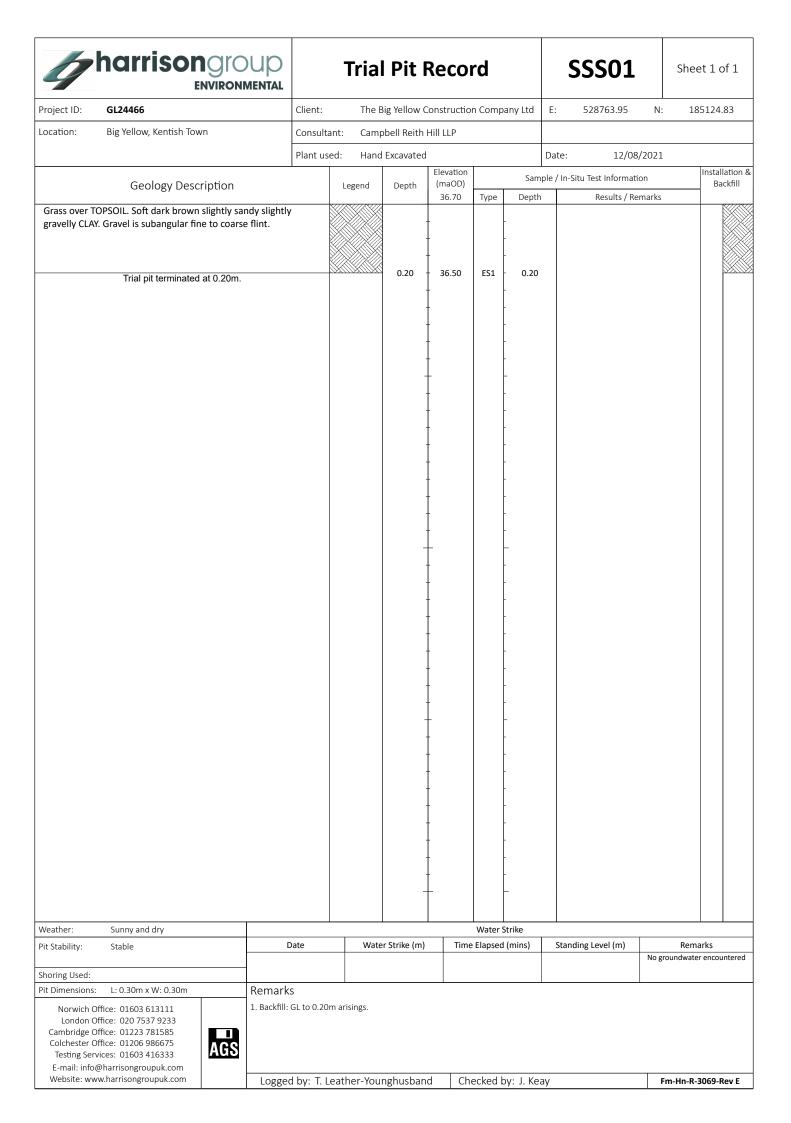
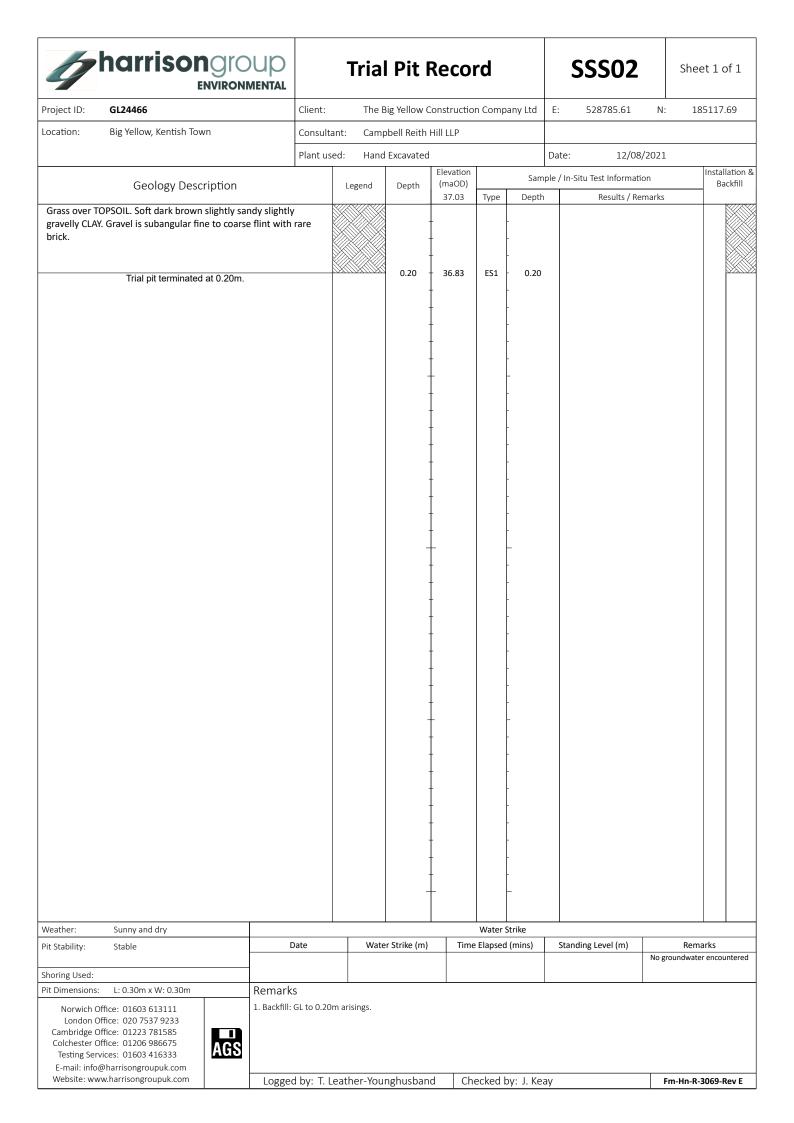
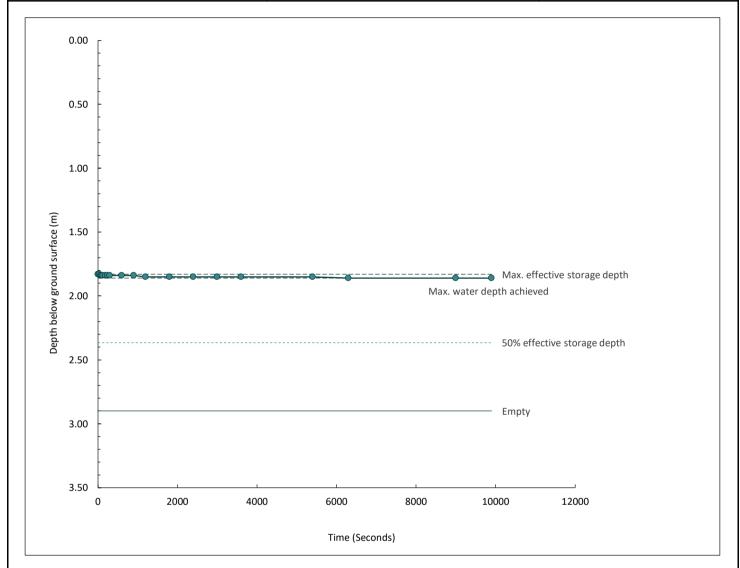


harrisongroup		Photograph Record Sheet
	Project:	Big Yellow, Kentish Town
Client: The Big Yellow Self Storage Company Ltd	Project ID:	GL24466
Exploratory Hole Reference.: TP01	Date:	18/08/2021


Remarks: Engineer: J. Blyth Checked: J. Keay


harrisongroup		Photograph Record Sheet
	Project:	Big Yellow, Kentish Town
Client: The Big Yellow Self Storage Company Ltd	Project ID:	GL24466
Exploratory Hole Reference.: TP02	Date:	18/08/2021



Remarks: Engineer: J. Blyth Checked: J. Keay

	In according to the contract of				Location ID -	Test N	lumber
9	harrisongroup ENVIRONMENTAL		Soakaway Test		TP	01	
Project ID:	GL24466	Client:	The Big Yellow Construction Company Ltd	E:	528825.14	N:	185137.88
Location:	Big Yellow, Kentish Town	Consultant:	Campbell Reith Hill LLP	Gro	und Level:	36.	66 maOD
			Infilling 1	Test	Date:	18/	08/2021

Soil Infiltration Rate: N/A

	Pit [Dimensions	
Length (m)	Width (m)	Depth at Start of Test (m)	Depth at End of Test (m)
2.40	0.80	2.90	2.90

Fill Porosity: 100%

Test Duration (hh:mm): 02:45

Soakaway
Construction:

Vertical sides trimmed square

Remarks:

Norwich Office: 01603 613111 London Office: 020 7537 9233 Cambridge Office: 01223 781585 Colchester Office: 01206 986675 Testing Services: 01603 416333 E-mail: info@harrisongroupuk.com

Website: www.harrisongroupuk.com

J. Blyth

Operator:

AGS

Water measuring device:
Dip Meter
Weather conditions:
Sunny and dry
Test in accordance with

1. Groundwater was not encountered during testing, but perched water encountered at 2.20m.

BRE DG 365 Revised 2016 Checked by: J. Keay

Approved by: J. Keay

Fm-Hn-R-3064-Rev C

APPENDIX C

GAS AND GROUNDWATER MONITORING

4	harri	songro						(Gas and P	ID Monit	oring Res	sults								AGS
Project ID:		GL24466		Client:		truction Company Ltd			Equipme		Model / Seri									Manufacturer's Calibration Date
Date:		25/08/2021		Location:	Big Yellow, Kentish T	own			Gas Anal	lyser:	GA5000 / G									03/03/2020
Weather co		Cloudy and d							PID:				tector / T-1136							14/05/2020
				unning Time (S	Sampling): Standard 18	30 secs. Flow Details: 5	5 sec average for 1 min	l.	PID Deta	ils: "<" indica	ates reading is	under the de	etection limit. '	'>" indicates	reading is over	er the upper l	mit. "*" level t	o be determin	ned.	
Field engin		T. Leather-Yo	unghusband		Remarks:															
	Monitoring	Date		Air Temp	Atmospheric	Atmospheric	Atmospheric	Atmospheric	Relative	Peak PID	Stable PID	Methane	Peak	Methane	Carbon	Oxygen	Carbon	Hydrogen	Flow	
Location ID	Pipe and	Monitored	Time	(°C)	Pressure 48Hrs Prior			Pressure When	Pressure	(ppm)	(ppm)	(%)	Methane	LEL	Dioxide	(%)	Monoxide	Sulphide	(l/hr)	Remarks
BH01	Diameter PIPE1 (50mm)) 25/08/2021	09:55:00	16.4	to Sampling (mB) 1027	to Sampling (mB) 1030	to Sampling (mB) 1027	Sampled (mB) 1023	(mB) 0.14	0.8	4.3	0.0	(%) 0.1	(%) 2.0	(%) 4.4	18.8	(ppm) 0.0	(ppm) 0.0	0.0	
Diloi	THE (SOITH)	25/00/2021	09:55:15	10.4	1027	1030	1027	1023	0.14	1.2	4.3	0.0	0.1	2.0	4.4	15.5	0.0	0.0	0.0	
			09:55:30							2.0		0.0	1		4.5	15.2	0.0	0.0	0.0	
			09:55:45							2.5		0.0	1		4.5	15.2	0.0	0.0	0.0	
			09:56:00							2.8		0.0			4.5	15.2	0.0	0.0	0.0	
			09:56:30							3.1		0.0	1		4.5	15.2	0.0	0.0	0.0	
			09:56:30							3.4		0.0			4.5	15.2	0.0	0.0	0.0	
	1	1	09:57:00	1					1	4.0	1	0.0	+	1	4.5	15.2	0.0	0.0	0.0	+
		+	09:58:00	-	+	+	+		 	4.0	 	0.0	+		4.5	15.2	0.0	0.0	0.0	+
	 	+	10:00:00	1	 	 	1		1	4.4	1	0.0	1	 	4.5	15.2	0.0	0.0	0.0	+
	PIPE2 (19mm)) 25/08/2021	10:00:00	16.4	1028	1030	1027	1023	-0.10	1.9	1.2	0.0	0.0	0.0	0.9	18.5	0.0	0.0	0.0	+
	1 11-52 (1911111)	20/00/2021	10:02:00	10.4	1020	1000	1021	1023	-0.10	2.4	1.2	0.0	0.0	0.0	0.9	19.9	0.0	0.0	0.0	+
	 	+	10:02:15	-	+	+	 		1	3.1	1	0.0	1	1	0.9	20.0	0.0	0.0	0.0	+
	t	1	10:02:30	-	1	1	1		1	2.4	1	0.0	+		1.0	19.9	0.0	0.0	0.0	1
	1	1	10:02:45	1					1	1.9	1	0.0	+	1	1.0	19.9	0.0	0.0	0.0	+
			10:03:00							1.7		0.0			1.3	19.3	0.0	0.0	0.0	
			10:03:30							1.6		0.0		-	1.5	19.0	0.0	0.0	0.0	
			10:04:00							1		0.0				18.9	0.0		0.0	
BH02	PIPE1 (50mm)) 25/08/2021	10:05:00	17.1	1028	1030	1027	1025	-0.02	1.2	1.6	0.0	0.1	2.0	1.8	16.0	0.0	0.0	0.0	
DHU2	PIPET (SUITITI)) 25/06/2021	10:50:00	17.1	1020	1030	1027	1025	-0.02	1.9	1.0	0.1	0.1	2.0	2.2	11.5	0.0	0.0	0.0	
			10:50:15							2.3		0.1			2.2	11.3	0.0	0.0	0.0	
			10:50:30							2.3		0.1			2.2	11.3	0.0	0.0	0.0	
			10:50:45							2.3		0.1			2.2	11.3	0.0	0.0	0.0	
			10:51:30							2.0		0.1	1		2.2	11.3	0.0	0.0	0.0	
			10:51:30							1.9		0.1			2.2	11.2	0.0	0.0	0.0	
			10:52:00						+	1.6	+	0.1	1		2.2	11.1	0.0	0.0	0.0	
BH03	PIPE1 (50mm)) 25/08/2021	09:20:00	16.1	1027	1030	1027	1023	0.26	0.8	0.9	0.1	0.2	4.0	4.2	18.4	0.0	0.0	0.0	
DI 103	T II ET (SOITIII)	25/00/2021	09:20:15	10.1	1021	1000	1021	1025	0.20	0.9	0.8	0.2	0.2	4.0	4.3	13.2	0.0	0.0	0.0	
			09:20:30						+	0.8	+	0.2	1		4.3	12.4	0.0	0.0	0.0	
		+	09:20:45							0.9		0.2			4.3	12.3	0.0	0.0	0.0	
	t	1	09:20:45	 	 	 	 		+	0.9	+	0.2	+	-	4.3	12.3	0.0	0.0	0.0	1
	t	1	09:21:30	1	 	1	1		1	1.0	1	0.2	+		4.4	12.2	0.0	0.0	0.0	1
	 	1	09:22:00						1	1.0	1	0.2	+		4.4	12.1	0.0	0.0	0.0	1
	I	1	09:22:00	†					1	0.9	1	0.2	1	t	4.7	11.8	0.0	0.0	0.0	1
WS01	PIPE1 (50mm)	25/08/2021	11:03:00	17.4	1028	1030	1027	1025	0.09	0.6	0.7	0.0	0.0	0.0	2.2	17.7	0.0	0.0	0.0	1
11001	(5011111)	20,00,2021	11:03:00	17.5	1020	1500	1021	1020	0.08	1.3	3.1	0.0	5.0	5.0	2.2	19.2	0.0	0.0	0.0	╡
	 	1	11:03:30							1.1		0.0	+		2.3	19.2	0.0	0.0	0.0	┥
	I	1	11:03:45	†					1	1.0	1	0.0	1	t	2.3	19.3	0.0	0.0	0.0	Bung had been disturbed.
	-	+	11:04:00	-					1	1.0	1	0.0	1		2.3	19.3	0.0	0.0	0.0	Replaced for 1hr prior to
	t	1	11:04:30	 	 	 	 		+	0.9	+	0.0	+	-	2.4	19.3	0.0	0.0	0.0	monitoring.
	-	+	11:05:00	-					1	0.8	1	0.0	1		2.4	19.3	0.0	0.0	0.0	┪
	I	1	11:06:00	†					1	0.8	1	0.0	1	t	2.4	19.3	0.0	0.0	0.0	1
WS02	PIPE1 (50mm)	25/08/2021	10:26:00	16.5	1028	1030	1027	1024	-0.09	1.4	2.1	0.4	0.4	8.0	3.5	17.9	0.0	0.0	0.0	1
11002	בו (סטווווו)	20,00,2021	10:26:15	10.0	1020	1000	1021	1027	0.00	2.4	2.1	0.4	0.7	0.0	3.5	14.9	0.0	0.0	0.0	1
	t	1	10:26:30	1	 	1	1		1	2.4	1	0.4	+		3.5	14.8	0.0	0.0	0.0	1
	-	+	10:26:45	-					1	2.6	1	0.4	1		3.5	14.7	0.0	0.0	0.0	1
	-	+	10:27:00	-					1	2.6	1	0.4	1		3.5	14.7	0.0	0.0	0.0	1
	t	1	10:27:30	 	 	 	 		+	2.5	+	0.4	+	-	3.6	14.7	0.0	0.0	0.0	1
	t	1	10:27:30	1	 	1	1		1	2.5	1	0.4	+		3.6	14.7	0.0	0.0	0.0	1
	<u> </u>	1	10:29:00		-	-	-		1	2.1	1	0.4	1	<u> </u>	3.6	14.7	0.0	0.0	0.0	<u> </u>
	1	1	10.29.00	1	I	I	I	l	1	2.1	1	0.4	1		3.0	14.7	0.0	0.0	0.0	1

9	harris	Ongro						G	ias and P	ID Monito	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Const	ruction Company Ltd			Equipmer	nt	Model / Seria	al Number								Manufacturer's Calibration Date
Date:		25/08/2021		Location:	Big Yellow, Kentish To	own			Gas Anal	yser:	GA5000 / G5									03/03/2020
Weather co		Cloudy and dry						PID:		Tiger Handh	eld VOC Dete	ctor / T-1136	55						14/05/2020	
Pump Runn	ning Time (Purge	e): Standard 30	secs. Pump R	unning Time (S	Sampling): Standard 18	0 secs. Flow Details: 5		PID Detail	ls: "<" indica	tes reading is	under the det	ection limit. "	>" indicates r	eading is ove	r the upper li	mit. "*" level to	be determine	d.		
Field engine	eer(s):	T. Leather-You	nghusband		Remarks:															
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Air Temp (°C)	Atmospheric Pressure 48Hrs Prior to Sampling (mB)	Atmospheric Pressure 24Hrs Prior to Sampling (mB)		Atmospheric Pressure When Sampled (mB)	Relative Pressure (mB)	Peak PID (ppm)	Stable PID (ppm)	Methane (%)	Peak Methane (%)	Methane LEL (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	Flow (l/hr)	Remarks
WS03	PIPE1 (50mm)	25/08/2021	09:37:00	16.3	1027	1030	1027	1023	0.07	0.8	0.5	0.1	0.1	2.0	0.3	16.9	0.0	0.0	0.0	
			09:37:15							8.0		0.0			0.2	20.3	0.0	0.0	0.0	
			09:37:30							0.7		0.0			0.2	20.6	0.0	0.0	0.0	
			09:37:45							0.6		0.0			0.2	20.8	0.0	0.0	0.0	
			09:38:00							0.6		0.0			0.2	20.9	0.0	0.0	0.0	
			09:38:30							0.6		0.0			0.2	20.9	0.0	0.0	0.0	
			09:39:00							0.5		0.0			0.2	21.1	0.0	0.0	0.0	
			09:40:00							0.5		0.0			0.1	21.2	0.0	0.0	0.0	

4	harris	Songro											Gr	oundw	ater Mo	nitori	ng Result	s										AGS
Project ID:		GL24466		Client:		The Big Ye	ellow Cons	struction Co	mpany Ltd				Weather	conditions	s:	Cloudy	and dry											
Date:		25/08/2021		Location	:	Big Yellow	, Kentish	Town					Ground o	conditions	:	-												
$^{1} = AII (m) d$	lepth measurer	ments are reco	rded as mete	ers from the	top of the	installation	cover.		² = I: Ine	rtial, S: Su	bmersible	, B: Bailer,	P: Peristaltic	Pump.	3 = Purge	e volume	e standardisati	ion: 50m	m standpi	pe = 6 x wa	ter colum	n, 35mm	= 3.5 x	water column,	19mm = 1	x wate	er column.	
Field engine	eer(s):	T. Leather-Yo	unghusban	b					Remarks):																		
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Surface Elevation (maOD)	LNAPL Depth ¹ (mbgl)	LNAPL Depth (maOD)	Water Level ¹ (mbgl)	Water Level (maOD)	DNAPL Depth ¹ (mbgl)	DNAPL Depth (maOD)	Depth to base ¹ (mbgl)	Depth to base (maOD)	Barometric Pressure (mB)	Air Temp	Downhole Temp (°C)		Electrical Conductivity (µS/cm)	DO (%)		Resistivity (Ohm-cm)	Salinity (psu)	Density (g/cm³)		Water Methology (I, S, E	d² Colu		urged blume ³ (L) Sample Ref	Comments: (e.g. problems encountered, standpipe conditions, unusual odours, colour, tubidity, sheens)
BH01	PIPE1 (50mm	1) 25/08/2021	09:55:00	36.55	N/E		Dry		N/E		3.95	32.60																
BH02	PIPE1 (50mm	a) 25/08/2021	10:50:00	36.81	N/E		3.65	33.16	N/E		3.69	33.12													0.0	4		
BH03	PIPE1 (50mm	a) 25/08/2021	09:20:00	36.59	N/E		Dry		N/E		2.80	33.79																
WS01	PIPE1 (50mm	n) 25/08/2021	11:03:00	36.60	N/E		2.82	33.78	N/E		3.68	32.92													0.8	6		
WS02	PIPE1 (50mm	25/08/2021	10:26:00	36.82	N/E		2.23	34.59	N/E		2.34	34.48													0.1	1		
WS03	PIPE1 (50mm	a) 25/08/2021	09:37:00	36.61	N/E		Dry		N/E		1.35	35.26																

Sheet 1 of 1 Kimberley Street, Norwich, NR2 2RJ

9	harris	Songro	OUD MENTAL					(Gas and P	ID Monito	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Cons	truction Company Ltd			Equipme	nt	Model / Seri	al Number								Manufacturer's Calibration Date
Date:		31/08/2021		Location:	Big Yellow, Kentish T	own			Gas Anal	yser:	GA5000 / G	501752								03/03/2020
Weather co	onditions:	Cloudy and dr	у	•					PID:		Tiger Handh	neld VOC Det	ector / T-1136	55						14/05/2020
Pump Runi	ning Time (Purg	e): Standard 30	secs. Pump R	unning Time (S	Sampling): Standard 18	30 secs. Flow Details: 5	sec average for 1 min	l.	PID Detai	ils: "<" indica	tes reading is	under the de	etection limit. "	'>" indicates ı	reading is over	er the upper li	mit. "*" level t	o be determin	ied.	
Field engin	eer(s):	T. Leather-You	unghusband		Remarks:															
	Monitoring	Date		Air Temp	Atmospheric	Atmospheric	Atmospheric	Atmospheric	Relative	Peak PID	Stable PID	Methane	Peak	Methane	Carbon	Oxygen	Carbon	Hydrogen	Flow	
Location ID	Pipe and	Monitored	Time	(°C)	Pressure 48Hrs Prior			Pressure When	Pressure	(ppm)	(ppm)	(%)	Methane	LEL	Dioxide	(%)	Monoxide	Sulphide	(l/hr)	Remarks
BH01	Diameter PIPE1 (50mm)	31/08/2021	12:26:00	16.7	to Sampling (mB) 1025	to Sampling (mB) 1026	to Sampling (mB) 1030	Sampled (mB) 1028	(mB) 0.31	0.1	4.9	0.1	(%) 0.1	(%) 2.0	(%) 0.0	22.6	(ppm) 0.0	(ppm) 0.0	0.0	
ВПОТ	FIFET (SUITIN)	31/06/2021	12:26:00	10.7	1025	1020	1030	1020	0.31	1.4	4.9	0.1	0.1	2.0	3.8	19.0	0.0	0.0	0.0	-
			12:26:15						1	2.3	1	0.1			3.8	18.1	0.0	0.0	0.0	-
			12:26:45						1	2.7	1	0.1			3.8	18.0	0.0	0.0	0.0	-
			12:27:00						1	3.0	1	0.1			3.8	18.0	0.0	0.0	0.0	-
			12:27:30						1	3.4		0.1	+		3.8	18.0	0.0	0.0	0.0	-
	 	1	12:27:30	 	1		 		 	3.6		0.1	1		3.8	18.0	0.0	0.0	0.0	<u> </u>
	 	1	12:29:00	 	1		 		 	3.9		0.1	1		3.8	17.9	0.0	0.0	0.0	<u> </u>
	 	1	12:30:00	 	1		 		 	4.3		0.1	1		3.9	17.8	0.0	0.0	0.0	<u> </u>
		-	12:31:00		1				 	4.7		0.1	1		3.9	17.8	0.0	0.0	0.0	
		-	12:31:00		1				 	4.7		0.1	1		3.9	17.8	0.0	0.0	0.0	
		-	12:33:00		1				 	4.9		0.1	1		3.9	17.8	0.0	0.0	0.0	
	PIPE2 (19mm)	31/08/2021	12:46:00	16.9	1025	1027	1030	1028	1.66	1.5	1.2	0.1	0.1	2.0	0.9	22.4	0.0	0.0	0.0	
	22 ()	01/00/2021	12:46:15	10.0	1020	1021	1000	1020	1.00	1.4	1.2	0.1	0.1	2.0	2.4	19.4	0.0	0.0	0.1	
			12:46:30						-	1.2		0.1			2.4	18.0	0.0	0.0	0.1	
			12:46:45						-	1.1		0.1			2.4	17.9	0.0	0.0	0.1	
			12:47:00						-	1.0		0.1			2.5	17.8	0.0	0.0	0.1	
			12:47:30						1	0.9		0.1			2.5	17.5	0.0	0.0	0.1	
			12:48:00						1	0.8		0.1			2.8	16.6	0.0	0.0	0.1	
			12:49:00						1	1.2		0.1			3.3	16.1	0.0	0.0	0.1	
			12:50:00						1	1.2		0.1			3.3	16.0	0.0	0.0	0.1	
BH02	PIPE1 (50mm)	31/08/2021	14:38:00	17.5	1025	1027	1030	1028	-0.03	0.6	0.5	0.0	0.0	0.0	0.4	22.4	0.0	0.0	0.0	
	, ,		14:38:15							1.6		0.0			2.9	7.5	0.0	0.0	0.0	
			14:38:30							1.8		0.0			2.9	7.0	0.0	0.0	0.0	
			14:38:45							1.8		0.0			2.9	7.0	0.0	0.0	0.0	
			14:39:00							1.8		0.0			2.9	6.9	0.0	0.0	0.0	
			14:39:30							1.6		0.0			2.9	6.8	0.0	0.0	0.0	
			14:40:00							1.5		0.0			2.9	6.8	0.0	0.0	0.0	
			14:41:00							1.2		0.0			2.9	6.7	0.0	0.0	0.0	
			14:42:00							0.9		0.0			3.0	6.7	0.0	0.0	0.0	
			14:43:00							0.7		0.0			3.0	6.6	0.0	0.0	0.0	
			14:44:00							0.5		0.0			3.0	6.6	0.0	0.0	0.0	
			14:45:00							0.5		0.0			2.9	6.5	0.0	0.0	0.0	
BH03	PIPE1 (50mm)	31/08/2021	14:00:00	18.1	1025	1027	1030	1027	0.15	0.7	0.4	0.0	0.0	0.0	0.2	22.7	0.0	0.0	0.0	
			14:00:15							0.6		0.0			4.1	18.3	0.0	0.0	0.0	
			14:00:30							0.6		0.0			4.3	16.2	0.0	0.0	0.0	
			14:00:45							0.6		0.0			4.5	15.8	0.0	0.0	0.0	
			14:01:00							0.6		0.0			4.7	15.4	0.0	0.0	0.0	
			14:01:30							0.6		0.0			5.0	14.9	0.0	0.0	0.0	
			14:02:00							0.5		0.0			5.4	14.5	0.0	0.0	0.0	
			14:03:00		ļ		ļ			0.4		0.0			5.6	14.1	0.0	0.0	0.0	
WS01	PIPE1 (50mm)	31/08/2021	12:58:00	16.9	1025	1027	1030	1028	0.03	0.4	0.2	0.0	0.0	0.0	0.3	22.0	0.0	0.0	0.0	
	ļ		12:58:15		ļ	ļ	ļ		1	0.4		0.0			1.6	22.0	0.0	0.0	0.0	
		1	12:58:30			1	ļ			0.3		0.0			1.7	21.5	0.0	0.0	0.0	
			12:58:45	ļ						0.3		0.0			1.8	21.4	0.0	0.0	0.0	
			12:59:00	ļ						0.3		0.0			1.8	21.4	0.0	0.0	0.0	
			12:59:30	ļ						0.3		0.0			1.9	21.4	0.0	0.0	0.0	
			13:00:00							0.2		0.0			1.9	21.4	0.0	0.0	0.0	-
	1		13:01:00		ļ				1	0.2	l	0.0		<u> </u>	1.9	21.4	0.0	0.0	0.0	

