WHOLE LIFE CARBON ASSESSMENT BP FINCHLEY ROAD | AUGUST 2022

BP FINCHLEY ROAD

WHOLE LIFE CARBON ASSESSMENT

ISSUE AND REVISION RECORD

Revision	Date	Originator	Checked	Approved	Description
01	15/08/22	FH	JALW	JALW	Issued for Planning

CONTENTS

EXECUTIVE SUMMARY	3
INTRODUCTION	4
WHOLE LIFE CARBON ASSESSMENTS	5
METHODOLOGY	6
RESULTS	12
CONCLUSION	14

EXECUTIVE SUMMARY

This report has been produced by WME to support the planning application for the proposed development at 104A Finchley Road.

The proposals are for the Demolition of existing petrol filling station and associated convenience store (sui generis), and erection of a six-storey building comprising ground floor commercial space (Class E) and flexible commercial/educational space (Class E/F1), and 31 x residential apartments above.

Whilst the planning application is not GLA referrable, early discussions with the planners concluded that it was not possible to retain the existing building and as such, it is a requirement of Camden Planning Council to submit a Whole Life Carbon assessment in line with Chapter 9 of the CPG energy efficiency and adaption document.

A Whole Life Carbon Assessment has been undertaken using OneClick software.

The energy strategy for the project is a key mechanism for reducing Whole Life Carbon of the development. In addition to a passive design approach, a strategy has been proposed which features highly efficient ambient loop heat pumps to deliver heating and hot water throughout the development. In addition to heat pumps working at greater efficiency than gas boilers, the heat pumps can take advantage of the projected decarbonisation of the national grid. Refer to Energy Statement report (P150051-RPT-8001 Energy Statement) for full details on the proposed Energy Strategy.

The proposed development has taken care to consider Circular Economy in its design. The Circular Economy statement details the strategy for recovery of materials in line with the circular economy model. Refer to Circular Economy Statement (P150051-RPT-8003 Circular Economy Statement) for full details on Circular Economy.

The following results summarise the embodied WLC emissions for the scheme. These results encompass the scope of inclusions and exclusions detailed within the document and are derived using the full OneClick material component database.

Modules	KgCOe	KgCO2/m2
A1 – A5	1987378.3	535.68
B1 – B6	443364.44	119.51
C1 – C4	50680.12	13.66
		668.85

Note: All results presented within this document should NOT be taken as final. These are based on the limited information available to date and will be updated regularly as the design progresses.

INTRODUCTION

WME have been appointed to undertake a Whole Life Carbon (WLC) Assessment for the 104a Finchley Road in London. The following document is aligned with the accompanying planning application submission documents and has been carried in line with Chapter 9 of the CPG energy efficiency and adaption document and GLA Whole Life-Cycle Carbon Assessment guidance document.

The aim of this assessment is to assess the WLC for the Proposed Developments, defined as 'those carbon emissions resulting from the construction and the use of a building over its entire life, including its demolition and disposal.' This assessment captures the operational carbon emissions for the Proposed Development from both regulated and unregulated energy use, as well as its embodied carbon emissions.

Development Description

The proposals are for the Demolition of existing petrol filling station and associated convenience store (sui generis), and erection of a six-storey building comprising ground floor commercial space (Class E) and flexible commercial/educational space (Class E/F1), and 31 x residential apartments above.

WHOLE LIFE CARBON ASSESSMENTS

The London Plan Guidance (2022) for Whole Life Carbon states '*emissions are the total carbon emissions1 resulting from the construction and the use of a building over its entire life, including its demolition and disposal. They capture a building's operational carbon emissions from both regulated2 and unregulated3 energy use, as well as its embodied carbon emissions - that is, emissions associated with raw material extraction, the manufacture and transport of building materials, and construction; and the emissions associated with maintenance, repair and replacement, as well as dismantling, demolition and eventual material disposal.'*

With Carbon Emissions from operational building usage a subject to stricter regulations, it has for some time been the primary focus in built environment. However more recently, the focus has shifted to include emissions associated with the buildings materials themselves.

It has been stated in some studies that 10-20% of total carbon emissions historically is due to embodied carbon. With the reduction in carbon efficiency and operational emissions, this high percentage of embodied emission has been pushed further towards a point of necessity. Structural and material design choices have to become a greater asset to the built environment.

A Circular Economy

There is a growing industry belief that the way we design operate and build infrastructure needs a complete rethink to maximise efficiency and minimise waste. London Plan defines a circular economy as '...one where materials are retained in use at their highest value for as long as possible and are then reused or recycled, leaving a minimum of residual waste.' It is a move away from the current linear economic model, where materials are mined, manufactured, used and thrown away.

The three key principle issues facing the industry are pillars that a circular economy design and construction process must consider.

- Eliminate waste and pollution
- Keep materials in use
- Regenerate Nature

Based on the above, the London Plan created Policy SI 7, which further defines these issues as the six circular economy (CE) principles, in regard to building design process:

1. Building in layers – ensuring that different parts of the building are accessible and can be maintained and replaced where necessary.

WHOLE LIFE CARBON ASSESSMENT BP FINCHLEY ROAD | AUGUST 2022

- 2. Designing out waste ensuring that waste reduction is planned in from project inception to completion, including consideration of standardised components, modular build, and reuse of secondary products and materials.
- 3. Designing for longevity.
- 4. Designing for adaptability or flexibility.
- 5. Designing for disassembly.
- 6. Using systems, elements or materials that can be reused and recycled.

