

ENERGY & OVERHEATING ASSESSMENT

FLAT 29 GAINSBOROUGH HOUSE

PROPERTY ADDRESS

FLAT 29 GAINSBOROUGH HOUSE, FRONGNAL RISE, LONDON, NW3 6PZ,

DATE REV

January 23

PREPARED BY

EAL Consult

1. Table of Contents

1.	EXECUTIVE SUMMARY	3
2.	INTRODUCTION	5
3.	PLANNING POLICY CONTEXT	6
4.	ENERGY STRATEGY	. 9
5.	SUSTAINABLE DESIGN	11
6.	COOLING STRATEGY	12
7.	CONCLUSION	19
8	ΔΡΡΕΝΟΙΧ	20

1. EXECUTIVE SUMMARY

This Sustainability statement has been prepared to support the installation of two new outdoor air condenser units within acoustic enclosures at Flat 29 Gainsborough House. The strategy highlights how the proposed development will promote sustainability throught both design and operation and summarises the relevant regulatory and planning policies applicable and how the relevant policy targets will be addressed and achieved. The report analyses also whether Flat 29 has comfort level in accordance with the criteria set out in CIBSE TM59 to assess the space against the cooling hierarchy presented in section 6 and confirm whether an active cooling system will be required.

The strategy reponds to the UK Planning and regulatory framework, the National Planning Policy Framework 2021, the New London Plan and Camden Local Plan 2021.

This statement outlines an overall commitment to reducing energy consumption under occupancy through the adoption of a 'Fabric First' principle, which will seek enhanced insulation standards and improved heating and lighting efficiencies in comparison to the standard requirements of Approved Document Part L1 2013.

Where an existing building is being assessed the dwelling emission rates (DER) of the notional flats and proposed flats are compared to determine the level of improvement. This is in line with Building Regulations L1B for Existing Buildings.

The report also demonstrates that the proposed flat, by incorporating the measures above, can achieve an average carbon emission reduction of **29.9%** on Notional Dewelling emission.

Table 1. Carbon Emission Rate

Dwelling	Notional DER	Lean DER (without active cooling)	Lean DER (with air con)
29 Gainsborough House	35.53	26.52	26.57

SAP methodology and Building regulations Part L 2013 have been used in the assessment

Table 2. Carbon Dioxide emissions after each stage of the Energy Hierarchy

	Carbon dioxide emissions (Tonnes CO2 per annum) – without Active cooling	Carbon dioxide emissions (Tonnes CO2 per annum) – with Active cooling
	Regulated	Regulated
Building Regs Notional Development	11.68	11.68
After Energy demand Reduction	7.99	8.00

Table 3. Carbon Dioxide Savings from each stage of the Energy Hierarchy

	With Active cooling		Without Active cooling	
	Regulated Carbon dioxide savings (Tonnes CO ₂) **Marginal Control of the contr		Regulated Carbon dioxide savings (Tonnes CO ₂)	% Improvement
Savings from energy efficiency measures	3.68	31.5%	3.70	31.6%

The results below show that the carbon dioxide savings are similar for both options (with or without active cooling) and therefore we can conclude that the use of active cooling does not lead to the increase the carbon emission.

The reported improvements are also deemed to be at the limit of financial viability for a minor development such as the proposal exceeded Part L requirements.

2. INTRODUCTION

Site description

The development is located at flat 29 Gainsborough house near Hamsptead station.

Methodology

This energy assessment outlines the energy demand from the development together with the associated CO₂ emissions, using the present Building Regulations Part L as a baseline. It demonstrates how the emissions from energy use in the development will be reduced through energy efficiency measures.

The proposed scheme is required to achieve carbon emission reduction principles in accordance with the UK Planning and regulatory framework,

The methodology employed to determine the potential CO₂ savings is in accordance with the three-step Energy Hierarchy.

- **Be Lean** Improve the energy efficiency of the scheme;
- **Be Clean** Supply as much of the remaining energy requirement with low carbon; technologies such as district heating if available or combined heat and power (CHP); and
- Be Green Offset a proportion of the remaining carbon dioxide emissions by using renewable technologies.

The government approved Standard Assessment Procedure (SAP) methodology software (2013) has been used to determine the CO₂ emissions and energy requirements. It compares CO₂ emissions from regulated energy use (DER) with those of an equivalent dwelling built to Part L1A 2013 (TER), a notional dwelling of the same size and shape. These calculations do not include emissions from cooking or appliances.

Opportunities for incorporating features into the development that contribute to the objectives of sustainable development were explored during the design process, to ensure that where possible, the proposals achieve best practice.

3. PLANNING POLICY CONTEXT

National Planning Policy Framework 2021 – emphasised the concept of sustainable development by encouraging local authorities to adopt proactive strategies to mitigate and adapt to climate change. It recommends the move to a low carbon future by:

- Avoiding increased vulnerability to the range of impacts arising from climate change.
 When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
- Contributing to reduce greenhouse gas emissions, such as through its location, orientation
 and design. Any local requirements for the sustainability of buildings should reflect the
 Government's policy for national technical standards.
- To help increase the use and supply of renewable and low carbon energy and heat, plans should:
 - o provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);
 - consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development;
 and
 - identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for colocating potential heat customers and suppliers.

The London Plan 2021 provides the strategic framework for an integrated socio-economic, transportation and environmental development plan across the capital to 2050. The Plan seeks to ensure new developments are designed to enable the efficient use of energy and support the development of sustainable energy infrastructure to produce energy more efficiently. It sets out a range of policies that apply to new developments.

Policy SI 2 Minimising Greenhouse Gas Emissions:

- A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy: a) Be lean: use less energy and manage demand during operation, b) Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly, c) Be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site
- B. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- C. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either: 1) through a cash in lieu contribution to the borough's carbon offset fund, or 2) off-site provided that an alternative proposal is identified, and delivery is certain.
- D. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.

- E. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.
- F. Development proposals referable to the Mayor should calculate whole lifecycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.
- 9.2.1 The Mayor is committed to London becoming a zero-carbon city. This will require reduction of all greenhouse gases, of which carbon dioxide is the most prominent. London's homes and workplaces are responsible for producing approximately 78 per cent of its greenhouse gas emissions. If London is to achieve its objective of becoming a zero-carbon city by 2050, new development needs to meet the requirements of this policy. Development involving major refurbishment should also aim to meet this policy.
- 9.2.2 The energy hierarchy should inform the design, construction, and operation of new buildings. The priority is to minimise energy demand, and then address how energy will be supplied and renewable technologies incorporated. An important aspect of managing demand will be to reduce peak energy loadings.

Policy SI 4 Managing heat risk

- A. Development proposals should minimise adverse impacts on the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure.
- B. Major development proposals should demonstrate through an energy strategy how they will reduce the potential for internal overheating and reliance on air conditioning systems in accordance with the following cooling hierarchy:
 - 1. reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure
 - 2. minimise internal heat generation through energy efficient design
 - 3. manage the heat within the building through exposed internal thermal mass and high ceilings
 - 4. provide passive ventilation
 - 5. provide mechanical ventilation
 - 6. provide active cooling systems.

Camden Planning Guidance 'Energy, Efficiency & Adaption', 2021

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. support and encourage sensitive energy efficiency improvements to existing buildings;
- e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

Policy CC2 Adapting to climate change

All new developments will be expected to submit a statement demonstrating how the London Plan's 'cooling hierarchy' has informed the building design. Any development that is likely to be at risk of overheating (for example due to large expanses of south or south west facing glazing) will be required to complete dynamic thermal modelling to demonstrate that any risk of overheating has been mitigated.

Active cooling (air conditioning) will only be permitted where dynamic thermal modelling demonstrates there is a clear need for it after all the preferred measures are incorporated in line with the cooling hierarchy.

The cooling hierarchy includes:

- Minimise internal heat generation through energy efficient design;
- Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls;
- Manage the heat within the building through exposed internal thermal mass and high ceilings;
- Passive ventilation;
- Mechanical ventilation; and
- Active cooling

4. ENERGY STRATEGY

The Energy strategy for the proposed development is based on the Building Regulations Part L1A; it adopts a set of principles to guide design and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. It seeks to incorporate energy efficiency through the approach detailed below.

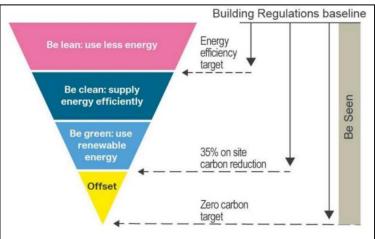


Figure 1. Energy Hierarchy

Be 'Lean' - Demand Reduction

The building fabric performance and engineering systems have been optimised in order to use less energy prior to the inclusion or consideration of Low and Zero Carbon (LZC) Technology.

Passive Design Measures:

Fabric Performance - The fabric performance values aim to reduce unwanted heat loss and heat gains, whilst maintaining a comfortable internal environment.

Under the strict terms of the lease, it is not feasible to alter or improve any external element of this existing building except for the roof. The table below outlined the u values assumed for the walls and reflecting the roof upgrade. Please note: whilst an 'External Wall' thermal element is shown within the Fabric Values, this property is wholly contained within the roof-space and there are NO external walls. The roof fabric element is being thermally upgraded (room-side) to meet current requirements.

Table 3. Fabric energy Efficiency Standard

Thousand alamout	Part L1A Minimum	
Thermal element	Standard	
Wall	0.30W/m ² k	
Roof	0.20 W/m ² k	
Floor	0.25 W/m ² k	
Glazing	1.2 W/m ² k	
Doors	1.2 W/m ² k	

Table 4. Fabric energy Efficiency specified

Thermal element	specification
Wall	1.55/m ² k
Roof	0.17 W/m ² k
Glazing	2.4 W/m ² k

Space Heating & Cooling - Space heating could be provided by radiators.

Efficient Lighting and Controls - Throughout the development natural lighting will be optimised. The development will also incorporate low energy light fittings throughout. All light fittings will be specified as low energy lighting and will accommodate LED luminaries only.

Ventilation - The use of natural ventilation is proposed for the building.

Domestic hot water (DHW) system – domestic hot water will be provided by the combi-boiler & cylinder.

Be 'Clean' - Supply Energy Efficiently

The Be Clean step of the energy hierarchy refers to the use of 'Clean energy supply'. This includes, but is not limited to, the use of Combined Heat and Power (CHP) and District Heat Networks. Policy TP1 seeks for new development to promote the use of CHP and district heating.

In light of the small-scale nature of the proposed development, it is apparent that the use of CHP is also technically and financially unviable in this instance.

Be 'Green' - Renewable Energy

Once energy demand reduction measures have been applied, methods for generating low and zero carbon energy can be assessed. The following renewable technologies to be considered for the project: Biomass, Water source heat pump, air source heat pump, Wind energy and solar photovoltaic panels.

In the light of the nature of the project, renewable technologies have been considered not feasible for this project.

5. SUSTAINABLE DESIGN

The proposed project incorporates sustainable design and construction measures capable of mitigating and adapting to climate change to meet future needs. This section details site-specific initiatives which demonstrate how the conversion helps to meet the sustainability objectives set out in the National Planning Framework 2021.

