FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY 9 THE MOUNT, HAMPSTEAD LONDON, NW3 6SZ

MR & MRS BARNETT

August 2022

Prepared for

Charlton Brown Architecture & Interiors The Belvedere, 2 Back Lane Hampstead London, NW3 1HL

Prepared by

Constructure Ltd

Unit D 15 Bell Yard Mews London SE1 3TY

Contact

Jon Burgess Principal Infrastructure Engineer Civil & Structural Engineering

Tel: 0207 403 7989

FLOOD RISK ASSESSMENT INCLUDING DRAINAGE STRATEGY

FLOOD RISK ASSESSMENT

INCLUDING DRAINAGE STRATEGY

VERSION CONTROL

PROJECT NAME:	9 The Mount, Hampstead
PROJECT NUMBER:	2230
DOCUMENT REFERENCE:	
DOCUMENT STATUS:	Final Issue

	DATE	DESCRIPTION	AUTHOR	CSE	ICSE
-	05.09.2022	Initial Issue	Jon Burgess	Tom Goodall	
A	11.10.2022	Final Issue Borehole Logs added	Jon Burgess	Tom Goodall	

INCLUDING DRAINAGE STRATEGY

CONTENTS

1. INTROD	DUCTION	7
1.1.	Appointment and Brief	7
1.2.	Aims and Objectives	7
1.3.	Limitations	8
1.4.	Reference Information	9
2. PROJEC	T BACKGROUND	11
2.1.	Site Location and Existing Land Use	11
2.2.	Existing Drainage Infrastructure	11
2.3.	Topography	12
2.4.	Geology and Hydrogeology	12
2.5.	Hydrology	12
2.6.	Proposed Development	14
3. ANALYS	SIS OF NATIONAL AND LOCAL POLICY	17
3.1.	National Policy	17
3.2.	London Plan	18
3.3.	Local Policy	18
3.4.	Assessing Flood Risk	19
3.5.	Easements and Other Constraints	21
3.6.	Below Ground Drainage Diversions and Other Constraints	21
3.7.	Opportunities	22
4. FOUL W	ATER MANAGEMENT	24
4.1.	Existing Discharge Rates and Points of Connection	24
4.2.	Proposed Discharge Rates and Points of Connection	24
4.3.	Analysis	24
5. SURFAC	CE WATER MANAGEMENT	26
5.1.	Proposed Drainage Catchments	26
5.2.	SuDS Management Train	26
5.3.	Catchment Contributing Areas	27
5.4.	Allowance for Climate Change	27
5.5.	Allowable Discharge Rates	27
5.6.	Proposed SUDS Features	28
5.7.	Water Quality	32
5.8.	Ownership and Maintenance	33
6. CONCLU	JSIONS	1

ACRONYMS AND ABBREVIATIONS

AOD	Above Ordnance Datum
CIRIA	Construction Industry Research and Information Association
CL	Cover Level
DEFRA	Department for Environment, Food and Rural Affairs
EA	Environment Agency
ha	Hectares
IL	Invert Level
LLFA	Lead Local Flooding Authority
LPA	Local Planning Authority
m	Metres
NPPF	National Planning Policy Framework
NPPG	National Planning Policy Guidance to the National Planning Policy Framework
NTS	Non-statutory Technical Standards
LFRA	Local Flood Risk Assessment
SuDS	Sustainable Drainage Systems
LBC	London Borough of Camden
PPG	Planning Practise Guide
BGS	British Geological Society
TE2100	Thames Estuary 2100
SPZ	Source Protection Zone
CDA	Critical Drainage Area

APPENDICES

- Appendix A Existing Site Plan
- Appendix B Proposed Site Plans
- Appendix C Thames Water Asset Plans
- Appendix D Surface Water Calculations
- Appendix E Existing Drainage Route
- Appendix F Environment Agency Flood Map
- Appendix G British Geological Survey Soil Map
- Appendix H Possible Drainage Layout
- Appendix I Storage Volume Estimate HR Walingford
- Appendix J London Sustainable Drainage Pro Forma
- Appendix K Borehole Logs

SECTIONS 1 INTRODUCTION

1. INTRODUCTION

1.1. Appointment and Brief

This Surface and Foul Water Drainage Strategy (DS) including a Flood Risk Assessment (FRA) has been prepared by Constructure Ltd on behalf of Charlton Brown Architecture & Interiors ("The Applicant"), for the Proposed Development at 9 The Mount, Hampstead, London, NW3 6SZ (hereby referred to as the 'Site'). The Site is located within the London Borough of Camden.

The purpose of this document is to outline the development of the proposed DS, providing sufficient detail to enable both a thorough review of design principles adopted and further refinement of the design as part of the ongoing development of the project.

It aims to demonstrate the foul and surface water management at the Application Site, as follows:

- By providing an analysis of the impact of the proposed development on surrounding foul water infrastructure and identify the constraints present on the site in terms of suitability of conventional gravity drainage; and
- By demonstrating the principles of surface water management in terms of constraints on discharge, permitted discharge rates and required volumes of attenuation (where required), describing how these can be accommodated within the development proposals.

The proposed DS outline below may be subject to further detailed analysis at design stage.

1.2. Aims and Objectives

The DS has been prepared with reference to the following requirements:

- The DS <u>must</u>:
 - Ensure that flood risk to the Application Site and surrounding area is not increased over the lifetime of the Proposed Development;
 - Conform with all relevant national and local flood risk polices;

- Adopt current design standards; and
- Consider long-term maintenance with respect to practicality, ownership and funding.
- The DS <u>should</u>:
 - Mimic the existing drainage characteristics of the Application Site as far as is practical;
 - Look for opportunities to provide a reduction in flood risk to the Application Site and the surrounding area;
 - Adhere to current best practice guidance;
 - Contribute to the enhanced amenity and aesthetic value of the Application Site; and
 - Propose opportunities for biological enhancement and provide habitats for wildlife in urban areas.

1.3. Limitations

The purpose of this report is as outlined in Section 1.2, together with those related matters specifically referred to, and it is not intended to be used for any other purposes. The report is for the sole benefit and may only be relied upon by the addressee, to whom we will owe a duty of care. The report and any part of it is confidential to the addressee and should not be disclosed to any third party for any purpose, without the prior written consent of Constructure Ltd as to the form and context of such disclosure. The granting of such consent shall not entitle the third party to place reliance on the report, nor shall it confer any third-party rights pursuant to the Contracts (Rights of Third Parties) Act. The report may not be assigned to any third party.

1.4. Reference Information

The following information has been obtained and interrogated as part of this study:

- Charlton Brown Drawing Ref: 21041 EX-00-100 & 101 Existing Lower Ground & Ground Floor Plans.
- British Geological Society Geological Maps.
- UK SUDS HR Wallingford Surface Water Storage Requirements;
- DEFRA / EA Interactive online mapping (magic.defra.gov.uk); and
- BS EN 752: 2017 Drain and sewer systems outside buildings

In addition, the following documents have been consulted:

- Communities and Local Government Document. (2021). The National Planning Policy Framework;
- Environment Agency. (2016). Flood Risk Assessments: Climate Change Allowances;
- Environment Agency. (2013). Rainfall Runoff Management for Developments;
- Environment Agency. (2019). Flood Risk Assessments: Climate Change Allowances;
- CIRIA. (2015). C753 The SuDS Manual;
- Secretary of State. (2015). Building Regulations Approved Document H;
- Butler & Davies. (2012). 2nd Ed. Urban Drainage;
- Department for Environment, Food and Rural Affairs. (2015). Non-Statutory Technical Standards for Sustainable Drainage Systems;
- Department for Environment, Food and Rural Affairs & Environment Agency. (2017).
 Flood Risk Assessment for Planning Applications;
- London Borough of Camden Basements January 2021;
- North London Strategic Drainage Strategy August 2008;
- London Borough of Camden Design Strategic Flood Assessment;
- London Borough of Camden Design Water & Flooding March 2019.
- London Borough of Camden (LoDEG pro forma)

SECTION 2 PROJECT BACKGROUND

2. PROJECT BACKGROUND

2.1. Site Location and Existing Land Use

The Application Site is situated off The Mount. Specifically, the Site is located close to the junction with Heath Street. The Ordinance Survey (OS) grid reference is 51° 33' 31" N 000° 10' 44" W (55.55863°N, 0.17904°W), and the post code is NW3 6SZ.

The Site is currently a residential property located within its own gardens. Where the orientation of the house is adjusted to the North:-

- The North elevation abuts a pedestrian alley way and No. 12, 'Holly Cottage', a residential property;
- The East elevation faces onto The Mount itself;
- The South elevation abuts a residential dwelling No. 8 The Mount; and
- The West elevation abuts a residential dwellings Nos. 4 14 The Mount.

2.2. Existing Drainage Infrastructure

The Sewerage Undertaker for the area is Thames Water and review of their asset records (see appendices) suggests the following public infrastructure within close vicinity of the Application Site:

- To the East Elevation:
 - 300mm diameter foul water sewer flowing North to South along The Mount (Northern side). Its depth adjacent to the Site is not known. However, further up the road at MH 3003 the cover level (CL), is 125.8m AOD and has an invert level (IL) of 121.59m AOD, this makes its depth 4.21m below road level.
 - There are no dedicated surface water sewers

The existing Application Site is not known to have any surface water flow restriction or benefit from existing SuDS features. It discharges both foul and surface water drainage to the public combined sewer network. A CCTV survey has been carried and its route is shown in **Appendix E**

2.3. Topography

Currently there is no topographical survey drawing available. However, the Site appears to be approximately 120m Above Ordnance Datum and is on a gradient from North to South. It is approximately 340m² in area and therefore below the 1.0ha trigger for a Flood Risk Assessment. However, this is being undertaken as there is an existing basement/lower ground floor, that it is proposed be extended. Whilst not containing any bedrooms, it is thought prudent to provide a Flood Risk Assessment.

2.4. Geology and Hydrogeology

British Geological Survey (BGS) online mapping indicates that the Application Site is situated on a bedrock of Bagshot Formation. This is a fine to coarse grain sand which can be locally clayey.