METHODOLOGY

Assessment Scope

The assessment of Whole Life Carbon (WLC) emissions consists of the following sections:

- Any carbon emissions associated with pre-construction demolition
- Any carbon savings associated with the retention, reuse and recycling of existing structures and materials that are already on-site
- Its operational carbon emissions (both regulated and unregulated)
- Its embodied carbon emissions
- Any future potential carbon savings post end-of-life, including savings from reuse and recycling of building structure and materials.

Operational carbon emissions

In line with the draft GLA guidance, the operational carbon emissions are calculated based on the Part L assessments undertaken for the Proposed Development as part of the Energy Strategy for planning. This encompasses carbon emissions related to both regulated and unregulated energy uses (in line with Part L definitions), accumulated over a 60-year study period.

Embodied Carbon Emissions

To assess the embodied carbon for the project, a Life Cycle Assessment (LCA) tool – One Click LCA – has been used to make allocations for the anticipated materials quantities in an inventory analysis. The materials are represented within the model by using materials with associated Environmental Product Declarations (EPDs). EPDs are produced by manufacturers and identify the carbon emissions of a product. By scheduling the materials proposed for the development, the overall carbon emissions can be approximated.

It should be noted here that the LCA tool has a limited database of materials. In the scenario where a specified material isn't included in the database, the most similar material in terms of material composition is selected instead.

In line with standard UK practice, the LCA process and results included by this report have been assessed in line with BS 15978:2011 and the RICS Professional Statement: Whole Life Carbon assessment for the built environment.

All EPDs used have been produced in line with the requirements of BS EN 15804:2012. Hence, each material has been assessed against the following lifecycle stage:

- – A1-A3: Product stage
- – A4: Material transportation to site
- – B4-B5: Replacement and maintenance
- – C1-C4: End of life

Together with these stages, the contribution of life cycle stage A5 has also been explored separately, giving an estimate of the emissions related to the construction. I.e. the electrical consumption and waste disposal.

In line with the draft GLA guidance, the assessment includes the following elements:

- – Demolition
- – Facilitating works
- – Substructure
- – Superstructure (frame, upper floors, roof, stairs and ramps, external walls, windows and external doors, internal walls and partitions, internal doors)
- – Finishes
- – Fittings, furnishings and equipment
- – Building services
- – Prefabricated buildings and building units
- – Work to existing building
- External works (hard and soft landscaping, fencing, fixtures, drainage, services)

Life Cycle Assessment Impacts

A building Life Cycle Assessment considers a range of environmental indicators that assess the relevant overall impacts of the materials selections. Whilst ideally an LCA assessment would consider all environmental factors relevant to the product or material, due to lack of information in some cases, and lack of consensus in how to calculate Key Performance Indicators (KPIs) within the industry, not all environmental impacts can be considered.

Standard ratios are used to convert the various greenhouse gases into equivalent amounts of CO2. These ratios are based on the global warming potential (GWP) of each gas. GWP is a relative measure of how much a given mass of greenhouse gas is estimated to contribute to global warming over a given time interval – usually 100 years. It is expressed relative to carbon dioxide which is set as the baseline which other emitters are compared against, and which therefore has a GWP of 1.

This assessment thus reports on the embodied carbon of the development as 'global warming potential' with the annotation 'CO2 equivalent (CO2e)'.

Data Sources

The following data sources were used in the LCA model:

- Database OneClick LCA material/component databases
- Drawings relevant plans, sections, elevations, and specifications from Architects and structural engineers

 Building Element Group 	Basis for Information
Demolition	Pre-demolition Audit undertaken by Sustainable Construction Services (See Appendix in P150051-RPT-8003)
Facilitating Works	Facilitating works have not been included within the calculation. To be updated at the next stage of design.
Substructure	The specific substructure quantities were determined information provided from the Revit model developed by the structural team. Refer to Appendix for the Structural Elements Volume table.
Superstructure	The specific superstructure quantities were determined information provided from the Revit model developed by the structural team. Refer to Appendix for the Structural Elements Volume table.
Finishes	Minimal information is available on the finishes. To be updated at the next stage of design.
Fittings, furnishings and Equipment (FF&E)	FF&E have not been included within the calculation. To be updated at the next stage of design.
Building Services/MEP	The primary pieces of technology required for energy generation have been included within the calculation. To be updated in further detail at the next stage of design.
Prefabricated buildings and building units	Not relevant for this development.
Work to existing buildings	Not relevant for this development.
External Works	Minimal information is available on the external works. To be updated at the next stage of design.

Life Cycle Modules	Description	Commentary of Data Source
Module A1 – A3 Construction Materials	Raw material supply (A1) includes emissions generated when raw materials are taken from nature, transported to industrial units for processing and processed. Loss of raw material and energy are also taken into account. Transport impacts (A2) include exhaust emissions resulting from the transport of all raw materials from suppliers to the manufacturer's production plant as well as impacts of production of fuels. Production impacts (A3) cover the manufacturing of the	Calculated using EPDs which align the most applicable similar product.
A4 Transportation to Site	production materials and fuels used by machines. A4 includes exhaust emissions resulting from the transport of building products from manufacturer's production plant to building site as well as the environmental impacts of production of the used fuel.	Transport distances were estimated based on typical average transport distances based on material type & project location, provided by OneClick LCA.
A5 Construction / Installation Process	A5 covers the exhaust emissions resulting from using energy during the site operations, the environmental impacts of production processes of fuel and energy and water as well as handling of waste until the end-of waste state.	At this stage of design, the climate zone average construction impact was used and sized based upon the scale of the development.