4	harris	Songro						G	as and P	ID Monito	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Const	ruction Company Ltd			Equipme	nt	Model / Seri	al Number								Manufacturer's Calibration Date
Date:		31/08/2021		Location:	Big Yellow, Kentish Te	own			Gas Ana	yser:	GA5000 / G	501752								03/03/2020
Weather c	onditions:	Cloudy and dr	у						PID:		Tiger Handh	eld VOC Dete	ector / T-1136	55						14/05/2020
Pump Run	Running Time (Purge): Standard 30 secs. Pump Running Time (Sampling): Standard 180 secs. Flow Details: 5 sec average for 1 min.									ls: "<" indica	tes reading is	under the de	tection limit. "	>" indicates r	eading is ove	r the upper li	imit. "*" level t	o be determin	ed.	
Field engir	neer(s):	T. Leather-You	unghusband		Remarks:				•											
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Air Temp (°C)	Atmospheric Pressure 48Hrs Prior to Sampling (mB)	Atmospheric Pressure When Sampled (mB)	Relative Pressure (mB)	Peak PID (ppm)	Stable PID (ppm)	Methane (%)	Peak Methane (%)	Methane LEL (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	Flow (I/hr)	Remarks		
WS02	PIPE1 (50mm)	31/08/2021	14:18:00	18.1	1025	1027	1030	1028	-0.15	1.2	0.7	0.0	0.1	2.0	0.6	22.4	0.0	0.0	0.0	
			14:18:15							1.6		0.1			3.7	17.3	0.0	0.0	0.0	
			14:18:30							1.8		0.1			3.7	15.2	0.0	0.0	0.0	
			14:18:45							1.9		0.1			3.7	15.1	0.0	0.0	0.0	
			14:19:00							1.8		0.1			3.7	15.1	0.0	0.0	0.0	
			14:19:30							1.8		0.1			3.7	15.0	0.0	0.0	0.0	
			14:20:00							1.6		0.1			3.7	15.0	0.0	0.0	0.0	
			14:21:00							1.3		0.1			3.7	15.0	0.0	0.0	0.0	
			14:22:00							0.7		0.1			3.4	15.3	0.0	0.0	0.0	
			14:23:00							0.7		0.1			3.2	15.5	0.0	0.0	0.0	
WS03	PIPE1 (50mm)	31/08/2021	12:10:00	16.9	1025	1027	1029	1028	0.07	0.2	0.0	0.1	0.1	2.0	0.0	22.6	0.0	0.0	0.0	
			12:10:15							0.2		0.1			0.1	22.7	0.0	0.0	0.0	
			12:10:30							0.1		0.1			0.1	22.5	0.0	0.0	0.0	
			12:10:45							0.0		0.1			0.1	22.5	0.0	0.0	0.0	
			12:11:00							0.0		0.1			0.1	22.4	0.0	0.0	0.0	
			12:11:30							0.0		0.1			0.1	22.4	0.0	0.0	0.0	
			12:12:00							0.0		0.1			0.1	22.3	0.0	0.0	0.0	1
			12:13:00							0.0		0.1			0.2	22.3	0.0	0.0	0.0	1

Sheet 2 of 2 Kimberley Street, Norwich, NR2 2RJ

4	harris	SONGIC											Gr	oundwat	ter Mor	nitori	ng Result	s										AGS
Project ID:		GL24466		Client:		The Big Ye	ellow Cons	struction Co	mpany Ltd				Weather o	conditions:	(Cloudy	and dry											
Date:		31/08/2021		Location	:	Big Yellow	ı, Kentish ⁻	Γown					Ground c	onditions:		-												
1 = All (m) d	lepth measure	ements are reco	rded as mete	ers from the	top of the	installation	cover.		² = I: Ine	rtial, S: Sul	omersible	, B: Bailer,	P: Peristaltic	Pump.	³ = Purge	volume	e standardisati	on: 50m	m standpi	oe = 6 x wa	ter colum	n, 35mm	= 3.5 x	vater column,	9mm = 1 x	water colu	umn.	
Field engine	eer(s):	T. Leather-Yo	ounghusban	d	Remarks: Remarks: Readings: SmarTROLL Multiparameter Handheld / PN0093230 Sampling Water																							
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Surface Elevation (maOD)	LNAPL Depth ¹ (mbgl)	LNAPL Depth (maOD)	Water Level ¹ (mbgl)	Water Level (maOD)	DNAPL Depth ¹ (mbgl)	DNAPL Depth (maOD)	Depth to base ¹ (mbgl)	Depth to base (maOD)	Barometric Pressure (mB)	Air D Temp (°C)			marTROLL Mu Electrical Conductivity (µS/cm)	DO		Reciptivity	Salinity	Density (g/cm³)		Vater Methological (I, S, B)	d ² Colum	Purged n Volume ³ (L)		Comments: (e.g. problems encountered, standpipe conditions, unusual odours, colour, tubidity, sheens)
BH01	PIPE1 (50mm	n) 31/08/2021	12:26:00	36.55	N/E		Dry		N/E		3.97	32.58																
	PIPE2 (19mm	n) 31/08/2021	12:50:00	36.55	N/E		6.42	30.13	N/E		9.25	27.30			16.0	7.6	33	98.0	162.3					Р	2.83		EW1-SP2	Slightly cloudy.
BH02	PIPE1 (50mm	n) 31/08/2021	14:38:00	36.81	N/E		3.63	33.18	N/E		3.69	33.12													0.06			
BH03	PIPE1 (50mm	n) 31/08/2021	14:00:00	36.59	N/E		2.64	33.95	N/E		2.79	33.80													0.15			
WS01	PIPE1 (50mm	n) 31/08/2021	13:10:00	36.60	N/E		2.83	33.77	N/E		3.68	32.92			16.8	7.5	349	95.7	91.9					Р	0.85		EW1-SP1	Slightly cloudy.
WS02	PIPE1 (50mm	n) 31/08/2021	14:18:00	36.82	N/E		2.17	34.65	N/E		2.33	34.49													0.16			
WS03	PIPE1 (50mm	n) 31/08/2021	12:10:00	36.61	N/E		Dry		N/E		1.34	35.27																

4	harris	Songro						(Gas and P	ID Monite	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Cons	truction Company Ltd			Equipme	nt	Model / Seria	al Number								Manufacturer's Calibration Date
Date:		10/09/2021		Location:	Big Yellow, Kentish T	own			Gas Ana	yser:	GA5000 / G5									03/03/2020
Weather co		Cloudy and dr							PID:				ector / T-1136							14/05/2020
				unning Time (S		30 secs. Flow Details: 5	5 sec average for 1 min	l	PID Deta	ils: "<" indica	tes reading is	under the de	etection limit. "	'>" indicates i	reading is over	er the upper I	imit. "*" level 1	to be determin	ned.	
Field engin	eer(s): Monitoring	T. Leather-You	unghusband	T	Remarks: Atmospheric	Atmospheric	Atmospheric	Atmospheric	Relative	1		1	Peak	Methane	Carbon	1	Carbon	Hydrogen	1	1
Location ID	Pipe and	Date	Time	Air Temp		Pressure 24Hrs Prior		Pressure When	Pressure	Peak PID	Stable PID	Methane	Methane	LEL	Dioxide	Oxygen	Monoxide	Sulphide	Flow	Remarks
	Diameter	Monitored		(°C)	to Sampling (mB)	to Sampling (mB)	to Sampling (mB)	Sampled (mB)	(mB)	(ppm)	(ppm)	(%)	(%)	(%)	(%)	(%)	(ppm)	(mpq)	(l/hr)	
BH01	PIPE1 (50mm)	10/09/2021	14:03:00	19.4	1011	1007	1010	1007	0.00	0.6	5.5	0.2	0.2	4.0	0.1	20.6	0.0	0.0	0.0	
			14:03:15							1.1		0.2			4.1	16.9	0.0	0.0	0.0	
			14:03:30							2.5		0.2			4.4	15.3	0.0	0.0	0.0	
			14:03:45							3.2		0.2			4.7	14.7	0.0	0.0	0.0	
			14:04:00 14:04:30		-				-	3.6		0.2	-		4.9	14.5 14.3	0.0	0.0	0.0	
		-	14:04:30						+	4.1 4.4		0.2			5.0 5.0	14.3	0.0	0.0	0.0	
			14:06:00							4.4		0.2			5.0	14.3	0.0	0.0	0.0	
			14:07:00						1	5.0		0.2	1		5.1	14.3	0.0	0.0	0.0	†
	İ		14:08:00			İ				5.3		0.2			5.0	14.3	0.0	0.0	0.0	
		1	14:09:00							5.5		0.2			5.0	14.3	0.0	0.0	0.0	
			14:10:00							5.5		0.2			4.9	14.3	0.0	0.0	0.0	
	PIPE2 (19mm)	10/09/2021	14:15:00	19.4	1011	1007	1010	1008	5.58	2.9	1.3	0.2	0.2	4.0	0.4	20.2	0.0	0.0	3.8	
			14:15:15							2.7		0.2			1.7	18.5	0.0	1.0	1.8	
			14:15:30							2.2	ļ	0.2			1.7	17.4	0.0	1.0	1.3	
			14:15:45							1.9		0.2			1.7	17.3	0.0	1.0	0.6	
			14:16:00							1.8		0.2			1.7	17.3	0.0	1.0	0.2	
			14:16:30						+	1.6	1	0.2	-		1.7	17.2	0.0	1.0	0.1	<u> </u>
			14:17:00 14:18:00		-				-	1.4		0.2	-		1.7 2.5	17.2 10.3	0.0	1.0	0.0	
BH02	PIPE1 (50mm)	10/09/2021	14:16:00	19.4	1011	1007	1009	1008	0.02	1.9	1.1	0.2	0.2	4.0	0.1	21.1	0.0	1.0	0.0	
DI 102	T II ET (SOITIII)	10/03/2021	14:29:15	19.4	1011	1007	1009	1006	0.02	2.2	1.1	0.2	0.2	4.0	3.3	7.9	0.0	2.0	0.0	1
			14:29:30							2.3		0.2			3.3	3.5	0.0	3.0	0.0	1
			14:29:45							2.3		0.2			3.3	3.4	0.0	3.0	0.0	1
			14:30:00							2.1		0.2			3.3	3.4	0.0	3.0	0.0	Pre-Nitrogen Purge
			14:30:30							1.9		0.2			3.3	3.3	0.0	3.0	0.0	
			14:31:00							1.6		0.2			3.3	3.3	0.0	3.0	0.0	
			14:32:00							1.1		0.2			3.3	3.3	0.0	3.0	0.0	
			15:35:00	19.4	1010	1006	1010	1008	0.03	0.6	0.5	0.2	0.2	4.0	0.2	21.0	0.0	1.0	0.0	
			15:35:15							1.3		0.2			0.1	6.3	2.0	0.0	0.0	_
			15:35:30 15:35:45						1	1.2		0.2	-		0.1	1.6 1.5	3.0	0.0	0.0	4
			15:35:45							1.1		0.2			0.0	1.5	3.0	0.0	0.0	Post-Nitrogen Purge
	 	 	15:36:00			 	1		1	0.8	1	0.2	1	-	0.0	1.4	3.0	0.0	0.0	1
	1	t	15:37:00			1	1		1	0.6	1	0.2	1	1	0.0	0.9	3.0	0.0	0.0	1
	İ		15:38:00			İ				0.5		0.2			0.1	0.5	3.0	0.0	0.0	
BH03	PIPE1 (50mm)	10/09/2021	13:46:00	19.4	1011	1008	1010	1007	0.00	0.9	0.3	0.5	4.3	86.0	0.1	20.8	0.0	0.0	0.0	
			13:46:15							0.8		3.8			6.6	10.8	0.0	0.0	0.0	
			13:46:30							0.6		3.8			6.7	6.9	0.0	1.0	0.0	
			13:46:45							0.6		3.8			6.8	6.6	0.0	1.0	0.0	
			13:47:00							0.5		3.9			6.9	6.4	0.0	1.0	0.0	
			13:47:30						ļ	0.5		4.1	1		7.1	6.3	0.0	1.0	0.0	
	ļ		13:48:00						<u> </u>	0.5	<u> </u>	4.3			7.3	6.1	0.0	1.0	0.0	
WS01	PIPE1 (50mm)	10/09/2021	13:49:00	10.1	1010	1007	1010	1000	0.02	0.3	0.0	4.2	0.0	4.0	7.3	6.0	0.0	1.0	0.0	
WOUT	FIRE I (SUMM)	10/09/2021	14:59:00 14:59:15	19.4	1010	1007	1010	1008	0.02	0.8	0.2	0.2	0.2	4.0	0.2 0.6	20.7	0.0	1.0	0.0	
	1	 	14:59:15			 			1	0.7		0.2			0.6	20.9	0.0	1.0	0.0	
			14:59:45							0.5		0.2	1		0.0	20.3	0.0	1.0	0.0	
	1		15:00:00							0.4		0.2			0.8	20.3	0.0	0.0	0.0	
		1	15:00:30							0.4		0.2			0.9	20.2	0.0	0.0	0.0	
			15:01:00							0.3		0.2			1.0	20.2	0.0	0.0	0.0	
			15:02:00							0.2	1	0.2	1		1.2	20.2	0.0	0.0	0.0	

9	harris	ongro	OUP MENTAL					G	as and P	ID Monito	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Const	ruction Company Ltd			Equipme	nt	Model / Seria	al Number								Manufacturer's Calibration Date
Date:		10/09/2021		Location:	Big Yellow, Kentish To	own			Gas Anal	yser:	GA5000 / G5	01752								03/03/2020
Weather co	nditions:	Cloudy and dr	у						PID:		Tiger Handh	eld VOC Dete	ector / T-1136	55						14/05/2020
Pump Runr	ning Time (Purge	e): Standard 30	secs. Pump Ru	ınning Time (S	Sampling): Standard 18	0 secs. Flow Details: 5	sec average for 1 min		PID Detai	ls: "<" indica	tes reading is	under the de	tection limit. "	>" indicates r	eading is ove	r the upper li	mit. "*" level to	be determin	ed.	
Field engin	eer(s):	T. Leather-You	ınghusband																	
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Air Temp (°C)		Atmospheric Pressure 24Hrs Prior to Sampling (mB)		Atmospheric Pressure When Sampled (mB)	Relative Pressure (mB)	Peak PID (ppm)	Stable PID (ppm)	Methane (%)	Peak Methane (%)	Methane LEL (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	Flow (I/hr)	Remarks
WS02	PIPE1 (50mm)	10/09/2021	14:43:00	19.4	1011	1007	1009	1008	-0.09	2.3	2.0	0.2	0.3	6.0	0.3	20.2	0.0	1.0	0.0	
			14:43:15							2.4		0.3			3.9	15.0	0.0	1.0	0.0	
			14:43:30							2.4		0.3			3.9	13.2	0.0	1.0	0.0	
			14:43:45							2.7		0.3			4.0	13.1	0.0	1.0	0.0	
			14:44:00							2.8		0.3			4.0	13.1	0.0	1.0	0.0	
			14:44:30							2.7		0.3			4.0	13.1	0.0	1.0	0.0	
			14:45:00							2.5		0.3			4.0	13.1	0.0	1.0	0.0	
			14:46:00							2.0		0.3			4.0	13.2	0.0	1.0	0.0	
WS03	PIPE1 (50mm)	10/09/2021	13:55:00	19.4	1011	1007	1010	1008	-0.12	0.4	0.0	0.4	0.4	8.0	0.5	19.8	0.0	0.0	0.0	
			13:55:15							0.4		0.3			0.5	19.4	0.0	0.0	0.0	
			13:55:30							0.3		0.2			0.6	19.0	0.0	0.0	0.0	
			13:55:45							0.2		0.2			0.6	19.2	0.0	0.0	0.0	
			13:56:00							0.1		0.2			0.5	19.4	0.0	0.0	0.0	
			13:56:30							0.0		0.2			0.3	19.9	0.0	0.0	0.0	
			13:57:00							0.0		0.2			0.3	19.9	0.0	0.0	0.0	
			13:58:00							0.0		0.2			0.3	19.9	0.0	0.0	0.0	

Sheet 2 of 2 Kimberley Street, Norwich, NR2 2RJ

4	harris	SONGIC			Groundwater Monitoring Results nt: The Big Yellow Construction Company Ltd Weather conditions: Cloudy and dry												AGS									
Project ID:		GL24466		Client:		The Big Y	ellow Cons	struction Co	mpany Ltd				Weather o	conditions:		Cloudy	and dry									
Date:		10/09/2021		Location	1:	Big Yellow	v, Kentish ⁻	Town					Ground co	onditions:		-										
$^{1} = AII (m) c$	depth measure	ments are reco	rded as mete	rs from the top of the installation cover. 2 = I: Inertial, S: Submersible, B: Bailer, P: Peristaltic Pump. 3 = Purge volume standardisation: 50mm standpipe = 6 x water column, 35mm = 3.5 x water column, 19mm = 1 x wate							ımn.															
Field engine	eer(s):	T. Leather-Yo	ounghusban	b					Remarks	:																
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Surface Elevation (maOD)	LNAPL Depth ¹ (mbgl)	LNAPL Depth (maOD)	Water Level ¹ (mbgl)	Water Level (maOD)	DNAPL Depth ¹ (mbgl)	DNAPL Depth (maOD)	Depth to base ¹ (mbgl)	Depth to base (maOD)	Barometric Pressure (mB)	Air [Temp (°C)	Downhole Temp (°C)	рН	Electrical Conductivity (µS/cm)	Readings DO (%)	Resistivity (Ohm-cm)	Salinity (psu)	Density (g/cm³)	Water Method (I, S, B, F)	Column	Purged Volume ^s (L)	Cample	Comments: (e.g. problems encountered, standpipe conditions, unusual odours, colour, tubidity, sheens)
BH01	PIPE1 (50mm	n) 10/09/2021	14:12:00	36.55	N/E		Dry		N/E		4.93	31.62														
	PIPE2 (19mm	n) 10/09/2021	14:25:00	36.55	N/E		4.26	32.29	N/E		9.19	27.36											4.93			
BH02	PIPE1 (50mm	n) 10/09/2021	14:36:00	36.81	N/E		3.64	33.17	N/E		3.67	33.14											0.03			
BH03	PIPE1 (50mm	n) 10/09/2021	13:53:00	36.59	N/E		2.54	34.05	N/E		2.80	33.79											0.26			
WS01	PIPE1 (50mm	n) 10/09/2021	15:10:00	36.60	N/E		2.93	33.67	N/E		3.70	32.90											0.77			
WS02	PIPE1 (50mm	n) 10/09/2021	14:52:00	36.82	N/E		Dry		N/E		2.34	34.48				·										
WS03	PIPE1 (50mm	n) 10/09/2021	13:59:00	36.61	N/E		Dry		N/E		1.35	35.26														

Sheet 1 of 1 Kimberley Street, Norwich, NR2 2RJ

harrisongroup							G	as and P	D Monito	oring Res	ults								AGS	
Project ID:		GL24466			The Big Yellow Const				Equipment		Model / Seria	ıl Number								Manufacturer's Calibration Date
Date:		22/09/2021		Location:	Big Yellow, Kentish To	own			Gas Analys	er:	GA5000 / G5									03/03/2020
Weather cond		Sunny and dry							PID:		Tiger Handhe									14/05/2020
			s. Pump Run	ning Time (Sar	mpling): Standard 180	secs. Flow Details: 5 se	ec average for 1 min.		PID Details:	"<" indicate	s reading is ur	nder the dete	ction limit. ">	" indicates rea	ding is over	the upper lim	it. "*" level to	be determined		
Field enginee		J. Blyth			Remarks:				1 5							_		1		
Location ID	Monitoring Pipe and	Date	Time	Air Temp	Atmospheric	Atmospheric Pressure 24Hrs Prior	Atmospheric Pressure 3Hrs Prior	Atmospheric Pressure When	Relative Pressure	Peak PID	Stable PID	Methane	Peak Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Flow	Remarks
Location ib	Diameter	Monitored	Tillie	(°C)	to Sampling (mB)			Sampled (mB)	(mB)	(ppm)	(ppm)	(%)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(l/hr)	Hemarks
BH01	PIPE1 (50mm)	22/09/2021	15:35:00	21.4	1023	1030	1027	1025	0.07	0.3	4.7	0.0	0.0	0.0	0.2	23.4	1.0	0.0	0.0	
	,		15:35:15							1.8		0.0			4.9	16.5	1.0	0.0	0.0	
			15:35:30							2.6		0.0			4.9	16.3	0.0	0.0	0.1	
			15:35:45							3.0		0.0			4.9	16.3	0.0	0.0	0.1	
			15:36:00							3.3		0.0			4.9	16.3	0.0	0.0	0.1	
			15:36:30							3.7		0.0			5.0	16.2	0.0	0.0	0.1	
			15:37:00							3.8		0.0			5.0	16.2	0.0	0.0	0.1	
			15:38:00							4.1		0.0			5.0	16.0	0.0	0.0	0.1	
			15:39:00							4.4		0.0			5.1	15.8	0.0	0.0		
			15:40:00							4.6		0.0			5.1	15.7	0.0	0.0		
		-	15:41:00							4.7		0.0			5.0	15.7	0.0	0.0		
			15:42:00						ļ	4.7		0.0			5.0	15.7	0.0	0.0		
BH02	PIPE1 (50mm)		15:00:00	21.3	1023	1030	1028	1026	-0.03	0.3	0.9	0.0	0.0	0.0	0.1	23.5	1.0	0.0	0.0	
			15:00:15							1.4		0.0			3.8	11.1	1.0	0.0	0.0	
			15:00:30						1	1.5		0.0			3.9	10.8	1.0	0.0	0.0	
			15:00:45						1	1.5		0.0			3.9	10.7	1.0	0.0	0.0	
			15:01:00						+	1.5		0.0			3.9	10.7	1.0	0.0	0.0	
			15:01:30 15:02:00							1.4 1.2		0.0			3.9	10.7	0.0	0.0	0.0	
			15:02:00							0.9		0.0			3.9 3.9	10.7	0.0	0.0	0.0	
BH03	PIPE1 (50mm)		14:40:00	21.1	1023	1030	1028	1026	0.32	0.9	0.1	0.0	0.0	0.0	5.9	13.7	0.0	0.0	0.0	
DI 103	T II ET (3011111)		14:40:15	21.1	1020	1000	1020	1020	0.02	0.2	0.1	0.0	0.0	0.0	5.5	12.4	0.0	0.0	0.0	-
			14:40:30							0.2		0.0			5.6	12.2	0.0	0.0	0.0	
			14:40:45							0.2		0.0			5.6	12.1	0.0	0.0	0.0	Pre-Nitrogen Purge. Gas sample
			14:41:00							0.2		0.0			5.6	12.1	0.0	0.0	0.0	taken with tedlar bag.
			14:41:30							0.2		0.0			5.7	12.1	0.0	0.0	0.0	1
			14:42:00							0.2		0.0			5.7	12.0	0.0	0.0	0.0	7
			14:43:00							0.1		0.0			5.7	12.0	0.0	0.0	0.0	7
			16:20:00	20.9	1024	1030	1027	1025	0.82	0.7	0.3	0.0	0.0	0.0	0.1	24.0	0.0	0.0	0.0	
			16:20:15							1.2		0.0			0.9	3.0	0.0	0.0	0.0	
			16:20:30							1.0		0.0			1.0	2.5	1.0	0.0	0.0	
			16:20:45							0.8		0.0			1.2	2.5	1.0	0.0	0.0	
			16:21:00							0.7		0.0			1.3	2.6	1.0	0.0	0.0	4
			16:21:30							0.6		0.0			2.0	3.6	1.0	0.0	0.0	Post-Nitrogen Purge. Gas
			16:22:00							0.5		0.0			2.6	4.2	1.0	0.0	0.0	sample taken with tedlar bag.
			16:23:00							0.4		0.0			3.1	4.8	1.0	0.0	0.0	_
			16:24:00							0.4		0.0			3.3	5.2	1.0	0.0		4
			16:25:00							0.4		0.0			3.4	5.5	1.0	0.0		4
			16:26:00		-					0.3		0.0			3.5	5.8	0.0	0.0		-
			16:27:00 16:28:00							0.3		0.0			3.6	6.1 6.5	0.0	0.0		-
WS01	PIPE1 (50mm)		16:28:00	20.7	1024	1029	1027	1025	0.00	0.3	0.1	0.0	0.0	0.0	3.6 0.2	23.4	0.0	0.0	0.0	
VV 30 I	(30111111)		16:45:15	۷٠.۱	1024	1029	1021	1020	0.00	0.4	0.1	0.0	0.0	0.0	0.2	23.4	0.0	0.0	0.0	
			16:45:30							0.4		0.0			0.6	22.9	0.0	0.0	0.0	+
			16:45:45							0.3		0.0			0.6	22.9	0.0	0.0	0.0	
			16:46:00							0.3		0.0			0.7	22.8	0.0	0.0	0.0	
			16:46:30							0.2		0.0			0.8	22.6	0.0	0.0	0.0	
			16:47:00							0.2		0.0			0.9	22.5	0.0	0.0	0.0	
			16:48:00							0.1		0.0			1.0	22.4	0.0	0.0	0.0	
			16:49:00							0.1		0.0			1.1	22.3	0.0	0.0		
			16:50:00							0.1		0.0			1.1	22.3	0.0	0.0		

