

Drainage Strategy Report

J2680 317 Finchley Road, London

Ref: J2680-Doc-02 Revision: X3

Webb Yates Engineers Ltd 48-50 Scrutton Street London. EC2A 4HH 020 3696 1550 info@webbyates.co.uk www.webbyates.co.uk

CONTENTS

Ι	INTRODUCTION	4
2	SITE DESCRIPTORS	5
3	SITE CONTEXT	
4	DESIGN ASSUMPTIONS, CONSTRAINTS AND PARAMETERS	8
5	DRAINAGE DESIGN CRITERIA AND PRINCIPLES	. 10
6	MAINTENANCE	. 14
7	DESIGN STANDARDS AND REFERENCES	
8	DRAINAGE DRAWINGS & CALCULATIONS	
9	CONCULSION	. 16
10	APPENDIX A: EXISTING TOPOGRAPHIC SURVEY	
П	APPENDIX B –CIVIL DRAINAGE DRAWINGS	. 18
12	APPENDIX C -MICRODRAINAGE EXISTING FLOWRATE CALCULATIONS	. 19
13	APPENDIX D – GREENFIELD RUNOFF RATES	.20
14	APPENDIX E – MICRODRAINAGE PROPOSED NETWORK CALCULATIONS	.21

Figure 1: Map of Local Area with site marked in red boundary	5
Figure 2: Finchley Road Street View	
Figure 3: Satellite view of local area; site boundary	
Figure 4: Layout of the proposed development Ground Floor	
Figure 5: Thames Water Asset Search Map	
Table 1: Table of impermeable areas	. 9

Table 1: Table of Impermeable areas	7
Table 2: Hydrological Parameters	10
Table 3: Discharge Rates	
Table 4: Additional Volumes and Storage Capacities	

GENERAL NOTES

Only construction status documentation is to be constructed from. If you do not have a construction issue document and you are about to build something, please contact Webb Yates Engineers. Ensure that you have the latest revision prior to construction.

This document is strictly confidential to our client, or their other professional advisors to the specific purpose to which it refers. No responsibility whatsoever is accepted to any third parties for the whole or part of its contents. This document has been prepared for our client and does not entitle any third party to the benefit of the contents herein. This document and its contents are copyright by Webb Yates Engineers Ltd. No part of this document may be reproduced, stored or transmitted in any form without prior written permission from Webb Yates Engineers Ltd.

REVISION HISTORY

Revisions indicated with line in margin.

Revision status: P = Preliminary, T = Tender, C = Construction, X = For Information

Revision	Status	Date	Author	Reviewer	Description
XI	Information	16/03/16	MJ	GP-D	Issued for Information
X2	Information	06/05/16	MJ	GP-D	Issued for Information
X3	Information	23/01/23	GP-D	GP-D	Reissued for Information

I INTRODUCTION

Webb Yates Engineers have been appointed by 317 Finchley Road Ltd. to undertake civil and structural engineering design services for the proposed redevelopment at 317 Finchley Road. The mixed used development will provide a 7 to 10 storey building plus basement comprising of 22 apartments and a new retail space. This drainage strategy report has been prepared on behalf of 317 Finchley Road Ltd in respect to this development.

The purpose of this report is to consider the various drainage strategy options and determine the preferred option for the new development.

The site is bounded by; the A41 Finchley Road to the North East; Billy Fury Way, a pedestrian passageway, to the South; and Finchley Road & Frognal railway station, which lies on the London Overground, to the North.

This document has been prepared with reference to:

- London Borough of Camden Strategic Flood Risk Assessment (SFRA) July 2014.
- Camden Core Strategy November 2010
- National Planning Policy Framework (NPPF) 20 July 2021.
- National Planning Practice Guidance (NPPG) July 2018
- SSG Appendix C Design and construction guidance for foul and surface water sewers offered for adoption under the Code for adoption agreements for water and sewerage companies operating wholly or mainly in England ("the Code"). Approved Version 2.2. 29 June 2022
- Environment Agency Flood Maps (http://maps.environment-agency.gov.uk/)
- Sustainable Drainage Systems: Non-statutory technical standards for sustainable drainage systems April 2015.
- The London Plan (www.london.gov.uk) 2011.
- The London Supplementary Planning Guidance (SPG) Sustainable Design and Construction (www.london.gov.uk) 2014.
- SuDS Manual, Ciria 2015.
- Rainfall Runnoff Management for Developments Report SC030219, Environment Agency 2013
- British Geological Survey (BGS) maps

2 SITE DESCRIPTORS

317 Finchley Road's approximate National Grid reference is TQ 26935 85230. Located in North West London, within the Borough of Camden, the site is situated between Hampstead Village to the North East and West Hampstead in the South West. The site's postal code is NW3 6EP and covers an area of roughly 677m².

The site is bounded to the North East by the A41, Finchley Road; the A41 links London to Birckenhead. To the South Billy Fury Way, a pedestrian passageway, bounds the site and runs from Finchley Road to West End Lane (B510) and Lithos Road. To the North the North London Line serving the London Overground bounds the site. Finchley Road & Frognal railway station is found directly adjacent to the site. Traveling East on the London Overground Stratford can be reached whilst Willesden Junction, Clapham Junction and Richmond can be found to travelling West.

The existing site is currently occupied by a former public house fronting Finchley Road, with a beer garden to the rear. The existing building is currently unoccupied and has remained vacant since 2010. The only access to the site is from Finchley Road to the front.

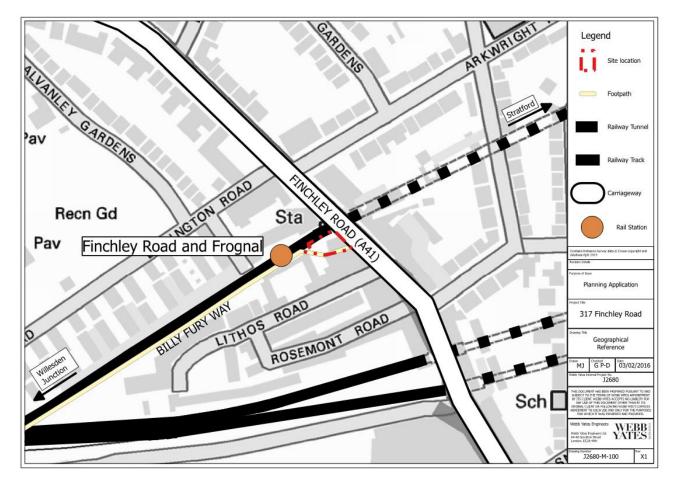


Figure I: Map of Local Area with site marked in red boundary.

Figure 2: Finchley Road Street View

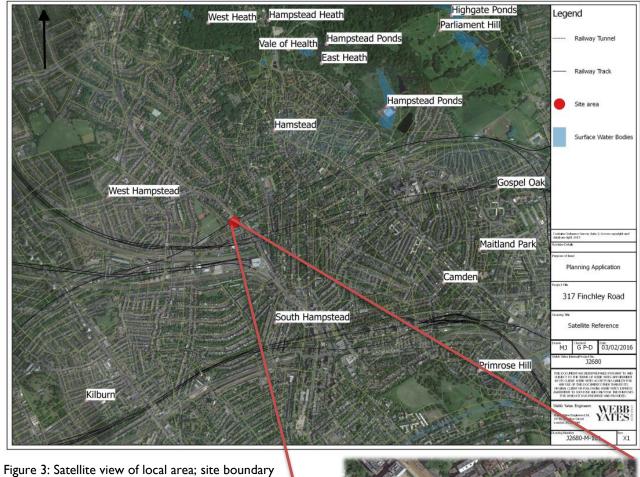


Figure 3: Satellite view of local area; site bound outline marked in red.

J2680-Doc-02-X3 Page 6 of 21

3 SITE CONTEXT

3.1 TOPOGRAPHY

The site topography is sloped from East to West in the downward direction. The highest topographic point, on site, is found on Finchley Road at 60.68mAOD. The lowest topographic point is found on the Western tip along Billy Fury Way passageway and is 56.64mAOD. This gives a slope of 1 in 13.

3.2 GEOLOGY

According to British Geological Society data, 317 Finchley Road is situated on London Clay Formation; the most common bedrock geology found within London region. London Clay was formed during the Ypresian Age (Lower Eocene) around 56 - 49 million years ago. Its small particle size distribution means it has a low hydraulic conductivity and hence reduced permeability.

On site investigations identified the lithological description of the London Clay Formation was stiff, closely fissured, brown mottled clay with selenite crystals and in parts relict roots. The London Clay was found within the range of 1.80m and 3.90m Below Ground Level (BGL).

The site showed no Superficial Deposits according to the British Geological Society data. This was confirmed via on site investigations. Made Ground presumed down to the London Clay Formation bedrock, and was in the range of coarse sand and gravel particle size distribution.

3.3 GROUNDWATER

On site investigation identified groundwater in 1 out of 3 boreholes. Standing water was found at 3.60mBGL in the beer garden of the existing property.

3.4 HYDROLOGY

There are no nearby waterbodies which effect the site. The nearest water bodies include the spring ponds found on Hampstead heath and the Grand Union Canal which runs South of the site. The site lies within a Flood Risk Zone I (low risk).

3.5 HYDROLOGEOLOGY

The bedrock geology (London Clay Formation) is an aquiclude. An aquiclude is a geological formation that absorbs and holds water but does not allow transmission of water. It is classified by the Environment Agency as "unproductive strata".

3.6 EXISTING SURFACE WATER DRAINAGE

The existing drainage within the local vicinity of the site include a combined sewer for both surface water and foul water.

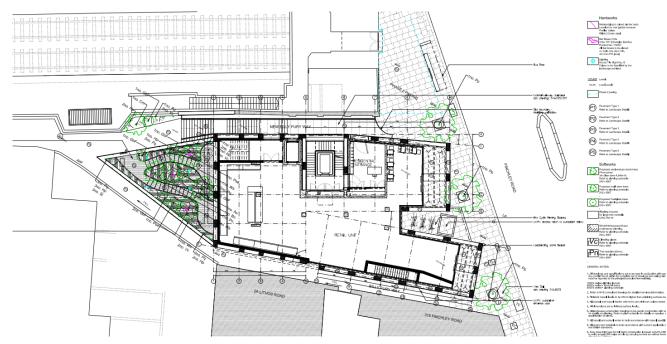


Figure 4: Layout of the proposed development Ground Floor.

4 DESIGN ASSUMPTIONS, CONSTRAINTS AND PARAMETERS

4.1 SPATIAL CONSTRAINTS

Onsite above ground drainage storage options such as swales, ponds and detention basins are not considered a viable solution due to spatial constraints inhibiting for open water features with sufficient capacity.

4.2 CLIMATE CHANGE EFFECTS

In accordance with the National Planning Policy Framework (NPPF) 2012, the effects of climate change are included within the assessment to reduce future flood risk. Following the recommended contingency allowances from the 19th February 2016, the following allowances should be made for the proposed development:

- Peak Rainfall Intensity: +40% (Upper End Allowance) for 2070 to 2115
- Peak Rainfall Intensity: +20% (Central Allowance) for 2070 to 2115

The new surface water drainage systems for the site will include SUDS and will be designed to accommodate increases in peak rainfall intensity.

4.3 ASSUMED IMPERMEABLE AREAS

The table below identifies the total area of the site and the respective surface areas belonging to hard and soft landscaping.

Table 1: Table of impermeable areas

		Existing Area (m²)	Proposed Area (m²)	Difference (m ²)
Hard Landscaping	Building	311	369	+58
	Footprint			
	External	217	201	-16
	Hardstanding			
	Total	528	570	+42
Soft Landscaping	Total	149	107	-42
Site Area	Total	677	677	0

Although the impermeable area has increased slightly, the amenity and biodiversity area has increased due two terrace roof gardens providing both a social space and vegetation within container gardens.

