D _F	<u>S</u>						LCULATIO			
Job No	: DFS	5221011	Design Engine	eer: A	R [Date: 15	5 October 20	22		
Job Name: BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Calc Title: Detailed Design – Temporary Propping Scheme to Laterally Restrain Page: 1 of 31 Secant Pile Retaining Wall & Segmental Underpinning Wall <u>Rev. 00</u>										
		BROXWOOD VIEV	V, 29. ST. ED	MUN	ID'S TEI	RRAC	Ξ			
		LOI		7QH						
Re	port on	Detailed Design for Tem	porary Propping	Scher	ne to Lat	erally R	estrain Ø4	450		
	S	ecant Pile Retaining Wa	ll & Segmental L	Jnderp	oinning W	all <u>Rev</u>	<u>. 00</u>			
	Piling	Contractor:		Geoteo Engine		nporary V	Vorks Desig	n		
Arma Piling Limited 40 New Town Road Bishop's Stortford CM23 3SD United KingdomDeep Foundations Specialists Limited Foundations, Basements & Temporal Specialist Consulting Geostructural Engineers 2nd Floor The Porter Building 1 Brunel Way Slough SL1 1FQ						& Temporary	Works			
Tel: 0207 313 4169 Tel: 01753 396498 email: W: www.deep-foundations.co.uk										
Project Structural Engineers:Report Issued to:Richard Tant AssociatesBroxwood View LimitedConsulting Civil & Structural Engineers62 St. Martins Lane54 Lisson StreetLondonLondonWC2N 4JSNW1 5DFLondon										
	Tel: 020 7724 1002 Tel:									
I		info@richardtantassociates.com	m	email:						
Revision	Status	Description			Desi		Chec			
/	For Review	Detailed design for temporary propping & segmental underpinning wall	scheme to laterally restrain	pile wall	Engineer Dr. Azeez Rotimi	Date 15/10/22	Engineer Dr. Abid Adekunte	Date 15/10/22		
1	0	0				0				

D_S				CALCULATIONS
			ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	o Name: BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH	-	Page:	2 of 31

BROXWOOD VIEW, 29. ST. EDMUND'S TERRACE LONDON NW8 7QH

<u>REPORT ON DETAILED DESIGN FOR TEMPORARY PROPPING SCHEME TO LATERALLY RESTRAIN Ø450 SECANT</u> <u>PILE RETAINING WALL & SEGMENTAL UNDERPINNING WALL</u>

1.0 INTRODUCTION

Deep Foundations Specialists (DFS) Limited have been appointed by Broxwood View Limited to carry out the detailed designs for the permanent perimeter secant pile retaining wall, associated temporary works and bearing piles for the proposed residential development on the above site in Northwest London.

The wider project is centred on the redevelopment of the site; this involves the complete demolition of the pre-existing 2 storey Porter's Lodge building on the site and the subsequent construction of a new 4 storey-extension adjacent to the northern wall of the existing Barrie House multi-storey block of residential apartments on the site, with an underlying single level-basement. The new 4 storey-structure would accommodate 9 No. residential apartments.

The approximate National Grid Reference for the approximately square-shaped 0.18 ha-site is 527495E, 183575N, while existing site topography generally slopes downwards from the northern boundary to the south, with an approximate gradient of 1:8. The site's reduced levels vary between (+48.600m OD) – (+42.000m OD). It is proposed to chiefly support the new structure on a 600mm thick reinforced concrete raft at lower ground floor level, while a number of bearing piles are also required as part of the proposed development.

A combination of secant bored pile retaining wall and segmental underpinning systems are required to support the deep excavation for the proposed subterranean components of the building, Maximum retained height is < 4.85m. The secant pile retaining wall and segmental underpinning systems would also function as permanent components of the new basement structure. In addition to lateral earth/groundwater retention, the secant bored pile retaining wall is also designed to support nominal service vertical compressive loading of up to 175 kN/m run and nominal service vertical tension loading of -70 kN/m run of wall.

D ₋ S				(CALCULATIONS				
				ww	w.deep-foundations.co.uk				
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022				
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH								
Calc Title:	Detailed Design – Temporary Propping Sc Secant Pile Retaining Wall & Segmental U	Page:	3 of 31						
The c	The detailed designs for the secant pile retaining wall and segmental underpinning wall had already been								
comp	completed and issued under separate covers by Deep Foundations Specialists (DFS) Limited and Richard Trant								
Assoc	Associates Limited respectively. This particular report chiefly focuses on the detailed design for the								
temp	temporary props that are required to provide temporary lateral restraint to the retaining walls during bulk								

excavation and prior to the completion of the basement's reinforced concrete shell.

The temporary propping systems are required to support service horizontal loading of up to 50 kN/m run of wall, as specified in Table 3 of Deep Foundations Specialists (DFS) Limited's Pile Wall Design Report No. DFS221011 Rev. 00 of 14/10/22.

The design calculations are presented under the following headings:

- INPUT DATA
- OUTLINE OF TEMPORARY WORKS DESIGN
- TYPICAL RETAINING WALL SECTION(S) CONSIDERED IN TEMPORARY WORKS DESIGN
- GROUND CONDITIONS
- TEMPORARY WORKS DESIGN
- PROPOSED STRUCTURAL MOVEMENT MONITORING SCHEME & CONTINGENCY MEASURES
- REFERENCES
- APPENDICES

D	S				CALCULATIONS						
					www.deep-foundations.co.uk						
Job No	o:	DFS221011	Design Engineer:	AR	Date: 15 October 2022						
Job N Calc T			EDMUND'S TERRACE LONDON								
2.0	INPU	ΓΟΑΤΑ									
	Desig	n is based on the following site-specific refe	ence documents:								
	(i)	PARMARBROOK's Document No. 1805 o St. Edmunds Terrace.	f May 2018 – Bas	ement Impa	ct Assessment: Barrie House, 29						
	(ii)	Card Geotechnics Limited's Geotechnica Basement Impact Assessment Revision 2	•	′28408 Rev.	2 of May 2018 – Barrie House						
	(iii)	Soil Consultants Limited's Geotechnical Investigation Report for Proposed Cons NW8 7QH.	•								
	(iv)	PARMARBROOK's Drawing No. 1805-P Ground Floor.	AR-ZZ-LG-DR-S-00	90-S2-P02 -	- General Arrangement Lower						
	(v)	PARMARBROOK's Drawing No. 1805-P/ Floor.	4R-ZZ-00-DR-S-010	00-S2-P02 —	General Arrangement Ground						
	(vi)	PARMARBROOK's Drawing No. 1805-PAR	-ZZ-01-DR-S-0110	-S2-P01 – Ge	eneral Arrangement First Floor.						
	(vii)	PARMARBROOK's Drawing No. 1805-PAR	2-ZZ-02-DR-S-0120	– General A	rrangement Second Floor.						
	(viii)	PARMARBROOK's Drawing No. 1805-PAR	2-ZZ-03-DR-S-0130	– General A	rrangement Third Floor.						
	(ix)	PARMARBROOK's Drawing No. 1805-PAR-ZZ-04-DR-S-0140 – General Arrangement Roof Plan.									
	(x)	Richard Tant Associates' Drawing No. 5295-P01 – Notes.									
	(xi)	Richard Tant Associates' Drawing No. 5295-P02 – Proposed Basement Floor Sheet 1/2.									
	(xii)	i) Richard Tant Associates' Drawing No. 5295-P03 – Proposed Basement Floor Sheet 2/2.									
	(xiii)	Richard Tant Associates' Drawing No. 52	95-P04 – Proposed	d Ground Flo	or Sheet 1/2.						
	(xiv)	v) Richard Tant Associates' Drawing No. 5295-P05 – Proposed Ground Floor Sheet 2/2.									

<u>D_FS</u>					CALCULATIONS				
Job No:	DFS221011 Design Enginee	er:	AR	Date:	15 October 2022				
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Propping Scheme to Latera Secant Pile Retaining Wall & Segmental Underpinning W	-		Page:	5 of 31				
(xv)	Richard Tant Associates' Drawing No. 5295-P10 – Section	n 1	1.						
(xvi)	Richard Tant Associates' Drawing No. 5295-P11 – Section	n 2	2-2.						
(xvii)	Richard Tant Associates' Drawing No. 5295-P12 – Sectio	n 3	-3.						
(xviii)	Richard Tant Associates' Drawing No. 5295-P13 – Section	Richard Tant Associates' Drawing No. 5295-P13 – Section 4-4.							
(xix)	Richard Tant Associates' Drawing No. 5295-P14 – Section	Richard Tant Associates' Drawing No. 5295-P14 – Sections 5-5 & 6-6.							
(xx)	Richard Tant Associates' Drawing No. 5295-P15 – Section	ns	7-7 & 8-8.						
(xxi)	Richard Tant Associates' Drawing No. 5295-P16 – Section	ns	9-9, 10-10	& 11-11.					
(xxii)	Richard Tant Associates' Drawing No. 5295-P17 – Sectio	n 1	.2-12.						
(xxiii)	Richard Tant Associates' Drawing No. 5295-P18 – Sectio	n 1	.3-13.						
(xxiv)	Richard Tant Associates' Drawing No. 5295-P19 – Section 14-14.								
(xxv)	Richard Tant Associates' Drawing No. 5295-P20 – Sectio	n 1	.5-15.						
(xxvi)	Richard Tant Associates' Drawing No. 5295-PSM01 – Su	gge	ested Meth	od of Wo	rks 1.				
(xxvii)	Richard Tant Associates' Drawing No. 5295-PSM02 – Su	gg∈	ested Meth	od of Wo	rks 2.				

<u>D_FS</u>					CALCULATIONS
Job No:	DFS221011	Design Engineer: Al	R	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Propping Secant Pile Retaining Wall & Segmenta		Page:	6 of 31	

3.0 OUTLINE OF TEMPORARY WORKS DESIGN

- The detailed design for the temporary propping scheme has been carried out in accordance with the recommendations of the BS5975 (2019) Code of Practice for Temporary Works Procedures, ICE Specification for Piling & Embedded Retaining Walls (2016), BS8002 (1994), BS5950-1 (2002), BS EN 1997-1:2004 Eurocode 7, BS EN 1992-1-1: 2004 Eurocode 2, PD6687:2006 and the CIRIA Report No. C760 (2017).
- Proposed development comprises of a 4 storey-block of residential apartments, with an underlying basement, as an extension adjacent to the northern wall of the existing Barrie House multi-storey block of residential flats.
- The proposed earth/groundwater retention system for the deep excavation for the new basement on the site shall comprise of a combination of segmental underpinning retaining wall adjacent to the northern wall of the existing Barrie House and Ø450 perimeter secant pile retaining wall on all other sections of the proposed basement; 450mm dia. interlocking male and female piles, with male piles spaced @ 600mm c/c intervals.
- For serviceability reasons, whilst considering the existence of an underground Thames Water trunk outside the northern boundary of the proposed development, it is required to restrain all sections of the pile wall and segmental underpinning wall with a single row of temporary structural steel props in the temporary condition. The temporary props shall be fixed to the reinforced concrete capping beam on the pile wall and structural steel waling beam on the face of the segmental underpinning wall around crest level, such that there would be sufficient clearance above the props to allow for the safe construction of the reinforced concrete ground floor slab prior to the removal of the temporary props.
- In essence, all temporary props shall remain in-place until both the basement slab and the ground floor slab achieve sufficient/design structural strength.
- <u>The above proposal would ensure that the pile wall lateral deflection at any section of the retaining</u> walls and associated ground movements are restricted to tolerable levels during bulk excavation for new basement and therefore, it is expected that the serviceability of all underground assets (including the existing Thames Water trunk) and above-ground structures within the vicinity of the

<u>D_FS</u>					CALCULATIONS
	1			VV VV	W.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary P Secant Pile Retaining Wall & Se			Page:	7 of 31
	propped retaining walls will no	ot be compromised during a	and after the	e bulk e	xcavation for the newly
	proposed basement.				
•	Maximum wall retained height	is < 4.85m.			
•	The temporary props are gene	rally subject to service horiz	ontal loadin	g of up	to 50 kN/m run of wall;
	see table 3 of Deep Foundatior	ns Specialists Limited's pile w	vall design re	eport No	o. DFS221011 Rev. 00 of
	14/10/22.				
•	10 kPa nominal traffic & servic	es surcharge, as well as 50 k	kPa estimate	ed poter	ntial surcharge from fire
	engines/appliances have been	<u>n accounted for in the an</u>	alysis of th	e retai	ning wall sections and
	associated temporary propping	<u>s system design.</u>			
•	The clay layers on the site are	modelled as undrained ma	aterials, with	n total s	tress parameters in the
	temporary condition. All other	soil layers are modelled with	effective str	ress para	ameters.
•	Anticipated perimeter pile wa	ll lateral deflection in both	temporary	and per	manent conditions is <
	5.0mm.				

<u>D_FS</u>			M	CALCULATIONS
Job No:	DFS221011	Design Engineer: AR	Date	
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Design – Temporary Proppi Secant Pile Retaining Wall & Segmer	Page	: 8 of 31	

4.0 TYPICAL RETAINING WALL SECTION(S) CONSIDERED IN TEMPORARY WORKS DESIGN

The typical retaining wall section considered in temporary works design is described below. A set of construction drawings, which illustrate the layout of the retaining wall-stabilising temporary works, typical sections, connection details and associated construction sequencing are attached to the appendices of this report.

TYPICAL RETAINING WALL SECTION (PROPPED): Piling Platform Level \approx Existing Ground Level in the Area of Proposed Works = +45.500. Basement Formation Level \approx -+40.650. Maximum Wall Retained Height < 4.85m. Wall Section is Designed to be Temporarily Restrained with a Row of Structural Steel Props at Capping Beam Level/Wall Crest Level in the Temporary Condition. In the Permanent Condition, the Retaining Wall shall be Restrained by the Lower Ground Floor Slab and the Ground Floor Slab. 10 kPa Nominal Traffic & Services Surcharge, as well as 50 kPa potential surcharge from fire engines/appliances are Accounted for in Wall Analysis & Design.

Proposed Sequence of Construction:

- 1. Install temporary guide wall prior to the commencement of secant pile wall construction.
- 2. Concurrently install Ø450 interlocking male and female piles, with male piles spaced @ 600mm c/c, from piling platform level (+45.500) to depths specified by DFS, to form secant pile wall, as we well as the Ø350 bearing piles required for the proposed underpinning works underneath the existing northern wall of Barrie House; see DFS' pile wall construction schedule and bearing pile construction schedule for more detailed information.
- 3. Break down piles to 75mm above proposed soffit level of RC capping beam.
- 4. Construct RC capping beam on piles.
- Carry out segmental underpinning of the existing pad footings and strip footings underneath the northern wall of the existing Barrie House building, as detailed by the Project Structural Engineer (see Richard Tant Associates' Drawing No's 5295-P02, 5295-P04, 5295-P13, 5295-P15, 5295-P17, 5295-P18, 5295-P19, 5295-PSM01 & 5295-PSM02).
- 6. Install temporary structural steel waling beam along the face of segmental underpinning retaining wall around crest level.

Job No: DFS221011 Design Engineer: AR Date: 15 October 2022 Job Name: BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Feasibility Page: 9 of 31 Calc Title: Detailed Design – Temporary Propping Scheme to Laterally Restrain Secant Pile Retaining Wall & Segmental Underpinning Wall Rev. 00 Page: 9 of 31 7. Install temporary props at capping beam level/waling beam level of pile wall and underpinning wall. 8. Carry out bulk excavation down to basement formation level; 4.85m maximum dig. 9. Place blinding of 50mm minimum thickness at formation level. 10. Install/fix water-proof membrane on placed blinding, as well as face of pile retaining wall/segmental underpinning wall and around capping beam. 11. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. 12. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. 13. Construct ground floor slab and connect same to capping beam. 14. Remove temporary props and structural steel walling beam. 15. Construct superstructure <th>D_FS</th> <th></th> <th>CULATIONS ep-foundations.co.uk</th>	D _F S		CULATIONS ep-foundations.co.uk				
 EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Propping Scheme to Laterally Restrain Secant Pile Retaining Wall & Segmental Underpinning Wall <u>Rev. 00</u> 7. Install temporary props at capping beam level/waling beam level of pile wall and underpinning wall. 8. Carry out bulk excavation down to basement formation level; 4.85m maximum dig. 9. Place blinding of 50mm minimum thickness at formation level. 10. Install/fix water-proof membrane on placed blinding, as well as face of pile retaining wall/segmental underpinning wall and around capping beam. 11. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. 12. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. 13. Construct ground floor slab and connect same to capping beam. 14. Remove temporary props and structural steel walling beam. 	Job No:	DFS221011 Design Engineer: AR Date: 15 C	October 2022				
 Carry out bulk excavation down to basement formation level; 4.85m maximum dig. Place blinding of 50mm minimum thickness at formation level. Install/fix water-proof membrane on placed blinding, as well as face of pile retaining wall/segmental underpinning wall and around capping beam. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. Construct ground floor slab and connect same to capping beam. Remove temporary props and structural steel walling beam. 		EDMUND'S TERRACE LONDON NW8 7QH e: Detailed Design – Temporary Propping Scheme to Laterally Restrain Page: 9 of	f 31				
 Place blinding of 50mm minimum thickness at formation level. Install/fix water-proof membrane on placed blinding, as well as face of pile retaining wall/segmental underpinning wall and around capping beam. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. Construct ground floor slab and connect same to capping beam. Remove temporary props and structural steel walling beam. 	7.	Install temporary props at capping beam level/waling beam level of pile wall and underp	inning wall.				
 Install/fix water-proof membrane on placed blinding, as well as face of pile retaining wall/segmental underpinning wall and around capping beam. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. Construct ground floor slab and connect same to capping beam. Remove temporary props and structural steel walling beam. 	8.	Carry out bulk excavation down to basement formation level; 4.85m maximum dig.					
 underpinning wall and around capping beam. 11. Construct 600mm thick reinforced concrete raft/lower ground floor slab with water-proof concrete and dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. 12. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. 13. Construct ground floor slab and connect same to capping beam. 14. Remove temporary props and structural steel walling beam. 	9.	Place blinding of 50mm minimum thickness at formation level.					
 dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for cavity drain in front of retaining walls. 12. Construct RC liner wall of 250mm minimum thickness with water-proof concrete, in front of pile retaining wall, from basement level, up to capping beam soffit level and connect same to capping beam. 13. Construct ground floor slab and connect same to capping beam. 14. Remove temporary props and structural steel walling beam. 			ll/segmental				
wall, from basement level, up to capping beam soffit level and connect same to capping beam. 13. Construct ground floor slab and connect same to capping beam. 14. Remove temporary props and structural steel walling beam.		dowel into pile retaining wall/segmental underpinning wall, whilst making allowance for					
14. Remove temporary props and structural steel walling beam.							
	13. Construct ground floor slab and connect same to capping beam.						
15 Construct superstructure	14.	4. Remove temporary props and structural steel walling beam.					
13. Construct superstructure.	15.	5. Construct superstructure.					

<u>D_FS</u>			w	CALCULATIONS ww.deep-foundations.co.uk
Job No:	DFS221011 De	esign Engineer: AR	Date	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Design – Temporary Propping Sche Secant Pile Retaining Wall & Segmental Unit	•	Page	: 10 of 31

5.0 GROUND CONDITIONS

Site stratigraphy at Broxwood View, 29 St. Edmund's Terrace London NW8 7QH may be generalised as shown in table 1 below:

DEPTH (m bgl)	DESCRIPTION	Representative N _{spt} Value
0.0 – 2.5	Made Ground	-
Below 2.5m bgl	Soft to Firm to Stiff to Very Stiff London Clay	6 - 16

* - Static groundwater level was observed to be approx. 0.8m bgl during site-specific monitoring.

Table 1 – Generalised Site Stratigraphy

Soil parameters used in design are presented in table 2 overleaf. In table 2;

 ϕ' values for the cohesionless layers/made ground have been deduced from N_{spt} values (after Peck, Hanson & Thorburn (1974)).

 ϕ' values for the cohesive layers are deduced from plasticity indices (after CIRIA Report No. 104, 1984 & CIRIA Report No. C580, 2003).

E' values for cohesionless materials/made ground are estimated with the correlation: E' = $2000 - 3000 * N_{spt}$ in kPa (after CIRIA Report No. 143, 1995 & CIRIA Report No. C580, 2003).

E' values for cohesive layers are deduced from the expression E' = 0.8 * E_u , where E_u = 800 * C_u . (after Borin, 2012).

D _F S www.deep-foundations.co.u									
Job No:	DFS2210	11			Design Engi	ineer: AR	Date: 15	October 2022	
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH								
Calc Title:									
SOIL LAY	YER	N _{spt}	γ (kN/m³)	φ′ (°)	C' (kPa)	C _u (kPa)	Eu	E' (kPa)	
Made Ground		-	18.0	28.0	0.0	-	-	15000	
Soft to Firm to Very Stiff Lond		6 - 16	19.0	23.0	5.0	30 + 12z	24000 + 9600z	19200 + 7680z	

Table 2 – Input soil parameters

<u>D_FS</u>				CALCULATIONS
Job No:	DFS221011	Design Engineer: AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Design – Temporary Prop Secant Pile Retaining Wall & Segme		Page:	12 of 31

6.0 TEMPORARY WORKS DESIGN

(i) <u>Structural Design</u>

It is proposed to temporarily restrain the proposed secant bored pile retaining wall and segmental underpinning wall for the site at Broxwood View, 29 St. Edmund's Terrace London NW8 7QH with a single row of structural steel struts at capping beam level/crest level, in the temporary condition. The temporary struts shall remain in-place until both the basement slab and ground floor slab achieve sufficient/design structural strength.