It is likely that due to this Bedrock, the Environment Agency's online groundwater mapping confirms that the site is not located within a Source Protection Zone (SPZ). It is, however, within a high-risk zone of potential flooding from Ground Water. This is likely due to the Sand being porous in nature and possibly subject to artesian pressure.

Trial pits will be able to confirm at what level, if any, this water table may be. See Hydrology below.

See borehole logs Appendix K

2.5. Hydrology

From Thames Waters sewer records, there appears to be a foul/combined sewer in The Mount. It is to this (300mm) that the Application Site is likely to connect. Unfortunately, the sewer records do not provide invert or cover levels.

A 4" (100mm) water main also exists within the curtilage of the footway. There are no major water mains in the area.

It is assumed that surface water currently generated by properties surrounding the Application Site is combined with the foul water and discharge to the foul/combined sewer, as was normal practice in London. As this is likely to be the case, the separation of surface

chamber prior to it leaving the Site. This is subject to Thames Waters' agreement under a Section 106 Application Agreement despite the Site benefiting from an existing connection.

The British Geological Survey maps show that Bagshot Formation is present. This may enable infiltration to take place at a high level depending on the level of the Ground Water Table present. This is the preferred method of surface water disposal, at source, in the SuDS hierarchal tree.

On site infiltration testing should therefore be carried out to provide:

- An insight as to a safe method of excavation should a high water table be found;
- And if not, its' reliable infiltration capabilities.

The Site currently has an underground tunnel linking the lower ground floor/basement with its garage. One of the proposals is to remove this tunnel by excavation and provide new underground storage vaults and other spaces, whilst still linking to the garage. Therefore, there is likely to be limited space for infiltration devices such are soakaways. In fact, current Building Regulations state that any infiltration chamber should be at least 5.0m away from any building or permanent structure. This requirement will effectively preclude the use of such infiltration devices on this Site.

Thus, for the purposes of this report, infiltration techniques will be largely ignored as not being a practical solution. Attention will be focussed on attenuation instead.

Greenfield Runoff Rates

Greenfield runoff rates have been estimated for the site using the Institute of Hydrology Report 124 method, in accordance with the latest Environment Agency Guidance, as summarised below and are included within the appendices of this study:

CATCHMENT	AREA	1:1 AEP EVENT	1:30 AEP EVENT	1:100 AEP EVENT
Total Site	0.034 Ha	0.1l/s	0.3 l/s	0.4 l/s

Peak Existing Runoff Rates

Peak existing runoff rates have been calculated using the Modified Rational Method and obtained from the Causeway Flow simulation model Flow+ for the 1:1 AEP, 1:30 AEP and 1:100 AEP events respectively with a 20 % and 40 % climate change allowances included to the 1:100 AEP event.

The following design inputs were adopted in accordance with guidance contained within the Flow Design software:

Storm Duration: 60 Minutes.
Volumetric Runoff Coefficient (Cv): 0.75
Routing Coefficient (Cr): 1.30

Findings as summarised below and included within the appendices of this study:

CATCHMENT	AREA	% IMPERMEABLE	1:1 AEP EVENT	1:30 AEP EVENT	1:100 AEP EVENT	1:100 AEP + 1.2 CC	1:100 AEP + 1.4 CC
Total Site	0.034Ha	90 %	5.6 l/s	10.0 l/s	12.2 l/s	13.0 l/s	13.0 l/s

2.6. Proposed Development

This project whilst undertaking many internal changes to the existing property removes the underground tunnel to the existing garage by excavating a large void and creating large vaults and other storage areas, maintaining an underground connection to the existing garage. Therefore, no major visible changes will appear once completed.

The scheme as outlined on the proposed layouts (**Appendix B**) proposes the removal of the existing linking tunnel between the existing lower ground floor/basement and the existing garage by excavating it out. New underground storage vaults and other spaces are to be created with a corridor connecting to the existing garage.

The basement could house an infiltration/attenuation structure beneath, providing a relaxation of the Building Regulation requirement of 'No soakaway within 5.0m of a structure'

FLOOD RISK ASSESSMENT INCLUDING DRAINAGE STRATEGY

is given, but this is unlikely. If an attenuation tank was to be located there then this would require pumping to reach the invert level of the termination inspection chamber.

This is not a satisfactory solution given that any fixed volume and discharge rate designed may be exceeded at any time by climate change and or failure of the pump equipment giving rise to flooding of the basement.

The roof layout of the existing structure will remain unchanged and therefore the introduction of blue, green or brown roofs are not suitable for this development.

There is an opportunity to provide a water butt locate next to one of the down pipes to enable the irrigation of the small area of the existing garden, however, due to the limited space available this is likely to encroach.

See 3.6 later in this document.

ANALYSIS OF NATIONAL AND LOCAL **SECTION 3** POLICY

3. ANALYSIS OF NATIONAL AND LOCAL POLICY

3.1. National Policy

National Planning Policy Framework (NPPF)

Communities and Local Government Document. (2021). *The National Planning Policy Framework* requires any Planning Application to demonstrate that the Proposed Development will be safe for the duration of its' design life, taking into account the vulnerability of its' users and without increasing flood risk elsewhere and reducing flood risk overall, where possible.

Non-Statutory Technical Standards for Sustainable Drainage Systems

Department for Environment, Food and Rural Affairs. (2015). *Non-Statutory Technical Standards for Sustainable Drainage Systems* state that the peak rate of discharge from a redevelopment during the 1:1 year and 1:100 year rainfall events should be as close as reasonably practical to the corresponding greenfield runoff rate, but should never exceed that of the pre-development state.

The standards also recommend that, where reasonably practicable, the runoff volume generated from the 1:100 year, 6 hour rainfall event should be constrained to the corresponding greenfield runoff volume.

Building Regulations Approved Document H

Secretary of State. (2015). *Building Regulations Approved Document H* establishes a hierarchy for surface water disposal and encourages a SuDS approach. The hierarchy stipulates that surface water runoff which is not collected for re-use must be discharged in the following order of priority:

- 1. Discharge to ground via infiltration; or, where not reasonably practicable;
- 2. Discharge to a surface water body (i.e. river, watercourse or the like); or, where not reasonably practicable:
- 3. Discharge to a surface water sewer, highway drain or other surface water drainage system; or, where not reasonably practicable:
- 4. Discharge to a combined sewer.

3.2. London Plan

The London Plan recognising that due to the way in which London has historically developed over its history, it is not practically possible to return sites, which are generally small in nature, to match Greenfield rates of run off.

It has therefore, been decreed that where possible a 50% reduction in existing discharge rates is acceptable.

3.3. Local Policy

Lead Local Flood Authority SUDS Policy Statement

The London Borough of Camden, in their role as Lead Local Flood Authority (LLFA), stipulates the required standards for sustainable drainage systems for all major developments within their jurisdiction. A minor development such as this one creates little opportunity to play a major role in reducing the quantities of water from the neighbouring systems to help ease the burden of flooding elsewhere in its neighbourhood. However, every opportunity must be looked at to see what can be implemented in order to assist in this National requirement.

The London Borough of Camden Strategic Flood Risk Assessment **DP27 Basements and Lightwells** outlines the following main policies, and in line with the London Plan Policy si 13 relevant to the development of the DS, as follows:

- Developments will be expected to incorporate Sustainable Drainage Systems (SuDS) to reduce the risk of surface water flooding, both to the site in question and to the surrounding area;
- Any proposed development must attempt to make use of and work within the constraints of the existing site topography where possible;
- Any SuDS system must consider the effects of climate change and reduce the potential for environmental damage both on and off site;

- Preference should be for the adoption of SuDS systems which enhance public realm, wherever possible;
- Drainage Strategies must assess the hydrology of the site along with landform, geology, drainage and flood risk and incorporate this within the adopted SuDS proposal; and
- Recommendations given within national policy (as outlined above) should be adhered to in full, avoiding adversely affecting drainage and run-off or causing other damage to the water environment unless demonstrated to be inappropriate.

3.4. Assessing Flood Risk

The Department for Environment, Food and Rural Affairs & Environment Agency (2017). *Flood Risk Assessment for Planning Applications* confirms that detailed flood risk assessment is required where the Application Site is:

- Located in Flood Zone 2 or 3, including minor development and change of use; or
- More than 1 hectare (Ha) in Flood Zone 1; or
- Less than 1 Ha in Flood Zone 1, including change of use in a development type to a more vulnerable class, where the development could be affected by sources of flooding other than by rivers and the sea; or
- In an area within Flood Zone 1 that has critical drainage problems as notified by the Environment Agency.

The Government's online Flood Map for Planning indicates that the Proposed Development is situated within Flood Zone 1. In accordance with Table 1 (Flood Zones) of the NPPF, this classifies the site of having a less than 1:1000 annual probability of river or sea flooding. See appendices.

Table 2 (Flood Risk Vulnerability Classification) of the NPPF classifies the existing basement this is classed as 'More Vulnerable'.

Table 3 (Flood Risk Vulnerability and Flood Zone Compatibility) of the NPPF states that More Vulnerable development is compatible within Flood Zone 1 and therefore the Sequential Test is considered to be satisfied and an Exception Test is not required here. Finally, the site is within Flood Zone 1 and the total area for the Application Site has been determined as 0.034 hectares (340m²), that falls below the trigger criteria for a formal Flood Risk Assessment

Therefore, on this basis provision of a full formal Flood Risk Assessment is not considered to be required for the Proposed Development and it is felt that flood risk does not represent a constraint to the development of the Site. However, as a basement is in existence it was felt prudent to provide an outline guide and as such one has been produced.

3.5. Strategic Flood Risk Assessment and Sources of Flooding

There are a number of key potential sources of flooding that can put Sites at risk. These include fluvial (rivers), tidal (the sea), ground water, sewer, surface water and infrastructure failure (including reservoirs, canals industrial process, burst water mains and blocked sewers or failed pumping stations). Each of these will now be considered in turn and the risk posed to the Site considered.