B1 – B5 Maintenance and Material replacement	The environmental impacts of maintenance and material replacements (B1-B5) include environmental impacts from replacing building products after they reach the end of their service life. The emissions cover impacts from raw material supply, transportation and production of the replaced new material as well as the impacts from manufacturing the replaced material and handling of waste until the end-of-waste state.	Use (B1) include the impact of refrigerant leakage at leakage rate of 5% a year and 98% end of life recovery. Maintenance (B2) and Repair (B3) have not been considered due to accurate data being unavailable at this early stage.
		Replacement (B4) and Refurbishment (B5) account for the technical servicelife of the building components "BCIS Life expectancy of building components"
B6 Energy Use	The considered use phase energy consumption (B6) impacts include exhaust emissions from any building level energy production as well as the environmental impacts of production processes of fuel and externally produced energy. Energy transmission losses are also taken into account.	Operational Energy use figures are based on the GLA compliant Energy Assessment. Refer to P150051-RPT- 8001 Energy Statement
B7 Water Use	The considered use phase water consumption (B7) impacts include the environmental impacts of production processes of fresh water and the impacts from wastewater treatment.	Water consumption based on Building Regulations Part G 'Enhanced Consumption' of 105l/pp/d and multiplied by the intended full occupancy of the development, using a combined EPD for freshwater and wastewater.

C1 – C4	Emissions from
	deconstruction are
End of Life	calculated within
	the OneClick
	software based on
	the known
	parameters of the
	building and its
	location.

Limitations

The LCA has been completed using latest drawings only. There is no cost plan yet, therefore the information available is limited. As exact products or specifications have not been finalised, generic materials were specified, and default transport distances and service life of products were used in accordance with the RICS guidance where specific information is not currently known.

This use of generic information can be reviewed and the allowances in the design of the model can be refined as the detailed design develops.

RESULTS

These results should NOT be quoted as final. This is a Preliminary WLC assessment which will need to be updated at each stage of the design going forward.

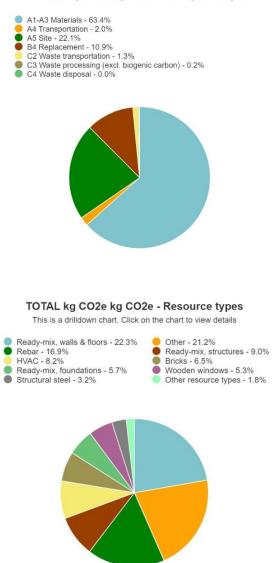
Baseline Carbon Emissions

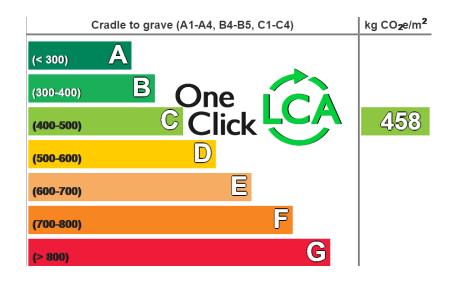
The following results summarise the embodied WLC emissions for the scheme. These results encompass the scope of inclusions and exclusions detailed within the document, and are derived using the full OneClick material component database.

Modules	KgCOe	KgCO2/m2
A1 – A5	1987378.3	535.68
B1 – B6	443364.44	119.51
C1 – C4	50680.12	13.66
		668.85

It should be noted that the figures presented above are well below benchmark figures and aspirational figures. This is because of the limited information available to date. With a significant amount of steel and concrete required for the cantilever structure it is anticipated that the overall Whole Life Carbon figure (kgCO2/m2) will be higher than benchmark data.

The figures presented in the table above are approximations only, based on the best available evidence at the time (end of stage 3). Calculations should be updated at the next stage of design and as more detailed information becomes available.


Opportunities to reduce embodied carbon through material replacement, optimisations in the design and the specification of materials with a percentage of recycled content have not been applied. These can be explored as the detailed design develops during RIBA Stage 4.


WHOLE LIFE CARBON ASSESSMENT BP FINCHLEY ROAD | AUGUST 2022

Carbon Emissions Breakdown

TOTAL kg CO2e kg CO2e - Life-cycle stages

CONCLUSION

This LCA completed in RIBA Stage 3, should serve to inform the design team and the GLA on the benchmark WLC performance process for the proposed development. There remains considerable opportunity to enhance the WLC assessment and improve its accuracy, as the design develops.

The most intensive carbon emitters have been identified to highlight the products that have the most significant contribution to the overall emissions. Alongside the development of suggestions to reduce the carbon intensity of these products.

