

REPORT TITLE:

Brill Place, London, NW1 Noise Impact Assessment and Planning Condition 73

CLIENT DETAILS:

Henry Construction

DATE:

22nd November 2022

REPORT REFERENCE:

PC-20-0187-RP2

PREPARED BY:

Joan-Carles Blanco BSc.(Hons) MIOA

CHECKED/AUTHORISED BY:

Martin Jones BSc.(Hons) MIOA

Southern Office Oyster House, Severalls Lane Colchester, Essex CO4 9PD t 0845 241 0142 Northern Office The Core, Bath Lane, Newcastle Helix Newcastle upon Tyne, NE4 5TF info@paceconsult.co.uk www.paceconsult.co.uk

Pace Consult Ltd Registered in England and Wales Number 057336

Contents

1	SI	JMMARY	3								
2	IN	TRODUCTION	4								
3	3 CRITERIA										
	3.1	Nearest noise sensitive receptors.	5								
	3.2 indu	Acoustic criteria: BS 4142:2014+A1:2019 Methods for rating and strial and commercial sound	assessing 6								
	3.3	Acoustic Criteria: Planning Condition 73	8								
4	C	ALCULATION ASSUMPTIONS	9								
	4.1	Plant location.	9								
	4.2	Plant noise levels.	10								
5	C	ALCULATION SUMMARY	12								
6	B	S4142:2014 ASSESSMENT	15								
	6.1	Emergency plant.	15								
7	C	ONCLUSIONS	16								

Document Status and Revision Schedule

Issue/Revision	Description/Comments	Date	Prepared by	Approved by
-	Checked and Authorised	22/11/22	JCB	MJ

1 Summary

Pace Consult Limited was commissioned by Henry Construction to undertake a noise impact assessment of the proposed plant units serving the proposed development name Brill Place, London, NW1, affecting the nearest noise sensitive receptors.

This report has been prepared in accordance with national acoustic guidelines and British Standards such as BS4142:2014 *Methods for rating and assessing industrial and commercial units* and Planning Condition 73.

The noise impact assessment based on the methodology contained within the BS4142:2014 has anticipated that the specific sound levels (noise from plant units) will have a low impact at the nearest noise sensitive receptors.

The noise assessment also shows that the noise emission from the proposed plant is more than 10 dB below the measured background at the nearest noise sensitive receptors, which is fully compliant with the criteria recommended by the planning condition 73.

2 Introduction

Pace Consult Limited was commissioned by Henry Construction to undertake a noise impact assessment of the proposed plant units serving the proposed development name Brill Place, London, NW1, affecting the nearest noise sensitive receptors

This report has been prepared in accordance with national acoustic guidelines and BS such as BS4142:2014 *Methods for rating and assessing industrial and commercial units* and Planning Condition 73.

A previous noise survey was completed by Hoare lea and documented the findings in the report reference *REP-1011463-AP-20191122-Stage 3 acoustics report-Rev01-F* dated February 2020. Calculated noise data from the proposed plant units at the nearest noise sensitive receptors were assessed against the noise criteria recommended within the Hoare lea report.

The levels used in the calculations have been submitted by Henry Construction, the M&E technical submittals and plant manufacturer's data. To undertake the outdoor sound level calculations Part 2 of ISO 9613 Acoustics -- Attenuation of sound during propagation outdoors -- Part 2: General method of calculation was used. This ISO standard is incorporated in the SoundPLAN v 8.2 software. This software was used to generate outdoor sound levels from the Plant units to the nearest noise sensitive receptors and to produce noise contour maps.

The sound pressure levels from the proposed plant were assessed during the night time with all plant items operating continuously.

3 Criteria

The external noise emission criteria at the nearest noise sensitive receptors, as taken from the Hoare Lea report, are as follows:

7.2.2 Plant noise limits. Based on the London Borough of Camden requirements, the cumulative maximum sound pressure levels for fixed plant, equipment and machinery associated with the development shall not exceed the levels presented in Table 7 at 1 m from the façade of the nearby residential premises. Table 7 Maximum permissible sound pressure levels at 1m from the nearest noise sensitive premises Night (23:00 - 07:00) Time of day Daytime (07:00 - 23:00) Normal operation L_{Aeg} 44 dB¹ L_{Aeg} 37 dB¹ During operation of emergency

L_{Aeq} 52 dB

L_{Aeq} 59 dB ¹ If plant noise contains any tonal characteristics, a further 5 dB reduction shall be applied.

Figure 1. Recommneded plant noise criteria.

plant

3.1 Nearest noise sensitive receptors.

The nearest noise sensitive receptors included within the noise assessment are included below.

