

The Hall School

Flood Risk Assessment and Sustainable Drainage Statement

The Hall School 2190008 Flood Risk Assessment and Sustainable Drainage Statement engineering a better society

		Remarks:	For Planning				
Revision:	P1	Prepared by:	K Trimmer	Checked by:	K Trimmer	Approved by:	T Kenning
Date:	01/03/2019	Signature:	KTr	Signature:	KTr	Signature:	TKe
Revision:	P2	Prepared by:	H Hunter	Checked by:	K Trimmer	Approved by:	K Trimmer
Date:	06/09/2022	Signature:	HHu	Signature:	KTr	Signature:	KTr

Contents

Intr	oduction1
Exi	sting Site1
Exi	sting Drainage1
Pro	pposed Development2
Pro	pposed Drainage Strategy2
Ма	intenance Requirements3
Flo	od Risk Policy4
Flo	oding from Rivers and Sea4
Flo	oding from Surface Water4
Flo	oding from Sewers5
Flo	oding from Groundwater5
Flo	oding from Artificial Water Bodies6
Flo	od Risk Summary6
Д	ppendices
Α	Topographic SurveyA
В	Site Investigation – Borehole LogsB
С	Thames Water Sewer Records
D	CCTV Drainage Survey PlanD
Ε	Previous Correspondence with Thames Water
F	MicroDrainage CalculationsF

One

Introduction

1.1

Elliott Wood Partnership Ltd have been appointed to produce a Sustainable Drainage Statement and Flood Risk Assessment to support a planning application for the development at The Hall School, 23 Crossfield Rd, London NW3 4NU.

Two

Existing Site

2.1

The Hall School is located in South Hampstead, London, and lies within the London Borough of Camden (LBC). The National Grid reference for the site is 526932E, 184533N. (Refer to Figure 1 for the site location map.)

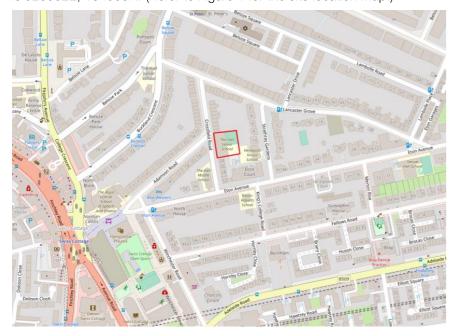


Figure 1 – Site Location Plan (Openstreetmap.org)

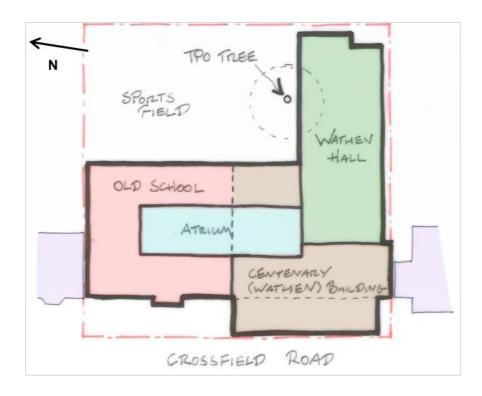


Figure 2 – Existing Buildings

2.2

The existing site comprises of existing school buildings (of varying ages). Namely the 'Old School', 'Wathen Hall', 'Centenary' (Wathen) Building' and the main 'Atrium'. Refer to Figure 2 above which shows the existing arrangement.

2.3

The existing site also comprises an external play space to the rear of the 'Old School' which is primarily covered by artificial grass and is used as a multiuse games area (MUGA). An existing London plane tree is located adjacent to the Wathen Hall building, which is subject to a Tree Preservation Order (TPO) and is to be retained as part of the proposed scheme.

2.4

Pedestrian access to the site is via Crossfield Road. The site redline boundary is approximately 2,180m² and is considered to be 100% impermeable in the existing state.

2.5

A topographic survey has been completed by Metrix Surveys Ltd in October 2015; this can be found in **Appendix A**. The site is broadly flat with a shallow slope from northwest to southeast with levels varying between 46.80 to 46.14 at the low point in the eastern corner of the site. The school building sits approximately 1.50m lower than Crossfield Road with the rest of site levels in keeping with the lower ground floor level.

2.6

A ground investigation report was been prepared by GEA Ltd in August 2016, refer to **Appendix** B for borehole log extracts. Boreholes between 5 & 25m below ground level (bgl) were undertaken as part of the survey works. These found ground conditions to be Made Ground (general depth of made ground was found to be 1-4m bgl) with underlying London Clay, which extended the full extent of the 25m deep boreholes. British Geological Survey (BGS) maps show that the clay may extend to a depth of up to 95m bgl.

Ground water seepage was encountered on site (approximately 1-4m bgl); however, this was thought to be perched water.