Definition of the flood Hazard source	LIKELIHOOD - Very Likely, Possible, Negligible, Very Unlikely
Fluvial	The Site is within a flood zone 1 and as stated in 3.4 of the SFRA there is no risk Flood Risk – Very unlikely
Coastal - Sea	This area is not near the coast Flood Risk – Very unlikely
Coastal- Estuarine	This area is not near the coast Flood Risk – Very unlikely
Pluvial/ Sheet run off	The property sits above the local Highway and many walls exist that cut off possible overland flows Flood Risk – Very unlikely

Sewer – SWS, FWS, CS	Thames Water have indicated no surcharge within their network locally Flood Risk - Negligible
Groundwater	Bagshot formation – Sands/Gravels Flood Risk – Possible
Dam Breach	No Dams near by Flood Risk – Very Unlikely
Canal	No Canals near by Flood Risk – Very unlikely
Major Water Main	Thames Water shows no major trunk water mains in The Mount only a 4" (100mm) Elood Risk – very unlikely

3.6. Easements and Other Constraints

A limited number of Utilities records have been obtained for the site and included within the Appendices. They suggest the presence of an existing water main within the immediate vicinity of the Application Site. It is highly likely that Gas, Telecommunications and Cable are also present. It is unlikely that any of these benefit from easements within the Site and therefore will not impact on the future development of the Application Site and DS, during the course of the ongoing design development.

3.7. Below Ground Drainage Diversions and Other Constraints

No diversions of publicly owned drainage infrastructure are known to be present at the Application Site at the time of writing.

Similarly, no other notable constraints are envisaged apart from the size of the proposed footprint and the area available for SuDS structures.

3.8. Opportunities

The changes being made to the Application Site still present an opportunity to contribute to a reduction in flood risk by reducing the current rate of discharge to the public sewer network. Further, whilst not decreasing the overall volume discharged, the any reduction in rate will ease the immediate burden on the sewerage network during the peak of storm events.

The incorporation of some form of attenuation within the Proposed Development would seek to offer a reduction in such peak runoff rates in accordance with both the national and local policies described above. Subsequently, a reduction in peak flow rates would result in a lower surface water flood risk downstream of the Proposed Development.

Surface water generated by the Application Site is believed to discharge un-treated directly to the public surface water network. However, the main catchment for the surface water element is the roof water with little else contributing and Subsequently, the management of surface water in accordance with the requirements of local policy and CIRIA. (2015). *C753 – The SuDS Manual* would not result in an great increase in the quality of the surface water generated by the Application Site as a result of the Proposed works.

FOUL WATER MANAGEMENT **SECTION 4**

4. FOUL WATER MANAGEMENT

4.1. Existing Discharge Rates and Points of Connection

Currently, the Application Site features an existing domestic property, and this will not change due to the proposed works. Therefore, whilst there might be an slight increase in water usage, and therefore foul water disposal, it will not be possible to determine exactly what this would be or adversely affect the increase in foul waste disposal that would make a significant increase to its current state.

A CCTV survey shows that the existing system runs through to the garage before discharging to the public sewerage system.

4.2. Proposed Discharge Rates and Points of Connection

As mentioned above the proposed foul discharge rates will not significantly increase due to the works being proposed.

4.3. Analysis

The Proposed Development will not generate a measurable net increase in foul water volume and therefore demand to the public foul water sewer network.

The relatively small nature of the increased flow, assuming a conventional gravity discharge, would be unlikely to exceed the capacity of the existing public sewer network. However, this will be discussed with Thames Water at the time of S106 application.

SURFACE WATER MANAGEMENT **SECTION 5**

5. SURFACE WATER MANAGEMENT

5.1. Proposed Drainage Catchments

Owing to the relatively small area of the Application Site (less than 1.0ha), it is proposed to utilise a single drainage catchment for the purposes of the surface water analysis.

5.2. SuDS Management Train

In accordance with the discharge hierarchy identified in Section 3, ideally surface water generated by the Proposed Development should be discharged to ground via infiltration, where practicable to do so.

Infiltration / percolation testing in accordance with BRE Digest 367 could be undertaken at the application site as part of intrusive site investigation. This test comprises the formation of a trial pit to a depth of 1.00 m below ground level, squaring of the pit sides and subsequent rapid filling with potable water. The fall in water level from 75 % to 25 % effective fill depth is then timed to ascertain an infiltration rate in m/s.

In the case of the Application Site, an infiltration method of disposal is unlikely to be accepted due to the current Building Regulation requirement that a minimum of 5.0m should be maintained between a soakaway and a structure.

Similarly, the presence of a watercourse as a method of disposal is not available and therefore, the Public Combined Sewer to the East of the Application Site is believed the most likely receptive point into which surface water could be discharged.

Therefore, it is proposed that the Application Site will continue to dispose of surface water into the public combined system, re-utilising existing connections where possible or via new appropriately designed connections if needs be. This is subject to seeking appropriate approvals from Thames Water.

5.3. Catchment Contributing Areas

A breakdown of the contributing areas for the proposed surface water drainage system, are as follows:

CATCHMENT	OPEN SPACE	DEVELOPABLE AREA	%IMPERMEABLE	IMPERMEABLE / DESIGN AREA
Total Site	0.004 Ha	0.030 Ha	88.0 %	0.030 Ha

An area of soft landscaping appears to the East, over the extended basement and as described earlier, as such a minimal depth of top and sub-soil is to be provided but ignored as permeable for the purposes of the calculations.

5.4. Allowance for Climate Change

Table 2 (Peak Rainfall Intensity Allowance in Small and Urban Catchments) of Environment Agency. (2019). Flood Risk Assessments: Climate Change Allowances confirms the climate change allowance of 40% should be adopted for the Application Site, assuming a lifespan of 100 years for residential development as recommended within the NPPF.

5.5. Allowable Discharge Rates

In accordance with the national and local policies outlined within Section 3 the Proposed Development should seek to limit the peak flow rate to the greenfield runoff rates, wherever practicable. Where this cannot be achieved, a betterment rate may be considered acceptable.

As has already been confirmed in Section 2, the greenfield runoff rate for the Application Site has been determined as 5.6 l/s for the 1:1 AEP event and it is not considered practicable to limit the discharge rate to 50% as required by the London Plan in this instance. A discharge rate of **5.0l/s** however, will be set for all storms thus reducing the peak flow when it is likely that the local sewerage network will be in greater demand.

Environment Agency. (2013). *Rainfall Runoff Management for Developments* stipulates that a minimum discharge rate of **5.0 I/s** should be adopted to mitigate risks associated with blockage of the flow control device.

However, commercially available flow control technologies have since been developed which can better this minimum value, with published minimum flow rates of 0.7 l/s being achievable using vortex-flow systems, for design head values as low as 0.4 m.

Notwithstanding this, a clear balance must be struck between limiting discharge flows, maintaining practicality of construction, minimising ongoing maintenance requirements, and ensuring the scheme remains commercially viable.

Owing to the constraints present at the Application Site due to its small plan area and likely space restrictions, it is considered prudent, from a design perspective, to ensure a constant discharge flow to minimize attenuation volume requirements and mitigate flood risk.

This limits the choice of available flow control devices to that of a float operated system as other types (i.e. vortex systems, throttle pipes, orifice plates etc.) are reliant upon the generation of head pressure to develop the specified peak discharge rates. In simple terms, these systems require a larger volume of water behind the device to activate the peak discharge flows and hence require larger attenuation volumes.

It is therefore proposed to limit the discharge from the Proposed Development to **5.0 l/s**.

Limiting the maximum discharge rate from the Proposed Development to this value would present a reduction in peak discharge rates for the key design events and an overall betterment of:

- **61.5%** during the 1:100 AEP event, including the 40 % allowance for climate change.
- **59.0** % during the 1:100 AEP event.
- **50.0 %** during the 1:30 AEP event.

5.6. Proposed SUDS Features

Due to the constraints imposed on the Proposed Development, the incorporation of aboveground SuDS features offering complementary benefits is not considered feasible. However, it may be possible, and subject to Client acceptance, to reduce the size of any attenuation tank proposed, by promoting the use of rainwater gardens over the new basement feature where limited top/sub-soil will be available. This also provides additional benefits as it promotes biodiversity.

Similarly, owing to the limited area of proposed external works, it is not considered feasible to adopt permeable surfaces at the Proposed Development.

Options available are either;

- To install an attenuation tank within the limited area of existing garden. The attenuation tank will discharge with a controlled outflow to the termination inspection chamber. It will discharge at a rate of no more than 5.0l/s or;
- To provide a rainwater garden over the proposed basement to reduce the volume of the attenuation tank. This needs to be discussed with the Client and their Landscape Architect

The required attenuation volume has been determined for a range of storm events in accordance with the requirements of the non-statutory standards for sustainable drainage systems. See **Appendix D**

Estimated attenuation volumes have been calculated in two stages. Firstly, an anticipated range has been determined using the Quick Storage Estimate function of an Industry Standard design package, to inform further rigorous assessment. Secondly, a preliminary model has then been developed using that package to determine a more refined attenuation estimate as summarised in the table below, with calculations given in the **Appendix D**.

The preliminary model is based upon a single attenuation tank ignoring for now the possible provision of a rainwater garden, the discharge from surface water generated from Site will be limited to 5.0 l/s to the existing combined sewer in The Mount. This will represent an improvement to the existing conditions, it must be remembered that foul discharge adds to the total flow but as stated there is unlikely to be any measurable increase from existing flows.

Following a storage estimate exercise, a minimum volume of 3.04 m³ will be required in order to provide the maximum achievable betterment of 61.5% during the 1:100 AEP event plus a 40% allowance for climate change, as outlined above. The proposed attenuation tank has been appropriately sized to ensure that no flooding occurs during the 1:100yr +40% CC

6 hour storm event to prevent the possibility of flood water finding its way into the basement/lower floor

It should also be understood that the during storm events the neighbourhood might be experiencing the controlled discharge from the Site will not contribute immediately and as such the peak in the receiving sewer may have already passed.

As there is minimal change in impermeable area, there would be little increase in existing discharge volumes as a result of the 1:100 AEP 6-hour event however, this has been considered as it is an opportunity to provide some benefit to the neighbourhood.