Figure 2. Nearest noise sensitive receptors.

3.2 Acoustic criteria: BS 4142:2014+A1:2019 Methods for rating and assessing industrial and commercial sound

This standard sets out a methodology for the assessment of noise from factories, industrial premises or fixed installations and sources of an industrial/commercial nature.

The procedure contained in BS4142 for assessing the impact is to compare the measured or predicted noise level from the source in question, the 'specific noise level', at the assessment position with the correct background noise level for the worst-case time of operation.

Where the noise contains a 'distinguishable, discreet, continuous note (whine, hiss, screech, hum etc.) or if there are distinct impulses in the noise (bangs, clicks or clatters), or if the noise is irregular enough to attract attention' then a range of correction factors can be added to the specific noise level as appropriate to obtain the 'rating level'.

As this is a prescriptive report prior to plant installation, overall rating noise levels will be specified for the new installation. Compliance with the rating value will be necessary to provide evidence that significant adverse impact has been avoided as required by the NPSE.

To assess the impact, the measured background noise level is subtracted from the rating noise level. BS4142 states:

The significance of sound of an industrial and/or commercial nature depends upon both the margin by which the rating level of the specific sound source exceeds the background sound level and the context in which the sound occurs. An effective assessment cannot be conducted without an understanding of the reason(s) for the assessment and the context in which the sound occurs/will occur. When making assessment and arriving at decisions, therefore, it is essential to place the sound in context.

Obtain an initial estimate of the impact of the specific sound by subtracting the measured background sound level (See Clause 8) from the rating level (see Clause 9) and consider the following.

a) Typically, the greater the difference, the greater the magnitude of the impact.

b) A difference of around +10dB or more is likely to be an indication of a significant adverse impact, depending on the context.

c) A difference of around 5dB is likely to be an indication of an adverse impact, depending on the context.

d) The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context.

Where the initial estimate of the impact needs to be modified due to the context, take all pertinent factors into consideration, including the following.

1) The absolute level of sound. For a given difference between the rating level and the background sound level, the magnitude of the overall impact might be greater for an acoustic environment where the residual sound level is high than for an acoustic environment where the residual sound level is low.

Where background sound levels and rating levels are low, absolute levels might be as, or more, relevant than the margin by which the rating level exceeds the background. This is especially true at night.

Where residual sound levels are very high, the residual sound might itself result in adverse impacts or significant adverse impacts, and the margin by which the rating level exceeds the background might simply be an indication of the extent to which the specific sound source is likely to make those impacts worse.

2) The character and level of the residual sound compared to the character and level of the specific sound. Consider whether it would be beneficial to compare the frequency spectrum and temporal variation of the specific sound with that of the ambient or residual sound, to assess the degree to which the specific sound source is likely to be distinguishable and will represent an incongruous sound by comparison to the acoustic environment that would

occur in the absence of the specific sound. Any sound parameters, sampling periods and averaging time periods used to undertake character comparisons should reflect the way in which sound of an industrial and/or commercial nature is likely to be perceived and how people react to it.

3) The sensitivity of the receptor and whether dwellings or other premises used for residential purposes will already incorporate design measures that secure good internal and/or outdoor acoustic conditions, such as;

i) Façade sound insulation treatment

ii) Ventilation and/or cooling that will reduce the need to have windows open so as to provide rapid or purge ventilation; and Acoustic screening.

3.3 Acoustic Criteria: Planning Condition 73

Planning condition 73 is included below for reference.

Prior to first use of the relevant part of the development, details of plant machinery shall be submitted to and approved in writing by the Local Planning Authority. The measures shall ensure that the external noise level emitted from plant/machinery/equipment will be lower than the lowest existing background noise level by at least 5dBA, by 10dBA where the source is tonal, as assessed according to BS4142:2014 at the nearest and/or most affected noise sensitive premises, with all machinery operating together at maximum capacity. A post installation noise assessment shall be carried out where required to confirm compliance with the noise criteria and additional steps to mitigate noise shall be taken, as necessary. Approved details shall be implemented prior to occupation of the development and thereafter be permanently retained.

4 Calculation assumptions

The figure below shows the location of the plant items and associated noise levels used in the noise impact calculations.

4.1 Plant location.

Basement Level

Figure 3. Plant location basement level.

• Ground Floor Mezzanine

Figure 4. Plant location mezzanine level.

• Seventeenth Floor open plant Area.

Figure 5. Plant location 17th floor.

• MVHR units serving the residential units.

4.2 Plant noise levels.

Basement.