The structural steel struts shall be fixed to the reinforced concrete capping beam on the pile wall and a structural steel waling beam around the crest level of the segmental underpinning wall, before bulk excavation for the proposed basement progresses below 1m depth. Copies of Deep Foundations Specialists (DFS) Limited's temporary works drawings are attached to the appendices of this report; these provide detailed technical information on perimeter retaining wall layout, struts, capping beam, waling beam, as well as all associated connection details.

Based on retaining wall serviceability analysis results, estimated maximum service prop load (perpendicular to wall line) = 50 kN/m run of wall (see CADS PWS 6.09 computer output files attached to the appendices of this report). In addition, based on the CADS PWS 6.09 computer output files, anticipated maximum wall lateral deflection < 5.0mm.

<u>Prop Type A – RMD Kwikform Tubeshor 320 Hydraulic Corner Braces (45° Inclination Angle to Wall</u> <u>Centrelines)</u>

Estimated service prop load at right angle to wall < 50 kN/m (see CADS PWS 6.09 computer output files attached to the appendices of this report). However, 50 kN/m service prop load is conservatively adopted in the current structural analysis & design calculations for the propping system.

The behaviour of these corner braces and capping beam under 50 kN/m service loading has been analysed with GoBeam Version 2015.1 structural modelling programme. Copies of the relevant computer output files are attached to the appendices of this report.

<u>D_FS</u>			CALCULATIONS www.deep-foundations.co.uk			
Job No:	DFS221011	Design Engineer: AR	Date: 15 October 2022			
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON					
Calc Title:	NW8 7QH Detailed Design – Temporary Propping Secant Pile Retaining Wall & Segmenta		Page: 13 of 31			
	The main highlights of the analysis are	e outlined below:				
	Maximum Service Bending Moment c	on Capping Beam/Waling Beam :	= 181.0 kNm			
	Maximum Service Shear Force on Cap	pping Beam/Waling Beam = 167.	0 KN			
	Maximum Capping Beam/Waling Bea	m Deflection = 0.5mm				
	Maximum Corner Brace Reaction = 30	06.0 KN (conservatively adopt 35	50 KN for design purpose)			
	Maximum effective length I of corner braces < 6.0m (conservatively adopt 8.0m for design purpose)					
	As corner braces are inclined at 45° a	angle to pile wall centreline, ma	ximum service axial load P_{s} in any			
	corner brace = 350 / (sin 45°) = 495 K	N/Corner Brace.				
	\therefore P _s = 495 KN/Corner Brace					
	Provide RMD Kwikform Tubeshor	320 Hydraulic Struts as Corner	Braces			
	Allowable Compressive Resistance I	$P_c = 500 \text{ KN} > 495 \text{ KN}$ (O.K.)	; see copies of manufacturer's			
	datasheets attached to the appendic	es of this report.				
	The above specification duly accoun	ts for potential load eccentricit	ties and accidental lateral impact			
	loading of up to 10 KN on the struts.					
	Load Eccentricity Check for Corner Br	aces:				
	N/A					

D ₋ S	CALCULATIONS	5
	www.deep-foundations.co	o.uk
Job No:	DFS221011 Design Engineer: AR Date: 15 October 2022	
Job Name:	EDMUND'S TERRACE LONDON	
Calc Title:	NW8 7QH Detailed Design – Temporary Propping Scheme to Laterally Restrain Page: 14 of 31 Secant Pile Retaining Wall & Segmental Underpinning Wall <u>Rev. 00</u>	
	<u> Prop Type B – RMD Kwikform Tubeshor 320 Hydraulic Flying Struts</u>	
	Estimated service prop load at right angle to wall < 50 kN/m (see CADS PWS 6.09 computer out	put
	files attached to the appendices of this report). However, 50 kN/m service prop load is conservative	vely
	adopted in the current structural analysis & design calculations for the propping system.	
	The behaviour of these flying struts and capping beam under 50 kN/m service loading has be	een
	analysed with GoBeam Version 2015.1 structural modelling programme. Copies of the relev	ant
	computer output files are attached to the appendices of this report.	
	The main highlights of the analysis are outlined below:	
	Maximum Service Bending Moment on Capping Beam/Waling Beam = 181.0 kNm	
	Maximum Service Shear Force on Capping Beam/Waling Beam = 167.0 KN	
	Maximum Capping Beam/Waling Beam Deflection = 0.5mm	
	Maximum Flying Strut Reaction = 329.0 KN (conservatively adopt 400 KN for design purpose)	
	Maximum effective length I of flying struts < 11m (adopt 11m for design purpose)	
	Individual Service Prop Load P_s = 400 KN/flying strut (as already confirmed above)	
	: Provide RMD Kwikform Tubeshor 320 Hydraulic Struts as Flying Struts.	
	Allowable Compressive Resistance P_c = 410 KN > 400 KN (O.K.).; see copies of manufacture	er's
	datasheets attached to the appendices of this report.	
	Allowance for Accidental Impact Loading on Struts during Construction:	
	Accidental loading of up to 10 KN is accounted for in manufacturer's datasheets for the RMD Kwikfo	orm
	Tubeshor 320 hydraulic struts. Copies are attached to the appendices of this report.	

D ₂ S		CALCULATIONS
		www.deep-foundations.co.uk
Job No:	DFS221011 Design Engineer: AR	Date: 15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH	
Calc Title:	Detailed Design – Temporary Propping Scheme to Laterally Restrain Secant Pile Retaining Wall & Segmental Underpinning Wall <u>Rev. 00</u>	Page: 15 of 31
	Capping Beam Design (7m Maximum Effective Span under 50 kN/m S Temporary Condition):	ervice Horizontal Loading in the
	To be completed and issued by the Project Structural Engineer under s	eparate cover.
	Structural Steel Waling Beam Design (7m Maximum Effective Horizontal Loading in the Temporary Condition):	<u>Span under 50 kN/m Service</u>
	Maximum Service Bending Moment M₅ on Waling Beam/Capping Bear	n = 181.0 kNm (shown earlier).
	∴ Provide RMD Kwikform GeoBrace 254	
	Allowable Service Bending Moment M _{allowable} = 404 kNm > 181.	0 kNm (O.K.).; see copies of
	manufacturer's datasheets attached to the appendices of this report.	
	End Plates for Struts:	
	Provide end plates to manufacturer's standard details; 320mm x 2	90mm x 20mm thk. MSX10052
	MEGASHOR Push Pull Prop Pivot or 490mm x 300mm x 20mm thk. G	BX25404 GeoBrace 254 Inclined
	Prop Connector. See manufacturer's datasheets attached to the apper	ndices of this report.
	Bolt Connections:	
	(i) <u>Shear Capacity:</u>	
	Shear loading from flying struts would be negligible.	
	Ultimate horizontal shear from corner braces on end plates = P _u cos	θ , where P _u is the ultimate axial
	load in strut and $\boldsymbol{\theta}$ is the angle of inclination of strut to wall line.	
	∴ Ultimate horizontal shear on end plate = (495 * 1.6) * cos 45° = 560	KN
	Additional vertical shear on bolts due to self-weight of struts (70 kg/ KN	m, 11m worst-case length) < 10

<u>D_FS</u>				CALCULATIONS www.deep-foundations.co.uk
Job No:	DFS221011 De	esign Engineer:	AR	Date: 15 October 2022
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Propping Scho Secant Pile Retaining Wall & Segmental Un			Page: 16 of 31
	∴ Resultant shear load on a bearing plate	$=\sqrt{560^2+10^2}$	KN	
	Assuming 8 No. M20 DEWALT SC-PRO Carl	bon Steel Threac	led Rod (stre	ength class 8.8) in S275 ply;
	Ultimate shear capacity of 1 No. rod = 98 k	ΚN		
	Ultimate shear capacity of 8 No. bolts = 98	8 * 8 = 784 KN >	570 KN <mark>(O.K.</mark>).
	(ii) <u>Bearing Capacity:</u>			
	Ultimate compressive loading on end plate	e 400 KN * 1.6 =	640 KN	
	Assuming 20mm minimum ply/plate thick	ness, for a M20	DEWALT SC-	PRO Carbon Steel Threaded Rod
	(strength class 8.8), ultimate bearing capac	city = 196 KN/bc	olt	
	Estimated ultimate bearing load on each b	oolt = 640/8 = 80	KN < 196 KN	I (О.К.).
	∴ Provide 8 No's M20 DEWALT SC-PRO	Carbon Steel	Threaded Ar	nchor Rods (strength class 8.8)
	between End Plates and RC Capping Bea	am at Every Str	ut Position.	Provide Same between Waling
	Beam and Underpinning Wall at Every Str	ruct Position.		
	Every M20 DEWALT SC-PRO Carbon Steel	Threaded Anch	or Rod shall	be Vinylester-Fixed.
	170mm Minimum Anchor Bolt Embedme	<u>nt</u>		
	Provide 8 No's M20 Grade 4.6 Non-Prelo	aded Ordinary	Bolts betwee	en End Plates and Steel Waling
	Beams.			

<u>D_FS</u>					CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Propping Secant Pile Retaining Wall & Segmental U			Page:	17 of 31

7.0 PROPOSED STRUCTURAL MOVEMENT MONITORING SCHEME & CONTIGENCY MEASURES

In order to maintain an adequate level of safety and serviceability during the bulk excavation phase, it is imperative that the movement of the retaining walls, as well as the external walls of neighbouring structures be regularly monitored, while a suitable contingency scheme needs to be put in-place, in anticipation of measured wall deflections potentially exceeding the maximum threshold. The instrumentation and monitoring process shall generally follow the recommendations of the Project Structural Engineer; see Richard Trant Associates' drawing No. 5295-PM01 for detailed information.

Essentially, the structural movement monitoring scheme shall involve the following procedure:

- Carry out initial monitoring works 2 months before commencement of site operations in order to establish baseline readings and pre-construction movements, whilst following the reading frequencies stipulated in Richard Trant Associates' drawing No. 5295-PM01.
- At piling/groundworks stage, monitoring data recording shall be done on a weekly basis, until 1 month after ground floor slab construction, as specified in Richard Trant Associates' drawing No. 5295-PM01. However, during underpinning works, readings shall be taken on a daily basis until 1 week after the curing of the final dry pack.
- After the completion of ground floor construction, reading frequency may be limited to 1 No. reading per calendar month until structural works are completed on the site.

The monitoring process shall be based on a 'traffic light' system with green, amber and red response zones. Descriptions of the response zones are given below:

Green – continue site operations and monitoring as normal

<u>Amber</u> – continue site operations with caution, whilst preparing to implement contingency measures/action plan, as detailed in Richard Trant Associates' drawing No. 5295-PM01. Increase monitoring frequency.

<u>Red</u> – stop site operations, do everything possible to slow down deflection and implement contingency/red level action plan, as detailed in Richard Trant Associates' drawing No. 5295-PM01. Install additional temporary works and increase monitoring frequency.

0		4mm			8mm
 	GREEN	Amber Trigger	AN	1BER	Red Trigger RED
An illus	stration of the proposed tri	gger levels is presente	d in figure	1 below:	
•	Remove 1 st level of temp	orary struts at capping	beam leve	el.	
•	Remove 2 nd level of temp	oorary struts and walin	g beam at	2.5m depth	
•	Construct ground floor sl	ab			
•	Construct basement slab				
•	Complete bulk excavatio	n down to basement fo	ormation le	evel (4.85m	depth).
•	Install 2 nd level of props a	it 2.5m depth, with ass	sociated sto	eel waling b	eams.
•	Resume bulk excavation	down to 3.0m depth.			
	replaced accordingly before	ore bulk excavation res	sumes.		
	_				cted props shall be removed a
					other serviceability issues or
	At this stage, the followin				visaged: to confirm that there are no
	with project team memb	ers.			
•			intil stabili	sation/reme	edial works proposals are ag
	movement.				
•			n a time th	nat monitor	ing results show no further
	notification of project tea		-p 0	,,,	
•	Immediate back-filling of	the excavation area	up to grou	nd level/ca	pping beam level and immed
conting	gency procedure shall be fo	llowed:			
In the	unlikely event of measure	ed deflections reachir	ig the aml	per zone/re	ed zone threshold, the follow
alc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONI NW8 7QH Detailed Design – Tempor Secant Pile Retaining Wall	ary Propping Scheme t			Page: 18 of 31
ob No:	DFS221011	Design	Engineer:	AR	Date: 15 October 2022
—F—					www.deep-foundations.c

D ₋ S					CALCULATIONS
				W	ww.deep-foundations.co.uk
Job No:	DFS221011 D	esign Engineer:	AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Propping Sch Secant Pile Retaining Wall & Segmental Un	-		Page:	19 of 31

REFERENCES

Adekunte, Sheppard & Rotimi (2020), "Experience-Based Value Engineering of Foundations & Deep Excavation Support Systems". *Proceedings of the Deep Foundations Institute's 46th Annual International Conference on Deep Foundations*, Las Vegas, Nevada USA, October 13-16, 2021.

Adekunte, Greentree, Brunger & Munteanu (2018), "Non-Conventional Practice: Recent Case Histories of the use of Vertical Buttress Piles in Deep Excavation Support". *Paper Verbally Presented and Published in the Proceedings of the Deep Foundations Institute's* 43rd Annual International Conference on Deep Foundations, Anaheim California, USA, October 24-27, 2018.

Adekunte, Hilton & Greentree (2016), "An Alternative Approach for Estimating the Vertical Capacity of L-Shaped Segmental Underpinning Systems in Urban Basement Construction". *Proceedings of the Deep Foundations Institute's International Conference on Deep Foundations, Seepage Control and Remediation*, New York, USA, October 12-15, 2016.

Adekunte (2015), "Collaborative Development of Sustainable & Economical Solutions for Underground Structures". *Proceedings of the Deep Foundations Institute's 40th Annual International Conference on Deep Foundations*, Oakland California, USA, October 12-15, 2015.

Adekunte (2014), "Dealing with Complexities Associated with the Application of Bored Pile Retaining Walls in Urban Developments". *Proceedings of the Deep Foundations Institute's 39th Annual Conference on Deep Foundations*, Atlanta Georgia, USA, October 21-24, 2014.

Adekunte (2014), "An Investigation into the Vertical Axial Capacities & Groundwater Cut-off Capabilities of Secant Pile Walls". *Proceedings of the International Society for Soil Mechanics & Geotechnical Engineering (ISSMGE)'s TC207 International Conference on Soil-Structure Interaction – Underground Structures & Retaining Walls*, St. Petersburg, Russia, June 16-18, 2014.

Borin (2012), "The use of WALLAP in the context of Eurocode 7 (EN 1997-1, Eurocode 7: Geotechnical Design)". Geosolve, UK.

British Standards Institution (1986), "BS 8004 - Code of Practice for Foundations".

British Standards Institution (1997), "BS 8110 - Code of Practice for the Structural Use of Concrete".

British Standards Institution (1999), "BS 5930:1999+A2:2010 - Code of Practice for Site Investigations".

D _r S				CALCULATIONS
				www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date: 15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON			
Calc Title:	NW8 7QH Detailed Design – Temporary Prop	ning Schamp to Laterally	Postrain	Page: 20 of 31
Cale Hue.	Secant Pile Retaining Wall & Segm			Page. 2001 51
	n Standards Institution (2004), "BS 2013)".	EN 1997-1:2004 Euroco	de 7 – Geo	otechnical Design. General Rules
	n Standards Institution (2004), "E ures – General Rules and Rules for E		.:2014 Euro	ocode 2 – Design of Concrete
British 1992-	n Standards Institution (2006), "PD 6 1".	5687: 2006 – Background	Paper to th	he UK National Annexes to BS EN
Broms	s (1964a), "Lateral Resistance of Pi	les in Cohesionless Soils'	". Journal c	of Soil Mechanics & Foundations
Divisio	on. Proceedings of the American Soc	ciety of Civil Engineers, Vo	ol. 90, pp. 12	23-156.
	s (1964b), "Lateral Resistance of on. Proceedings of the American Soc		-	
	(1970), "Estimation of the Ultima eastern Asian Conference on Soil En		arried to F	Failure". Proceedings of the 2 nd
	1971), "Discussion, "Pile Tests. Arka , Vol. 97, SM6, pp. 930-932.	nsas River Project". <i>Journ</i>	al of the Ar	merican Society of Civil Engineers,
CIRIA	(1984), "Report No. 104; Design of F	Retaining Walls Embedded	d in Stiff Cla	ау".
CIRIA	(1999), "Report No. 181; Piled Foun	dations in Weak Rock".		
CIRIA	(2003), "Report No. C580; Embedde	ed Retaining Walls - Guida	nce for Eco	onomic Design".
CIRIA	(2017), "Report No. C760; Guidance	on Embedded Retaining	Wall Desigr	n".
CIRIA	(1995), "Report No. 143 – The Stand	dard Penetration Test (SP ⁻	T): Methods	s and Use".
Daviss	son (1975), "Pile Load Capacity". De	esign, Construction and P	erformance	e of Deep Foundations, American
Societ	y of Civil Engineers, University of Ca	ilifornia, Berkeley, Califori	nia, pp. 1-49	9.
Feder	ation of Piling Specialists UK (2006),	"Handbook on Pile Load	Testing".	

D _r S					CALCULATIONS
					www.deep-foundations.co.uk
Job No:	DFS221011	Desig	gn Engineer:	AR	Date: 15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LOND NW8 7QH	ON			
Calc Title:	Detailed Design – Tempora Secant Pile Retaining Wall &		•		Page: 21 of 31
Fellen	ius (1980), "The Analysis of	Results from Rout	tine Pile Loa	d Tests". <i>Gr</i>	round Engineering, London, Vol.
13(6)	рр 19-31.				
Gardr	er (1975), "Considerations ir	ו the Design of Drill	led Piers". De	sign, Constr	ruction and Performance of Deep
Found	lations, San Francisco, pp. 1-3	32.			
		.			
					est to Strength Determination of
		rrelation Chart". Pr	oceedings of	the 21 st U.S	Symposium on Rock Mechanics.
Rolla,	MO, 1980.				
Institu	ution of Civil Engineers (2016), "ICE Specification	۱ for Piling an	d Embedded	Retaining Walls". 2 nd Ed.
	ational Society for Rock Me ational Journal of Rock Mech				etermining Point Load Strength".
Kondr	ner (1963), "Hyperbolic Stres	s-Strain Response c	of Cohesive S	oils". <i>Journa</i>	ıl of the American Society of Civil
Engin	eers, SMFD, Vol. 89, SM1, pp	. 115-143.			
Kulha	wy (1984), "Limiting Tip and	J Side Resistance".	Analysis and	l Design of I	Pile Foundations, ASCE National
Conve	ention, American Society of C	ivil Engineers, New	York, pp. 80-	98.	
	rds & Lovell (1978), "Interp viour of Deep Foundations, Sp		-		ven Piles". <i>ASTM Symposium on</i> 415.
	n, Budden & Norman (2016) Institution of Civil Engineers,				ors in London Clay". <i>Proceedings</i> ssue G2.
Mokw	va & Duncan (2003), "Rotatio	onal Restraint of Pi	ile Caps durir	ng Lateral Lo	oading". Journal of Geotechnical
and G	eoenvironmental Engineering	g, American Society	/ of Civil Engir	ieers, Septei	mber 2003.
O' Ro	urke (1988), "Rock Index P	Properties for Geoe	engineering [Design in U	nderground Development. SME
Prepr	int 88-48, 1988, 5 pp.				
Peck,	Hanson & Thorburn (1974), '	'Foundation Engine	ering". 2 nd Ed	Ι.	

<u>D_FS</u>					CALCULATIONS
Job No:	DFS221011 D	esign Engineer:	AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Propping Sch Secant Pile Retaining Wall & Segmental Un	•		Page:	22 of 31

Rowe & Armitage (1987a), "Theoretical Solutions for Axial Deformation of Drilled Shafts in Rock". *Canadian Geotechnical Journal.* Vol. 24(1).

