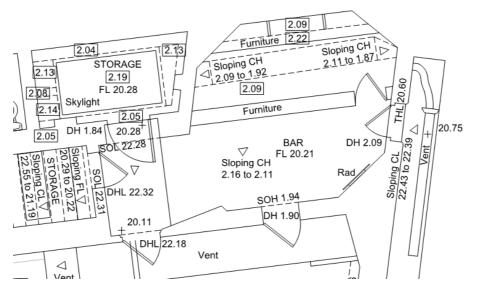


Design note

Project	Date	Ву	Reference
Ambassadors Theatre, London	10 Nov 2022	RR	5208_DNT_1


Title

Remedial works, structural design philosophy (rev A)

Introduction

This design note discusses the need for remedial works and the structural design philosophy adopted for the Ambassadors Theatre in West Street, London. The reason that this has come to light now is that the strip out has only happened when the construction stage started, revealing the full extent and the condition of the existing structure.

This note refers to the bar and storage area (turned into an accessible toilet), both located at lower ground floor (i.e. stalls level).

Excerpt from the stalls level (LGF) survey drawing showing the bar and existing storage area

Condition of Existing Structure

It has only been possible to establish the condition of the existing structure, following the strip out of the bar and storage area. In general the structure is in a good condition with the exception of the overhead structure, supporting the pavement and the skylights. In general, the overhead structure consists of steel beams with a concrete infill (a so-called filler joist slab).

Generally speaking the structure has been affected by moist (be it dampness or even water ingress) which has in turn resulted in the corrosion of the steel beams. As a consequence, the remedial works will need to incorporate an updated waterproofing solution to prevent the issue from occurring again.

In the storage area the steel beams have severely corroded with a significant amount of concrete that has spalled. The corrosion of the beams varies from severe delamination of the flanges to most of the actual section being lost. As a consequence, the existing structure can no longer be relied upon, and remedial works are required to make the structure safe again.

In the bar area the steel beams turned out to be in a better condition than in the storage. However, some local corrosion (and delamination) was found on the steelwork which could be inspected. It is worth noting that

most of the steelwork in this area is encased in concrete: therefore, it is not possible to inspect the full extent of the steelwork (without demolishing the existing structure) and establish the full extent of the corrosion. As a consequence, it has been decided to undertake remedial works, based on the worst case scenario, I.e. the existing structure ultimately failing.

Existing overhead structure in the storage area: large parts of the steel sections have been lost, and delamination is occurred throughout. Additionally, the concrete has spalled due to the corrosion expansion.

Existing overhead structure in the bar area: there is some corrosion on the existing steelwork, but this had been limited in extent. Additionally, the concrete has spalled due to the corrosion expansion.

Remedial Works

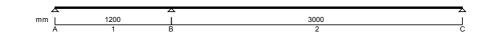
The remedial works proposed for the storage are the replacement of the original steel beams by new reinforced concrete beams. Using new RC beams - with the correct grade and rebar cover - will ensure that the durability of the structure is guaranteed.

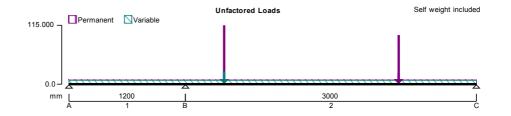
The remedial works proposed for the bar area are based on strengthening of the existing structure, rather than replacing it. The reason for this is that the existing structural steel is still in a reasonable condition. Additionally, the steel is completely encased in concrete (making it impossible to extract the steel without demolishing the GF slab as a whole in this area) and it forms a transfer structure for the curved facade above. Based on the above a new steel structure has been designed that supports the existing: a number of transfer beams is introduced, supporting by steel columns. The structural zones have been kept to a minimum, ensuring the space below is only slightly affected.

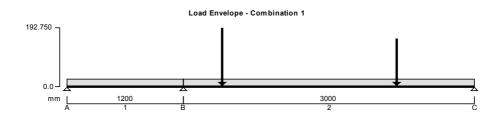
Furthermore, the surface corrosion on the existing steel beams in the bar area will be removed, followed by the application of a zinc-rich paint to prevent further corrosion. Lastly, it is recommended to install a new waterproofing system to ensure that the structure is not affected by moisture-related issues in the future.