Pumps, MVHR. The exhaust and intake ductworks serving these units are connected across the lightwell at ground floor level. The ductworks include a noise attenuator which is selected to provide a sound reduction of NR40 at 5 m.

Emergency generator. Sound pressure level of 88 dBA at 7 m.

Mezzanine floor.

MVHR units. The exhaust and intake ductworks include a noise attenuator with a sound reduction of NR40 at 5 m.

Level 17

Adiabatic dry air cooler. Sound power LW 74 dBA.

Twenty second floor

Emergency smoke extract fan.

Sound Data

Spectrum (Hz):	63	125	250	500	1K	2K	4K	8K	dBW	dB(A) @ 3m
Inlet (dB):	97	95	102	109	117	110	101	93	119	98
Outlet (dB):	101	97	100	107	116	111	103	94	118	97

Sound levels are quoted as in-duct values. dB(A) values are average spherical free-field for comparative use only.

Figure 6. Extract fan sound data.

MVHR in each residential unit.

Maxi Plus BY

Maxi	Plus BY	s	Sound Power Levels, $L_{\rm w}$ (dB) - Octave Bands Frequency Hz.							
Curve Ref		63	125	250	500	1k	2k	4k	8k	dBA © 3m
4000/	Extract	67	63	66	64	64	61	58	54	
100% (238 L/sec)	Supply	72	68	71	69	69	66	63	59	
	Breakout	68	63	63	55	37	31	21	18	39.4
00%	Extract	63	58	61	59	58	55	51	46	
80% [186.]/sec]	Supply	68	63	66	64	63	60	56	51	
[100 000]	Breakout	67	61	61	52	36	30	20	13	37.2
60%	Extract	58	52	53	51	51	48	43	35	
	Supply	63	57	58	56	56	53	48	40	
135 / secl										
[135 l/ sec]	Breakout	67	59	57	48	34	27	18	12	33.8
[135 / sec]	Breakout Extract	67 51	59 44	57 44	48 42	34 42	27 37	18 31	12 21	33.8
[135 [/sec] 40% [84.]/sec]	Breakout Extract Supply	67 51 56	59 44 49	57 44 49	48 42 47	34 42 47	27 37 42	18 31 36	12 21 26	33.8
[135 [/ sec] 40% [84 [/ sec]	Breakout Extract Supply Breakout	67 51 56 63	59 44 49 54	57 44 49 50	48 42 47 40	34 42 47 26	27 37 42 20	18 31 36 12	12 21 26 12	33.8 27.3
[135 [/ sec] 40% [84 [/ sec]	Breakout Extract Supply Breakout Extract	67 51 56 63 40	59 44 49 54 32	57 44 49 50 30	48 42 47 40 29	34 42 47 26 27	27 37 42 20 24	18 31 36 12 3	12 21 26 12 4	33.8 27.3
[135 [/sec] 40% [84 [/sec] 20% [35 [/sec]	Breakout Extract Supply Breakout Extract Supply	67 51 56 63 40 45	59 44 49 54 32 37	57 44 49 50 30 35	48 42 47 40 29 34	34 42 47 26 27 32	27 37 42 20 24 29	18 31 36 12 3 8	12 21 26 12 4 9	33.8 27.3
[135 [/sec] [84 [/sec] 20% [35 [/sec]	Breakout Extract Supply Breakout Extract Supply Breakout	67 51 56 63 40 45 55	59 44 49 54 32 37 51	57 44 49 50 30 35 39	48 42 47 40 29 34 34	34 42 47 26 27 32 19	27 37 42 20 24 29 10	18 31 36 12 3 8 8	12 21 26 12 4 9 11	33.8 27.3 20.4

Figure 7. Maxi Plus sound data (curve ref 60%).

Maxi

N	laxi	S	Sound Power Levels, $L_{\rm W}$ [dB] - Octave Bands Frequency Hz.								
Curve Ref		63	125	250	500	1k	2k	4k	8k	dBA @ 3m	
4000/	Extract	52	57	61	58	59	58	55	50		
100% [1771/sec]	Supply	57	62	66	63	64	63	60	55		
[177 9 000]	Breakout	53	57	58	50	33	29	19	11	34.3	
0004	Extract	48	53	55	53	54	52	49	42		
80% [1381/sec]	Supply	53	58	60	58	59	57	54	47		
[100 // 300]	Breakout	52	56	56	47	32	28	18	11	32.1	
80%	Extract	42	47	48	46	47	45	40	32		
60% (991/sec)	Supply	47	52	53	51	52	50	45	37		
	Breakout	51	54	52	44	31	26	16	10	28.7	
	Extract	36	40	40	37	38	36	30	18		
40%	Cupply										
[601/sec]	Supply	41	45	45	42	43	41	35	23		
(60 l/sec)	Breakout	41 48	45 50	45 46	42 35	43 23	41 19	35 12	23 10	22.5	
(60 l/sec)	Breakout Extract	41 48 27	45 50 29	45 46 27	42 35 22	43 23 22	41 19 19	35 12 8	23 10 5	22.5	
(60 l/sec)	Breakout Extract Supply	41 48 27 32	45 50 29 34	45 46 27 32	42 35 22 27	43 23 22 27	41 19 19 24	35 12 8 15	23 10 5 6	22.5	
(60 l/ sec) 20% 23 l/ sec)	Breakout Extract Supply Breakout	41 48 27 32 44	45 50 29 34 50	45 46 27 32 37	42 35 22 27 28	43 23 22 27 16	41 19 19 24 11	35 12 8 15 10	23 10 5 6 10	22.5 18.0	