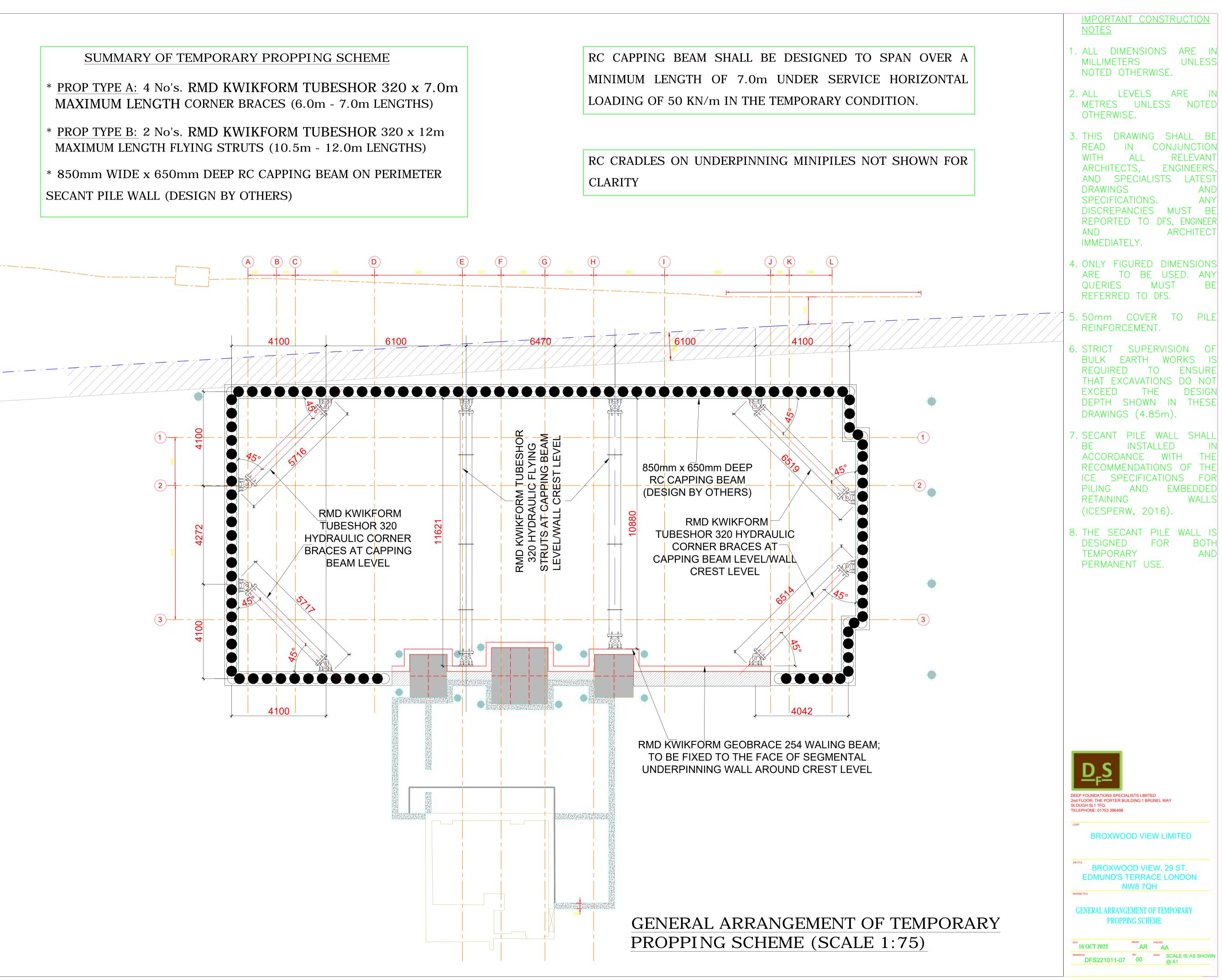
Rowe & Armitage (1987b), "A Design Method for Drilled Piers in Soft Rock". *Canadian Geotechnical Journal*. Vol. 24(1).

Taylor, Rose & Gorasia (2013), "Pile and pile group capacity; some findings from centrifuge tests". *International Journal of Geo-Engineering*, 2013, 5(2), pp. 5-15.

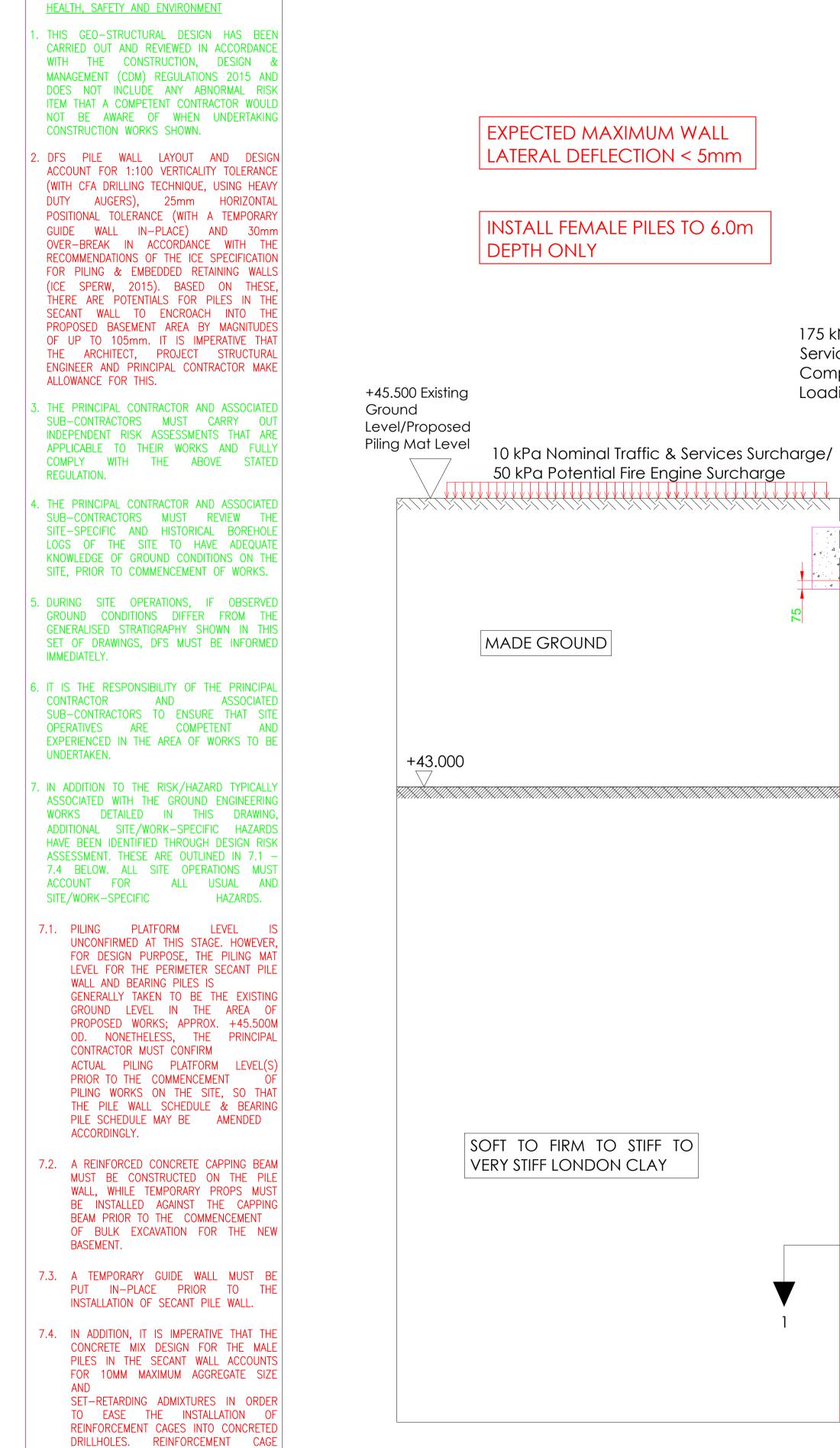
Tomlinson (2001), "Foundation Design & Construction". 7th Ed. Pearson Education Limited, 2001.

D_S				CALCULATIONS
			w	ww.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date	: 15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Design – Temporary Propping Secant Pile Retaining Wall & Segment		Page	: 23 of 31

APPENDICES


<u>D_FS</u>					CALCULATIONS w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Propping S Secant Pile Retaining Wall & Segmental			Page:	24 of 31
DFS'	Temporary Prop Layout, 7	Typical Section	ons & Co	onne	ction Details

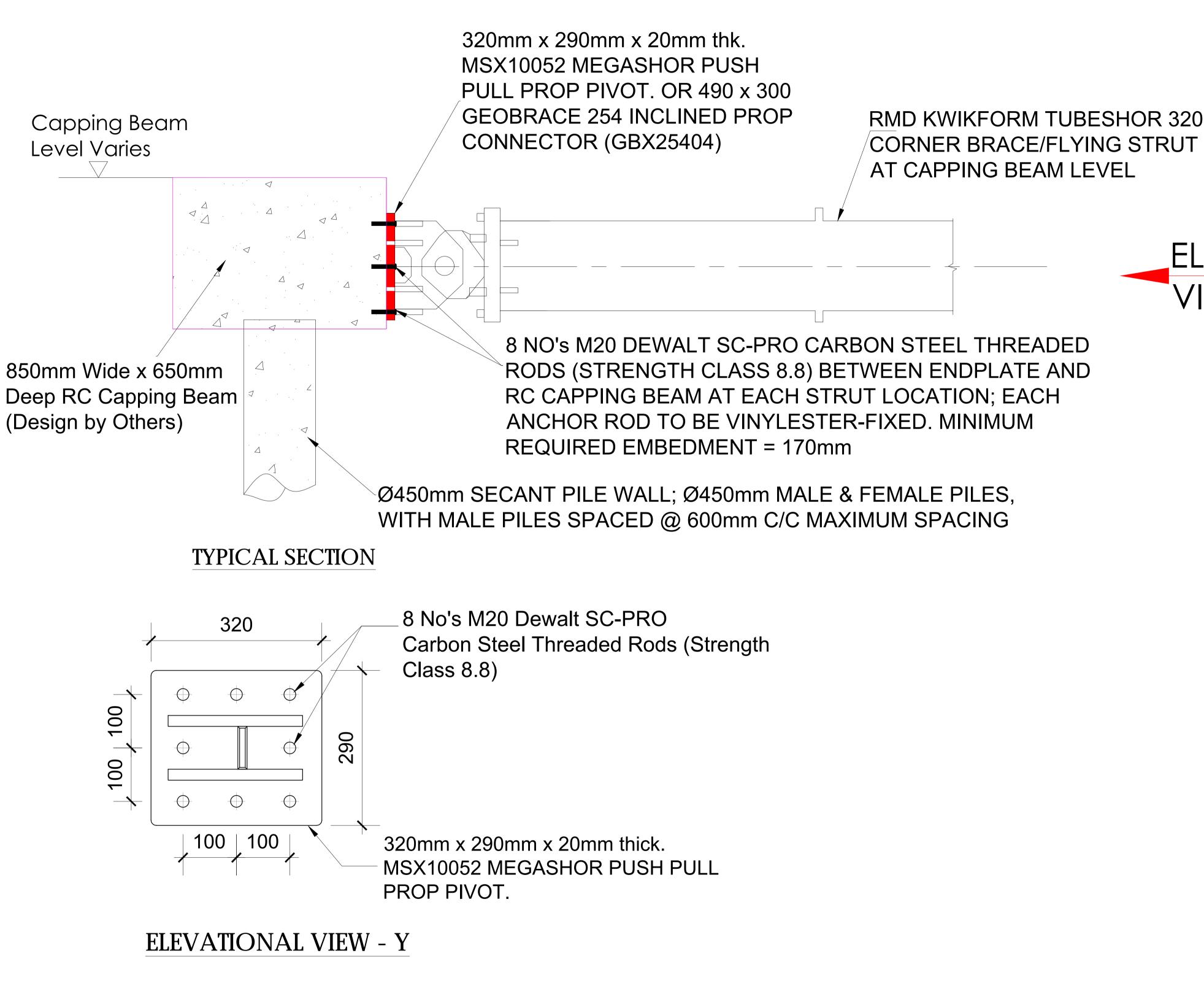
HEALTH. SAFETY AND ENVIRONMENT


- . THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- . THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED **REGULATION.**
- . THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- . IT IS THE RESPONSIBILITY OF THE PRINCIPAL AND ASSOCIATED CONTRACTOR SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 7.1. PILING PLATFORM LEVEL IS UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

MAXIMUM LENGTH CORNER BRACES (6.0m - 7.0m LENGTHS)

MAXIMUM LENGTH FLYING STRUTS (10.5m - 12.0m LENGTHS)

VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN


TO THE DESIGN DEPTHS.

SOFT TO FIRM TO STIFF TO VERY STIFF LONDON CLAY **TYPICAL SECANT PILE WALL SECT**

			IMPORTANT CONSTRUCTION NOTES
		Concrete Grade C28/35 for Male Piles. (10N/mm² Concrete	1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
STRICT SUPERVISION OF BULK EXCAVATION BY MA CONTRACTOR IS REQUIRED, SO AS TO ENSURE THAT BU EXCAVATION DOES NOT PROGRESS BELOW THE D	JLK	for female piles) Ø450mm Secant pile wall; Ø450mm Male & Female piles, with Male piles	2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
DEPTH SHOWN IN THIS DRAWING 175 kN/m Allowable Service Vertical Compressive Loading -70 kN/m Allowable		B10 Links @ 175mm c/c 50 350 50 50 50 50 50 50 50 50 50	3. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
Service Tension Loading arge/ Piles to be Trimmed Down to Cut-off Level		SECTION 1-1 (SCALE 1:6)	4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
RMD Kwikform Tubeshor 320			5. 50mm COVER TO PILE REINFORCEMENT.
Hydraulic Flying Strut/Corner Brace @ Capping Beam Level (Service Prop Load = 50 kN/m Run of Wall)		PROPOSED SEQUENCE OF CONSTRUCTION: TYPICAL PILE WALL SECTION (Ø450 PERIMETER SECANT PILE WALL, PROPPED)	6. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED TO ENSURE
850mm Wide x 650mm Deep RC Capping Beam (Design & Detailing by Others)	HEIGHT)	A. STRIP THE EXISTING GROUND TO A MAXIMUM DEPTH OF 300mm AND SUBSEQUENTLY PLACE AND COMPACT CAREFULLY SELECTED CLASS 6F2 GRANULAR FILL TO FORM SUITABLE WORKING PLATFORM FOR PILING RIG AND OTHER CONSTRUCTION MACHINERY.	THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m).
beam (besign & beraining by officis)		B. INSTALL TEMPORARY GUIDE WALL PRIOR TO THE COMMENCEMENT OF SECANT PILE WALL CONSTRUCTION.	7. SECANT PILE WALL SHALL BE INSTALLED IN
B10 Links @ 175mm c/c 6 - B20s x 8.0m	50 (MAXIMUM RETAINED ENGTH)	C. CONCURRENTLY INSTALL Ø450 INTERLOCKING MALE AND FEMALE PILES BY CFA DRILLING TECHNIQUE, WITH MALE PILES SPACED @ 600MM C/C, FROM PILING PLATFORM LEVEL (+45.500) TO DEPTHS SPECIFIED BY DFS, TO FORM SECANT PILE WALL, AS WELL AS THE Ø350 BEARING PILES REQUIRED FOR THE PROPOSED UNDERPINNING WORKS UNDERNEATH THE EXISTING NORTHERN WALL OF BARRIE HOUSE; SEE DFS' PILE WALL CONSTRUCTION SCHEDULE AND BEARING PILE CONSTRUCTION SCHEDULE FOR MORE DETAILED INFORMATION.	ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016). 8. THE SECANT PILE WALL IS
	4,850 PILE LEN	D. BREAK DOWN PILES TO 75MM ABOVE PROPOSED SOFFIT LEVEL OF RC CAPPING BEAM.	DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
) (MALE	E. CONSTRUCT RC CAPPING BEAMS ON PILES. F. CARRY OUT SEGMENTAL UNDERPINNING OF THE EXISTING PAD AND STRIP FOOTINGS UNDERNEATH THE NORTHERN WALL OF THE EXISTING BARRIE HOUSE BUILDING, AS DETAILED BY THE PROJECT	
+40.650 Lowest Excavation Level	8,000	STRUCTURAL ENGINEER (SEE RICHARD TANT ASSOCIATES' DRAWINGS NO'S 5295-P02, 5295-P04, 5295-P13, 5295-P15, 5295-P17, 5295-P18, 5295-P19, 5295-PSM01 & 5295-PSM02 FOR MORE DETAILS).	
		G. INSTALL TEMPORARY STRUCTURAL STEEL WALING BEAM ALONG THE FACE OF SEGMENTAL UNDERPINNING RETAINING WALL AROUND CREST LEVEL.	
Ø450mm Secant pile wall; Ø450mm Male & Female piles, with		H. INSTALL TEMPORARY PROPS AT CAPPING BEAM LEVEL/WALING BEAM LEVEL OF PILE WALL AND UNDERPINNING WALL.	
Male piles spaced @ 600mm c/c maximum spacing		I. CARRY OUT BULK EXCAVATION DOWN TO BASEMENT FORMATION LEVEL; 4.85M MAXIMUM DIG.	
		J. PLACE BLINDING OF 50MM MINIMUM THICKNESS AT FORMATION LEVEL.	
		K. INSTALL/FIX WATER-PROOF MEMBRANE ON PLACED BLINDING, AS WELL AS FACE OF PILE RETAINING WALL/SEGMENTAL UNDERPINNING WALL AND WRAP AROUND CAPPING BEAM.	<u>D_FS</u>
1 +37.500 MALE PILE TOE LEVEL		L. CONSTRUCT 600MM THICK REINFORCED CONCRETE RAFT/LOWER GROUND FLOOR SLAB WITH WATER-PROOF CONCRETE AND DOWEL INTO PILE RETAINING WALL/SEGMENTAL UNDERPINNING WALL, WHILST MAKING ALLOWANCE FOR CAVITY DRAIN IN FRONT OF	DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498
		RETAINING WALLS. M. CONSTRUCT RC LINER WALL OF 250MM MINIMUM THICKNESS WITH WATER-PROOF CONCRETE, IN FRONT OF PILE RETAINING WALL, FROM BASEMENT LEVEL, UP TO CAPPING BEAM SOFFIT LEVEL AND	BROXWOOD VIEW LIMITED BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON
		CONNECT SAME TO CAPPING BEAM. N. CONSTRUCT GROUND FLOOR SLAB AND CONNECT SAME TO CAPPING BEAM.	DRAWING TITLE
		O. REMOVE TEMPORARY PROPS AND STRUCTURAL STEEL WALLING BEAM.	TYPICAL SECANT PILE WALL SECTION
ALL SECTION (SCALE 1:25)		P. CONSTRUCT SUPERSTRUCTURE.	DATE 16 OCT 2022 DRAWN AR AA DRAWING No. REV 00 SCALE IS AS SHOWN DFS221011-02 00 @ A1

HEALTH. SAFETY AND ENVIRONMEN

- . THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- . DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- . THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED **REGULATION.**
- . THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE. PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- . IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING. ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 7.1. PILING PLATFORM LEVEL IS UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL. WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

DETAIL A: CAPPING BEAM - TEMPORARY PROP CONNECTION DETAILS

ELEVATIONAL VIEW - Y

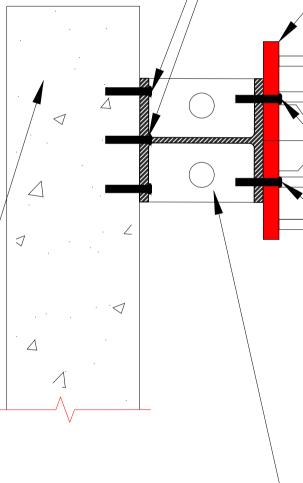
IMPORTANT CONSTRUCTION NOTES

- I. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
- 2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. THIS DRAWING SHALL BE READ IN CONJUNCTION ALL WITH RELEVANT ARCHITECTS, ENGINEERS AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
- 4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
- 5.50mm COVER TO PILE REINFORCEMENT
- 6. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED ТО ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m)
- . SECANT PILE WALL SHALL ΒE INSTALLED ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
- 8. THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.

DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498

BROXWOOD VIEW LIMITED

BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH DRAWING TITL


DETAIL A: CAPPING BEAM - TEMPORARY PROP **CONNECTION DETAILS**

AR AA 16 OCT 2022 ING No. REV : DFS221011-09 00 SCALE IS AS SHOWN @ A1

HEALTH. SAFETY AND ENVIRONMENT

- . THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 5. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED **REGULATION.**
- . THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE. PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 5. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING. ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 7.1. PILING PLATFORM LEVEL IS UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

RC UNDERPINNING WALL

TEMPORARY PROP CONNECTION DETAILS

8 NO's M20 DEWALT SC-PRO CARBON STEEL THREADED RODS (STRENGTH CLASS 8.8) BETWEEN ENDPLATE AND RC SEGMENTAL UNDERPINNING WALL AT EACH STRUT LOCATION; EACH ANCHOR ROD TO BE VINYLESTER-FIXED. MINIMUM REQUIRED EMBEDMENT = 170mm

320mm x 290mm x 20mm thk. MSX10052 MEGASHOR PUSH PULL PROP PIVOT OR 490 x 300 **GEOBRACE 254 INCLINED PROP** CONNECTOR (GBX25404)

RMD KWIKFORM TUBESHOR 320 CORNER BRACE/FLYING STRUT AT AROUND CREST LEVEL OF SEGMENTAL **UNDERPINNING WALL**

8 NO's M20 GRADE 4.6 NON - PRELOADED ORDINARY BOLTS BETWEEN ENDPLATE AND WALING BEAM; 4 NO'S TOP & 4 NO'S BOTTOM.

RMD KWIKFORM GEOBRACE 254 WALING BEAM; TO BE FIXED TO THE FACE OF SEGMENTAL UNDERPINNING WALL AROUND CREST LEVEL

DETAIL B: RC SEGMENTAL UNDERPINNING WALL - WALING BEAM - ENDPLATE -

IMPORTANT CONSTRUCTION NOTES

- I. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
- 2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. THIS DRAWING SHALL BE READ IN CONJUNCTION ALL WITH RELEVANT ARCHITECTS, ENGINEERS AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
- 4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
- 5.50mm COVER TO PILE REINFORCEMENT
- 6. STRICT SUPERVISION BULK EARTH WORKS IS REQUIRED ТО ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m)
- '. SECANT PILE WALL SHALL BE INSTALLED ACCORDANCE WITH THE RECOMMENDATIONS OF THE SPECIFICATIONS FOR ICE PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
- 8. THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.

DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498

BROXWOOD VIEW LIMITED

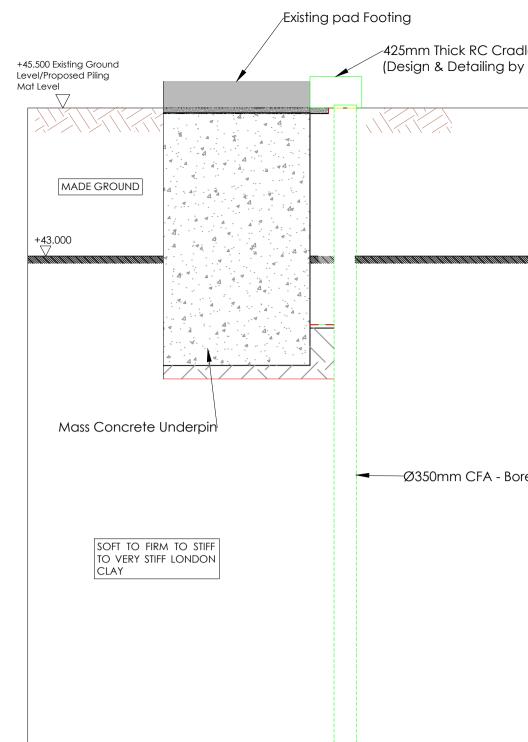
BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH DRAWING TITL

DETAIL B: RC UNDERPINING - WALING BEAM **ENDPLATE - TEMPORARY PROP CONNECTION** DETAILS

SCALE IS AS SHOWN

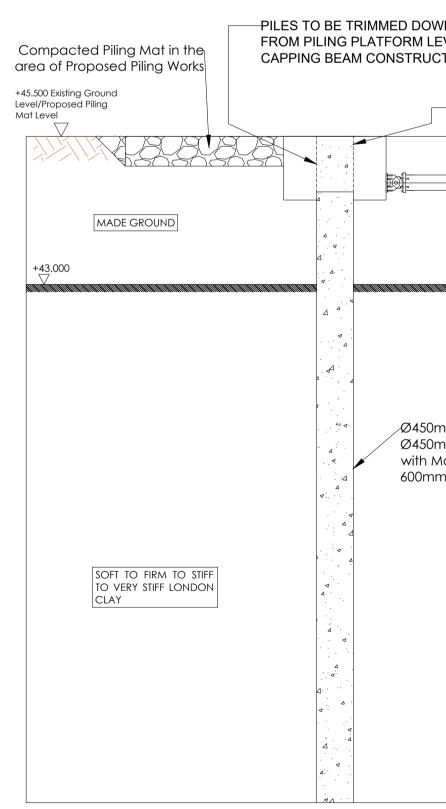
@ A1

AR AA 16 OCT 2022 NG NO. REV S DFS221011-10 00


<u>D_FS</u>					CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Propping Secant Pile Retaining Wall & Segmenta			Page:	25 of 31
	DFS' Constructio	on Sequencin	ig Drawi	ngs	

HEALTH, SAFETY AND ENVIRONMENT	+45.500 Existing Ground	+45.500 Existing Ground
1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE	Level/Proposed Piling Mat Level	Level/Proposed Piling Mat Level Proposed Piling Works
WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND		
DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING	MADE GROUND	MADE GROUND
CONSTRUCTION WORKS SHOWN.	+43,000	+43,000
 DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY) 		
DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY		
GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE		
RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS		
(ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE	SOFT TO FIRM TO STIFF TO VERY STIFF LONDON	SOFT TO FIRM TO STIFF TO VERY STIFF LONDON
PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT	CLAY	CLAY
THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE		
ALLOWANCE FOR THIS. 3. THE PRINCIPAL CONTRACTOR AND ASSOCIATED		
SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE		
APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED REGULATION.		
4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED		
SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE		
LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.		
5. DURING SITE OPERATIONS, IF OBSERVED		
GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS	STAGE 0:	STAGE 1:
SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.	PRE-PILING SITE CONDITIONS	STRIP THE EXISTING GROUND AND SUBSEQUENTLY PLAC
6. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED		PILING MAT IN THE AREA OF PROPOSED PILING WORKS.
SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND		
EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.		
7. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING		
WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS	Compacted Piling Mat in the	Compacted Piling Mat in the CAPPILES TO BE TRIMMED DOWN TO CUT-OFF LEVEL
HAVE BEEN IDENTÍFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 –	area of Proposed Piling Works +45.500 Existing Ground	CAPPING BEAM CONSTRUCTION
7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.	Level/Proposed Piling Mat Level	Level/Proposed Piling Mat Level
7.1. PILING PLATFORM LEVEL IS		
UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT	MADE GROUND	MADE GROUND
LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING		
GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M		
OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM		
ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT		
THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED	Ø450mm Secant pile wall;	Ø450mm Secant pile wall;
ACCORDINGLY.	Ø450mm Male & Female piles, with Male piles spaced @	Ø450mm Male & Female piles, with Male piles spaced @
7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST		600mm c/c maximum spacing
BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT		
OF BULK EXCAVATION FOR THE NEW BASEMENT.	SOFT TO FIRM TO STIFF TO VERY STIFF LONDON	SOFT TO FIRM TO STIFF TO VERY STIFF LONDON
7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE		
INSTALLATION OF SECANT PILE WALL.		
7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE		
PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE		
AND SET—RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF	+37.500 MALE PILE TOE LEVEL	→ → +37.500 MALE PILE TOE LEVEL
REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE		
VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.	STAGE 2:	STAGE 3:
IV THE DESIGN DEPTHS.	CONCURRENTLY INSTALL Ø450 INTERLOCKING MALE AND FEMALE PILES BY CFA DRILLING TECHNIQUE, WITH MALE PILES SPACED @ 600MM C/C, FROM	BREAK DOWN PILES TO 75MM ABOVE PROPOSED SOFFI
	PILING PLATFORM LEVEL (+45.500) TO DEPTHS SPECIFIED BY DFS, TO FORM	OF RC CAPPING BEAM AND CONSTRUCT RC CAPPING BI
	SECANT PILE WALL, AS WELL AS THE Ø350 BEARING PILES REQUIRED FOR THE PROPOSED UNDERPINNING WORKS UNDERNEATH THE EXISTING NORTHERN	PILES.

WALL OF BARRIE HOUSE.

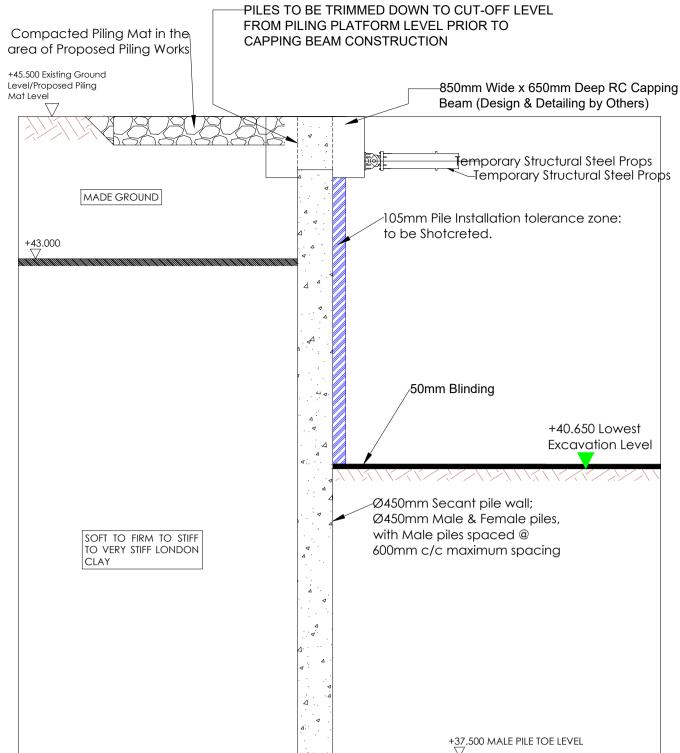

	IMPORTANT CONSTRUCTION NOTES
	1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
	2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
	3. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
	4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
	5.50mm COVER TO PILE REINFORCEMENT.
CE AND COMPACT	6. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED TO ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m).
	7. SECANT PILE WALL SHALL BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
Omm Deep RC Capping etailing by Others)	8. THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
	D_S
	DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498
	BROXWOOD VIEW LIMITED
EL	JOB TITLE BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH
	PROPOSED CONSTRUCTION SEQUENCE SHEET -1
BEAM ON	DATE 16 OCT 2022 DRAWN CHECKED DRAWING ING. REV SCALE SCALE IS AS SHOWN DFS221011-03 00 @ A1

- 1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 3. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED REGULATION.
- 4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 6. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- 7. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 – 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 7.1. PILING PLATFORM LEVEL UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

STAGE 4:

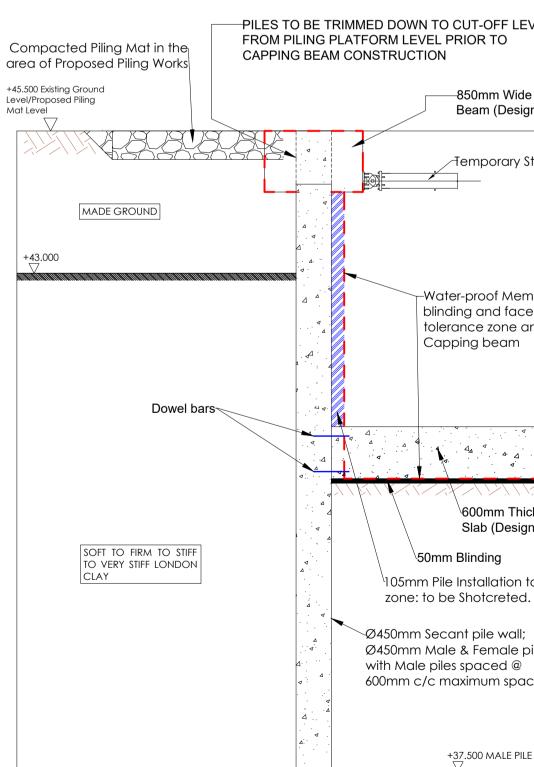
CARRY OUT SEGMENTAL UNDERPINNING OF THE E FOOTINGS UNDERNEATH THE NORTHERN WALL OF BUILDING, AS DETAILED BY THE PROJECT STRUCT TANT ASSOCIATES' DRAWING NO'S 5295-P02, 5295-5295-P17, 5295-P18, 5295-P19, 5295-PSM01 & 5295-P

STAGE 6:

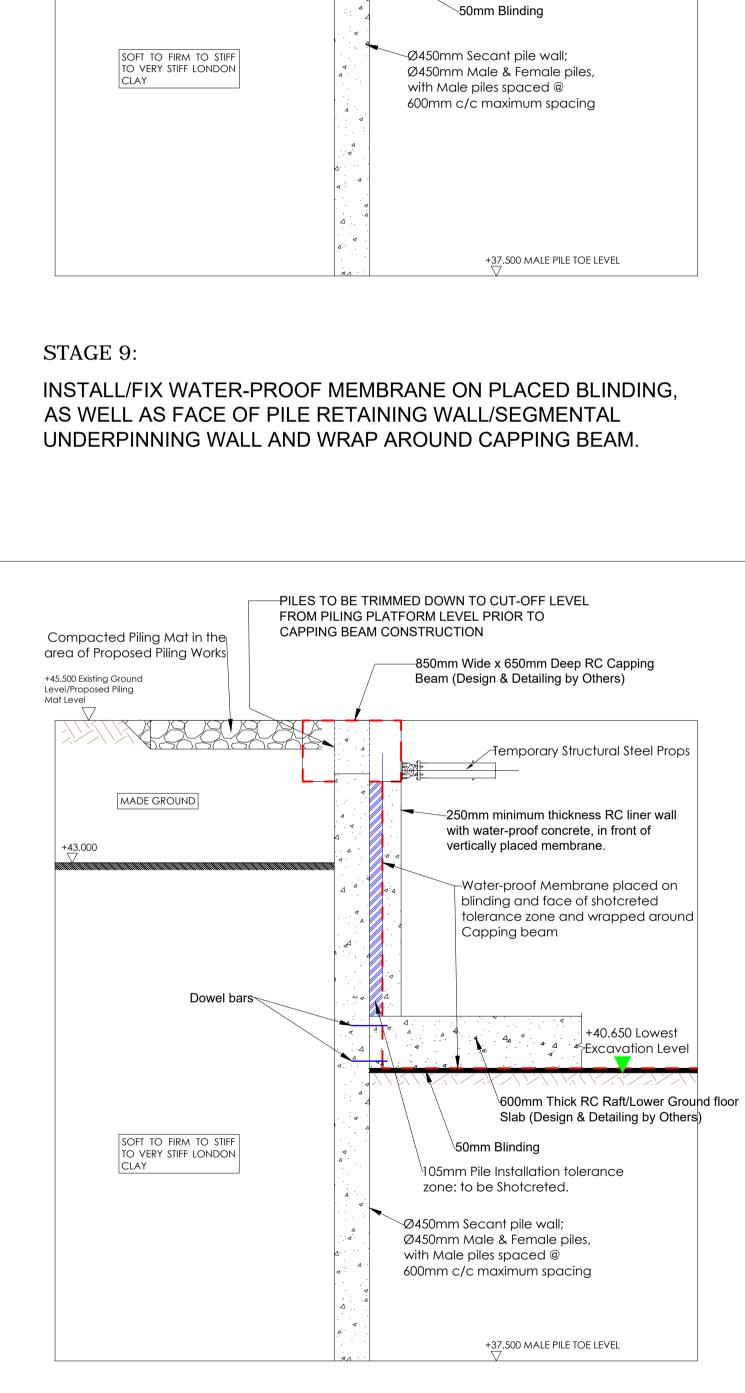

INSTALL TEMPORARY PROPS AT CAPPING BEAM LEVEL OF PILE WALL.

AM 202 Mail File Too Level	
A - BORC MITHES A - BORC MITHES A - BORC MITHES BORT MICE SCIENCE AND STRIP LOF THE EXISTING PAD AND STRIP LOF THE EXISTING PAD AND STRIP LOF THE EXISTING BARRIE HOUSE UCTURAL ENGINEER (SEE RICHARD 2805-004, 5295-P13, 5295-P15, 95-PSM02). DOINT TO CUT-OFF LEVEL MILENCE FIRM TO BORT MICE SCIENCE TO BORT THESE SCIENCE AND TO CUT-OFF LEVEL STAGE 5: INSTALL TEMPORARY STRUCTURAL STEEL WALING BE TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SOME TO CUT-OFF LEVEL BORT THORSE SCIENCE TO LINCTON BORT THORSE SCIENCE TO CUT-OFF LEVEL STAGE SCIENCE TO CONDUCTOR TO CUT-OFF LEVEL STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE STAGE SCIENCE STAGE SCIENCE INSTALL TEMPORARY STRUCTURAL STEEL WALING BE TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SCIENCE TO STAGE SCIENCE TO SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE TO STAGE SCIENCE STAGE SCIENCE STAGE SCIENCE STAGE SCIENCE INSTALL TEMPORARY STRUCTURAL STEEL WALING BE TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SCIENCE TO SCIENCE TO S	;)
YA - Bored Mini Pies 	ural Steel Props
Bit Wit PE loc Lod Image: Stage 5: INSTALL TEMPORARY STRUCTURAL STEEL WALING BE. Image: Stage 5: INSTALL TEMPORARY STRUCTURAL STEEL WALING BE. Image: Stage 5: INSTALL TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SDOWN TO CUT-OFF LEVEL Image: Stage 5: INSTALL TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SDOWN TO CUT-OFF LEVEL Image: Stage 5: INSTALL TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SDOWN TO CUT-OFF LEVEL Image: Stage 5: INSTALL TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. SDOWN TO CUT-OFF LEVEL Image: Stage 5: INSTALL AROUND CREST LEVEL. Image: Stage 5: SDOWN TO CUT-OFF LEVEL Image: Stage 5: INSTALL AROUND CREST LEVEL Image: Stage 5: Image: Stage 5: Image: Stage 5:	
STAGE 5: INSTALL TEMPORARY STRUCTURAL STEEL WALING BE/ TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. 295-PSM02). D DOWN TO CUT-OFF LEVEL STRUCTION Beam (Design & Detailing by Others) Temporary Structural Steel Props	ini Piles
STAGE 5: INSTALL TEMPORARY STRUCTURAL STEEL WALING BE/ TEMPORARY PROPS ALONG THE FACE OF SEGMENTAL RETAINING WALL AROUND CREST LEVEL. 295-PSM02). D DOWN TO CUT-OFF LEVEL STRUCTION Beam (Design & Detailing by Others) Temporary Structural Steel Props	Toe Level
THE EXISTING PAD AND STRIP LL OF THE EXISTING BARRIE HOUSE RUCTURAL ENGINEER (SEE RICHARD 5295-P04, 5295-P13, 5295-P15, 295-PSM02). D DOWN TO CUT-OFF LEVEL RETAINING WALL AROUND CREST LEVEL. D DOWN TO CUT-OFF LEVEL RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND CREST DE TRIMED DOWN TO CUT-OFF LEVE RETAINING WALL AROUND FLATEGRA DOWN TO CUT-OFF LEVE RETAINING WALL AROUND FLATEGRA DOWN TO CUT-OFF LEVE RETAINING WALL AROUND FLATEGRA DOWN TO CUT-OFF LEVE RETAINING WALL AROUND TO CUT-OFF LEVEL RETAINING WALL AROUND FLATEGRA DOWN TO CUT-OFF LEVE RETAINING WALL AROUND TO CUT-OFF LEVEL RETAINING BEAM CONSTRUCTION RETAINING BEAM CONSTRUCTION RETAI	
Beam (Design & Detailing by Others) Temporary Structural Steel Props HADE GROUND HADE GROUND	AL UNDERPINN
Temporary Structural Steel Props	k Detailing by Others)
	ary Structural Steel Prop
Ø450mm Secant pile woll: Ø450mm Male & Female piles, with Male piles spaced @ 600mm c/c maximum spacing BOFT TO FIRM TO STIFF IO VERY STIFF LONDON CLAY +32,500 MALE PILE TOE LEVEL	piles, acing

CARRY OUT BULK EXCAVATION DOWN TO BASEMENT FORMATION LEV 4.85M MAXIMUM DIG.


	IMPORTANT CONSTRUCTION NOTES
	1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
	2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
	3. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
	4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
	5. 50mm COVER TO PILE REINFORCEMENT.
	6. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED TO ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m).
NING	7. SECANT PILE WALL SHALL BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
ping	8. THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
pps	
	DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498
	BROXWOOD VIEW LIMITED BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON
	DRAWING TITLE DRAWING TITLE PROPOSED CONSTRUCTION SEQUENCE SHEET _2
VEL;	PROPOSED CONSTRUCTION SEQUENCE SHEET -2 DATE 16 OCT 2022 DRAWN CHECKED DRAWNG NO. DFS221011-04 REV OCALE SCALE IS AS SHOWN OF S221011-04 00 SCALE SCALE IS AS SHOWN

- 1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 3. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED REGULATION.
- 4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 6. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- 7. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING. ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 7.1. PILING PLATFORM LEVEL UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.


STAGE 8:

PLACE BLINDING OF 50mm MINIMUM THICKNESS AT FORMATION LEVEL AND SHOTCRETE 105mm PILE INSTALLATION TOLERANCE ZONE, IN -PILES TO BE TRIMMED DOWN TO CUT-OFF LEVEL FROM PILING PLATFORM LEVEL PRIOR TO CAPPING BEAM CONSTRUCTION -850mm Wide x 650mm Deep RC Capping Beam (Design & Detailing by Others) Temporary Structural Steel Props MADE GROUND Water-proof Membrane placed on blinding and face of shotcreted tolerance zone and wrapped around Capping beam Dowel bars +40.650 Lowest Excavation Level 600mm Thick RC Raft/Lower Ground floor Slab (Design & Detailing by Others) SOFT TO FIRM TO STIFF 50mm Blinding to very stiff london CLAY 105mm Pile Installation tolerance zone: to be Shotcreted. Ø450mm Secant pile wall; Ø450mm Male & Female piles, with Male piles spaced @ 600mm c/c maximum spacing +37.500 MALE PILE TOE LEVEL

PREPARATION FOR THE INSTALLATION OF WATER-PROOFING MEMBRANE. STAGE 10: CONSTRUCT 600MM THICK REINFORCED CONCRETE RAFT/LOWER GROUND FLOOR SLAB WITH WATER-PROOF CONCRETE AND DOWEL INTO PILE RETAINING WALL/SEGMENTAL UNDERPINNING WALL, WHILST MAKING ALLOWANCE FOR CAVITY DRAIN IN FRONT OF RETAINING WALLS.

