = 157	. 9 kN/m		, , ,				
		$V / V_{Rd.c} = 0$	0.585						
		PAS	S - Design sh	ear resistance e	xceeds desig	n shear force			
Horizontal reinforcement para	Illel to face of s	tem - Section	9.6						
Minimum area of reinforcement	– cl.9.6.3(1)	A _{sx.req} = ma	x(0.25 × A _{sr.prov}	, 0.001 × t _{stem}) = :	335 mm²/m				
Maximum spacing of reinforcem	Maximum spacing of reinforcement – cl.9.6.3(2)		s _{sx_max} = 400 mm						
Transverse reinforcement provid	Transverse reinforcement provided		12 dia.bars @ 200 c/c						
Area of transverse reinforcemen	Area of transverse reinforcement provided		$A_{sx.prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 565 \text{ mm}^2/\text{m}$						
PASS - Area of reinforcement provided is greater than area of reinforcement requi				nent required					
Check base design at toe									
Depth of section		h = 300 mr	n						
Rectangular section in flexure	- Section 6.1								
Design bending moment combin	nation 1	M = 109.3	kNm/m						
Depth to tension reinforcement		$d = h - c_{bb}$	- φ _{bb} / 2 = 250 n	nm					
·		$K = M / (d^2)$	$K = M / (d^2 \times f_{ck}) = 0.050$						
		K' = (2 × n	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$						
		K' = 0.207		(* * * *), (= * * * 2)	, (()			
			K' > K - I	No compression	reinforceme	nt is required			
Lever arm		z = min(0.5	5 + 0.5 × (1 - 2 >	- - Κ / (η × α _{cc} / γc)) ^{0.5} , 0.95) × d =	- 237 mm			
Depth of neutral axis		$x = 2.5 \times (c$	(-z) = 31 mm		, , ,				
Area of tension reinforcement re	auired	$A_{bb} reg = M$	$(f_{vd} \times z) = 105$	9 mm²/m					
Tension reinforcement provided	· · · · · ·	20 dia.bars	20 dia.bars @ 150 c/c						
Area of tension reinforcement p	rovided	$A_{bb,prov} = \pi$	$\times \phi_{bb}^2 / (4 \times s_{bb})$	= 2094 mm²/m					
Minimum area of reinforcement	- exp.9.1N	$A_{bb min} = m_i$	$A_{bb,min} = max(0.26 \times f_{etm} / f_{ite} 0.0013) \times d = 417 \text{ mm}^2/\text{m}$						
Maximum area of reinforcement	- cl 9 2 1 1(3)	$A_{bb} = 0$	$A_{\text{bb,max}} = 0.04 \text{ y } \text{h} = 12000 \text{ mm}^2/\text{m}$						
	01.0.2.1.1(0)	max(Abb reg	$max(A_{bb,reg}, A_{bb,min}) / A_{bb,prov} = 0.505$						
	PASS - Area of	reinforcemen	t provided is a	reater than area	of reinforcen	nent reauired			
				Li	brary item: Rectan	gular single output			
Crack control - Section 7.3									
Limiting crack width		w _{max} = 0.3	mm						
Variable load factor - EN1990 –	Table A1.1	ψ2 = 0.6							
Serviceability bending moment		M _{sls} = 79.4 kNm/m							
Tensile stress in reinforcement		σ_{s} = M _{sls} / (A _{bb.prov} × z) = 1	59.6 N/mm²					
Load duration		Long term							
Load duration factor		k _t = 0.4							
Effective area of concrete in ten	sion	A _{c.eff} = min	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)						