STORM EVENT	CONTRIBUTING AREA	MAXIMUM DISCHARGE	ATTENUATION VOL (RANGE)	ATTENUATION VOL (OPTIMISED)
1:1 AEP	0.030 Ha	5.0 l/s	0.0-1.0 m ³	0.0m³
1:30 AEP	0.030 Ha	5.0 l/s	2.0-4.0 m ³	0.0m³
1:100 AEP	0.030 Ha	5.0 l/s	3.0-6.0 m ³	2.0m ³
1:100 AEP + 20% CC	0.030 Ha	5.0 l/s	4.0-7.0 m ³	2.5m ³
1:100 AEP + 40% CC	0.030 Ha	5.0 l/s	5.0-9.0m ³	3.8m ³

During the analysis it has been necessary to ensure that a minimum pipe size of a 150mm ϕ connects to the attenuation tank otherwise the restriction of a smaller pipe size will cause flooding whilst the tank remains only partially filled.

The use of a Hydroslide CTL VS unit has been used in the analysis to limit the volume/size of the attenuation tank.

With the above in consideration, the Proposed Development would therefore contribute to a reduction in flood risk associated with the exceedance of the public surface water sewer network in the vicinity of the Application Site. But it would provide a significant reduction in peak runoff rates and avoid an increase in the total runoff volume during the critical period.

As a summary of the principles being incorporated:

Item	Feasible (Y/N/TBC)	Comments
1. Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)	N	The existing pitched roof will not change and therefore it is considered that the use of blue roofs is not suitable. Likewise, there is no intention to carried out a major overhaul of the existing plumbing system enabling the installation or a grey water tank
2. Rainwater infiltration to ground at or close to source	Ν	The site has limited area and could not meet the Building Regulation requirement
3. Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)	TBC	The existing pitched roof will not change and therefore it is considered that the use of Green or broen roofs are not suitable. It may be possible to divert an existing rainwater down pipe to the soft landscaped area over the proposed basement vaults and create a rainwater garden during the design stage
4.Discharge rainwater direct to a watercourse	Ν	None available
5. Controlled rainwater discharge to a surface water sewer or drain	Ν	No dedicated surface water sewer available

5.7. Water Quality

The Proposed Development would utilise existing connections to the public surface water sewers in the immediate vicinity of the site, wherever possible.

As there is a little in significant change of use of the Proposed Development which is mainly roof water considered 'clean', it would not greatly reduce pollutant loading and subsequently the vulnerability of the existing surface water sewer is considered to be negligible.

5.8. Ownership and Maintenance

To ensure the long-term performance of the proposed DS, the on-site drainage system will be owned and maintained by the site operator or a maintenance company (MC) in accordance with the indicative schedule below:

ELEMENT / DRAINAGE COMPONENT	OWNERSHIP / ADOPTION	MAINTENANCE REQUIREMENTS
Pumping stations	Freeholder	To be monitored electronically and be on a maintenance regime with a professional service team.
(Basement toilet)		Inspection and service annually.
Rain Water Pipes	Freeholder	Clearance of leaves / debris from guttering and hopper inlets. Rodding points provided to clear blockages via conventional rodding methods.
		Inspection annually and before / after extreme storm events.
Soil Vent Piles / "Stub Stacks"	Freeholder	Rodding points to be provided to clear blockages via conventional rodding methods.
		Inspection annually.
Gullies (Internal & External)	Freeholder	To be monitored for silt build-up and cleaned as required. Where provided, ensure air traps are primed and sealed to prevent smells.
		Inspection quarterly.
Surface Water Drainage Channels	Freeholder	To be monitored and cleaned via jetting when any debris / silt reduces the cross- sectional area by 25% or more. Inspection to include both the channel and silt trap / gulley outlets.
		Inspection annually and before / after extreme storm events.

SURFACE AND FOUL WATER DRAINAGE STRATEGY

Below Ground Pipework Generally	Freeholder	To be inspected for reduction in cross-sectional area (i.e due to blockage, silt or debris build-up, root ingress etc) general condition of materials, pipe displacement and the like.
		Inspection annually and where appropriate before / after extreme storm events.
Manholes / Inspection Chambers Generally	Freeholder	To be inspected for debris and integrity of chambers and covers generally.
		Inspection annually and where appropriate before / after extreme storm events.
Attenuation tank including flow control device	Freeholder	To be monitored for silt build-up and cleaned as required
		Inspection annually and before/after extreme storm events.
Rainwater Garden	Occupier	To reduce weeds and remove wind blown debris etc, as and when
		Inspection as moving in and out of the house

SECTION 6 CONCLUSIONS
6. CONCLUSIONS

- The scheme proposes many internal changes to the existing dwelling with the main construction being the removal of an existing tunnel between the existing basement and the garage by excavation. Extending the basement up to the garage.
- It is assumed that both surface and foul water sewer currently generated by the Site is discharged to the combined public sewer network in The Mount. The CCTV has proven a single connection to the combined public sewer.
- Due to the proximity of the foundations and adjacent structures, the incorporation of a soakaway or other infiltration devices is not considered to be appropriate.
- The peak greenfield runoff rate at the site has been determined as being well below the minimum practicable discharge rates for commercially available flow restriction devices. A discharge limit of **5.0 I/s** has been adopted as the minimum. it is not considered practicable to limit discharge from the development to the greenfield runoff rate in accordance with SuDS Policy 14.
- The discharge from the site post-development will be limited to a maximum rate of 5.0 l/s during all events up to and including the 1:100 AEP event including a 40% allowance for climate change. This would provide a significant betterment to the existing condition without introducing an additional source of flood risk.
- To achieve the above limitations of discharge, a 3.0m³ of attenuation will be provided under the existing garden
- The development proposal is unlikely to increase the peak foul water flows from the site.
 However, given the relatively small flow rates, it would be unlikely that the public sewer network would not have sufficient capacity to cater for the Proposed Development. Clarification has not been sought from Thames Water at the time of writing.
- The development proposal will contribute to a reduction in flood risk associated with the exceedance of the public surface water sewer network in the vicinity of the site by providing a significant reduction in both peak discharge rates and reducing volume during peak storm intensities.
- The proposed Drainage Strategy has been prepared to be robust and to demonstrate that it is
 possible to drain the site in a sustainable manner in keeping with local policy requirements
 without increasing flood risk to or from the Proposed Development. It should be noted that this

strategy presents one possible solution to demonstrate that the Proposed Development can be sustainably drained and should not be interpreted as the definitive solution.

APPENDIX A EXISTING SITE PLAN

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HLTelephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Existing Lower Ground Floor Plan Date Drawn Checked 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Drawing Number Revision EX-00-100 Project Number 21041

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HLTelephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Existing Ground Floor Plan Date Drawn Checked 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Project Number 21041 Drawing Number Revision EX-00-101

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HLTelephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Existing First Floor Plan Drawn Checked Date 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Project Number 21041 Drawing Number Revision EX-00-102

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HLTelephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Existing Second Floor Plan Drawn Checked Date 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Project NumberDrawing NumberRevision21041EX-00-103-C

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HLTelephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com

Client		
Alex and Emma Barr	nett	
Project		
9 The Mount		
Drawing Title		
Existing Roof Pla	n	
Date	Drawn	Checked
22/03/2022	JLB	LS
Scale		
1:50 @ A1		
Issue Status		
NOT FOR PL	ANNING	
Project Number 21041	Drawing Number EX-00-104	Revision

APPENDIX B PROPOSED SITE PLANS

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Key:

1 11 Demolish 11 11 1 - - - - I New

Floor lowered

Floor level raised or lowered

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL +44(0)20 7794 1234 Telephone Email office@charltonbrown.com Website www.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Lower Ground Floor Plan Date Drawn Checked 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Project Number Drawing Number Revision 21041 PL-00-100

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Key:

---Demolish 1 - - - - I New Floor lowered Floor level raised or lowered

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 office@charltonbrown.com Email Website www.charltonbrown.com

Client		
Alex and Emma B	arnett	
Project		
9 The Mount		
Drawing Title		
Ground Floor I	Plan	
Date	Drawn	Checked
22/03/2022	JLB	LS
Scale		
1:50 @ A1		
Issue Status		
NOT FOR I	PLANNING	
Project Number 21041	Drawing Number PL-00-101	Revision

NOTES

-Missing sections of existing cornices added to match existing. -Removal of all unathorised recessed downlights.

AA

All dimensions in millimetres. Where dimensions are not given, drawings must not be scaled and the matter referred back to Charlton Brown Architects.

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Key:

----Demolish 11 1 - - - - I New Floor lowered

Floor level raised or lowered

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL +44(0)20 7794 1234 Telephone Email office@charltonbrown.com Website www.charltonbrown.com

Client Alex and Emma Barnett Project 9 The Mount Drawing Title First Floor Plan Date Drawn Checked 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Drawing Number Project Number Revision PL-00-102 21041

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Key:

---Demolish 11 1 - - - - I New Floor lowered

Floor level raised or lowered

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown.com www.charltonbrown.com Website

Client Alex and Emma Barnett Project 9 The Mount Drawing Title Second Floor Plan Date Drawn Checked 22/03/2022 JLB LS Scale 1:50 @ A1 Issue Status NOT FOR PLANNING Project Number Drawing Number Revision 21041 PL-00-103-C Project Number

Important note

All dimensions in millimetres. Where dimensions are not given, drawings must not be scaled and the matter referred back to Charlton Brown Architects.