Figure 8. Maxi sound data (curve ref 60%).

Midi

N	ſidi	S	ound Pow	ver Levels	, <i>L_w</i> (dB) ·	Octave I	Bands Fre	equency H	Z.	Sound Pressure
Curve Ref		63	125	250	500	1k	2k	4k	8k	dBA @ 3m
4.000	Extract	65	65	63	63	59	58	57	54	
100% [101]/sec]	Supply	70	70	68	68	64	63	62	59	
	Breakout	55	57	53	42	34	31	24	17	29.7
	Extract	61	61	58	58	54	53	50	46	
80% [791/sec]	Supply	66	66	63	63	59	58	55	51	1
[787/800]	Breakout	53	57	49	38	32	28	21	15	27.2
00%	Extract	55	55	51	51	47	45	41	36	
60% (581/sec)	Supply	60	60	56	56	52	50	46	41	
	Breakout	50	55	45	36	30	23	16	13	24.4
	E	47	40	4.4	4.4	00	05	00	0.1	
40%	Supply	52	51	46	46	43	40	34	26	-
[301/ 580]	Breakout	42	52	41	36	27	17	12	11	21.6
	Extract	33	32	24	24	22	18	8	4	
20% [141/sec]	Supply	38	37	29	29	27	23	14	7	1
(, 000)	Breakout	38	52	35	28	18	10	10	11	19.2
The breakout	dB(A) sound pr	essure val	ues are gi	ven for he	mispheric	al free fie	ld propaga	ation at a	distance o	of 3m from the unit

Figure 9. Midi sound data (curve ref 60%).

MVHR unit includes a sound attenuator with the following Insertion Losses dB.

Table 1 MVHR unit attenuator IL dB.										
63 125 250 500 1k 2k 4k 8k										
2 4 8 16 32 29 26 15										

5 Calculation Summary

The table below shows the highest calculated sound levels at the nearest noise sensitive receptors.

Table 2. Calculated Sound Pressure Level dBA							
ID Calculated Sound Pressure Level dBA							
R1	21						
R2	23						

The calculation takes into consideration the sound reduction offered by the proposed attenuators.

The table overleaf includes an example of the sound propagation calculation based on the highest calculated sound levels (R2).

The calculated sound pressure considers the sound power per unit provided by the manufacturer, correction for propagation in limited spatial angle, distance source – receiver, mean attenuation due to geometrical spreading, mean attenuation due to ground effect, mean attenuation due to screening, mean attenuation due to air absorption, and level increase due to reflection from solid surfaces.