9	harris	Songro	OUP MENTAL					G	as and P	ID Monito	oring Res	ults								AGS
Project ID:		GL24466		Client:	The Big Yellow Const	ruction Company Ltd			Equipment		Model / Seria	al Number								Manufacturer's Calibration Da
Date:		22/09/2021		Location:	Big Yellow, Kentish To				Gas Analys		GA5000 / G5	01752								03/03/2020
Weather cor	ditions:	Sunny and dry		!					PID:		Tiger Handh	eld VOC Dete	ctor / T-11365	5						14/05/2020
Pump Runni	ng Time (Purge)	: Standard 30 s	ecs. Pump Rur	ning Time (Sa	ampling): Standard 180	secs. Flow Details: 5 s	ec average for 1 min.		PID Details	: "<" indicate	s reading is u	nder the dete	ction limit. ">"	indicates rea	ading is over	the upper lim	it. "*" level to l	oe determined.		
Field engine	er(s):	J. Blyth			Remarks:				•											
ocation ID	Monitoring Pipe and Diameter	Date Monitored	Time	Air Temp (°C)	Atmospheric Pressure 48Hrs Prior to Sampling (mB)	Atmospheric Pressure 24Hrs Prior to Sampling (mB)	Atmospheric Pressure 3Hrs Prior to Sampling (mB)	Atmospheric Pressure When Sampled (mB)	Relative Pressure (mB)	Peak PID (ppm)	Stable PID (ppm)	Methane (%)	Peak Methane (%)	Methane LEL (%)	Carbon Dioxide (%)	Oxygen (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	Flow (I/hr)	Remarks
WS02	PIPE1 (50mm)	22/09/2021	14:00:00	21.4	1023	1030	1028	1027	0.00	0.1	0.2	0.0	0.0	0.0	0.1	23.3	0.0	0.0	0.0	
			14:00:15							1.0		0.0			4.1	17.8	1.0	0.0	0.0	
			14:00:30							1.0		0.0			4.2	15.7	0.0	0.0	0.0	
			14:00:45							1.0		0.0			4.2	15.6	0.0	0.0	0.0	
			14:01:00							1.0		0.0			4.2	15.6	0.0	0.0	0.0	
			14:01:30							0.9		0.0			4.2	15.5	0.0	0.0	0.0	
			14:02:00							0.8		0.0			4.2	15.5	0.0	0.0	0.0	
			14:03:00							0.6		0.0			4.1	15.5	0.0	0.0	0.0	
			14:04:00							0.4		0.0			3.8	15.8	0.0	0.0		
			14:05:00							0.3		0.0			3.5	16.1	0.0	0.0		
			14:06:00							0.3		0.0			3.4	16.1	0.0	0.0		
			14:07:00							0.2		0.0			3.1	16.3	0.0	0.0		
			14:08:00							0.2		0.0			3.0	16.4	0.0	0.0		
			14:09:00							0.2		0.0			2.8	16.6	0.0	0.0		
			14:10:00							0.2		0.0			2.7	16.7	0.0	0.0		
			14:11:00							0.2		0.0			2.6	16.8	0.0	0.0		
			14:12:00							0.2		0.0			2.5	17.0	0.0	0.0		
			14:13:00							0.2		0.0			2.5	17.1	0.0	0.0		
WS03	PIPE1 (50mm)	22/09/2021	16:00:00	21.1	1023	1030	1027	1025	-0.02	0.6	0.4	0.0	0.0	0.0	0.1	23.9	0.0	0.0	0.0	
			16:00:15							1.2		0.0			2.8	18.0	0.0	0.0	0.1	
			16:00:30							0.9		0.0			2.7	17.9	0.0	0.0	0.1	
			16:00:45							0.7		0.0			2.6	18.0	0.0	0.0	0.1	
			16:01:00							0.6		0.0			2.5	18.1	0.0	0.0	0.1	
			16:01:30							0.5		0.0			2.3	18.3	0.0	0.0	0.1	
			16:02:00							0.4		0.0			2.3	18.3	0.0	0.0	0.1	
			16:03:00							0.4		0.0			2.3	18.5	0.0	0.0	0.1	

4	harris	SONGIC			Groundwater Monitoring Results at: The Big Yellow Construction Company Ltd Weather conditions: Sunny and dry											AGS										
Project ID:		GL24466		Client:		The Big Ye	ellow Cons	truction Co	mpany Ltd				Weather o	onditions:		Sunny	and dry									
Date:		22/09/2021		Location	1:	Big Yellow	ر, Kentish ٦	own					Ground co	onditions:		-										
$^{1} = AII (m) c$	depth measuren	nents are reco	rded as mete	ers from the	rs from the top of the installation cover. 2 = I: Inertial, S: Submersible, B: Bailer, P: Peristaltic Pump. 3 = Purge volume standardisation: 50mm standpipe = 6 x water column, 35mm = 3.5 x water column, 19mm = 1 x wate						water col	umn.														
Field engine	eer(s):	J. Blyth							Remarks):								•								
Location ID	Monitoring Pipe and Diameter	Date Monitored	Time	Surface Elevation (maOD)	LNAPL Depth ¹ (mbgl)	LNAPL Depth (maOD)	Water Level ¹ (mbgl)	Water Level (maOD)	DNAPL Depth ¹ (mbgl)	DNAPL Depth (maOD)	Depth to base ¹ (mbgl)	Depth to base (maOD)	Barometric Pressure (mB)	Air [Temp (°C)	Downhole Temp (°C)	рН	Electrical Conductivity (µS/cm)	Readings DO (%)	Resistivity (Ohm-cm)	Salinity (psu)	Density (g/cm³)	Water Method (I, S, B,	² Columi	Purged Volume (L)	Cample	Comments: (e.g. problems encountered, standpipe conditions, unusual odours, colour, tubidity, sheens)
BH01	PIPE1 (50mm)) 22/09/2021	15:35:00	36.55	N/E		2.37	34.18	N/E		3.94	32.61											1.57			
	PIPE2 (19mm)) 22/09/2021	15:35:00	36.55	N/E		2.44	34.11	N/E		9.18	27.37											6.74			
BH02	PIPE1 (50mm)) 22/09/2021	15:00:00	36.81	N/E		2.57	34.24	N/E		3.67	33.14											1.10			
BH03	PIPE1 (50mm)) 22/09/2021	14:40:00	36.59	N/E		2.35	34.24	N/E		2.82	33.77											0.47			
WS01	PIPE1 (50mm)) 22/09/2021	16:45:00	36.60	N/E		2.86	33.74	N/E	·	3.68	32.92			·								0.82			
WS02	PIPE1 (50mm)) 22/09/2021	14:00:00	36.82	N/E		2.03	34.79	N/E		2.33	34.49											0.30			
WS03	PIPE1 (50mm)) 22/09/2021	16:00:00	36.61	N/E		Dry		N/E		1.34	35.27														

APPENDIX D

GEOTECHNICAL LABORATORY TESTING

Harrison Testing Services

Unit 1, Alston Road Hellesdon Park Industrial Estate Norwich NR6 5DS

Tel: +44 (0) 1603 416333 www.harrisongroupuk.com
Email: laboratory@harrisongroupuk.com

Harrison Group Environmental

12, Waterways Business Centre **Navigation Drive** Enfield EN3 6JJ

For the attention of: Martin Cooper

Page 1 of 1 Issue No: 02

Project: **BY Kentish Town** Samples received: 25/08/2021 Report No: GL24466-01 25/08/2021 Instruction received: Your Ref: GL24466 Testing commenced: 07/09/2021

Please find results attached as summarised below.

		Accredited
	27	Yes
Liquid & Plastic Limits	5	Yes
Particle Size Distribution - Wet Sieve Method	6	Yes
Particle Size Distribution - Pipette Sedimentation Method	3	Yes
Unconsolidated Undrained Shear Strength - Single Stage	17	Yes
	Particle Size Distribution - Pipette Sedimentation Method	Liquid & Plastic Limits5Particle Size Distribution - Wet Sieve Method6Particle Size Distribution - Pipette Sedimentation Method3

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

This report should not be reproduced except in full without the written approval of the laboratory.

Issued by: Date Issued:

M. Willson 19 October 2021

Laboratory Manager

A. A. villes

DETERMINATION OF MOISTURE CONTENT

	arrison	SERVICES	DETERMINATION BS 1377 : Pa	art 2 : 1990 : Clause 3.2	
Pr	roject Nam	e:	BY Kentish Town		Project Number:
Cl	lient Name	:	The Big Yellow Construction Company Ltd	l	GL24466
Location	Depth	Sample Ref	Sample Description	Moisture Content	Remarks
	m			%	
BH02	0.30	D1	MADE GROUND (Brown clayey slightly sandy GRAVEL. Gravel is of flint and brick fragments).	7.7	
BH02	0.60	D2	MADE GROUND (Grey and grey brown slightly gravelly CLAY. Gravel is of flint and brick fragments).	30	
BH02	0.80	D3	MADE GROUND (Dark grey slightly gravelly CLAY. Gravel is of flint and brick fragments).	30	
BH02	3.40	D4	Brown mottled grey CLAY with selenite crystals.	22	
BH02	3.95-4.05	D5	Brown mottled grey CLAY with selenite crystals.	29	
BH02	4.50-4.95	D6	Brown mottled grey CLAY with selenite crystals.	25	
BH02	6.45-6.55	D7	Brown mottled grey CLAY with selenite crystals.	28	
ВН03	1.50-1.95	D3	MADE GROUND (Dark grey brown and grey brown slightly gravelly CLAY. Gravel is of flint and brick fragments).	21	
BH03	2.00	D4	Grey and dark grey mottled orange brown slightly gravelly CLAY with roots. Gravel is of flint.	22	
BH03	2.50	D5	Brown and grey brown slightly gravelly CLAY. Gravel is of flint.	29	

Notes:

Remarks Approved Date Sheet No.: MW22/09/2021 1 of 3 M. Willson

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

DETERMINATION OF MOISTURE CONTENT

4 h	arrison	testing services	DETERMINATION BS 1377 : Po	OF MOISTU art 2 : 1990 : Claus		
Pr	oject Nam	e:	BY Kentish Town			Project Number:
CI	lient Name	:	The Big Yellow Construction Company Ltd	i		GL24466
Location	Depth	Sample Ref	Sample Description	Moisture Content	Rema	ırks
	m			%		
BH03	3.00	D6	Brown mottled grey and orange brown slightly gravelly CLAY. Gravel is of siltstone.	26		
BH03	3.50	D7	Brown mottled grey and orange brown slightly gravelly CLAY. Gravel is of siltstone.	26		
BH03	3.50-3.95	D8	Brown mottled grey and orange brown CLAY.	31		
BH03	4.50	D9	Brown mottled grey and orange brown CLAY.	32		
TP01	2.40-2.60	B4	Brown CLAY.	30		
WS01	0.20	D1	MADE GROUND (Brown slightly gravelly CLAY. Gravel is of flint and brick fragments).	25		
WS01	0.40	D2	MADE GROUND (Brown and dark brown slightly gravelly CLAY. Gravel is of flint and brick fragments).	25		
WS01	0.70	D3	MADE GROUND (Dark grey brown gravelly CLAY. Gravel is of flint and brick fragments).	20		
WS01	1.00	D4	MADE GROUND (Dark grey sandy clayey GRAVEL. Gravel is of flint, quartzite and brick fragments).	17		
WS01	1.50	D5	MADE GROUND (Grey brown and brown gravelly CLAY. Gravel is of brick fragments).	24		
Noto						

Notes:

Remarks Approved Date Sheet No.: MW22/09/2021 2 of 3 M. Willson

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

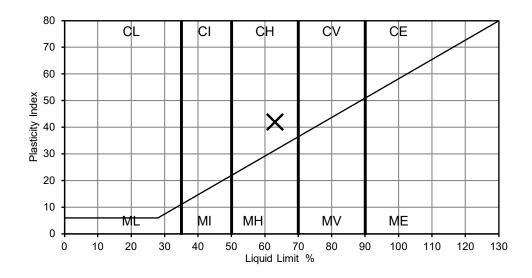
DETERMINATION OF MOISTURE CONTENT

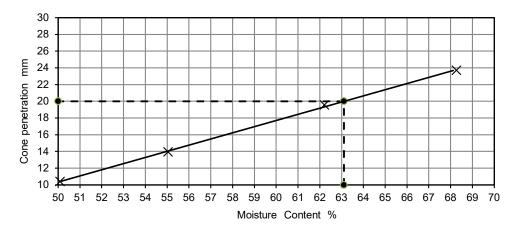
ho	arrison	testing services	DETERMINATION BS 1377 : P	OF MOISTURI art 2 : 1990 : Clause 3.		
Pro	oject Nam	ne:	BY Kentish Town			Project Number:
Cli	ent Name	e:	The Big Yellow Construction Company Ltd	d		GL24466
Location	Depth	Sample Ref	Sample Description	Moisture Content	Remark	κs
	m			%		
WS01	2.00	D6	MADE GROUND (Brown mottled grey slightly gravelly CLAY. Gravel is of coal and brick fragments).	29		
WS01	2.50	D7	MADE GROUND (Brown mottled grey slightly gravelly CLAY. Gravel is of flint).	29		
WS01	3.00	D8	MADE GROUND (Dark grey gravelly slightly sandy CLAY. Gravel is of flint and brick fragments).	25		
WS01	3.60	D9	Grey and brown CLAY.	34		
WS01	4.50	D10	Brown mottled grey CLAY.			
WS02	1.00	D4	MADE GROUND (Grey brown mottled grey slightly gravelly slightly sandy CLAY. Gravel is of brick fragments).	33		
WS02	2.80	D8	Brown mottled occasional grey slightly gravelly CLAY. Gravel is of flint	34		
Notos						

Notes:

Remarks Approved Date Sheet No.: MW22/09/2021 3 of 3 M. Willson

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.


/ h	arrison	esting		DETER	MINATIO	ON OF L	I QUID LI BS13	MIT, PL 377 : Part	ASTIC LIMIT & PLASTIO 2 : 1990	CITY INDEX			
Pr	oject Nam	e:	ВҮІ	Kentish T	own					Project Number			
CI	ient Name	:	The	Big Yello	w Consti	ruction C	ompany L	_td		GL24466			
Location	Depth	Sample Ref	Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	Percentage passing 425µm	Classification	Sample Desi	cription			
BH02	m 0.80	D3	% 30	% 63	% 21	42	% 87	СН	MADE GROUND (Dark gre				
									CLAY. Gravel is of flint and brick fragments)				
TP01	2.40-2.60	B4	30	73	23	50	96	CV	Brown CLAY.				
WS01	0.40	D2	25	65	20	45	73	СН	MADE GROUND (Brown and dark brown slightly gravelly CLAY. Gravel is of flint and brick fragments)				
WS02	1.00	D4	33	59	20	39	78	СН	brick fragments) MADE GROUND (Grey brown mottled grey slightly gravelly slightly sandy CLAY. Gravel is of brick fragments)				
WS02	2.80	D8	34	75	23	52	96	CV	Brown mottled occasional CLAY. Gravel is of flint	grey slightly gravelly			


- 1) This summary sheet is provided for convenience and in no way replaces individual test result sheets which shall, without exception, be regarded as the definitive result. Please refer to the individual test result sheets for the respective methods used.
- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:
	MW M. Willson	22/09/2021	1 of 1

harrisontesting	LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY I BS 1377 : Part 2 : 1990, clause 4	•	Y INDEX
Project Name:	BY Kentish Town	Project Number:	GL24466
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH02
Sample Description	MADE GROUND (Dark grey slightly gravelly CLAY. Gravel is of flint	Sample Depth (m)	0.80
Sample Description:	and brick fragments)	Sample Reference	D3

Preparation: Material was washed and oven dried at below 50°C

As Received Moisture Content: (BS1377: Part 2: Clause 3: 1990) Results:

Percentage Passing 425µm sieve: 87 % Liquid Limit: 63 % Plastic Limit: 21 % Plasticity Index: 42

0.21 Liquidity Index:

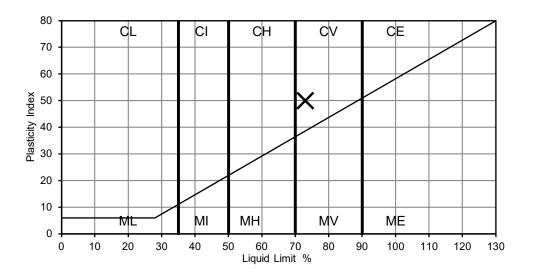
Modified Plasticity Index: (NHBC Standards Chapter 4.2) 37

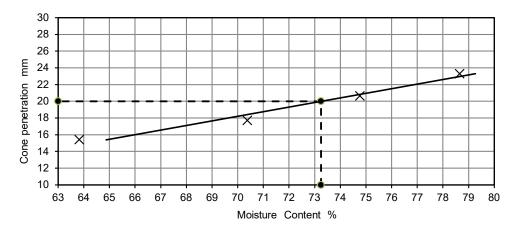
Notes:

Modified Plasticity Index: (NHBC Standards Chapter 4.2) not covered by UKAS accreditation. Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

This report should not be reproduced except in full without the written approval of the laboratory.

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.


30 %


rks	Approved	Date	Sheet No.:	
	MW M. Willson	22/09/2021	1 of 1	

harrisontesting	LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX, & LIQUIDITY INDEX BS 1377: Part 2: 1990, clause 4.3 and 5		
Project Name:	BY Kentish Town	Project Number:	GL24466
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	TP01
Sample Description:	Brown CLAY.	Sample Depth (m)	2.40
Gampic Description.	BIOWIT OLAT.		·

Sample Reference

В4

Preparation: Material was washed and oven dried at below 50°C

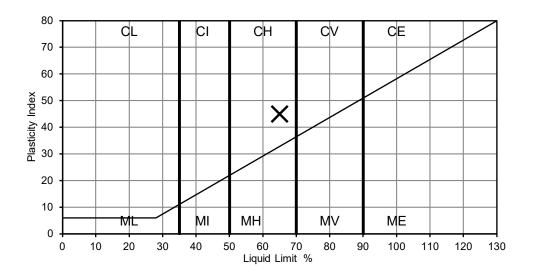
As Received Moisture Content: (BS1377: Part 2: Clause 3: 1990) Results:

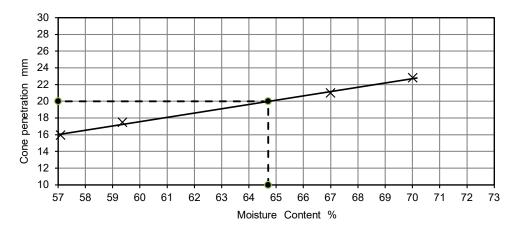
30 % Percentage Passing 425µm sieve: 96 %

Liquid Limit: 73 % Plastic Limit: 23 % Plasticity Index: 50

0.14 Liquidity Index: Modified Plasticity Index: (NHBC Standards Chapter 4.2) 48

Modified Plasticity Index: (NHBC Standards Chapter 4.2) not covered by UKAS accreditation. Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.


This report should not be reproduced except in full without the written approval of the laboratory.


Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson	22/09/2021	1 of 1	

harrisontesting	LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX, & LIQUIDITY INDEX BS 1377: Part 2: 1990, clause 4.3 and 5		
Project Name:	BY Kentish Town Project Number: GL2		GL24466
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	WS01
Sample Description:	MADE GROUND (Brown and dark brown slightly gravelly CLAY.	Sample Depth (m)	0.40
Sample Description.	Gravel is of flint and brick fragments)	Sample Reference	D2

Preparation: Material was washed and oven dried at below 50°C

As Received Moisture Content: (BS1377: Part 2: Clause 3: 1990) Results:

Percentage Passing 425µm sieve: 73 % Liquid Limit: 65 % Plastic Limit: 20 % Plasticity Index: 45

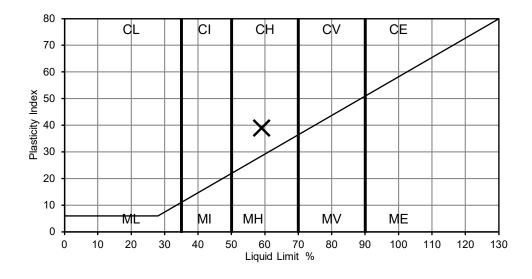
0.11 Liquidity Index:

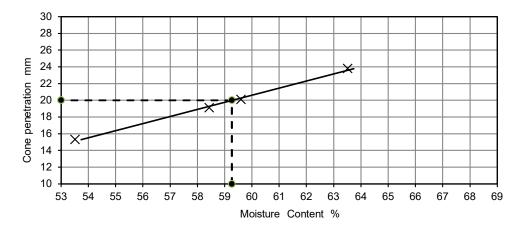
Modified Plasticity Index: (NHBC Standards Chapter 4.2) 33

Notes:

Modified Plasticity Index: (NHBC Standards Chapter 4.2) not covered by UKAS accreditation. Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

This report should not be reproduced except in full without the written approval of the laboratory.


Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.



25 %

			7.7
Remarks	Approved	Date	Sheet No.:
	MW M. Willson	22/09/2021	1 of 1

harrisontesting	LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX, & LIQUIDITY INDEX BS 1377 : Part 2 : 1990, clause 4.3 and 5		
Project Name:	BY Kentish Town Project Number: GL2440		GL24466
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	WS02
Sample Description:	Sample Description: MADE GROUND (Grey brown mottled grey slightly gravelly slightly		1.00
Sample Description.	sandy CLAY. Gravel is of brick fragments)	Sample Reference	D4

Preparation: Material was washed and oven dried at below 50°C

As Received Moisture Content: (BS1377: Part 2: Clause 3: 1990) 33 % Results:

Percentage Passing 425µm sieve: 78 % Liquid Limit: 59 % Plastic Limit: 20 % Plasticity Index: 39

0.33 Liquidity Index:

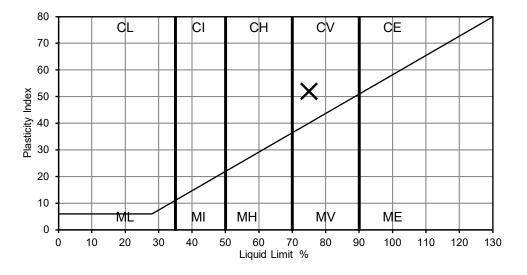
Modified Plasticity Index: (NHBC Standards Chapter 4.2) 30

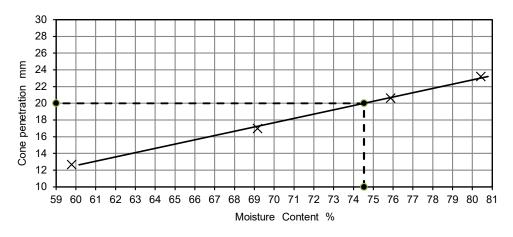
Modified Plasticity Index: (NHBC Standards Chapter 4.2) not covered by UKAS accreditation. Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

This report should not be reproduced except in full without the written approval of the laboratory.

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

			7.7
Remarks	Approved	Date	Sheet No.:
	MW M. Willson	22/09/2021	1 of 1


Laboratory Manage



LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX, & LIQUIDITY INDEX

BS 1377: Part 2: 1990, clause 4.3 and 5

2 SERVICES			
Project Name:	BY Kentish Town	Project Number:	GL24466
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	WS02
Sample Description:	Brown mottled occasional grey slightly gravelly CLAY. Gravel is of flint	Sample Depth (m)	2.80
Sample Description.		Sample Reference	D8

Preparation: Material was washed and oven dried at below 50°C

As Received Moisture Content: (BS1377: Part 2: Clause 3: 1990) Results:

34 % 96 %

Percentage Passing 425µm sieve:

Liquid Limit:

75 %

Plastic Limit:

23 %

Plasticity Index:

52

Liquidity Index:

0.21 50

Modified Plasticity Index: (NHBC Standards Chapter 4.2)

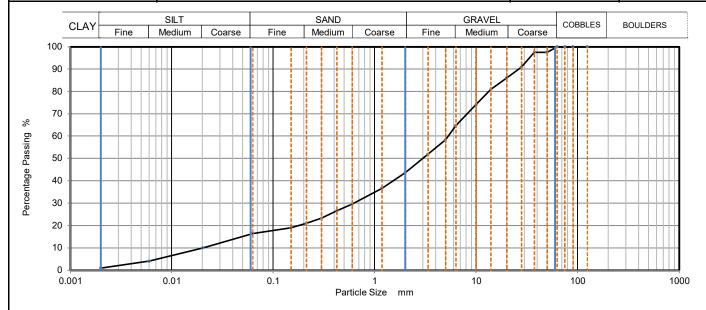
Notes:

Modified Plasticity Index: (NHBC Standards Chapter 4.2) not covered by UKAS accreditation.