Energy Use and Pollution

The design of the development has taken into consideration day lighting to habitable spaces to improve the wellbeing of occupants. Good levels of daylight will offer occupants a pleasant and highly valued connection to the outdoors and plenty of natural light. It will also reduce the use of artificial lighting and therefore energy use. All light fittings will be specified as low energy lighting. No external lighting is required.

Pollution: Air, Noise and Light

The layout of the development and the use of openable windows will create horizontal airflow. However, it is not sufficient to eliminate the overheating and therefore the need for air conditioning. Refer to section 6 for more details.

The development will not increase the air pollution of the area by reducing as a start, its energy consumption, which in turn will reduce emissions that lead to air pollution.

Other measures will include:

- a. Use of eco-friendly building materials
- b. Non-toxic paints
- c. Installation of energy efficient appliances and devices
- d. Use of renewable technologies

Light pollution can best be described as artificial light that is allowed to illuminate or intrude upon areas not intended to be lit. Light in the wrong place at the wrong time can be intrusive. Intrusive light is over bright or poorly directed lights shining onto neighbouring property which affect the neighbours' right to enjoy their property. Therefore, the proposal will incorporate lighting measures in order to avoid causing a nuisance.

Water: Water Efficiency

In domestic and non-domestic buildings, the demand for water can be reduced as much as 50% using a variety of simple and innovative strategies that are integrated into the plumbing and mechanical systems. In order to reduce water consumption the proposed development will include efficient fixtures with low flow rates. Total internal water consumption will not exceed 105 litres/person/day.

Pollution

All contractors would be required to sign up to the nationally recognised Considerate Constructors Scheme which requires, amongst other things that dust emissions, potential noise pollution, impacts on water quality and the potential for ground contamination are minimised during demolition and construction. The Contractor would also be obliged to adhere to a site specific Code of Construction Practice to reduce potential nuisance effects.

Flood Risk

The development site is located in a Low Flood Risk Area on the Environment Agency Flood Risk Map.

6. COOLING STRATEGY

A dynamic overheating analysis has been carried out to identify the overheating risk of Flat 29 Gainsborough House, using dynamic thermal modelling via TM59 TM49 and The principles set in Building regulations Part O - Overheating.

6.1 Assessment Criteria

CIBSE TM59:2017 (Design methodology for the assessment of overheating risk in homes) defines overheating criteria for residential buildings. The buildings will be predominantly naturally ventilated and hence the relevant TM59 criteria will be used for the assessment.

Naturally Ventilated Buildings: The criteria below can be applied to homes which are naturally ventilated building. The compliance is based on passing both of the following two criteria.

- **A.** Living rooms, Kitchens and Bedrooms: The number of hours () during which Δ is greater than or equal to one degree (K) during the period May to September inclusive shall not be more than 3 per cent of occupied hours. Please refer to CIBSE TM59.
- **B.** Bedrooms only: The operative temperature in the bedroom between 10:00pm to 7:00am shall not exceed 26°C for more than 1% of annual hours. (Note: 1% of the annual hours between 22:00 and 07:00 for bedrooms is 32 hours, so 33 or more hours above 26°C will be recorded as a fail).

CIBSE TM49:2014 - In line with guidance from the Greater London Authority, 3 weather files from the CIBSE TM49 document have been used

5.2 Modelling Input

Weather File & Description

- London_GTW_DSY1_2020High50.epw London Gatwick Weather data: 2020 (high emission)
 DSY 1 Moderately warm summer
- London_GTW_DSY2_2020High50.epw London Gatwick Weather data: featuring short intense warm spell
- London_GTW_DSY3_2020High50.epw London Gatwick Weather data: featuring long, less intense warm spell

Building Category

• Category II - all units: Normal expectation

Window¹

- Glazed full height doors/windows are modelled as 100% openable. Operating on a 24hour time schedule if internal operative temperature is over 22°c this has been rephrased to 24hours not from 8am to 10pm.
- Internal blinds installed

Lighting Gain

¹ Whilst 100% openable windows & doors are modelled as requested, in fact window openings are sliding-sash type (not casement) and therefore only ever 50% openable, doors to terraces are 100% openable, and 4No oval windows to eighth floor are pivot casement type with restricted opening (less than 30%) to provide protection from falling at this floor level – refer to Architects drawings.

The internal gains from the lighting are based on CIBSE TM59 5.2

Small Power Gains

The house is modelled to include small power gains that are representative of typical equipment use in an everyday occurrence. There are associated with an assumed usage profile to represent which times of the day such appliances would result in a heat gain into the space. Small power gains include appliances such as TV's, fridge/freezers, toasters, kettles, hairdryers etc.

A list of anticipated heat gains in the dwellings are:

- Kitchen and Living spaces: 250W maximum power consumption
- Bedroom spaces: 150W maximum power consumption

5. 3. Summary of Results - Rev I

As proposed – Including latest U-Values for walls – 1.55 and windows – 2.4

Table 04: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?		
Bedrooms				
Bedroom 1	1.8%	Fail		
Bedroom 2	1.4%	Fail		
Bedroom 3	1.8%	Fail		
Bedroom 4	1.4%	Fail		

Table 05: Summary of Results for Dining/living rooms and kitchens

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?		
Dining/Living Room and Kitchen				
Sixth Floor				
Sitting Room	2.9%	Fail		
Seventh Floor				
Kitchen	3.4%	Fail		
Reception	3.2%	Fail		
Dining	3.3%	Fail		

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 2:

Table 06: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?
Bedroom 1	2.0%	Fail
Bedroom 2	1.7%	Fail
Bedroom 3	2.0%	Fail
Bedroom 4	1.7%	Fail

Table 07: Summary of Results for Dining/living rooms and kitchens

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?		
Dining/Living Room and Kitchen				
Ground floor Sitting Room	3.4%	Fail		
Kitchen	3.5%	Fail		
Reception	3.3%	Fail		
Dining	3.3%	Fail		

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 3:

Table 08: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?
Bedroom 1	2.3%	Fail
Bedroom 2	1.8%	Fail
Bedroom 3	2.3%	Fail
Bedroom 4	1.8%	Fail

January 2023 ENERGY & OVERHEATING

Table 09: Summary of Results for Dining/living rooms and kitchens

Room Name Dining/Living Room a	Criteria A (During The Period May to September) and Kitchen	TM59 Criteria met ?
Ground floor Sitting Room	3.4%	Fail
Kitchen	3.7%	Fail
Reception	3.5%	Fail
Dining	3.5%	Fail

5.4. Additional Results

CIBSE TM49: 2014 Compliance

DYS1 (1989) Weather Data Results

Doom Name	Criteria 1	Criteria 2	Criteria 3	TM59
Room Name	≤3.0%	We≤6	ΔT ≤4	Compliance
% of spaces	0	0	0	Fail
pass				
% of spaces fail	100	100	100	

DYS2 (2003) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	
% of spaces	0	0	0	Fail
pass				
% of spaces fail	100	100	100	

DYS2 (1976) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	
% of spaces	0	0	0	Fail
pass				
% of spaces fail	100	100	100	

5.5. Proposed Ventilation Strategy

Mechanical cooling - to maintain comfortable internal temperatures

CIBSE TM49: 2014 Compliance

DYS1 (1989) Weather Data Results

Doom Name	Criteria 1	Criteria 2	Criteria 3	TM59
Room Name	≤3.0%	We≤6	ΔT ≤4	Compliance
% of spaces	100	100	100	Pass
pass				
% of spaces fail	0	0	0	

DYS2 (2003) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	
% of spaces	100	100	100	Pass
pass				
% of spaces fail	0	0	0	

DYS2 (1976) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	
% of spaces	100	100	100	Pass
pass				
% of spaces fail	0	0	0	

CIBSE TM59: 2014 Compliance

Table 10: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?
Bedrooms		
Bedroom 1	0%	Pass
Bedroom 2	0%	Pass
Bedroom 3	0%	Pass
Bedroom 4	0%	Pass

Table 11: Summary of Results for Dining/living rooms and kitchens

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?			
Dining/Living Room a	and Kitchen				
	Sixth Floor				
Sitting Room	Pass				
	Seventh Floor				
Kitchen	2.8%	Pass			
Reception	2.6%	Pass			
Dining	2.5%	Pass			

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 2:

Table 12: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?
Bedroom 1	0%	Pass
Bedroom 2	0%	Pass
Bedroom 3	0%	Pass
Bedroom 4	0%	Pass

Table 13: Summary of Results for Dining/living rooms and kitchens

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?		
Dining/Living Room and Kitchen				
Ground floor	2.5%	Pass		
Sitting Room	2.570			
Kitchen	2.3%	Pass		
Reception	2.0%	Pass		
Dining	2.0%	Pass		

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 3:

Table 14: Summary of Results for Bedrooms

Room Name	Criteria B (Sleeping hours between 10pm to 7am, per year) % of hours	TM59 Criteria met ?
Bedroom 1	0.5%	Pass
Bedroom 2	0.6%	Pass
Bedroom 3	0.6%	Pass
Bedroom 4	0.3%	Pass

January 2023 ENERGY & OVERHEATING

Table 15: Summary of Results for Dining/living rooms and kitchens

Room Name Dining/Living Room a	Criteria A (During The Period May to September) and Kitchen	TM59 Criteria met ?
Ground floor Sitting Room	2.6%	Pass
Kitchen	2.7%	Pass
Reception	2.6%	Pass
Dining	2.7%	Pass

5.6 Cooling strategy:

The following strategy has been defined according the cooling hierarchy in Policy SI4 of the London Plan.

Table 16. cooling hierarchy

Cooling Hierarchy category	Flat 29 Gainsborough House
1. Reduce the amount of heat entering the building through orientation, shading, high albedo material, fenestration, insulation and the provision of green infrastructure.	The flat was originally converted from a hospital in 1997. Also under the strict terms of the lease, it is not permitted to proceed with alterations in the infrastructure. Only the roofs will be upgraded
2. Minimise internal heat generation through energy efficient design	As above.
3. Manage the heat within the building through exposed internal thermal mass and high ceilings.	As above.
4. Provide passive ventilation	The natural ventilation is not enough to recover the heat generated. This has been demonstrated in the results provided in section 5.4. Also, the tenant has a documented medical condition that affects her ability to regulate body temperature, hence the strong desire for cooling throughout the apartment.
5. Provide mechanical ventilation	Mechanical ventilation can be used but it won't be enough to recover the heat generated. Also, the tenant has a documented medical condition that affects her ability to regulate body temperature, hence the strong desire for cooling throughout the apartment.
6. Provide active cooling system	The use of air conditioning is proposed for the development. Refer to section 5.5 for results.

7. CONCLUSION

The development has been designed to exceed Part L1A building regulations requirements. In line with the national and local policies, regulated CO₂ emissions from the development will be improved by **25.4%** from the notional emissions once energy efficiency measures, lean measures and active cooling are taken into account.

The development is constrained and doesn't provide opportunities for implementing passive measures to improve the performance of the flat. The health conditions of the tenant urge the need to use active cooling to regulate her thermal comfort.