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Key:

Demolish New Floor lowered Floor level raised or lowered

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 office@charltonbrown.com Email Website www.charltonbrown.com

Client		
Alex and Emma Bar	nett	
Project		
9 The Mount		
Drawing Title		
Roof Plan		
Date	Drawn	Checked
22/03/2022	JLB	LS
Scale		
1:50 @ A1		
Issue Status		
NOT FOR PL	LANNING	
Project Number 21041	Drawing Number PL-00-104	Revision

APPENDIX C THAMES WATER ASSET PLANS

Asset location search

Constructure Ltd Bell Yard Mews 15Bermondsey Street LONDON SE1 3TY

Search address supplied

9 The Mount London NW3 6SZ

Your reference

Our reference

ALS/ALS Standard/2022_4702854

Search date

16 August 2022

2230

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 9, The Mount, London, NW3 6SZ

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level					
38GA	n/a	n/a					
38GB	n/a	n/a					
3901	n/a	n/a					
3807	117.06	113.66					
38GC	n/a	n/a					
3902	n/a	n/a					
3803	116.12	n/a					
48CI	n/a	n/a					
3903	n/a	n/a					
39AJ	n/a	n/a					
291A	n/a	n/a					
291B	n/a	n/a					
291C	n/a	n/a					
39BA	n/a	n/a					
39BB	n/a	n/a					
2903	n/a	n/a					
3001	n/a	n/a					
301D	n/a	n/a					
401D	n/a	n/a					
401C	n/a	n/a					
30DE	n/a	n/a					
30EF	n/a	n/a					
30EE	n/a	n/a					
30EH	n/a	n/a					
301C	n/a	n/a					
301B	n/a	n/a					
3003	125.8	121.59					
3004	127.12	122.96					
30DD	n/a	n/a					
3005	125.99	120.75					
3006	121.79	119.81					
30GB	n/a	n/a					
2901	n/a	113.83					
2904	n/a	n/a					
3809	123.06	116.05					
3810	123.02	n/a					
3806	120.89	119.98					
2001	123.76	120.01					
201A	n/a	n/a					
The position of the engenties of the set of the							
ne position of the apparatus shown on this plan shown but their presence should be anticipated. No	is given without obligation and warranty, and the acc liability of any kind whatsoever is accented by Thames	curacy cannot be guaranteed. Service pipes are not solve water for any error or omission. The actual position					
of mains and services must be verified and established on site before any works are undertaken.							

Asset Location Search - Sewer Key

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plan are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Asset Location Search - Water Key

Meter

End Items

Undefined End

Manifold

Customer Supply

Fire Supply

Operational Sites

Other Symbols

Data Logger

Casement: Ducts may contain high voltage cables. Please check with Thames Water.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

SURFACE WATER CALCULATIONS **APPENDIX D**

	Hull Raiser Ltd	File: Greenfield.pfd	Page 1
ainage	Dagmar House	Network: Storm Network	9 The Mount
Highways	Mill Hill Road	Jon Burgess	Hampstead
	Cowes, PO31 7EJ	03/09/2022	Existing flows

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	1	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	2.00	Enforce best practice design rules	\checkmark

Circular Link Type

Shape	Circular	Auto Increment (mm)	75
Barrels	1	Follow Ground	х

Available Diameters (mm) 100 150

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Width (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.030	2.00	121.000	1200	640	95.397	82.375	1.000
2			121.000	1200	640	38.470	63.713	1.250
Sewer			120.000			-10.729	46.560	1.250

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	20.000	0.600	120.000	119.750	0.250	80.0	100	3.00	50.0
1.001	2	Sewer	10.000	0.600	119.750	118.750	1.000	10.0	100	3.87	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	0.861	6.8	4.1	0.900	1.150	0.030	0.0	56	0.900
1.001	2.458	19.3	4.1	1.150	1.150	0.030	0.0	31	1.939

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m ³ /ha)	0.1
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.400	1 year (l/s)	0.1
Summer CV	0.750	30 year (l/s)	0.3
Winter CV	0.840	100 year (l/s)	0.4
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	х	100 year +40% 360 minute (m³)	14
	Storm Dura	ations	
15 30 60 120	180 240 36	0 480 600 720 9	60 1440

	Hull Raiser Ltd	Fi	le: Greenf	ield.pfd	Pa	age 2	
Drainage	Dagmar House	N	etwork: St	torm Network	9	The Mount	
velopment Highways	Mill Hill Road	Jo	n Burgess	5	H.	ampstead	
	Cowes, PO31 7EJ	03	3/09/2022	2	E>	kisting flows	
	Return Period	Climate	Change	Additional Area	Additional	Flow	
	(years)	(CC	:%)	(A %)	(Q %)	1	
	1		0	0		0	
	30		0	0		0	
	100		0	0		0	
	100		20	0		0	
	100		40	0		0	
		_					
		<u>Pre-de</u>	velopmei	<u>nt Discharge Rate</u>			
	Site	e Makeup	Greenfi	eld Growth	Factor 30 yea	ar 1.95	
	Greenfiel	d Method	IH124	Growth F	actor 100 yea	ar 2.48	
	Positively Drained	Area (ha)	0.034	B	etterment (%	6) 0	
	S/	AAR (mm)	650		QB	ar <mark>0.2</mark>	
		Soil Index	4		Q 1 year (l/	s) <mark>0.1</mark>	
SPR					Q 30 year (I/	s) <mark>0.3</mark>	
Region				C	2 100 year (l/	s) 0.4	
	Growth Fac	tor 1 year	0.85				

Pre-development Discharge Volume

	Site Makeup	Greenfield	Return Period (years)	100
	Greenfield Method	FSR/FEH	Climate Change (%)	40
Po	sitively Drained Area (ha)	0.034	Storm Duration (mins)	360
	Soil Index	4	Betterment (%)	0
	SPR	0.47	PR	0.469
	CWI	97.778	Runoff Volume (m ³)	14

Results for 1	year Critical Storm	Duration.	Lowest m	ass balance:	100.00%

Node Event	N	US I ode (i	Peak mins)	Level (m)	De (I	pth lı n)	nflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summe	er 1		9	120.07	90.	078	5.6	0.0605	0.0000	ОК
15 minute summe	er 2		9	119.78	80.	038	5.6	0.0289	0.0000	ОК
15 minute summe	er Se	wer	9	118.78	7 0.	037	5.6	0.0000	0.0000	ОК
Link Event	US	Link	D	S Ou	tflow	Veloci	ity F	low/Cap	Link	Discharge
(Upstream Depth)	Node		NO	de (l/s)	(m/s	5)		Vol (m³)	Vol (m³)
15 minute summer	1	1.000) 2		5.6	1.1	85	0.826	0.0928	
15 minute summer	2	1.001	L Sev	ver	5.6	2.0	96	0.288	0.0266	1.7

Page 4
9 The Mount
Hampstead
Existing flows

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	120.53	4	0.534	13.8	0.4118	0.0000	SURCHARGED
15 minute summer	2	10	119.80)3	0.053	10.0	0.0405	0.0000	ОК
15 minute summer	Sewer	10	118.80)1	0.051	10.0	0.0000	0.0000	ОК
Link Event	US	Link	DS	Ou	tflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m	³) Vol (m ³)
15 minute summer	1	1.000	2		10.0	1.461	1.474	0.120)1
15 minute summer	2	1.001	Sewer		10.0	2.434	0.519	0.041	L1 4.3

Results for 100	ear Critical Storm Dur	ation. Lowest mass balance:	100.00%

Node Event	US Node	Peak (mins)	Levo) (m	el)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10) 120.8	359	0.859	17.9	0.6623	0.0000	FLOOD RISK
15 minute summer	2	10) 119.8	310	0.060	12.2	0.0460	0.0000	ОК
15 minute summer	Sewer	10) 118.8	808	0.058	12.2	0.0000	0.0000	ОК
Link Event	US	Link	DS	Ou	tflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	1	1.000	2		12.2	1.719	1.802	0.1272	
15 minute summer	2	1.001	Sewer		12.2	2.545	0.632	0.0480	5.5

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	U: No	6 Pe de (m	eak ins)	Level (m)	De (r	pth n)	Inflov (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute summe	er 1		9	121.00	0 1.	000	21.4	4 0.7710	0.5075	FLOOD
15 minute winter	2		10	119.81	.3 0.	063	13.0	0.0481	0.0000	ОК
15 minute summe	er Sew	ver	10	118.81	.1 0.	060	13.0	0.0000	0.0000	ОК
Link Event	US Node	Link	DS Nor	S Ou	utflow (I/s)	Velo	ocity	Flow/Cap	Link	Discharge
	1 NOUE	1 000	2	ue	(1/3)	1)	010	1 0 2 0	0 1 200	voi (iii)
15 minute summer	T	1.000	2		13.0	T	.810	1.930	0.1299	
15 minute winter	2	1.001	Sew	/er	13.0	2	.581	0.676	0.0506	7.1

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	U: No	S Po de (m	eak ins)	Leve (m)	l De (r	pth n)	Inflov (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute winter	1		9	121.00	00 1.	000	22.3	3 0.7710	0.8260	FLOOD
15 minute summe	er 2		10	119.8	13 0.	063	13.0	0.0481	0.0000	ОК
15 minute summe	er Sew	/er	10	118.8	11 0.	060	13.0	0.0000	0.0000	ОК
Link Event	US	Link	D	s o	utflow	Vel	ocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		No	de	(I/s)	(n	1/S)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2		13.0	1	816	1.930	0.1299	
15 minute summer	2	1.001	Sew	ver	13.0	2	.581	0.676	0.0506	6.9

	Hull Raiser Ltd	File: Greenfield.pfd	Page 1
rainage	Dagmar House	Network: Storm Network	9 The Mount
Highways	Mill Hill Road	Jon Burgess	Hampstead
\setminus	Cowes, PO31 7EJ	03/09/2022	Attenuation

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	1	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	2.00	Enforce best practice design rules	\checkmark

Circular Link Type

Shape	Circular	Auto Increment (mm)	75
Barrels	1	Follow Ground	х

Available Diameters (mm) 100 150

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Width (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.030	2.00	121.000	1200	640	95.397	82.375	1.000
2			121.000	1200	640	38.470	63.713	1.250
Sewer			120.000			-10.729	46.560	1.250

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	20.000	0.600	120.000	119.750	0.250	80.0	150	3.00	50.0
1.001	2	Sewer	10.000	0.600	119.750	118.750	1.000	10.0	100	3.87	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.125	19.9	4.1	0.850	1.100	0.030	0.0	46	0.886
1.001	2.458	19.3	4.1	1.150	1.150	0.030	0.0	31	1.939

Simulation Settings

Rainfall Methodology	ESR	Drain Down Time (mins)	240					
FSR Region	England and Wales	Additional Storage (m ³ /ha)	0.1					
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark					
Ratio-R	0.400	1 year (l/s)	0.1					
Summer CV	0.750	30 year (l/s)	0.3					
Winter CV	0.840	100 year (l/s)	0.4					
Analysis Speed	Normal	Check Discharge Volume	\checkmark					
Skip Steady State	х	100 year +40% 360 minute (m ³)	14					
Storm Durations								
15 30 60 120	180 240 36	0 480 600 720 90	50 1440					