Next Steps

- More detail WLC analysis with more detailed design
- Explore options to reduce overall embodied carbon
- Explore the potential to procure materials from suppliers with EPDs.
- Compare against RIBA 2030 Climate Change benchmarks

APPENDIX

One Click Detailed Report
 Structural Elements Volume Table

Main > BP Finchley Road > BP Finchley Road > Whole life carbon assessment, GLA / RICS

*******BP Finchley Road - Whole life carbon assessment, GLA / RICS

Project basic information

Result report: BP Finchley Road

Project	BP Finchley Road - BP Finchley Road
User	Fee Hags - 15.08.2022
ТооІ	Whole life carbon assessment, GLA / RICS
Details	This tool meets the RICS professional statement and guidance, whole life carbon assessment for the built environment 1st edition, November, 2017 and RIBA Embodied and whole life carbon assessment for architects.
General informa	ation
Туре	Apartment buildings
Country	United Kingdom
Address	104b Finchley Road
Gross Floor Area (m²)	3709
Number of above ground floors	5
Frame type	notDetermined
Certifications pursued	BREEAM UK New Construction 2018

Carbon Heroes Benchmark

	Emboo	lied carbo	n bench	nmark	0		
Cradle	to grave (/	A1-A4, B4	-B5, C1-	C4)	kg CO ₂ e/m ²		
(< 300)	A						
(300-400)	в						
(400-500)		C			458		
(500-600)		D					
(600-700)			B				
(700-800)			(F			
(> 800)				G			
CH Q3 2021 UK - apartment 😧							

Results

Whole life carbon assessment, Greater London Authority Download Results Summary

This is the project whole life carbon assessment according to RICS methodology, EN 15978 and Greater London Authority guidance for whole life-cycle carbon assessments. To see the detailed results report, please click More actions > Detailed report.

	Biogenic carbon (kg CO2e)	A1-A3 Product Stage	A4 Transportation to site	A5 Site operations	B1 Use Phase	B2 Maintenance	B3 Repair	B4 Material replacement - materials	B5 Material refurbishment	B6 Operational Energy use - Regulated	B6 Operational Energy use - Unregulated	B7 Operational Water use	C1 Deconstruction / demolition
0.1 Toxic Mat.													
0.2 Demolition													
0.3 Supports													
0.4 Groundworks													
0.5 Diversion													
1 Substructure	0	104 522	152	5 147			0						
2.1 Frame	0	0		0			0						
2.2 Upper Floors	0	151 887	218	7 906			0	6 288	0				
2.3 Roof	0	25 604	96	1 767			0	7 982	0				
2.4 Stairs & Ramps													
2.5 Ext. Walls	0	230 087	793	13 099			0	5	0				
2.6 Windows & Ext. Doors													Help

2.7. Int. Walls & Partitions								
2.8 Int. Doors								
3 Finishes	0	1 745	8	176	0	8 781	0	
4 Fittings, furnishings & equipments								
5 Services (MEP)	0	26 224	64	0	0	52 689	0	-204 185
6 Prefabricated								
7 Existing bldg								
8 Ext. works	0	77	57	0	0			
Unclassified / Other	-17 220	847 005	42 610	456 179	0	163 435	0	
TOTAL kg CO2e kg CO ₂ e	-17 220	1 387 150	43 998	484 274	0	239 180	0	-204 185

Assessment of biogenic carbon and mass of materials

This table shows the impacts of construction materials for the biogenic carbon and mass categories

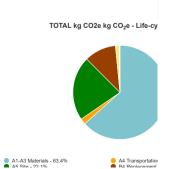
	A1-A3 Product Stage	B1 Use Phase	B4 Material replacement - materials	B5 Material refurbishment
Mass of raw materials kg	6 013 028		243 014	0
Biogenic carbon storage kg CO ₂ e bio	17 220			

Completeness (36%) and plausibility checker (grade: A)

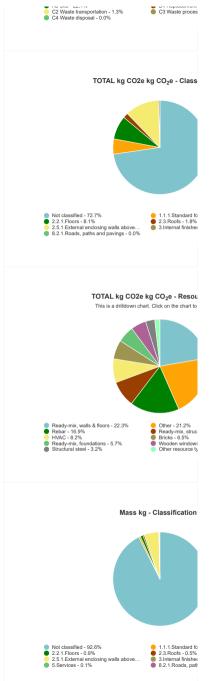
Most contributing materials (TOTAL kg CO2e)

No.	Resource	Cradle to gate impacts (A1-A3)	Of cradle to gate (A1-A3)	Sustainable alternatives
1.	Reinforcement steel (rebar), generic 🎰 ?	252 tons CO ₂ e	18.2 %	Show sustainable alternatives
2.	Ready-mix concrete ?	252 tons CO ₂ e	18.2 %	Show sustainable alternatives