In order to achieve the required carbon emissions reduction, the report concludes and proposes the use of energy efficient measures outlined in the section 4 of this report. The overheating analysis outlined in section 6 supports the use of air conditioning to provide a comfortable space for the tenant.

An appraisal of the proposed development has been undertaken against key sustainability objectives identified from relevant policy guidance. The framework for the appraisal was guided by the National Plan. This process has ensured that the development responds to the sustainable development objectives that are relevant to the area. Key sustainability initiatives in ecology, waste management, water, health and wellbeing, materials, pollution and Surface water management have been incorporated in the design of the proposed Development.

8.APPENDIX

I. SAP Calculation

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

SAP 2012 worksheet for Existing dwelling - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Secondfloor	157.93	2.84	448.52	(3a)
Third floor	111.23	3.45	383.74	(3b)
Fourth and other floors	32.02	2.20	70.44	(3c)
	301.18			(4)
			902.71	(5)

2. Ventilation rate

											m³ per h	our
							main + s	eondary	/ + othe	r		
Numbe	er of chim	nave					heating $0 + 0 + 0$		x 40		0.00	(6a)
	r of oper	•					0 + 0 + 0		20		0.00	(6b)
		mittent fa	ns				5		10		50.00	(7a)
		ive vents					0		10		0.00	(7b)
		ess gas fi	res				0	Х	40		0.00	(7c)
											Air chan	ges per hour
											0.06	(8)
(ns)							3					(9)
											0.20	(10)
											0.35	(11)
											0.00	(13)
									100.00			(14)
											0.05	(15)
Infiltrati											0.66	(16)
Air perr	meability										0.66	(18)
											2.00	(19)
L. Cless C				(0.85	(20)
		ncorporati nodified f			peed						0.56	(21)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind F	ootor	·	,								52.50	(22)
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
1.21	1.20	1.20	1.10	1.07	0.00	0.00	0.00	1.00	1.07	1.10	13.13	(22a)
Adjuste	ed infiltra	tion rate ((allowing	for shelt	er and w	ind spee	ed)				13.13	(22a)
0.71	0.70	0.68	0.61	0.60	0.53	0.53	0.52	0.56	0.60	0.63	0.65	
											7.31	(22b)
	tion : nat /e air cha	ural venti nge rate	ilation, in	termitter	nt extract	fans						
0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.70	0.71	(25)
												` '

3. Heat losses and heat los		er					
Element Gross	Openings	Netarea	U-value	AxU	kappa-value		
area, m²	m²	A, m ²	W/m ² K	W/K	kJ/m²K	kJ/K	(07)
Window - Double-glazed,		1.369	2.19 (2.40)	3.00			(27)
argon filled, low-E, En=0.1,							
soft coat (SouthWest) REAR							
		12.000	2 40 (2 40)	26.45			(27)
Window - Double-glazed, argon filled, low-E, En=0.1,		12.080	2.19 (2.40)	20.45			(27)
soft coat (SouthWest)							
REAR							
Window - Double-glazed,		3.020	2.19 (2.40)	6.61			(27)
argon filled, low-E, En=0.1,		0.020	2110 (2110)	0.0.			(=,)
soft coat (NorthEast)							
FRONT							
Window - Double-glazed,		12.080	2.19 (2.40)	26.45			(27)
argon filled, low-E, En=0.1,			, ,				. ,
soft coat (NorthWest)							
SIDE							
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,							
soft coat (NorthWest)							
SIDE							
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,							
soft coat (SouthEast)							
SIDE Window Double glozed		1.230	2 40 (2 40)	2.69			(27)
Window - Double-glazed, argon filled, low-E, En=0.1,		1.230	2.19 (2.40)	2.09			(27)
soft coat (NorthEast)							
FRONT							
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,		00	,				(/
soft coat (SouthWest)							
REAR `							
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,							
low-E, En=0.1, soft coat							
(SouthWest)							
REAR							
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,							
low-E, En=0.1, soft coat							
(NorthWest) SIDE							
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,		4.040	2.40	9.70			(20)
low-E, En=0.1, soft coat							
(NorthEast)							
FRONT							
Walls		93.44	1.55	144.83	18.00	1681.94	(29)
EXTERNAL							` ,
Walls		64.42	0.65 (Ru=0.9	90) 41.69	18.00	1159.56	(29)
ROOF VOID WALL							

Page 3 of 11

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\29 Gainsborough\29 Gainsborough.JDP

	r heatin		/ require	ements							kWh/year	
	ed occupa	•	oogo ir	. litroo no	vr. do. (\ / d	0.40.50.50					3.13 108.62	(42)
_	average l				,		1		1	T		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres p	per day f	or each r	nonth							
119.48	115.14	110.79	106.45	102.10	97.76	97.76	102.10	106.45	110.79	115.14	119.48	(44)
Energy	content c	of hot wat	er used									
177.19	154.97	159.91	139.42	133.77	115.44	106.97	122.75	124.22	144.76	158.02	171.60	
Energy	content (a	annual)									1709.01	(45)
Distribu	tion loss											
26.58	23.25	23.99	20.91	20.07	17.32	16.05	18.41	18.63	21.71	23.70	25.74	(46)
Cylinde	r volume,	I					300.00					(47)
Manufa	cturer's d	eclared of	cylinder l	oss facto	or (kWh/c	day)	2.32					(48)
•	ature Fac						0.5400					(49)
0.	lost from		r cylinde	er (kWh/c	lay)						1.25	(55)
Total sto	orage los	S										
38.84	35.08	38.84	37.58	38.84	37.58	38.84	38.84	37.58	38.84	37.58	38.84	(56)
Net stor	age loss											
38.84	35.08	38.84	37.58	38.84	37.58	38.84	38.84	37.58	38.84	37.58	38.84	(57)
Primary	loss	,										
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Total he	at require	ed for wa	ter heati	ng calcul	ated for	each mo	nth		,	,		
239.29	211.06	222.01	199.51	195.87	175.53	169.07	184.85	184.31	206.86	218.11	233.70	(62)
Output f	rom wate	er heater	for each	month, k	«Wh/mor	nth						
239.29	211.06	222.01	199.51	195.87	175.53	169.07	184.85	184.31	206.86	218.11	233.70	(64)
											2440.18	(64)
Heat ga	ins from	water he	ating, kW	/h/month	1							
108.59	96.40	102.85	94.43	94.16	86.46	85.25	90.49	89.38	97.81	100.62	106.74	(65)

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts	,	,	,	,			,	,	
188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01
Lighting	gains	•			•						
115.54	102.62	83.46	63.18	47.23	39.87	43.08	56.00	75.17	95.44	111.40	118.75
Appliand	ces gains	5									
685.40	692.51	674.59	636.44	588.27	543.00	512.76	505.65	523.57	561.73	609.89	655.16
Cooking	gains										
56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93
Pumps a	and fans	gains									
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Losses	e.g. evap	oration (r	negative	values)							
-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34
Water h	eating ga	ains	,	,	,	,			,	,	
145.96	143.45	138.24	131.16	126.56	120.08	114.58	121.63	124.14	131.47	139.75	143.46
Total int	ernal gai	ns									
1069.51	1061.19	1018.89	953.38	884.66	825.56	793.03	805.89	845.48	911.24	983.64	1039.98

6. Solar gains (calculation for January)

o. Solar gams (calculation for Sandary)	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.369 36.79	-	0.77	15.3940
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 12.080 36.79	0.63 x 0.70	0.77	135.8357
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 3.020 11.28	0.63 x 0.70	0.77	10.4136
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 12.080 11.28	0.63 x 0.70	0.77	41.6544
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthEast) SIDE	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 4.040 36.79	0.63 x 0.70	0.77	45.4285

Page 5 of 11

6. Solar gains (calculation for January)	Area & Flux	g & FF	Shading	Gains	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE			0.77	13.9308	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 4.040 11.28	0.63 x 0.70	0.77	13.9308 312.73	(02.4)
Total solar gains, January				312.73	(83-1)
Solar gains	100 40 4 400 00 4005	Ed 004 40 040	00 070 00	004.47	(02)
	183.42 1408.33 1205	0.53 961.18 642	.23 379.93	264.17	(83)
Total gains 1382.24 1623.26 1865.94 2133.7 2326.0 23	809.0 2201.4 2011	.4 1806.66 155	3 19 1363 57	1304 15	(84)
1302.24 1023.20 1003.94 2133.7 2320.0 23	2201.4 2011	.4 1800.00 133.	3.40 1303.37	1304.13	(04)
Lighting calculations					
Lighting calculations	Area	a	FF x Shad	ina	
Window - Double-glazed, argon filled, low-E,	0.9 x 1.37	g 0.80	0.70×0.83	-	
En=0.1, soft coat (SouthWest) REAR					
Window - Double-glazed, argon filled, low-E,	0.9 x 12.08	0.80	0.70 x 0.83	5.05	
En=0.1, soft coat (SouthWest) REAR					
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast)	0.9 x 3.02	0.80	0.70 x 0.83	3 1.26	
FRONT					
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 12.08	0.80	0.70 x 0.83	3 5.05	
Window - Double-glazed, argon filled, low-E,	0.9 x 1.23	0.80	0.70 x 0.83	3 0.51	
En=0.1, soft coat (NorthWest) SIDE					
Window - Double-glazed, argon filled, low-E,	0.9 x 1.23	0.80	0.70 x 0.83	3 0.51	
En=0.1, soft coat (SouthEast) SIDE					
Window - Double-glazed, argon filled, low-E,	0.9 x 1.23	0.80	0.70 x 0.83	3 0.51	
En=0.1, soft coat (NorthEast) FRONT					
Window - Double-glazed, argon filled, low-E,	0.9 x 1.23	0.80	0.70×0.83	3 0.51	
En=0.1, soft coat (SouthWest) REAR					
GL = 14.00 / 301.18 = 0.046					
C1 = 0.500 C2 = 1.084					
02 - 1.00T					