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

This report should not be reproduced except in full without the written approval of the laboratory.

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.



rks	Approved	Date	Sheet No.:	
	MW M. Willson	22/09/2021	1 of 1	

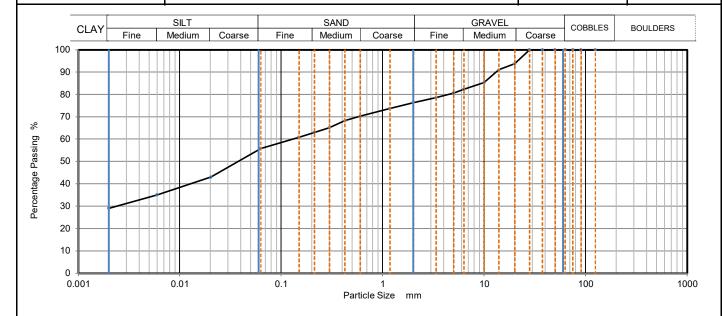
harrisontesting

DETERMINATION OF PARTICLE SIZE DISTRIBUTIONBS1377:Part 2:1990, clauses 9.2 and 9.4

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH01
Sample Description	MADE GROUND (Dark grey and black slightly clayey silty very sandy		0.60
GRAVEL GraveLis of flint brick concrete and plastic fragments)	Sample Reference	B1	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	10
90	100	0.0060	4
75	100	0.0020	1
63	100		
50	98		
37.5	98		
28	91		
20	86		
14	81		
10	74		
6.3	65		
5	58		
3.35	52		
2	44		
1.18	37		
0.6	30	Particle density	(assumed)
0.425	27	2.65	Mg/m3
0.3	23		
0.212	21		
0.15	19		
0.063	16		

Sample Proportions	% dry mass
Very coarse	0
Gravel	56
Sand	27
Silt	16
Clay	1


Grading Analysis		
D100	mm	
D60	mm	5.310
D30	mm	0.631
D10	mm	0.019
Uniformity Coefficient		280
Curvature Coefficient		4

- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- 3) Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

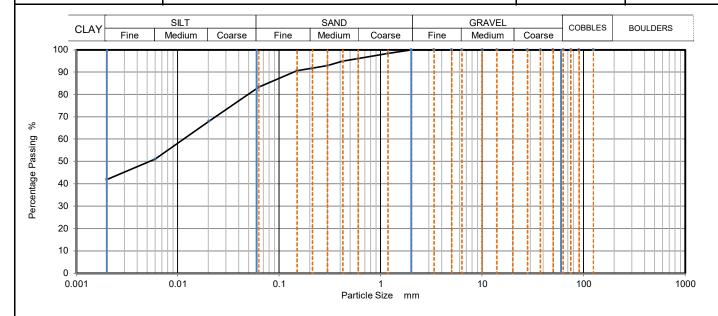
Remarks	Approved	Date	Sheet No.:
	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION harrisontesting BS1377:Part 2:1990, clauses 9.2 and 9.4 **BY Kentish Town** Project Number: GL24466-01 Project Name: Client Name: The Big Yellow Construction Company Ltd Sample Location: BH01 Sample Depth (m) 3.50 MADE GROUND (Dark grey brown and brown slightly gravelly slightly sandy Sample Description: silty CLAY. Gravel is of flint and brick fragments) Sample Reference В4

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	43
90	100	0.0060	35
75	100	0.0020	29
63	100		
50	100		
37.5	100		
28	100		
20	94		
14	91		
10	85		
6.3	82		
5	81		
3.35	79		
2	76		
1.18	74		
0.6	70	Particle density	(assumed)
0.425	68	2.65	Mg/m3
0.3	65		
0.212	63		
0.15	61		
0.063	56		

Sample Proportions	% dry mass		
Very coarse	0		
Gravel	24		
Sand	21		
Silt	27		
Clay	29		

Grading Analysis		
D100	mm	
D60	mm	0.131
D30	mm	0.002
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		


Notes

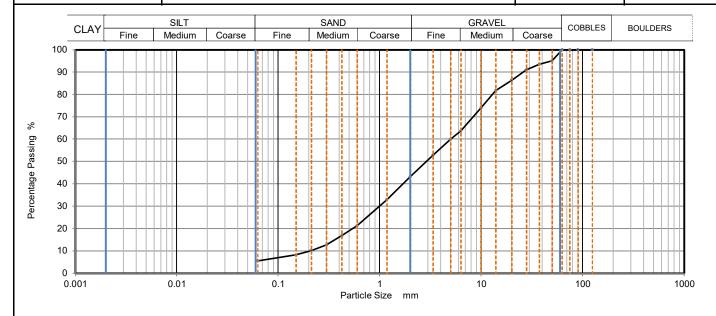
- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

marks	Approved	Date	Sheet No.:
	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTIONBS1377:Part 2:1990, clauses 9.2 and 9.4 harrisontesting **BY Kentish Town** Project Number: GL24466-01 Project Name: Client Name: The Big Yellow Construction Company Ltd Sample Location: BH02 Sample Depth (m) 1.50 Sample Description: Grey and grey brown slightly sandy silty CLAY Sample Reference B2

Siev	/ing	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	68
90	100	0.0060	51
75	100	0.0020	42
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	98		
0.6	96	Particle density	(assumed)
0.425	95	2.65	Mg/m3
0.3	93		
0.212	92		
0.15	91		
0.063	83		

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	17
Silt	41
Clay	42


Grading Analysis		
D100	mm	
D60	mm	0.011
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

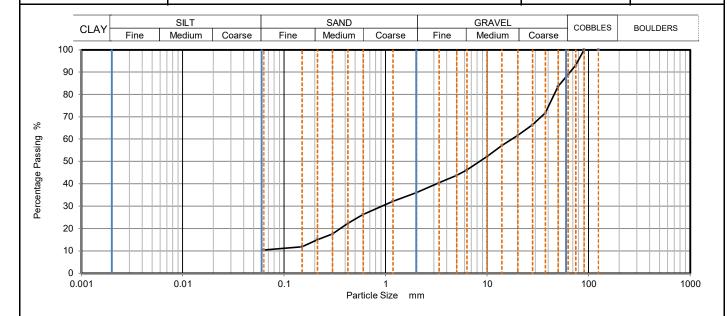
- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:
	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION harrisontesting BS1377:Part 2:1990, clause 9.2 **BY Kentish Town** Project Number: GL24466-01 Project Name: Client Name: The Big Yellow Construction Company Ltd Sample Location: BH03 Sample Depth (m) 0.60 MADE GROUND (Black silty very sandy GRAVEL. Gravel is of brick and Sample Description: concrete fragments) Sample Reference В1

Siev	/ing	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	94		
28	91		
20	86		
14	82		
10	74		
6.3	64		
5	60		
3.35	53		
2	43		
1.18	33		
0.6	21		
0.425	17		
0.3	13		
0.212	10		
0.15	8		
0.063	6		

Sample Proportions	% dry mass		
Very coarse	0		
Gravel	57		
Sand	38		
Fines <0.063mm	6		


Grading Analysis		
D100	mm	
D60	mm	5.020
D30	mm	0.997
D10	mm	0.208
Uniformity Coefficient		24
Curvature Coefficient		0.95

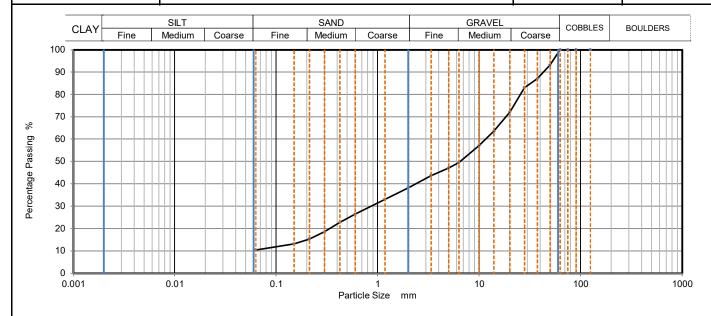
- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:
	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION harrisontesting BS1377:Part 2:1990, clause 9.2 **BY Kentish Town** Project Number: GL24466-01 Project Name: TP02 Client Name: The Big Yellow Construction Company Ltd Sample Location: MADE GROUND (Dark grey brown silty very sandy GRAVEL with medium Sample Depth (m) 0.60 Sample Description: cobble content. Cobbles are of concrete. Gravel is of flint, brick, concrete, Sample Reference glass, metal and asphalt fragments) В1

Siev	ving Sedimentat		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	93		
63	89		
50	84		
37.5	72		
28	66		
20	62		
14	57		
10	52		
6.3	46		
5	44		
3.35	40		
2	36		
1.18	32		
0.6	26		
0.425	22		
0.3	18		
0.212	15		
0.15	12		
0.063	10		

Sample Proportions	% dry mass
Very coarse	11
Gravel	53
Sand	26
Fines <0.063mm	10


Grading Analysis		
D100	mm	
D60	mm	17.600
D30	mm	0.915
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

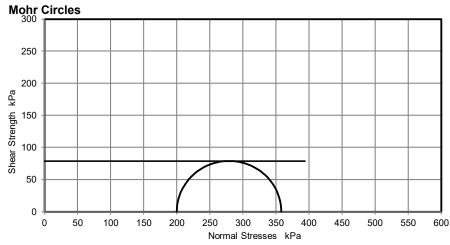
- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:
Insufficient sample to test in full accordance with BS 1377	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION harrisontesting BS1377:Part 2:1990, clause 9.2 **BY Kentish Town** Project Number: GL24466-01 Project Name: WS03 Client Name: The Big Yellow Construction Company Ltd Sample Location: Sample Depth (m) 0.20 MADE GROUND (Grey slightly clayey silty very sandy GRAVEL. Gravel is Sample Description: of flint, brick, concrete and asphalt fragments) Sample Reference В1

Siev	/ing	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	87		
28	83		
20	72		
14	64		
10	57		
6.3	49		
5	47		
3.35	44		
2	38		
1.18	33		
0.6	26		
0.425	23		
0.3	19		
0.212	15		
0.15	13		
0.063	11		

Sample Proportions	% dry mass
Very coarse	0
Gravel	62
Sand	28
Fines <0.063mm	11


Grading Analysis		
D100	mm	
D60	mm	11.600
D30	mm	0.867
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

- 1) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- 2) This report should not be reproduced except in full without the written approval of the laboratory.
- Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:
Insufficient sample to test in full accordance with BS 1377	MW M. Willson Laboratory Manager	22/09/2021	1 of 1

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: BH01 5.00 Sample Depth (m) Sample Description: High strength brown mottled light grey CLAY. Sample Reference UT2 Test Number Length 199.6 mm 101.0 Diameter mm **Bulk Density** 1 95 Mg/m3 Moisture Content 30.1 Dry Density 1.50 Mg/m3 Rate of Strain %/min Cell Pressure 200 kPa 7.0 At failure Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f 158 kPa Undrained Shear Strength, cu 79 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Mode of Failure Compound Deviator Stress v Axial Strain 300 250 Corrected Deviator Stress kPa 200 150 100 50 3 6 Axial Strain % Mohr Circles 250 Deviator stress corrected for

area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson	20/09/2021	1 of 1	
Laboratory Manager			

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** The Big Yellow Construction Company Ltd Client Name: Sample Description: High strength brown mottled grey CLAY. Test Number Length Diameter **Bulk Density** Moisture Content Dry Density Rate of Strain Cell Pressure At failure Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f

4	i
1	
199.4	mm
101.0	mm
1.96	Mg/m3
27.5	%
1.54	Mg/m3

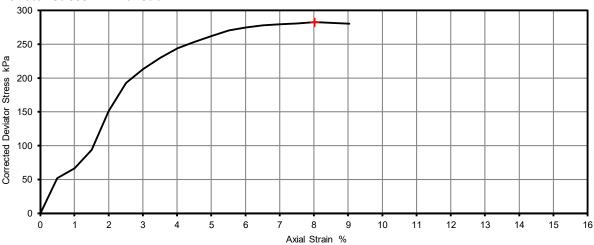
Project Number:

Sample Location:

Sample Depth (m)

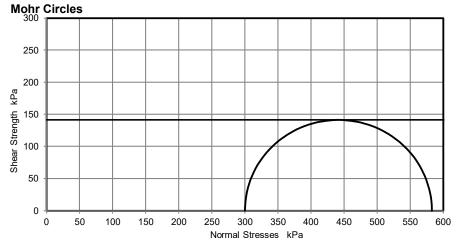
Sample Reference

GL24466-01


BH01

7.50

UT3


	_
1.3	%/min
300	kPa
8.0	%
283	kPa
141	kPa ½(σ1 - σ3)f
Compound	

Deviator Stress v Axial Strain

Undrained Shear Strength, cu

Mode of Failure

Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:	
	MW M. Willson	20/09/2021	1 of 1	
	Laboratory Manager			

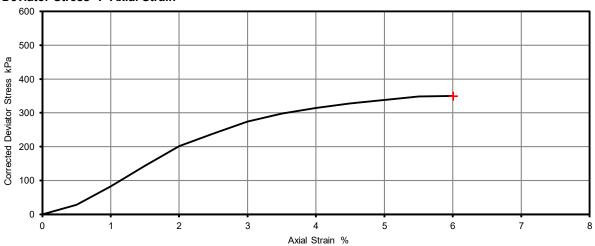
harrisontesting Project Client N Sample Test Number Length Diameter **Bulk Density** Dry Density

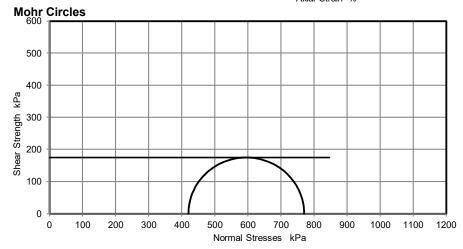
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

ct Name:	BY Kentish Town	Project Number:	GL24466-01
Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH01
le Description:	Very high strength brown mottled grey CLAY with selenite crystals.	Sample Depth (m)	10.50
ne Description.	, , , , , , , , , , , , , , , , , , , ,	Sample Reference	UT4

Moisture Content


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f Undrained Shear Strength, cu Mode of Failure

199.8 mm 100.3 mm
100.3 mm
1.98 Mg/m3
27.0 %
1.56 Mg/m3

	_
1.3	%/min
420	kPa
6.0	%
350	kPa
175	kPa ½(σ1 - σ3)f
Brittle	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

arks	Approved	Date	Sheet No.:
	MW M. Willson	20/09/2021	1 of 1
	Laboratory Manager		

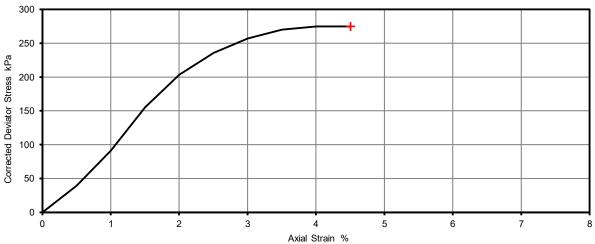
harrisontesting

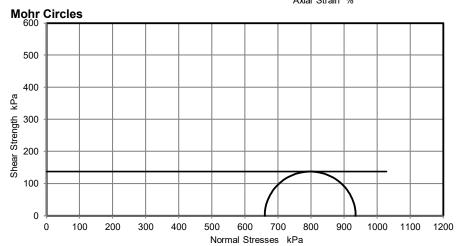
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH01
Sample Description:	Sample Description: High strength dark group slightly grouply CLAV Croyel is of purite	Sample Depth (m)	16.50
Sample Description: High strength dark grey slightly gravelly CLAY. Gravel is of pyrite.		Sample Reference	UT6

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu Mode of Failure

1	
199.6	mm
101.6	mm
1.95	Mg/m3
26.6	%
1.54	Mg/m3

	_
1.3	%/min
660	kPa
4.5	%
275	kPa
137	kPa ½(σ1 - σ3)f
Brittle	·

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: BH01 19.50 Sample Depth (m) Sample Description: High strength dark grey CLAY. Sample Reference UT7 Test Number Length 199.8 mm 102.6 Diameter mm 1.97 **Bulk Density** Mg/m3 Moisture Content 26.9 Dry Density 1.55 Mg/m3 Rate of Strain %/min Cell Pressure 780 kPa 5.5 At failure Axial Strain 214 Deviator Stress, ($\sigma1 - \sigma3$)f kPa Undrained Shear Strength, cu 107 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 300 250 Corrected Deviator Stress kPa 200 150 100 50 3 6 Axial Strain % Mohr Circles 500 Deviator stress corrected for area change and 400 membrane effects Shear Strength kPa 300 Mohr circles and their interpretation is not covered 200

100

0 0

100

200

300

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

500

600

Normal Stresses kPa

700

800

900

1000

1100

1200

400

This report should not be reproduced except in full without the written approval of the laboratory.

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

by BS1377. This is provided for

information only.

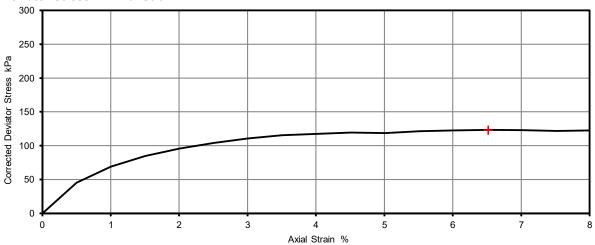
arks	Approved	Date	Sheet No.:	
	MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

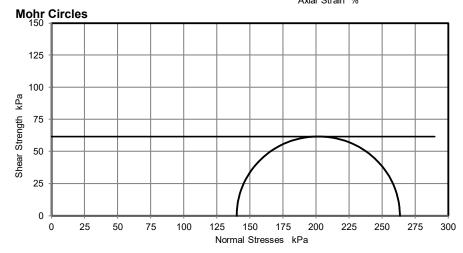
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH02
Sample Description:	Medium strength brown slightly gravelly CLAY. Gravel is of claystone.	Sample Depth (m)	3.50
Sample Description.		Sample Reference	UT1

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f Undrained Shear Strength, cu Mode of Failure

1	
199.4	mm
99.0	mm
2.02	Mg/m3
26.9	%
1.59	Mg/m3

1.0	%/min
140	kPa
6.5	%
123	kPa
62	kPa ½(σ1 - σ3)f
Compound	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

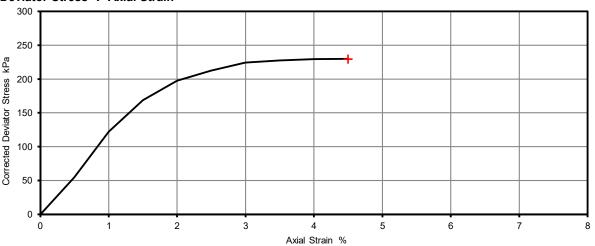
harrisontesting

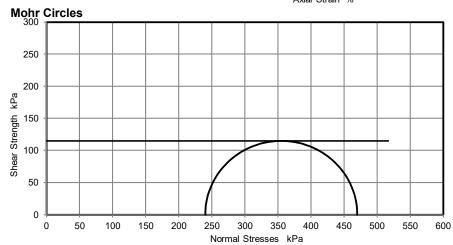
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH02
Sample Description:		Sample Depth (m)	6.00
Cample Description.	Tright strength brown mottled grey CEAT with selenite crystals.		UT2

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu Mode of Failure

1	
200.1	mm
101.8	mm
1.96	Mg/m3
27.6	%
1.53	Mg/m3

	-
1.2	%/min
240	kPa
4.5	%
230	kPa
115	kPa ½(σ1 - σ3)f
Brittle	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

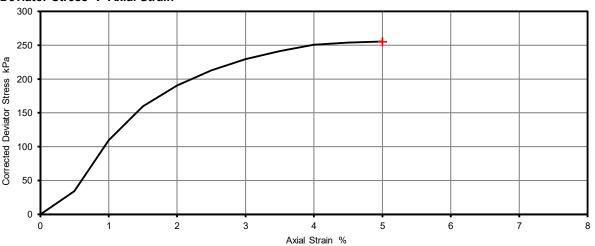
harrisontesting Length

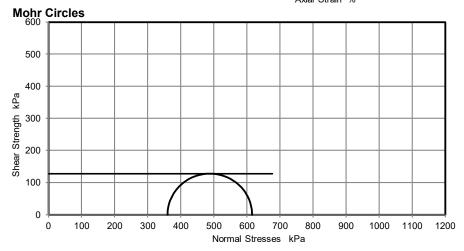
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH02
Sample Description:	High strength brown mottled drev slightly sandy C.L.A.Y. with selentle. I	Sample Depth (m)	9.00
Sample Description:	crystals.	Sample Reference	UT3

Test Number Diameter **Bulk Density** Moisture Content Dry Density

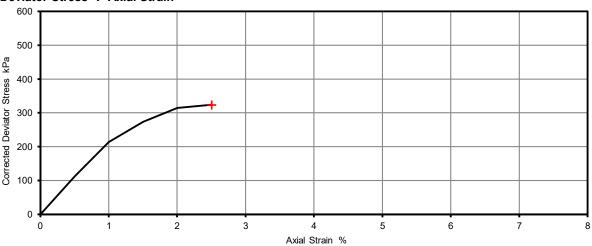

Rate of Strain Cell Pressure At failure

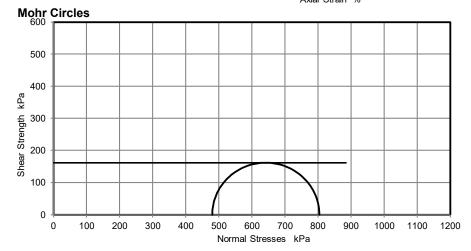

Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f Undrained Shear Strength, cu Mode of Failure

	ļ.
mm	199.9
mm	103.5
Mg/m3	1.97
%	25.2
Mg/m3	1.57
-	

1.0	%/min
360	kPa
5.0	%
256	kPa
128	kPa ½(σ1 - σ3)f
Compound	

Deviator Stress v Axial Strain


Deviator stress corrected for area change and membrane effects


- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

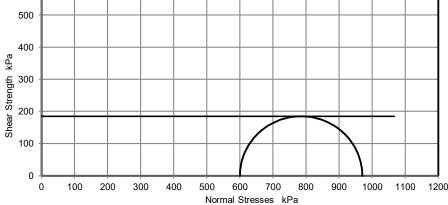
arks	Approved	Date	Sheet No.:	
	MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: Sample Depth (m) Very high strength dark brown mottled orange brown CLAY with Sample Description: selenite crystals. Sample Reference Test Number Length 199.6 mm 99.6 Diameter mm **Bulk Density** 1 99 Mg/m3 Moisture Content 25.5 Dry Density 1.59 Mg/m3 Rate of Strain %/min Cell Pressure 480 kPa 2.5 324 At failure Axial Strain % Deviator Stress, ($\sigma1 - \sigma3$)f kPa Undrained Shear Strength, cu 162 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 600

Deviator stress corrected for area change and membrane effects

BH02 12.00

UT4


- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:	1
	MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: BH02 15.00 Sample Depth (m) Sample Description: Very high strength dark grey CLAY. Sample Reference UT5 Test Number Length 199.6 mm 101.9 Diameter mm **Bulk Density** 1 99 Mg/m3 Moisture Content 24.5 Dry Density 1.59 Mg/m3 Rate of Strain %/min Cell Pressure 600 kPa 6.5 At failure Axial Strain 370 Deviator Stress, ($\sigma1 - \sigma3$)f kPa Undrained Shear Strength, cu 185 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Mode of Failure Compound Deviator Stress v Axial Strain 600 500 Corrected Deviator Stress kPa 400 300 200 100 3 6 Axial Strain % Mohr Circles 500 Deviator stress corrected for area change and 400 membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:	
	MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting

DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

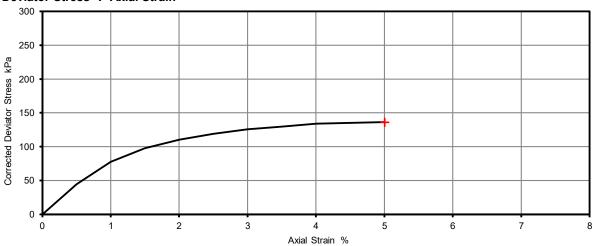
BS1377: Part 7: 1990, Clause 8, Single Specimen

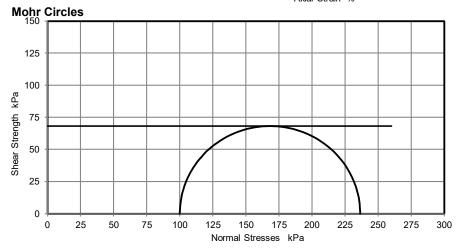
Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH03
Sample Description:	I Medium strendth brown mottled drev slidnity dravelly C.LAY. Grave is I	Sample Depth (m)	2.50
Sample Description:	of siltstone.	Sample Reference	UT1

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu

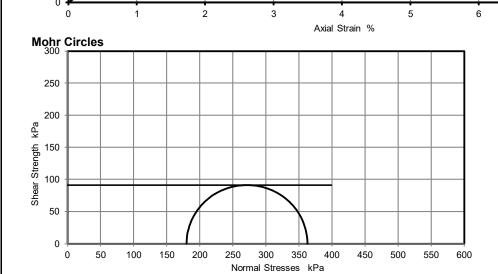

Mode of Failure


1	
199.8	mm
102.1	mm
1.96	Mg/m3
28.0	%
1.53	Mg/m3

1.0	%/min
100	kPa
5.0	%
136	kPa
68	kPa ½
Brittle	

½(σ1 - σ3)f

Deviator Stress v Axial Strain


Deviator stress corrected for area change and membrane effects

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: Sample Depth (m) Sample Description: High strength brown mottled grey CLAY. Sample Reference Test Number Length 199.8 mm 102.0 Diameter mm 1.92 **Bulk Density** Mg/m3 Moisture Content 29.3 Dry Density 1.48 Mg/m3 Rate of Strain %/min Cell Pressure 180 kPa 5.0 At failure Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f 183 kPa Undrained Shear Strength, cu 91 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 300 250 Corrected Deviator Stress kPa 200 150