No.	Resource	Cradle to gate impacts (A1-A3)	Of cradle to gate (A1-A3)	Sustainable alternatives
3.	Ready-mix concrete ?	159 tons CO ₂ e	11.4 %	Show sustainable alternatives
4.	Clay brick, one brick, 215 x 65 x 102.5mm ?	122 tons CO ₂ e	8.8 %	Show sustainable alternatives
5.	Ready-mix concrete, normal strength, generic 🤷 ?	84 tons CO ₂ e	6.1 %	Show sustainable alternatives
6.	Ready-mix concrete ?	77 tons CO ₂ e	5.5 %	Show sustainable alternatives
7.	Structural steel sections and plates 🚗 ?	58 tons CO ₂ e	4.2 %	Show sustainable alternatives
8.	Air handling unit, with heat recovery through plate heat exchanger 👝 ?	54 tons CO ₂ e	3.9 %	Show sustainable alternatives
9.	Triple glazing windows with wooden frame ?	51 tons CO ₂ e	3.7 %	Show sustainable alternatives
10.	Reinforcement steel (rebar), generic 💩 ?	49 tons CO ₂ e	3.6 %	Show sustainable alternatives
11.	Ready-mix concrete, normal-strength, generic 🚳 ?	44 tons CO ₂ e	3.2 %	Show sustainable alternatives
12.	Internal wall system with glass wool core, gypsum board and steel frame 🎂 ?	35 tons CO ₂ e	2.5 %	Show sustainable alternatives
13.	Steel framing system for dry lining 🚳 ?	33 tons CO ₂ e	2.4 %	Show sustainable alternatives
14.	Anodised aluminium coil and sheet, for wall cladding	26 tons CO ₂ e	1.9 %	Show sustainable alternatives
15.	Ready-mix concrete, normal strength, generic 🥯 ?	19 tons CO ₂ e	1.4 %	Show sustainable alternatives
16.	Solar panel photovoltaic system, EU average 🚳 ?	14 tons CO ₂ e	1.0 %	Show sustainable alternatives
17.	Reinforcement steel (rebar), generic 🎰 ?	13 tons CO ₂ e	0.9 %	Show sustainable alternatives
18.	Air/air heat pump for commercial buildings ?	12 tons CO ₂ e	0.9 %	Show sustainable alternatives
19.	Ready-mix concrete, reinforcement included in stage A5, for ground slabs ?	11 tons CO ₂ e	0.8 %	Show sustainable alternatives


No.	Resource	Cradle to gate impacts (A1-A3)	Of cradle to gate (A1-A3)	Sustainable alternatives
20.	Glass wool insulation panels, unfaced, generic 🎰 ?	3,8 tons CO ₂ e	0.3 %	Show sustainable alternatives
21.	Waterproofing membrane 📥 ?	4,1 tons CO ₂ e	0.3 %	Show sustainable alternatives
22.	Glass wool insulation ?	2,5 tons CO_2e	0.2 %	Show sustainable alternatives
23.	Polycarbonate domed rooflight (skylight) 🦲 ?	3,1 tons CO ₂ e	0.2 %	Show sustainable alternatives
24.	Plastic vapour control layer 🥯 ?	1,7 tons CO ₂ e	0.1 %	Show sustainable alternatives
25.	Polypropylene vapour membrane, French average ?	0,8 tons CO ₂ e	0.1 %	Show sustainable alternatives

Graphs


Overview	Bubble	Life-cycle stages	Classifications	All graphs
----------	--------	-------------------	-----------------	------------

Life-cycle overview of TOTAL kg CO2e

Pie	Bar	Column	Treemap	

https://oneclicklcaapp.com/app/sec/design/results?entityId=62b9d9580495f217cafaad06&childEntityId=62b9d97c0495f217cafaaf20&indicatorId=lcaForRICSandGLA

Show data table: TOTAL kg CO2e kg CO₂e - Life-cycle stages TOTAL kg CO2e kg CO₂e - Classifications TOTAL kg CO2e kg CO₂e - Resource types Mass kg - Classifications

TOTAL kg CO2e kg CO2e - Life-cycle stages

Item	Value	Unit	Percentage %
A1-A3 Materials	1 400 000	kg CO ₂ e	69.92 %
A4 Transportation	44 000	kg CO ₂ e	2.22 %
A5 Site	480 000	kg CO ₂ e	24.41 %
B4 Replacement	240 000	kg CO ₂ e	12.06 %
B6a Regulated Energy	-200 000	kg CO ₂ e	-10.29 %
C2 Waste transportation	28 000	kg CO ₂ e	1.41 %
C3 Waste processing (excl. biogenic carbon)	5 500	kg CO ₂ e	0.28 %
C4 Waste disposal	31	kg CO ₂ e	0.0 %

TOTAL kg CO2e kg CO2e - Classifications

Item	Value	Unit	Percentage %
Not classified	1 500 000	kg CO ₂ e	77.26 %
1.1.1.Standard foundations	110 000	kg CO ₂ e	5.61 %
2.2.1.Floors	170 000	kg CO ₂ e	8.6 %
2.3.Roofs	37 000	kg CO ₂ e	1.87 %
2.5.1.External enclosing walls above ground level	250 000	kg CO ₂ e	12.43 %
3.Internal finishes	11 000	kg CO ₂ e	0.54 %
5.Services	-130 000	kg CO ₂ e	-6.31 %
8.2.1.Roads, paths and pavings	130	kg CO ₂ e	0.01 %
TOTAL kg CO2e kg CO2e - Resource types			
ltem	Value Unit		Percentage %

Help

https://oneclicklcaapp.com/app/sec/design/results?entityId=62b9d9580495f217cafaad06&childEntityId=62b9d97c0495f217cafaaf20&indicatorId=lcaForRICSandGLA

Ready-mix, walls & floors	440 000	kg CO ₂ e	22.26 %
Other	420 000	kg CO ₂ e	21.17 %
Rebar	340 000	kg CO ₂ e	16.93 %
Ready-mix, structures	180 000	kg CO ₂ e	8.99 %
HVAC	160 000	kg CO ₂ e	8.21 %
Bricks	130 000	kg CO ₂ e	6.51 %
Ready-mix, foundations	110 000	kg CO ₂ e	5.73 %
Wooden windows	100 000	kg CO ₂ e	5.25 %
Structural steel	63 000	kg CO ₂ e	3.16 %
Other resource types	35 000	kg CO ₂ e	1.78 %