STAGE 11: CONSTRUCT RC LINER WALL OF 250MM MINIMUM THICKNESS WITH WATER-PROOF CONCRETE, IN FRONT OF PILE RETAINING WALL AND SEGMENTAL UNDERPINNING WALL FROM BASEMENT LEVEL, UP TO CAPPING BEAM SOFFIT LEVEL AND CONNECT SAME TO CAPPING BEAM.

-PILES TO BE TRIMMED DOWN TO CUT-OFF LEVEL

+40.650 Lowest

-

Excavation Level

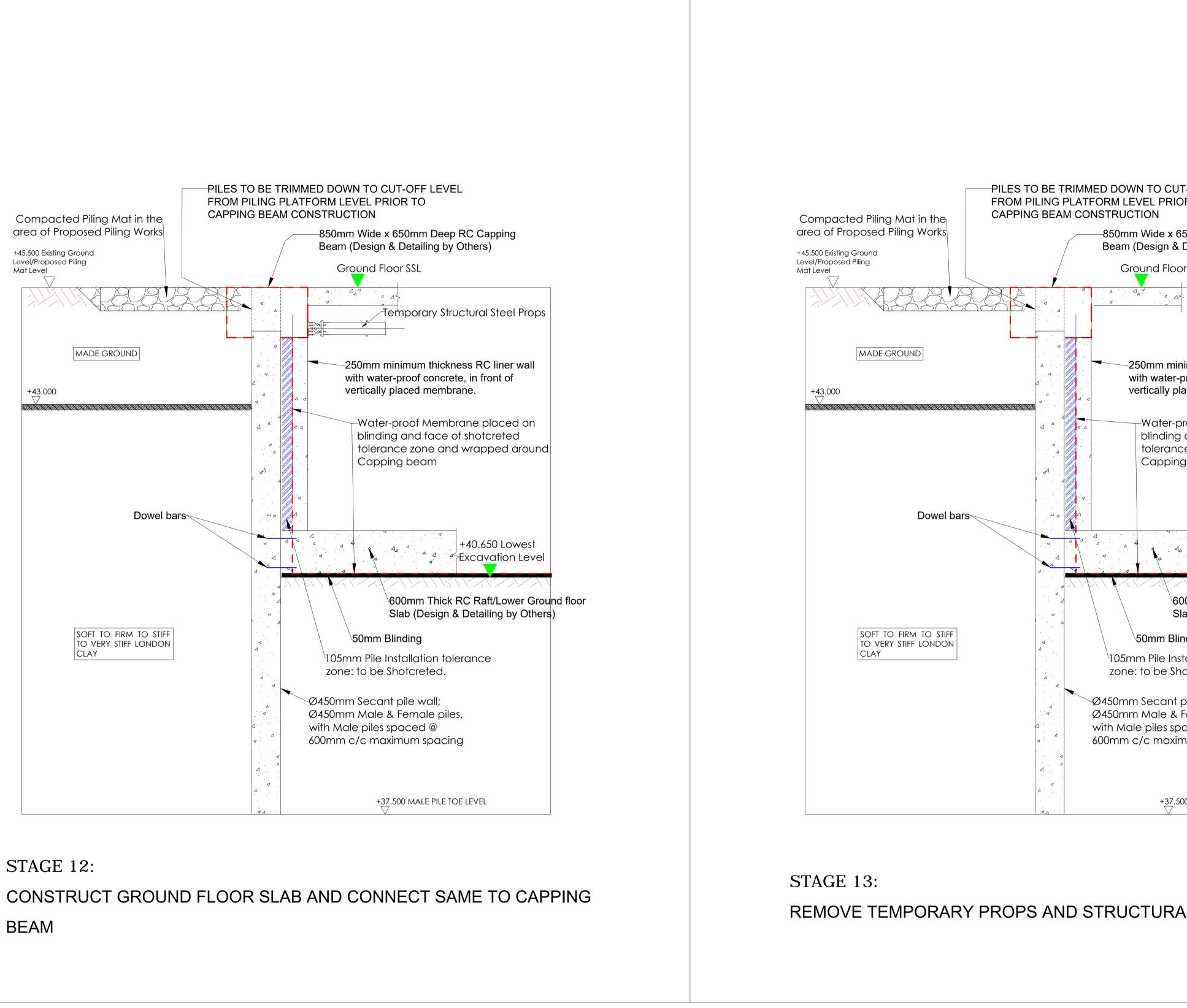
FROM PILING PLATFORM LEVEL PRIOR TO

CAPPING BEAM CONSTRUCTION

+45.500 Existing Ground -850mm Wide x 650mm Deep RC Capping Level/Proposed Piling Mat Level Beam (Design & Detailing by Others) Temporary Structural Steel Props MADE GROUND 105mm Pile Installation tolerance zone: to be Shotcreted. +43.000 Water-proof Membrane placed on blinding and face of shotcreted tolerance zone and wrapped around Capping beam

Compacted Piling Mat in the

area of Proposed Piling Works


+37.500 MALE PILE TOE LEVEL

+40.650 Lowest

Excavation Level

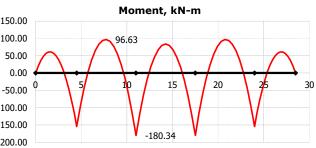
 IMPORTANT CONSTRUCTION NOTES
1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
3. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY.
4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
5.50mm COVER TO PILE REINFORCEMENT.
6. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED TO ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m).
7. SECANT PILE WALL SHALL BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
8. THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
<u>D_FS</u>
DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498
BROXWOOD VIEW LIMITED
BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH
PROPOSED CONSTRUCTION SEQUENCE SHEET -3
DATE 16 OCT 2022 DRAWN AR CHECKED AA
DFS221011-05 00 CALE IS AS SHOWN

- 1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. DFS PILE WALL LAYOUT AND DESIGN ACCOUNT FOR 1:100 VERTICALITY TOLERANCE (WITH CFA DRILLING TECHNIQUE, USING HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE PROPOSED BASEMENT AREA BY MAGNITUDES OF UP TO 105mm. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 3. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED **REGULATION.**
- 4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 5. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 6. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- 7. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 7.1 7.4 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND HAZARDS. SITE/WORK-SPECIFIC
- 7.1. PILING PLATFORM LEVEL UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER SECANT PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE EXISTING GROUND LEVEL IN THE AREA OF PROPOSED WORKS; APPROX. +45.500M OD. NONETHELESS. THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 7.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AGAINST THE CAPPING BEAM PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 7.3. A TEMPORARY GUIDE WALL MUST BE PUT IN-PLACE PRIOR TO THE INSTALLATION OF SECANT PILE WALL.
- 7.4. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE MALE PILES IN THE SECANT WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

	IMPORTANT CONSTRUCTION NOTES
	1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.
	2. ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
P-OFF LEVEL R TO 50mm Deep RC Capping Detailing by Others) r SSL imum thickness RC liner wall proof concrete, in front of aced membrane. roof Membrane placed on and face of shotcreted is zone and wrapped around g beam +40.650 Lowest Excavation Level 00mm Thick RC Raft/Lower Ground floor ab (Design & Detailing by Others) nding tallation tolerance otcreted. Dile wall; emale piles, aced @ hum spacing	 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, AND SPECIALISTS LATEST DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER AND ARCHITECT IMMEDIATELY. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS. 50mm COVER TO PILE REINFORCEMENT. STRICT SUPERVISION OF BULK EARTH WORKS IS REQUIRED TO ENSURE THAT EXCAVATIONS DO NOT EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.85m). SECANT PILE WALL SHALL BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016). THE SECANT PILE WALL IS DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
00 MALE PILE TOE LEVEL	
AL STEEL WALLING BEAM	
	DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498
	CUENT BROXWOOD VIEW LIMITED
	JOB TITLE BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH DRAWING TITLE
	PROPOSED CONSTRUCTION SEQUENCE SHEET -4
	DAVING NO. DFS221011-06 DFS221011-06 DFS221001 DFS221011-06 DFS221001 DFS221001 DFS221001 DFS221001 DFS221001 DFS221001 DFS221001 DFS221001 DFS221001 DFS22100 DFS22100 DFS22100 DFS22100 DFS22100 DFS2210 DFS

<u>D_FS</u>					CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Design – Temporary Proppir Secant Pile Retaining Wall & Segmen			Page:	26 of 31
	GoBeam Version 2015.	1 Structural Ar	nalysis (Dutp	ut Files

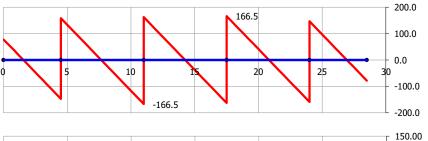
DEEP FOUNDATIONS SPECIALISTS LIMITED	Project:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH	Engineer: Date:	AR 14-Oct-22	Project #
GoBeam	Subject:	TEMPORARY PROPPING SCHEME -	Checker:	AA	Page:
Version 2015.1		ELEVATION 1	Date:	14/10/2022	

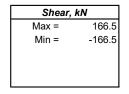

Modulus of elasti	city, E		Beam en	d res	train ts Right E	nd	Sway
Beam:	28000	MPa			J .		
Columns:	28000	MPa	Support	۳	Support	*	

/ frame: 📝

	Span №	1	2	3	4	5	
	Length, m	4.5	6.5	6.5	6.5	4.5	
	Moment of Inertia, m⁴	1.95E-02	1.95E-02	1.95E-02	1.95E-02	1.95E-02	
	Support Nº	1	2	3	4	5	6
	Support coordinate, m	0	4.5	11	17.5	24	28.5
Vertical spring constant, kN/m							
	Support type or hinge	Roller	Roller	Roller	Roller	Roller	Roller
<u>Column under</u>	Length, m						
	Moment of Inertia, m⁴						
<u>Column above</u>	Length, m						
	Moment of Inertia, m⁴						
Induced support displacements, m							

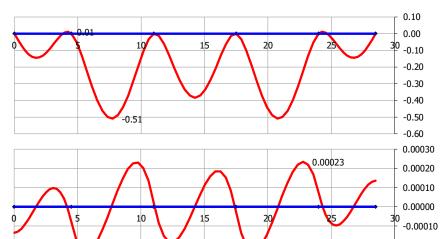

Positive loads: ↑ Ư	Load case:		DL			
Comment	Load	WA	WB	LA	LB	
	Туре	kN or kN/m	kN/m	m	m	
	Linear	-50	-50	0	28.5	
						15
						10
						5
						-!
						-10
						-15
						-20





DEEP FOUNDATIONS	Project:	BROXWOOD VIEW, 29 ST. EDMUND'S	Engineer:	AR	Project #
SPECIALISTS LIMITED		TERRACE LONDON NW8 7QH	Date:	14-Oct	
GoBeam	Subject:	TEMPORARY PROPPING SCHEME -	Checker:	AA	Page:
Version 2015.1		ELEVATION 1	Date:	44848	

FORCE/DISPLACEMENTS DIAGRAMS DUE TO STATIC LOAD CASE: DL


*Moment, kN*m* Max = 96

Min =

96.63

-180.34

					150.00
	96.63		\sim		100.00 I
\sim					- 50.00
					- 0.00
0 5	j <u>1</u> 0	15	20	25 3	⁰ -50.00
					- 100.00
				V	150.00
	V.	-180.34			
					└ -200.00

-0.00023

5

0

329.0

15

20

25

10

Deflections	s, mm
Max =	0.01
Min =	-0.51

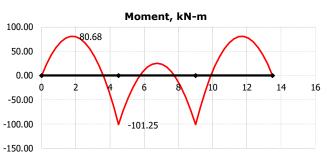
Rotat	Rotations, rad				
Max =	= 0.00023				
Min =	-0.00023				

-0.00020

-0.00030 350

30

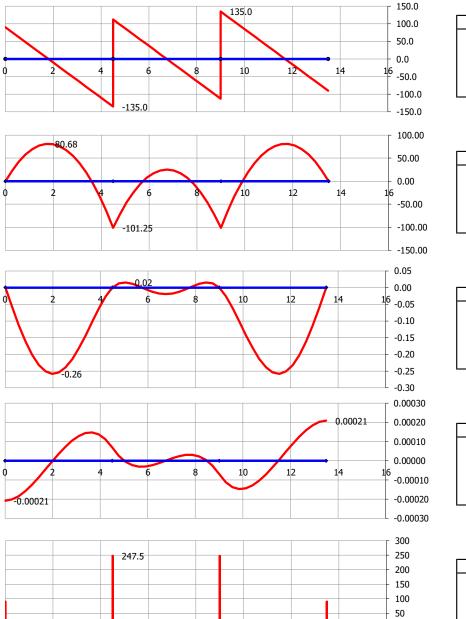
Reactions, kN				
Max =	329.0			
Min =	0.0			
ΣR =	1425			


DEEP FOUNDATIONS SPECIALISTS LIMITED	Project:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH	Engineer: Date:	AR 14-Oct-22	Project #
GoBeam	Subject:	TEMPORARY PROPPING SCHEME -	Checker:	AA	Page:
Version 2015.1		ELEVATION 2	Date:	14/10/2022	


Modulus of elastic	Modulus of elasticity, E			Beam end restraints Left End Right End		Sway frame:	1	
Beam:	28000	MPa		_	J .	-		
Columns:	28000	MPa	Support	÷	Support	•		

	Span Nº	1	2	3	
Length, m		4.5	4.5	4.5	
	Moment of Inertia, m⁴	1.95E-02	1.95E-02	1.95E-02	
	Support №	1	2	3	4
	Support coordinate, m	0	4.5	9	13.5
Vert	ical spring constant, kN/m				
	Support type or hinge	Roller	Roller	Roller	Roller
Column under	Length, m				
	Moment of Inertia, m⁴				
Column above	Length, m				
	Moment of Inertia, m⁴				
Induced	support displacements, m				

Positive loads: ↑ Ư	Load case:	DL				
Comment	Load	WA	WB	LA	LB	
	Туре	kN or kN/m	kN/m	m	m	
	Linear	-50	-50	0	13.5	



Notes:

DEEP FOUNDATIONS	Project:	BROXWOOD VIEW, 29 ST. EDMUND'S	Engineer:	AR	Project #
SPECIALISTS LIMITED		TERRACE LONDON NW8 7QH	Date:	14-Oct	
GoBeam	Subject:	TEMPORARY PROPPING SCHEME -	Checker:	AA	Page:
Version 2015.1		ELEVATION 2	Date:	44848	

FORCE/DISPLACEMENTS DIAGRAMS DUE TO STATIC LOAD CASE: DL

Shear, kN					
Max =	135.0				
Min =	-135.0				

Moment, kN*m					
Max =	80.68				
Min =	-101.25				

Deflections, mm					
Max =	0.02				
Min =	-0.26				

Rotations, rad						
Max =	0.00021					
Min =	-0.00021					

Reactions, kN						
Max =	247.5					
Min =	0.0					
ΣR =	675					

<u>D_FS</u>					CALCULATIONS w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	15 October 2022
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Proppir Secant Pile Retaining Wall & Segment			Page:	27 of 31

CADS PWS 6.09 Computer Output Files

Typical Section	Page No	1
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Pile geometry

Pile top Level	0 m
Pile Length	8 m
Pile toe level	-8 m

Soils and ground water initial data

(Soils data given for active and passive sides)

Initial Ground Water level -.5

Тор	Description			Young					Wall		Kac
Level m	Description	Dens kN/m3		Mod kN/m2					Shear Ratio	Кр	Крс
								Ū			
.00	Made Ground	18.00	18.00	15000	0			28 28	.67 50	.30 4.15	
								20	.00	4.10	
-2.50	S to F to Stiff	19.00	19.00	24000	9600	30	12.0			1.00	
						30	12.0		.50	1.00	2.45

Construction sequence

Stage Ref	Stage Type	Level or Angle m/deg. ł		Offset m	Width Le m	ngth m
1 A	Active surcharge	0.00	10.0	.3		
2 A	Passive side excavation	-1.00				
3 A	Passive water level	-1.00				
4	Insert prop	-0.50				
5 A	Passive side excavation	-4.80				
6 A	Passive water level	-4.80				
7 A	Insert prop	-4.20				
8	Insert prop	-0.30				
9 A	Remove prop	-0.50				
10 A	Active water level	0.00				

Typical Section	Page No	2
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Code of practice

Code of practice or reference document Application of pressures for stability Not applicable for FOS=1 on moments 1.00 FOS on moments (stability check) ULS factor on Tan(Phi) values 1.00 ULS fFactor on drained cohesion values 1.00 ULS factor on undrained cohesion values 1.00 ULS factor on active soil pressures 1.00 ULS factor on passive soil pressures 1.00 ULS factor on active water pressures 1.00 ULS factor on passive water pressures 1.00 ULS factor on loads applied to the soil 1.00 ULS factor on loads applied to the wall 1.00 FOS on embedment (stability check) 1.00 Correction factor on cantilever embedment 1.00

Wall analysis detail options

Nominal Phi for load distribution Depth of water filled tension cracks Density of water Minimum equivalent fluid density Depth of passive softened soil Continuity model for wall analysis

Deflection parameters

Wall moment of inertia Wall Youngs modulus

Properties for prop at -0.5 Prop/Tie cross sectional area Prop/Tie Youngs modulus Prop/Tie length Prop/Tie spacing Waling moment of inertia Waling Youngs modulus Prop/Tie preload Initial lack of fit

Properties for prop at -4.2 Prop/Tie cross sectional area Prop/Tie Youngs modulus Prop/Tie length Prop/Tie spacing Waling moment of inertia Waling Youngs modulus Prop/Tie preload Initial lack of fit 30.0 Degrees .0 m 9.8 kN/m3 5.0 kN/m3 .0 m Pins at second and lower props

335482 cm4/m 27000000 kN/m2

3 cm2 each 20000000 kN/m2 1.0 m 1.0 m Waling deflection not included Waling deflection not included 0 kN 0.0 mm

28000000 kN/m2 1.0 m 1.0 m Waling deflection not included Waling deflection not included 0 kN 0.0 mm

Typical Section SLS Analysis	Page No Analysis	3 Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8 450mm Dia. Secant Pile Retaining Wall	Engineer Date	

Deflection parameters - continued

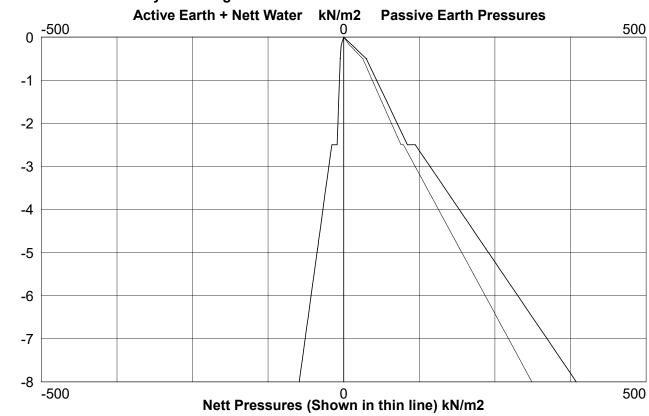
Properties for prop at -0.3 Prop/Tie cross sectional area Prop/Tie Youngs modulus Prop/Tie length Prop/Tie spacing Waling moment of inertia Waling Youngs modulus Prop/Tie preload Initial lack of fit

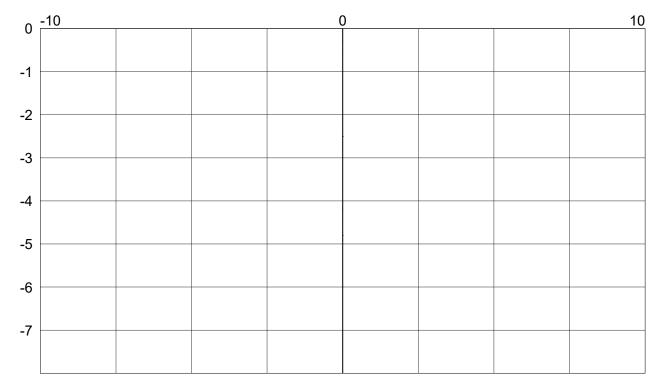
72 cm2 each 2800000 kN/m2 1.0 m 1.0 m Waling deflection not included Waling deflection not included 0 kN 0.0 mm

Typical Section	Page No	4
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.1Stage typeActive surcharge

0	10 kN/m2	0 ▽
Made Ground		× · · · · · · · · · · · · · · · · · · ·
S to F to Stiff		