Three

Existing Drainage

3.1

Public sewer records have been obtained from Thames Water and are included in **Appendix C**. Sewer records show that the offsite sewer network is combined (sewers carry both foul and surface water flows). Records show that a 300mm diameter combined water sewer is located in Crossfield Road, which drains towards the 1143x787mm sewer which runs beneath Eton Avenue.

3.2

A CCTV survey of the existing below ground drainage has been conducted on the site which demonstrates the existing property drains via two existing combined water connections at lower ground floor level. One connection is for the existing older retained building and the other connection is for the more recently constructed building extensions. Refer to **Appendix D** for the CCTV survey report plan.

3.3

The surface water runoff rates for the existing site have been calculated using the Modified Rational Method equation below (based on CIRIA C697):

Q = 2.78.C.i.A

Where Q = Existing peak runoff (l/s), C = non-dimensional runoff coefficient=1, i = Rainfall intensity and A = total catchment area being drained

If considering the whole site (which includes the existing old retained building and MUGA), the surface water runoff rate has been calculated as follows, based on an area of 2,180m² and a rainfall intensity of 50mm/hr.

 $Q = 2.78 \times 1 \times 50 \text{mm/hr} \times 0.218$

Q Total = 30.3 l/s

engineering a better society

The existing surface water run-off rate associated with the area of proposed green roof over the rooftop extension has been calculated as follows, based on an area of 269m² and modelled as a two-pipe network in MicroDrainage.

Table 1 – Existing Runoff Rates Associated with the area of proposed green roof

Return Period	Existing Runoff Rate (I/s)
1 in 1 year	4.4
1 in 30 years	10.7
1 in 100 years	14.0

Refer to **Appendix** F for the Microdrainage calculations for the site predevelopment for the area that the green roof covers.

Four

Proposed Development

4.1

The project involves minor and extensive internal refurbishment of the existing school building comprising redecoration, replacement of floor and ceiling finishes, light fittings and the installation of new furniture. In addition to this, a single storey extension is proposed above the Wathen Hall which is to comprise 4 new classrooms, resource areas and an accessible WC.

Five

Proposed Drainage Strategy

5.1

The surface water drainage strategy for the site has been considered in line with London Plan Policies 5.12 (Flood Risk Management) and 5.13 (Sustainable Drainage). The following drainage hierarchy has therefore been considered:

- 1. Store rainwater for later use
- 2. Use infiltration techniques, such as porous surfaces in non-clay areas
- 3. Attenuate rainwater in ponds or open water features for gradual release
- 4. Attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5. Discharge rainwater direct to a watercourse
- 6. Discharge rainwater to a surface water sewer/drain
- 7. Discharge rainwater to the combined sewer.

5.2

Drainage via infiltration has been considered for the development however following a review of the ground conditions (i.e. underlying clay) it is considered that soakaways are not viable for this project.

5.3

External space on site is limited, as such, attenuation within ponds or open water features is not considered to be feasible.

5.4

There are no nearby accessible water courses and the existing Thames Water sewer network in the vicinity is combined use.

5.5

Considering the above, the foul and surface water generated by the development will aim to re-use the existing gravity connections from the development. Ultimately discharging to the Thames Water combined sewer beneath Crossfield Road.

5.6

For this development, 77% of the site consists of the existing old retained building and existing MUGA which drain via a separate combined water outlet. The remaining 23% of the site, comprising Wathan Hall, approximately half the Centenary Building and the proposed single storey extension discharges to a secondary combined water outlet.

5.7

When considering the existing buildings, it is not considered feasible to implement a restriction on surface water run-off, due to the extreme complexities associated with separating the existing drainage network on site (in order to install the appropriate flow controls and attenuation devices).

5.8

When considering the single-storey element of the development, it is again not considered feasible to restrict run-off via below ground attenuation devices. It is not considered viable to install a tank underneath the existing MUGA due to the damage it would cause, the implications with the TPO of the London Plane Tree and it is considered unlikely that drainage would be able to discharge via gravity this way. Surface water would therefore require pumping, which is not deemed feasible, as this would increase the flood risk to the building.

5.9

In light of the above, alternative solutions for restricting run-off from the development areas have been explored. Where possible, a green roof has been introduced (over the Wathen Hall building), covering 269m² of roof area, which is indicated in green on Figure 3 below). A green wall system is also

proposed in areas shown in orange, which equates to approximately 262m². Refer to the Architects general arrangement drawings and building elevations for the extents of the green roof and green wall proposed.

Figure 3 – Proposed green roof and green wall extents

5.10

The proposed surface water run-off rates associated with the proposed green roof area only have been calculated using MicroDrainage software and are presented in Table 2.