Deviator stress corrected for area change and membrane effects

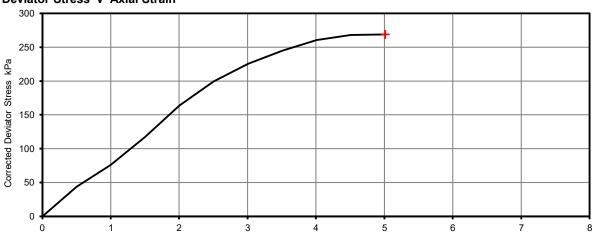
BH03 4.50

UT2

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

100

50


- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:	
	MW M. Willson	20/09/2021	1 of 1	
	Laboratory Manager	,		

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: Sample Depth (m) Sample Description: High strength brown CLAY with selenite crystals. Sample Reference Test Number Length 199.5 mm 102.0 Diameter mm **Bulk Density** 1.96 Mg/m3 Moisture Content 26.7 Dry Density 1.54 Mg/m3 Rate of Strain %/min Cell Pressure 300 kPa 5.0 At failure Axial Strain 269 Deviator Stress, ($\sigma1 - \sigma3$)f kPa Undrained Shear Strength, cu 135 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 300 250 200

Deviator stress corrected for area change and membrane effects

BH03 7.50

UT3

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

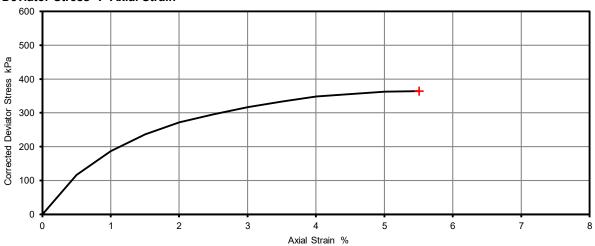
harrisontesting Test Number Length Diameter **Bulk Density** Moisture Content Dry Density Rate of Strain Cell Pressure

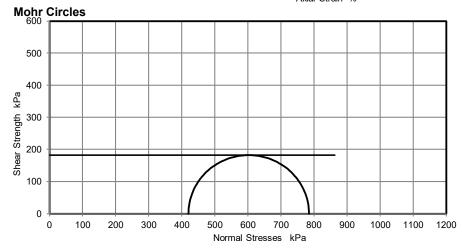
DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE

BS1377: Part 7: 1990, Clause 8, Single Specimen

Project Name:	BY Kentish Town	Project Number:	GL24466-01
Client Name:	The Big Yellow Construction Company Ltd	Sample Location:	BH03
Sample Description:	Very high strength dark grey mottled orange brown CLAY with selenite	Sample Depth (m)	10.50
	envetale	Sample Reference	UT4

At failure

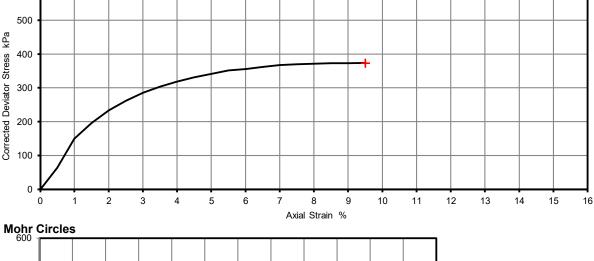

Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu

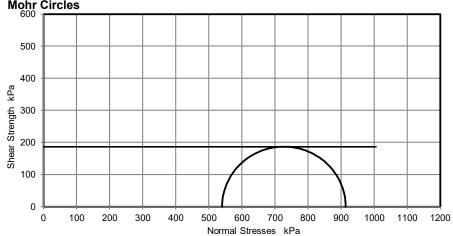

Mode of Failure

1	
199.7	mm
101.7	mm
1.97	Mg/m3
25.6	%
1.56	Mg/m3

1.0	%/min
420	kPa
5.5	%
365	kPa
182	kPa ½(σ1 - σ3)f
Brittle	

Deviator Stress v Axial Strain


Deviator stress corrected for area change and membrane effects


- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
 This report should not be reproduced except in full without the written approval of the laboratory.
 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 The Big Yellow Construction Company Ltd Sample Location: Client Name: Sample Depth (m) Sample Description: Very high strength dark grey CLAY. Sample Reference Test Number Length 199.9 mm 102.5 Diameter mm 2.00 **Bulk Density** Mg/m3 Moisture Content 26.1 Dry Density 1.59 Mg/m3 Rate of Strain %/min Cell Pressure 540 kPa 9.5 At failure Axial Strain % Deviator Stress, ($\sigma1 - \sigma3$)f 374 kPa Undrained Shear Strength, cu 187 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Mode of Failure Compound Deviator Stress v Axial Strain 600 500 400

Deviator stress corrected for area change and membrane effects

BH03

13.50

UT5

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: BH03 16.50 Sample Depth (m) Sample Description: Very high strength dark grey CLAY. Sample Reference UT6 Test Number Length 199.5 mm 101.9 Diameter mm **Bulk Density** 1 99 Mg/m3 Moisture Content 24.8 Dry Density 1.59 Mg/m3 Rate of Strain %/min Cell Pressure 660 kPa 6.0 At failure Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f 388 kPa Undrained Shear Strength, cu 194 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 600 500 Corrected Deviator Stress kPa 400 300 200 100 3 6 Axial Strain % Mohr Circles 500 Deviator stress corrected for area change and 400 membrane effects Shear Strength kPa 300 Mohr circles and their

200

100

0 0

100

200

300

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

500

600

Normal Stresses kPa

700

800

900

1000

1100

1200

400

This report should not be reproduced except in full without the written approval of the laboratory.

Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

interpretation is not covered

by BS1377. This is provided for

information only.

Approved	Date	Sheet No.:	
MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

harrisontesting **DETERMINATION OF UNDRAINED SHEAR STRENGTH - DEFINITIVE** BS1377: Part 7: 1990, Clause 8, Single Specimen Project Name: **BY Kentish Town** Project Number: GL24466-01 Client Name: The Big Yellow Construction Company Ltd Sample Location: BH03 19.50 Sample Depth (m) Sample Description: Very high strength dark grey CLAY. Sample Reference UT7 Test Number Length 200.0 mm 102.1 Diameter mm 1.96 **Bulk Density** Mg/m3 Moisture Content 25.7 Dry Density 1.56 Mg/m3 Rate of Strain %/min Cell Pressure 780 kPa 5.0 At failure Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f 349 kPa Undrained Shear Strength, cu 175 kPa $\frac{1}{2}(\sigma 1 - \sigma 3)f$ Brittle Mode of Failure Deviator Stress v Axial Strain 600 500 Corrected Deviator Stress kPa 400 300 200 100 3 6 Axial Strain % Mohr Circles 500 Deviator stress corrected for area change and 400 membrane effects

Shear Strength kPa 300 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 Normal Stresses kPa

- Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.
- This report should not be reproduced except in full without the written approval of the laboratory.

 Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation.

Remarks	Approved	Date	Sheet No.:	
	MW M. Willson Laboratory Manager	20/09/2021	1 of 1	

Matthew Wilson

Harrison Group Harrison Testing Services Unit 1 Alston Road Norwich Norfolk NR6 5DS

t: 01603 416333

e: laboratory@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

09/09/2021

Analytical Report Number: 21-98090

Replaces Analytical Report Number: 21-98090, issue no. 1 Client references/information amended.

Project / Site name: B Y Kentish Town Samples received on: 09/09/2021

Your job number: GL24466 Samples instructed on/

Analysis started on:

Your order number: PO 37611 GB Analysis completed by: 23/09/2021

Report Issue Number: 2 **Report issued on:** 23/09/2021

Samples Analysed: 31 soil samples

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2003531	2003532	2003533	2003534	2003535
Sample Reference	Sample Reference			BH01	BH01	BH01	BH01	BH01
Sample Number				D1	В3	D3	D5	D7
Depth (m)			0.50-0.50	2.50-2.95	5.50-5.50	8.00-8.00	11.00-1.00	
Date Sampled			25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021	
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	17	19	16	18
Total mass of sample received	kg	0.001	NONE	2.0	0.30	0.50	0.50	1.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.6	7.8	8.7	8.0	8.1
Total Sulphate as SO4	%	0.005	MCERTS	0.124	-	-	-	-
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	0.68	2.3	0.32	5.1	5.2
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	680	2300	320	5100	5200
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.34	1.2	0.16	2.6	2.6
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	341	-	-	-	-
Total Sulphur	%	0.005	MCERTS	0.094	-	-	-	-

Lab Sample Number				2003536	2003537	2003538	2003539	2003540
Sample Reference	ample Reference			BH01	BH01	BH01	BH02	BH02
Sample Number				D8	D11	D15	B1	D7
Depth (m)			12.00-12.45	17.00-17.00	23.00-23.00	0.90-1.20	6.45-6.55	
Date Sampled			25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	18	17	17	18
Total mass of sample received	kg	0.001	NONE	1.5	0.30	0.30	0.30	0.40

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.4	9.0	9.0	8.6	8.4
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	0.067	-
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	5.3	1.6	1.1	0.36	1.8
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	5300	1600	1100	360	1800
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	2.6	0.82	0.57	0.18	0.90
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	181	-
Total Sulphur	%	0.005	MCERTS	=	-	-	0.041	-

Lab Sample Number				2003541	2003542	2003543	2003544	2003545
Sample Reference				BH02	BH02	BH03	BH03	BH03
Sample Number	D11	UT5	D1	D5	D11			
Depth (m)	12.50-12.50	15.00-15.45	0.50-0.50	2.50-2.50	5.50-5.50			
Date Sampled	25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
oisture Content % 0.01 NONE			17	16	13	17	18	
Total mass of sample received	kg	0.001	NONE	1.5	0.30	2.0	0.30	1.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2	8.5	9.3	8.4	7.5
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	0.051	-
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	2.5	2.0	0.34	0.34	4.7
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	2500	2000	340	340	4700
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.2	1.0	0.17	0.17	2.4
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	171	-
Total Sulphur	%	0.005	MCERTS	=	-	-	0.024	1

Lab Sample Number				2003546	2003547	2003548	2003549	2003550
Sample Reference				BH03	BH03	BH03	BH03	BH03
Sample Number	D17	D20	D26	D31	D35			
Depth (m)	8.50	10.00	13.00	18.00	24.00-24.45			
Date Sampled	25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
loisture Content % 0.01 NONE				18	17	17	17	18
Total mass of sample received					1.5	1.5	1.0	0.80

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.8	7.6	8.2	8.6	8.7
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	-
Water Soluble Sulphate (Soil Equivalent)		0.0025	MCERTS	3.8	2.5	2.2	1.6	1.4
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	3800	2500	2200	1600	1400
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.9	1.2	1.1	0.82	0.71
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-

				-				
Lab Sample Number				2003551	2003552	2003553	2003554	2003555
Sample Reference				DCP05	TP01	TP01	TP02	WS01
Sample Number	D3	В3	B4	B1	D3			
Depth (m)	0.80-0.80	1.60-1.80	2.40-2.60	0.60-0.80	0.70-0.70			
Date Sampled	25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	14	20	9.5	16
Total mass of sample received	ka	0.001	NONE	1.0	0.70	0.50	0.70	0.70

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.5	10.0	8.4	9.4	8.5
Total Sulphate as SO4	%	0.005	MCERTS	-	-	0.080	-	-
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	0.14	0.58	0.55	1.3	0.094
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	140	580	550	1300	94
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)		0.00125	MCERTS	0.069	0.29	0.27	0.64	0.047
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	275	-	-
Total Sulphur	%	0.005	MCERTS	=	-	0.032	-	-

Lab Sample Number				2003556	2003557	2003558	2003559	2003560
Sample Reference				WS01	WS01	WS02	WS02	WS02
Sample Number	D6	D10	D4	D5	D7			
Depth (m)	2.00-2.00	4.50-4.50	1.00-1.00	1.50-1.50	2.30-2.30			
Date Sampled	25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
oisture Content % 0.01 NONE				18	19	14	20	20
Total mass of sample received	kg	0.001	NONE	0.30	0.30	0.40	1.0	1.0

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.9	8.4	8.6	8.8	7.8
Total Sulphate as SO4	%	0.005	MCERTS	0.189	-	0.056	-	0.109
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	1.6	0.31	0.21	0.19	1.1
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	1600	310	210	190	1100
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)		0.00125	MCERTS	0.81	0.16	0.10	0.096	0.57
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	811	-	105	-	568
Total Sulphur	%	0.005	MCERTS	0.067	=	0.021	-	0.148

Lab Sample Number				2003561
Sample Reference				WS03
Sample Number				D1
Depth (m)				0.25-0.25
Date Sampled				25/08/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	8.8
Total mass of sample received	kg	0.001	NONE	1.0

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	10.6
Total Sulphate as SO4	%	0.005	MCERTS	0.533
Water Soluble Sulphate (Soil Equivalent)	g/kg	0.0025	MCERTS	0.62
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	620
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.31
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	312
Total Sulphur	%	0.005	MCERTS	0.179

Analytical Report Number : 21-98090 Project / Site name: B Y Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2003531	BH01	D1	0.50-0.50	Brown clay and loam with gravel.
2003532	BH01	В3	2.50-2.95	Brown clay and loam with gravel.
2003533	BH01	D3	5.50-5.50	Brown clay.
2003534	BH01	D5	8.00-8.00	Brown clay.
2003535	BH01	D7	11.00-1.00	Brown clay.
2003536	BH01	D8	12.00-12.45	Brown clay.
2003537	BH01	D11	17.00-17.00	Brown clay.
2003538	BH01	D15	23.00-23.00	Brown clay.
2003539	BH02	B1	0.90-1.20	Brown clay with gravel.
2003540	BH02	D7	6.45-6.55	Brown clay.
2003541	BH02	D11	12.50-12.50	Brown clay.
2003542	BH02	UT5	15.00-15.45	Brown clay.
2003543	BH03	D1	0.50-0.50	Brown loam and gravel.
2003544	BH03	D5	2.50-2.50	Brown clay.
2003545	BH03	D11	5.50-5.50	Brown clay.
2003546	BH03	D17	8.5	Brown clay.
2003547	BH03	D20	10	Brown clay.
2003548	BH03	D26	13	Brown clay.
2003549	BH03	D31	18	Brown clay.
2003550	BH03	D35	24.00-24.45	Brown clay.
2003551	DCP05	D3	0.80-0.80	Brown clay and loam with gravel.
2003552	TP01	B3	1.60-1.80	Brown clay and loam with gravel and brick.
2003553	TP01	B4	2.40-2.60	Brown clay with gravel.
2003554	TP02	B1	0.60-0.80	Brown loam and clay with gravel and vegetation.
2003555	WS01	D3	0.70-0.70	Brown clay and loam with gravel and vegetation.
2003556	WS01	D6	2.00-2.00	Brown clay with gravel and vegetation.
2003557	WS01	D10	4.50-4.50	Brown clay.
2003558	WS02	D4	1.00-1.00	Brown clay and sand with gravel.
2003559	WS02	D5	1.50-1.50	Brown clay and sand with gravel.
2003560	WS02	D7	2.30-2.30	Brown clay and sand with gravel.
2003561	WS03	D1	0.25-0.25	Brown loam and sand with gravel.

Analytical Report Number: 21-98090 Project / Site name: B Y Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

APPENDIX E ENVIRONMENTAL LABORATORY TESTING

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-92702

Replaces Analytical Report Number: 21-92702, issue no. 1 Additional analysis undertaken.

Project / Site name: BY Kentish Town Samples received on: 12/08/2021

Your job number: GL24466 Samples instructed on/ 13/08/2021

Analysis started on:

Your order number: Analysis completed by: 06/09/2021

Report Issue Number: 2 **Report issued on:** 06/09/2021

Samples Analysed: 7 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-92702 Project / Site name: BY Kentish Town

Lab Sample Number			1971183	1971184	1971185	1971186	1971187	
Sample Reference Sample Number			BH02	BH02	WS01	WS02	WS02	
			1	2	1	1	3	
Depth (m) Date Sampled				0.30-0.30	0.60-0.60	0.20-0.20	0.30-0.30	0.80-0.80
				11/08/2021	11/08/2021	11/08/2021	11/08/2021	11/08/2021
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.0	17	14	11	13
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2	1.0
·	<u> </u>				U.			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	0.084	-
Asbestos Quantification Total	%	0.001	ISO 17025	_	-	-	0.084	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	8.5	8.1	8.4	-
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	-	1300	750	4300	-
Sulphide	mg/kg	1	MCERTS	-	32	< 1.0	66	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.0	-	2.5	-	2.1
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	_
Speciated PAHs	<u> </u>							
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	0.80	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	0.51	-
Phenanthrene	mg/kg	0.05	MCERTS	-	0.63	0.76	2.5	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	0.71	0.72	-
Fluoranthene	mg/kg	0.05	MCERTS	-	0.88	0.79	4.1	-
Pyrene	mg/kg	0.05	MCERTS	-	0.80	0.62	3.7	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	0.42	0.29	2.1	-
Chrysene	mg/kg	0.05	MCERTS	-	0.40	0.35	1.9	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	0.56	0.48	2.6	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	0.25	0.14	1.1	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.43	0.32	1.9	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	1.0	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	0.32	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	1.2	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	_	4.37	4.46	24.2	-
			I		1.57	1.10	۷ ۱۰۷	

Analytical Report Number: 21-92702 Project / Site name: BY Kentish Town

Lab Sample Number Sample Reference Sample Number Depth (m) Date Sampled Time Taken			1971183	1971184	1971185	1971186	1971187	
			BH02	BH02	WS01	WS02	WS02	
			1	2	1	1	3	
			0.30-0.30	0.60-0.60	0.20-0.20	0.30-0.30	0.80-0.80	
			11/08/2021	11/08/2021	11/08/2021	11/08/2021	11/08/2021	
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	14	13	28	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	1.4	0.96	1.4	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	3.9	2.5	7.5	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	0.6	1.6	-
Chromium (hexavalent)	mg/kg	4	MCERTS	1	< 4.0	< 4.0	< 4.0	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	48	28	37	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	1	70	35	240	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	180	71	500	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	33	21	52	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	78	41	68	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	110	110	470	-
Petroleum Hydrocarbons								
TPH Texas (C6 - C8)	mg/kg	0.1	ISO 17025	-	< 0.1	< 0.1	< 0.1	-
TPH Texas (C8 - C10)	mg/kg	10	MCERTS	-	< 10	< 10	< 10	-
TPH Texas (C10 - C12)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	-
TPH Texas (C12 - C16)	mg/kg	4	MCERTS	-	4.1	< 4.0	20	-
TPH Texas (C16 - C21)	mg/kg	10	MCERTS	-	28	< 10	110	-
TPH Texas (C21 - C40)	mg/kg	10	MCERTS	-	130	14	660	-
TPH Texas (C6 - C40)	mg/kg	10	NONE	-	160	14	790	-

Analytical Report Number: 21-92702 Project / Site name: BY Kentish Town

Speciated Total EPA-16 PAHs

Lab Sample Number	1971188	1971189			
Sample Reference	WS03	WS03 3 1.00-1.00 11/08/2021			
Sample Number	2				
Depth (m)	0.50-0.50				
Date Sampled	11/08/2021				
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.7	8.0
Total mass of sample received	kg	0.001	NONE	1.2	1.2
			, ,		ı
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	-	9.6
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-	2200
Sulphide	mg/kg	1	MCERTS	-	40
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.4	-
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	-	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	-	0.98
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS		4.2
Fluorene	mg/kg	0.05	MCERTS	-	2.5
Phenanthrene	mg/kg	0.05	MCERTS	_	25
Anthracene	mg/kg	0.05	MCERTS	_	1.6
Fluoranthene	mg/kg	0.05	MCERTS	_	34
Pyrene	mg/kg	0.05	MCERTS	_	29
Benzo(a)anthracene	mg/kg	0.05	MCERTS	_	15
Chrysene	mg/kg	0.05	MCERTS	-	11
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_	13
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_	6.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	10
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	4.6
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	1.4
					4.1

mg/kg

MCERTS

163

Analytical Report Number: 21-92702 Project / Site name: BY Kentish Town

Lab Sample Number				1971188	1971189
Sample Reference				WS03	WS03
Sample Number				2	3
Depth (m)				0.50-0.50	1.00-1.00
Date Sampled				11/08/2021	11/08/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	31
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	3.0
Boron (water soluble)	mg/kg	0.2	MCERTS	-	3.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	1.1
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	310
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	320
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	58
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	62
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	320
Petroleum Hydrocarbons					
TPH Texas (C6 - C8)	mg/kg	0.1	ISO 17025	-	< 0.1
TPH Texas (C8 - C10)	mg/kg	10	MCERTS	-	< 10
TPH Texas (C10 - C12)	mg/kg	1	MCERTS	-	3.4
TPH Texas (C12 - C16)	mg/kg	4	MCERTS	-	13
TPH Texas (C16 - C21)	mg/kg	10	MCERTS	-	51
TPH Texas (C21 - C40)	mg/kg	10	MCERTS	-	290
TPH Texas (C6 - C40)	mg/kg	10	NONE	-	360

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-92702
Project / Site name: BY Kentish Town

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1971186	WS02	0.30-0.30	131	Loose Fibrous Debris	Chrysotile	0.084	0.084

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 21-92702 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1971183	BH02	1	0.30-0.30	Brown clay and sand with gravel.
1971184	BH02	2	0.60-0.60	Grey clay and sand with gravel.
1971185	WS01	1	0.20-0.20	Brown loam and clay with vegetation and gravel
1971186	WS02	1	0.30-0.30	Brown clay and sand with rubble and gravel
1971187	WS02	3	0.80-0.80	Brown loam and gravel.
1971188	WS03	2	0.50-0.50	Brown loam and gravel.
1971189	WS03	3	1.00-1.00	Brown loam and gravel.

Analytical Report Number: 21-92702 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH Texas (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 21-92702 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
--	-----------------------------	------------------	-----------------------	-------------------------

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-92708

Project / Site name: BY Kentish Town Samples received on: 12/08/2021

Your job number: GL24466 Samples instructed on/ 12/08/2021

Analysis started on:

Analysis completed by: 19/08/2021

Report Issue Number: 1 **Report issued on:** 19/08/2021

Samples Analysed: 3 10:1 WAC Samples

Dawradio

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-	92708					
					Client:	HARRIGROU	IP	
							-	
Location		BY Ken	tish Town					
Lab Reference (Sample Number)		1971197	7 / 1971198		Landfill	Landfill Waste Acceptance Criteria Limits		
Sampling Date			08/2021			Stable Non-		
Sample ID	BH02 2				reactive			
Depth (m)		0.6	0-0.60		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.1				3%	5%	6%	
Loss on Ignition (%) **	4.9						10%	
BTEX (µg/kg) **	< 10		+	+	6000			
Sum of PCBs (mg/kg) ** Mineral Oil (mg/kg)	0.019 150		+	+	1 500			
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	7.24		1	+	100			
pH (units)**	8.4			+		>6		
Acid Neutralisation Capacity (mol / kg)	7.1					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
procedure)	mg/l			mg/kg				
Arsenic *	0.0048			0.0376	0.5	2	25	
Barium *	0.0303			0.237	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0009			0.0068	0.5	10	70	
Copper *	0.013			0.10	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0198			0.155	0.5	10	30	
Nickel *	0.0055			0.043 0.026	0.4	10	40	
Lead * Antimony *	0.0033			0.026	0.5 0.06	10 0.7	50 5	
Selenium *	< 0.0074			< 0.040	0.00	0.5	7	
Zinc *	0.0068			0.053	4	50	200	
Chloride *	20			160	800	15000	25000	
Fluoride	1.4			11	10	150	500	
Sulphate *	63			490	1000	20000	50000	
TDS*	130			990	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	17.5			137	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.2							
Dry Matter (%)	83			1	ļ			
Moisture (%)	17							
Results are expressed on a dry weight basis, after correction for moi	sture content when	e applicable.	·	·	*= UKAS accredit	ted (liquid eluate ana	lysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as

amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-	92708					
					Client:	HARRIGROU	IP	
							-	
Location		BY Ken	tish Town					
Lab Reference (Sample Number)		1971199	9 / 1971200		Landfill	Waste Acceptant	ce Criteria	
Sampling Date			08/2021			Stable Non-		
Sample ID	WS02 1			1	reactive			
Depth (m)		0.3	0-0.30		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	2.4				3%	5%	6%	
Loss on Ignition (%) **	7.1						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) ** Minoral Oil (mg/kg)	0.095 520		+		1 500			
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	27.4		1		100			
pH (units)**	8.0					>6		
Acid Neutralisation Capacity (mol / kg)	9.1					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching				-	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
procedure)	mg/l			mg/kg				
Arsenic *	0.0011			0.0104	0.5	2	25	
Barium *	0.0672			0.620	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0007			0.0066	0.5	10	70	
Copper *	0.0061			0.057	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0130			0.120	0.5	10	30	
Nickel *	0.0031			0.029	0.4	10	40	
Lead *	0.0020			0.018	0.5	10	50	
Antimony *	0.031			0.29	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0073			0.067	4	50	200	
Chloride * Fluoride	0.40			98 3.7	800 10	15000 150	25000 500	
Sulphate *	120		1	1100	1000	20000	50000	
TDS*	180			1600	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	6.03			55.6	500	800	1000	
	2.00			20.0	300	300	-555	
Leach Test Information								
Stone Content (%)	< 0.1			+	-			
Sample Mass (kg)	1.2							
Dry Matter (%)	89							
Moisture (%)	11							
Results are expressed on a dry weight basis, after correction for mo	sture content whe	e applicable.			*= UKAS accredi	ted (liquid eluate ana	lysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-9	92708					
					Client:	HARRIGROU	IP.	
					0.10.10.			
Location		BY Ken	tish Town		1 4611			
Lab Reference (Sample Number)		1971201	/ 1971202		Landfill	Landfill Waste Acceptance Criteria Limits		
Sampling Date		11/0	8/2021			Stable Non-		
Sample ID	WS03 3				reactive			
Depth (m)			0-1.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	3.4			1	3%	5%	6%	
oss on Ignition (%) **	9.8			1			10%	
BTEX (μg/kg) **	< 10			.	6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	88 129			 	500 100			
Total PAH (WAC-17) (mg/kg) pH (units)**	8.4			+	100	>6		
Acid Neutralisation Capacity (mol / kg)	9.6					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching tes			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0043			0.0354	0.5	2	25	
Barium *	0.0278			0.229	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0033			0.027	0.5	10	70	
Copper *	0.0080			0.066	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0033			0.0268	0.5	10	30	
Nickel *	0.0031			0.025	0.4	10	40	
Lead *	0.0061			0.050	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium * Zinc *	< 0.0040 0.0056			< 0.040 0.046	0.1 4	0.5 50	7 200	
Chloride *	2.3			19	800	15000	25000	
Fluoride	1.4	1		12	10	150	500	
Sulphate *	18			150	1000	20000	50000	
TDS*	78			640	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	7.59			62.3	500	800	1000	
Leach Test Information								
Phono Contract (0/)	.01				ļ	1		
Stone Content (%)	< 0.1	-	 	1	-	-		
Sample Mass (kg) Dry Matter (%)	1.2 92	+	+	+	+			
Dry Matter (%) Moisture (%)	8.0	 	+	+	 	1		
HOBAIC (70)	0.0							
Results are expressed on a dry weight basis, after correction for mo	isture content whe	re applicable.	-		*= UKAS accredit	L ed (liquid eluate ana	lvsis only)	
tated limits are for guidance only and i2 cannot be held responsible			niclation		** = MCERTS acc			

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as

amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-92708 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1971197	BH02	2	0.60-0.60	Grey clay and sand with gravel.
1971199	WS02	1	0.30-0.30	Brown clay and sand with rubble and gravel
1971201	WS03	3	1.00-1.00	Brown loam and gravel.