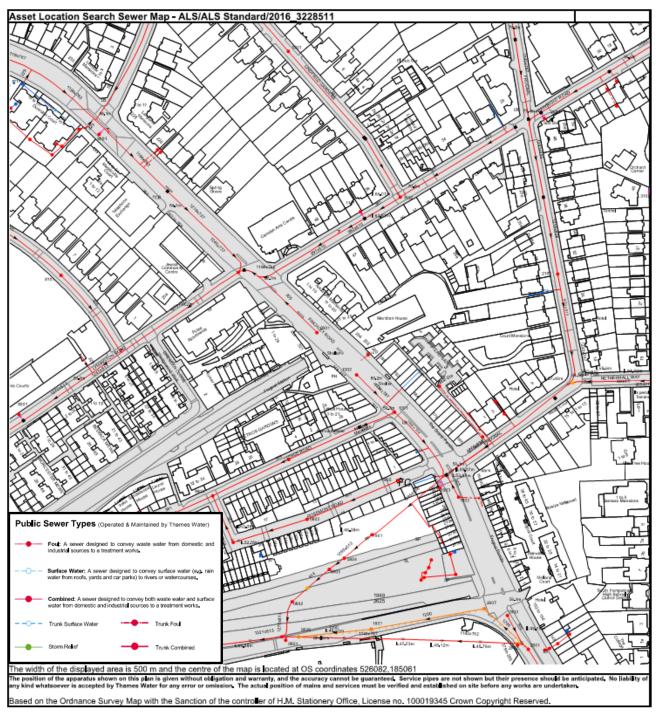
4.4 INFILTRATION RATES

Borehole investigations taken on site have identified that the site is underlain by made ground which sits on London Clay. Initial infiltration tests carried out on site have shown that the site has a very low infiltration rate due to the high water table and as such soakaways and other infiltration approaches are not likely to be appropriate or sustainable methods to drain surface water runoff from the site.

4.5 HYDROLOGICAL PARAMETERS

The drainage design has assumed the following hydrological parameters found in table 2.

Table 2: Hydrological Parameters


Hydrological Character	Parameter	Unit	Value
Rainfall Model			FSR Rainfall
Hydrological Region		-	6
M5-60		mm	21
Ration	R	R	0.438
Rainfall intensity	M ₁ , Z ₂	mm , -	12.8 , 0.64
	M ₃₀ , Z ₂	mm , -	30.8 , 1.54
	M ₁₀₀ , Z ₂	mm , -	40.6 , 2.03
Summer Volumetric Run-	-	-	0.750
off Coefficient			
Winter Volumetric Run-off	-	-	0.840
Coefficient			

5 DRAINAGE DESIGN CRITERIA AND PRINCIPLES

5.1 EXISTING DRAINAGE

The existing drainage system for 317 Finchley Road drains into a combined sewer owned by Thames Water. The combined sewer is used to convey both surface water and foul water. The figure below has been adopted from a Thames Water Asset search and identifies the nearby sewage services to the site. The nearest connection manhole is 1002 which has a cover level of 61.45m and an invert level of 55.76m.

Figure 5: Thames Water Asset Search Map

The existing peak surface water flow draining into the Thames Water system has been calculated to be 12.77 l/s for the 100 year plus 30% climate change. The existing foul water draining into the combined sewer should be minimal as the site has been disused and remained derelict for a number of years.

5.2 PROPOSED DRAINAGE SYSTEM DESIGN

The proposed drainage system will provide separate foul and surface water systems which will confluence at the last manhole on-site within a demarcation chamber before entering the Thames Water Combined Sewer on Finchley Road.

This will allow ease to mutually exclude the surface water from the foul system if a separate surface water sewer was to be constructed by Thames Water within the vicinity of the site.

5.3 SURFACE WATER DESIGN

The surface water disposal system has been designed to ensure the drainage hierarchy has been implemented in the most practical and viable approach to benefit to the site; as per the SuDS Manual 2015. Furthermore, the design has considered the Non Statutory Technical standards for sustainable drainage systems, and ensured these standards have been addressed.

Due to the sites topography and the positioning of the Thames Water combined sewer, a pumped surface water system is required. The pump ensures a maximum flow rate of 51/s for all return periods up to and including the 100 year event plus 40% climate change. This flow rate is as reasonable practicable to the Greenfield runoff rate due to mechanical malfunctions of most flow controls under 51/s. Furthermore, this flow rate achieves a betterment of greater than 50% of the existing flow rate. Please refer to table 3.

Return Period	Greenfield	Existing	Proposed	Percentage reduction of flowrates
	Runoff (l/s)	Rates (I/s)	Mitigated	between existing and proposed
			Rates (I/s)	flowrates (%)
Greenfield	0.44	N/A	N/A	N/A
QBAR				
l in l	0.38	8.0	5.0	37.5
l in 30	1.02	19.6	5.0	74.5
l in 100	1.41	25.5	5.0	80.4
l in 100 plus	N/A	30.6	5.0	83.7
Climate				
change (20%)				
l in 100 plus	N/A	35.7	5.0	86.6
Climate				
change (40%)				

Table 3: Discharge Rates

A geocelluar storage unit with a capacity of 20m³ will be positioned upstream of the pump unit. The geocellular storage unit will have enough capacity to attenuate for the additional volume of water leaving the site up to a 1 in 100 year plus climate change event; as per the London Borough of Camden Drainage Statement pro-forma (table 3).

Table 4: Additional Volumes and Storage Capacities

Return period	Existing Volume	Proposed Volume	Long term and Attenuation	
	(M³)	(M ³)	Storage Capacity (M ³)	
100 year 6 hour event	8.64	10.05	20	

The building roofs are designed to provide amenity and biodiversity via the implementation of two roof terrace container gardens. This also increases the interception storage available via evapotranspiration.

An infiltration based system has not been considered due to the sites geological restrains. Surface water control bodies have not be considered due to the sites spatial limitations.

5.4 FLOOD ROUTING ANAYLSIS

In the unlikely event that the surface water system floods, then this is most likely to occur through a flooding of manhole SPC1.0. The cause of this would be due to rainfall intensity and volume exceeding the pumping flow rate and storage volume within system. Any flood water would be diverted down Billy Fury Way pedestrian footpath due to the topographic levels and funnelling effect of the site and surrounding buildings/structures. This would not cause any detrimental effects to emergency services.

5.5 FOUL WATER DESIGN

It is proposed that the new foul drainage connects to the existing Thames Water combined sewer. The foul water system will provide for 22 residential units and I commercial unit within the building. Similarly to the surface water system, the foul system will require a pump chamber due to the topography of the site and the positioning of the Thames Water combined sewer.

The peak foul flowrate has been calculated using a fixed Dry Weather Flow (DWF) multiple of 6 as per British standards. The DWF has been calculated using the following equation:

$$DWF = P \cdot G + I + E$$

Where:

DWF = Dry Weather Flow

- P = Population Served
- G = Average per capita domestic water consumption (litres/day)
- I = Infiltration (Litres/day)
- E = Industrial effluent discharge in 24 hours (litres/day)

 $DWF = 66 \cdot 110 + 0 + 450$ $DWF = 7710 \ l/day$

Therefore the Peak Flow is:

$$Q_p = \frac{6 \cdot DWF}{24 \cdot 3600}$$

$$Q_p=0.535\,l/s$$

Assumptions:

- 1. Population of the building has been assumed to be 3 people per apartment. There are 22 apartments in total giving a total population of 66 residents.
- 2. Infiltration is excluded due to better investment of assets ensuring high standards of pipe manufacturing, installation and testing.
- 3. The average per capita domestic water consumption has been assumed to be 110 l/day as per the London plan
- 4. Non-domestic flows have been assumed to be 300 l/day/100m^2

6 MAINTENANCE

The drainage system will be designed to minimise maintenance requirements, however, a full maintenance scheme will be established for those elements not being offered for adoption. The private storm and foul drains, below ground attenuation tank, and pump chamber will be maintained by 317 Finchley Road Ltd. to the manufacturer's recommendations as part of their property maintenance programme. The downstream public sewer will be maintained by Thames Water as part of their maintenance works.

6.1 BELOW GROUND DRAINAGE PIPED SYSTEMS

The below ground piped system (based on assessed flood risk) should be inspected every 10 years as a minimum and repaired and cleansed where necessary.

6.2 GULLIES AND CHANNEL DRAINS

Gullies and channel drains should be cleaned out very six months or when required.

6.3 FOUL AND SURFACE WATER PUMP CHAMBERS

These will be maintained as per the manufacturer's recommendations

7 DESIGN STANDARDS AND REFERENCES

The works are to be designed to the requirements of the following British Standards and documents:

• BS EN 752:2017Drain and Sewer Systems Outside Buildings

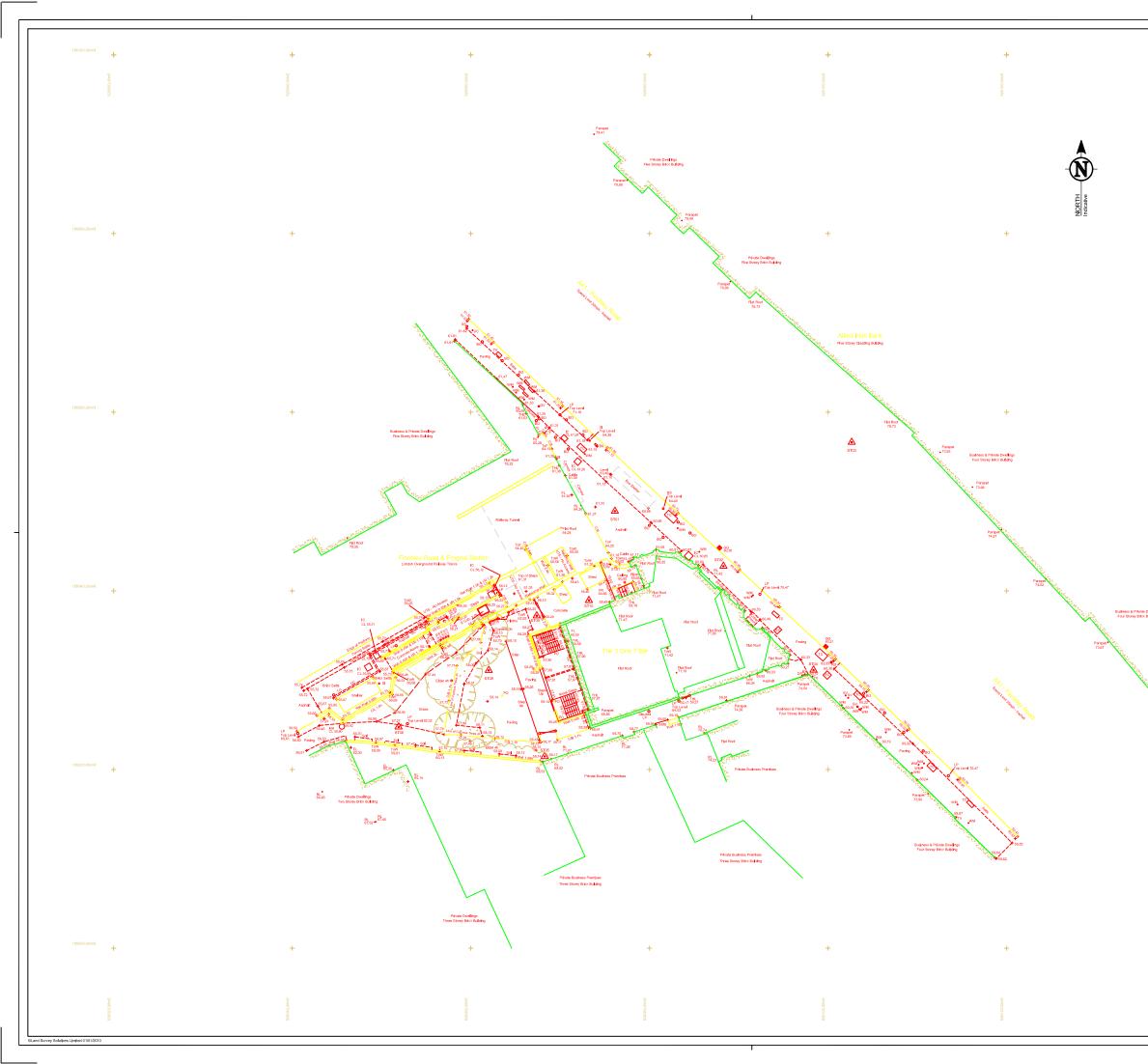
- The Wallingford Procedure: Design and Analysis of Urban Storm Drainage
- Building Regulations 2015 Part H: Drainage and Waste Disposal.
- CIRIA Report C753: The SuDS Manual
- National Planning Policy Framework
- Sustainable Drainage Systems: Non-statutory technical standards for sustainable drainage systems April 2015.