For full structural details of the remedial works please refer to Momentum's drawing set.

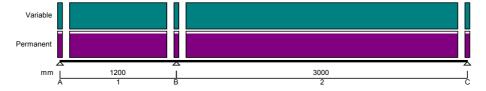
Appendix: structural calculations related to remedial works.

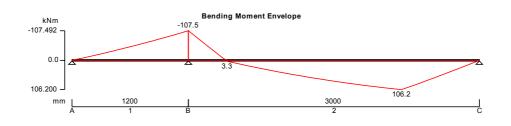


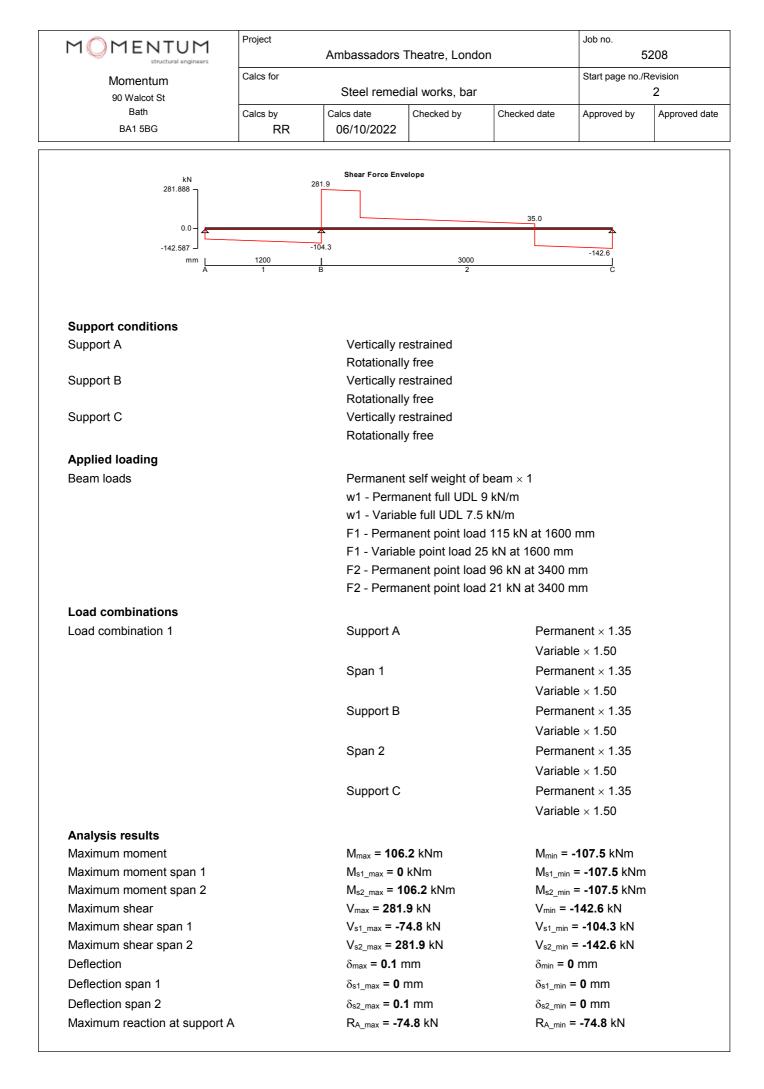

	Project Ambassadors Theatre, London				Job no. 5208	
Momentum 90 Walcot St	Calcs for	Steel remedi	Start page no./Revision 1			
Bath BA1 5BG	Calcs by RR	Calcs date 06/10/2022	Checked by	Checked date	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


TEDDS calculation version 3.0.13





Load Combination 1 (shown in proportion)