Analytical Report Number : 21-92708 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Analytical Report Number : 21-92708 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Harrison Group Kimbeley Street Norwich NR2 2RJ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01603 613111 **f:** 01603 618120

t: 01923 225404 **f:** 01923 237404

e:

e: reception@i2analytical.com

Analytical Report Number: 21-93023

Project / Site name: BY Kentish Town Samples received on: 12/08/2021

Your job number: GL24466 Samples instructed on/ 16/08/2021

Analysis started on:

Your order number: Analysis completed by: 23/08/2021

Report Issue Number: 1 **Report issued on:** 23/08/2021

Samples Analysed: 3 soil samples

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-93023 Project / Site name: BY Kentish Town

iample Reference iample Number Depth (m) Date Sampled Time Taken				BH03	SSS01	SSS02
Depth (m) Date Sampled						
Date Sampled				1	1	1
•						
ime Taken				12/08/2021	12/08/2021	12/08/2021
				None Supplied	None Supplied	None Supplied
nalytical Parameter Soil Analysis)	Units	Limit of detection	Accreditation Status			
tone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
loisture Content	%	0.01	NONE	12	16	17
otal mass of sample received	kg	0.001	NONE	1.0	1.2	1.2
sbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics	_	_				
H - Automated	pH Units	N/A	MCERTS	9.3	8.2	6.9
otal Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
otal Sulphate as SO4	mg/kg	50	MCERTS	2200	650	590
ulphide	mg/kg	1	MCERTS	37	< 1.0	< 1.0
otal Organic Carbon (TOC)	%	0.1	MCERTS	3.4	1.6	1.7
otal Phenois						
otal Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs						
laphthalene	mg/kg	0.05	MCERTS	0.45	< 0.05	< 0.05
cenaphthylene	mg/kg	0.05	MCERTS	0.32	< 0.05	< 0.05
cenaphthene	mg/kg	0.05	MCERTS	0.27	< 0.05	< 0.05
luorene	mg/kg	0.05	MCERTS	0.66	< 0.05	< 0.05
henanthrene	mg/kg	0.05	MCERTS	4.4	0.33	< 0.05
nthracene	mg/kg	0.05	MCERTS	1.2	< 0.05	< 0.05
luoranthene	mg/kg	0.05	MCERTS	5.2	0.70	< 0.05
yrene	mg/kg	0.05	MCERTS	4.7	0.64	< 0.05
enzo(a)anthracene	mg/kg	0.05	MCERTS	3.4	0.51	< 0.05
Chrysene	mg/kg	0.05	MCERTS	3.0	0.44	< 0.05
enzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.4	0.57	< 0.05
enzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.4	0.21	< 0.05
enzo(a)pyrene	mg/kg	0.05	MCERTS	3.0	0.62	< 0.05
ndeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.6	0.28	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.47	< 0.05	< 0.05
enzo(ghi)perylene	mg/kg	0.05	MCERTS	1.7	0.45	< 0.05
otal PAH						
ULAI PATI	mg/kg	0.8	MCERTS	35.2	4.75	

Analytical Report Number: 21-93023 Project / Site name: BY Kentish Town

Lab Sample Number				1973038	1973039	1973040
Sample Reference				BH03	SSS01	SSS02
Sample Number				1	1	1
Depth (m)	0.45-0.45	0.20-0.20	0.20-0.20			
Date Sampled				12/08/2021	12/08/2021	12/08/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids		_	-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	15	16
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.7	1.0	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	1.2	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	0.7	0.6
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	34	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	180	70	26
Lead (aqua regia extractable)	mg/kg	1	MCERTS	260	130	74
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25	26	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	36	49	46
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	150	140	91
Petroleum Hydrocarbons						
TPH Texas (C6 - C8)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1
TPH Texas (C8 - C10)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH Texas (C10 - C12)	mg/kg	1	MCERTS	2.8	< 1.0	< 1.0
TPH Texas (C12 - C16)	mg/kg	4	MCERTS	13	< 4.0	< 4.0
TPH Texas (C16 - C21)	mg/kg	10	MCERTS	47	< 10	< 10
TPH Texas (C21 - C40)	mg/kg	10	MCERTS	310	< 10	< 10
TPH Texas (C6 - C40)	mg/kg	10	NONE	370	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-93023 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1973038	BH03	1	0.45-0.45	Brown loam and sand with gravel.
1973039	SSS01	1	0.20-0.20	Brown loam and clay with gravel and vegetation.
1973040	SSS02	1	0.20-0.20	Brown loam and clay with gravel and vegetation.

Analytical Report Number: 21-93023 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH Texas (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-93449

Project / Site name: BY Kentish Town Samples received on: 17/08/2021

Your job number: GL24466 Samples instructed on/ 17/08/2021

Analysis started on:

Your order number: GL24466 Analysis completed by: 25/08/2021

Report Issue Number: 1 Report issued on: 25/08/2021

Samples Analysed: 2 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-93449 Project / Site name: BY Kentish Town

Your Order No: GL24466

Lab Sample Number				1976193	1976194
Sample Reference				BH01	BH01
Sample Number	nple Number				
Depth (m)		0.50-0.50	1.00-1.00		
Date Sampled				16/08/2021	16/08/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	13
Total mass of sample received	kg	0.001	NONE	1.0	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-
General Inorganics					

pH - Automated	pH Units	N/A	MCERTS	9.0	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	1400	-
Sulphide	mg/kg	1	MCERTS	9.8	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	3.6

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	1.7	-
Fluorene	mg/kg	0.05	MCERTS	1.6	-
Phenanthrene	mg/kg	0.05	MCERTS	8.1	-
Anthracene	mg/kg	0.05	MCERTS	1.7	-
Fluoranthene	mg/kg	0.05	MCERTS	9.8	-
Pyrene	mg/kg	0.05	MCERTS	9.1	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	4.7	-
Chrysene	mg/kg	0.05	MCERTS	3.1	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	4.0	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.8	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	3.5	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.6	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.53	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.0	-

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	53.3	-

Analytical Report Number: 21-93449 Project / Site name: BY Kentish Town

Your Order No: GL24466

Lab Sample Number	1976193	1976194			
Sample Reference	BH01	BH01			
Sample Number	1	2			
Depth (m)				0.50-0.50	1.00-1.00
Date Sampled	16/08/2021	16/08/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids	-				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	24	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	2.4	-
Boron (water soluble)	mg/kg	0.2	MCERTS	3.9	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.5	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	38	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	310	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	620	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	40	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	68	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	510	-
Petroleum Hydrocarbons					
TPH Texas (C6 - C8)	mg/kg	0.1	ISO 17025	I/S	-
TPH Texas (C8 - C10)	mg/kg	10	MCERTS	I/S	-
TPH Texas (C10 - C12)	mg/kg	1	MCERTS	10	-
TPH Texas (C12 - C16)	mg/kg	4	MCERTS	140	-
TPH Texas (C16 - C21)	mg/kg	10	MCERTS	380	-
TPH Texas (C21 - C40)	mg/kg	10	MCERTS	680	-
TPH Texas (C6 - C40)	mg/kg	10	NONE	1200	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 21-93449 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1976193	BH01	1	0.50-0.50	Brown clay and loam with gravel and vegetation.
1976194	BH01	2	1.00-1.00	Brown loam and clay with gravel.

Analytical Report Number: 21-93449 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH Texas (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-93450

Project / Site name: BY Kentish Town Samples received on: 17/08/2021

Your job number: GL24466 Samples instructed on/ 17/08/2021

Analysis started on:

Your order number: GL24466 Analysis completed by: 24/08/2021

Report Issue Number: 1 Report issued on: 24/08/2021

Samples Analysed: 1 10:1 WAC Sample

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

		21-	93450				
					Oli		_
					Client:	HARRIGROU	JP
Location		BY Ken	itish Town				
Lab Reference (Sample Number)		197619	5 / 1976196		Landfill	Waste Acceptance	e Criteria
						Limits Stable Non-	
Sampling Date Sample ID	16/08/2021 BH01 1				reactive		
Depth (m)	0.50-0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis							
TOC (%)**	3.9				3%	5%	6%
Loss on Ignition (%) **	11.6						10%
BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	0.045				1		
Mineral Oil (mg/kg)	790				500		
Total PAH (WAC-17) (mg/kg)	52.2				100		
pH (units)**	8.6					>6	
Acid Neutralisation Capacity (mol / kg)	5.7					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test		
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0190			0.158	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0033			0.028	0.5	10	70
Copper *	0.013			0.11	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0026			0.0216	0.5	10	30
Nickel *	0.0040			0.033	0.4	10	40
Lead *	0.0070			0.058	0.5	10	50
Antimony *	0.011			0.089	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.020			0.17	4	50	200
Chloride *	3.7			31	800	15000	25000
Fluoride	2.0			17	10	150	500
Sulphate *	15			120	1000	20000	50000
TDS*	80			670	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	8.79			73.1	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.0						
Ory Matter (%)	89						
Moisture (%)	11						
				-			
				1			
		ere applicable.				ted (liquid eluate an	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-93450 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1976195	BH01	1	0.50-0.50	Brown clay and loam with gravel and vegetation.

Analytical Report Number : 21-93450 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status NONE	
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W		
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE	
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS	
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE	
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS	
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025	
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025	
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025	

Analytical Report Number : 21-93450 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-94362

Replaces Analytical Report Number: 21-94362, issue no. 1 Additional analysis undertaken.

Project / Site name: BY Kentish Town Samples received on: 20/08/2021

Your job number: GL24466 Samples instructed on/ 20/08/2021

Analysis started on:

Your order number: Analysis completed by: 06/09/2021

Report Issue Number: 2 **Report issued on:** 06/09/2021

Samples Analysed: 2 soil samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1981199	1981200
Sample Reference				TP01	TP02
Sample Number				1	1
Depth (m)				0.60-0.60	0.50-0.50
Date Sampled				18/08/2021	18/08/2021
Time Taken	1		1	None Supplied	None Supplied
		Limit of detection	Ac		
Analytical Parameter	Units	of o	Accreditation Status		
(Soil Analysis)	iš	dete	ita		
		ectic	Š		
Class Control	%	0.1	NONE	2.1	
Stone Content	%	0.01	NONE	< 0.1	-
Moisture Content Total mass of sample received	kg	0.001	NONE	8.5	-
Total mass of sample received				1.5	-
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Amosite	_
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.001	_
				0.001	
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	11.4	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	3400	-
Sulphide	mg/kg	1	MCERTS	16	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.5	-
Total Planets					
Total Phenois	mg/kg	1	MCERTS		
Total Phenols (monohydric)	mg/kg	1	PICERTS	< 1.0	-
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	0.96	_
Acenaphthylene	mg/kg	0.05	MCERTS	0.08	_
Acenaphthene	mg/kg	0.05	MCERTS	0.87	_
Fluorene	mg/kg	0.05	MCERTS	0.77	_
Phenanthrene	mg/kg	0.05	MCERTS	7.4	-
Anthracene	mg/kg	0.05	MCERTS	1.8	-
Fluoranthene	mg/kg	0.05	MCERTS	8.0	-
Pyrene	mg/kg	0.05	MCERTS	7.0	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.8	-
Chrysene	mg/kg	0.05	MCERTS	2.2	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.7	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.3	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.6	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.5	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.45	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.7	-
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	42.0	-
Honor Motole / Motolleide					
Heavy Metals / Metalloids	mg/kg	1	MCERTS	25	_
Arsenic (aqua regia extractable)	mg/kg	0.06	MCERTS	25	-
Beryllium (aqua regia extractable)	mg/kg	0.00	MCERTS	1.6	
Boron (water soluble)	mg/kg	0.2	MCERTS	2.8 1.7	-
Cadmium (aqua regia extractable)	mg/kg	4	MCERTS		-
Chromium (hexavalent)	mg/kg	1	MCERTS	< 4.0	-
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS	33 190	-
, , , , , ,	mg/kg	1	MCERTS		
Lead (aqua regia extractable)	mg/kg	0.3	MCERTS	210	-
Mercury (aqua regia extractable)		1		< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	43	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	54 200	-
Zinc (aqua regia extractable)	mg/kg		LICERTS	390	-
Petroleum Hydrocarbons					
TDH Tayas (C6 - C8)	ma/ka	0.1	ISO 17025	< 0.1	

mg/kg

0.1

TPH Texas (C6 - C8)

ISO 17025

< 0.1

Analytical Report Number: 21-94362 Project / Site name: BY Kentish Town

Lab Sample Number				1981199	1981200
Sample Reference				TP01	TP02
Sample Number	1	1			
Depth (m)				0.60-0.60	0.50-0.50
Date Sampled				18/08/2021	18/08/2021
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
TPH Texas (C8 - C10)	mg/kg	10	MCERTS	< 10	-
TPH Texas (C10 - C12)	mg/kg	1	MCERTS	< 1.0	-
TPH Texas (C12 - C16)	mg/kg	4	MCERTS	5.1	-
TPH Texas (C16 - C21)	mg/kg	10	MCERTS	36	-
TPH Texas (C21 - C40)	mg/kg	10	MCERTS	120	-
TPH Texas (C6 - C40)	mg/kg	10	NONE	160	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Analytical Report Number: 21-94362
Project / Site name: BY Kentish Town

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1981199	TP01	0.60-0.60	155	Loose Fibres	Amosite	0.001	0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 21-94362 Project / Site name: BY Kentish Town

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1981199	TP01	1	0.60-0.60	Brown loam and clay with gravel and vegetation.

Analytical Report Number: 21-94362 Project / Site name: BY Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248		A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH Texas (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GL

Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-96460

Replaces Analytical Report Number: 21-96460, issue no. 1 Client sampling date amended.

Project / Site name: Big Yellow, Kentish Town Samples received on: 01/09/2021

Your job number: GL24466 Samples instructed on/ 01/09/2021

Analysis started on:

Your order number: Analysis completed by: 08/09/2021

Report Issue Number: 2 **Report issued on:** 08/09/2021

Samples Analysed: 2 water samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-96460 Project / Site name: Big Yellow, Kentish Town

Lab Sample Number				1993578	1993579	
Sample Reference				BH01	WS01	
Sample Number				None Supplied	None Supplied	
Depth (m)				8.00	3.00	
Date Sampled				31/08/2021	31/08/2021	
Time Taken				None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
General Inorganics						
	pH Units	NI/A	ISO 17025	7.3	6.0	
pH		N/A		7.3	6.9	
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	
Free Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	
Thiocyanate as SCN	μg/l	200	ISO 17025	250	250	
Sulphate as SO4	mg/l	0.045	ISO 17025	1810	788	
Total Sulphur	μg/l	15	NONE	600000	260000	
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	
Phenols by HPLC						
Catechol	μg/l	0.5	NONE	< 0.5	< 0.5	
Resorcinol	μg/l	0.5	NONE	< 0.5	< 0.5	
Ethylphenol & Dimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	
Cresols	μg/l	0.5	NONE	< 0.5	< 0.5	
Naphthols	μg/l	0.5	NONE	< 0.5	< 0.5	
Isopropylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	
Phenol	μg/l	0.5	NONE	< 0.5	< 0.5	
Trimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	
Total Phenois						
Total Phenols (HPLC)	μg/l	3.5	NONE	< 3.5	< 3.5	
Speciated PAHs						
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.0	1	1 ISO 17025	1 ISO 17025 < 0.01	
I EPA-16 PAHs	μg/l	0.16	ISO :	17025	17025 < 0.16	
LIMIOTALIS	1.97			V 0.10	< 0.16	

Analytical Report Number: 21-96460 Project / Site name: Big Yellow, Kentish Town

Lab Sample Number				1993578	1993579	
Sample Reference				BH01	WS01	
Sample Number				None Supplied	None Supplied	
Depth (m)	8.00	3.00				
Date Sampled	31/08/2021	31/08/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Boron (dissolved)	μg/l	10	ISO 17025	1000	270	
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	
Arsenic (dissolved)	μg/l	0.15	ISO 17025	7.95	2.35	
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.03	< 0.02	
Chromium (dissolved)	μg/l	0.2	ISO 17025	5.9	4.9	
Copper (dissolved)	μg/l	0.5	ISO 17025	12	2.7	
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	
Nickel (dissolved)	μg/l	0.5	ISO 17025	11	5.2	
Selenium (dissolved)	μg/l	0.6	ISO 17025	38	0.9	
Zinc (dissolved)	μg/l	0.5	ISO 17025	14	7.4	
Petroleum Hydrocarbons					_	
TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-96460 Project / Site name: Big Yellow, Kentish Town

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphide in water Determination of sulphide in water by ion selective electrode.		In-house method	L029-PL	W	NONE
Thiocyanate in water	Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW.	In house method based on SMWW 4500-CN-M. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE
TPH1 (Waters) Determination of dichloromethane extractable hydrocarbons in water by GC-MS.		In-house method	L070-PL	W	NONE
Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	w	ISO 17025
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Harrison Group Ltd Unit 12 Waterways Business Centre Navigation Drive Enfield EN3 6JJ

Attention: James Blyth

Date: 1st October, 2021

Your reference : GL24466

Our reference : Test Report 21/14890 Batch 1

Location : Big Yellow, Kentish Town

Date samples received: 24th September, 2021

Status: Final report

Issue:

Three samples were received for analysis on 24th September, 2021 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Simon Gomery BSc

Project Manager

Please include all sections of this report if it is reproduced

Client Name: Harrison Group Ltd

Reference: GL24466

Location: Big Yellow, Kentish Town

Contact: James Blyth EMT Job No: 21/14890

Report: Gas

EMT Job No:	21/14890								
EMT Sample No.	1	2							
Sample ID	GAS01-BH01	GAS01-BH03							
Depth									
COC No / misc								e attached n ations and a	
Containers		ТВ							
Sample Date		22/09/2021 14:40							
Sample Type	Gas	Gas							
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	24/09/2021	24/09/2021							No.
Volatile Gases TICs USEPA	See Attached	-						None	TM68/PM0
Carbon Dioxide	3.60	5.44					<0.05	%	TM69/PM0
Carbon Monoxide	<0.05	<0.05					<0.05	%	TM69/PM0
Hydrogen	<0.5	<0.5					<0.5	%	TM69/PM0
Methane	<0.05	<0.05					<0.05	%	TM69/PM0
Methane	103	<5					<5	ppmV	TM69/PM0
Nitrogen	80.4	82.8					<0.5	%	TM69/PM0
Oxygen	16.0	11.7					<0.5	%	TM69/PM0
		I.				·			

Client Name: Harrison Group Ltd

Reference:GL 24466Sample Date: 22 Sep 2021Location:Big Yellow, Kentish TownDate of Receipt: 24 Sep 2021

Contact: James Blyth

Sample ID: GAS01-BH01

Depth:

EMT Job No: 21/14890

EMT Sample No: 1
Matrix: Air

Method: TM68 VOCs in gases (GC-MS)

Canister Serial number: V 1169 0.55 Sample Train Serial number: ST-99

Q* - Qualifiers

B Indicates analyte found in associated method blank

++ Indicates value exceeds calibration range

Key

MDL Method Detection Limit

RL Reporting Limit

ISO 17025 (UKAS) accredited

Date Analysed: 1 Oct 2021

Cas No	Molecular Weight	Compound	Q*	RESULT	RESULT	RL	MDL	RL	MDL
				ppbv	ug/m³	ppbv	ppbv	ug/m ³	ug/m ³
75-45-6	86.77	Chlorodifluoromethane (HCFC-22)		<2	<7	<2	<2	<7	<7
75-71-8	120.91	Dichlorodifluoromethane (F-12)		5.1	25.2	<2.5	<2.5	<12.4	<12.4
74-87-3	50.49	Chloromethane		<1.5	<3.1	<1.5	<1.5	<3.1	<3.1
76-14-2	170.92	1,2-Dichlorotetrafluoroethane (F-114)		<1.5	<10.5	<1.5	<1.5	<10.5	<10.5
115-11-7	56.12	Isobutene		<1.5	<3.4	<1.5	<1.5	<3.4	<3.4
106-99-0	54.09	1,3-Butadiene		<1.5	<3.3	<1.5	<1.5	<3.3	<3.3
74-83-9	94.95	# Bromomethane		<1.5	<5.8	<1.5	<1.5	<5.8	<5.8
75-00-3	64.52	# Chloroethane		<1.5	<4	<1.5	<1.5	<4	<4
64-17-5	46.07	Ethanol		<100	<188.4	<100	<100	<188.4	<188.4
75-05-8	41.05	Acetonitrile		<1.5	<2.5	<1.5	<1.5	<2.5	<2.5
107-02-8	56.06	Acrolein		<2.5	<5.7	<2.5	<2.5	<5.7	<5.7
	58.08	Acetone + Propanal		50	119	<6	<6	<14	<14
75-69-4	137.36	# Trichlorofluoromethane (F-11)		9.3	52.2	<1.5	<1.5	<8.4	<8.4
67-63-0	60.09	2-Propanol		<6	<15	<6	<6	<15	<15
109-66-0	72.15	Pentane		<1.5	<4.4	<1.5	<1.5	<4.4	<4.4
78-79-5	68.12	Isoprene		<2	<6	<2	<2	<6	<6
74-88-4	141.94	Methyl Iodide		<1.5	<8.7	<1.5	<1.5	<8.7	<8.7
75-35-4	96.95	# 1,1-Dichloroethene (1,1 DCE)		<1.5	<5.9	<1.5	<1.5	<5.9	<5.9
75-09-2	84.94	# Methylene Chloride		<14.4	<50	<14.4	<14.4	<50	<50
76-13-1	187.37	# Trichlorotrifluoroethane		<1.5	<11.5	<1.5	<1.5	<11.5	<11.5
75-15-0	76.14	Carbon Disulfide		<1.5	<4.7	<1.5	<1.5	<4.7	<4.7
71-23-8	60.09	1-Propanol		<1.5	<3.7	<1.5	<1.5	<3.7	<3.7
78-85-3	70.09	Methylacrolein		<1.5	<4.3	<1.5	<1.5	<4.3	<4.3
75-34-3	98.97	# 1,1-Dichloroethane		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
287-92-3	70.14	Cyclopentane		<1.5	<4.3	<1.5	<1.5	<4.3	<4.3
78-94-4	70.09	Methyl Vinyl Ketone		<1.6	<4.6	<1.6	<1.6	<4.6	<4.6
1634-04-4	88.15	Methyl tertiary butyl ether		<1.5	<5.4	<1.5	<1.5	<5.4	<5.4
108-05-4	86.09	Vinyl Acetate		<1.5	<5.3	<1.5	<1.5	<5.3	<5.3
123-72-8	72.11	Butanal		<2	<6	<2	<2	<6	<6
78-93-3	72.1	2-Butanone (MEK)		<2	<6	<2	<2	<6	<6
156-59-2	96.94	# cis-1,2-Dichloroethene		4	16	<1	<1	<4	<4
110-54-3	86.17	Hexane		7.5	26.4	<1.5	<1.5	<5.3	<5.3
67-66-3	119.39	# Chloroform		2.2	10.7	<1.5	<1.5	<7.3	<7.3
107-06-2	98.96	# 1,2-Dichloroethane		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
71-55-6	133.42	# 1,1,1-Trichloroethane		1.6	8.7	<1.5	<1.5	<8.2	<8.2
71-35-3	74.12	1-Butanol		<3	<9	<3	<3	<9	<9
71-30-3	78.11	# Benzene		1.6	5.1	<1.5	<1.5	<4.8	<4.8
56-23-5	153.84	# Carbon Tetrachloride		<1.5	<9.4	<1.5	<1.5	<9.4	<9.4
					<7				
110-82-7	84.16	Cyclohexane		<2	</td <td><2</td> <td><2</td> <td><7</td> <td><7</td>	<2	<2	<7	<7

Client Name: Harrison Group Ltd

GL24466 Sample Date: 22 Sep 2021 Reference: Location: Big Yellow, Kentish Town Date of Receipt: 24 Sep 2021 Date Analysed: 1 Oct 2021

Contact: James Blyth

Sample ID: GAS01-BH01

Depth:

EMT Job No: 21/14890

EMT Sample No: 1 Matrix:

TM68 VOCs in gases (GC-MS) Method:

Canister Serial number: V 1169 0.55 Sample Train Serial number: ST-99

Q* - Qualifiers

Indicates analyte found in associated method blank

Indicates value exceeds calibration range

Key

MDL Method Detection Limit

RL Reporting Limit

ISO 17025 (UKAS) accredited

Cas No	Molecular Weight	Compound	Q*	RESULT	RESULT	RL	MDL	RL	MDL
				ppbv	ug/m³	ppbv	ppbv	ug/m ³	ug/m ³
107-87-9	86.13	2-Pentanone		<1.5	<5.3	<1.5	<1.5	<5.3	<5.3
110-62-3	86.13	Pentanal		<1.5	<5.3	<1.5	<1.5	<5.3	<5.3
96-22-0	86.13	3-Pentanone		<1.5	<5.3	<1.5	<1.5	<5.3	<5.3
78-87-5	112.99	# 1,2-Dichloropropane		<1.5	<6.9	<1.5	<1.5	<6.9	<6.9
75-27-4	163.83	Bromodichloromethane		<1.5	<10.1	<1.5	<1.5	<10.1	<10.1
123-91-1	88.11	1,4-Dioxane		<2	<7	<2	<2	<7	<7
79-01-6	131.4	# Trichloroethene (TCE)	>>	2347.7	12616.6	<1.5	<1.5	<8.1	<8.1
10061-01-5	110.97	# cis-1,3-Dichloropropene		<1.5	<6.8	<1.5	<1.5	<6.8	<6.8
108-10-1	100.16	4-Methyl-2-pentanone		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
10061-02-6	110.97	# trans-1,3-Dichloropropene		<1.5	<6.8	<1.5	<1.5	<6.8	<6.8
79-00-5	133.4	# 1,1,2-Trichloroethane		<1.5	<8.2	<1.5	<1.5	<8.2	<8.2
108-88-3	92.13	# Toluene		8.7	32.8	<1.5	<1.5	<5.7	<5.7
589-38-8	100.16	3-Hexanone		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
591-78-6	100.16	2-Hexanone		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
66-25-1	100.16	Hexanal		<1.5	<6.1	<1.5	<1.5	<6.1	<6.1
106-93-4	187.86	# 1,2-Dibromoethane		<1.5	<11.5	<1.5	<1.5	<11.5	<11.5
127-18-4	165.85	# Tetrachloroethene (PCE)		<1.5	<10.2	<1.5	<1.5	<10.2	<10.2
108-90-7	112.56	# Chlorobenzene		<1.5	<6.9	<1.5	<1.5	<6.9	<6.9
100-41-4	106.16	# Ethylbenzene		<1.5	<6.5	<1.5	<1.5	<6.5	<6.5
179601-23-1	106.17	# m/p-Xylene		2.3	10	<1.5	<1.5	<6.5	<6.5
75-25-2	252.77	Bromoform		<1.5	<15.5	<1.5	<1.5	<15.5	<15.5
100-42-5	104.14	# Styrene		<1.5	<6.4	<1.5	<1.5	<6.4	<6.4
79-34-5	167.85	# 1,1,2,2-Tetrachloroethane		<1.5	<10.3	<1.5	<1.5	<10.3	<10.3
95-47-6	106.17	# o-Xylene		<1.5	<6.5	<1.5	<1.5	<6.5	<6.5
108-67-8	120.2	# 1,3,5-Trimethylbenzene		<1.5	<7.4	<1.5	<1.5	<7.4	<7.4
95-63-6	120.19	# 1,2,4-Trimethylbenzene		<1.5	<7.4	<1.5	<1.5	<7.4	<7.4
541-73-1	147.01	# 1,3-Dichlorobenzene		<1.5	<9	<1.5	<1.5	<9	<9
100-44-7	126.58	Benzyl Chloride		<1.5	<7.8	<1.5	<1.5	<7.8	<7.8
106-46-7	147.01	# 1,4-Dichlorobenzene		<1.5	<9	<1.5	<1.5	<9	<9
526-73-8	120.2	1,2,3-Trimethylbenzene		<1.5	<7.4	<1.5	<1.5	<7.4	<7.4
95-50-1	147	# 1,2-Dichlorobenzene		<1.5	<9	<1.5	<1.5	<9	<9
120-82-1	181.46	1,2,4-Trichlorobenzene		<1.5	<11.1	<1.5	<1.5	<11.1	<11.1
91-20-3	128.17	Naphthalene		0.54	2.8	<0.32	<0.32	<1.7	<1.7
3.200	120.11	Sum of VOC TO15 compounds		2440.54	12925.5	-0.02	-0.02	-1.1	*1.7
460-00-4		4-Bromofluorobenzene Surrogate Recovery		98%	.=.2-4.0	0%	0%		
75-01-4	62.5	# Vinyl Chloride		<1.5	<3.8	<1.5	<1.5	<3.8	<3.8
.0017	81	Aliphatic >C4-C6		21	70	<10	<10	<33	<33
	100	Aliphatic >C4-C6		90	368	<10	<10	<41	<41
		•			234				
	130	Aliphatic >C8-C10		44	234	<10	<10	<53	<53

Client Name: Harrison Group Ltd

GL24466 Sample Date: 22 Sep 2021 Reference: Location: Big Yellow, Kentish Town Date of Receipt: 24 Sep 2021 Date Analysed: 1 Oct 2021

Contact: James Blyth

Sample ID: GAS01-BH01

Depth: EMT Job No:

21/14890

EMT Sample No: 1 Matrix:

TM68 VOCs in gases (GC-MS) Method:

Canister Serial number: V 1169 0.55 Sample Train Serial number: ST-99

Q* - Qualifiers Key

Indicates analyte found in associated method blank MDL Method Detection Limit Indicates value exceeds calibration range RL Reporting Limit ISO 17025 (UKAS) accredited

Cas No	Molecular Weight	Compound	Q*	RESULT	RESULT	RL	MDL	RL	MDL
				ppbv	ug/m³	ppbv	ppbv	ug/m ³	ug/m ³
	160	Aliphatic >C10-C12		44	288	<10	<10	<65	<65
	78.11	Aromatic >C5-EC7 (Benzene)		1.6	5.1	<1.5	<1.5	<4.8	<4.8
	92.13	Aromatic >EC7-EC8 (Toluene)		8.7	32.8	<1.5	<1.5	<5.7	<5.7
	120	Aromatic >EC8-EC10		<10	<49	<10	<10	<49	<49
	130	Aromatic >EC10-EC12		<10	<53	<10	<10	<53	<53

Job number:21/14890Method:VOCSample number:1Matrix:Gas

Sample identity: GAS01-BH01

Sample depth:

Sample Type: Gas Units: ppbv

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
111-65-9	Octane	15.694	90	25

Client Name: Harrison Group Ltd

Reference: GL24466

Location: Big Yellow, Kentish Town

Contact: James Blyth

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason			
	No deviating sample report results for job 21/14890								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/14890

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

EMT Job No: 21/14890

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM68	Modified TO-15 method. Volatile Organic Compounds (VOCs) sampled using Gas Canisters, BottleVacs or Tedlar bags and analysed using Entech GC-MS.	PM0	No preparation is required.				
TM68	Modified TO-15 method. Volatile Organic Compounds (VOCs) sampled using Gas Canisters, BottleVacs or Tedlar bags and analysed using Entech GC-MS.	PM0	No preparation is required.	Yes			
TM69	Analysis of gas samples by direct injection onto a Gas Chromatography (GC) column and analysed using a Flame Ionisation Detector (FID) or a Thermocouple Detector (TD)	PM0	No preparation is required.				

APPENDIX F RIG CERTIFICATES

in accordance with BSEN ISO 22476-3:2005

Southern Testing

Unit 11

Charlwood Road East Grinstead West Sussex

RH19 2HU

SPT Hammer Ref: DART312

Test Date:

06/08/2020

Report Date:

06/08/2020

File Name:

DART312.spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.3

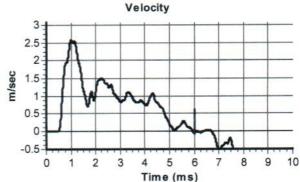
Assumed Modulus Ea (GPa): 208

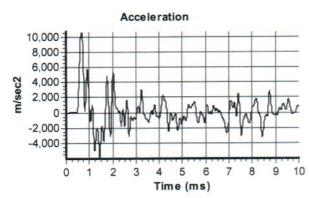
Accelerometer No.1: Accelerometer No.2:

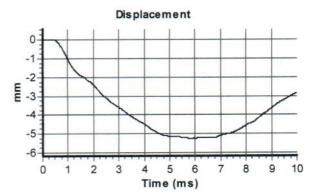
6458 9607

SPT Hammer Information

Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 14.5


Comments / Location

CHARLWOODS

Calculations

Area of Rod A (mm2):

944

Theoretical Energy E_{theor} (J):

473

303 Measured Energy E_{meas} (J):

Signed: Lisa Baker

Energy Ratio E_r (%):

64

Title: Assistant Field Operations Manager

The recommended calibration interval is 12 months

in accordance with BSEN ISO 22476-3:2005

Southern Testing

Unit 11

Charlwood Road East Grinstead

West Sussex

RH19 2HU

SPT Hammer Ref:

MOD.09

Test Date:

16/07/2021

Report Date:

16/07/2021

File Name:

MOD.09.spt

Test Operator:

GC

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.6

Assumed Modulus Ea (GPa): 208

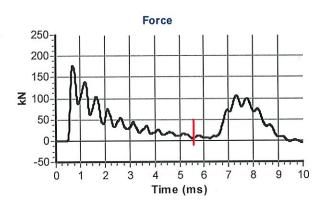
Accelerometer No.1:

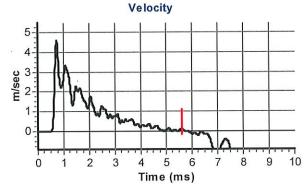
64786

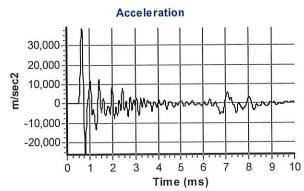
Accelerometer No.2:

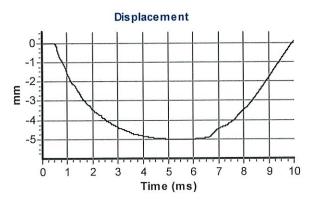
64789

SPT Hammer Information


Hammer Mass m (kg):


Falling Height h (mm): 760


SPT String Length L (m): 14.5


Comments / Location

CHARLWOODS

Calculations

Area of Rod A (mm2):

983

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas}

J): 449

Energy Ratio E_r (%):

95

The recommended calibration interval is 12 months

Signed: G Crane

Signed: G Crane
Title: Field Tech

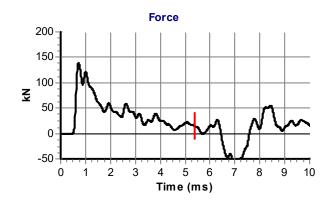
in accordance with BSEN ISO 22476-3:2005

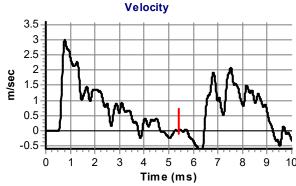
SPT Hammer Ref: 01

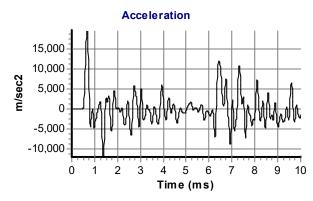
Test Date: 23/12/2020
Report Date: 04/01/2021
File Name: BM01.spt

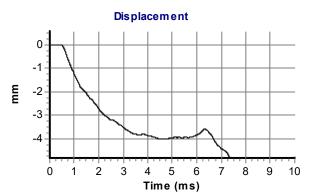
Test Operator: MC

Instrumented Rod Data


Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.4 Assumed Modulus E_a (GPa): 208 Accelerometer No.1: 63177 Accelerometer No.2: 63178


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 12.6


Comments / Location

JMD YARD

Calculations

Area of Rod A (mm2): 957 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 289

Energy Ratio E_r (%):

61

Signed: Richard Walter
Title: Drilling Manager

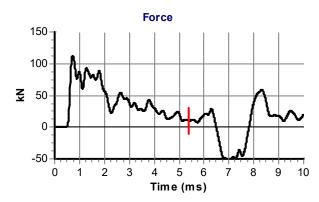
in accordance with BSEN ISO 22476-3:2005

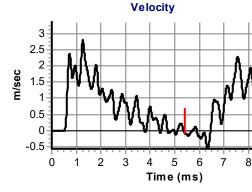
SPT Hammer Ref: 09

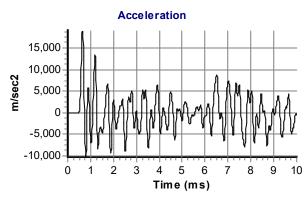
Test Date: 23/12/2020
Report Date: 04/01/2021
File Name: BM09.spt

Test Operator: MC

Instrumented Rod Data


Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.4 Assumed Modulus E_a (GPa): 208 Accelerometer No.1: 63177 Accelerometer No.2: 63178


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 12.6

Comments / Location

JMD YARD


Calculations

Area of Rod A (mm2): 957 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 282

Energy Ratio E_r (%):

60

Signed: Richard Walter
Title: Drilling Manager

Norwich (Registered Office)

Kimberley Street Norwich Norfolk NR2 2RJ

Tel: 01603 613111

London

12 Waterways Business Centre Navigation Drive South Ordnance Road Enfield, EN3 6JJ

Tel: 020 7537 9233

Cambridge

1 Francis Court High Ditch Road Fen Ditton, Cambridge CB5 8TE

Tel: 01223 781585

Colchester

Colchester Business Centre 1 George Williams Way Colchester CO1 2JS

Tel: 01206 986675

Date: July 2022

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

7FBVO-IOOCP-KS3I

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

Big Yellow - Kentish Town

Description/Comments

Project Site

Campbell Reith Consulting Engineers

13675 - BY Kentish Town

Classified by

Name: Company:

Samantha Broughton

Date:

30 Sep 2021 14:11 GMT

Telephone:

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification

-	
Date	
-	

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH01 (0.5)		Hazardous	HP 3(i), HP 7, HP 11	2
2	BH02 (0.6)		Non Hazardous		5
3	BH03 (0.45)		Non Hazardous		7
4	SSS01 (0.2)		Non Hazardous		9
5	SSS02 (0.2)		Non Hazardous		11
6	TP01 (0.6)		Non Hazardous		13
7	WS01 (0.2)		Non Hazardous		15
8	WS02 (0.3)		Non Hazardous		17
9	WS03 (1)		Non Hazardous		19

Related documents

# Name	Description
Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Samantha Broughton Created date: 30 Sep 2021 14:11 GMT

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	21
Appendix B: Rationale for selection of metal species	22
Appendix C: Version	22

Classification of sample: BH01 (0.5)

⚠ Hazardous Waste Classified as 17 05 03 * in the List of Waste

Sample details

Sample name: LoW Code: BH01 (0.5) Chapter: Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 03 * (Soil and stones containing hazardous substances)

11% (dry weight correction)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Entry:

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.108%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazardl."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.108%)

Hazard properties (substances considered hazardous until shown otherwise)

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.108%)

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	_	arsenic { arsenic tri	i <mark>oxide</mark> } 215-481-4	1327-53-3	Ĭ	24 mg/kg	1.32	28.548 mg/kg	0.00285 %	✓	
2	_	beryllium { berylliur 004-003-00-8	<mark>n oxide</mark> } 215-133-1	1304-56-9		2.4 mg/kg	2.775	6.001 mg/kg	0.0006 %	√	
3	-		oxide; boric oxide } 215-125-8	1303-86-2		3.9 mg/kg	3.22	11.313 mg/kg	0.00113 %	✓	
4	4	cadmium { cadmiui 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		1.5 mg/kg	1.142	1.544 mg/kg	0.000154 %	✓	

Page 2 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	Compound conc. Classification value		Api	Conc. Not Used
		CLP index number	EC Number	CAS Number	CF							MC MC	
5	4	compounds, with th	nium(VI) compounds ne exception of bariu cified elsewhere in the	ım chromate and		<4	mg/kg	2.27	<9.08	mg/kg	<0.000908 %		<lod< td=""></lod<>
6	4		oxide; copper (I) oxide 215-270-7	le }		310	mg/kg	1.126	314.437	mg/kg	0.0314 %	√	
7	æ	lead { lead chromate		7758-97-6	. 1	620	mg/kg	1.56	871.248	mg/kg	0.0559 %	1	
8	æ	mercury { mercury	dichloride }	7487-94-7		0.9	mg/kg	1.353	1.097	mg/kg	0.00011 %	√	
9	4	nickel { nickel chror	<mark>mate</mark> }	14721-18-7		40	mg/kg	2.976	107.253	mg/kg	0.0107 %	√	
10	4	selenium { nickel se	elenate }	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	4	zinc { zinc sulphate	(hydrous) (mono-, lulphate (anhydrous)	hexa- and hepta		540		4.000	0000 000		0.000.0/		
11				7446-19-7 [1] 7733-02-0 [2]		510	mg/kg	4.398	2020.669	mg/kg	0.202 %	√	
12	0	TPH (C6 to C40) po		TPH		1200	mg/kg		1081.081	mg/kg	0.108 %	✓	
13	₫	exception of comple	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
<u></u>	0	pH			H						0.11	Н	
14				PH		9	pН		9	рН	9pH		
15		naphthalene 601-052-00-2	202-049-5	91-20-3		1.4	mg/kg		1.261	mg/kg	0.000126 %	√	
16	0	acenaphthylene	205-917-1	208-96-8		0.21	mg/kg		0.189	mg/kg	0.0000189 %	√	
17	0	acenaphthene	201-469-6	83-32-9		2.1	mg/kg		1.892	mg/kg	0.000189 %	✓	
18	9	fluorene	201-695-5	86-73-7		1.6	mg/kg		1.441	mg/kg	0.000144 %	√	
19	0	phenanthrene	201-581-5	85-01-8		8.1	mg/kg		7.297	mg/kg	0.00073 %	✓	
20	9	anthracene	204-371-1	120-12-7		1.7	mg/kg		1.532	mg/kg	0.000153 %	✓	
21	Θ	fluoranthene	205-912-4	206-44-0		9.8	mg/kg		8.829	mg/kg	0.000883 %	✓	
22	0			129-00-0		9.1	mg/kg		8.198	mg/kg	0.00082 %	✓	
23		benzo[a]anthracene 601-033-00-9		56-55-3		4.7	mg/kg		4.234	mg/kg	0.000423 %	✓	
24		chrysene 601-048-00-0	205-923-4	218-01-9		3.1	mg/kg		2.793	mg/kg	0.000279 %	1	
25		benzo[b]fluoranther 601-034-00-4		205-99-2		4	mg/kg		3.604	mg/kg	0.00036 %	√	
26		benzo[k]fluoranther 601-036-00-5		207-08-9		1.8	mg/kg		1.622	mg/kg	0.000162 %	√	
27		benzo[a]pyrene; be 601-032-00-3		50-32-8		3.5	mg/kg		3.153	mg/kg	0.000315 %	√	
28	0	indeno[123-cd]pyre		193-39-5		1.7	mg/kg		1.532	mg/kg	0.000153 %	√	
29		dibenz[a,h]anthrace 601-041-00-2		53-70-3		0.54	mg/kg		0.486	mg/kg	0.0000486 %	1	
30	0	benzo[ghi]perylene		191-24-2		2	mg/kg		1.802	mg/kg	0.00018 %	√	
										Total:	0.419 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Page 4 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH02 (0.6)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

BH02 (0.6) Chapter: Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (dry weight correction)

from contaminated sites)

Hazard properties

None identified

Determinands

Moisture content: 17% Dry Weight Moisture Correction applied (MC)

	Determinand CLP index number	CLP Note	User entered dat	ta	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
~	,		14 mg	g/kg	1.32	15.799 mg/kg	0.00158 %	✓	
ď,	beryllium { beryllium oxide }		1.4 mg	g/kg	2.775	3.321 mg/kg	0.000332 %	√	
æ	boron { diboron trioxide; boric oxide }		3.9 mg	g/kg	3.22	10.733 mg/kg	0.00107 %	√	
ď	cadmium { cadmium oxide }		<0.2 mg	g/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg	g/kg	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
æ	copper { dicopper oxide; copper (I) oxide }		70 mg	g/kg	1.126	67.361 mg/kg	0.00674 %	✓	
~		1	180 mg	g/kg	1.56	239.972 mg/kg	0.0154 %	✓	
æ	mercury { mercury dichloride } 080-010-00-X		<0.3 mg	g/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
~			33 mg	g/kg	2.976	83.946 mg/kg	0.00839 %	✓	
æ	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg	g/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
	hydrate); [1] zinc sulphate (anhydrous) [2] }		110 mg	g/kg	4.398	413.48 mg/kg	0.0413 %	✓	
0	TPH (C6 to C40) petroleum group		160 mg	g/kg		136.752 mg/kg	0.0137 %	✓	
4	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg	g/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
	рН		8.5 pH	1		8.5 pH	8.5 pH		
	naphthalene	T	<0.05 mg	g/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	· A A B B B B B B B B B B B B B B B B B	CLP index number EC Number CAS Number	CLP index number EC Number CAS Number	CLP index number EC Number CAS Number	CLP index number EC Number CAS Number CAS CA	CLP index number EC Number CAS Number	CLP index number EC Number CAS Number	CLP index number EC Number CAS Number	CLP index number CAS Number

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene	205-917-1	208-96-8	S	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Σ	<lod< th=""></lod<>
17	0	acenaphthene			T	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	fluorene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	phenanthrene	201-695-5	86-73-7		0.68	mg/kg		0.581	mg/kg	0.0000581 %	√	
20	0	anthracene	201-581-5	85-01-8	\vdash	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	fluoranthene	204-371-1	120-12-7		1.2	mg/kg		1.026	mg/kg	0.000103 %	✓	
22	0	pyrene	205-912-4	206-44-0		1.1	mg/kg		0.94	mg/kg	0.000094 %	√	
23		benzo[a]anthracene		129-00-0		0.76	mg/kg		0.65	mg/kg	0.000065 %	√	
24		chrysene	200-280-6	56-55-3	H	0.7	mg/kg		0.598	mg/kg	0.0000598 %	√	
25		benzo[b]fluoranther		218-01-9	H	0.8	mg/kg		0.684	mg/kg	0.0000684 %	√	
26		benzo[k]fluoranther		205-99-2		0.53	mg/kg		0.453	mg/kg	0.0000453 %	· ✓	
27		601-036-00-5 benzo[a]pyrene; be	205-916-6 nzo[def]chrysene	207-08-9		0.69	mg/kg		0.59	mg/kg	0.000059 %	v √	
28	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8	1	0.34			0.291		0.000039 %		
		dibenz[a,h]anthrace	205-893-2 ene	193-39-5	1		mg/kg			mg/kg		√	
29			200-181-8	53-70-3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	Θ		205-883-8	191-24-2		0.39	mg/kg		0.333	mg/kg	0.0000333 %	✓	
									Total:	0.0906 %			

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0137%)

Page 6 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH03 (0.45)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

BH03 (0.45) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	♣	arsenic { <mark>arsenic trioxide</mark> } 033-003-00-0		15 mg/k	1.32	17.683 mg/kg	0.00177 %	√	
2	4	beryllium { beryllium oxide }		1.7 mg/k	2.775	4.213 mg/kg	0.000421 %	√	
3	4	boron { diboron trioxide; boric oxide } 005-008-00-8		0.7 mg/k	3.22	2.012 mg/kg	0.000201 %	√	
4	4	cadmium { cadmium oxide } 048-002-00-0		0.5 mg/kg	1.142	0.51 mg/kg	0.000051 %	√	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg/k	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide }		180 mg/k	1.126	180.946 mg/kg	0.0181 %	√	
7	4	lead { lead chromate } 082-004-00-2	1	260 mg/k	1.56	362.1 mg/kg	0.0232 %	√	
8	4	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/k	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7	-	25 mg/k	2.976	66.434 mg/kg	0.00664 %	√	
10	4	selenium { nickel selenate } 028-031-00-5		<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	*	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		150 mg/k	4.398	589.008 mg/kg	0.0589 %	✓	
12		TPH (C6 to C40) petroleum group		370 mg/k	9	330.357 mg/kg	0.033 %	✓	
13	*	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/k	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
14	0	pH PH		9.3 pH		9.3 pH	9.3 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		0.45 mg/kg	3	0.402 mg/kg	0.0000402 %	√	

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene	205-917-1	208-96-8		0.32	mg/kg		0.286	mg/kg	0.0000286 %	✓	
17	0	acenaphthene	201-469-6	83-32-9		0.27	mg/kg		0.241	mg/kg	0.0000241 %	√	
18	0	fluorene		1		0.66	mg/kg		0.589	mg/kg	0.0000589 %	√	
			201-695-5	86-73-7								ļ.	
19	0	phenanthrene	201-581-5	85-01-8		4.4	mg/kg		3.929	mg/kg	0.000393 %	✓	
20	0	anthracene	204-371-1	120-12-7		1.2	mg/kg		1.071	mg/kg	0.000107 %	√	
21	0	fluoranthene		120-12-7		5.2	mg/kg		4.643	mg/kg	0.000464 %	√	
			205-912-4	206-44-0	1					3 3		Ļ	
22	0	pyrene	204-927-3	129-00-0	-	4.7	mg/kg		4.196	mg/kg	0.00042 %	✓	
23		benzo[a]anthracene				3.4			2.026	m m/l m	0.000304 %	١,	
23		601-033-00-9	200-280-6	56-55-3		3.4	mg/kg		3.036	mg/kg	0.000304 %	√	
24		chrysene				3	mg/kg		2.679	mg/kg	0.000268 %	√	
		601-048-00-0	205-923-4	218-01-9		3	ilig/kg		2.013	mg/kg	0.000200 /6		
25		benzo[b]fluoranther	ne			3.4	mg/kg		3.036	mg/kg	0.000304 %	/	
			205-911-9	205-99-2	1					99		ľ	
26		benzo[k]fluoranther				1.4	mg/kg		1.25	mg/kg	0.000125 %	1	
			205-916-6	207-08-9								+	
27		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		3	mg/kg		2.679	mg/kg	0.000268 %	✓	
28	0	indeno[123-cd]pyre		pu-32 - 0		1.6	ma/l:~		1.429	malka	0.000143 %	+	
_∠δ			205-893-2	193-39-5		1.6	mg/kg		1.429	mg/kg	0.000143 %	√	
29		dibenz[a,h]anthrace				0.47	mg/kg		0.42	mg/kg	0.000042 %	✓	
			200-181-8	53-70-3	1							1	
30	Θ	benzo[ghi]perylene	205-883-8	191-24-2		1.7	mg/kg		1.518	mg/kg	0.000152 %	✓	
		1		1 3				L .		Total:	0.147 %	\dagger	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.033%)