8 DRAINAGE DRAWINGS & CALCULATIONS

Refer to Appendix B for the drawings and Appendices C and D for the drainage calculations.

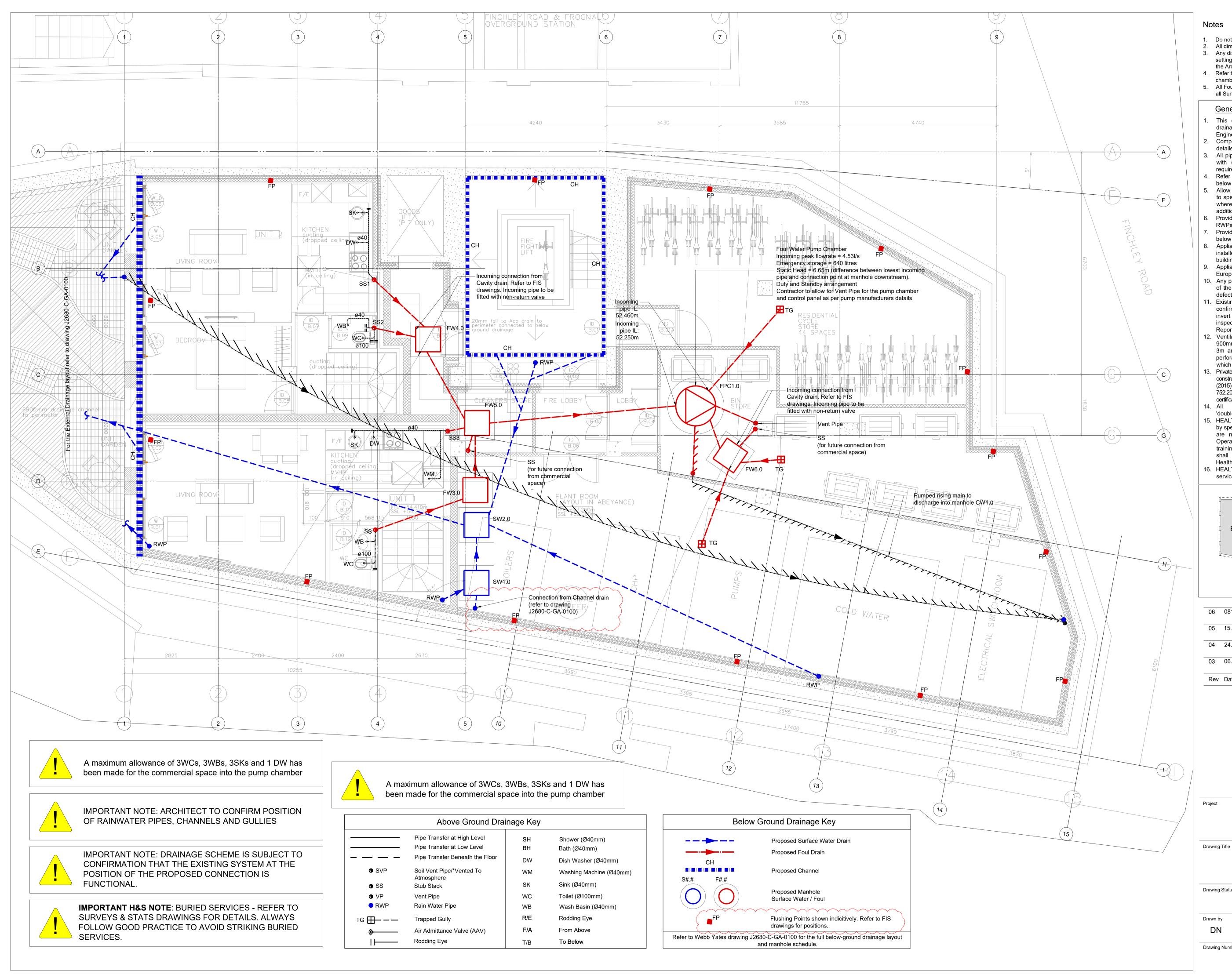
9 CONCULSION

To conclude the designed proposal is for a pumped, separated surface water and foul system that confluences at the ultimate manhole on site before entering the Thames Water combined sewer found on Finchley Road.


The proposed surface water system will control the flow rate to 5l/s via the pumping chamber. This achieves a betterment of greater than 50% runoff from the existing site and also achieve as reasonable practical the Greenfield runoff rate. A geocelluar storage tank with a capacity of 20m³ has been implemented upstream of the pump chamber to withhold the attenuation volume and the additional volume subjected from the proposed development. Infiltration methods and surface water body methods have not been considered for this site due to geological inhibitors and spatial site restriction. The terrace roof container gardens also increase the interception storage available for the site via increased evapotranspiration.

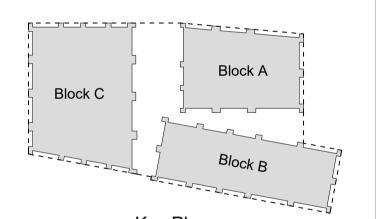
The foul drainage system has been designed with a pump system to provide for 22 residential units and I commercial unit. The calculated foul water flow rate is 0.535l/s and will be confirmed with Thames Water via a pre-development enquiry.

The overall benefit of this development would relieve pressure on the existing public sewer network and also increase both public and private amenity and biodiversity.


10 APPENDIX A: EXISTING TOPOGRAPHIC SURVEY

			TOPOGRAPHICAL & MEASURED BUILDING SURVEYS
	+ #	185100.00mN	ABBREVIATIONS & SYMBOLS AH Achi Nead-Helght FH Philosof Director R3J Robids Stand John Achi Nead-Helght FH Philosof Director R3J Stand Stand Stand AV Af Vancoux FFID Philosof Director R3J Stand Stand Stand AV Af Vancoux FFID Frider Monte Director Stand Stand Analytics BB Stand Stand FFID Frider Monte Director Stand Stand Monte Director BB Stand Stand FFID Frider Monte Director Stand Monte Director Stand Monte Director BH Bort Helps FFID Frider Monte Director Stand Monte Director Stand Monte Director
	528 140,00mB		BL Best Level FVM Food Water SY Stays BD Baland GG Guly Grain Tra Tacliff Priving BP Brace Post GV Gas Valver TC Tacliff Priving BP Brace Post GV Gas Valver TC Tacliff Priving BU Bush Bush Inspectation Cover TH Tallet Priving BW Buschen In Franz LC Inspectation Cover TH Tallet Priving CIB Glass Boot Franz KO Kah Outpit TF Tallet Priving CIA Calves Boot Franz KO Kah Outpit TF Tallet Lage CIA Calves Boot Franz KO Kah Outpit TF Tallet Lage CIA Calves Boot Franz KO Kah Outpit TF Tallet Lage CIA Calves Tallet Printon KN Manare Boot UC Unknown Tree CIA Calves Tallet Printon FN Part Franze UC Unknown Tree </td
	+	185080.00mN	EP Excite Pole RE Rodd Sign Proto Calling Height EP Excite Rod RL Reda Sign File File File ET Excite Sign Reda Sign File File File File File File Reda Sign File
	+	185260.00mM	Desurces and very solutions and the same strength of the same show that the same show
Dwallings Bulding	+	185040.00mM	SURVEY CONTROL CO-ORDINATES STATONS EASTINGS NORTHINGS LEVEL DESCRIPTION ST01 500/07.10 160/04.307 61.192 HI Nall ST02 500/07.20 160/04.207 61.012 HI Nall ST03 500/07.206 160/04.206 61.713 HI Nall ST05 500/07.206 160/04.206 61.713 HI Nall ST05 500/07.206 160/04.206 57.774 HI Nall ST06 520/07.206 160/04.206 50.504 HI Nall ST06 520/07.202 160/04.206 50.504 HI Nall ST06 520/07.202 160/04.206 50.504 HI Nall ST08 520/07.202 160/04.206 51.202 HI Nall ST08 520/07.202 160/04.206 51.202 HI Nall ST08 520/07.202 160/04.206 51.202 HI Nall ST08 520/07.202 160/04.205 50.417 HI Nall ST10 520/07.205 160/04.205
	+	18520.00m/	SURVEY GRD AND LEVEL DATUM The co-ordinate system established for this survey is related to Ordnance Survey (OS) using GPS Smartnet, then orientated to Grid North with a scale factor of 1.000. The level datum established for this survey is related to Ordnance Survey (OS) using GPS Smartnet. To avoid discrepancies, any co-ordinated data used in conjuction with this survey must be derived directly from this control data. REV DESCRIPTION
	+	18500.0mm/	Image: Superior of the second system of t
		Original Sheet Size A1H	15658se-02 18/09/2015

II APPENDIX B -CIVIL DRAINAGE DRAWINGS



Notes

- 1. Do not scale the drawing
- 2. All dimensions are in millimetres unless noted otherwise 3. Any discrepancies between structural and architectural setting out dimensions must be brought to the attention of
- the Architect and Engineers 4. Refer to structural drawings for setting out of manhole chambers within the slab
- 5. All Foul drains to be Ø100mm @ 1:40 gradient (UNO) and all Surface water drains to be Ø150mm @1:100 (UNO)

General Notes to Drainage

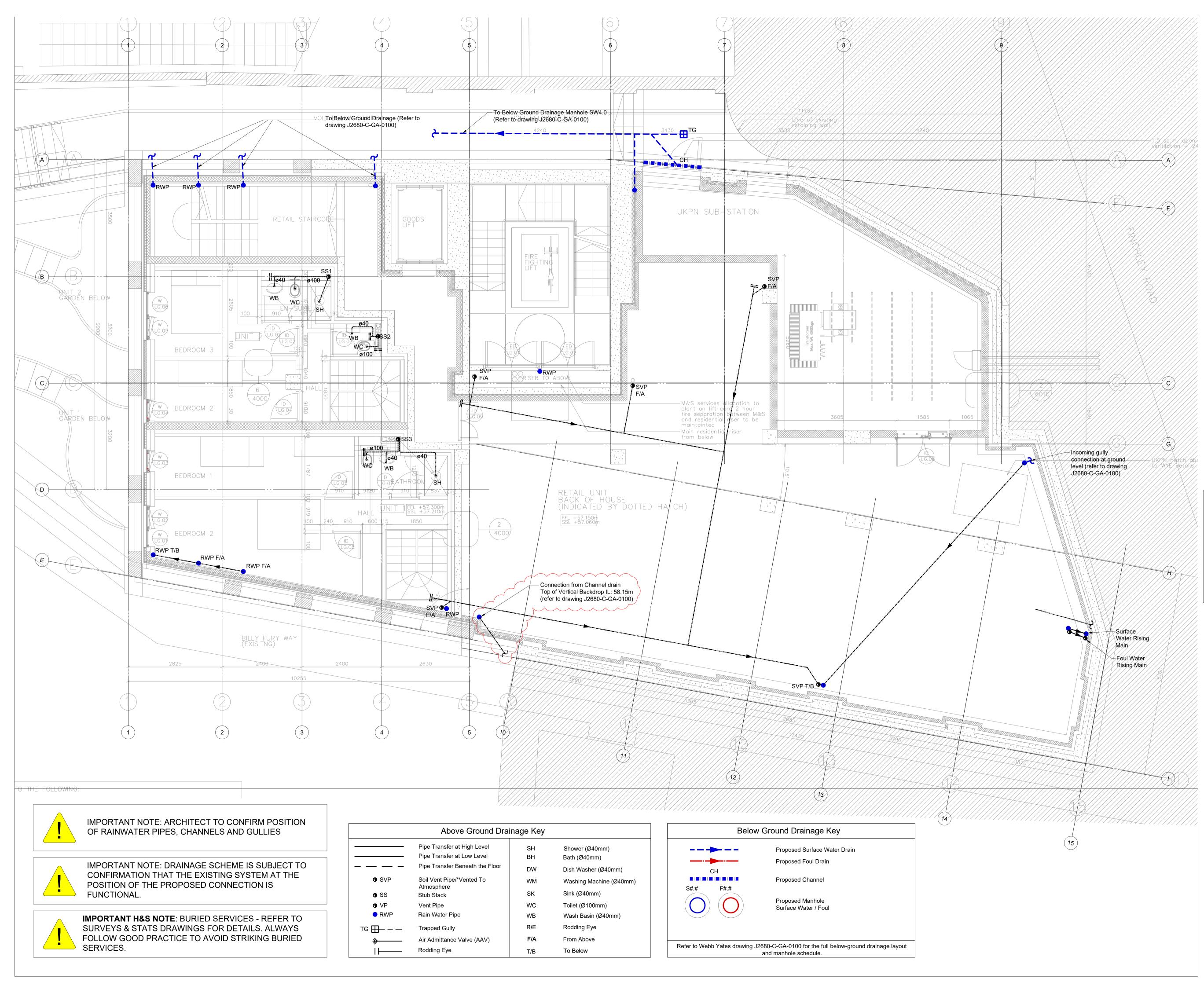
- 1. This drawing is to be read in conjunction with the drainage details and other relevant Architects and Engineers drawings and specifications.
- 2. Comply with technical standards and British standards as detailed in the specification.
- 3. All pipework is to be installed to the recommended falls with suitable provision for venting and cleaning as required by the British standards. 4. Refer to Webb Yates drawing J2680-C-100 for details of
- below ground drainage. 5. Allow for rodding access points in all locations to conform to specification. Notify contractor and architect of places where access in required to these rodding points in addition to those shown on plans.
- 6. Provide 25mm foil face mineral wool insulation to all RWPs & SVPs.
- 7. Provide rodding points to RWPs and SVPs before the below ground connection. 8. Appliances connecting to the drainage system shall be
- installed with a trap to prevent escape of foul air into the building.
- 9. Appliances, pipes and fittings shall comply with relevant European standards where applicable. 10. Any part of the existing drainage system retained as part
- of the new scheme shall be cleaned and inspected. Any defects shall be reported to the Engineer.
- 11. Existing drainage connectivity & condition to be confirmed by Contractor. Before starting work, check invert levels & positions of existing drains, sewers, inspection chambers & manholes against drawings. Report discrepancies.
- 12. Ventilating pipes open to outside air should finish at least 900mm above any opening into the the building within 3m and should be finished with a wire cage or other perforated cover, fixed to the end of the ventilating pipe, which does not restrict the flow of air.
- 13. Private foul water and surface water drainage is to be constructed in accordance with the building regulations part H (2015), BS EN 12056-2:2002 (inside buildings), BS EN 752:2017 (outside buildings) and all relevant agreement certificates.
- 14. All rodding eyes and access points shall be of 'double-seal' type.
- 15. HEALTH AND SAFETY: The works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation. Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in accordance with all pertinent Health and Safety Regulations.
- 16. HEALTH AND SAFETY: Care should be taken to locate services prior to any excavation.