Mass kg - Classifications

Item	Value	Unit	Percentage %
Not classified	5 600 000	kg	92.58 %
1.1.1.Standard foundations	36 000	kg	0.59 %
2.2.1.Floors	53 000	kg	0.88 %
2.3.Roofs	28 000	kg	0.47 %
2.5.1.External enclosing walls above ground level	310 000	kg	5.13 %
3.Internal finishes	3 800	kg	0.06 %
5.Services	4 000	kg	0.07 %
8.2.1.Roads, paths and pavings	13 000	kg	0.22 %

Data sources

Sources

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Acrylic water- based flame retardant top coat with eggshell finish	1180-1380 kg/m3, 10 m2/l	Johnstone's Performance Coatings Flame Retardant Acrylic Eggshell Brilliant White, Base L, Base Z, Magnolia	PPG Architectural Coatings UK Ltd.	BRE	BREG EN EPD000353	EPD Johnstone's Trade Flame Retardant Acrylic Eggshell	EN15804+A1	Third-party verified (as per ISO 14025)	2021	unitedKingdom
Aggregate, from marine sediments	Concrete sand, Sandbox sand, Washed sand, Pebbles, Concrete gravel, Filler sand	Betonsand 0/4 kl.P/E, Betonsand kl. E Metro, Sandkassesand, Vasket sand 0/2, Nøddesten 16/25 kl. P, Betongrus 0/8, Fillersand/DrySand	NCC	International EPD System	S-P-02081	EPD for aggregates from Copenhagen, terminal for marine aggregates – Avedøre	EN15804+A1	Third-party verified (as per ISO 14025)	2020	denmark
Air handling unit, with heat recovery through plate heat exchanger	1000 m3/h (588.6 ft3/min), 214 kg/unit (472 lbs/unit)			One Click LCA		One Click LCA	EN15804+A1	Internally verified	2019	LOCAL
Air/air heat pump for commercial buildings	99.1 kg/unit, P=10.8 kW	DONNEE PAR DEFAUT	DED	INIES	INIES_DPAC20210716_163240, 28828	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2022	france
Anodised aluminium coil and sheet, for wall cladding	2 mm, anodic layer: 10 μm	55HX®	Aleris	European Aluminium	EPD1–Aleris-2017	EPD ANODISED ALUMINIUM COIL AND SHEET	EN15804+A1	Third-party verified (as per ISO 14025)	2017	belgium
Bituminous waterproofing system - Single layer	5.44 kg/m2	AXTER, DERBIGUM, MEPLE, SIPLAST- ICOPAL, SOPREMA	Chambre Syndicale Française de l'Etanchéité	INIES	INIES_CTOI20180219_105730, 8349	FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2017	france

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Ceramic floor tile	10 mm, average density 2000 kg/m3		Mosa	MRPI	11.1.0001.004	EPD Vloertegelcollectie Koninklijke Mosa	EN15804+A1	Third-party verified (as per ISO 14025)	2013	unitedKingdom
Clay brick, one brick, 215 x 65 x 102.5mm				ICE		ICE database August 2019, V3.0	EN15804+A1	Self declared	2019	unitedKingdom
Concrete cast- in-situ roof slab incorporating beams, 300mm depth	C 30/37, U- value 0.13 W/m2K			One Click LCA		One Click LCA generic construction definitions				europe
Drainage floor underlay from EPS	ép.25 mm	DONNEE PAR DEFAUT	DED	INIES	INIES_DCOU20191220_144652, 13812	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2019	france
Geotextile from polypropylene	300 g/m2		MDEGD	INIES	INIES_DGÉO20180223_161025, 7993	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2018	france
Glass wool insulation	R=5.0 m2K/W, L=0.040 W/mK, ép. 200 mm, 2.295 kg/m2, Lambda=0.04 W/(m.K)	ISOLANT TOITURE 200	ISOVER	INIES	INIES_IISO20170504_091653, 12203	FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2017	france

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Glass wool insulation panels, unfaced, generic	L = 0.031 W/mK, R = 3.23 m2K/W (18 ft2°Fh/BTU), 25 kg/m3 (1.56 lbs/ft3), (applicable for densities: 0-25 kg/m3 (0-1.56 lbs/ft3)), Lambda=0.031 W/(m.K)			One Click LCA	-	One Click LCA	EN15804+A1	Internally verified	2018	LOCAL
Green roof assembly	R > 5m2.K/W			-		One Click LCA generic construction definitions				europe
Internal wall system with glass wool core, gypsum board and steel frame	56.49 kg/m2			INSIDE/INSIDE	NIBE3349	EPD 21002- NIBE3349 - Systeemwand met driedubbele rogipsplaat en glaswol	EN15804+A1	Third-party verified (as per ISO 14025)	2020	netherlands
Plastic vapour control layer	0.2 mm		Tommen Gram	EPD Norge	NEPD-341-230-NO	Gram Dampsperre, Tommen Gram Folie AS (2015)	EN15804+A1	Third-party verified (as per ISO 14025)	2015	norway
Polycarbonate domed rooflight (skylight)	U = 1.8 W/m2K, 17.55 kg/m2	Mardome Trade Dome Rooflight	Brett Martin Daylight Systems	BRE	BREG EN EPD 000358	EPD Mardome Trade Triple skin polycarbonate rooflight on 15mm PVC Kerb	EN15804+A1	Third-party verified (as per ISO 14025)	2021	unitedKingdom
Polyethylene sealing film for slabs	ép. 150 micron	Donnee par default	MDEGD	INIES	INIES_DFIL20180427_114145, 8228	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2018	france