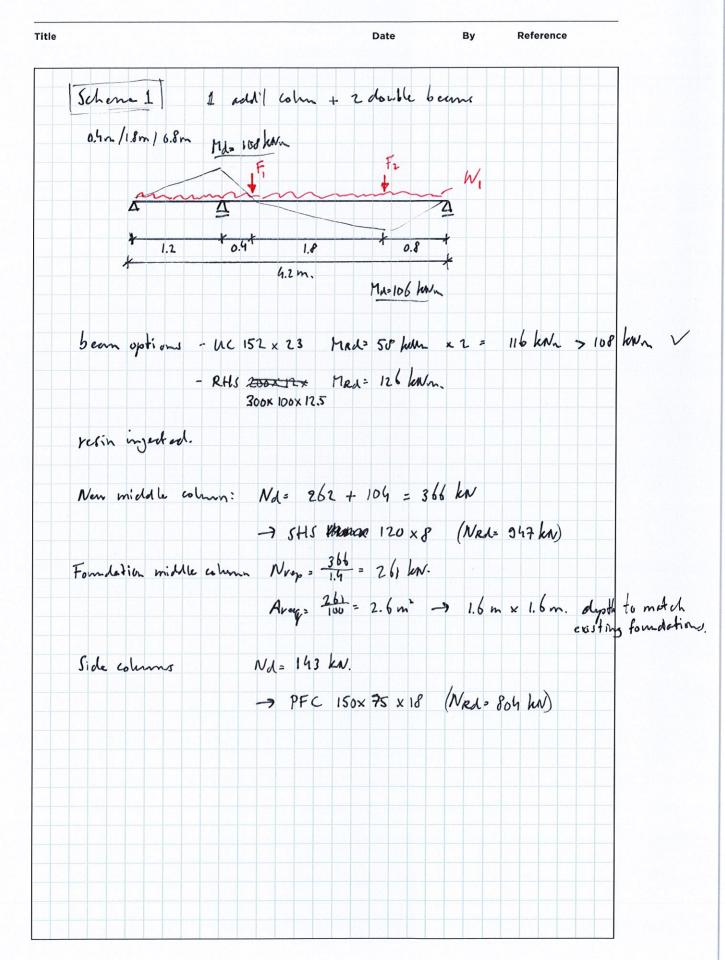
	Project Ambassadors Theatre, London			on	5208 Start page no./Revision 3		
Momentum	Calcs for	llcs for Steel remedial works, bar					
90 Walcot St Bath	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da	
BA1 5BG	RR	06/10/2022			, .pp. 00 00 0 y	, .pp. 0104 44	
Unfactored permanent load read	tion at suppo	rt A RA Permanent	= -49.1 kN				
Unfactored variable load reactio		-					
Maximum reaction at support B		R _{B_max} = 38	86.2 kN	R_{B_min}	= 386.2 kN		
Unfactored permanent load read	tion at suppo	rt B R _{B_Permanent}	= 228.7 kN				
Unfactored variable load reactio	n at support E						
Maximum reaction at support C		Rc_max = 14		Rc_min	= 142.6 kN		
Unfactored permanent load read							
Unfactored variable load reactio	n at support C	C RC_Variable =	10.5 kN				
Section details			56×171×45 (T	ata Steel Advan	co)		
Section type		2 X UKB 3 S275	502171245 (16	ala Sleel Auvali	ce)		
Steel grade EN 10025-2:2004 - Hot rolled p	roducts of st						
Nominal thickness of element	544613 01 3		t _w) = 9.7 mm				
Nominal yield strength		f _y = 275 N/	-				
Nominal ultimate tensile strengt	ı	f _u = 410 N/					
Modulus of elasticity		E = 21000	0 N/mm ²				
	▲ <u>↓</u>						
	351.4						
	9.7						
	<u>↓</u> <u>↓</u> <u>↓</u>						
	T						
	◀───	171.1▶					
Partial factors - Section 6.1							
Resistance of cross-sections		γ _{M0} = 1.00					
Resistance of members to instal	oility		γ _{M1} = 1.00				
Resistance of tensile members t		γ _{M2} = 1.10	•				
Lateral restraint							
		Span 1 ha	s full lateral res	straint			
		-	s full lateral res				
Effective length factors							
Effective length factor in major a	xis	K _y = 1.000					
Effective length factor in minor a	xis	Kz = 1.000					
Effective length factor for torsion		K _{LT.A} = 1.0	00				
		K _{LT.B} = 1.0					
		K _{LT.C} = 1.0	00				
Classification of cross section	is - Section 5						
		c − √[235]	$N/mm^2 / f_y] = 0.$	92			