Key Plan

Rev	Date	Description	Drn	Арр
03	06.05.21	General layout amended Issued for Comment	GP-D	GP-D
04	24.05.21	General layout amended Reissued for Comment	GP-D	GP-D
05	15.09.21	Notes added Issued for Construction	GP-D	GP-D
06	0811.21	Revised where Shown Reissued for Construction	GP-D	GP-D

VEBB 48-50 Scrutton Street London EC2A 4HH 020 3696 1550 www.webbyates.co.uk info@webbyates.co.uk

Project

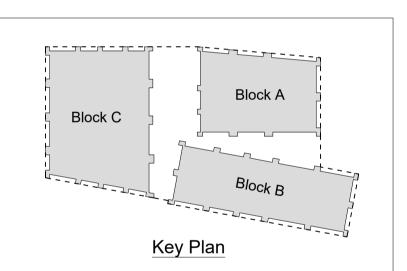

317 Finchley Road

Internal Drainage Layout Basement -2 Level

Drawing Status Construction Drawn by Checked by Sheet size Scale Rev statu 1:50 GP-D S5 DN A1 Drawing Number Revision

J2680-C-GA-1098

06



Notes

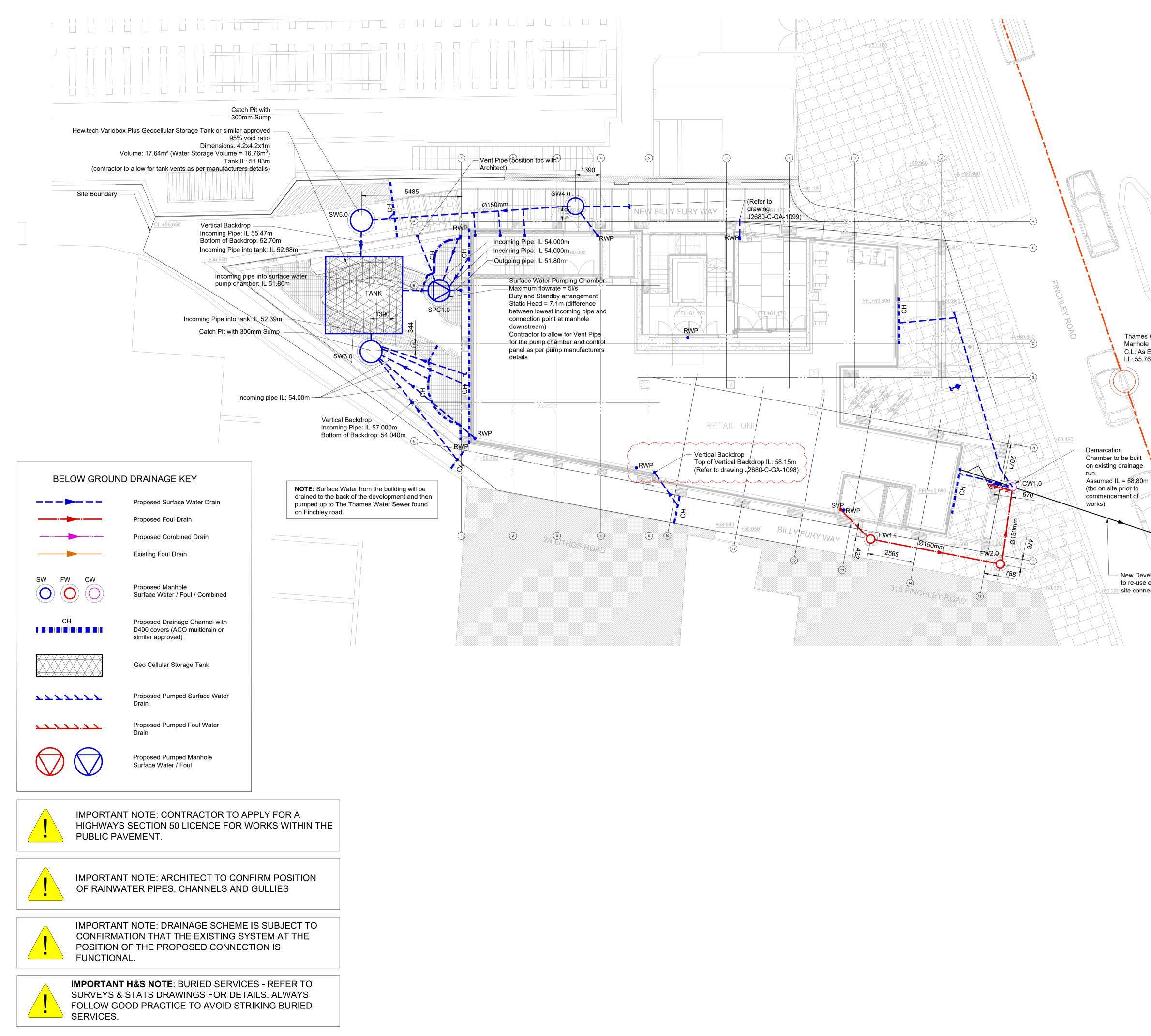
- 1. Do not scale the drawing
- 2. All dimensions are in millimetres unless noted otherwise
- Any discrepancies between structural and architectural setting out dimensions must be brought to the attention of the Architect and Engineers
 Refer to structural drawings for setting out of manhole
- Keller to structural drawings for setting out of mannole chambers within the slab
 All Foul drains to be Ø100mm @ 1:40 gradient (UNO) and
- all Surface water drains to be Ø150mm @1:100 (UNO)

General Notes to Drainage

- 1. This drawing is to be read in conjunction with the drainage details and other relevant Architects and Engineers drawings and specifications.
- Comply with technical standards and British standards as detailed in the specification.
- All pipework is to be installed to the recommended falls with suitable provision for venting and cleaning as required by the British standards.
- Refer to Webb Yates drawing J2680-C-100 for details of below ground drainage.
 Allow for rodding access points in all locations to conform
- to specification. Notify contractor and architect of places where access in required to these rodding points in addition to those shown on plans.
 6. Provide 25mm foil face mineral wool insulation to all
- RWPs & SVPs.7. Provide rodding points to RWPs and SVPs before the
- below ground connection.8. Appliances connecting to the drainage system shall be installed with a trap to prevent escape of foul air into the installed with escape of
- building.9. Appliances, pipes and fittings shall comply with relevant European standards where applicable.
- 10. Any part of the existing drainage system retained as part of the new scheme shall be cleaned and inspected. Any defects shall be reported to the Engineer.
- 11. Existing drainage connectivity & condition to be confirmed by Contractor. Before starting work, check invert levels & positions of existing drains, sewers, inspection chambers & manholes against drawings. Report discrepancies.
- 12. Ventilating pipes open to outside air should finish at least 900mm above any opening into the the building within 3m and should be finished with a wire cage or other perforated cover, fixed to the end of the ventilating pipe, which does not restrict the flow of air.
- Private foul water and surface water drainage is to be constructed in accordance with the building regulations part H (2015), BS EN 12056-2:2002 (inside buildings), BS EN 752:2017 (outside buildings) and all relevant agreement certificates.
- 14. All rodding eyes and access points shall be of 'double-seal' type.
- 15. HEALTH AND SAFETY: The works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation. Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in accordance with all pertinent Health and Safety Regulations.
- 16. HEALTH AND SAFETY: Care should be taken to locate services prior to any excavation.

04	08.11.21	Revised where Shown	GP-D GP-D
		Reissued for Construction	
03	15.09.21	Gully added	GP-D GP-D
		Issued for Construction	
02	06.05.21	General layout amended	GP-D GP-D
		Issued for Comment	
01	01.05.18	General layout amended	DN GP-D
		Issued for Technical Design	
Rev	Date	Description	Drn App

AREAD Scrutton Street London EC2A 4HH 020 3696 1550 www.webbyates.co.uk info@webbyates.co.uk