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Polypropylene vapour membrane, French average	0.18 kg/m2		MDEGD	INIES	INIES_DPAR20180223_160939, 7991	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2018	france
Precast concrete paving (Blocks, Slabs, Channels and Kerbs)				ICE	-	ICE database August 2019, V3.0	EN15804+A1	Self declared	2019	unitedKingdom
Ready-mix concrete	RC 40/50 (40/50 MPa), 25% Cement replacement with blast furnace slag (GGBS)			ICE	-	ICE database August 2019, V3.0	EN15804+A1	Self declared	2019	unitedKingdom
Ready-mix concrete	RC 32/40 (32/40 MPa), 30% Cement replacement with fly ash			ICE	-	ICE database August 2019, V3.0	EN15804+A1	Self declared	2019	unitedKingdom
Ready-mix concrete	RC 32/40 (32/40 MPa), with CEM I			ICE	-	ICE database August 2019, V3.0	EN15804+A1	Self declared	2019	unitedKingdom
Ready-mix concrete, normal strength, generic	C25/30 (3600/4400 PSI) with CEM II/B-V, 30% fly ash content (280 kg/m3; 17.5 lbs/ft3 total cement)			One Click LCA	-	One Click LCA	EN15804+A1, EN15804+A2	Internally verified	2020	LOCAL
Ready-mix concrete, normal strength, generic	C28/35 (4000/5000 PSI) with CEM II/B-V, 30% fly ash content (300 kg/m3; 18.7 lbs/ft3 total cement)			One Click LCA	-	One Click LCA	EN15804+A1, EN15804+A2	Internally verified	2020	LOCAL

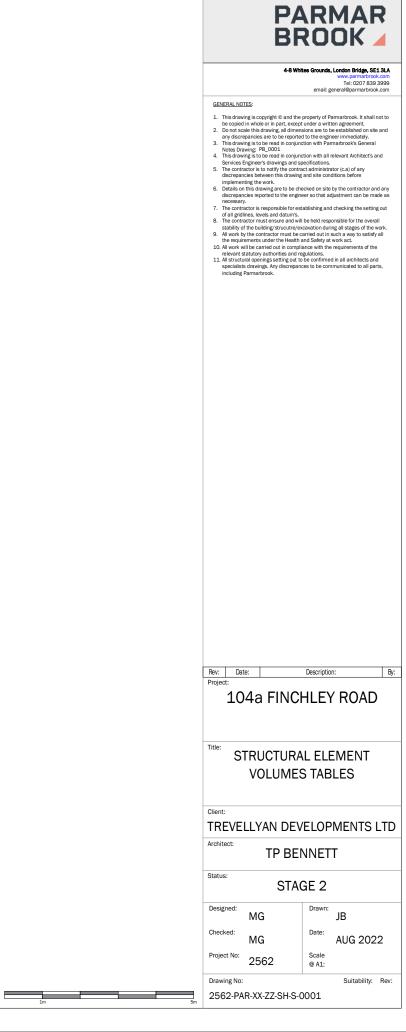
Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Ready-mix concrete, normal- strength, generic	C30/37 (4400/5400 PSI), 10% (typical) recycled binders in cement (300 kg/m3 / 18.72 lbs/ft3)			One Click LCA	-	One Click LCA	EN15804+A1	Internally verified	2018	LOCAL
Ready-mix concrete, reinforcement included in stage A5, for ground slabs	C25/30 XC1/XC2 CEM II/A, 2387.04kg/m3		SNBPE	INIES	INIES_CBÉT20190724_131702, 22908	FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2019	france
Reinforcement steel (rebar), generic	0% recycled content (only virgin materials), A615			One Click LCA	-	One Click LCA	EN15804+A1	Internally verified	2018	LOCAL
Reinforcement steel (rebar), generic	0% recycled content		One Click LCA 2022	One Click LCA	-	One Click LCA	EN15804+A1, EN15804+A2	Internally verified	2022	LOCAL
Reinforcement steel (rebar), generic	90% recycled content, A615			One Click LCA	-	One Click LCA	EN15804+A1	Internally verified	2018	LOCAL
Soil substrates for green roofs			MDEGD	INIES	INIES_DSUB20180223_161051, 7994	MDEGD_FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2018	france
Solar panel photovoltaic system, EU average				One Click LCA	-	One Click LCA	ISO14040	Internally verified	2015	LOCAL
Steel column, UC 356x368x129	S355, for Germany			-		One Click LCA generic construction definitions				germany

Resource name	Technical specification	Product	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country
Steel framing system for dry lining	0.4 -1.5 mm, 7850 kg/m3		Voestalpine Metsec plc	EPD Hub	EPDHUB-0018	EPD Steel Framing System for Dry Lining voestalpine Metsec plc	EN15804+A1, EN15804+A2	Third-party verified (as per ISO 14025)	2022	OCLEPD, unitedKingdom
Structural steel sections and plates	S235-S960		bauforumstahl	IBU	EPD-BFS-20180116-IBG2-EN	EPD Structural Steel: Sections and Plates bauforumstahl e.V.	EN15804+A1	Third-party verified (as per ISO 14025)	2018	europe
Triple glazing windows with wooden frame	42.6 kg/m2, 1.2 W/m2K, biogenic CO2 not subtracted (for CML)	FDES collective utilisable par toute entreprise qui produit en France des fenêtres et portes fenêtres triple vitrage en bois tropicaux.	INSTITUT TECHNOLOGIQUE FCBA	INIES	INIES_CFEN20200421_100619, 16413	FDES	EN15804+A1	Third-party verified (as per ISO 14025)	2020	france
Waterproofing membrane	1.8 mm, 2090 g/m2	BlueProof	Protan	EPD Norge	NEPD-1792-757-EN	EPD Protan BP (BlueProof roofing membrane) Protan AS	EN15804+A1	Internally verified	2019	norway