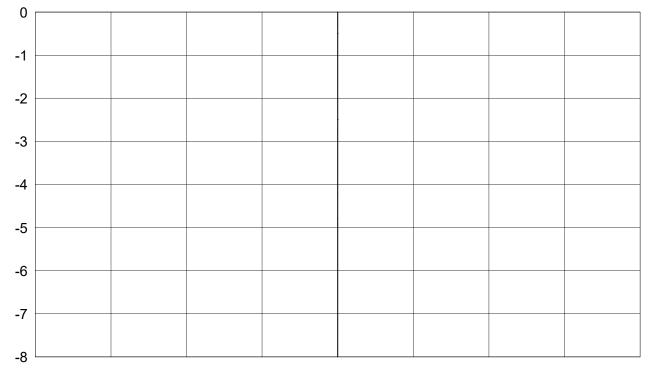

Typical Section	Page No	5
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

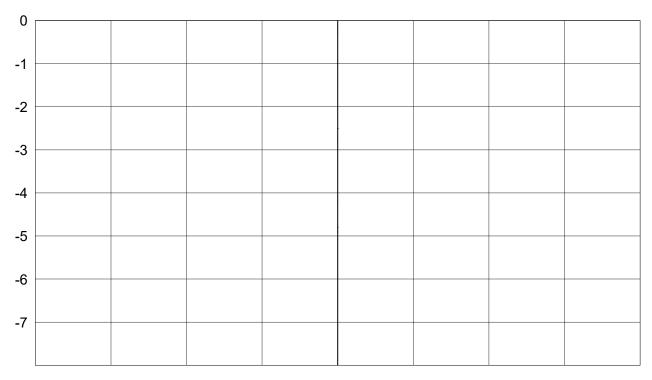

Tabular results from analysis of stage ref 1

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force FOS kN/m
.00 17 30 50 50 -1.00 -1.00 -2.00 -2.50 w -2.50	.0 13.1 15.4 15.4 19.0 23.1 23.1 31.3 35.4 55.0	.0 4.0 4.7 5.8 5.8 7.0 7.0 9.5 10.8 .0	.0 .0 .0 .0 .0 4.9 4.9 14.7 19.6 19.6	.0 3.1 5.4 9.0 9.0 13.1 13.1 21.3 25.4 45.0	.0 12.9 22.4 22.6 37.4 37.4 54.3 54.4 88.4 105.4 118.5	.0 .0 .0 .0 .0 4.9 4.9 14.7 19.6 .0	0 -9.0 -17.7 -17.9 -31.6 -31.6 -47.3 -47.3 -47.3 -78.9 -94.7 -98.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	.00 >100.00 .0>100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00
w -2.50 w -2.81 w -3.00 w -4.00 w -4.20 w -4.20 w -4.80 w -4.80 w -4.90 w -4.91 w -4.93 w -5.00 w -5.35	55.0 60.9 64.5 83.5 87.3 98.7 98.7 100.7 100.8 101.1 102.5 109.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	19.6 22.6 24.5 34.3 36.3 36.3 42.1 42.1 43.2 43.2 43.2 43.4 44.1 47.5	45.0 50.9 54.5 77.3 77.3 77.3 88.7 90.7 90.8 91.1 92.5 99.2	118.6 133.5 142.7 191.1 200.8 200.9 229.7 229.8 234.8 235.1 235.9 239.5 256.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-99.0 -110.8 -118.2 -156.8 -164.5 -164.6 -187.6 -187.7 -191.7 -191.7 -191.9 -192.5 -195.4 -209.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	>100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00 >100.00
w -6.00 w -7.00 w -8.00	121.5 140.5 159.5	.0 .0 .0	53.9 63.7 73.5	111.5 130.5 149.5	287.9 336.3 384.7	0. 0. 0.	-234.0 -272.6 -311.2	0 0 0	0 0 0	0 0 0	>100.00 >100.00 >100.00

Typical Section	Page No	6
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

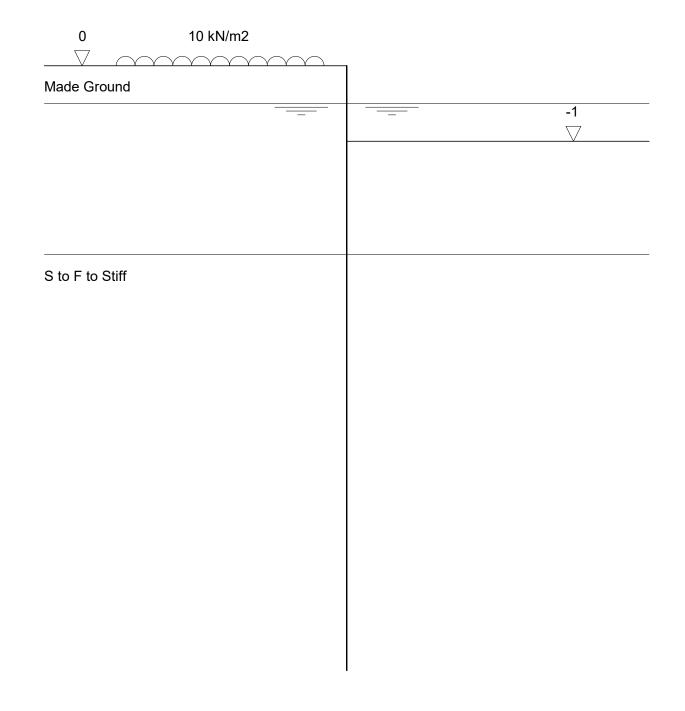
Graphical results from analysis of stage ref 1




Deflection diagram (mm)

Typical Section	Page No	7
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

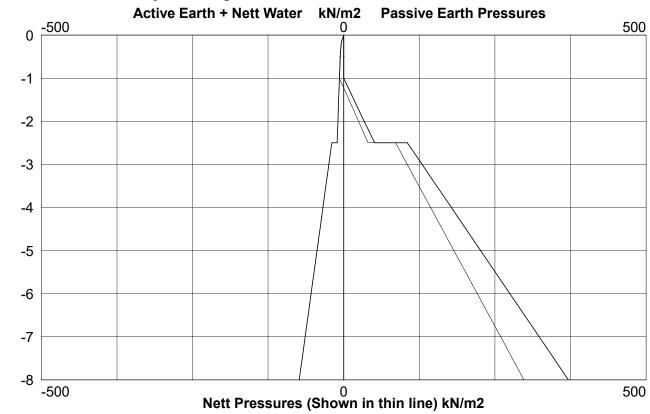
Graphical results from analysis of stage ref 1 continued

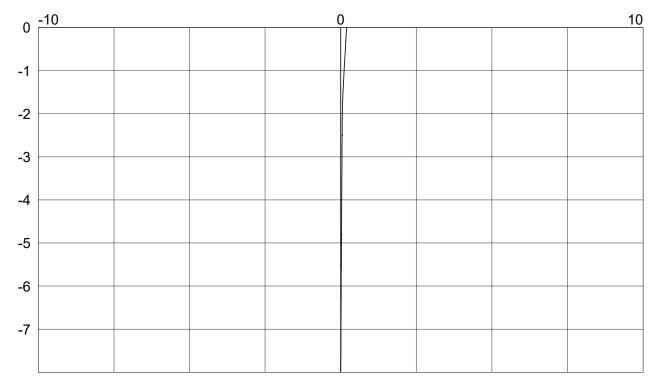

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	8
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.2Stage typePassive side excavation

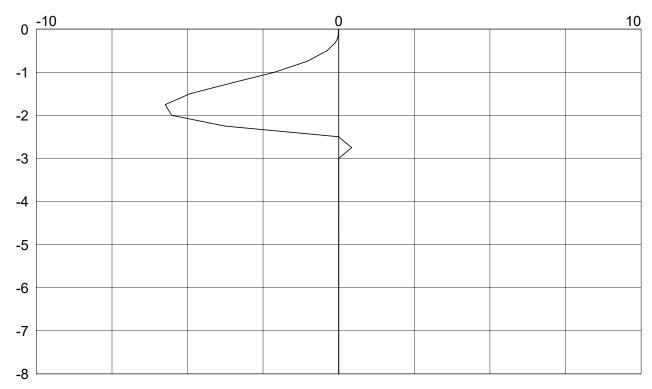

Typical Section	Page No	9
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

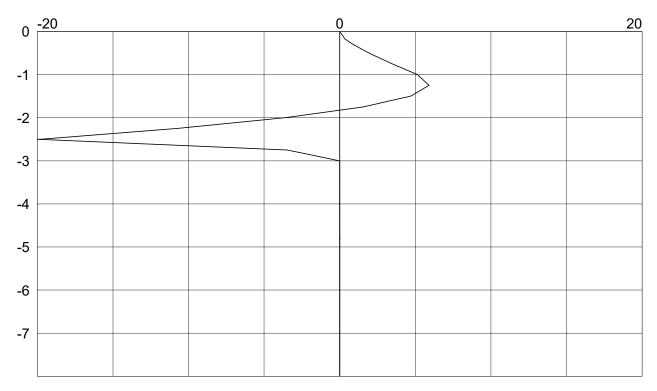

Tabular results from analysis of stage ref 2

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
.00	.0	.0	.0	.0	.0	.0	0	0	0	.2		.00
17	13.1	4.0	.0	.0	.0	.0	4.0	0	3	.2		.00
30	15.4	4.7	.0	.0	.0	.0	4.7	.1	9	.2	.0	.00
30	15.4	4.7	.0	.0	.0	.0	4.7	.1	9	.2		.00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	-1.9	.2	.0	.00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	-2.0	.2		.00
-1.00	23.1	7.0	4.9	.0	.0	4.9	7.0	2.1	-5.1	.1		.00
-1.00	23.1	7.0	4.9	.0	.0	4.9	7.0	2.1	-5.1	.1		.00
-2.00	31.3	9.5	14.7	8.2	34.0	14.7	-24.5	5.5	3.6	.1		.51
-2.50	35.4	10.8	19.6	12.3	51.1	19.6	-40.3	0	19.8	0		1.00
w -2.50	55.0	.0	19.6	31.9	105.4	.0	-85.8	0	19.8	0		1.00
w -2.50	55.0	.0	19.6	31.9	105.5	.0	-85.9	0	20.0	0		1.00
w -2.81	60.9	.0	22.6	37.8	120.4	.0	-97.7	3	2.6	0		1.41
w -3.00	64.5	.0	24.5	41.4	129.6	.0	-105.1	0	0	0		1.69
w -4.00	83.5	.0	34.3	60.4	178.0	.0	-143.7	0	0	0		2.99
w -4.20	87.3	.0	36.3	64.2	187.7	.0	-151.4	0	0	0	.0	3.18
w -4.20	87.3	.0	36.3	64.2	187.8	.0	-151.5	0	0	0		3.18
w -4.80	98.7	.0	42.1	75.6	216.6	.0	-174.5	0	0	0		3.63
w -4.80	98.7	.0	42.1	75.6	216.7	.0	-174.6	0	0	0		3.63
w -4.90	100.7	.0	43.2	77.6	221.7	.0	-178.6	0	0	0		3.69
w -4.91	100.8	.0	43.2	77.7	222.0	.0	-178.8	0	0	0		3.69
w -4.93	101.1	.0	43.4	78.0	222.8	.0	-179.4	0	0	0		3.70
w -5.00	102.5	.0	44.1	79.4	226.4	.0	-182.3	0	0	0		3.75
w -5.35	109.2	.0	47.5	86.1	243.4	.0	-195.9	0	0	0		3.92
w -6.00	121.5	.0	53.9	98.4	274.8	.0	-220.9	0	0	0		4.18
w -7.00	140.5	.0	63.7	117.4	323.2	.0	-259.5	0	0	0		4.43
w -8.00	159.5	.0	73.5	136.4	371.6	.0	-298.1	0	0	0		4.59

Typical Section	Page No	10
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

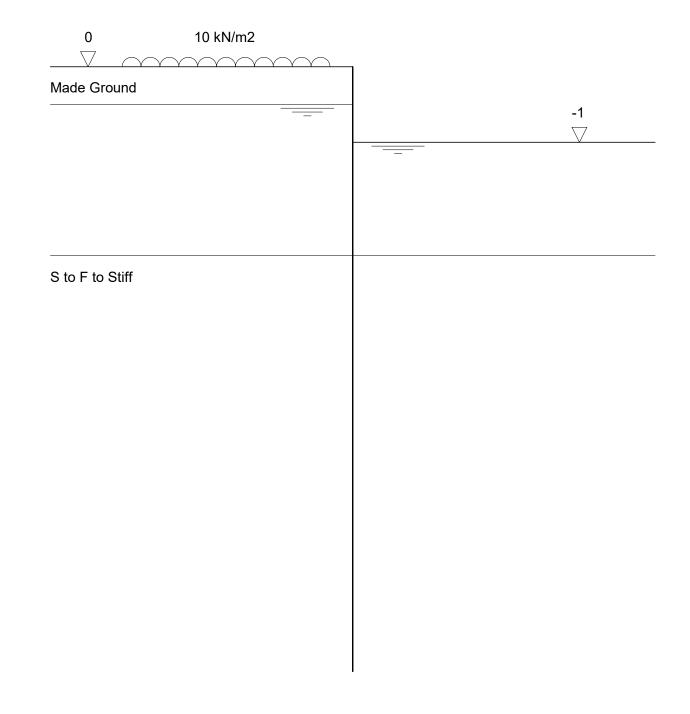
Graphical results from analysis of stage ref 2




Deflection diagram (mm)

Typical Section SLS Analysis	Page No Analysis	11 Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8 450mm Dia. Secant Pile Retaining Wall	Engineer Date	

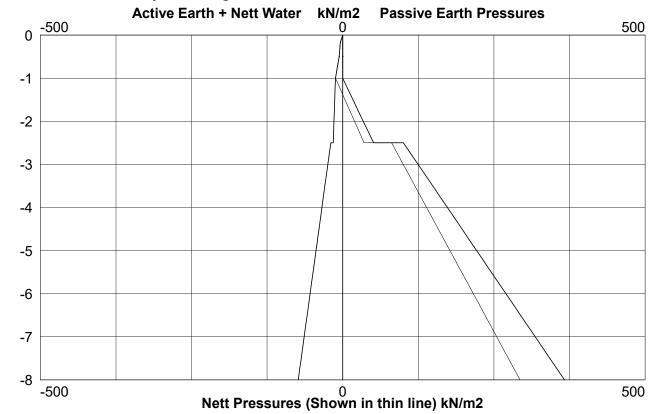
Graphical results from analysis of stage ref 2 continued

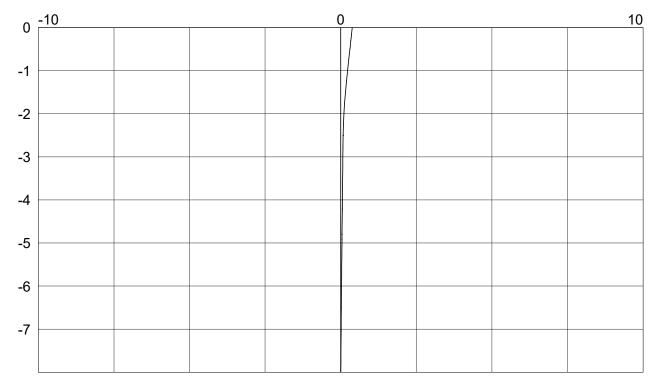

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	12
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.3Stage typePassive water level

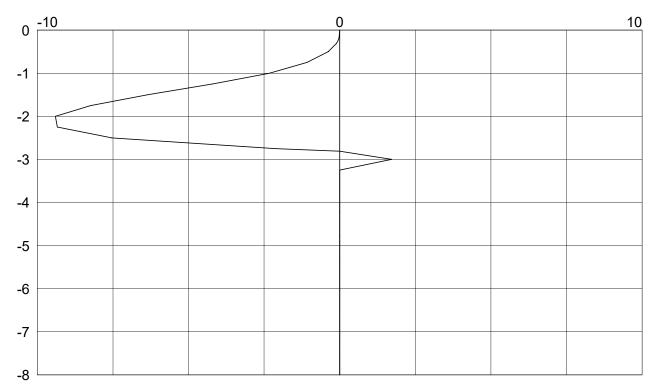

Typical Section	Page No	13
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

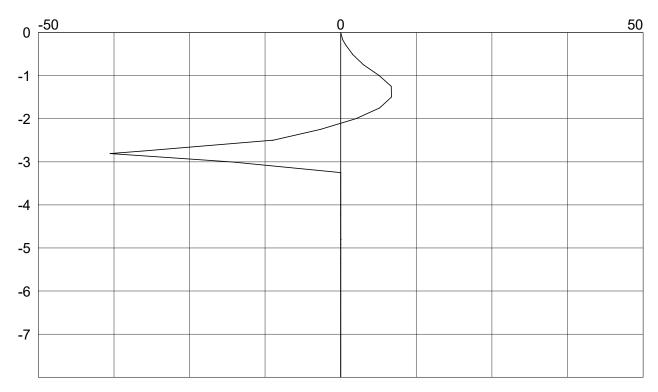

Tabular results from analysis of stage ref 3

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
.00 17	.0 13.1	.0 4.0	0. 0.	0. 0.	0. 0.	0. 0.	0 4.0	0 0	0 3	.4 .4	0	.00. .00
30 30	15.4 15.4	4.7 4.7	0. 0.	0. 0.	0. 0.	0. 0.	4.7 4.7	.1 .1	9 9	.3 .3	.0	.00 .00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	-1.9	.3	.0	.00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	-2.0	.3		.00
-1.00	23.1	7.0	4.9	.0	.0	.0	11.9	2.3	-6.3	.2		.00
-1.00	23.1	7.0	4.9	0.	.0	0.	11.9	2.3	-6.4	.2 .1		.00
-2.00 -2.50	31.3 35.4	9.5 10.8	14.7 19.6	8.2 12.3	34.0 51.1	9.8 14.7	-19.6 -35.4	9.4 7.6	-2.5 11.2	.1		.38 .72
-2.50 w -2.50	55.0	.0	19.6	27.0	100.5	.0	-80.9	7.0	11.2	.1		.72
w -2.50 w -2.50	55.0	.0	19.6	27.0	100.5	.0	-81.0	7.5	11.2	.1		.72
w -2.81	60.9	.0	22.6	32.9	115.5	.0	-92.8	0	38.2	.1		1.00
w -3.00	64.5	.0	24.5	36.5	124.7	.0	-100.2	-1.7	18.1	.1		1.21
w -4.00	83.5	.0	34.3	55.5	173.1	.0	-138.8	0	0	.1		2.29
w -4.20	87.3	.0	36.3	59.3	182.8	.0	-146.5	0	0	.1	.0	2.47
w -4.20	87.3	.0	36.3	59.3	182.9	.0	-146.6	0	0	.1		2.47
w -4.80	98.7	.0	42.1	70.7	211.7	.0	-169.6	0	0	0		2.93
w -4.80	98.7	.0	42.1	70.7	211.8	.0	-169.7	0	0	0		2.93
w -4.90	100.7	.0	43.2	72.7	216.8	.0	-173.7	0	0	0		3.00
w -4.91	100.8	.0	43.2	72.8	217.1	.0	-173.9	0	0	0		3.00
w -4.93	101.1	.0	43.4	73.1	217.9	.0	-174.5	0	0	0		3.02
w -5.00 w -5.35	102.5 109.2	0.	44.1 47.5	74.5 81.2	221.5 238.5	0. 0.	-177.4 -191.0	0 0	0	0 0		3.06 3.27
w -5.35 w -6.00	109.2	0. 0.	47.5 53.9	93.5	238.5	0. 0.	-216.0	0	0 0	0		3.27 3.58
w -0.00 w -7.00	140.5	.0 .0	63.7	112.5	318.3	.0 .0	-254.6	0	0	0		3.92
w -8.00	159.5	.0	73.5	131.5	366.7	.0	-293.2	0	0	0		4.16

Typical Section	Page No	14
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

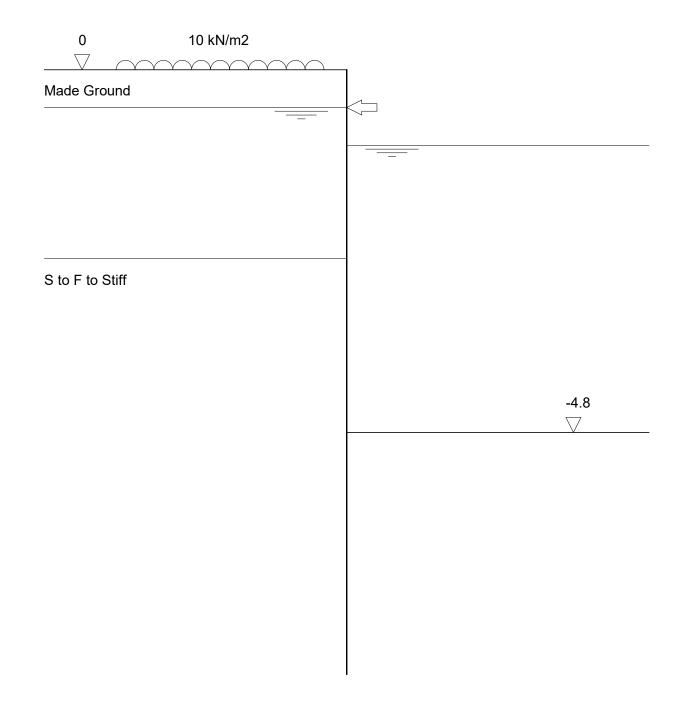
Graphical results from analysis of stage ref 3




Deflection diagram (mm)