Page 8 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: SSS01 (0.2)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

SSS01 (0.2) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 16% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered da	ata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	₽	arsenic { arsenic trioxide } 033-003-00-0		15 m	ıg/kg	1.32	17.073 mg/kg	0.00171 %	✓	
2	4	beryllium { beryllium oxide } 004-003-00-8		1 m	ıg/kg	2.775	2.393 mg/kg	0.000239 %	✓	
3	4	boron { diboron trioxide; boric oxide } 005-008-00-8		1.2 m	ıg/kg	3.22	3.331 mg/kg	0.000333 %	✓	
4	4	cadmium { cadmium oxide } 125-146-2 1306-19-0		0.7 m	g/kg	1.142	0.689 mg/kg	0.0000689 %	✓	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 m	ıg/kg	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		70 m	ıg/kg	1.126	67.942 mg/kg	0.00679 %	✓	
7	4	lead { lead chromate } 082-004-00-2	1	130 m	g/kg	1.56	174.807 mg/kg	0.0112 %	✓	
8	4	mercury { mercury dichloride } 080-010-00-X		<0.3 m	ıg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		26 m	ıg/kg	2.976	66.709 mg/kg	0.00667 %	✓	
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 m	ıg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	*	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		140 m	ıg/kg	4.398	530.784 mg/kg	0.0531 %	✓	
12		TPH (C6 to C40) petroleum group		<10 m	ıg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	*	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 m	ıg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
14	0	pH IPH		8.2 pl	Н		8.2 pH	8.2 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3	1	<0.05 m	g/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand CLP index number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene 205-917-1 206	8-96-8	_	<0.05 mg/kg		<0.05 mg/kg			<lod< th=""></lod<>
17	0	acenaphthene	-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
18	0	fluorene	-73-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
19	0	phenanthrene	-01-8		0.33 mg/kg		0.284 mg/kg	0.0000284 %	✓	
20	0	anthracene	0-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
21	0	fluoranthene 205-912-4 200	6-44-0		0.7 mg/kg		0.603 mg/kg	0.0000603 %	✓	
22	0	pyrene 204-927-3 129	9-00-0		0.64 mg/kg		0.552 mg/kg	0.0000552 %	✓	
23		benzo[a]anthracene	-55-3		0.51 mg/kg		0.44 mg/kg	0.000044 %	✓	
24		chrysene	8-01-9		0.44 mg/kg		0.379 mg/kg	0.0000379 %	√	
25		benzo[b]fluoranthene			0.57 mg/kg		0.491 mg/kg	0.0000491 %	✓	
26		benzo[k]fluoranthene	5-99-2		0.21 mg/kg		0.181 mg/kg	0.0000181 %	✓	
27		benzo[a]pyrene; benzo[def]chrysene	7-08-9		0.62 mg/kg		0.534 mg/kg	0.0000534 %	✓	
28	0	indeno[123-cd]pyrene	-32-8		0.28 mg/kg		0.241 mg/kg	0.0000241 %	√	
29		dibenz[a,h]anthracene	3-39-5		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
30	0	benzo[ghi]perylene	-70-3		0.45 mg/kg		0.388 mg/kg		√	
E		205-883-8 19	1-24-2		3 3		Total:	0.0829 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: SSS02 (0.2)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

SSS02 (0.2) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 (dry weight correction)

03)

Hazard properties

None identified

Determinands

Moisture content: 17% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv	Compound conc	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic trioxide } 033-003-00-0		16 mg/k	g 1.32	18.056 mg/kg	0.00181 %	√	
2	4	beryllium { beryllium oxide } 004-003-00-8		1.1 mg/k	g 2.77	5 2.609 mg/kg	0.000261 %	√	
3	4	boron { diboron trioxide; boric oxide } 005-008-00-8		0.7 mg/k	g 3.22	1.926 mg/kg	0.000193 %	√	
4	æ å	cadmium { cadmium oxide } 125-146-2 1306-19-0		0.6 mg/k	g 1.142	2 0.586 mg/kg	0.0000586 %	√	
5	≪\$	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg/k	g 2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	æ	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		26 mg/k	g 1.120	6 25.02 mg/kg	0.0025 %	√	
7	_	lead { lead chromate } 082-004-00-2	1	74 mg/k	g 1.56	98.655 mg/kg	0.00632 %	√	
8	æ	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/k	g 1.35	3 <0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9	~	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		22 mg/k	2.970	6 55.964 mg/kg	0.0056 %	✓	
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg/k	g 2.554	4 <2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	_	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		91 mg/k	g 4.398	3 342.061 mg/kg	0.0342 %	✓	
12	0	TPH (C6 to C40) petroleum group		<10 mg/k	g	<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	4	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/k	g 1.884	4 <1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
14	\vdash	pH PH		6.9 pH		6.9 pH	6.9 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.05 mg/k	g	<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-917-1	208-96-8	_								
17	0	acenaphthene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-				<u> </u>				
18	0	fluorene		1		<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
19	0	phenanthrene	201-581-5	85-01-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	204 371 1	120 12 1	+				<u> </u>				
21			205-912-4	206-44-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
23		benzo[a]anthracene		_		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	_								
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-923-4	218-01-9									
25		benzo[b]fluoranther				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2	-								
26		benzo[k]fluoranther				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9									
27		benzo[a]pyrene; be				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-028-5	50-32-8	-								
28	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace		1	T	0.05							
29			200-181-8	53-70-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene		1	t	0.05							
30			205-883-8	191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_			1		1				Total:	0.0534 %		1

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 12 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP01 (0.6)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

TP01 (0.6) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 8.5% 03) (dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 8.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	а	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	-			25 mg/	′kg	1.32	30.422 mg/kg	0.00304 %	√	
	-	033-003-00-0 215-481-4 1327-53-3	-						+	
2	-	beryllium { beryllium oxide } 004-003-00-8		1.6 mg/	′kg	2.775	4.093 mg/kg	0.000409 %	✓	
3	æ	boron { diboron trioxide; boric oxide }		2.0	//	2.22	0.200	0.000834.0/	,	
٥	•	005-008-00-8 215-125-8 1303-86-2		2.8 mg/	ĸy	3.22	8.309 mg/kg	0.000831 %	✓	
4	4	cadmium { cadmium oxide }		1.7 mg/	'ka	1.142	1.79 mg/kg	0.000179 %	1	
Ŀ		048-002-00-0 215-146-2 1306-19-0			···9				ľ	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg/	′kg	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	~	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		190 mg/	′kg	1.126	197.16 mg/kg	0.0197 %	✓	
7	2	lead { lead chromate }	1	210 mg/	(ka	1.56	301.9 mg/kg	0.0194 %	√	
'	_	082-004-00-2 231-846-0 7758-97-6	'	210 IIIg/	ĸy	1.50	301.9 Hg/kg	0.0194 %	~	
8	~	mercury { mercury dichloride }		<0.3 mg/	′kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7		3	٦		3.3			
9	-	nickel { nickel chromate }		43 mg/	′kg	2.976	117.953 mg/kg	0.0118 %	✓	
	1	028-035-00-7 238-766-5 14721-18-7	-		_					
10	-	selenium { nickel selenate } 028-031-00-5	-	<1 mg/	′kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		390 mg/	′kg	4.398	1580.821 mg/kg	0.158 %	✓	
12	0	TPH (C6 to C40) petroleum group		160 mg/	′kg		147.465 mg/kg	0.0147 %	✓	
13		cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/	′kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
14	0	pH PH		8.5 pH			8.5 pH	8.5 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		0.96 mg/	′kg		0.885 mg/kg	0.0000885 %	√	

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	Θ	acenaphthylene	205-917-1	208-96-8	-	0.08	mg/kg		0.0737	mg/kg	0.00000737 %	✓	
17	8	acenaphthene				0.87	mg/kg		0.802	mg/kg	0.0000802 %	1	
		fluorene	201-469-6	83-32-9	+							+	
18	(1)		201-695-5	86-73-7	-	0.77	mg/kg		0.71	mg/kg	0.000071 %	✓	
	0	phenanthrene	201 000 0	00 70 7									
19		<u>'</u>	201-581-5	85-01-8	1	7.4	mg/kg		6.82	mg/kg	0.000682 %	√	
20	8	anthracene				1.8	mg/kg		1.659	mg/kg	0.000166 %	√	
			204-371-1	120-12-7	-							ļ.	
21	0	fluoranthene	205-912-4	206-44-0	-	8 m	mg/kg		7.373	mg/kg	0.000737 %	✓	
00	a	pyrene	200-312-4	200-44-0		7			0.450		0.000045.0/	١,	
22			204-927-3	129-00-0	1	7	mg/kg		6.452	mg/kg	0.000645 %	V	
23		benzo[a]anthracene	e			2.8	mg/kg		2.581	mg/kg	0.000258 %	1	
		601-033-00-9	200-280-6	56-55-3		2.0				9/9		"	
24		chrysene				2.2	mg/kg		2.028	mg/kg	0.000203 %	1	
			205-923-4	218-01-9	-							ļ.	
25		benzo[b]fluoranther	ne 205-911-9	hor oo o		2.7	mg/kg		2.488	mg/kg	0.000249 %	✓	
		benzo[k]fluoranther		205-99-2	H							+	
26			205-916-6	207-08-9	┨	1.3	mg/kg		1.198	mg/kg	0.00012 %	✓	
07		benzo[a]pyrene; be			T	0.0			2 222	,	0.00004.0/	1	
27		601-032-00-3	200-028-5	50-32-8	1	2.6	mg/kg		2.396	mg/kg	0.00024 %	√	
28	0	indeno[123-cd]pyre	ene			1.5	mg/kg		1.382	mg/kg	0.000138 %	/	
			205-893-2	193-39-5	1					55		ľ	
29		dibenz[a,h]anthrace				0.45	mg/kg		0.415	mg/kg	0.0000415 %	√	
			200-181-8	53-70-3	-							+	
30	8	benzo[ghi]perylene	205-883-8	191-24-2	-	1.7	mg/kg		1.567	mg/kg	0.000157 %	✓	
	<u> </u>		200 000-0	101-24-2						Total:	0.233 %	+	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0147%)

Page 14 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS01 (0.2)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

WS01 (0.2) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 14% 03)

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 14% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data		Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		13 mg/	kg	1.32	15.056 mg/kg	0.00151 %	√	
2	4	beryllium { beryllium oxide } 004-003-00-8		0.96 mg/	kg :	2.775	2.337 mg/kg	0.000234 %	√	
3	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		2.5 mg/	kg	3.22	7.061 mg/kg	0.000706 %	√	
4	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.6 mg/	kg	1.142	0.601 mg/kg	0.0000601 %	√	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg/	kg	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	ď,	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		35 mg/	kg	1.126	34.567 mg/kg	0.00346 %	✓	
7	4	lead { lead chromate } 082-004-00-2	1	71 mg/	kg	1.56	97.146 mg/kg	0.00623 %	√	
8	ď,	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/	kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		21 mg/	kg :	2.976	54.826 mg/kg	0.00548 %	✓	
10	ď,	selenium { nickel selenate } 15060-62-5 028-031-00-5 239-125-2 15060-62-5		<1 mg/	kg :	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	_	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		110 mg/	kg 4	4.398	424.361 mg/kg	0.0424 %	✓	
12	0	TPH (C6 to C40) petroleum group		14 mg/	kg		12.281 mg/kg	0.00123 %	√	
13	4	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/	kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
14	0	pH PH		8.1 pH			8.1 pH	8.1 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.05 mg/	kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene			0	<0.05	mg/kg		<0.05	mg/kg	<0.00005 %	2	<lod< th=""></lod<>
10			205-917-1	208-96-8		\0.03	mg/kg		\(\tau_0.03\)	mg/kg	<0.000003 /8		\LOD
17	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	\perp	10.00	9/119		10.00		10.000000 /0		1202
18	0	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	1								
19	0	phenanthrene	201-581-5	85-01-8	-	0.76	mg/kg		0.667	mg/kg	0.0000667 %	✓	
20	0	anthracene	204-371-1	120-12-7		0.71	mg/kg		0.623	mg/kg	0.0000623 %	√	
21	0	fluoranthene		(1-2-1-1		0.79	mg/kg		0.693	mg/kg	0.0000693 %	✓	
			205-912-4	206-44-0		5 0	9/119				0.0000000 /0	ľ	
22	0	pyrene	204-927-3	129-00-0		0.62	mg/kg		0.544	mg/kg	0.0000544 %	✓	
23		benzo[a]anthracene		1.20 00 0		0.29	mg/kg		0.254	mg/kg	0.0000254 %	,	
23		601-033-00-9	200-280-6	56-55-3	1	0.29	mg/kg		0.234	mg/kg	0.0000234 /8	√	
24		chrysene				0.35	mg/kg		0.307	mg/kg	0.0000307 %	√	
24		601-048-00-0	205-923-4	218-01-9		0.55	mg/kg		0.307	ilig/kg	0.0000307 /8	~	
25		benzo[b]fluoranther				0.48	mg/kg		0.421	mg/kg	0.0000421 %	√	
			205-911-9	205-99-2	<u> </u>							Ļ	
26		benzo[k]fluoranther			_	0.14	mg/kg		0.123	mg/kg	0.0000123 %	1	
			205-916-6	207-08-9	-							1	
27		benzo[a]pyrene; be		/50.00.0		0.32	mg/kg		0.281	mg/kg	0.0000281 %	1	
		601-032-00-3 indeno[123-cd]pyre	200-028-5 ne	50-32-8	+							\vdash	
28			205-893-2	193-39-5	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29		dibenz[a,h]anthrace		1		<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	1_	,,,,,	9.119				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,
30	0	benzo[ghi]perylene				<0.05	mg/kg		<0.05	mg/ka	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2	\perp		J. 19						
										Total:	0.0632 %	1	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00123%)

Page 16 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS02 (0.3)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

WS02 (0.3) Chapter: Moisture content:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ å	arsenic { arsenic trioxide } 033-003-00-0		28 mg/kg	1.32	33.306 mg/kg	0.00333 %	√	
	-	033-003-00-0						+	
2	4	004-003-00-8 215-133-1 1304-56-9		1.4 mg/kg	2.775	3.5 mg/kg	0.00035 %	✓	
	-	boron { diboron trioxide; boric oxide }						+	
3	_	005-008-00-8		7.5 mg/kg	3.22	21.756 mg/kg	0.00218 %	✓	
<u> </u>	æ	cadmium { cadmium oxide }						1	
4	_	048-002-00-0 215-146-2 1306-19-0		1.6 mg/kg	1.142	1.647 mg/kg	0.000165 %	√	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<4 mg/kg	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide }		240 mg/kg	1.126	243.435 mg/kg	0.0243 %	√	
		029-002-00-X 215-270-7 1317-39-1						1	
7	4	lead { lead chromate }	1	500 mg/kg	1.56	702.619 mg/kg	0.045 %	✓	
	-	082-004-00-2 231-846-0 7758-97-6							
8	4	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	<u> </u>	nickel { nickel chromate }					<u> </u>		
9	_	028-035-00-7 238-766-5 14721-18-7	-	52 mg/kg	2.976	139.429 mg/kg	0.0139 %	✓	
1.0	_					0.554			
10	_	028-031-00-5 239-125-2 15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9		470 mg/kg	4.398	1862.185 mg/kg	0.186 %	✓	
12	0	TPH (C6 to C40) petroleum group		790 mg/kg		711.712 mg/kg	0.0712 %	√	
13		cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
—	0	pH					0.4.11		
14		PH	1	8.4 pH		8.4 pH	8.4 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
Ц		00. 001 00 1							

			Determine									pe	
#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
16	8	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-917-1	208-96-8		10.00				mg/ng	10.000000 70		(200
17	0	acenaphthene				0.8	mg/kg		0.721	mg/kg	0.0000721 %	/	
			201-469-6	83-32-9						55		ľ	
18	0	fluorene				0.59	mg/kg		0.532	mg/kg	0.0000532 %	1	
			201-695-5	86-73-7						3 3		ľ	
19	0	phenanthrene				2.5	mg/kg		2.252	mg/kg	0.000225 %	1	
			201-581-5	85-01-8						55		•	
20	0	anthracene				0.72	mg/kg		0.649	mg/kg	0.0000649 %	/	
			204-371-1	120-12-7	1					3 3		ľ	
21	0	fluoranthene				4.4 n	mg/kg		3.964	mg/kg	0.000396 %	1	
			205-912-4	206-44-0	1					3 3		ľ	
22	0	pyrene				4	mg/kg		3.604	mg/kg	0.00036 %	1	
			204-927-3	129-00-0								ľ	
23		benzo[a]anthracen				2.5	mg/kg		2.252	mg/kg	0.000225 %	1	
			200-280-6	56-55-3								ľ	
24		chrysene				2.2	mg/kg		1.982	mg/kg	0.000198 %	1	
		601-048-00-0	205-923-4	218-01-9					1.302	55		ľ	
25		benzo[b]fluoranthe				3.2	mg/kg		2.883	mg/kg	0.000288 %	1	
		601-034-00-4	205-911-9	205-99-2						55		ľ	
26		benzo[k]fluoranther				1.3	mg/kg		1.171	mg/kg	0.000117 %	1	
		601-036-00-5	205-916-6	207-08-9						55		•	
27		benzo[a]pyrene; be	enzo[def]chrysene			2.4	mg/kg		2.162	mg/kg	0.000216 %	1	
		601-032-00-3	200-028-5	50-32-8						55		•	
28	0	indeno[123-cd]pyre				1.2	mg/kg		1.081	mg/kg	0.000108 %	/	
			205-893-2	193-39-5						55		ľ	
29		dibenz[a,h]anthrace				0.39	mg/kg		0.351	mg/kg	0.0000351 %	/	
Ľ		601-041-00-2	200-181-8	53-70-3								ľ	
30	0	benzo[ghi]perylene	•			1.3	mg/kg		1.171	mg/kg	0.000117 %	/	
L			205-883-8	191-24-2								*	
										Total:	0.351 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0712%)

Page 18 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS03 (1)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

WS03 (1) Chapter: Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

from contaminated sites)

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 9% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number	S Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	e#	arsenic { arsenic trioxide } 033-003-00-0	3-3		31 mg/k	1.32	37.551 mg/kg	0.00376 %	✓	
2	4		ñ-9		3 mg/k	2.775	7.639 mg/kg	0.000764 %	✓	
3	4				3.1 mg/kg	3.22	9.157 mg/kg	0.000916 %	✓	
4	æ\$				1.1 mg/k	1.142	1.153 mg/kg	0.000115 %	✓	
5	4	chromium in chromium(VI) compounds { chron compounds, with the exception of barium chro of compounds specified elsewhere in this Anni 024-017-00-8	mate and		<4 mg/k	2.27	<9.08 mg/kg	<0.000908 %		<lod< td=""></lod<>
6	4		9-1		310 mg/k	1.126	320.207 mg/kg	0.032 %	√	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-9	7-6	1	320 mg/k	1.56	457.927 mg/kg	0.0294 %	✓	
8	æ \$	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94	4-7		<0.3 mg/k	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-	18-7		58 mg/k	2.976	158.37 mg/kg	0.0158 %	✓	
10	æ\$	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-0	62-5		<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { zinc sulphate (hydrous) (mono-, hexa- ar hydrate); [1] zinc sulphate (anhydrous) [2] } 030-006-00-9	9-7 [1]		320 mg/k	4.398	1291.134 mg/kg	0.129 %	√	
12	0	TPH (C6 to C40) petroleum group			360 mg/k	9	330.275 mg/kg	0.033 %	✓	
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocy ferricyanides and mercuric oxycyanide and the specified elsewhere in this Annex }	anides,		<1 mg/k	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
14	0	pH PH			9.6 pH		9.6 pH	9.6 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3	3		0.98 mg/k	9	0.899 mg/kg	0.0000899 %	√	

#		Determinand CLP index number	CAS Number	CLP Note	User entered o	data	Conv. Factor	Compound cond	.	Classification value	MC Applied	Conc. Not Used
16	0	acenaphthylene	208-96-8		<0.05	ng/kg		<0.05 m	g/kg	<0.000005 %		<lod< th=""></lod<>
17	0	acenaphthene	83-32-9		4.2	ng/kg		3.853 m	g/kg	0.000385 %	√	
18	0	fluorene 201-695-5	86-73-7		2.5	ng/kg		2.294 m	g/kg	0.000229 %	√	
19	0	phenanthrene	85-01-8		25 r	ng/kg		22.936 m	g/kg	0.00229 %	√	
20	0	anthracene	120-12-7		1.6 r	ng/kg		1.468 m	g/kg	0.000147 %	✓	
21	0	fluoranthene	206-44-0		34 r	ng/kg		31.193 m	g/kg	0.00312 %	✓	
22	0	pyrene 204-927-3	129-00-0		29 r	ng/kg		26.606 m	g/kg	0.00266 %	✓	
23		benzo[a]anthracene 601-033-00-9 200-280-6	56-55-3		15 r	ng/kg		13.761 m	g/kg	0.00138 %	√	
24		chrysene 601-048-00-0 205-923-4	218-01-9		11 r	ng/kg		10.092 m	g/kg	0.00101 %	√	
25		benzo[b]fluoranthene 601-034-00-4 205-911-9	205-99-2		13 r	ng/kg		11.927 m	g/kg	0.00119 %	√	
26		benzo[k]fluoranthene 601-036-00-5 205-916-6	207-08-9		6.1	ng/kg		5.596 m	g/kg	0.00056 %	√	
27		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5	50-32-8		10 r	ng/kg		9.174 m	g/kg	0.000917 %	√	
28	0	indeno[123-cd]pyrene	193-39-5	_	4.6	ng/kg		4.22 m	g/kg	0.000422 %	√	
29		dibenz[a,h]anthracene 601-041-00-2 200-181-8	53-70-3		1.4 r	ng/kg		1.284 m	g/kg	0.000128 %	✓	
30	0	benzo[ghi]perylene	1		5.2 r	ng/kg		4.771 m	g/kg	0.000477 %	✓	
		205-883-8 191-24-2	L				T	otal:	0.261 %			

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

 $\frac{\text{HP 3(i): Flammable}}{\text{having a flash point}} \text{"flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"$

Force this Hazardous property to non hazardous because No obvious sources of materials capable of ignition during exploratory work

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.033%)

Page 20 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015: Risk phrases; WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2

H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Aquatic Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic

Chronic 1 H410, Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2 H315 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

beryllium {beryllium oxide}

Reasonable case CLP species based on hazard statements/molecular weight. Industrial sources include: most common (non alloy) form, used in ceramics (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2]}

No obvious sources of chromium identified during exploratory work. Elevated concentrations of chromium or hexavalent chromium were not detected in laboratory analysis

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2021.246.4869.9247 (05 Sep 2021)

HazWasteOnline Database: 2021.246.4869.9247 (05 Sep 2021)

Page 22 of 23 7FBVQ-IOOCP-KS3L0 www.hazwasteonline.com

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2019 - UK: 2019 No. 720 of 27th March 2019

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

Date: July 2022

Joint Industry Working Group

Asbestos in Soil and Construction & Demolition Materials

Project Reference
Site Name
Big Yellow, Kentish Town
Client
Sig Yellow Self Storage Company Ltd
CampbellReith
Date
11-Oct-21
Scenario details
Potential Exposure of Groundworkers for Absestos in Soils

Decision Support Tool for CAR2012 Work Categories

Stage 1 Hazard Factors		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Loose fibrous asbestos debris	3
Extent of degradation of ACMs at outset of work	Disaggregated (dominated by loose fibrous material; extreme degradation in ACM and/or free asbestos fibres/fibre bundles)	4
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Friable ACM or ACM with fibres not firmly linked in a matrix	2
Distribution of Visible Asbestos Across Affected Area	No visible ACMs/fibre bundles	0
Amount of asbestos fibre in selected ACM/fibre type as % of host material	Very Low quantities - <0.001 to 0.01 %wt/wt	1
Sub-total	Note: the asbestos licensing regime is unaffected by the type of asbestos fibre present in ACMs	10
Hazard ranking	Note. the assesses needsing regime is unancered by the type of assesses have present in Acins	Low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

Stage 2 Exposure Factors			Score
Anticipated airborne fibre concentration - Control Limit or SALI?	<0.001 fibres/ml		0
Anticipated duration of exposure to asbestos	< 1 hour for any one person in any week (e.g. Short Duration Work)		1
Activity type and effect on deterioration of ACMs during work	Sampling, manual or mechanical (no or minimal deterioration expected)		0
Best description of primary host material matrix (soil/made ground)	Fine Silt and/or Clay		1
Respirable fibre index for ACM - RIVM report 711701034 (2003)	Medium		3
Sub-total			5
Exposure ranking			Very low
Combined hazard and exposure ranking		15	Low

© Joint Industry Working Group, ©CL:AIRE Version 2, July 2016

Asbestos in Soil and Construction & Demolition Materials

Stane 3

Risk Assessment Outputs

Probable Licensing Status RPE* Non-Licensed Work EN149 type FFP3 disposable

Dust Suppression**

Manual/localised dust suppression

Hygiene/Decontamination***

Localised and basic personal decontamination facilities

© Joint Industry Working Group, ©CL:AIRE Version 2, July 2016

^{*}Where RPE has to be worn continuously for long periods (e.g. more than 1-hour), then powered RPE may be necessary.

^{**}Reduction in control measures possible if natural mitigation factors are present (e.g. raining, wet ground)

^{***}Guide only; suitability of selected personal hygiene measures may be reviewed on a site/contamination-specific basis

Birmingham London Chantry House High Street, Coleshill Birmingham B46 3BP 15 Bermondsey Square London SE1 3UN T: +44 (0)1675 467 484 T: +44 (0)20 7340 1700 E: london@campbellreith.com E: birmingham@campbellreith.com Manchester Surrey No. 1 Marsden Street Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS Manchester M2 1HW T: +44 (0)1737 784 500 E: surrey@campbellreith.com T: +44 (0)161 819 3060 E: manchester@campbellreith.com **Bristol** Unit 5.03, HERE, 470 Bath Road, Bristol BS4 3AP T: +44 (0)117 916 1066 E: bristol@campbellreith.com Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: 15 Bermondsey Square, London, SE1 3UN VAT No 974 8892 43