One Click LCA © copyright One Click LCA LTD | Version: 0.5.2, Database version: 7.6

Backend param handling took: 0.3s, GSP param handling took: 0.1s, Dom ready: 0.5s, Window loaded: 1.1s, Overall: 2.0s.

Parmarbrook - RC Volume Schedule Foundations							
Category	Туре	Material: Name	Material: Volume				
Structural Foundations	1000mm THICK RAFT SLAB	PB-Concrete (New)	481.34841 m ³				
1000mm THICK RAFT SI	_AB: 1		481.34841 m ³				
Structural Foundations: 1		481.34841 m³					
Grand total: 1	481.34841 m ³						


Category	Туре	Material: Name	Material: Volume
Structural Columns	SHS 200x200x5 HANGER ABOVE	PB-Steel (New)	0.13127 m ³
SHS 200x200x5 HANGE	R ABOVE: 7		0.13127 m ³
Structural Columns	UKC356x368x129	PB-Steel (New)	1.19130 m ³
JKC356x368x129: 18			1.19130 m ³
Structural Columns: 25			1.32257 m ³
Grand total: 25			1.32257 m ³

	Parmarbrook - RC Vol		
Category	Туре	Material: Name	Material: Volume
Floors	225 THICK BEAM & BLOCK	PB-Concrete (New)	42.17429 m ³
225 THICK BEAM & E	BLOCK: 1		42.17429 m ³
Floors	250 thk precast 100 thk topping	PB-Concrete (New)	13.34594 m ³
250 thk precast 100 th	ik topping: 1	1	13.34594 m ³
Floors	250mm THICK R.C. SLAB	PB-Concrete (New)	5.26896 m ³
250mm THICK R.C. S	LAB: 3		5.26896 m ³
Floors	300 THICK COMPOSITE DECK	PB-Concrete (New)	194.97975 m ³
300 THICK COMPOS	ITE DECK: 1		194.97975 m ³
Floors: 6			255.76895 m ³
Grand total: 6			255.76895 m ³

	Parmarbrook - Steel We	ight Schedule - Framing	
Category	Туре	Material: Name	Material: Volume
Structural Framing	CHS193.7x6.3	PB-Steel (New)	0.07111 m ³
CHS193.7x6.3: 6			0.07111 m ³
Structural Framing	CHS193.7x8	PB-Steel (New)	0.02404 m ³
CHS193.7x8: 2		(),	0.02404 m ³
Structural Framing	CHS406.4x16	PB-Steel (New)	1.19267 m ³
CHS406.4x16: 12			1.19267 m ³
Structural Framing	UKB254x146x43	PB-Steel (New)	0.76143 m ³
UKB254x146x43: 27			0.76143 m ³
Structural Framing	UKB356x171x45	PB-Steel (New)	1.72337 m ³
UKB356x171x45: 61			1.72337 m ³
Structural Framing	UKB406x178x54	PB-Steel (New)	0.13096 m ³
UKB406x178x54: 6			0.13096 m ³
Structural Framing	UKB610x229x113	PB-Steel (New)	1.56335 m ³
UKB610x229x113: 6			1.56335 m ³
Structural Framing	UKB686x254x125	PB-Steel (New)	0.08725 m ³
UKB686x254x125: 1			0.08725 m ³
Structural Framing	UKB838x292x226	PB-Steel (New)	0.48550 m ³
UKB838x292x226: 2			0.48550 m ³
Structural Framing	UKB914x419x388	PB-Steel (New)	0.58521 m ³
UKB914x419x388: 1			0.58521 m ³
Structural Framing	UKC254x254x73	PB-Steel (New)	0.88265 m ³
UKC254x254x73: 7			0.88265 m ³
Structural Framing: 131			7.50754 m ³
Grand total: 131			7.50754 m ³

Category	Material: Volume						
Category Type Material: Name Material: Volume							
Walls	200mm THICK R.C. WALL	PB-Concrete (New)	19.78281 m³				
200mm THICK R.C. W.	19.78281 m³						
Walls	300mm THICK R.C. WALL	PB-Concrete (New)	90.57374 m ³				
300mm THICK R.C. W.	ALL: 8		90.57374 m ³				
Walls	TUBE WALL		479.46809 m ³				
TUBE WALL: 100			479.46809 m ³				
Walls: 113			589.82464 m ³				
Grand total: 113			589.82464 m ³				

r							
Parmarbrook - RC Volume Schedule Piles							
Category Type Material: Name Material: Volume							
Structural Foundations	PB_FOU_C-Pile-Circula	PB-Concrete Pile	478.57802 m ³				
	r						
PB_FOU_C-Pile-Circular	: 85		478.57802 m ³				
Structural Foundations: 85 478.57802 m ³							
Grand total: 85	Grand total: 85						

04/08/2022 14:35:50