Project

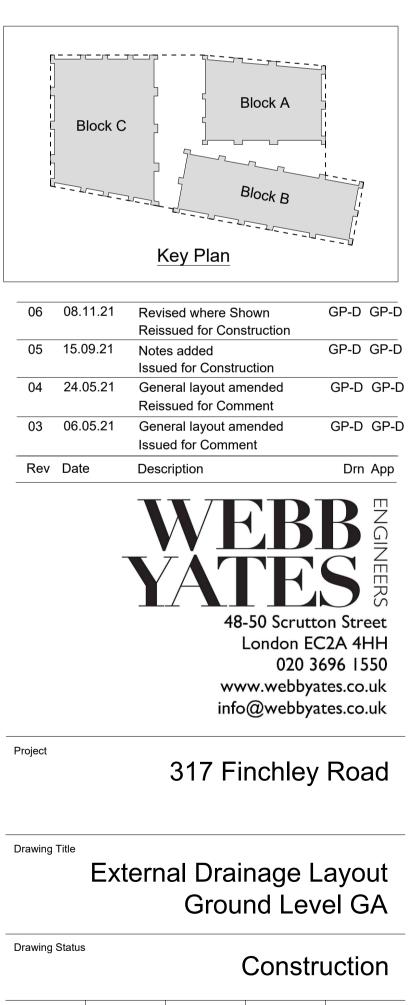
Drawing Title

317 Finchley Road

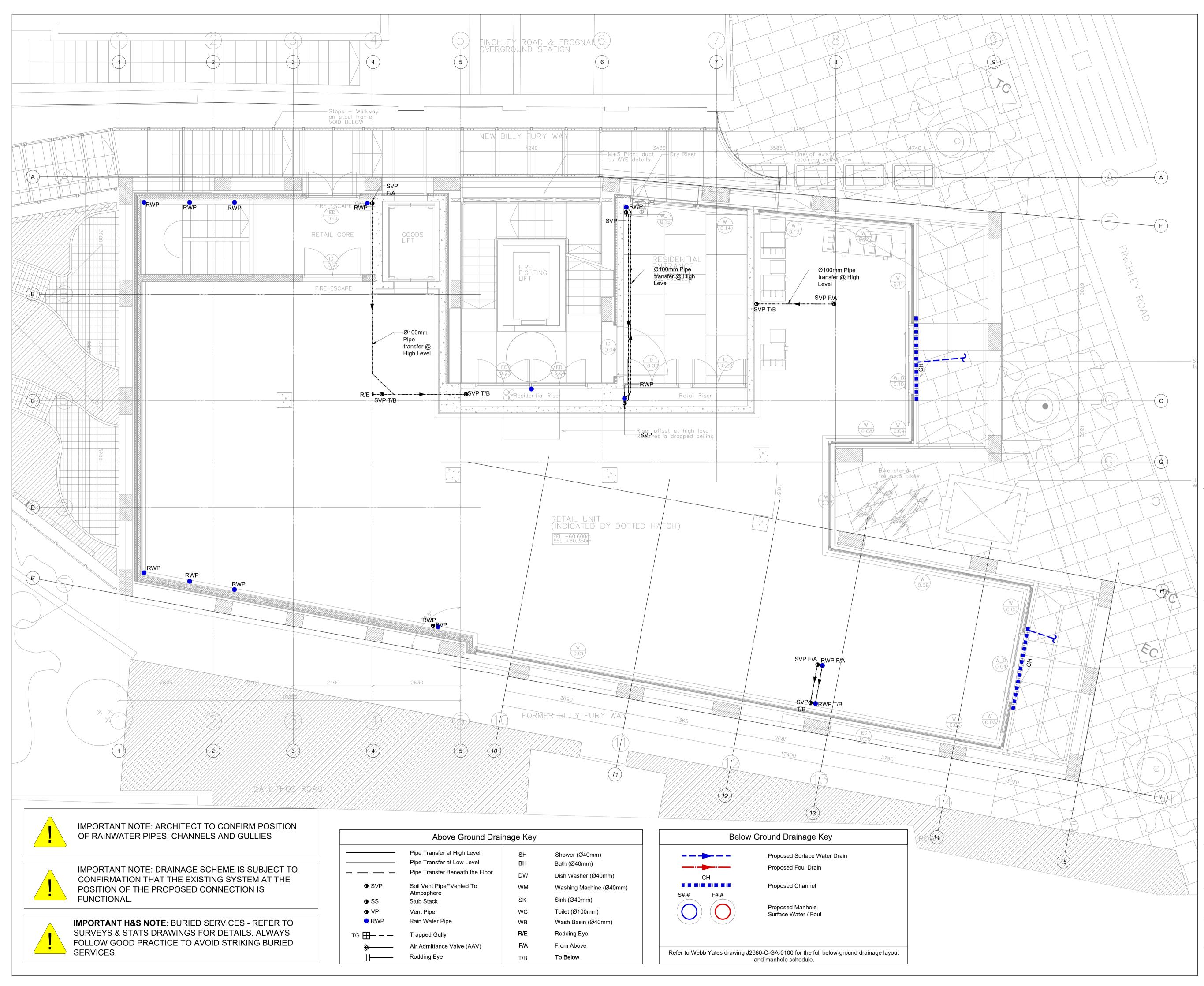
Internal Drainage Layout Basement -1 Level

Drawing Status Construction Checked by Rev status Drawn by Sheet size Scale 1:50 GP-D S5 DN A1 Drawing Number Revision J2680-C-GA-1099 04

Thames Water Combined Manhole 1002; C.L: As Existing I.L: 55.760m


New Development to re-use existing o site connection

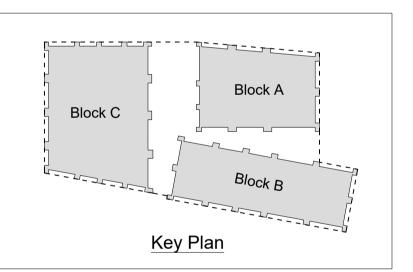
Notes


- 1. Do not scale the drawing
- 2. All dimensions are in millimetres unless noted otherwise 3. Any discrepancies between structural and architectural setting out dimensions must be brought to the attention of
- the Architect and Engineers 4. Refer to structural drawings for setting out of manhole chambers within the slab
- 5. All Foul drains to be Ø100mm @ 1:40 gradient (UNO) and all Surface water drains to be Ø150mm @1:100 (UNO)

General Notes to Drainage

- 1. This drawing is to be read in conjunction with the drainage details and other relevant Architects and Engineers drawings and specifications.
- 2. Comply with technical standards and British standards as detailed in the specification. 3. All pipework is to be installed to the recommended falls with
- suitable provision for venting and cleaning as required by the British standards. 4. Refer to Webb Yates drawing J2680-C-DE-400 to 403 for details
- of below ground drainage. 5. Allow for rodding access points in all locations to conform to specification. Notify contractor and architect of places where access in required to these rodding points in addition to those shown on plans.
- 6. Provide 25mm foil face mineral wool insulation to all RWPs & SVPs 7. Provide rodding points to RWPs and SVPs before the below
- ground connection. 8. Appliances connecting to the drainage system shall be installed
- with a trap to prevent escape of foul air into the building. 9. Appliances, pipes and fittings shall comply with relevant European standards where applicable.
- 10. Any part of the existing drainage system retained as part of the new scheme shall be cleaned and inspected. Any defects shall be reported to the Engineer.
- 11. Existing drainage connectivity & condition to be confirmed by Contractor. Before starting work, check invert levels & positions of existing drains, sewers, inspection chambers & manholes against drawings. Report discrepancies.
- 12. Ventilating pipes open to outside air should finish at least 900mm above any opening into the the building within 3m and should be finished with a wire cage or other perforated cover, fixed to the end of the ventilating pipe, which does not restrict the flow of air.
- 13. Private foul water and surface water drainage is to be constructed in accordance with the building regulations part H (2015), BS EN 12056-2:2002 (inside buildings), BS EN 752:2008 (outside buildings) and all relevant agreement certificates.
- 14. All rodding eyes and access points shall be of 'double-seal' type. 15. HEALTH AND SAFETY: The works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation. Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in accordance with all pertinent Health and Safety Regulations.
- 16. HEALTH AND SAFETY: Care should be taken to locate services prior to any excavation.

Checked by Rev status Drawn by Sheet size Scale 1:100 DN GP-D S5 A1 Drawing Number Revision 06 J2680-C-GA-0100



Notes

- 1. Do not scale the drawing
- 2. All dimensions are in millimetres unless noted otherwise
- Any discrepancies between structural and architectural setting out dimensions must be brought to the attention of the Architect and Engineers

General Notes to Drainage

- 1. This drawing is to be read in conjunction with the drainage details and other relevant Architects and
- Engineers drawings and specifications.Comply with technical standards and British standards as detailed in the specification.
- 3. All pipework is to be installed to the recommended falls with suitable provision for venting and cleaning as required by the British standards.
- 4. Refer to Webb Yates drawing J2680-C-100 for details of below ground drainage.
- Allow for rodding access points in all locations to conform to specification. Notify contractor and architect of places where access in required to these rodding points in addition to those shown on plans.
 Provide 25mm foil face mineral wool insulation to all
- RWPs & SVPs.Provide rodding points to RWPs and SVPs before the
- below ground connection.8. Appliances connecting to the drainage system shall be installed with a trap to prevent escape of foul air into the building.
- Appliances, pipes and fittings shall comply with relevant European standards where applicable.
 Any part of the quicture draining content of the quicture draining of the q
- 10. Any part of the existing drainage system retained as part of the new scheme shall be cleaned and inspected. Any defects shall be reported to the Engineer.
- 11. Existing drainage connectivity & condition to be confirmed by Contractor. Before starting work, check invert levels & positions of existing drains, sewers, inspection chambers & manholes against drawings. Report discrepancies.
- 12. Ventilating pipes open to outside air should finish at least 900mm above any opening into the the building within 3m and should be finished with a wire cage or other perforated cover, fixed to the end of the ventilating pipe, which does not restrict the flow of air.
- Private foul water and surface water drainage is to be constructed in accordance with the building regulations part H (2015), BS EN 12056-2:2002 (inside buildings), BS EN 752:2017 (outside buildings) and all relevant agreement
- certificates. 14. All rodding eyes and access points shall be of 'double-seal' type.
- 15. HEALTH AND SAFETY: The works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation. Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in accordance with all pertinent Health and Safety Regulations.
- 16. HEALTH AND SAFETY: Care should be taken to locate services prior to any excavation.

02	06.05.21	General layout amended Issued for Comment	GP-D GP-D
01	01.05.18	General layout amended Issued for Technical Design	DN GP-D
00	09.02.18	Issued for Information	DN GP-D
Rev	Date	Description	Drn App
	_	VEB VATE 48-50 Scrutto London EC	
		020 30	696 550

020 3696 1550 www.webbyates.co.uk info@webbyates.co.uk

317 Finchley Road

Internal Drainage Layout Ground Level 00

Drawing Status

Drawing Title

Project

Information										
Drawn by	Checked by	Sheet size	Scale	Rev status						
DN	S9									
Drawing Numb	Drawing Number									
	02									

12 APPENDIX C -MICRODRAINAGE EXISTING FLOWRATE CALCULATIONS

J2680-Doc-02-X3 Page 19 of 21

Webb Yates Engineers Ltd							I	Page	1		
48-50 Scrutton Street	J	J2680 Finc	hley R	load			(
London	E	Existing S	ite Fl	owra	tes						
EC2A 4HH								Micr			
Date 20/01/2023		Designed b	-)					hage		
File CALS.MDX		Checked by						ווטוס	iuge		
Innovyze	N	Network 20	20.1								
<pre>Existing Network Details for Storm # - Indicates pipe length does not match coordinates</pre>											
		T.E. Ba (mins) Flow					Section	n Type			
1.000 8.067 0.081 99 1.001 10.000# 0.100 100											
<u>Network Results Table</u>											
PN		.Area ΣBa ha) Flow			-						
1.000	54.000 (53.919 (0.053 0.053	0.0	1.58 1.57	111.4 111.1						
<u></u>	Simulation	n Criteria	for S	torm							
Volumetric Runc Areal Reductic Hot Star Hot Start Le Manhole Headloss Coeff Foul Sewage per hecta	on Factor 1. et (mins) evel (mm) (Global) 0.	000 M 0 0 Flow pe 500	ADD Fac	tor * In on per	10m ³ let C Day Run	/ha S oeffi (l/pe Time	torage ecient r/day) (mins)	2.000 0.800 0.000 60			
Number of Input Hydrographs 0 Number of Online Controls 0											
	Synthetic	<u>c Rainfall</u>	Detai	ils							
М5-60	ars) gion England		Storm I	C7 C7	v (Sun v (Wir	mer) iter)	0.840				
	@1 0 0 0										
	©1982	2-2020 Inn	ovyze								