Table 2 – Proposed Runoff Rates Associated with the area of proposed green roof

Return Period	Proposed Green Roof Runoff Rate (I/s)
1 in 1 year	1.0
1 in 30 years	3.1
1 in 100 years	3.9
1 in 100 years + 40% CC	5.5

5.11

The above proposals have been discussed previously with both Thames Water and the Lead Local Flood Authority who both previously approved the strategy (refer to **Appendix** E for previous correspondence with Thames Water).

5.12

In summary, Thames Water were previously satisfied with the surface water proposals at the development site and the run-off restrictions achieved by installing the green roof system. It should be noted that since the time of the discussions with Thames Water the green roof area has increased from 163m^2 to 269m^2 . Refer to **Appendix** F for the Microdrainage calculations for the site pre-development and post-development for the area that the green roof covers.

5.13

In conjunction with the above, low flow water efficient appliances will be specified as part of the new development in order to reduce water consumption. These will be specified by the project M&E Engineer.

5.14

The evaluation of SuDS devices is summarised in the table below:

SuDS Technique	Y/N	Comment
Green Roofs	Y	Green roofs will be incorporated within the scheme. Refer to the Architect's drawings for location and extents. Run-off restrictions achieved from the green roof system have been reviewed with Thames Water who are satisfied with the proposals.
Basins and ponds	N	External space on site is limited, attenuation within ponds or open water features is not considered to be feasible.
Filter strips and swales	N	Filter strips and swales are not appropriate due to unsuitable ground conditions.
Infiltration devices	N	Infiltration is not deemed feasible for this site as the existing ground conditions are not conducive to infiltration techniques.
Tanked systems	N	When considering the existing buildings to be retained, it is not considered feasible to implement a restriction on surface water runoff – refer to section 5.8 of this report. When considering the new build element of
		the development, it is again not considered feasible to restrict run-off via below ground attenuation devices. It is not considered viable to install a tank underneath the existing MUGA due to the damage it would cause, the implications with the TPO of the London Plane Tree and it is considered unlikely that drainage would be able to discharge via gravity this way. Surface water would therefore require pumping, which is not deemed feasible, as this would increase the flood risk to the building. The green roof and green wall specified are
		deemed to be a more appropriate form of SuDS device in this instance.

5.15

The post-development runoff improvement against the existing runoff for the area covered by the new green roof has been provided in **Table 4**.

Return Period	Existing Runoff Rate (I/s)	Proposed Runoff Rate (I/s)	Percentage Betterment
1 in 1 year	4.4	1.0	77.3%
1 in 30 years	10.7	3.1	71.0%
1 in 100 years	14.0	3.9	72.1%
1 in 100 years + 40% Climate Change	N/A	5.5	>72.1%

Six

Maintenance Requirements

6.1

All SuDS devices will be maintained by the property owner for the lifetime of the development in accordance with the SuDS Manual as summarised below:

Green Roofs:

Maintenance Schedule	Required Action	Recommended Frequency
	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability.	Annually and after severe storms
Regular Inspections	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e. year one), replace dead plants as required.	Monthly (but usually the responsibility of manufacturer)
Regular	Post establishment, replace dead plants as required (where >5% of coverage)	Annually (in Autumn)
maintenance	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required – clippings should be removed and allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled.	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Gullies:

Inspection and removal of debris from silt trap once a year; preferably after leaf fall in the autumn.

Drainage pipes, manholes & silt traps:

Inspect manholes & silt traps for build-up of silt and general debris (once a year, preferably after leaf fall in the autumn). If silt/debris is building up then clean with jetting lorry / gully sucker and inspect pipe – repeat cleaning if required. If the pipes to be jetted are plastic then a high flow, low pressure setting should be used so that the pipes are not damaged.

Unusual / unresolved problems:

If the drainage system is still holding water following cleaning with a jetter, or the jetting of the system removes excessive amounts of debris this may indicate greater issues within the system. A CCTV survey is likely to be required and further advice should be sought from a drainage engineer.

Seven

Flood Risk Policy

7.1

Camden Strategic Flood Risk Assessment - The LBC Strategic Flood Risk Assessment (SFRA) was completed by URS in July 2014. This report aims to provide a reference and policy document to inform the local development framework and any subsequent plans.

7.2

Sequential Test and Exception Test - The Sequential and Exception Tests should be applied when choosing the location of new development and the layout of the development site. The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding. The Exception Test is utilised if no suitable development areas can be found in low risk areas. As the proposed development is located within Flood Zone 1, both the sequential test and the exception test are not required.