EI = 816

Tempe	n interna rature du g system i	ring heat	ing perio	ds in the l	living are	ea, Th1 (°	C)				21.00 0.75	(8
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau		,	JI.			JI.			JI.	-J.		
15.72	15.79	15.86	16.19	16.26	16.56	16.56	16.62	16.44	16.26	16.13	16.00	
alpha			Л						,			
2.05	2.05	2.06	2.08	2.08	2.10	2.10	2.11	2.10	2.08	2.08	2.07	
Utilisati	ion factor	for gains	for living	area	,	JL			,	JL .		
0.99	0.98	0.97	0.95	0.91	0.84	0.75	0.79	0.90	0.96	0.98	0.99	(8
Mean ir	nternal tei	mperatur	e in living	area T1	,	JL			,	JI.		
18.02	18.21	18.59	19.16	19.72	20.25	20.54	20.48	20.05	19.33	18.60	18.01	(8
Tempe	rature du	ring heat	ing perio	ds in rest	of dwelli	ng Th2			,	JI.		
19.21	19.22	19.22	19.25	19.26	19.28	19.28	19.29	19.27	19.26	19.25	19.24	(8
Utilisati	on factor	for gains	for rest	of dwellir	ng	JL			,			
0.98	0.98	0.96	0.93	0.87	0.75	0.58	0.64	0.85	0.95	0.98	0.99	(8
Mean ir	nternal te	mperatui	e in the r	est of dw	elling T2	2			JL			
15.38	15.66	16.22	17.04	17.85	18.57	18.92	18.88	18.33	17.30	16.24	15.38	(9
	area fracti nternal ter				welling)		,			,,	0.32	(9
16.23	16.48	16.99	17.72	18.46	19.11	19.44	19.39	18.88	17.95	17.00	16.23	(9
Apply a	djustmer	nt to the m	nean inte	rnal tem	perature	, where a	appropria	ate	JL			
16.23	16.48	16.99	17.72	18.46	19.11	19.44	19.39	18.88	17.95	17.00	16.23	(9
	ce heatir		nic .	Mari	1	1	1	Con	0-4	Nevi	Dec	
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	ion factor			0.05	0.74	0.00	0.05	10.00	0.00	0.07	0.00	10
0.98	0.97	0.95	0.91	0.85	0.74	0.60	0.65	0.83	0.93	0.97	0.98	(9
Useful		14770 50	1040 74	4070.00	1774	14007.00	1040 11	14404 = 2	14445 7	4040.0	44070.00	10
					1714.93	1327.89	1312.10	g 1494.73	1445.73	1319.24	1276.96	(9
	yaverage				14.00	140.00	10.10	14440	140.00	7.40	1.00	10
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(9
	ss rate fo					1		1	1	1		,,
7856.8		6844.3		4301.7	2820.4	1777.95	1865.3	3010.1	4682.5	6353.4	7782.7	(9
	n of mont	1		1	·	16	1	Υ	1	1		
1.00	1.00	1.00	1.00	1.00	<u> -</u>	 -	-	-	1.00	1.00	1.00	
	heating re		· ·			onth		,				
4841.3		3774.9		1729.62	J	-	-	-	2408.1	3624.6	4840.2	
	bace heat heating re					ar) (Octo	ber to M	ay)			27925.94 92.72	(S

8c. Space cooling requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	l temper		7.01	Iviay	Juli	Oui	/ tug	ССР	001	1400	
				1-	14.60	16.60	16.40	I -	1-		—
- Hoot lo	ss rate V				14.00	10.00	10.40	<u> </u>			
neat io:	ss rate v	V			-07- -	1005.1	17040				
-	J	<u> </u>	-		5875.5	4625.4	4734.0	<u>-</u>			-
Utilisati	on facto	for loss	1			n	n			1	
-	-		_		0.39	0.45	0.41	-			-
Useful I	oss W										
-	-		_		2285.3	2089.6	1950.40	-			
nternal	gains W	1									
0.00	0.00	0.00	0.00	0.00	822.56	790.03	802.89	0.00	0.00	0.00	0.00
Solar ga	ains W										
0.00	0.00	0.00	0.00	0.00	1733.87	1646.10	1409.06	0.00	0.00	0.00	0.00
Gains V	V					ĮI.	J.				
-	-	-	-	-	2556.4	2436.1	2212.0	[-	-	-	-
Fraction	of mon	h for cod	oling			JL	Л				
0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
Space h	neating k					JL	IL				
-	1-	-	-	1-	597.01	96.79	63.29	-	_	-	-
Space of	cooling k	:Wh	_			<u> </u>	<u> </u>				
<u>.</u>	Ţ-	-	-	1-	195.24	257.83	194.60	-	-	_	-
Total								L			647.68
	fraction										0.80
Intermit	tency fac	ctor									
-	-	-	-	-	0.25	0.25	0.25	[-	-	-	-
Space o	cooling re	equireme	ent for mo	onth	Д	JL				н	Л
-	1-	_	-	-	39.05	51.57	38.92	-	_	_	-
Space of	cooling (June to A	August)	IL	J.	JL	JL				129.54
				n² (kWh/r	n²/vear)						0.43

No secondary heating system selected Fraction of space heat from main system(s) 1.0000 (202)
Fraction of space heat from main system(s) 1.0000 (202) Efficiency of main heating system 90.90% (206) Cooling system energy efficiency ratio 4.38% (209) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement 4841.3 4049.1 3774.9 2658.0 1729.62 - - - - 2408.1 3624.6 4840.2 (98) Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (210) Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - - 2649.2 3987.4 5324.8 (211)
Efficiency of main heating system Cooling system energy efficiency ratio An Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement 4841.3 4049.1 3774.9 2658.0 1729.62 - - - - 2408.1 3624.6 4840.2 (98) Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 0.00 Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - - 2649.2 3987.4 5324.8 (211)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement 4841.3 4049.1 3774.9 2658.0 1729.62 - - - 2408.1 3624.6 4840.2 (98) Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (210) Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - 2649.2 3987.4 5324.8 (211)
Space heating requirement 4841.3 4049.1 3774.9 2658.0 1729.62 - - - - 2408.1 3624.6 4840.2 (98) Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (210) Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - - 2649.2 3987.4 5324.8 (211)
4841.3 4049.1 3774.9 2658.0 1729.62 - - - - 2408.1 3624.6 4840.2 (98) Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (210) Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - - 2649.2 3987.4 5324.8 (211)
Appendix Q - monthly energy saved (main heating system 1) 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (210) Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - - 2649.2 3987.4 5324.8 (211)
0.00 0.00 0.00 0.00 - - - - 0.00
Space heating fuel (main heating system 1) 5326.0 4454.5 4152.8 2924.1 1902.77 - - - 2649.2 3987.4 5324.8 (211)
5326.0 4454.5 4152.8 2924.1 1902.77 - - - 2649.2 3987.4 5324.8 (211)
Appendix Q - monthly energy saved (main heating system 2)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (212)
Space heating fuel (main heating system 2)
0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 0.00
Appendix Q - monthly energy saved (secondary heating system)
0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (214)
Space heating fuel (secondary)
0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 (215)
Waterheating
Water heating requirement
239.29 211.06 222.01 199.51 195.87 175.53 169.07 184.85 184.31 206.86 218.11 233.70 (64)
Efficiency of water heater 80.20 (216)
90.33 90.30 90.23 90.06 89.68 80.20 80.20 80.20 80.20 89.95 90.22 90.34 (217)
Water heating fuel
264.90 233.72 246.05 221.53 218.41 218.87 210.81 230.48 229.81 229.97 241.77 258.67 (219)
Annual totals kWh/year
Space heating fuel used, main system 1 30721.60 (211)
Space heating fuel (secondary) 0.00 (215)
Water heating fuel 2804.99 (219)
Space cooling fuel used 29.61 (221)
- - - - - 8.93 11.79 8.90 - - - - - - - - - - - - -
Electricity for pumps, fans and electric keep-hot central heating pump 30.00 (230c)
boiler with a fan-assisted flue 45.00 (230e)
Total electricity for the above, kWh/year 75.00 (231)
Electricity for lighting (100.00% fixed LEL) 816.19 (232)
Energy saving/generation technologies
Appendix Q - Energy saved or generated (): 0.000 (236a)
Energy used (): 0.000 (237a)
Total delivered energy for all uses 34447.40 (238)

10a. Fuel costs using Table 12 prices

,	kWh/year	Fuel price p/kWh	£/year	
Space heating - main system 1	30721.603	3.480	1069.11	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Water heating cost	2804.99	3.480	97.61	(247)
Space cooling	29.608	13.190	3.91	(248)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	75.000	13.190	9.89	(249)
Energy for lighting	816.193	13.190	107.66	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			1408.18	(255)
11a. SAP rating			0.42	(256)
			1.71	(257)
SAPvalue			76.17	(201)
or ii valao			76	(258)
SAP band			C	(200)

12a. Carbon dioxide emissions

	Energy	Emission factor	Emission	S
	kWh/year	kg CO2/kWh	kg CO2/y	ear
Space heating, main system 1	30721.60	0.216	6635.87	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	2804.99	0.216	605.88	(264)
Space and water heating			7241.74	(265)
Space cooling	29.61	0.519	15.37	(266)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	816.19	0.519	423.60	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			7719.64	(272)
			kg/m²/yea	ar
CO2 emissions per m ²			25.63	(273)
Elvalue			70.12	(273a)
El rating			70	(274)
El band			С	

Calculation of stars for heating and DHW

Main heating energy efficiency Main heating environmental impact Water heating energy efficiency Water heating environmental impact (3.48 / 0.9090) x (1 + (0.29 x 0.25)) = 4.1059, stars = 4 (0.2160 / 0.9090) x (1 + (0.29 x 0.25)) = 0.2549, stars = 4 3.48 / 0.8683 = 4.0080, stars = 4 0.2160 / 0.8683 = 0.2488, stars = 4

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.069, printed on 31/10/2022 at 10:19:43

Existing dwelling

1	TEI	R a	nd	DE	ER

Fuel for main heating system: Gas (mains) (fuel factor = 1.00)

Target Carbon Dioxide Emission Rate TER = 13.89Dwelling Carbon Dioxide Emission Rate DER = 38.79

Excess emissions = 24.90kg/m² (179.3%)

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

TFEE = 55.7

Dwelling Fabric Energy Efficiency (DFEE)

DFEE = 101.4

Fail

Fail

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

<u>Element</u>	<u>Average</u>	<u>Highest</u>	
Wall	1.04 (max. 0.30)	1.55 (max. 0.70)	Fail
Floor	0.00 (max. 0.25)	0.00 (max. 0.70)	OK
Roof	0.24 (max. 0.20)	0.30 (max. 0.35)	Fail
Openings	2.40 (max. 2.00)	2.40 (max. 3.30)	Fail

3 Air permeability

Air permeability at 50 pascals:	10.00	OK
Maximum:	10.00	

Page 1 of 2

4 Heating efficiency Main heating system: Boiler and underfloor heating, mains gas Vaillant Thermocompact Source of efficiency: from boiler database Vaillant Thermocompact vc240h Efficiency: 65.0% SEDBUK2009 Minimum: 88.0% Fail Secondary heating system: Room heater systems - Electric (direct acting) Panel, convector or radiant heaters 5 Cylinder insulation Hot water storage Calculated cylinder loss factor (kWh/day) 3.36 Permitted by DBSCG Fail 2.86 Primary pipework insulated Yes OK **6 Controls** (Also refer to "Domestic Building Services Compliance Guide" by the DCLG) Time and temperature zone control OK Space heating controls Cylinderstat - Yes OK Independent timer for DHW - Yes OK **Boiler Interlock** Yes OK 7 Low energy lights Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% OK 8 Mechanical ventilation Not applicable 9 Summertime temperature Overheating risk (Thames Valley): OK Not significant OK Based on: Thermal mass parameter: 123.74 Overshading: Average or unknown (20-60 % sky blocked) Orientation: NorthEast Ventilation rate: 8.00 Blinds/curtains: None with blinds/shutters closed 0.00% of daylight hours

10 Key features

Fixed cooling system

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

SAP 2012 worksheet for Existing dwelling - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Secondfloor	157.93	2.84	448.52	(3a)
Third floor	111.23	3.45	383.74	(3b)
Fourth and other floors	32.02	2.20	70.44	(3c)
	301.18			(4)
			902.71	(5)