C22 A 4HH Designed by GP-D Designed by GP-D Checked by Network 2020.1 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Market Colspan="2">Market Colspan="2">Market Colspan="2">Colspan="2" C			ineers Lt	d						Page 2
EC2A 4HH Designed by GP-D Checked by Difference File CALS.MDX Checked by Difference Innovyze Network 2020.1 Network 2020.1 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Image: Content of the start (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start Level (mm) 0 MAD Factor * 10m'/ha Storage 2.000 Not Start Level (mm) 0 Inlet Coefficient 0.800 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls MS-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) X=60 (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON Inertia Status DVD Status ON Inertia Status OFF Profile(s) X= US/MH Return Climate First (X) First (Y) First (Z) Overflow Act. (m) 1.000 1.15 Winter 1 +08 54.067 1.000 1.15 Winter 1 +08 54.067 Surcharged Flooded Half Drain Pipe US/MH Surcharged Flooded Half Drain Pipe FN Name (m) (m') Cap. (1/s) (mins) (1/s) Status Exceeded	18-50 Scr	utton	Street				-			
Designed by GP-D Designed by GP-D Checked by Dimovyze 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Control Synthetic Rainfall Details Region England and Wales CV (Summer) 0.750 M5-60 (mm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status Margin for Floid Risk Warning (mm) 1, 30, 100 Climate Change (%) 0, 0, 0 VIS/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. Water (m) 1.000 1 15 Minter 1 +0% 54.067 1.000 1 15 Minter 1 +0% 54.067 1.001 1 15 Minter 1 +0% 54.067 1.001 1 15 Minter 1 +0% 53.983 Surcharged Flooded Half Drain Pipe VS	London				Ex	isting S	ite Flowr	rates		
Designed by GP-D Designed by GP-D Checked by Dimovyze 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Control Synthetic Rainfall Details Region England and Wales CV (Summer) 0.750 M5-60 (mm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status Margin for Floid Risk Warning (mm) 1, 30, 100 Climate Change (%) 0, 0, 0 VIS/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. Water (m) 1.000 1 15 Minter 1 +0% 54.067 1.000 1 15 Minter 1 +0% 54.067 1.001 1 15 Minter 1 +0% 54.067 1.001 1 15 Minter 1 +0% 53.983 Surcharged Flooded Half Drain Pipe VS	EC2A 4HH									Mirro
Innovyze Network 2020.1 1 year Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mins) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hettare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Control Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Control Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.438 Region England and Wales CV (Summer) 0.750 M5-60 (mm) 21.000 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) S00.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status OFF 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period (s) (years) Climate Change (%) 0, 0, 0 Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 1 +0% Status Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Status Exceeded PN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded		-	3		De	esigned b	y GP-D			Drainago
1 vear Return Period Summary of Critical Results by Maximum Outflow (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m²/ha Storage 2.000 Hot Start Level (mm) 0 Inflet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Control Synthetic Rainfall Details Reigion England and Wales CV (Summer 0.750 M5-60 (mm) 21.000 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) DDTS Status DVD Status DVD Status DVD Status DVD Status ON Climate Change (%) No.0, 0, 0 300.0 Mater DVA Status ON DVS Status DVD Stat	File CALS	.MDX			Ch	necked by				
for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow -% of Total Flow 0.000 Hot Start Level (mm) 0 MADD Factor 1.007/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls Synthetic Rainfall Details Rainfall Model Rainfall Model FSR Ratio R 0.438 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) Vater VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. Water T1.000 1 15 Winter 1 +0% 54.067 53.983 Surcharged Flooded Burcharged Flooded Half Drain Pipe Surcharged Flooded Half Drain Pipe Surcharged Floode	Ennovyze				Ne	etwork 20	20.1			·
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 MADD Factor * 10m ³ /ha Storage 2.000 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagram Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls Synthetic Rainfall Details Rainfall Model FSR Rainfall Model FSR Ratio R 0.438 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status ON DVD Status ON 0,0,0 0 Return Period(s) (years) 1, 30, 100 0,0,0 0,0,0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Keter I.000 1 15 Winter 1 +0% 54.067 1.001 2 15 Winter 1 +0% 53.983 Surcharged Flooded Half Drain Pipe VS/MH S4.067 Name	<u>l year R</u>	<u>eturn</u>	Period S	ummary				Maxim	um Outflo	ow (Rank 1)
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) Climate Change (%)N Water US/MHUS/MHReturn Climate First (X)First (Y)First (Z)OverflowWater Level (m)1.000115 Winter1+0%54.0671.001215 Winter1+0%54.067Surcharged FloodedHalf Drain PipeUS/MHDepthVolume Flow / OverflowTimeFlowPNName(m)(m³)Cap.(1/s)(mins)(1/s)StatusExceeded	Fo	nole He bul Sew Input N of Onlin	Hot S Hot Start adloss Coe age per he Hydrographs ne Controls Rainfa M5	tart (mi Level (ff (Glob ctare (1 s 0 Numb s 0	tor 1.0 ns) mm) al) 0.5 /s) 0.0 mber of s er of S <u>ynthetic</u> h Englar Warning ysis Tim DTS S DVD S	00 Addit 0 M 0 N 00 Flow pe 00 00 ffline C torage Str c Rainfall F: nd and Wald 21.0 g (mm) mestep 2.5 Status	ional Flow MADD Factor er Person p Controls 0 Fuctures 0 Details SR Rati es Cv (Summ D0 Cv (Wint	* 10m ³ . Inlet Co er Day Number Number io R 0.4 ner) 0.7 cer) 0.8	/ha Storage beffiecient (l/per/day) of Time/Are of Real Tim .38 '50 '40 .300.0 (Extended) ON ON	e 2.000 5 0.800 9 0.000 ea Diagrams C me Controls C
US/MH PNReturn NameClimate PeriodFirst (X) ChangeFirst (Y) FloodFirst (Z) OverflowOverflow Act.Level (m)1.000115Winter1+0% +0%54.067 53.9831.001215Winter1+0% +0%54.067 53.983SurchargedFloodedHalf Drain FineFirst FlowLevel LevelName(m)(m³)Cap.(1/s)TimeFlowLevel Exceeded		Retu	ırn Period	n(s) (min (s) (year	ns) 15, rs)	30, 60, 1		50, 480,	960, 1440 1, 30, 100	
1.001 2 15 Winter 1 +0% 53.983 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded	PN		Storm							w Level
Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (l/s) (mins) (l/s) Status Exceeded										54.067
US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m ³) Cap. (l/s) (mins) (l/s) Status Exceeded	1.001	2	15 Winter	1	+0%					53.983
		US/MH	Depth	Volume	Flow /		Time	Flow	Status	Level Exceeded
1.000 1 -0.233 0.000 0.11 7.9 FLOOD RISK	1.000	1	-0.233	0.000	0.11			7.9	FLOOD RISK	
1.001 2 -0.236 0.000 0.10 8.0 OK	1.001	2	-0.236	0.000	0.10			8.0	OK	

		neers Lt	d						Page 3
8-50 Scr	utton	Street				hley Road			
ondon				Ε×	kisting S	ite Flown	rates		
C2A 4HH									Micro
ate 20/0	1/2023	3		De	esigned b	y GP-D			Drainago
'ile CALS	.MDX			Ch	necked by				Diamag
nnovyze				Ne	etwork 20	20.1			
30 year 1	Return	Period	Summary		<u>citical R</u> For Storm		/ Maxim	um Outflo	ow (Rank 1)
Fo Number of	nole He bul Sew Input 1	Hot S Hot Start adloss Coe age per he Hydrograph	tart (mi Level (ff (Glob ctare (l s 0 Nu	tor 1.0 ns) mm) al) 0.5 /s) 0.0 mber of	0 M 00 Flow pe 00 Offline C	ional Flow MADD Factor er Person p Controls 0	* 10m³/ Inlet Co er Day (Number c	ha Storage effiecient l/per/day) f Time/Are	e 2.000 0.800 0.000
Number c	of Onli	ne Control:	s 0 Numb	er of S	torage Str	uctures 0	Number c	f Real Tir	ne Controls
			all Model	l n Englar	nd and Wale	<u>Details</u> SR Rati es Cv (Summ DO Cv (Wint	ner) 0.7	50	
	Marc	gin for Flo	ood Risk	Warning	a (mm)			300.0	
		,		-	-	Second Ind	crement		
					Status			ON	
			т	DVD S nertia S	Status			ON OFF	
			1.	nertra .	Julus			OFF	
	Reti	Duration arn Period Climate	(s) (yea	ns) 15, rs)	30, 60, 1	20, 240, 30	50, 480,	and Winter 960, 1440 L, 30, 100 0, 0, 0	
PN	US/MH Name	Storm			First (X) Surcharge	First (Y) Flood	First (Overflo		Water ow Level (m)
1.000	1	15 Winter	30	+0읭					54.108
1.001		15 Winter	30	+0%					54.020
PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	1	-0.192	0.000	0.27			10 / 1	LOOD RISK	
1.000	1 2	-0.192					19.4 i 19.6	CLOOD RISK OK	

Webb Yate	s Eng	ineers Lt	d						Page 4
48-50 Scr	utton	Street		J2	2680 Finc	hley Road	d		
London				Ex	isting S	ite Flow	rates		
EC2A 4HH									Micro
Date 20/0	1/202	3		De	signed b	y GP-D			
File CALS	.MDX			Ch	necked by				Drainage
Innovyze				Ne	etwork 20	20.1			1
100 year	Retur	n Period	Summar		ritical B For Storm		y Maxi	mum Outfl	ow (Rank 1).
Fc Number of	ole He oul Sew Input	Hot Start adloss Coe age per he Hydrograph:	tart (mi Level (: ff (Glob ctare (1 s 0 Nu s 0 Numb	tor 1.0 ns) mm) al) 0.5 /s) 0.0 mber of er of S	0 M 0 00 Flow pe 00 Offline C torage Str	ional Flow ADD Factor r Person p ontrols 0 uctures 0	* * 10m ³ Inlet C per Day Number	/ha Storage oeffiecient (l/per/day) of Time/Are	e 2.000 z 0.800
			ll Model	n Englar	nd and Wale			750	
	Mar	gin for Flo	Analy	ysis Tin DTS S	nestep 2.5 Status Status	Second Ind	crement	300.0 (Extended) ON ON OFF	
	Ret	Duratior urn Period Climate	(s) (yea:	ns) 15, rs)	30, 60, 1	20, 240, 30		and Winter 960, 1440 1, 30, 100 0, 0, 0	
PN	US/MH Name	Storm			First (X) Surcharge		First Overfl	(Z) Overflo ow Act.	Water ow Level (m)
1.000 1.001		15 Winter 15 Winter	100 100	+0% +0%					54.125 54.037
PN	US/MH Name	Surcharged Depth (m)			Overflow (l/s)	Half Drain Time (mins)	n Pipe Flow (l/s)	Status	Level Exceeded
1.000 1.001	1 2	-0.175 -0.182	0.000				25.4 25.5	FLOOD RISK OK	
				©1982-	-2020 Inn	ovyze			

Webb Yates Engineers L				Page 1
48-50 Scrutton Street	J2	2680 Finchley F	load	
London	Ez	kisting Site Fl	owrates	
EC2A 4HH				Micro
Date 20/01/2023	De	esigned by GP-D)	Drainage
File CALS.MDX	Ch	necked by		
Innovyze	Ne	etwork 2020.1		
Hot	<u>Simul</u> ction Factor 1.0 Start (mins) t Level (mm) eff (Global) 0.5	<u>ation Criteria</u> 000 Additional F 0 MADD Fac 0 000 Flow per Persc	`low - % of To tor * 10m³/ha Inlet Coef	otal Flow 0.000 A Storage 2.000 Efiecient 0.800
Number of Input Hydrograph Number of Online Control	ns 0 Number of s 0 Number of S	Offline Controls torage Structures c Rainfall Detail.	0 Number of	Real Time Controls 0
		nd and Wales Cv (
Margin for Fl	DTS	mestep 2.5 Second Status Status	Increment (E	300.0 xtended) ON OFF
Return Period		30, 60, 120, 240	Summer an , 360, 480, 9	
US/MH		First (X) First		
PN Name Storm	Period Change	Surcharge Floo	d Overflow	Act. (m)
1.000 1 15 Winter 1.001 2 15 Winter				54.138 54.049
Surcharged US/MH Depth PN Name (m)	d Flooded Volume Flow / (m³) Cap.			Level Status Exceeded
1.000 1 -0.162 1.001 2 -0.170			30.4 FL 30.6	OOD RISK OK
		-2020 Innovyze		