	Hull Raiser Ltd	File: Greenfield.	ofd	Page 2				
Drainage	Dagmar House	Network: Storm	Network	9 The Mount				
	Mill Hill Road	Jon Burgess		Hampstead				
nguways	Cowes, PO31 7EJ	03/09/2022		Attenuation				
		,,						
	Return Period Cli	mate Change Add	itional Area Additio	onal Flow				
	(years)	(CC %)	(A %) (C	2 %)				
	1	0	0	0				
	30	0	0	0				
	100	0	0	0				
	100	20	0	0				
	100	40	0	0				
	<u>P</u>	re-development Dis	<u>scharge Rate</u>					
	Site Ma	keup Greenfield	Growth Factor 30) year 1.95				
	Greenfield Me	thod IH124	Growth Factor 100) year 2.48				
	Positively Drained Area	(ha) 0.034	Bettermer	nt (%) 0				
	SAAR (mm) 650		QBar 0.2				
	Soil I	ndex 4	Q 1 yea	r (l/s) 0.1				
		SPR 0.47	Q 30 yea	r (l/s) 0.3				
	Re	egion 6	Q 100 yea	r (l/s) 0.4				
	Growth Factor 1	year 0.85						
	D**	development Dise	harra Valuma					
	<u>P10</u>	e-development Disc	narge volume					
	Site Ma	keun Greenfield	Return Period (ve	aars) 100				
	Greenfield Me	thod FSR/FFH	Climate Change	(%) 40				
	Positively Drained Area	(ha) 0.034	Storm Duration (m	nins) 360				
	Soil I	ndex 4	Betterment	· (%) 0				
		SPR 0.47	Betterment	PR 0.469				
		CWI 97.778	Runoff Volume	(m^3) 14				
	<u>N</u>	ode 2 Online <mark>Hydro</mark>	<mark>slide</mark> Control					
	Flap Valve x	Design Depth	n (m) 1.000	Diameter (m) 0.100				
	Replaces Downstream Link \checkmark	Design Flow	(I/s) 5.0	Max Head (m) 1.350				
	Invert Level (m) 119.75	0 M	odel <mark>CILIVS</mark> Mi	in Node Dia (mm) 1200				
	No	la 2 Danth /Araa Sta	rage Structure					
	<u>1101</u>	<u>le 2 Deptil/Alea Sto</u>	<u>nage Structure</u>					
	Base Inf Coefficient (m/hr) 0.00000) Safety Factor	2.0	Invert Level (m) 119.750				
	Side Inf Coefficient (m/hr) 0.00000) Porosity	0.95 Time to ha	If empty (mins) 14				
		,	I					
	Depth Area Inf Area	Depth Area	Inf Area Depth	Area Inf Area				
	(m) (<mark>m²)</mark> (m²)	(m) (m²)	(m²) (m)	(m²) (m²)				
	0.000 4.0 0.0	0.800 4.0	0.0 0.801	0.0 0.0				

₽

Results for 1	year Critical	Storm Duration.	Lowest mass	balance: 98.03%

Node Even	t	US Node	Peak (mins)	Lev (m	el)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute sum	nmer	1	8	120.0)55	0.055	5.6	0.0421	0.0000	ОК
15 minute sum	nmer	2	10	119.8	336	0.086	5.6	0.3945	0.0000	ОК
15 minute sum	nmer	Sewer	1	118.7	750	0.000	4.1	0.0000	0.0000	ОК
Link Event	US	Lir	ık	DS	Ou	tflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node			Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	1	1.000		2		5.6	0.921	0.282	0.1490	
15 minute summer	2	Hydro	slide	Sewer		4.1				1.7

Results for 30	year Critical St	torm Duration.	Lowest mass	balance: 98.03%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	S	itatus
15 minute winter	1	11	120.114	0.114	12.3	0.0877	0.0000	ОК	
15 minute winter	2	12	120.100	0.350	11.9	1.5997	0.0000	SUR	CHARGED
15 minute summer	Sewe	er 1	118.750	0.000	5.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	Velocity	/ Flow/C	Cap Li	nk	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol	(m³)	Vol (m³)
15 minute winter	1	1.000	2	11.9	0.996	5 0.5	698 0. 3	3193	
15 minute winter	2	Hydroslide	Sewer	5.0					4.8

2

15 minute winter

0.0000

SURCHARGED

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.03%								
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	11	120.316	0.316	15.9	0.2439	0.0000	SURCHARGED

0.545

14.1

2.4882

12 120.295

15 minute summe	r Sew	er 1	118.750	0.000	5.0	0.0000 0	.0000 OK	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	14.1	1.021	0.709	0.3521	
15 minute winter	2	Hydroslide	Sewer	5.0				6.3

Flow+ v10.4 Copyright © 1988-2022 Causeway Technologies Ltd

	Hull Raiser Ltd	File: Greenfield.pfd	Page 6
Drainage	Dagmar House	Network: Storm Network	9 The Mount
nt Highways	Mill Hill Road	Jon Burgess	Hampstead
\sum	Cowes, PO31 7EJ	03/09/2022	Attenuation

Developme

Node Event	US Nod	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
15 minute winter	1	11	120.498	0.498	19.1	0.3837	0.0000	SURCHARGED)
15 minute winter	2	13	120.476	0.726	16.6	3.3163	0.0000	SURCHARGED)
15 minute summer	Sewe	er 1	118.750	0.000	5.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	Velocity	/ Flow/C	Cap Lii	nk Dischar	ge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol	(m³) Vol (m ^³	³)
15 minute winter	1	1.000	2	16.6	1.092	2 0.8	33 0.3	3521	
15 minute winter	2	Hydroslide	Sewer	5.0				7	'.5

Results for 100	year +40% C	C Critical Stor	m Duration.	Lowest mass	balance: 98.03%

Node Event	U No	S Peak de (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	· 1	13	120.901	0.901	22.2	0.6949	0.0000	FLOOD RISK
15 minute winter	2	13	120.885	1.135	19.2	3.9134	0.0000	FLOOD RISK
15 minute summ	er Sev	ver 1	118.750	0.000	5.0	0.0000	0.0000	ОК
Link Event	US	Link	DS	Outflow	Velocity	Flow/Ca	ap Lin	k Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³) Vol (m³)
15 minute winter	1	1.000	2	19.2	1.139	0.9	64 0.3	521
15 minute winter	2	Hydroslide	Sewer	5.0				8.8

EXISTING DRAINAGE LAYOUT **APPENDIX E**

APPENDIX F ENVIRONMENT AGENCY FLOOD MAP

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

BRITISH GEOLOGICAL SURVEY APPENDIX G SOIL MAP

Most of the Bagshot Formation is composed of pale yellow-brown to pale grey or white, locally orange or crimson, fine- to coarse-grained sand that is frequently micaceous and locally clayey, with sparse glauconite and sparse seams of gravel. The sands are commonly cross-bedded but some are laminated.

Ground Water Vulnerability Map (High)

Site is not within a SPZ

(Source Protection Zone)

POSSIBLE DRAINAGE LAYOUT **APPENDIX H**

All dimensions in millimetres. Where dimensions are not given, drawings must not be scaled and the matter referred back to Charlton Brown Architects.

All dimensions and conditions are to be checked on site by the contractor prior to preparing drawings or commencing any work. The contractor is responsible for checking that there is no conflict between site dimensions and drawn dimensions.

In the event of any detail or dimensional conflict between Charlton Brown Architects drawings, the matter must be referred back to Charlton Brown Architects for clarification

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown office@charltonbrown.com www.charltonbrown.com Website

Client Alex and Emma Barr	nett	
Project 9 The Mount		
Drawing Title Existing Roof Pla	ın	
Date	Drawn	Checked
22/03/2022	JLB	LS
Scale 1:50 @ A1		
Issue Status NOT FOR PL	ANNING	
Project Number 21041	Drawing Number EX-00-104	Revision

STORAGE VOLUME ESTIMATE HR WALINGFORD **APPENDIX I**

Print

Calculated by:	jon burgess
Site name:	9 The Mount
Site location:	Hampstead

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the design of the drainage scheme.

Sι requirements for sites

www.uksuds.com | Storage estimation tool

Site Details

Growth curve factor 1 year:

Growth curve factor 10 year:

Growth curve factor 30 year:

Growth curve factor 100

Q_{BAR} for total site area (I/s):

Q_{BAR} for net site area (I/s):

years:

Latitude:	51.55863° N
Longitude:	0.17904° W
Reference:	41566421
Date:	Aug 13 2022 13:42

Site characteristics		Methodology				
Total site area (ha):	0.034	esti IH124				
Significant public open space (ha):	0	Q _{BAR} estimation method	Calcula	Calculate from SPR and SAAR		AAR
Area positively drained (ha):	0.034	SPR estimation method:	PR estimation method: Calculate from SOIL type		OIL type	
Impermeable area (ha):	0.017	Soil characteristics	Default	E	Edited	
Percentage of drained area that is impermeable (%):	50	SOIL type:	4	4		
Impervious area drained via infiltration (ha):	0	SPR:	0.47	0.4	7	
Return period for infiltration system design (year):	100	Hydrological Default		Ed	ited	
Impervious area drained to rainwater harvesting (ha):	0	characteristics			1	
Return period for rainwater harvesting system (year):	10	Rainfall 100 yrs 6 hrs:			63	
Compliance factor for rainwater harvesting system (%):	66	Rainfall 100 yrs 12 hrs:			101.6	64
Net site area for storage volume design (ha):	0.03	FEH / FSR conversion fa	ctor: 1.0	32	1.32	
Net impermable area for storage volume design (ha):	0.02	SAAR (mm):	65	0	650	
Pervious area contribution to runoff (%):	30	M5-60 Rainfall Depth (mi	m): 20)	20	
* where rainwater harvesting or infiltration has been used	t for managing	'r' Ratio M5-60/M5-2 da	y: 0.4	4	0.4	
surface water runoff such that the effective impermeable	area is less	Hydological region:	6		6	

surface water runoff such that the effective impermeable area is less than 50% of the 'area positively drained', the 'net site area' and the estimates of $\mathsf{Q}_{\mathsf{BAR}}$ and other flow rates will have been reduced accordingly.