2. Ventilation rate

											m³ per h	our
							main + s	eondary	/ + othe	r		
Numbe	er of chim	nave					heating $0 + 0 + 0$		x 40		0.00	(6a)
	r of oper	•					0 + 0 + 0		20		0.00	(6b)
		mittent fa	ns				5		10		50.00	(7a)
		ive vents					0		10		0.00	(7b)
		ess gas fi	res				0	>	40		0.00	(7c)
											Air chan	ges per hour
											0.06	(8)
(ns)							3					(9)
											0.20	(10)
											0.35	(11)
											0.00	(13)
									100.00			(14)
											0.05	(15)
Infiltrati											0.66	(16)
Air perr	meability										0.66	(18)
											2.00	(19)
L. Cless C				(0.85	(20)
		ncorporati nodified f			peed						0.56	(21)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind F	ootor	·	,								52.50	(22)
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
1.21	1.20	1.20	1.10	1.07	0.50	0.00	0.00	1.00	1.07	1.10	13.13	(22a)
Adjuste	ed infiltra	tion rate ((allowing	for shelt	er and w	ind spee	ed)				13.13	(22a)
0.71	0.70	0.68	0.61	0.60	0.53	0.53	0.52	0.56	0.60	0.63	0.65	
											7.31	(22b)
	tion : nat /e air cha	ural venti nge rate	ilation, in	termitter	nt extract	fans						
0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.70	0.71	(25)
												` /

Net area

U-value

 $A \times U$

9.70

9.70

9.70

144.83

18.00

18.00

1681.94

1159.56

2.40

2.40

2.40

1.55

0.65 (Ru=0.90) 41.69

(26)

(26)

(26)

(29)

(29)

kappa-value A x K

Openings

3. Heat losses and heat loss parameter

Gross

Element

area, m² Window - Double-glazed,	m ²	A, m ²	W/m ² K 2.19 (2.40)	W/K 2.69	kJ/m²K	kJ/K	(27)
argon filled, low-E, En=0.1, soft coat (SouthWest) REAR		200					(=.)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT		1.230	2.19 (2.40)	2.69			(27)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthEast) SIDE		1.230	2.19 (2.40)	2.69			(27)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE		1.230	2.19 (2.40)	2.69			(27)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE		12.080	2.19 (2.40)	26.45			(27)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT		3.020	2.19 (2.40)	6.61			(27)
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR		12.080	2.19 (2.40)	26.45			(27)
Window - Double-glazed,		1.369	2.19 (2.40)	3.00			(27)

4.040

4.040

4.040

93.44

64.42

Page 3 of 11

themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

argon filled, low-E, En=0.1, soft coat (SouthWest)

Double-glazed, argon filled, low-E, En=0.1, soft coat

Double-glazed, argon filled, low-E, En=0.1, soft coat

Double-glazed, argon filled, low-E, En=0.1, soft coat

REAR

(NorthEast) FRONT Full glazed door -

(NorthWest) SIDE

(SouthWest) REAR Walls

EXTERNAL

ROOF VOID WALL

Walls

Full glazed door -

Full glazed door -

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to Energy Assessors London Ltd

	r heating		y require	ements							kWh/yea
	d occupa average h	•	usage ir	n litres pe	er day Vd	,average)				3.13 108.62
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Hot wate	er usage	in litres p	per day f	or each r	nonth	J			J.	Л	
119.48	115.14	110.79	106.45	102.10	97.76	97.76	102.10	106.45	110.79	115.14	119.48
Energy o	content c	f hot wat	ter used						,		
177.19	154.97	159.91	139.42	133.77	115.44	106.97	122.75	124.22	144.76	158.02	171.60
Energy o Distribut	content (a tion loss	annual)				JC					1709.01
26.58	23.25	23.99	20.91	20.07	17.32	16.05	18.41	18.63	21.71	23.70	25.74
Energy I	ature fact ost from orage los 50.75	hot wate	er cylinde	er (kWh/c	fay)	56.19	56.19	54.38	56.19	54.38	0.7368 0.5400 1.81
Net stor	age loss	J.	,		,	Л	J.		J.		
56.19	50.75	56.19	54.38	56.19	54.38	56.19	56.19	54.38	56.19	54.38	56.19
Primary	loss										
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26
Total he	at require	ed for wa	ter heati	ng calcul	ated for	each mo	nth				
256.64	226.73	239.37	216.31	213.23	192.33	186.42	202.20	201.10	224.21	234.91	251.05
Output f	rom wate	er heater	for each	month, k	kWh/mor	nth					
256.64	226.73	239.37	216.31	213.23	192.33	186.42	202.20	201.10	224.21	234.91	251.05
Heat gai	ns from	water he	ating, kV	/h/month	1						2644.49
122.48	,	116.73			99.89	99.13	104.38	102.81	111.69	114.05	120.62

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts	,	,	,	,			,	,	
188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01
Lighting gains											
115.54	102.62	83.46	63.18	47.23	39.87	43.08	56.00	75.17	95.44	111.40	118.75
Appliances gains											
685.40	692.51	674.59	636.44	588.27	543.00	512.76	505.65	523.57	561.73	609.89	655.16
Cooking gains											
56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93
Pumps a	and fans	gains									
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Losses	e.g. evap	oration (r	negative	values)							
-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34
Water heating gains											
164.62	162.11	156.90	149.82	145.22	138.74	133.24	140.29	142.79	150.13	158.40	162.12
Total internal gains											
1088.16	1079.85	1037.55	972.04	903.32	844.22	811.69	824.55	864.14	929.90	1002.30	1058.64

6. Solar gains (calculation for January)

o. Solar gams (calculation for Sandary)	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthEast) SIDE	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 12.080 11.28	0.63 x 0.70	0.77	41.6544
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 3.020 11.28	0.63 x 0.70	0.77	10.4136
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 12.080 36.79	0.63 x 0.70	0.77	135.8357
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.369 36.79	0.63 x 0.70	0.77	15.3940
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 4.040 11.28	0.63 x 0.70	0.77	13.9308

6. Solar gains (calculation for January) Area & Flux g & FF Shading Gains	
Full glazed door - Double-glazed, argon filled, 0.9 x 4.040 11.28 0.63 x 0.70 0.77 13.9308 low-E, En=0.1, soft coat (NorthWest) SIDE	
Full glazed door - Double-glazed, argon filled, 0.9 x 4.040 36.79 0.63 x 0.70 0.77 45.4285 low-E, En=0.1, soft coat (SouthWest) REAR	
Total solar gains, January 312.73	(83-1)
Solar gains	
312.73 562.07 847.05 1180.28 1441.35 1483.42 1408.33 1205.53 961.18 642.23 379.93 264.17 Total gains	(83)
1400.90 1641.91 1884.60 2152.3 2344.7 2327.6 2220.0 2030.1 1825.32 1572.13 1382.23 1322.81	(84)
Lighting calculations	
Area g FF x Shading	
Window - Double-glazed, argon filled, low-E, 0.9 x 1.23 0.80 0.70 x 0.83 0.51 En=0.1, soft coat (SouthWest) REAR	
Window - Double-glazed, argon filled, low-E, 0.9 x 1.23 0.80 0.70 x 0.83 0.51 En=0.1, soft coat (NorthEast) FRONT	
Window - Double-glazed, argon filled, low-E, 0.9 x 1.23 0.80 0.70 x 0.83 0.51	
En=0.1, soft coat (SouthEast) SIDE	
Window - Double-glazed, argon filled, low-E, 0.9 x 1.23 0.80 0.70 x 0.83 0.51	
En=0.1, soft coat (NorthWest) SIDE	
Window - Double-glazed, argon filled, low-E, 0.9 x 12.08 0.80 0.70 x 0.83 5.05 En=0.1, soft coat (NorthWest) SIDE	
Window - Double-glazed, argon filled, low-E, 0.9 x 3.02 0.80 0.70 x 0.83 1.26	
En=0.1, soft coat (NorthEast) FRONT	
Window - Double-glazed, argon filled, low-E, 0.9 x 12.08 0.80 0.70 x 0.83 5.05 En=0.1, soft coat (SouthWest) REAR	
Window - Double-glazed, argon filled, low-E, 0.9 x 1.37 0.80 0.70 x 0.83 0.57	
En=0.1, soft coat (SouthWest) REAR	
GL = 14.00 / 301.18 = 0.046 C1 = 0.500	
C1 = 0.500 $C2 = 1.084$	

EI = 816

	n interna	•		da ia tha l	iving or	a Th1 (9)	C)				24.00
	rature dui g system r	-	• .	35 III II IE I	iving are	a, IIII (C)				21.00 0.75
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	reb	IVIAI	Aþi	Iviay	Juli	Jui	Aug	Seb	OCI	INOV	Dec
tau	15 20	15 16	1E 70	15.01	16.12	16 12	16 10	16.01	15.01	15 71	15 50
15.33	15.39	15.46	15.78	15.84	16.13	16.13	16.18	16.01	15.84	15.71	15.59
alpha	0.00	0.00	0.05	10.00	0.00	0.00	0.00	0.07		0.05	0.04
2.02	2.03	2.03	2.05	2.06	2.08	2.08	2.08	2.07	2.06	2.05	2.04
	on factor		,	1	nr	1	1	Υ	nr	1	
0.99	0.98	0.97	0.95	0.91	0.84	0.75	0.79	0.90	0.96	0.98	0.99
	nternal ter	•	,		n e	7		~			26
17.98	18.17	18.55	19.12	19.70	20.22	20.52	20.47	20.03	19.30	18.56	17.96
Tempe	rature dui	ring heati	ing perio	ds in rest	of dwelli	ng Th2					
19.18	19.18	19.19	19.22	19.22	19.25	19.25	19.25	19.24	19.22	19.21	19.20
Utilisati	on factor	for gains	for rest	of dwellin	ng						
0.98	0.98	0.96	0.93	0.87	0.75	0.58	0.64	0.84	0.95	0.98	0.99
Mean ir	nternal tei	mperatur	e in the r	est of dw	elling T2	2	,		,	,	
15.31	15.59	16.15	16.97	17.79	18.52	18.88	18.83	18.28	17.24	16.17	15.30
-	rea fracti nternal ter	•		•	welling)	Л				JC	0.32
16.17	16.42	16.93	17.67	18.41	19.07	19.41	19.36	18.84	17.90	16.94	16.16
Apply a	djustmen	it to the m	nean inte	rnal tem	oerature	, where a	ppropria	ite	JL	JL	
16.17	16.42	16.93	17.67	18.41	19.07	19.41	19.36	18.84	17.90	16.94	16.16
8. Spac	ce heatin	g requii	rement								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisati	on factor	for gains	;								
0.98	0.97	0.95	0.91	0.85	0.74	0.60	0.65	0.83	0.93	0.97	0.98
Useful	gains										
1366.7	3 1585.61	1786.42	1963.71	1991.17	1728.12	1338.49	1322.80	1507.73	1460.96	1335.88	1294.18
Monthly	, average	external	tempera	ture		JI.	JL		JI.	JL	
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
	ss rate for						J			J	
8015.7	7	6981.0		4383.9	2871.1	1804 97	1894.60	3065 1	4774.8	6482.8	7942.9
	n of montl			1000.5	207 1.1	1004.57	1004.00	10000.1	1777.0	0402.0	7042.0
1.00	1.00	1.00	1.00	1.00	1_		1_	1-	1.00	1.00	1.00
	heating re			ļ	- 	onth	<u> </u>	<u> </u>	1.00	1.00	1.00
		,	·ir			IOHUH		1	0.405.5	2705.0	4040.0
4946.8	_	3864.8		1780.22		(0 : (:	- 1 : N 1	<u>-</u>	2465.5	3705.8	4946.6
	bace heat heating re	•		•		ar) (Octol	per to Ma	ay)			28578.56 94.89