	Project Ambassadors Theatre, London			Job no. 5208			
Momentum	Calcs for				Start page no./Revision		
90 Walcot St		Steel remed	ial works, bar			4	
Bath BA1 5BG	Calcs by RR	Calcs date 06/10/2022	Checked by	Checked date	Approved by	Approved date	
Internal compression parts sul	bject to bendi	ng - Table 5.2 (s	sheet 1 of 3)				
Width of section		c = d = 311	.6 mm				
		c / t _w = 48.2	2 × ε <= 72 × ε	Class 1			
Outstand flanges - Table 5.2 (s	heet 2 of 3)						
Width of section		c = (b - t _w -	2 × r) / 2 = 71 .	.9 mm			
		c / t _f = 8.0 × ε <= 9 × ε Class 1					
					Sec	tion is class	
Check shear - Section 6.2.6							
Height of web		h _w = h - 2 ×	: t _f = 332 mm				
Shear area factor		η = 1.000					
		h _w / t _w < 72	×ε/η				
				Shear buckling	resistance c	an be ignore	
Design shear force		V _{Ed} = max(abs(V _{max}), abs	(V _{min})) = 281.9 kN			
Shear area - cl 6.2.6(3)	$A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 2679 m$			' 9 mm²			
Design shear resistance - cl 6.2.0	6(2)	$V_{c,Rd}$ = $V_{pl,Rd}$ = N × A _v × (f _y / $\sqrt{[3]}$) / γ_{M0} = 850.7 kN					
		PAS	S - Design sh	near resistance e	xceeds desig	n shear for	
Check bending moment at spa	n 2 major (y-y) axis - Section	6.2.5				
Design bending moment		$M_{Ed} = max(abs(M_{s2_max}), abs(M_{s2_min})) = 107.5 \text{ kNm}$					
Design bending resistance mome	ent - eq 6.13	$M_{c,Rd} = M_{pl,l}$	$_{\rm Rd}$ = N × W _{pl.y} ×	< f _y / γ _{M0} = 426 kNr	n		
	PASS	- Design bendi	ng resistance	moment exceed	ls design ben	ding mome	
Check vertical deflection - Sec	tion 7.2.1						
Consider deflection due to variab	le loads						
Limiting deflection		$\delta_{\text{lim}} = L_{s2} / 3$	860 = 8.3 mm				
Maximum deflection span 2		δ = max(ab	$s(\delta_{max})$, abs(δ_{n}	_{nin})) = 0.129 mm			
		PAS	S - Maximum	deflection does	not exceed d	eflection lin	

MOMENTUM structural engineers

5208 Title Date By Reference Oct. 22 RR. Review of double steel beams supporting conved facade (bor area) * Stanting points / assumptions - 2 no. existing UBs (depth inknown) support curved facade above, from GF to roof. * Existing scheme F Fr W, 4 Δ 1.6 m 0.8m 1.8m 4.2m. * loads basic arsumptions: . slabs 200thk + finishes G = 6 kw/m² · livelood congregation/offices Q = 4 " · 7300 the wall masonry: G = 6 " (average) simplified, developed elevation of facade 3rd) TITE MALINING slobs 3.12 Well considered 2nd 9.7m 3.1m conservative) Ist 30m 3.5m GF. existing deel beens