Typical Section	Page No	15
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

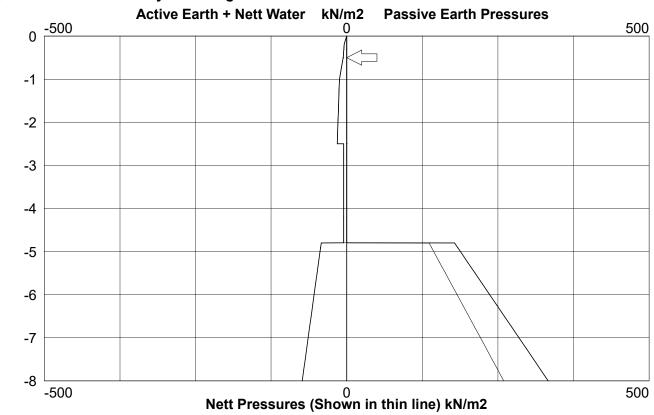
Graphical results from analysis of stage ref 3 continued

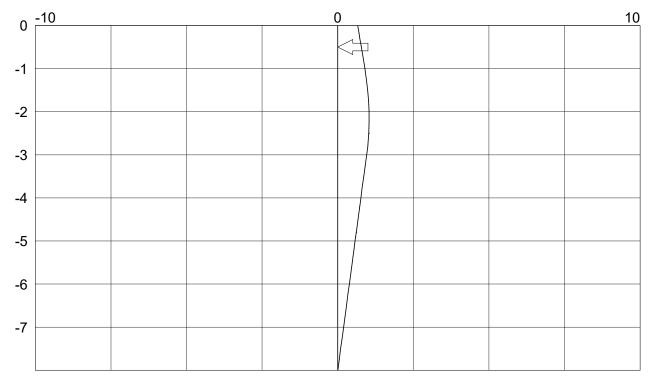

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	16
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.5Stage typePassive side excavation

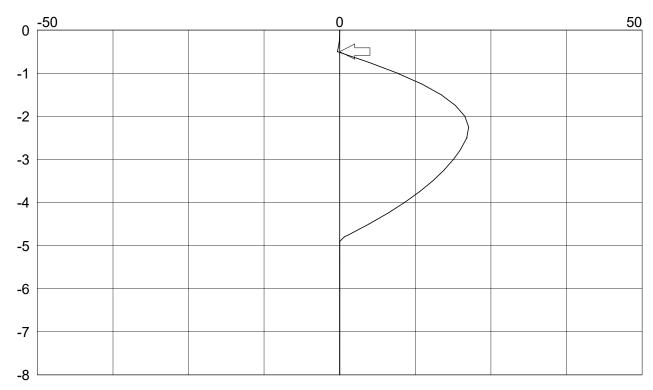

Typical Section	Page No	17
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

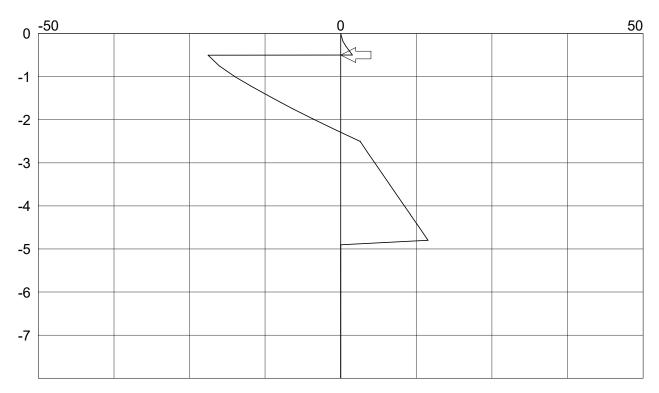

Tabular results from analysis of stage ref 5

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
												.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
w -4.00 w -4.20 w -4.20 w -4.80 w -4.90 w -4.91 w -4.93 w -5.00 w -5.35 w -6.00 w -7.00 w -8.00	87.3 87.3 98.7 98.7 100.7 100.8 101.1 102.5 109.2 121.5 140.5 159.5	.0 .0 .0 .0 .0 .0 .0 .0 .0	36.3 36.3 42.1 42.1 43.2 43.2 43.4 44.1 47.5 53.9 63.7 73.5	.0 .0 .0 37.2 39.2 39.3 39.6 41.0 47.7 60.0 79.0 98.0	.0 .0 .0 178.3 183.4 183.7 184.4 188.0 205.0 236.4 284.8 333.2	31.4 31.4 37.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	4.9 4.9 4.9 -136.2 -140.2 -140.4 -141.1 -143.9 -157.5 -182.5 -221.1 -259.7	-8.5 -8.5 8 7 0 0 0 0 0 0 0 0 0	-11.5 -11.5 -14.4 -14.3 0 0 0 0 0 0 0 0 0 0	.6 .7 .6 .6 .6 .6 .6 .6 .5 .4 .2	.0	.00 .00 .01 .84 .89 1.01 1.60 2.72 3.54 3.99 4.20

Typical Section	Page No	18
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

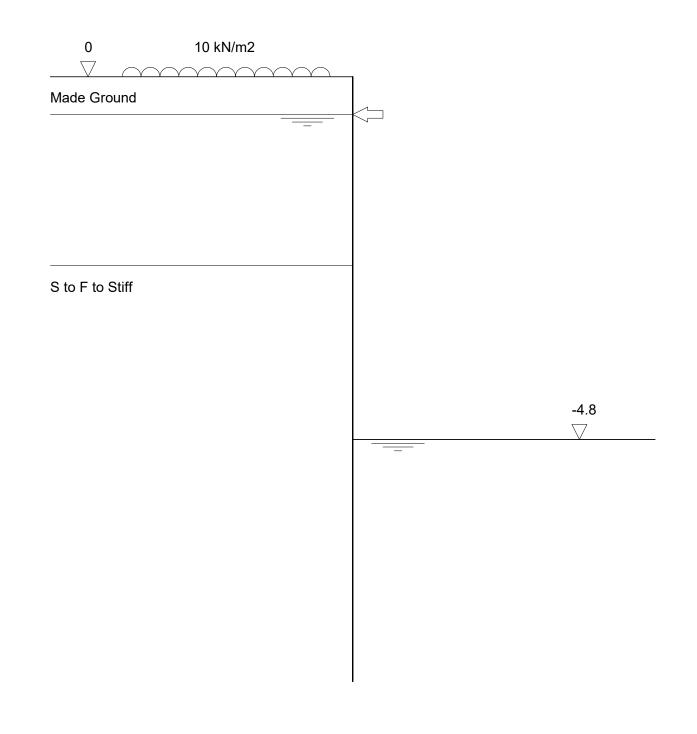
Graphical results from analysis of stage ref 5




Deflection diagram (mm)

Typical Section	Page No	19
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

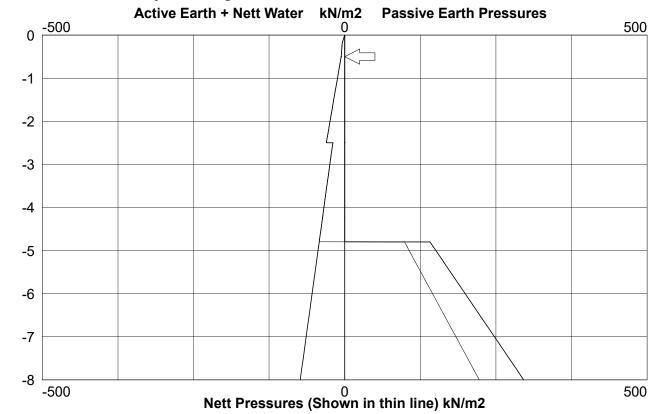
Graphical results from analysis of stage ref 5 continued

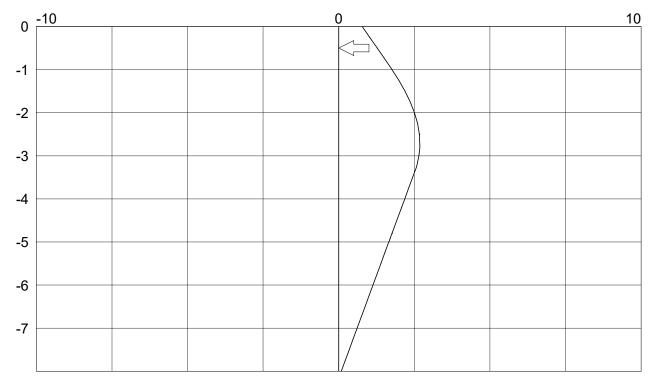

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	20
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.6Stage typePassive water level

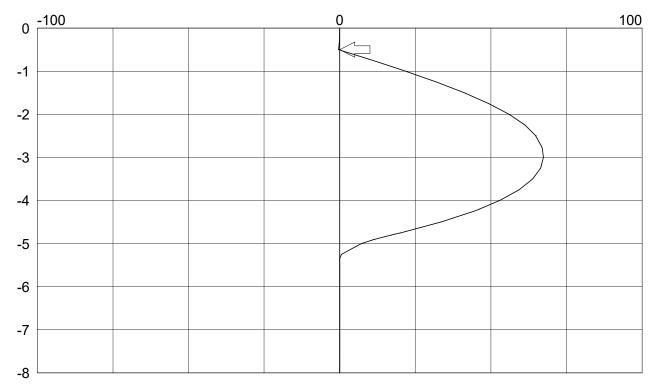

Typical Section	Page No	21
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

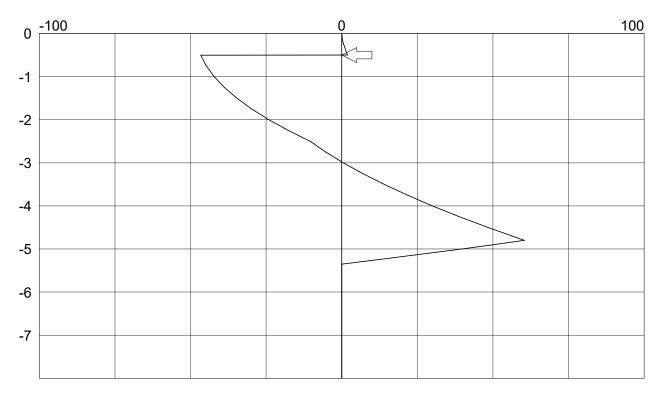

Tabular results from analysis of stage ref 6

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
m .00 17 30 50 50 -1.00 -1.00 -2.50 w -2.50 w -2.50 w -2.50 w -2.50 w -2.50 w -2.81 w -3.00 w -4.00 w -4.20 w -4.20 w -4.20 w -4.80 w -4.90 w -4.91 w -4.93 w -5.00	kN/m2 .0 13.1 15.4 19.0 23.1 23.1 31.3 35.4 55.0 60.9 64.5 83.5 87.3 87.3 98.7 98.7 100.7 100.8 101.1 102.5	kN/m2 .0 4.0 4.7 4.7 5.8 5.8 7.0 7.0 9.5 10.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 4.9 4.9 14.7 19.6 19.6 22.6 24.5 34.3 36.3 36.3 36.3 36.3 42.1 43.2 43.2 43.4 44.1	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 0 4.0 4.7 4.7 5.8 5.8 11.9 11.9 24.2 30.4 19.6 24.2 30.4 19.6 24.5 34.3 36.3 36.3 36.3 42.1 -99.0 -103.0 2-103.8 -106.7	kNm/m 0 0 .1 .4 -21.8 -21.9 -56.0 -64.8 -64.8 -64.8 -64.8 -64.8 -64.8 -64.8 -64.8 -64.8 -64.3 -64.3 -46.2 -17.3 -17.2 -11.4 -11.2 -10.5 -7.1	kN/m 0 3 9 9 -1.9 46.6 42.2 42.2 24.1 10.5 10.5 10.4 3.9 6 -30.0 -37.0 -37.1 -60.4 -60.4 -49.9 -49.3 -47.6 -39.8	mm .8 .9 1.1 1.3 1.3 1.3 1.8 1.8 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7		.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
w -5.35 w -6.00 w -7.00 w -8.00	109.2 121.5 140.5 159.5	0. 0. 0. 0.	47.5 53.9 63.7 73.5	10.5 22.8 41.8 60.8	167.8 199.2 247.6 296.0	0. 0. 0. 0.	-120.3 -145.3 -183.9 -222.5	0 0 0 0	0 0 0 0	1.5 1.1 .6 .1		.99 1.80 2.57 3.05

Typical Section	Page No	22
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

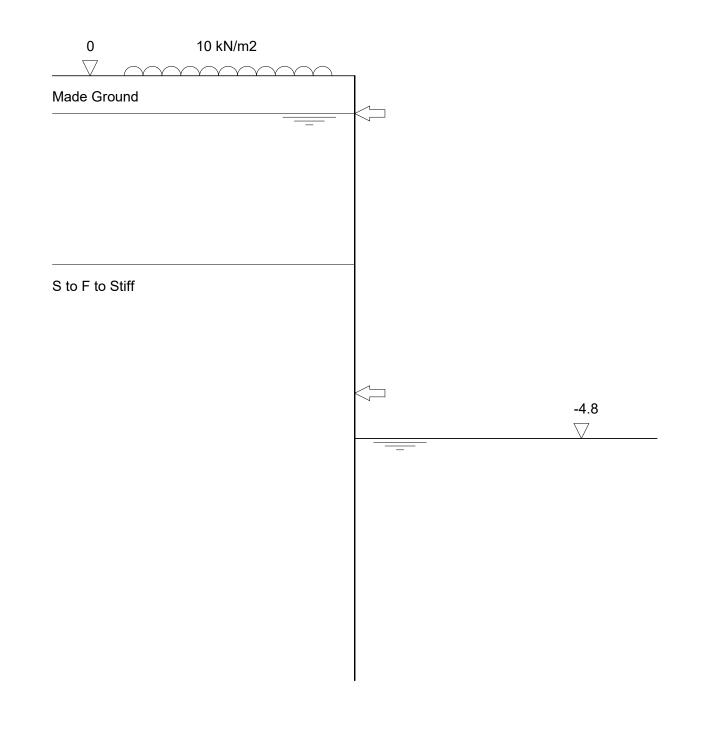
Graphical results from analysis of stage ref 6




Deflection diagram (mm)

Typical Section SLS Analysis	Page No Analysis	23 Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8 450mm Dia. Secant Pile Retaining Wall	Engineer Date	

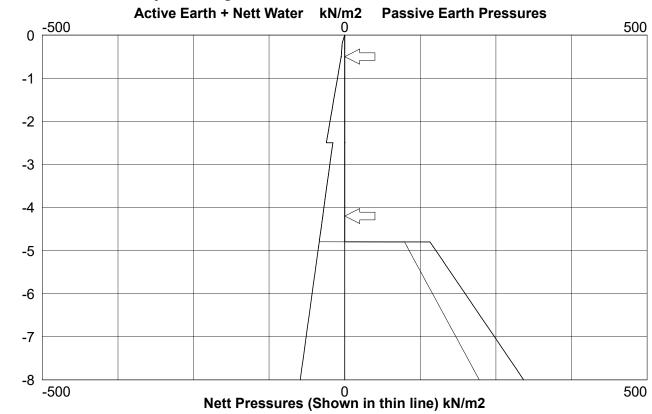
Graphical results from analysis of stage ref 6 continued

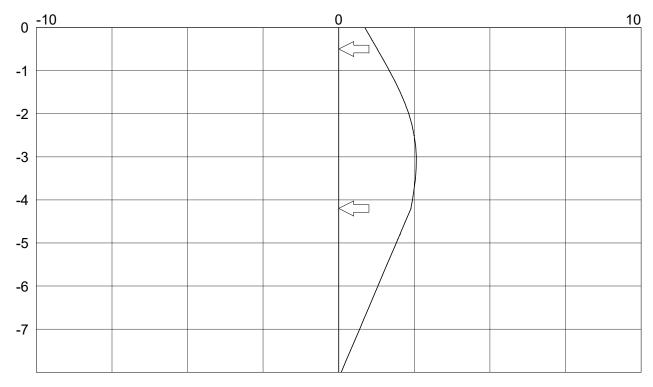

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	24
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.7Stage typeInsert prop

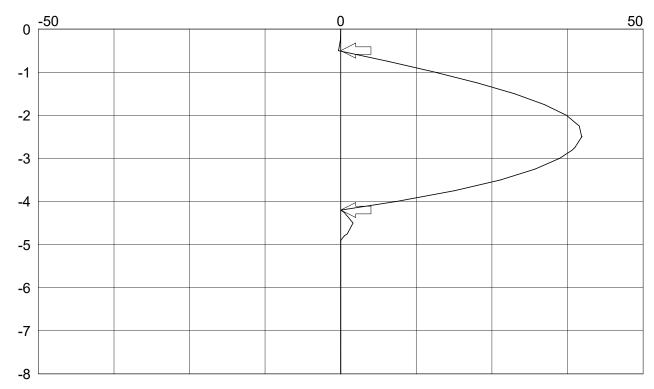

Typical Section	Page No	25
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

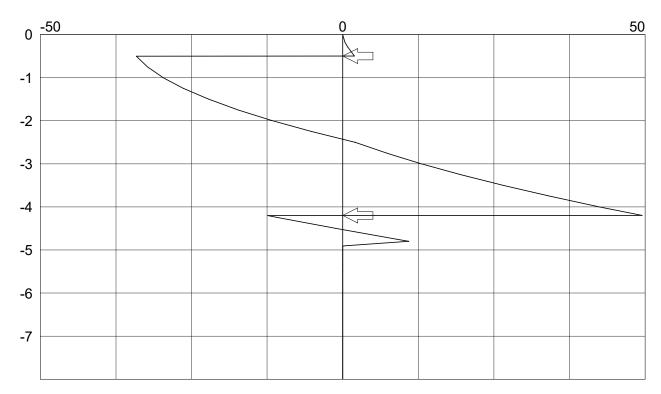

Tabular results from analysis of stage ref 7

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
.00	.0	.0	.0	.0	.0	.0	0	0	0	.9		.00
17	13.1	4.0	.0	.0	.0	.0	4.0	0	3	1.0		.00
30	15.4	4.7	.0	.0	.0	.0	4.7	.1	9	1.1	.0	.00
30	15.4	4.7	.0	.0	.0	.0	4.7	.1	9	1.1		.00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	-1.9	1.3	36.1	.00
50	19.0	5.8	.0	.0	.0	.0	5.8	.4	34.1	1.3		.00
-1.00	23.1	7.0	4.9	.0	.0	.0	11.9	-15.6	29.7	1.7		.00
-1.00	23.1	7.0	4.9	.0	.0	.0	11.9	-15.6	29.7	1.7		.00
-2.00	31.3	9.5	14.7	.0	.0	.0	24.2	-37.3	11.6	2.3		.00
-2.50	35.4	10.8	19.6	.0	.0	.0	30.4	-39.9	-2.0	2.5		.00
w -2.50	55.0	.0	19.6	.0	.0	.0	19.6	-39.9	-2.0	2.5		.00
w -2.50	55.0	.0	19.6	.0	.0	.0	19.6	-39.9	-2.1	2.5		.00
w -2.81	60.9	.0	22.6	.0	.0	.0	22.6	-38.3	-8.6	2.6		.00
w -3.00	64.5	.0	24.5	.0	.0	.0	24.5	-36.2	-13.0	2.6		.00
w -4.00	83.5	.0	34.3	.0	.0	.0	34.3	-9.3	-42.4	2.4		.00
w -4.20	87.3	.0	36.3	.0	.0	.0	36.3	1	-49.5	2.4	62.0	.00
w -4.20	87.3	.0	36.3	.0	.0	.0	36.3	0	12.4	2.4		.00
w -4.80	98.7	.0	42.1	.0	.0	.0	42.1	6	-10.9	2.0		.00
w -4.80	98.7	.0	42.1	.0	141.1	.0	-99.0	6	-10.9	2.0		.01
w -4.90	100.7	.0	43.2	2.0	146.1	.0	-103.0	0	4	2.0		.97
w -4.91	100.8	.0	43.2	2.1	146.4	.0	-103.2	0	0	2.0		1.01
w -4.93	101.1	.0	43.4	2.4	147.2	.0	-103.8	0	0	1.9		1.10
w -5.00	102.5	.0	44.1	3.8	150.8	.0	-106.7	0	0	1.9		1.55
w -5.35	109.2	.0	47.5	10.5	167.8	.0	-120.3	0	0	1.7		2.60
w -6.00	121.5	.0	53.9	22.8	199.2	.0	-145.3	0	0	1.3		3.24
w -7.00	140.5	.0	63.7	41.8	247.6	.0	-183.9	0	0	.7		3.60
w -8.00	159.5	.0	73.5	60.8	296.0	.0	-222.5	0	0	.1		3.79