Table 3. Det	ailed noi	se prop	oagati	on calc	ulation.										
Source	Source	Li dB(A)	R'w dB	L'w dB(A)	Lw dB(A)	l or A m.m ²	Ko dB	Sm	Adiv dB	Agr dB	Abar dB	Aatm dB	dLrefl dB(A)	Ls dB(A)	Lr dB(A)
							R2								
Basement ventilation plant room across lightwell	Point			60.2	60.2		0	72 71	- 48.2	3	- 21.4	-0.6	16.3	93	q
17 th Floor Plant Facade 01	Area	57	32	29.6	42	17.3	3	73.5	48.3	3	- 19.9	-0.1	2.5	-17.9	-18
17 th Floor Plant Facade 02	Area	58	32	30.3	42.3	15.9	3	70.3	- 47.9	3	-5.7	-0.1	2.3	-3.1	-3
17" Floor Plant Facade 03	Area	57	32	29.6	42	17.3	3	72.59	- 48.2	3	-0.1	-0.1	2.5	2.1	2
Plant Facade 04	Area	57	32	29	44.8	38.8	3	75.22	- 48.5	3	- 17.9	-0.1	2.6	-13.1	-13
Apartment 1.1 Exhaust	Point			22.6	22.6		0	52.33	- 45.4	3	0	-0.2	4.2	-15.9	-16
Apartment 1.1 FAI	Point			27.4	27.4		0	57.24	- 46.1	3	-9.9	-0.1	1.7	-24.1	-24
Apartment 2.1 Exhaust	Point			25.8	25.8		0	55.91	- 45.9	3	0	-0.6	2.5	-15.2	-15
Apartment 2.1 FAI	Point			23.5	23.5		0	50.54	- 45.1	3	0	-0.2	4.1	-14.6	-15
Apartment 3.4 Exhaust	Point			25	25		0	81.87	- 49.3	3	0	-0.3	2.6	-19	-19
Apartment 3.4 FAI	Point			31.3	31.3		0	78.89	- 48.9	3	0	-0.3	2.6	-12.3	-12
MVHR mezzanine floor exhaust	Point			60.2	60.2		0	69.72	- 47.9	3	- 21.5	-0.5	16.3	9.6	10
MVHR mezzanine floor Intake	Point			60.2	60.2		0	74.02	- 48.4	3	- 21.4	-0.6	16.3	9.2	9
17" Floor Plant Roof	Area	57	0	56.6	73.2	46.1	0	73.69	48.3	3	-7.5	-0.3	2.6	22.7	23
											Cu	mulative	Noise le	vels	23

The figure overleaf includes the legend of the acoustic parameters used to calculate the sound pressure level at receivers.

Legend		
Source		Source name
Source type		Type of source (point, line, area)
Li	dB(A)	Level inside
R'w	dB	Rated transmission loss
L'w	dB(A)	Sound power level per m, m²
Lw	dB(A)	Sound power level per unit
l or A	m,m²	Size of source (length or area)
Ко	dB	Correction for propagation in limited spacial angle
S	m	Distance source - receiver
Adiv	dB	Mean attenuation due to geometrical spreading
Agr	dB	Mean attenuation due to ground effect
Abar	dB	Mean attenuation due to screening
Aatm	dB	Mean attenuation due to air absorption
dLrefl	dB(A)	Level increase due to reflections
Ls	dB(A)	Unassessed sound pressure level at receiver Ls=Lw+Ko+ADI+Adiv+Agr+Abar+Aatm+Afol_site_house+Awind+dLrefl
Lr	dB(A)	Assessed level of time slice

Figure 10. Acoustic parameters.

The figure below includes the noise map of the study area.

Figure 11. Noise map.

6 BS4142:2014 Assessment

The table below shows the assessment method recommended by BS4142:2014 *Method for rating and assessing industrial and commercial sound.*

The frequency contains of the units do not show a detectable tonality, also the calculated noise levels are excessively below the measured background, and therefore it is considered that no tonalities correction should be included within the assessment.

Table 4. BS4142:2014 Assessment. Night time											
ID	Calculated Sound Pressure Level dBA	correction as discussed in BS4142:2014	LA90 dB	Excess of rating over background level							
R1	21	0	07	-16							
R2	23	U	37	-14							

The table above shows that the calculated noise levels are more than 10 dB below the measured background, which is an indication that the specific sound levels (noise emission from plant) will have a low impact at the nearest noise sensitive receptors.

Regarding condition 73. The noise assessment shows that the noise emission from the proposed plant is more than 10 dB below the measured background at the nearest noise sensitive receptors, which is fully compliant with the criteria recommended by the planning condition.

6.1 Emergency plant.

The noise impact of the proposed emergency plants are included in the table below.

Emergency generator noise impact.

Table 5. Noise Assessment.									
ID	Calculated Sound Pressure Level dBA	LA90 dB	Excess of rating over background level						
R1	23	50	-36						
R2	20	59	-39						

The table below includes the smoke extract fan noise impact.

Table 3. Noise Assessment.			
ID	Calculated Sound Pressure Level dBA	LA90 dB	Excess of rating over background level
R1	50	59	-9
R2	52		-7

Based on the assessment tables, it is recommended that the maintaining test of the smoke extract fan and generator will be completed during the afternoon period (12:00 to 14:00), which have the highest measured background levels in order to avoid noise nuisance at the nearest noise sensitive receptors.

7 Conclusions

The BS4142:2014 environmental noise assessment has anticipated that the specific sound levels (noise from the proposed plant units) will have a low impact at the nearest noise sensitive receptors.

The noise assessment also shows that the noise emission from the proposed plant is more than 10 dB below the measured background at the nearest noise sensitive receptors, which is fully compliant with the criteria recommended by planning condition 73.