						Page 1	
8-50 Scrutton Street	J2680 Finchley	Road					
ondon	Existing Site	Flowrates					
С2А 4НН						– Micro	
ate 20/01/2023	Designed by GP	-D					
ile CALS.MDX	Checked by					Draina	IGE
nnovyze	Network 2020.1						
Summary of Critical Res	sults by Maximum	Outflow (Rank 1) f	or Storm			
	<u>Simulation Crite</u> lloss Coeff (Global) e per hectare (l/s) w - % of Total Flow	0.500 0.000		Inlet Co	peffiecient	t 0.800	
Number of Input Hydrographs 0 Nu Number of Online Controls 0 Numb	umber of Offline Co	ntrols 0 Num	ber of Time	e/Area Dia	grams O		
<u>S'</u>	ynthetic Rainfall I	Details					
Rainfall Model Region England	FSR M5-60 (m and Wales Ratio	nm) 21.000 Cv o R 0.438 Cv					
Margin for Flood Risk Warning (Analysis Times DTS Sta	step 2.5 Second Inc			DVD Status ia Status			
Profile			nmer and Win				
Duration(s) (mir Return Period(s) (yea)	ns) 15, 30, 60, 120), 240, 360,	480, 960, 3	1440 100			
Climate Change				40			
		Water Su	rcharged Fl	ooded		Half Drain	Pipe
) First (Z) Overflo	ow Level	Depth Vo	olume Flo	w / Overfl		Flow
US/MH Return Climate First (X) First (Y)							
US/MH Return Climate First (X) First (Y) PN Name Storm Period Change Surcharge Flood	Overflow Act.	(m)	(m)	(m³) Ca	p. (1/s)) (mins)	(1/5)
PNNameStormPeriodChangeSurchargeFlood1.000115Winter100+40%		54.152	-0.148	0.000 0	.50) (mins)	(1/s) 35.5
PN Name Storm Period Change Surcharge Flood				0.000 0) (mins)	
PNNameStormPeriodChangeSurchargeFlood1.000115Winter100+40%		54.152	-0.148	0.000 0	.50) (mins)	35.5

	US/MH			Level	
PN	Name	Stat	cus	Exceeded	
1.000	1	FLOOD	RISK		
1.001	2	FLOOD	RISK		

©1982-2020 In	novyze

13 APPENDIX D – GREENFIELD RUNOFF RATES

Print

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Site name:	Guy Par	ker-D	enniso	on		Site Details					
Site name:	-					Latitude: 51.55010° N					
	Finchle	у Коа	d			Longitude: 0.18288° W					
Site location:	Londor										
management for dev	elopments ry standar	s", SC03 ds for S	30219 (2 SuDS (D	2013) , th efra, 20	e SuDS Manual C 15). This informat	753 (Ciria, 2015) ion on greenfield Date: Jan 23 2023 08:51					
Runoff estimati	on appr	oach	IH12	4							
Site characteris	stics					Notes					
Total site area (ha	a): 0.1										
Methodology						(1) Is Q _{BAR} < 2.0 l/s/ha?					
Q _{BAR} estimation m	BAR estimation method: Calculate from SPR a					R When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rate					
SPR estimation m	ethod:	Calo	culate	from S	OIL type	are set at 2.0 l/s/ha.					
Soil characteris	tics	Defa	ult	Ed	ited						
SOIL type:	4			4		(2) Are flow rates < 5.0 l/s?					
HOST class:	Ν	I/A		N/A							
SPR/SPRHOST:	0	.47		0.47		Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from					
PR/SPRHOST: 0.47 0.47 Iydrological Default haracteristics				Edited	d vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage						
SAAR (mm):			650		650	elements.					
Hydrological regio	on:		6		6	(3) Is SPR/SPRHOST ≤ 0.3?					
Growth curve fac	tor 1 yea	r.	0.85		0.85						
Growth curve fac	tor 30 ye	ars:	2.3		2.3	Where groundwater levels are low enough the use of					
Growth curve factor 100 3. Jears:			3.19	9 3.19		soakaways to avoid discharge offsite would normal be preferred for disposal of surface water runoff.					
arowth curve factor 200 ears:			3.74		3.74						

1 in 20**Wears#/c**ookies on6this site t@@nhance your

1.41

1.41

Ok, I agree

More

user experience

1 in 100 year (l/s):

By clicking the Accept button, you agree to us doing so.

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.

14 APPENDIX E – MICRODRAINAGE PROPOSED NETWORK CALCULATIONS

Webb Yates Engineers Ltd		Page 1
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Micro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Existing Network Details for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
S1.000 S1.001 S1.002	1.802 16.039 2.982	0.025 0.210 0.610	72.1 76.4 4.9	0.021 0.015 0.009	5.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0 0	150	Pipe/Conduit Pipe/Conduit Pipe/Conduit
S2.000 S2.001	11.733 4.166	1.060 2.690	11.1 1.5	0.010 0.000	5.00 5.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit
S1.003 S1.004	3.595 33.022	0.030 -7.000		0.001 0.003	0.00 0.00		0.600 0.600	0 0		Pipe/Conduit Pipe/Conduit

Network Results Table

PN	US/IL (m)		Σ Base Flow (l/s)		Cap (1/s)
S1.001	52.675 52.650 52.440	0.021 0.036 0.046	0.0 0.0 0.0	1.19 1.15 4.59	21.0 20.3 81.1
	56.550 55.490	0.010 0.010	0.0		53.8 144.3
	51.830 51.800	0.056 0.059	0.0	0.92 0.00	16.2 0.0

Webb Yates Engineers Ltd		Page 2
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Mirro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

	MH Name	MH CL (m)	MH Depth (m)	M		MH Diam.,L*W (mm)	PN	Pipe (Inve Level	rt	Diameter (mm)	PN	Pipes Inve: Level	rt Dia	meter mm)	Backdrop (mm)
	S1	53.260	0.585	Open M	lanhole	750 x 750	S1.000	52.	675	150					
	S2	53.260	0.610	Open M	lanhole	750 x 750	S1.001	52.	650	150	S1.000	52.	650	150	
	s3	55.860	3.420	Open M	lanhole	1200	S1.002	52.	440	150	S1.001	52.	440	150	
	S4	58.250	1.700	Open M	lanhole	900	S2.000	56.	550	150					
	S5	56.650	1.160	Open M	lanhole	1200	S2.001	55.	490	150	S2.000	55.	490	150	
S	Tank	55.860	4.030	Open M	lanhole	100	S1.003	51.	830	150	S1.002	51.	830	150	
											S2.001	52.	800	150	970
S	SPC1	55.110	3.310	Open M	lanhole	1200	S1.004	51.	800	150	S1.003	51.	800	150	
	S	60.400	1.600	Open M	lanhole	0		OUTF	ALL		S1.004	58.	800	150	
					I						1				1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1	526075.970	185026.900	526075.970	185026.900	Required	
S2	526075.094	185028.475	526075.094	185028.475	Required	-1
\$3	526059.512	185024.672	526059.512	185024.672	Required	
S4	526065.491	185036.926	526065.491	185036.926	Required	
S5	526055.598	185030.616	526055.598	185030.616	Required	
STank	526058.159	185027.330	526058.159	185027.330	Required	\mathbf{v}
SSPC1	526061.172	185029.291	526061.172	185029.291	Required	-
S	526093.723	185034.844			No Entry	

©1982-2020 Innovyze

Webb Yates Engineers Ltd		Page 3
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Micro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamade
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe Number		PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	User	-	100	0.021	0.021	0.021
1.001	User	-	100	0.015	0.015	0.015
1.002	User	-	100	0.007	0.007	0.007
	User	-	100	0.002	0.002	0.009
2.000	User	-	100	0.001	0.001	0.001
	User	-	100	0.005	0.005	0.006
	User	-	100	0.001	0.001	0.007
	User	-	100	0.003	0.003	0.010
2.001	-	-	100	0.000	0.000	0.000
1.003	User	-	100	0.001	0.001	0.001
1.004	User	-	100	0.003	0.003	0.003
				Total	Total	Total
				0.059	0.059	0.059

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I. Level		(mm)	(mm)
		(m)		(m)					

S1.004 S 60.400 58.800 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (l/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (l/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	10	Cv (Summer) 0.750
Region England	and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.500 Storm	Duration (mins) 30
Ratio R	0.438	

©1982-2020 Innovyze

Webb Yates Engineers Ltd		Page 4
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Micro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	1

<u>Online Controls for Storm</u>

Pump Manhole: SSPC1, DS/PN: S1.004, Volume (m³): 3.8

Invert Level (m) 51.800

Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	5.0000	0.900	5.0000	1.700	5.0000	2.500	5.0000
0.300	5.0000	1.100	5.0000	1.900	5.0000	2.700	5.0000
0.400	5.0000	1.200	5.0000	2.000	5.0000	2.800	5.0000 5.0000
0.600 0.700	5.0000 5.0000	1.400 1.500	5.0000 5.0000	2.200 2.300	5.0000 5.0000	3.000	5.0000
0.800	5.0000	1.600	5.0000	2.400	5.0000		

©1982-2020 Innovyze

Webb Yates Engineers Ltd		Page 5
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Mirro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamada
Innovyze	Network 2020.1.3	1

Storage Structures for Storm

Cellular Storage Manhole: STank, DS/PN: S1.003

Invert Level (m) 51.830 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²) Inf	. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)
0.000	17.6	17.6	1.300	0.0	34.4
0.100	17.6	19.3	1.400	0.0	34.4
0.200	17.6	21.0	1.500	0.0	34.4
0.300	17.6	22.6	1.600	0.0	34.4
0.400	17.6	24.3	1.700	0.0	34.4
0.500	17.6	26.0	1.800	0.0	34.4
0.600	17.6	27.7	1.900	0.0	34.4
0.700	17.6	29.3	2.000	0.0	34.4
0.800	17.6	31.0	2.100	0.0	34.4
0.900	17.6	32.7	2.200	0.0	34.4
1.000	17.6	34.4	2.300	0.0	34.4
1.001	0.0	34.4	2.400	0.0	34.4
1.200	0.0	34.4	2.500	0.0	34.4

Webb Yate	es Ena	ineers Ltd							Page 6
48-50 Scr				J2680) 317 Fi	nchley R	oad		
London						ge result			
EC2A 4HH) plus 4		5		
Date 14/0	0 / 0 0 0	1			=				Micro
		-			gned by	GP-D			Drainage
File Micr	rodrai	nage model	.MDX		ked by				Brainage
Innovyze				Netwo	ork 2020	0.1.3			
<u>l year R</u>	<u>eturn</u>	Period Su	mmary o		ical Res Storm	sults by	<u>Maximu</u>	m Leve	el (Rank 1)
	ole Hea 1 Sewa Nu	eal Reductio Hot Star Hot Start Le dloss Coeff ge per hecta umber of Inpu Number of O	n Factor t (mins) vel (mm) (Global) re (l/s) 1t Hydro	1.000 0 0.500 1 0.000 graphs 0	MAD Flow per Number o	nal Flow - D Factor * In Person per	10m³/ha let Coe: Day (l, Structu	a Storad ffiecien /per/day res 1	ge 2.000 nt 0.800
		Number of Of:	fline Co	ntrols O	Number o	of Real Tin			
		Rainfall		hetic Ra	infall De	<u>etails</u> Ratio	D 0 400		
		I	Region E	ngland a	nd Wales	Cv (Summer) 0.750	1	
		M2-60) (mm)		20.500	Cv (Winter	r) 0.840		
	Marg	in for Flood		-		econd Incre	ement (E	300. xtended	
				DTS Stat				С	N
				DVD Stat				OF	
			Iner	tia Stat	us			OF	.Е.
	Return	Prof Duration(s) Period(s) (Climate Chan	years)	15, 3	0, 60, 12	20, 180, 24		480, 9	60, 440 100
		011111000 011011	90 (0)					0, 0,	10
	/MH ame :		rn Clima od Chan		rst (X) rcharge	First (Y) Flood	First Overfl		Water erflow Level .ct. (m)
S1.000	S1 15	Winter	1 -	+0% 100/	15 Summer				52.730
S1.000		Winter			15 Summer 15 Summer				52.703
S1.002		Winter		+0% 100/2	15 Winter				52.475
S2.000		Winter		+0%					56.567
S2.001		Winter		+0%	LE Charmen				55.500
S1.003 ST S1.004 SS					15 Summer 15 Summer				51.922 51.915
	_ 3								
		Surcharged	Flooded			Half Drain	n Pipe		
	US/MH	-			Overflow	Time	Flow		Level
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)		Status	Exceeded
S1.000) S1	-0.095	0.000	0.28			3.1	OK	
S1.000 S1.001			0.000				5.0	OK	
s1.002			0.000				6.1	OK	
\$2.000	n 94	-0 133	0 000	0 03			1 5	OK	