Typical Section	Page No	26
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

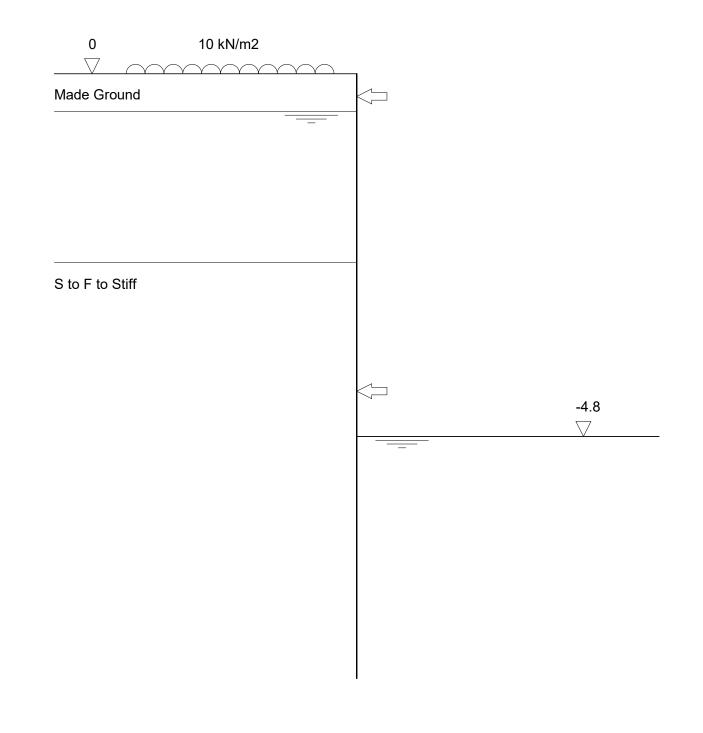
Graphical results from analysis of stage ref 7




Deflection diagram (mm)

Typical Section SLS Analysis	Page No Analysis	27 Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8 450mm Dia. Secant Pile Retaining Wall	Engineer Date	

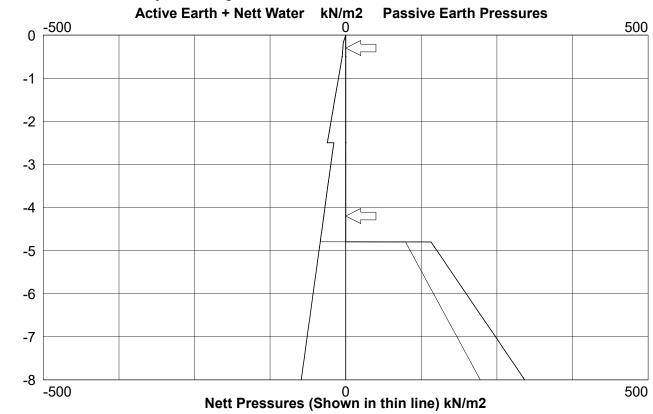
Graphical results from analysis of stage ref 7 continued

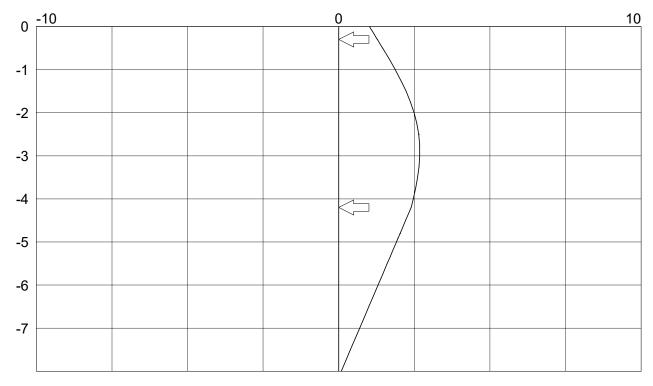

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	28
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.9Stage typeRemove prop

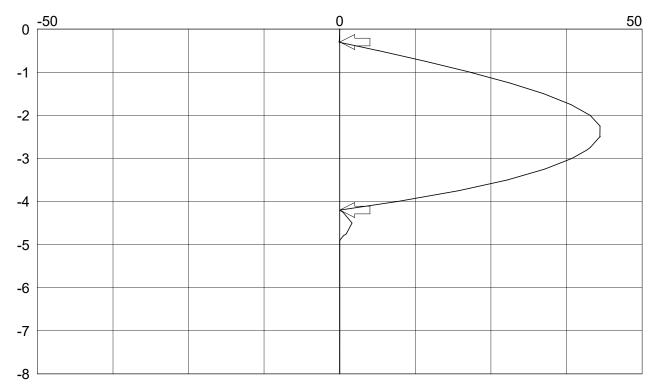

Typical Section	Page No	29
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

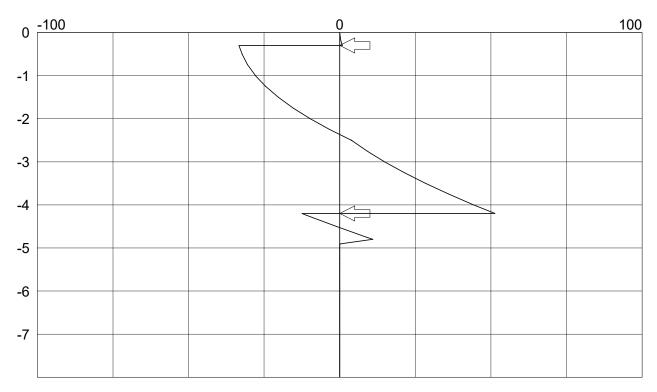

Tabular results from analysis of stage ref 9

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
m .00 17 30 50 50 -1.00 -1.00 -2.50 w -2.50 w -2.50 w -2.50 w -2.50 w -2.50 w -2.50 w -2.81 w -3.00 w -4.00 w -4.20 w -4.20 w -4.80 w -4.90 w -4.91 w -4.93	kN/m2 .0 13.1 15.4 19.0 19.0 23.1 23.1 31.3 35.4 55.0 55.0 60.9 64.5 83.5 87.3 87.3 98.7 98.7 100.7 100.8 101.1	kN/m2 .0 4.0 4.7 4.7 5.8 5.8 7.0 7.0 9.5 10.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 4.9 4.9 14.7 19.6 19.6 19.6 22.6 24.5 34.3 36.3 36.3 36.3 36.3 42.1 43.2 43.2 43.2	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kN/m2 0 4.0 4.7 4.7 5.8 5.8 11.9 11.9 24.2 30.4 19.6 24.2 30.4 19.6 24.5 34.3 36.3 36.3 36.3 42.1 -99.0 -103.0 -103.2 -103.8	kNm/m 0 0 .1 .1 -6.4 -6.5 -21.5 -21.6 -41.4 -43.0 -43.0 -43.0 -43.0 -43.0 -43.0 -40.8 -38.4 -9.7 1 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kN/m 0 3 9 33.3 32.3 32.3 32.3 32.3 27.9 9.8 -3.9 -3.9 -3.9 -10.4 -14.9 -44.3 -51.3 12.4 -10.9 -10.9 -10.9 -10.9 0 0 0 0 0 0 0 0 0 0 0 0 0	mm 1.0 1.2 1.3 1.5 1.5 1.9 2.5 2.6 2.6 2.6 2.7 2.7 2.5 2.4 2.4 2.0 2.0 2.0 2.0 2.0		.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
w -5.00 w -5.35 w -6.00 w -7.00 w -8.00	102.5 109.2 121.5 140.5 159.5	0. 0. 0. 0.	44.1 47.5 53.9 63.7 73.5	3.8 10.5 22.8 41.8 60.8	150.8 167.8 199.2 247.6 296.0	0. 0. 0. 0.	-106.7 -120.3 -145.3 -183.9 -222.5	0 0 0 0	0 0 0 0	1.9 1.7 1.3 .7 .1		1.55 2.60 3.24 3.60 3.79

Typical Section	Page No	30
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

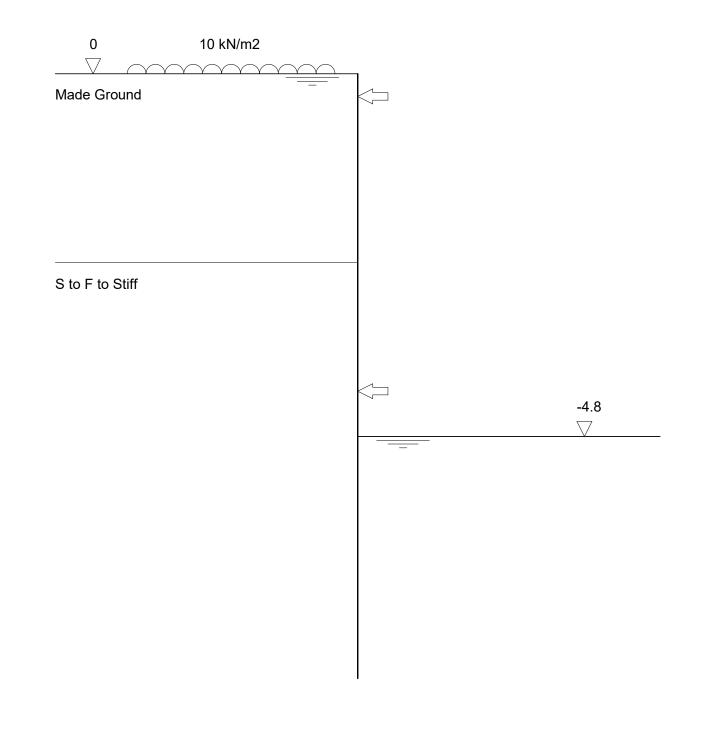
Graphical results from analysis of stage ref 9




Deflection diagram (mm)

Typical Section	Page No	31
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

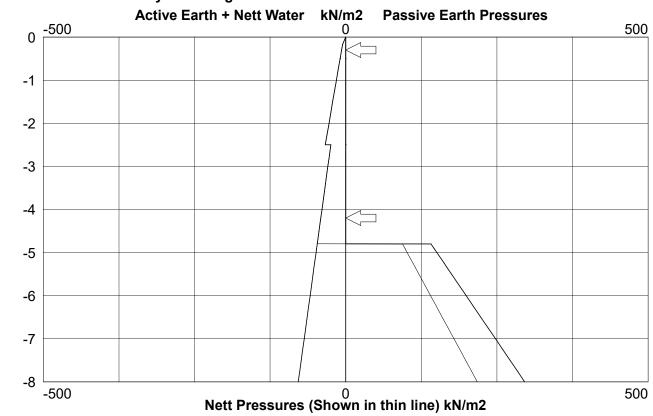
Graphical results from analysis of stage ref 9 continued

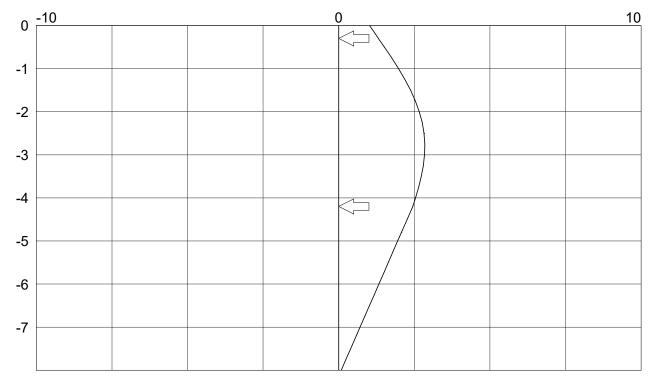

Bending Moment Diagram (kNm/m)

Shear Force Diagram (kN/m)

Typical Section	Page No	32
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Stage ref.10Stage typeActive water level

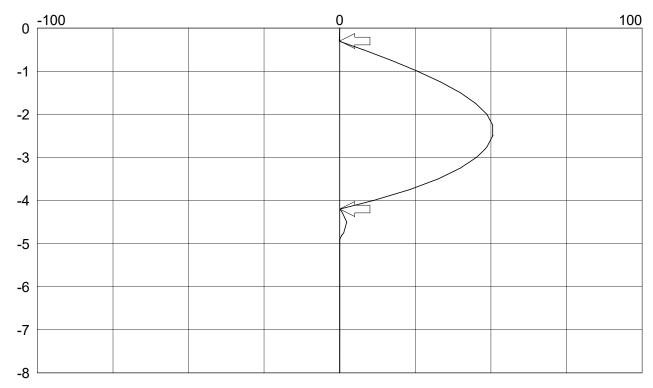

Typical Section	Page No	33
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

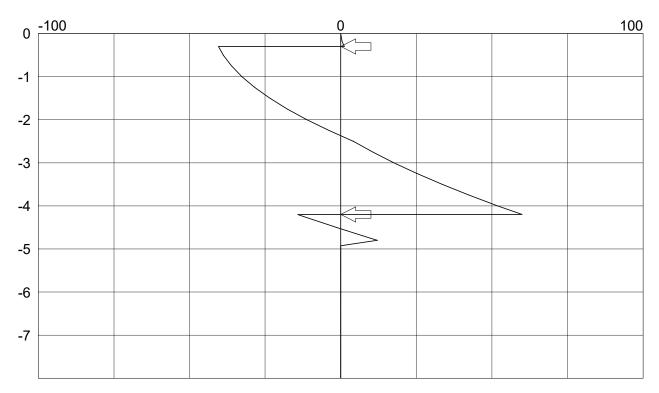

Tabular results from analysis of stage ref 10

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2		Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
.00	.0	.0	.0	.0	.0	.0	0	0	0	1.0		.00
17	11.4	3.5	1.7	.0	.0	.0	5.2	0	4	1.2		.00
30	12.5	3.8	2.9	.0	.0	.0	6.7	.1	-1.2	1.3	41.6	.00
30	12.5	3.8	3.0	.0	.0	.0	6.8	.1	40.4	1.3		.00
50	14.1	4.3	4.9	.0	.0	.0	9.2	-7.7	38.8	1.5	.0	.00
50	14.1	4.3	4.9	.0	.0	.0	9.2	-7.8	38.8	1.5		.00
-1.00	18.2	5.5	9.8	.0	.0	.0	15.3	-25.7	32.7	2.0		.00
-1.00	18.2	5.5	9.8	.0	.0	.0	15.3	-25.7	32.7	2.0		.00
-2.00	26.4	8.0	19.6	.0	.0	.0	27.6	-48.7	11.2	2.7		.00
-2.50	30.5	9.3	24.5	.0	.0	.0	33.8	-50.6	-4.1	2.8		.00
w -2.50	55.0	.0	24.5	.0	.0	.0	24.5	-50.6	-4.1	2.8		.00
w -2.50	55.0	.0	24.5	.0	.0	.0	24.5	-50.6	-4.2	2.8		.00
w -2.81	60.9	.0	27.5	.0	.0	.0	27.5	-48.1	-12.2	2.8		.00
w -3.00	64.5	.0	29.4	.0	.0	.0	29.4	-45.3	-17.6	2.8		.00
w -4.00	83.5	.0	39.2	.0	.0	.0	39.2	-11.3	-51.9	2.5		.00
w -4.20	87.3	.0	41.2	.0	.0	.0	41.2	1	-60.0	2.5	74.2	.00
w -4.20	87.3	.0	41.2	.0	.0	.0	41.2	0	14.2	2.4		.00
w -4.80	98.7	.0	47.0	.0	.0	.0	47.0	8	-12.1	2.1		.00
w -4.80	98.7	.0	47.0	.0	141.1	.0	-94.1	8	-12.1	2.1		.01
w -4.90	100.7	.0	48.1	2.0	146.1	.0	-98.1	0	-2.1	2.0		.87
w -4.91	100.8	.0	48.1	2.1	146.4	.0	-98.3	0	-1.5	2.0		.91
w -4.93	101.1	.0	48.3	2.4	147.2	.0	-98.9	0	0	2.0		.99
w -5.00	102.5	.0	49.0	3.8	150.8	.0	-101.8	0	0	2.0		1.38
w -5.35	109.2	.0	52.4	10.5	167.8	.0	-115.4	0	0	1.7		2.34
w -6.00	121.5	.0	58.8	22.8	199.2	.0	-140.4	0	0	1.3		2.94
w -7.00	140.5	.0	68.6	41.8	247.6	.0	-179.0	0	0	.7		3.30
w -8.00	159.5	.0	78.4	60.8	296.0	.0	-217.6	0	0	.1		3.51

Typical Section	Page No	34
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10	Project	SLS Analysis
Design of embedded retaining walls and cofferdams	File Name	cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

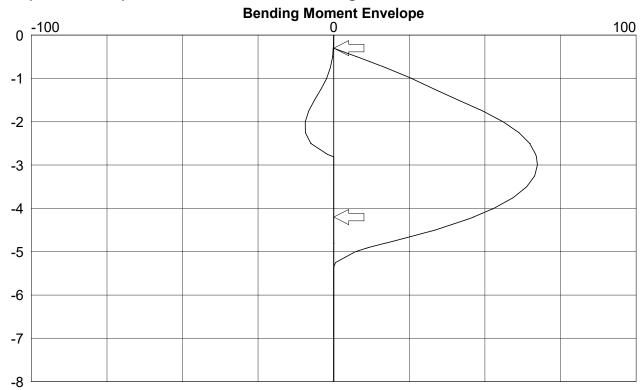
Graphical results from analysis of stage ref 10

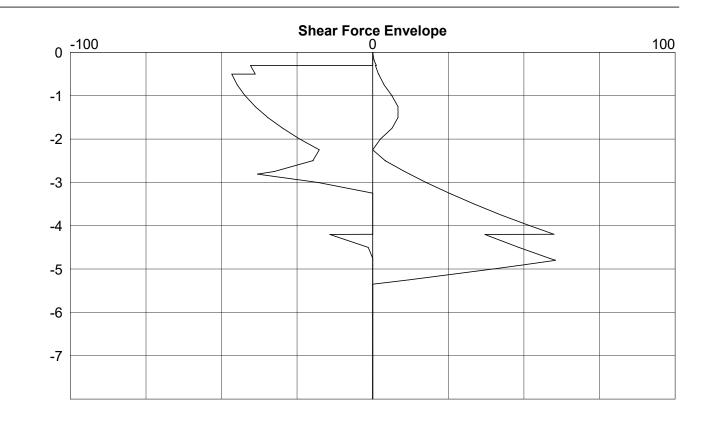



Deflection diagram (mm)

Typical Section SLS Analysis	Page No Analysis	35 Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8 450mm Dia. Secant Pile Retaining Wall	Engineer Date	

Graphical results from analysis of stage ref 10 continued


Bending Moment Diagram (kNm/m)



Shear Force Diagram (kN/m)

Typical Section	Page No	36
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws"
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Graphical plot of envelope from selected construction stages

Typical Section	Page No	37
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Table of envelope for wall forces

Calc Level m	Bending Minimum kNm/m	Bending Maximum kNm/m	Shear Minimum kN/m	Shear Maximum kN/m	Prop Force kN/m
.00	.0	.0	.0	.0	
17	0.	.0	4	.0	44.0
30 30	0. 0.	.1 .1	-1.2 9	.0 40.4	41.6
50	.0 -7.7	.1	9 -1.9	38.8	48.6
50	-7.8	.4	-2.0	46.6	40.0
-1.00	-25.7	2.3	-6.3	42.2	
-1.00	-25.7	2.3	-6.4	42.2	
-2.00	-56.0	9.4	-2.5	24.1	
-2.50	-64.8	7.6	-4.1	19.8	
-2.50	-64.8	7.5	-4.1	19.8	
-2.50	-64.8	7.5	-4.2	20.0	
-2.81	-67.1	.0	-12.2	38.2	
-3.00	-67.4	.0	-17.6	18.1	
-4.00	-53.0	.0	-51.9	.0	
-4.20	-46.3	.0	-60.0	.0	74.2
-4.20	-46.2	.0	-37.1	14.2	
-4.80	-17.3	.0	-60.4	.0	
-4.80	-17.2	.0	-60.4	.0	
-4.90	-11.4	.0	-49.9	.0	
-4.91	-11.2	.0	-49.3	.0	
-4.93	-10.5	.0	-47.6	.0	
-5.00	-7.1	.0	-39.8	.0	
-5.35	.0	.0	.0	.0	
-6.00	.0	.0	.0	.0	
-7.00	.0	.0	.0	.0	
-8.00	.0	.0	.0	.0	

Typical Section	Page No	38
SLS Analysis	Analysis	Temp Condition
CADS Piled Wall Suite Version 6.10 Design of embedded retaining walls and cofferdams		SLS Analysis cal -Temp Condn.pws'
Broxwood View, 29 St. Edmund's Yerrace London NW8	Engineer	AA
450mm Dia. Secant Pile Retaining Wall	Date	13/10/2022

Structural design of wall

Wall section properties

Primary pile diameter	450 mm
Primary pile spacing	600 mm
Infill pile diameter	mm
Main rebar bar diameter	20 mm
Main rebar number of bars	6
Links/Helix bar diameter	10 mm
Links/Helix spacing/pitch	175 mm

Wall material properties

Concrete cube strength	35	N/mm2
Concrete cover	50	mm
Main rebar steel grade	500	N/mm2
Link rebar steel grade	500	N/mm2
Ultimate load factor	1.50	

Wall structural design checks

Check description	Required or Limit	Provided or Actual	Units
Bending resistance. BS8110 plane strain analysis	61	118	kNm
Max longitudinal steel. BS8110 max 6% by area	9543	1885	mm2
Min longitudinal steel. BS8110 min 0.4% by area	636	1885	mm2
Shear resistance. BS8110	54	172	kN
Min link dia. BS8110 6mm or 0.25x bar dia	6	10	mm
Max link spacing. BS8110 12x main bar dia or 0.75d	192	175	mm
Min shear link area. BS8110 Clause 3.4.5	247	898	mm2/m