8c. Space cooling requirement

ou. ope	100 000,	mg roq	u 0	•							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Externa	ltemper	aturers	,		,	,			,	,	
-	-	-	-	-	14.60	16.60	16.40	-	-	-	-
Heat los	ss rate V	V	J[И					
-	-	-	-	-	6034.7	4750.7	4862.7	-	-	-	-
Utilisati	on factor	for loss	JL			JI.			Л.		
-	-	-	-	-	0.38	0.44	0.40	-	-	-	-
Useful l	oss W		JL	,		Л	,				
-	-	-	-	-	2303.1	2107.8	1967.80	-	-	-	-
Internal	gains W	Ţ,				,					
0.00	0.00	0.00	0.00	0.00	841.22	808.69	821.55	0.00	0.00	0.00	0.00
Solar ga	ains W		,		·	,		^	•	,	
0.00	0.00	0.00	0.00	0.00	1733.87	1646.10	1409.06	0.00	0.00	0.00	0.00
Gains V	V	,	,	·	,	,	,		,	,	
-	-]-	-	-	2575.1	2454.8	2230.6	-	-	-	-
Fraction	of mont	th for cod	oling		,	,			,	,	
0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
Space I	neating k	κWh									
-	-	-	-	-	616.25	99.36	64.72	-	-	-	-
Space of	cooling k	:Wh									
-	-	-	-	-	195.83	258.17	195.53	-	-	-	-
Total											649.54
Cooled		ator.									0.80
memii	tency fac				0.05	0.05	0.05	·			
- Canana	-	-	-	-	0.25	0.25	0.25	<u> - </u>		-	-
Space (cooling re	equireme	entior m		00.47	T_4 00	00.44	1			
-	- (-	<u> </u>		39.17	51.63	39.11	-		-	-
	cooling (n² (kWh/ı	m²/vear)						129.91 0.43
Opace (Journal 16	Squirenti	ont bet II	1 (17441)	ii /yeai)						0.43

9a. Energy requirements

9a. Ene	ergy requ	ıiremen	ts								kWh/year	
	of space			•	s)			6	0.1000 0.9000 6.00%		,	(201) (202) (206)
	cy of sec	•	-						00.00%			(208)
	system e	•							.38%			(209)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	eating re	quireme	nt						JL	JI		
4946.8	4140.9	3864.8	2727.9	1780.22	-	-	-	-	2465.5	3705.8	4946.6	(98)
Append	ix Q - mo	nthly en	ergy sav	ed (main	heating	system '	1)		<u>JL</u>	JI		, ,
0.00	0.00	0.00	0.00	0.00	<u> </u>	-	-	-	0.00	0.00	0.00	(210)
	neating fu	ıel (main	heating	system 1	1)	IL	JL		JL			, ,
6745.7	5646.7	5270.2	3719.8	2427.6)	-	-	-	3362.1	5053.3	6745.4	(211)
	ix Q - mo		<u> </u>			system 2	2)					,
0.00	0.00	0.00	0.00	0.00	Ţ-	Ţ-	γ̈́ -	1-	0.00	0.00	0.00	(212)
	neating fu		l		 2)							,
0.00	0.00	0.00	0.00	0.00	í-	-	-	1-	0.00	0.00	0.00	(213)
	ix Q - mo		J		ndary he	ating sys	stem)	<u> </u>	0.00	0.00	0.00	(-/
0.00	0.00	0.00	0.00	0.00) -	T-	1 -	1-	0.00	0.00	0.00	(214)
	eating fu		ļ	0.00				J	0.00	0.00	0.00	()
	414.09		272.79	178.02	1-	_	1-	1-	246.55	370.58	494.66	(215)
Water he		0001.0		17 0.02						0.000	10 1100	(= : =)
	eating re	quiremer	nt									
256.64	226.73	239.37	216.31	213.23	192.33	186.42	202.20	201.10	224.21	234.91	251.05	(64)
Efficiend	cy of wate	er heater								Л	56.00	(216)
65.36	65.33	65.25	65.06	64.64	56.00	56.00	56.00	56.00	64.94	65.23	65.38	(217)
Water h	eating fu	el	JI.						J	Л		
392.63	347.05	366.85	332.48	329.85	343.44	332.89	361.07	359.11	345.28	360.10	384.00	(219)
Annual	totals		Л								kWh/year	
	neating fu	ıel used.	main sv	stem 1							38970.76	(211)
	eating fu										2857.86	(215)
	eating fu										4254.75	(219)
Space c	ooling fu	el used	71	1	· ·			γ	1	· ·	29.69	(221)
-	-		_	<u> </u> -	8.95	11.80	8.94	<u> </u> -	_	_	-	(221)
	ty for pur	•	s and ele	ectric kee	ep-hot						20.00	(000-)
	heating ectricity for		ove k///	n/vear							30.00 30.00	(230c) (231)
	ty for ligh										816.19	(232)
	saving/ge											(/
Append												
-	y saved o	-	ated ():								0.000	(236a)
∟nerg	y used ()	•									0.000	(237a)
Total de	livered e	nergy for	all uses								46959.26	(238)

10a. Fuel costs using Table 12 prices

Tou. I del costs dollig Tuble 12 prices				
	kWh/year	Fuel price	£/year	
		p/kWh		
Space heating - main system 1	38970.764	3.480	1356.18	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Space heating - secondary system	2857.856	13.190	376.95	(242)
Water heating cost	4254.75	3.480	148.07	(247)
Space cooling	29.693	13.190	3.92	(248)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	30.000	13.190	3.96	(249)
Energy for lighting	816.193	13.190	107.66	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			2116.73	(255)
11a. SAP rating				
			0.42	(256)
			2.57	(257)
SAPvalue			64.17	
			64	(258)
SAP band			D	

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	Emission kg CO2/y	
Space heating, main system 1	38970.76	0.216	8417.68	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	2857.86	0.519	1483.23	(263)
Waterheating	4254.75	0.216	919.03	(264)
Space and water heating			10819.94	(265)
Space cooling	29.69	0.519	15.41	(266)
Electricity for pumps and fans	30.00	0.519	15.57	(267)
Electricity for lighting	816.19	0.519	423.60	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			11274.52	(272)
			kg/m²/yea	ar
CO2 emissions per m ²			37.43	(273)
El value			56.28	(273a)
El rating			56	(274)
El band			D	

Calculation of stars for heating and DHW

Main heating energy efficiency
Main heating environmental impact
Water heating energy efficiency
Water heating environmental impact

 $(3.48 / 0.6600) \times (1 + (0.29 \times 0.25)) = 5.6550$, stars = 3 $(0.2160 / 0.6600) \times (1 + (0.29 \times 0.25)) = 0.3510$, stars = 3 3.48 / 0.6210 = 5.6039, stars = 3 0.2160 / 0.6210 = 0.3478, stars = 3

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Fail

Fail

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.069, printed on 31/10/2022 at 10:17:21

Existing dwelling

1	TFR	and	DER

Fuel for main heating system: Gas (mains) (fuel factor = 1.00)

Target Carbon Dioxide Emission Rate TER = 13.89Dwelling Carbon Dioxide Emission Rate DER = 26.57

Excess emissions = 12.68kg/m² (91.3%)

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

TFEE = 55.7

Dwelling Fabric Energy Efficiency (DEEE)

DEEE = 99.1

Dwelling Fabric Energy Efficiency (DFEE) DFEE = 99.1

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

<u>Element</u>	<u>Average</u>	<u>Highest</u>	
Wall	1.04 (max. 0.30)	1.55 (max. 0.70)	Fail
Floor	0.00 (max. 0.25)	0.00 (max. 0.70)	OK
Roof	0.15 (max. 0.20)	0.17 (max. 0.35)	OK
Openings	2.40 (max. 2.00)	2.40 (max. 3.30)	Fail

3 Air permeability

Air permeability at 50 pascals: 10.00 OK Maximum: 10.00

Page 1 of 2

4 Heating efficiency Main heating system: Boiler and underfloor heating, mains gas Vaillant ecoFIT pure 630 from boiler database Source of efficiency: Vaillant ecoFIT pure 630 VU 306/6-3 (H-GB) Efficiency: 89.9% SEDBUK2009 Minimum: 88.0% OK Secondary heating system: None -5 Cylinder insulation Hot water storage Manufacturer's declared cylinder loss factor (kWh/day) 2.32 OK Permitted by DBSCG 2.86 Primary pipework insulated Yes OK 6 Controls (Also refer to "Domestic Building Services Compliance Guide" by the DCLG) Space heating controls Time and temperature zone control OK Cvlinderstat - Yes OK Independent timer for DHW - Yes OK **Boiler Interlock** OK 7 Low energy lights Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% OK 8 Mechanical ventilation Not applicable 9 Summertime temperature OK Overheating risk (Thames Valley): Not significant OK Based on: Thermal mass parameter: 123.74 Overshading: Average or unknown (20-60 % sky blocked) Orientation: NorthEast Ventilation rate: Blinds/curtains: None with blinds/shutters closed 0.00% of daylight hours 10 Key features

Fixed cooling system

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Fail

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.069, printed on 31/10/2022 at 10:39:46

Existing dwelling

1	TEI	R a	nd	DE	R

Fuel for main heating system: Gas (mains) (fuel factor = 1.00)

Target Carbon Dioxide Emission Rate TER = 13.89Dwelling Carbon Dioxide Emission Rate DER = 26.52

Excess emissions = 12.63kg/m² (90.9%)

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

TFEE = 55.7

Dwelling Fabric Energy Efficiency (DFEE)

DFEE = 99.1

Dwelling Fabric Energy Efficiency (DFEE) DFEE = 99.1 Fail

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

<u>Element</u>	<u>Average</u>	<u>Highest</u>	
Wall	1.04 (max. 0.30)	1.55 (max. 0.70)	Fail
Floor	0.00 (max. 0.25)	0.00 (max. 0.70)	OK
Roof	0.15 (max. 0.20)	0.17 (max. 0.35)	OK
Openings	2.40 (max. 2.00)	2.40 (max. 3.30)	Fail