2

Design criteria

Climate change allowance factor:	1.4
Urban creep allowance factor:	1.1
Volume control approach	Use long term
Interception rainfall depth (mm):	5

Use long terr	n storage
5	
	-
5	

Minimum flow rate (l/s):

urface water	storage
equirements	for sites

6 6 0.85 0.85 1.62 1.62 2.3 2.3 3.19 3.19

0.15	0.15
0.15	0.15

Site discharge rates	Default	Edited	Estimated storage volumes	Default	Edited
1 in 1 year (l/s):	2	2	Attenuation storage 1/100 years (m ³):	4	4
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m ³):	0	0
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m ³):	4	4

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/termsand-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

APPENDIX J LONDON SUSTAINABLE DRAINAGE **PRO FORMA**

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	
	Address & post code	9 The Mount, Hampstead
	OS Crid rof (Facting Northing)	E 0.17904 W
	OS GHUTEL (Easting, Northing)	N 55.55863
tails	LPA reference (if applicable)	
1. Project & Site D€	Brief description of proposed work	Extension of existing basement and internal changes
	Total site Area	340 m ²
	Total existing impervious area	40 m ²
	Total proposed impervious area	40 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	no
	Existing drainage connection type and location	to combined sewer
	Designer Name	Jon Burgess
	Designer Position	Principal Infrastructure Engineer

	2a. Infiltration Feasibility						
	Superficial geology classification		None				
	Bedrock geology classification		Bagshot Sands				
	Site infiltration rate	0	m/s				
	Depth to groundwater level	unkown	m belo	w ground level			
	Is infiltration feasible?		No				
	2b. Drainage Hierarchy						
ements			Feasible (Y/N)	Proposed (Y/N)			
ange	1 store rainwater for later use	У	Ν				
arge Arr	2 use infiltration techniques, such a surfaces in non-clay areas	Ν	N				
d Disch	3 attenuate rainwater in ponds or o features for gradual release	Y	Y				
Propose	4 attenuate rainwater by storing in sealed water features for gradual re	Y	Y				
2.	5 discharge rainwater direct to a w	atercourse	Ν	Ν			
	6 discharge rainwater to a surface sewer/drain	Ν	N				
	7 discharge rainwater to the comb	ined sewer.	Y	Y			
	2c. Proposed Discharge Details						
	Proposed discharge location		Existing				
	Has the owner/regulator of the discharge location been	no					

GREATER **LONDON** AUTHORITY

	Designer Company	Constructure Ltd		consulted?	
4					

GREATER **LONDON** AUTHORITY

3a. Discharge Rates & Required Storage							
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)		
	Qbar	0.2	\ge	\ge	\geq		
	1 in 1	0.1	5.6	3	5		
	1 in 30	0.3	10	3	5		
	1 in 100	0.4	12.2	3	5		
	1 in 100 + CC	\geq	\geq	3	5		
	Climate change a	llowance used	40%				
Strategy	3b. Principal Method of Flow Control		Hydroslide				
e St	3c. Proposed SuD	S Measures					
inag			Catchment	Plan area	Storage		
Dra			area (m²)	(m²)	vol. (m ³)		
з.	Rainwater harves	ting	0	\geq	0		
	Infiltration system	าร	0	\geq	0		
	Green roofs		0	0	0		
	Blue roofs		0	0	0		
	Filter strips		0	0	0		
	Filter drains		0	0	0		
	Bioretention / tre	e pits	0	0	0.5		
	Pervious paveme	nts	0	0	0		
	Swales		0	0	0		
	Basins/ponds		0	0	0		
	Attenuation tanks	5	0	\geq	2.5		
	Total		0	0	3		

	4a. Discharge & Drainage Strategy	Page/section of drainage report
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	No due to within 5.0m of structure failing Building Regulation requirements
	Drainage hierarchy (2b)	water garden to reduce size of atte
u	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	existing connection
ormatic	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Appendix D
ting Inf	Proposed SuDS measures & specifications (3b)	Appendix D
Iodo	4b. Other Supporting Details	Page/section of drainage report
Sup.	Detailed Development Layout	Appendix H
4	Detailed drainage design drawings, including exceedance flow routes	Strategy to be designed
	Detailed landscaping plans	None available
	Maintenance strategy	in report
	Demonstration of how the proposed SuDS measures improve:	
	a) water quality of the runoff?	All roof water so clean
	b) biodiversity?	rainwater garden
	c) amenity?	Attenuation

APPENDIX K BOREHOLE LOGS

		Contr	act Name:					Client:			Hole ID:		
			he Mount	t, Hamp r:	ostead, L	ONDON, N	W3 6SZ		Checked By:	Status:	Hole Tyr	BH1	
			20353	1.	25/08/22	2 - 26/08/22	Logged Dy	W	Checked by.	PRFLIM		BH	
		Eastir			Northina:	20/00/22	Ground Lev	/el:	Plant Used:	Print Date:	Scale:	BII	
LIM	11	F E D	5		5				Cutdown	23/09/2022		1:50	
Weather: Fir	ne	I		Terr	nination:				SPT Hammer: N/R,	Energy Ratio: N/R		Sheet	1 of 2
San	nples & In	Situ Testing			1			Strata Detail	ls			Grour	ndwater
Depth	Туре	Results	(mAOD) (Depth (m) (Thickness)	Legend	<u> </u>			Strata Description			Water Strike	Backfill/ Installation
0.20	D			(0.40)		clinker gravel.	Frequent root	lets. MADE C	GROUND	led to angular film brick and			
0.50	D			0.40		Soft brown sa	ndy CLAY. Oc	casional fine	to medium subrounded toar	ngular flint and brick fragme	ents.		
0.50 - 1.00	В					Presence of a	sh. MADE GR	OUND					
1.00	D										- 1		•. •
											-		
1.50	SPT	N=17 (2,2/3,4,5,5)		(2.10)							-		
1.50 - 2.00	D B										-		
2.00	D										- 2		
2.50	SPT	N=12 (2,2/2,3,3,4)		2.50		Yellowish brow	yn slighty gray	velly fine to c	Darse SAND, Gravel is fine	to medium subrounded to			
2.50 - 3.00	D B			(0.50)		subangular flir	nt.				-		
3.00	D			3.00		Fine Brownish	vellow SAND						
						The brownish					-		
3.50	SPT	N=14 (2,2/3,4,4,3)									-		
	D												
4.00	D										- 4		
											-		
4.50	SPT	N=14 (2,4/3,4,3,4)									-		
	D										-		
5.00	D										- 5		
											-		
5.50	D			(5.00)							-		
											-		
6.00	SPT	N=16 (2,3/4,3,4,5)									- 6		
	D										-		
6.50	D										-		
											-		
7.00	D										- 7		
											-		
7.50	SPT	N=20 (3,4/3,5,6,6)									-		
	U										ŀ		
8.00	D			8.00		Soft brownish	yellow sandy	CLAY			8		
											-		
8.50	D										-		
											ŀ		
9.00	SPT	N=20 (3,3/4,5,5,6)		(4.00)							- 9		
											ŀ		
9.50	D										Ē		
											-		
10.00	D											D	
St	art & End	of Shift Observations	N/otc= (Boreho	le Diamete	r Casing Di	ameter Re	marks:				1	1
Date	rime	Deput (m) Casing (m	y vvater (m)	Depth (n	וטן (mn (mn	15.00	200						
		Chiselling				tallation	C+	rike (m)	sing (m) Sealed (m) Time	Vater Strikes	arks		
From (m) To	(m) Du	ration Rema	rks	Top (m) Base (n	n) Type [Dia (mm)			0 0.00 Watte	er added to	aid drillir	ig. Any
				1.00	6.00	PLAIN	33			been	masked.		
								Hand v	ane (HV), Hand penetrome	ter (HP) reported in kPa. Pl	D reported	in ppm.	

			Contra	ct Name:					Client:			Hole ID:	
			9 TI	he Mour	nt, Ham	pstead, l	ONDON, N	W3 6SZ			Otation		BH1
			Contra	20353	er:	25/08/2	End Date: 2 - 26/08/22	Logged By S	W	Checked By:	Status: PRELIM	Hole Typ	BH
LIM		Γ E D	Easting	g:		Northing:		Ground Lev	/el:	Plant Used:	Print Date: 23/09/2022	Scale:	1.50
Weather: Fi	ne				Terr	mination:				SPT Hammer: N/R,	Energy Ratio: N/R		Sheet 2 of 2
Sar	nples & In	Situ Testing							Strata Details	s			Groundwater
Depth	Туре	Result	S	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata Description			Water Backfill/ Strike Installation
							Soft brownish	yellow sandy	CLAY			-	
10.50	ерт	N-20 (2 4/2	5 6 6)									-	
10.50	D	N=20 (3,4/3	,5,0,0)										
44.00												-	
11.00												- 11	
	_											-	
11.50	D											Ē	
												-	
12.00	SPT D	N=29 (7,7/7	,6,8,8)		12.00		Yellowish oran	ge fine to me	dium SAND			12	
												[
12.50	D											-	
												[
13.00	D											- 13	
13.50	SPT D	N=30 (4,6/7	,8,7,8)									-	
					(3.45)							Į.	
14.00	D											- 14	
												-	
14.50	D											[
												-	
15.00	SPT	N=31 (3,5/6	,8,8,9)									- 15	
												-	
					15.45	<u>990,099</u>			End	of Borehole at 15.45m			
												[
												- 16	
												Į	
												-	
												Ē	
												- 17	
												-	
												-	
												-	
												- 10	
												ŀ	
												F	
												- 19 [
												-	
												-	
												[
												- 20	
S Date	tart & End Time	of Shift Obser	vations sing (m)	Water (m	Boreho	n) Dia (mr	m) Depth (m)	ameter Re Dia (mm)	marks:				
Date			y (11)		, <u> </u>		15.00	200					
		Object"					-4-11-4		riko (m)		Vater Strikes		
From (m) To	o (m) Du	cniselling ration	Remar	ks	Top (m	Ins) Base (r	stallation n) Type [Dia (mm)	inke (m) Cas	sing (m) Sealed (m) Time	0 0.00 Watte	ar added to a	aid drilling. Any
				_	0.00 1.00	1.00 6.00	PLAIN PLAIN	33 33			water been	strike are li masked.	kely to have
									Hand va	ane (HV), Hand penetrome	ter (HP) reported in kPa. Pl	D reported i	n ppm.