A_{c.eff} = **89583** mm²/m

Tekla Tedds	Project Job no. 20 Howitt Road. London. NW3 222162								
Baxter Glaysher Consulting Limited	Calcs for				Start page no./Re	evision			
33/35 Bell Street		Retaining Wall F	Preliminary Desig	In		12			
RH2 7AW	Calcs by AO	Calcs date 24/01/2023	Checked by	Checked date	Approved by	Approved date			
Mean value of concrete tensile s	strength	f_+ _# = f_+ =	3 2 N/mm ²						
Reinforcement ratio	sucingui	$O_{\rm D} {\rm off} = {\bf A}_{\rm bb} {\rm p}_{\rm c}$	3.2 N/mm						
Modular ratio		$\alpha_{0} = \mathbf{F}_{0} / \mathbf{F}_{0}$	m = 5.869						
Bond property coefficient		k1 = 0.8							
Strain distribution coefficient		k ₂ = 0.5							
	k ₃ = 3.4								
		k ₄ = 0.425							
Maximum crack spacing - exp.7	.11	$s_{r.max} = k_3 \times$	$c_{\text{bb}} \textbf{+} k_1 \times k_2 \times k_1$	$_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 28	81 mm				
Maximum crack width - exp.7.8		w _k = s _{r.max} >	$\propto \max(\sigma_s - k_t \times (f_s))$	$_{\text{ct.eff}}$ / $ ho_{\text{p.eff}}$ $ imes$ (1 +	$\alpha_{e} \times \rho_{p.eff}$), 0.6	$\delta imes \sigma_s$) / E _s			
		w _k = 0.137	mm						
		$w_k / w_{max} =$	0.456						
		PASS	- Maximum cra	ck width is less	s than limiting	g crack width			
Rectangular section in shear	- Section 6.2								
Design shear force		V = 109.8 ⊧	κN/m						
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120						
		k = min(1 + √(200 mm / d), 2) = 1.894							
Longitudinal reinforcement ratio		$\rho_{I} = min(A_{bl})$	_{p.prov} / d, 0.02) = (0.008					
	v _{min} = 0.035	5 N ^{1/2} /mm × k ^{3/2} >	< f _{ck} ^{0.5} = 0.540 N/	/mm²					
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{\text{Rd.c}} \times k \times (100))$	$N^2/mm^4 \times \rho_l \times f_c$	$_{k})^{1/3}, v_{min}) \times d$				
	V _{Rd.c} = 175	. 3 kN/m							
		$V / V_{Rd.c} = 0$).626						
		PAS	S - Design shea	ar resistance ex	ceeds desig	n shear force			
Check base design at heel									
Depth of section		h = 300 mr	n						
Rectangular section in flexure	e - Section 6.1								
Design bending moment combir	nation 1	M = 0.2 kN	m/m						
Depth to tension reinforcement		$d = h - c_{bt} - c_$	φ _{bt} / 2 = 269 mm	1					
				$(\delta - K_1)/(2 \times K_2)$)×(λ × (δ - K ₁)/	(2 × K ₂))			
		K' = 0.207							
			K' > K - N	o compression	reinforcemer	nt is required			
		z = min(0.5)	+ 0.5 × (1 - 2 ×	Κ / (η × α _{cc} / γc))	^{0.3} , 0.95) × d =	256 mm			
Depth of neutral axis		$x = 2.5 \times (0)$	(-z) = 34 mm						
Area of tension reinforcement re	equired	Abt.req = M /	$(f_{yd} \times z) = 2 \text{ mm}^2$	²/m					
	novido d		(U) = 150 C/C	754					
Area of tension reinforcement provided $A_{bt,prov} = \pi \times \phi_{bt}^2 / (\pi - t)^2$			$\times \varphi_{bt} / (4 \times s_{bt}) = / 54 \text{ mm}^2/\text{m}$						
Minimum area of reinforcement	Image: Number of the second				49 mm²/m				
Maximum area of reinforcement	- CI.9.2.1.1(3)	$A_{bt,max} = 0.0$	$04 \times n = 12000 m$	1m²/m					
	PASS - Area o	f reinforcement	Abt.min) / Abt.prov –	0.550 Dator than area	of reinforcen	nent required			
	1 400 - Alea U	i rennorcennenn	provided is gre	Lik	orary item: Rectang	gular single output			
Crack control - Section 7.3									
Limiting crack width		w _{max} = 0.3	mm						
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6							
Serviceability bending moment		M _{sls} = 0.1 k	Nm/m						
Tensile stress in reinforcement		σ_{s} = M _{sls} / ($A_{bt.prov} \times z$) = 0.6	N/mm ²					

Tekla Tedds	Project 2	Job no.	2162						
Baxter Glaysher Consulting Limited 33/35 Bell Street	Calcs for Re	taining Wall F	Start page no./Revision 13						
Reigate RH2 7AW	Calcs by C AO	Calcs date 24/01/2023	Checked by	Checked date	Approved by	Approved date			
	ļ ļ								
Load duration		Long term							
Load duration factor		$- v \rangle \langle 2 + \langle 2 \rangle$							
Effective area of concrete in ten	sion	$A_{c.eff} = min($	2.5 × (n - a), (i	n - x) / 3, n / 2)					
$A_{c.eff} = 7/500 \text{ mm}^2/\text{m}^2$									
Mean value of concrete tensile s	strengtn	T _{ct.eff} = T _{ctm} =	3.2 N/mm ²	•					
Reinforcement ratio		ρ _{p.eff} = A _{bt.pr}	ov / Ac.eff = 0.01	U					
Modular ratio		$\alpha_e = E_s / E_c$	m = 5.869						
Bond property coefficient		k ₁ = 0.8							
Strain distribution coefficient	$K_2 = 0.5$								
		K3 - 3.4							
$K_4 = 0.425$									
Maximum crack spacing - exp.7.11 $S_{r.max} = K_3 \times C_{bt} + K_1 \times K_2 \times K_4 \times \phi_{bt} / \rho_{p.eff} = 295 \text{ mm}$ Maximum crack spacing - exp.7.11									
Maximum crack width - exp.7.8	Maximum crack width - exp. 7.8 $W_{k} = S_{r.max} \times Max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / 1$				o×σs)/Es				
		W _k = 0.001	mm						
		Wk / Wmax =	0.002	rook width is los	a than limitin	a araak width			
		FA33		rack width is les	s man mmung	y clack width			
Rectangular section in shear	- Section 6.2								
Design shear force		V = 3.2 kN/	/m						
		$C_{Rd,c} = 0.18$	3 / γc = 0.120						
		k = min(1 +	· √(200 mm / d), 2) = 1.862					
Longitudinal reinforcement ratio		ρι = min(A _b	_{t.prov} / d, 0.02) =	= 0.003					
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	² × f _{ck} ^{0.5} = 0.526 N	N/mm²				
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$00 \text{ N}^2/\text{mm}^4 imes ho_{ ext{I}} imes 1$	$f_{ck})^{1/3}, V_{min}) imes d$				
		V _{Rd.c} = 141	.6 kN/m						
	V / V _{Rd.c} = 0.022								
		PAS	S - Design sh	ear resistance e	exceeds desig	n shear force			
Secondary transverse reinford	cement to base -	Section 9.3							
Minimum area of reinforcement	– cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	$2 \times A_{bb,prov} = 41$	9 mm²/m					
Maximum spacing of reinforcem	ent – cl.9.3.1.1(3) s _{bx_max} = 450 mm								
Transverse reinforcement provid	ded	12 dia.bars	@ 200 c/c						
Area of transverse reinforcement provided $A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 565 \text{ mm}^2/\text{m}$									
PASS - Area of reinforcement provided is greater than area of reinforcement required									

Reinforcement details