3 Air permeability

Air permeability at 50 pascals: 10.00 OK Maximum: 10.00

Page 1 of 2

10 Key features	None		
None with blinds/sh	utters closed 0.00	% of daylight hours	
Ventilation rate : Blinds/curtains :	סנ	8.00	
Overshading: Orientation: NorthEast		Average or unknown (20-60 % sky blocked)	
Based on: Thermal mass parar	meter :	123.74	
	mes valley).	Not significant	OK
9 Summertime temp Overheating risk (Thai			OK
8 Mechanical ventila	ation	Not applicable	
- Low energy lights		Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0%	OK
7 Low energy lights			
Boiler Interlock		Independent timer for DHW - Yes Yes	OK OK
6 Controls (Also refer to "Domesi Space heating control		es Compliance Guide" by the DCLG) Time and temperature zone control Cylinderstat - Yes	Ok
Primary pipework insu	Permitted by DBS		OK OK
5 Cylinder insulation Hot water storage		eclared cylinder loss factor (kWh/day) 2.32	
Secondary heating sy	rstem: None -		
,		ure 630 VU 306/6-3 (H-GB) Efficiency: 89.9% SEDBUK2009 Minimum: 88.0%	OK
Source of efficiency:	Boiler and underf Vaillant ecoFIT po from boiler databa		
4 Heating efficiency Main heating system:			

EAL CONSULT

Assessor: Mark Simons 17 Dobree Avenue LONDON NW10 2AD 0208 930 5668

Project Information

Building type Top-floorflat

Reference

Date 4 October 2022

Email: NONE Project Flat 29

Gainsborough House

Frognal Rise LONDON NW3 6PZ

SAP 2012 worksheet for Existing dwelling - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Secondfloor	157.93	2.84	448.52	(3a)
Third floor	111.23	3.45	383.74	(3b)
Fourth and other floors	32.02	2.20	70.44	(3c)
	301.18			(4)
			902.71	(5)

2. Ventilation rate

											m³ per h	our
							main + s	eondary	/ + othe	r		
Numbe	er of chim	nave					heating $0 + 0 + 0$		x 40		0.00	(6a)
	r of oper	•					0 + 0 + 0		20		0.00	(6b)
		mittent fa	ns				5 x 10				50.00	(7a)
		ive vents					0		10		0.00	(7b)
		ess gas fi	res				0	Х	40		0.00	(7c)
											Air chan	ges per hour
											0.06	(8)
(ns)							3					(9)
											0.20	(10)
											0.35	(11)
											0.00	(13)
									100.00			(14)
											0.05	(15)
Infiltrati											0.66	(16)
Air perr	meability										0.66	(18)
											2.00	(19)
L. Cless C				(0.85	(20)
		ncorporati nodified f			peed						0.56	(21)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind F	ootor	·	,								52.50	(22)
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
1.21	1.20	1.20	1.10	1.07	0.00	0.00	0.00	1.00	1.07	1.10	13.13	(22a)
Adjuste	ed infiltra	tion rate ((allowing	for shelt	er and w	ind spee	ed)				13.13	(22a)
0.71	0.70	0.68	0.61	0.60	0.53	0.53	0.52	0.56	0.60	0.63	0.65	
											7.31	(22b)
	tion : nat /e air cha	ural venti nge rate	ilation, in	termitter	nt extract	fans						
0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.70	0.71	(25)
												` '

3. Heat los	ses and heat l	loss parameter
Flement	Gross	Openings

5. Heat losses and fleat lo				A 11		۸ ۱۷	
Element Gross	Openings	Netarea	U-value	AxU	kappa-value		
area, m²	m²	A, m²	W/m²K	W/K	kJ/m²K	kJ/K	
Window - Double-glazed,		1.369	2.19 (2.40)	3.00			(27)
argon filled, low-E, En=0.1,							
soft coat (SouthWest)							
REAR							
Window - Double-glazed,		12.080	2.19 (2.40)	26.45			(27)
argon filled, low-E, En=0.1,		12.000	2.13 (2.40)	20.40			(21)
•							
soft coat (SouthWest)							
REAR							
Window - Double-glazed,		3.020	2.19 (2.40)	6.61			(27)
argon filled, low-E, En=0.1,							
soft coat (NorthEast)							
FRONT							
Window - Double-glazed,		12.080	2.19 (2.40)	26.45			(27)
argon filled, low-E, En=0.1,		12.000	2.10 (2.40)	20.10			(21)
_							
soft coat (NorthWest)							
SIDE			2 (2 (2 (2)				(a=)
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,							
soft coat (NorthWest)							
SIDE							
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,			` ,				` ,
soft coat (SouthEast)							
SIDE							
		1.230	2 10 (2 40)	2.69			(27)
Window - Double-glazed,		1.230	2.19 (2.40)	2.09			(27)
argon filled, low-E, En=0.1,							
soft coat (NorthEast)							
FRONT							
Window - Double-glazed,		1.230	2.19 (2.40)	2.69			(27)
argon filled, low-E, En=0.1,							
soft coat (SouthWest)							
REAR `							
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,		41040	2.40	00			(20)
low-E, En=0.1, soft coat							
(SouthWest)							
REAR							()
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,							
low-E, En=0.1, soft coat							
(NorthWest)							
SIDE							
Full glazed door -		4.040	2.40	9.70			(26)
Double-glazed, argon filled,							(/
low-E, En=0.1, soft coat							
(NorthEast)							
FRONT							
		02.44	4 EF	144.00	40.00	1604.04	(20)
Walls		93.44	1.55	144.83	18.00	1681.94	(29)
EXTERNAL			0.0=/=	20) 44 55	40.55	44=0 ===	(5.5)
Walls		64.42	0.65 (Ru=0.9	90) 41.69	18.00	1159.56	(29)
ROOF VOID WALL							

Page 3 of 9

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\29 Gainsborough\29 Gainsborough.JDP

	•	g energy	y require	ements							kWh/year	
	d occupa	•									3.13	(42)
Annuala	average I	hot water	usage ir	n litres pe	er day Vd	,average)			-	108.62	(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water	er usage	in litres p	oer day f	or each r	nonth							
119.48	115.14	110.79	106.45	102.10	97.76	97.76	102.10	106.45	110.79	115.14	119.48	(44)
Energy	content c	of hot wat	er used									
177.19	154.97	159.91	139.42	133.77	115.44	106.97	122.75	124.22	144.76	158.02	171.60	
Energy	content (a	annual)									1709.01	(45)
Distribut	tion loss											
26.58	23.25	23.99	20.91	20.07	17.32	16.05	18.41	18.63	21.71	23.70	25.74	(46)
•	volume,						300.00					(47)
			cylinder l	oss facto	or (kWh/d	day)	2.32					(48)
•	ature Fac						0.5400					(49)
0,			er cylinde	er (kWh/c	lay)						1.25	(55)
	orage los	·	1	1	1	T	1	1	1	T		(= 0)
38.84	35.08	38.84	37.58	38.84	37.58	38.84	38.84	37.58	38.84	37.58	38.84	(56)
Net stor	age loss											
38.84	35.08	38.84	37.58	38.84	37.58	38.84	38.84	37.58	38.84	37.58	38.84	(57)
Primary	loss											
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Total he	at require	ed for wa	ter heati	ng calcul	ated for	each mo	nth		,	,		
239.29	211.06	222.01	199.51	195.87	175.53	169.07	184.85	184.31	206.86	218.11	233.70	(62)
Output f	rom wate	er heater	for each	month, k	(Wh/mor	nth						
239.29	211.06	222.01	199.51	195.87	175.53	169.07	184.85	184.31	206.86	218.11	233.70	(64)
						-				-	2440.18	(64)
Heat gai	ins from	water he	ating, kV	/h/month	1							
108.59	96.40	102.85	94.43	94.16	86.46	85.25	90.49	89.38	97.81	100.62	106.74	(65)

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabol	ic gains,	Watts	,						,	,		
188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	188.01	(
Lighting	gains											
115.54	102.62	83.46	63.18	47.23	39.87	43.08	56.00	75.17	95.44	111.40	118.75	(
Appliand	ces gains	3										
685.40	692.51	674.59	636.44	588.27	543.00	512.76	505.65	523.57	561.73	609.89	655.16	(
Cooking	gains											
56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	56.93	(
Pumps a	and fans	gains										
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(
Losses	e.g. evap	oration (r	negative	values)								
-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	-125.34	(
Water he	eating ga	ins										
145.96	143.45	138.24	131.16	126.56	120.08	114.58	121.63	124.14	131.47	139.75	143.46	(
Total inte	ernal gaiı	ns										
1069.51	1061.19	1018.89	953.38	884.66	825.56	793.03	805.89	845.48	911.24	983.64	1039.98	(

6. Solar gains (calculation for January)

o. Solar gams (calculation for Sandary)	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.369 36.79	0.63 x 0.70	0.77	15.3940
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 12.080 36.79	0.63 x 0.70	0.77	135.8357
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 3.020 11.28	0.63 x 0.70	0.77	10.4136
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 12.080 11.28	0.63 x 0.70	0.77	41.6544
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthEast) SIDE	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 1.230 11.28	0.63 x 0.70	0.77	4.2413
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 1.230 36.79	0.63 x 0.70	0.77	13.8309
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 4.040 36.79	0.63 x 0.70	0.77	45.4285

Page 5 of 9

6. Solar gains (calculation for January)	A 0 Fl		Oh a dia a	O = i = =	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	Area & Flux 0.9 x 4.040 11.28	g & FF 0.63 x 0.70	Shading 0.77	Gains 13.9308	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 4.040 11.28	0.63 x 0.70	0.77	13.9308	
Total solar gains, January				312.73	(83-1)
Solar gains					
312.73 562.07 847.05 1180.28 1441.35 14 Total gains	83.42 1408.33 1205	5.53 961.18 642.	23 379.93	264.17	(83)
1382.24 1623.26 1865.94 2133.7 2326.0 23	09.0 2201.4 2011	.4 1806.66 1553	3.48 1363.57	1304.15	(84)
Lighting calculations	Aron	~	FF v Chadi	n.a	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	Area 0.9 x 1.37	g 0.80	FF x Shadi 0.70 x 0.83	-	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR	0.9 x 12.08	0.80	0.70 x 0.83	5.05	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 3.02	0.80	0.70 x 0.83	3 1.26	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 12.08	0.80	0.70 x 0.83	5.05	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthWest) SIDE	0.9 x 1.23	0.80	0.70 x 0.83	0.51	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthEast) SIDE	0.9 x 1.23	0.80	0.70 x 0.83	0.51	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) FRONT	0.9 x 1.23	0.80	0.70 x 0.83	0.51	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) REAR GL = 14.00 / 301.18 = 0.046 C1 = 0.500 C2 = 1.084	0.9 x 1.23	0.80	0.70 x 0.83	3 0.51	
EL 040					