Project

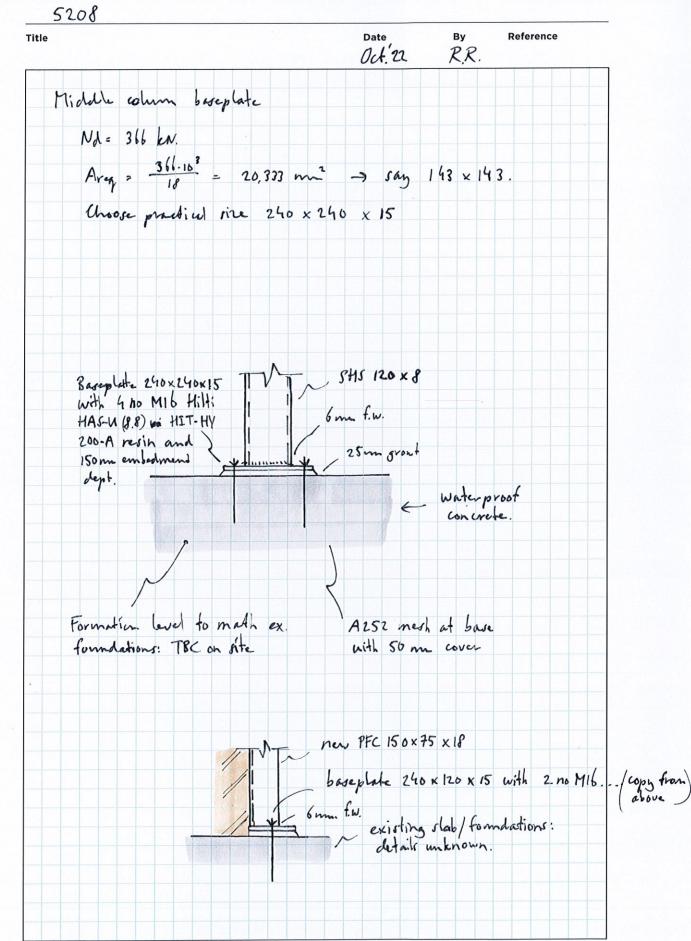

MOMENTUM structural engineers

5208 Reference Date By Title Def: 22 RR. Q (kw/m) G (kowfm) Wd= 23 km/m Wi from G.F. 1.5m × 6 and 5 = 7.5 9 Q(kav/m) G(ken/m) line Loads above G.F. 66 1.5m x 6 and 4 . 1st floor slab 9 3 9 · zod u u 1.5 m × 6 ** 4 = · 3·d roof slab 9 1 = 2 37 64 6.2m × 6 - well 1st - rouf: : Wd=107/00/m 14 hoad width is 1.8 m (due to curve) 1.8 m × 64 and 14 = Q (KN) (Jum) F Fd= 133 kN. 115 25 Fz load width is 1.5m (due to curve) 1.5m × 64 and 14 = Fa= 161 kN. 96 21

Project

()

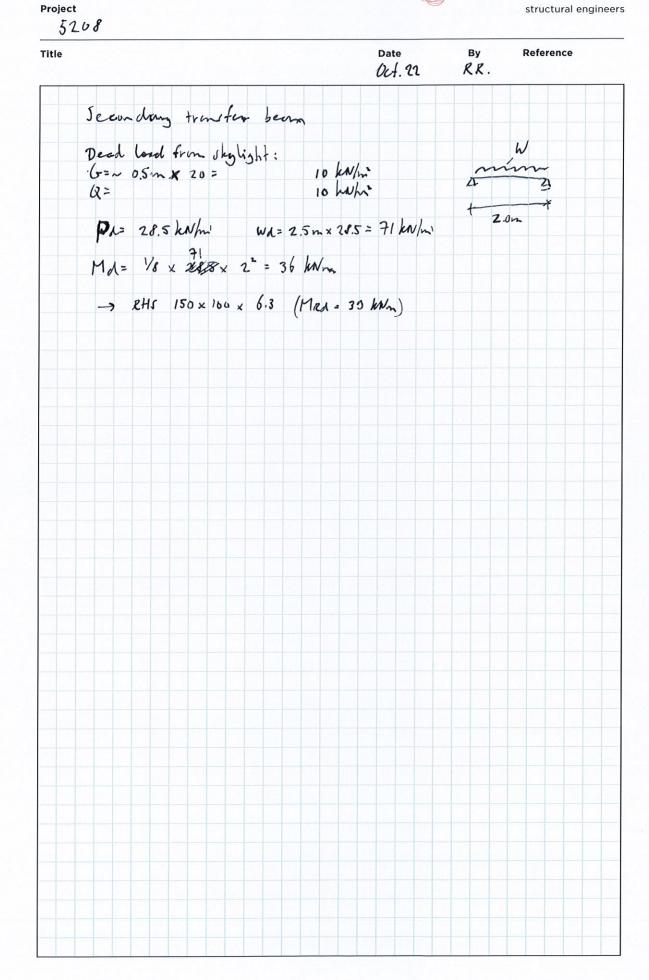
0



Project

 \bigcirc

MOMENTUM


structural engineers

Project

(

MOMENTUM structural engineers

 \bigcirc

 \bigcirc