			Contra	ct Name:	•				Client:			Hole ID:	WCA
		ĭ1e	9 II	ne Moun	t, Ham	pstead,	EUNDON, P	NVV3 6SZ		Chookod Pyr	Status		WS1
			Contra	20252	÷r.	Start and		Logged	Dy. CIR	Checked by.			we.
			Facting	20353		Jorthing	100/22	Cround	GJD	Diant Llood:	PRELIIVI Drint Date:		W5
LI	ΜI	TED	Easung]:		Northing:		Ground	Levei:		13/00/2022	Scale:	1.50
										111003	13/09/2022		1.50
vveather	: Complee 9	In City Testing			Ierr	mination:			Strata D	ataila			Sheet 1 of 1
Denth	Samples o		lte	Level	Depth (m)	Legend			Strata De	Strata Description			Water Backfill/
Depui	- Typ		11.5	(mAOD)	(Thickness)		Dark brown o	clavev fine to	o medium SA	ND with frequent rootlets a	nd occasional fine to medium	flints.	Strike Installation
					0.25		MADE GRO	JND brown clow	y fine to ma		dium flinte and fine brick froom		
					()		MADE GRO	JND	ey line to met		dium mints and time brick fragin	-	
					(0.65)							-	
					0.90		Light brown (clavev fine t	o medium sa	ndy fine to medium angular	flint GRAVEL Fine brick trace		
1 20					1.00			JND					
1.20	ES						gravel.	e light oran	gisn brown si	ignuy clayey SAND. Rare n	ooliels. Rare line sub-rounded		
1.50	D ES				(1.10)							-	
							- -					-	
2.00	D				2 10							-2	
					2.10		Soft dark ora	nge brown :	sandy becom e sand	ing very CLAY. Rare occas	ional intermittent pockets of lig	jht _	
2.50	D						3 ,					-	
					(1.20)							-	
3.00												-3	
0.00													
0.50					3.30		Fine to coars	e medium c	orangish grey	brown slightly clayey SANI	D. Rare intermittent bands of		
3.50							medium orar	ige brown ti	ne to coarse	sand.		-	
					(1.00)							-	
4.00	D											- 4	
					4.30		Soft medium	orangish gr	ev brown slic	htly sandy CLAY. Rare root	tlets. Rare intermittent bands of	of	
4.50	D				(0.30) 4.60		medium orar	ige brown fi	ne to coarse	sand.			
							Fine to coars	e light yello	wish grey bro	own SAND.		-	
5.00	D											- 5	
					(1 40)							-	
5.50	D				(1.40)							-	
												-	
6.00					6.00								
0.00					0.00				ł	End of Borehole at 6.00m		0	
												-	
												-	
												-	
												- 7	
												-	
												-	
												- 8	
												-	
												-	
												-	
												-	
												-9	
												-	
												F	
												F	
												- 1/	0
	Start & E	End of Shift Obse	ervations		Boreho	le Diamete	er Casing D	Diameter	Remarks:			I	
Date	Tim	e Depth (m) C	asing (m)	Water (m)	Depth (r	n) Dia (m	m) Depth (m)	Dia (mm)					
											Water Strikes		
Eroy (Te />	Chiselling	Der	(D	To:: /		stallation	Die (m.)	Strike (m)	Casing (m) Sealed (m)	Time (mins) Rose to (m) Ren	narks	
F10m (m)	ιυ (m)	Duradon	Remark	15	iop (m) base (п) туре	ויט (mm)					
								-					in ne~
									Har	iu vane (HV), Hand penetro	ometer (HP) reported in kPa. F	reported עוי	ווו ppm.

			Contra	ct Name:	4 11	4			Client:					Hole	ID:		
		í e	911	ne Moun	t, Ham	ostead, L		NW3 6SZ	.	0		0			<u>۲</u>	VS2	
			Contra	ct Numbe	er:	Start and	End Date:	Logged	By:	Check	ed By:	Statu	s:	Hole	Type		
				20353		31	/08/22		GJB				PRELIM			ws	
	1 1 -	T F D	Easting	g:		Northing:		Ground	Level:	Plant U	Jsed:	Print	Date:	Scale	e:		
											HHWS		13/09/2022		· · ·	1:50	
Weather:					Terr	nination:										Sheet	1 of 1
Sar	mples & In	n Situ Testing				1 1			Strata I	Details						Groun	dwater
Depth	Туре	Result	s	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata D	escription					Water Strike	Backfill/ Installation
							Dark orange	brown claye/ עואו	ey fine to me	edium SAND v	vith fine to med	lium flints a	nd fine brick fra	gments.			
					(0.70)												
															-		
					0.70		Light brown	clayey fine t	o medium s	andy fine to m	edium angular	flint GRAV	EL. Fine brick tra	aces.			
					(0.30) 1.00		MADE GRO	UND							- 1		
1.20	D						Dark orangis Rare fine an	h grey brow gular to sub	n slightly cla -rounded flir	ayey silty SAN nt gravel. Occa	D. Rare rootlet	s. Rare fine ermittent ba	e ash, brick fragi Inds of light orar	ments.			
	ES				(0.80)		brown fine to	coarse san	nd. MADE G	ROUND.			-	-			
															-		
1.70	D ES				1.80		Dark orange	brown sligh	itly clavey sl	ightly silty fine	to coarse SAN	ID Rare fin	e brick ash frac	iments			
							Rare fine and	gular to sub-	-angular to s	sub-rounded fl	int gravel. MAD	DE GROUN	D	jinents.	-2		
2.20	D				(0.70)										-		
	ES				2 50												
2.60	D				2.00		Soft dark ora	ingish grey l gular to sub	brown slight -angular flip	ly gravelly san t gravel	dy CLAY. Rare	fine ash fr	agments. Occas	ional fine			
	ES				2.10		Dark orangis	h grey mottl	led brown cl	layey fine to co	oarse SAND. R	are rootlets	. Rare intermitte	ent bands			
3 10					(0.50)		of light orang	je brown fin	e to coarse	sand.					-3		¥ X
0.10	ES				3.20		Light yellowi	sh fine to co	arse grey S	AND.							
															-		
3.60	D				(1 10)												
					(1.10)												
4.10	D														-4		
4.40					4.30		Soft dark vel	lowish arev	brown sand	IV CLAY.							
4.40					4.50		Soft light ora	nge grey me	ottled brown	sandy CLAY.					-		
4.90	D														- 5		
					(1.20)												
5.40	D														-		
					5 70										-		
					(0.30)		Soft light ora	nge grey mo	ottled brown	sandy CLAY.					-		
6.00	D				6.00					End of Borel	hole at 6.00m				-6		
															-		
															-		
															- 7		
															. '		
															-		
															- 8		
															-		
															-		
															-9		
															-		
															-		
															-		
															_ 10		
			16												10		
Date S	tart & End	Depth (m) Ca	vations ising (m)	Water (m)	Boreho Depth (n	n) Dia (mr	r Casing [n) Depth (m)	Diameter Dia (mm)	Remarks:								
			3 ()			1	,										
												Water St	rikes				
	- (r-) -	Chiselling	D - ¹	(0)	T - (stallation		Strike (m)	Casing (m)	Sealed (m) T	Time (mins)	Rose to (m) R	emarks			
			remark	15	iop (m) base (r	пу туре	ויט (mm)									
									Ha	and vane (HV)	, Hand penetro	meter (HP)	reported in kPa	a. PID repor	ted in	ppm.	

•=	Soils L	imited				Probe No.		
SOIS	Newton House Cross R	nad Tadworth KT20 5SF	,	Probe L	.oa	DP1		
	Tel: 01737 814221 Email:	admin@soilslimited.co.u	ik		5	Sheet 1 of 1		
Proiect Name:	9 The Mount, Hampstead,	Project No.	Co-ords:			Hole Type		
· · · , · · · · · · · · · · · · · · · · · · ·	LONDON, NW3 6SZ	20353				DP Scale 1:50		
Location:	9 The Mount, Hampstead, L	ONDON, NW3 6SZ	Level:	m AOD				
Client:			Dates:	30/08/2022		Logged By GJB		
Depth		Blows/10)0mm		·	Torque		
(m)	10	20	30	4	0	(Nm)		
	2 3							
	3 3 4							
1-	4							
	5 5 5							
	2 4							
3-	4							
	4 4 5							
	6 5							
	4 5 6							
4	5 4							
	5							
5	7 10							
	12							
	10							
	4							
6	7							
7								
-								
8								
9								
10 – – – – – – – – – – – – – – – – – – –	1	Fall Height	 760mm	Cone Base Diar	neter 52mm			
		Hammer Weight	63.5kg	Final Depth	6m			
		Probe Type	DPSH	Energy Ratio (E	r) 73.7%	REGISTERED USER 2020		

•=	Soils L	imited				Probe No.
SOIS	Newton House, Cross Ro	oad, Tadworth KT20 5SR		Probe L	_og	DP2
LIMITE	D Tel: 01737 814221 Email:	admin@soilslimited.co.u	lk			Sheet 1 of 1
Project Name:	9 The Mount, Hampstead, LONDON, NW3 6SZ	Project No. 20353	Co-ord:	s:		Hole Type DP
Location:	9 The Mount, Hampstead, L	ONDON, NW3 6SZ	Level:	m AOD		Scale
	· · · ·	·	Datas	00/00/0000		1:50 Logged By
			Dates:	30/08/2022		GJB
Depth			Torque			
(m)	10	20	3	0 4	10 1	(NM)
0	1					
	3 3 4					
1	4 4 3					
	2 2					
	2 3 4					
2	4 4					
	4					
	55					
	555					
3-						
	5					
	4					
4-	4					
	<u> </u>					
5	6					
	4 5					
	99					
	99					
6	7					
-						
7						
-						
-						
9						
Remarks		Fall Height	760mm	Cone Base Dia	meter 52mm	
			DPSH	Energy Ratio (F	om r) 73.7%	AGS
					-,,	KEGISTEKED USEK ZUZU