-0.133 0.000 0.03 -0.140 0.000 0.01 ©1982-2020 Innovyze

1.5

1.4

OK

OK

 s2.000
 s4

 s2.001
 s5

Webb Yates Engineers Ltd		Page 7
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Micro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status E	Level Exceeded
S1.003 S1.004		-0.058 -0.035	0.000 0.000			7	4.9 5.0	OK OK	

Webb Yates Engineers L	td				Page 8
48-50 Scrutton Street		J2680 317	Finchley H	Road	
London		Microdrair	age result	IS	
EC2A 4HH		1:100 plus	-		Micco
Date 14/09/2021		Designed k			- Micro
File Microdrainage mod	el MDX	Checked by	-		Drainage
Innovyze	CI •11D/X	Network 20			
11110 v y 2 c		NCCWOIK 20	20.1.3		
<u>30 year Return Period</u>	Summary o	of Critical for Storm	-	Maximum L	evel (Rank 1)
Hot St Hot Start Manhole Headloss Coef Foul Sewage per heo Number of I Number of	ion Factor Lart (mins) Level (mm) ff (Global) tare (l/s) nput Hydrog Online Con	0.500 Flow pe	ional Flow IADD Factor In r Person per r of Storage r of Time/Ar	* 10m ³ /ha Sto hlet Coeffiec Day (l/per/ Structures ea Diagrams	prage 2.000 vient 0.800 (day) 0.000 1 0
Number of	JIIIIne Con	trois o Numbe	r of Real TI	me controis	0
		netic Rainfall			
Rainfa	ll Model		SR Ratio		
М5	-60 (mm)	igland and Wal	es CV (Summe)0 Cv (Winte		
	,			_,	
Margin for Flo		-			00.0
	-	s Timestep 2.5 DTS Status	Second Incr	ement (Exten	ded) ON
		OVD Status			OFF
	Inert	ia Status			OFF
	ofile(s)) (mins)	15, 30, 60,	120, 180, 2	Summer and W 40, 360, 480,	, 960,
Return Period(s)	(vears)			1. 30	1440 0, 100
Climate Ch	· 1			,	0, 40
•	turn Clima riod Chang	• •	•) First (Z) (Overflow	Water Overflow Level Act. (m)
S1.000 S1 15 Winter	30 +	0% 100/15 Sumr	ler		52.769
S1.001 S2 15 Winter		0% 100/15 Sumr			52.745
S1.002 S3 15 Winter		0% 100/15 Wint	er		52.501
S2.000 S4 15 Winter		0%			56.577
S2.001 S5 15 Winter S1.003 STank 30 Winter		0% 0% 30/15 Sumr	er		55.508 52.200
S1.003 STARK S0 WINCEI S1.004 SSPC1 30 Winter		0% 30/15 Summ 0% 30/15 Summ			52.200
Surcharged	Flooded		Half Drain	Pipe	
US/MH Depth		.ow / Overflow		Flow	Level
PN Name (m)	(m³) (Cap. (1/s)	(mins)	(l/s) Stat	us Exceeded
s1.000 s1 -0.056	0.000	0.70		7.6	OK
s1.001 s2 -0.055	0.000	0.71		13.4	OK
S1.002 S3 -0.089	0.000	0.34		16.8	OK
S2.000 S4 -0.123	0.000	0.07		3.6	OK
s2.001 s5 -0.132	0.000	0.03		3.5	OK

©1982-2020 Innovyze

	Page 9
J2680 317 Finchley Road	
Microdrainage results	
1:100 plus 40% CC	Micro
Designed by GP-D	Drainage
Checked by	Diamage
Network 2020.1.3	I
	Microdrainage results 1:100 plus 40% CC Designed by GP-D Checked by

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.003 S1.004		0.220 0.243	0.000 0.000	0.50 0.98		17		SURCHARGED SURCHARGED	

18_50 0.		ineers L	τα							Page 10
10-00 50	crutton	Street					nchley 1			
London				Mi	.crodı	rainag	e resul	LS.		
EC2A 4H					-	olus 4				Micro
Date 14,	/09/202	1		De	signe	ed by	GP-D			Drainag
File Mi	crodrai	nage mod	el.MDX	Ch	necked	d by				טומוומע
Ennovyze	е			Ne	twor	c 2020	.1.3			
<u>100 ye</u>	ar Retu	rn Peric	d Summa	-			Results	by Ma	ximum Le	evel (Ran)
				<u> </u>	for S	Storm				
				Simula	ation	Criteri	a			
	Are			or 1.00	00 A	dditior		- % of	Total Flo	w 0.000
			art (mins			MADI			/ha Storag	
Man		lot Start				·· non T			peffiecien (l/per/day	
		ge per hec				w ber r	erson þe	L Day	(1/ per/day) 0.000
		mber of I Number of		2 1						
		umber of (5	
		Dainfe	<u>Syn</u> ll Model	<u>ithetic</u>	Rainf	fall De	<u>tails</u> Ratic	D O 4	20	
		Kainia.		Englan	d and		Ratic Cv (Summe			
		M2.	-60 (mm)	-			Cv (Winte			
	Margi	n for Flo	od Risk W	larning	(mm)				300.0	D
			Analys		-	2.5 Se	cond Incr	ement	(Extended)	
					tatus tatus				OI OFI	
			Ine	ertia S					OFI	
	D		ofile(s)) (mins)	15	, 30,	60, 120	D, 180, 2		r and Wint 0, 480, 96	
									14	140
		Period(s)	-						1, 30, 1	
		limate Ch	ange (%)						0, 0,	40
										Wate
				mato	Finat	/>				
	US/MH Name S		turn Clin riod Cha		Surch	(X) arge	First (Y Flood		t (Z) Over flow Ad	rflow Leve ct. (m)
	Name S		riod Cha		Surch	arge	-			ct. (m)
PN 31.000 S1.001	Name S S1 15 S2 15	Storm Pe Winter Winter	riod Cha 100 - 100 -	ange +40% 1(+40% 1(Surch 00/15 00/15	arge Summer Summer	-			ct. (m) 52.95 52.90
PN 3 S1.000 S1.001 S1.002	Name S S1 15 S2 15 S3 30	torm Pe Winter Winter Winter	riod Cha 100 - 100 - 100 -	+40% 10 +40% 10 +40% 10	Surch 00/15 00/15	arge Summer Summer	-			ct. (m) 52.95 52.90 52.69
PN 31.000 \$1.001	Name S S1 15 S2 15 S3 30 S4 15	Storm Pe Winter Winter	100 - 100 - 100 - 100 -	ange +40% 1(+40% 1(Surch 00/15 00/15	arge Summer Summer	-			st. (m)
PN 51.000 51.001 51.002 52.000 52.001	Name S S1 15 S2 15 S3 30 S4 15	Winter Winter Winter Winter Winter Winter	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	ange +40% 10 +40% 10 +40% 10 +40% +40%	Surch 00/15 00/15 00/15	arge Summer Summer	-			ct. (m) 52.95 52.90 52.69 56.58 55.51
PN 51.000 51.001 51.002 52.000 52.001 51.003 55	Name S S1 15 S2 15 S3 30 S4 15 S5 15	Winter Winter Winter Winter Winter Winter Winter	noise Chai 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	ange +40% 10 +40% 10 +40% 10 +40% +40%	Surch 00/15 00/15 00/15 30/15	arge Summer Summer Winter	-			ct. (m) 52.95 52.90 52.69 56.58 55.51 52.68
PN 51.000 51.001 51.002 52.000 52.001 51.003 55	Name S S1 15 S2 15 S3 30 S4 15 S5 15 STank 30 SSPC1 30	Winter Winter Winter Winter Winter Winter Winter	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	ange +40% 10 +40% 10 +40% 10 +40% +40%	Surch 00/15 00/15 00/15 30/15	arge Summer Summer Winter Summer	Flood	Over		ct. (m) 52.95 52.90 52.69 56.58 55.51 52.68
PN 51.000 51.001 51.002 52.000 52.001 51.003 55	Name S S1 15 S2 15 S3 30 S4 15 S5 15 STank 30 SSPC1 30	Winter Winter Winter Winter Winter Winter Winter	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	ange +40% 10 +40% 10 +40% 10 +40% +40% 3 +40% 3	Surch 00/15 00/15 00/15 30/15 30/15	arge Summer Summer Summer Summer Ha	-	Over		ct. (m) 52.95 52.90 52.69 56.58
PN 51.000 51.001 51.002 52.000 52.001 51.003 55	Name S \$\$1 15 \$\$2 15 \$\$3 30 \$\$4 15 \$\$5 15 \$\$5 15 \$\$5 15 \$\$5 15 \$\$5 15 \$\$5 30 \$	Storm Pe Winter Winter Winter Winter Winter Winter	Priod Cha 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - Flooded -	ange +40% 10 +40% 10 +40% 10 +40% +40% 3 +40% 3	Surch 00/15 00/15 00/15 30/15 30/15	arge Summer Summer Summer Summer Ha Flow	Flood lf Drain	Over		ct. (m) 52.95 52.90 52.69 56.58 55.51 52.68 52.68 52.68
PN 5 S1.000 S1.001 S1.002 S2.000 S2.001 S1.003 S1.004 S1.004	Name S S1 15 S2 15 S3 30 S4 15 S5 15 STank 30 SSPC1 30 SSPC1 30 SSPC1 30 SSPC1 30	Storm Pe Winter Winter Winter Winter Winter Winter Winter	Priod Char 100 - 100 - 100 - 100 - 100 - 100 - 100 - Flooded Volume	<pre>ange +40% 10 +40% 10 +40% 10 +40% 10 +40% 3 +40% 3 Flow /</pre>	Surch 00/15 00/15 00/15 30/15 30/15 ' Over: (1/	arge Summer Summer Summer Summer Ha Flow	Flood lf Drain Time	Over Pipe Flow (1/s)	flow Ad	et. (m) 52.95 52.90 52.69 56.58 55.51 52.68 52.68 Level Exceeded
PN 5 S1.000 S1.001 S1.002 S2.000 S1.003 S1.004 PN S1.000 S1.000 S1.001	Name S S1 15 S2 15 S3 30 S4 15 S5 15 STank 30 SSPC1 30 SSP	torm Per Winter Winter Winter Winter Winter Winter Winter Uurcharged Depth (m) 0.126 0.106	Priod Chai 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - Flooded Volume (m³) 0.000 0.000 0.000	+40% 10 +40% 10 +40% 10 +40% +40% 3 +40% 3 Flow / Cap. 1.25 1.22	Surch 00/15 00/15 00/15 30/15 30/15 ' Over: (1/	arge Summer Summer Summer Summer Ha Flow	Flood lf Drain Time	Over Pipe Flow (1/s) 13.6 23.1	Status SURCHARGE SURCHARGE	ct. (m) 52.95 52.90 52.69 56.58 55.51 52.68 52.68 52.68 Level Exceeded
PN 5 51.000 51.001 51.002 52.000 51.003 51.004 S1.004 S1.000	Name S S1 15 S2 15 S3 30 S4 15 S5 15 STank 30 SSPC1 30 SSP	torm Pe Winter Winter Winter Winter Winter Winter Winter Uurcharged Depth (m) 0.126	Flooded (m ³) 0.000	+40% 10 +40% 10 +40% 10 +40% +40% 3 +40% 3 Flow / Cap. 1.25	Surch 00/15 00/15 00/15 30/15 30/15 ' Over: (1/	arge Summer Summer Summer Summer Ha Flow	Flood lf Drain Time	Over Pipe Flow (1/s) 13.6 23.1	Status SURCHARGE SURCHARGE SURCHARGE	ct. (m) 52.95 52.90 52.69 56.58 55.51 52.68 52.68 52.68 Level Exceeded

©1982-2020 Innovyze

Webb Yates Engineers Ltd		Page 11
48-50 Scrutton Street	J2680 317 Finchley Road	
London	Microdrainage results	
EC2A 4HH	1:100 plus 40% CC	Micro
Date 14/09/2021	Designed by GP-D	Drainage
File Microdrainage model.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	L

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
s1.003 s1.004	STank		. ,	0.47 0.98	(-/-/	31	5.1	SURCHARGED SURCHARGED	