EI = 816

	g system r	esponsi	veness								0.75
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau					JI			<u>, , , , , , , , , , , , , , , , , , , </u>		JI.	
15.72	15.79	15.86	16.19	16.26	16.56	16.56	16.62	16.44	16.26	16.13	16.00
alpha	!						J.			Л	
2.05	2.05	2.06	2.08	2.08	2.10	2.10	2.11	2.10	2.08	2.08	2.07
Utilisati	ion factor	for gains	for living	area	,	JL .	,			Л	
0.99	0.98	0.97	0.95	0.91	0.84	0.75	0.79	0.90	0.96	0.98	0.99
Mean ir	nternal ter	nperatur	e in livinç	area T1	,		, c				
18.02	18.21	18.59	19.16	19.72	20.25	20.54	20.48	20.05	19.33	18.60	18.01
Tempe	rature du	ring heat	ing perio	ds in rest	of dwelli	ng Th2		•			
19.21	19.22	19.22	19.25	19.26	19.28	19.28	19.29	19.27	19.26	19.25	19.24
Utilisati	ion factor	for gains	for rest	of dwellir	ng						
0.98	0.98	0.96	0.93	0.87	0.75	0.58	0.64	0.85	0.95	0.98	0.99
Mean ir	nternal te	mperatui	re in the r	est of dw	elling T2	2					
15.38	15.66	16.22	17.04	17.85	18.57	18.92	18.88	18.33	17.30	16.24	15.38
	rea fracti										0.32
	nternal ter		· `		, ,		T	1		T	
16.23	16.48	16.99	17.72	18.46	19.11	19.44	19.39	18.88	17.95	17.00	16.23
	djustmen	,	nr.			-ir			47.05	17.00	40.00
16.23	16.48	16.99	17.72	18.46	19.11	19.44					
		JI	JL				19.39	18.88	17.95	17.00	16.23
		,	<u> </u>			1.01.1.	19.59	10.00	17.95	17.00	16.23
8. Spac	ce heatin	ng requi	rement	JI.		10111	19.59	10.00	17.95	17.00	16.23
8. Spa o Jan	ce heatin	ıg requi i Mar	rement Apr	May	Jun	Jul	Aug	Sep	0ct	17.00	Dec
Jan		Mar	Apr	Мау			J.				
Jan	Feb	Mar	Apr	May 0.85			J.				
Jan Utilisati	Feb ion factor 0.97	Mar for gains	Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec
Jan Utilisati 0.98 Useful (Feb ion factor 0.97 gains	Mar for gains 0.95	Apr 0.91	0.85	Jun 0.74	Jul 0.60	Aug 0.65	Sep 0.83	Oct	Nov 0.97	Dec
Jan Utilisati 0.98 Useful (1349.6	Feb ion factor 0.97 gains	Mar for gains 0.95	Apr 0.91	0.85	Jun 0.74	Jul 0.60	Aug 0.65	Sep 0.83	Oct	Nov 0.97	Dec 0.98
Jan Utilisati 0.98 Useful (1349.6	Feb ion factor 0.97 gains 5 1569.02	Mar for gains 0.95	Apr 0.91	0.85	Jun 0.74	Jul 0.60	Aug 0.65	Sep 0.83	Oct	Nov 0.97	Dec 0.98
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30	Feb on factor 0.97 gains 5 1569.02 y average	Mar for gains 0.95 1770.52 external 6.50	Apr 0.91 1948.74 tempera 8.90	0.85 1976.96 ture 11.70	Jun 0.74 1714.93	Jul 0.60 1327.89	Aug 0.65 1312.10	Sep 0.83	Oct 0.93	Nov 0.97 1319.24	Dec 0.98 1276.96
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30	Feb ion factor 0.97 gains 5 1569.02 y average 4.90 ss rate for	Mar for gains 0.95 1770.52 external 6.50 r mean ir	Apr 0.91 1948.74 tempera 8.90	0.85 1976.96 ture 11.70 mperatu	Jun 0.74 1714.93	Jul 0.60 1327.89	Aug 0.65 1312.10	Sep 0.83	Oct 0.93	Nov 0.97 1319.24	Dec 0.98 1276.96
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30 Heat los	Feb ion factor 0.97 gains 5 1569.02 y average 4.90 ss rate for	Mar for gains 0.95 1770.52 external 6.50 r mean ir 6844.3	Apr 0.91 1948.74 tempera 8.90 nternal te	0.85 1976.96 ture 11.70 mperatu	Jun 0.74 1714.93 14.60 re	Jul 0.60 1327.89	Aug 0.65 1312.10	Sep 0.83 1494.73	Oct 0.93 1445.73	Nov 0.97 1319.24 7.10	Dec 0.98 1276.96 4.20
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30 Heat los	Feb ion factor 0.97 gains 5 1569.02 y average 4.90 ss rate for	Mar for gains 0.95 1770.52 external 6.50 r mean ir 6844.3	Apr 0.91 1948.74 tempera 8.90 nternal te	0.85 1976.96 ture 11.70 mperatu	Jun 0.74 1714.93 14.60 re	Jul 0.60 1327.89	Aug 0.65 1312.10	Sep 0.83 1494.73	Oct 0.93 1445.73	Nov 0.97 1319.24 7.10	Dec 0.98 1276.96 4.20
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30 Heat los 7856.8 Fraction	Feb ion factor 0.97 gains 5 1569.02 y average 4.90 ss rate for 7594.5 n of monti	Mar for gains 0.95 1770.52 external 6.50 r mean ir 6844.3 th for hea 1.00	Apr 0.91 1948.74 tempera 8.90 ternal te 5640.4 ting 1.00	0.85 1976.96 ture 11.70 mperatu 4301.7	Jun 0.74 1714.93 14.60 re 2820.4	Jul 0.60 1327.89 16.60 1777.95	Aug 0.65 1312.10 16.40 1865.39	Sep 0.83 1494.73 14.10 3010.1	Oct 0.93 1445.73 10.60 4682.5	Nov 0.97 1319.24 7.10 6353.4	Dec 0.98 1276.96 4.20 7782.7
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30 Heat los 7856.8 Fraction	Feb ion factor 0.97 gains 1569.02 y average 4.90 ss rate for 7594.5 n of montil 1.00 heating re	Mar for gains 0.95 1770.52 external 6.50 r mean ir 6844.3 th for hea 1.00	Apr 0.91 1948.77 tempera 8.90 enternal tempera 1.00 ent for ea	0.85 1976.96 ture 11.70 mperatu 4301.7	Jun 0.74 1714.93 14.60 re 2820.4	Jul 0.60 1327.89 16.60 1777.95	Aug 0.65 1312.10 16.40 1865.39	Sep 0.83 1494.73 14.10 3010.1	Oct 0.93 1445.73 10.60 4682.5	Nov 0.97 1319.24 7.10 6353.4	Dec 0.98 1276.96 4.20 7782.7
Jan Utilisati 0.98 Useful (1349.6 Monthly 4.30 Heat los 7856.8 Fraction 1.00 Space I 4841.3 Total sp	Feb ion factor 0.97 gains 1569.02 y average 4.90 ss rate for 7594.5 n of monti	Mar for gains 0.95 1770.52 external 6.50 r mean ir 6844.3 h for hea 1.00 equireme 3774.9 cing required	Apr 0.91 1948.7′ tempera 8.90 ternal te 5640.4 ting 1.00 ent for ea 2658.0 irement p	0.85 1976.96 ture 11.70 mperatu 4301.7 1.00 ch month 1729.62 per year (Jun 0.74 1714.93 14.60 re 2820.4 - n, kWh/m - (kWh/yea	Jul 0.60 1327.89 16.60 1777.95	Aug 0.65 1312.10 16.40 1865.39	Sep 0.83 1494.73 14.10 3010.1	Oct 0.93 1445.73 10.60 4682.5	Nov 0.97 1319.24 7.10 6353.4 1.00	Dec 0.98 1276.96 4.20 7782.7 1.00

8c. Space cooling requirement - not applicable

9a. Ene	ergy req	uiremen	ts								L-14/b /	
Fraction	of spac	eating sy e heat fro in heating	om main	system(s	s)			9	1.0000 0.90%		kWh/year	(202) (206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	eating re	quireme	nt		,	-J.			JI.	JI.		
4841.3	4049.1	3774.9	2658.0	1729.62	-	-	-	-	2408.1	3624.6	4840.2	(98)
Append	ix Q - mo	onthly en	ergy sav	ed (main	heating	system '	1)		,	Л.		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space h	neating fo	uel (main	heating	system 1)	JL .			,	Л		
5326.0	4454.5	4152.8	2924.1	1902.77	-	-	-	-	2649.2	3987.4	5324.8	(211)
Append	ix Q - mo	onthly en	ergy sav	ed (main	heating	system 2	2)		JL			
0.00	0.00	0.00	0.00	0.00	-	-	-	 -	0.00	0.00	0.00	(212)
Space h	neating fu	uel (main	heating	system 2	<u>2</u>)				JL			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(213)
Append	ix Q - mo	onthly en	ergy save	ed (seco	ndary he	ating sys	stem)		JI	JI		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Space h	eating fu	ıel (secor	ndary)	JL	JL		J		JL	JL		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Water h	eating		J						J	JI.		
Waterh	eating re	quiremer	nt									
239.29	211.06	222.01	199.51	195.87	175.53	169.07	184.85	184.31	206.86	218.11	233.70	(64)
Efficiend	cy of wat	er heater									80.20	(216)
90.33	90.30	90.23	90.06	89.68	80.20	80.20	80.20	80.20	89.95	90.22	90.34	(217)
Water h	eating fu	el										
264.90	233.72	246.05	221.53	218.41	218.87	210.81	230.48	229.81	229.97	241.77	258.67	(219)
Space h Water h	neating for neating for eating for	uel used, iel (secor el mps, fan	ndary)		en-hot						kWh/year 30721.60 0.00 2804.99	(211) (215) (219)
central boiler v Total ele Electrici	I heating with a far ectricity fity for light saving/go		d flue ove, kWl 0.00% fix	n/year ked LEL)	:р- по с						30.00 45.00 75.00 816.19	(230c) (230e) (231) (232)
Energ Energ	y saved y used (v								0.000 0.000	(236a) (237a)
Total de	livered e	nergy for	all uses								34417.79	(238)

10a	Fuel	costs	เมรากต	Table	12	prices
ıva.	ı ucı	CUSIS	usiiiu	Iabic	12	DIICES

3 7	kWh/year	Fuel price p/kWh	£/year	
Space heating - main system 1	30721.603	3.480	1069.11	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Water heating cost	2804.99	3.480	97.61	(247)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	75.000	13.190	9.89	(249)
Energy for lighting	816.193	13.190	107.66	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			1404.27	(255)
11a. SAP rating			0.42	(256)
			1.70	(257)
SAPvalue			76.23	-
			76	(258)
SAP band			С	

12a. Carbon dioxide emissions

	Energy Emission factor		Emissions	
	kWh/year	kg CO2/kWh	kg CO2/year	
Space heating, main system 1	30721.60	0.216	6635.87	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	2804.99	0.216	605.88	(264)
Space and water heating			7241.74	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	816.19	0.519	423.60	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			7704.27	(272)
			kg/m²/year	
CO2 emissions per m ²			25.58	(273)
El value			70.18	(273a)
El rating			70	(274)

Calculation of stars for heating and DHW

Main heating energy efficiency
Main heating environmental impact
Water heating energy efficiency
Water heating environmental impact

El band

 $(3.48 / 0.9090) \times (1 + (0.29 \times 0.25)) = 4.1059$, stars = 4 $(0.2160 / 0.9090) \times (1 + (0.29 \times 0.25)) = 0.2549$, stars = 4 3.48 / 0.8683 = 4.0080, stars = 4 0.2160 / 0.8683 = 0.2488, stars = 4

Page 9 of 9

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd W:\EAL\Viral's PC\SAPS\29 Gainsborough\29 Gainsborough.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.