Eight

Flooding from Rivers and Sea

8.1

Flood Zone information published by GOV.uk shows that the proposed school site lies within Flood Risk Zone 1 (low risk). Sites within Flood Zone 1 have a chance of flooding of less than 1 in 1000 years (0.1%) due to coastal or river flooding. The flood risk in the surrounding area can be seen in Figure

8.2

A review of the Flood Maps found within the LBC SFRA confirms that this site is located within Flood Zone 1, and as noted within the LBC SFRA, no historic flooding has occurred within the borough as a result of fluvial or tidal sources.

8.3

After review of the relevant information this development is considered to be at **low risk** of flooding from rivers and seas.

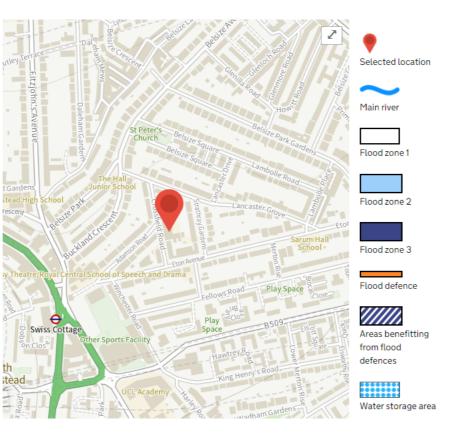


Figure 4 - Flood Zones in Surrounding Area (GOV.uk)

Flooding from Surface Water

8.4

Overland rainwater flows occur when the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded. The extents of overland flooding will depend upon the rainfall event, the degree of saturation of the soil, the permeability of soils and the topography of the site.

8.5

Following review of the GOV.uk surface water map (refer to Figure 5), this site is considered to be at very low risk of flooding from overland flow i.e. less than 1 in 1000 chance of flooding any given year. The site is also shown to be located in a low risk area in the LBC SFRA 'Updated Flood Maps for Surface Water Flooding' map (uFMfSW) as shown in Figure 6.

Figure 5 – Risk of surface water flooding (GOV.uk)

Figure 6 - LBC SFRA Figure 3v uFMfSW)

8.6

In general the levels along the western boundary of the site are above those along the pavement of Crossfield Road. Therefore, surface water within the road will ultimately flow away from the site, towards Eton Avenue, discharging into local highway gullies. Refer to Appendix A for the site topographical survey.

8.7

After review of the relevant information this development is considered to be at **low risk** of flooding from surface water.

Flooding from Sewers

8.8

Public sewer records have been obtained from Thames Water and are included in **Appendix C**. Sewer records show that the offsite sewer network is combined (sewers carry both foul and surface water flows). Records show that a 300mm diameter combined water sewer is located in Crossfield Road.

8.9

Thames Water are responsible for operating and maintaining their sewer infrastructure, therefore the likelihood of sewer surcharging is expected to be low

elliottwood

engineering a better society

8.10

The LBC SFRA shows that the site is located within an area which has had one reported incidence of internal sewer flooding. Refer to Figure 7 for an extract of the SFRA 'DG5 Internal Sewer Flooding' map.

8.11

The LBC SFRA also shows that the site is located outside of areas which have previously had reported issues as a result of external sewer flooding. Refer to Figure 8 for an extract of the SFRA 'DG5 External Sewer Flooding' map.

8.12

All new drainage on site will be designed to protect the local drainage network against public sewer surcharge.

8.13

After review of the relevant information this development is considered to be at **low risk** of flooding from sewers.

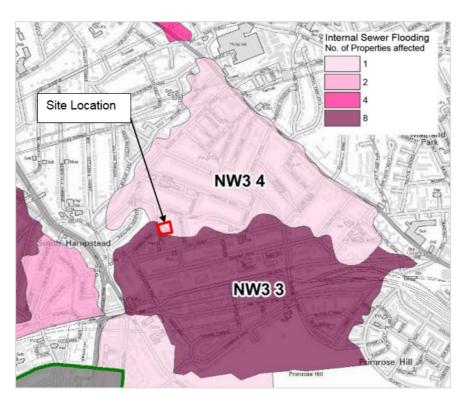


Figure 7 – LBC SFRA DG5 Internal Sewer Flooding Map

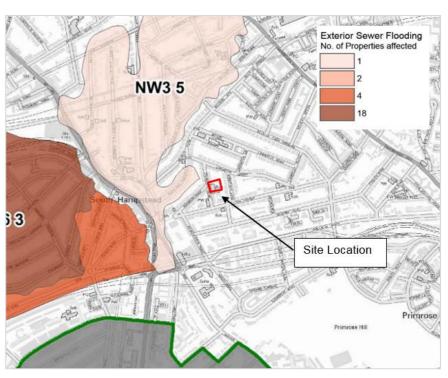


Figure 8 – LBC SFRA DG5 External Sewer Flooding Map

Flooding from Groundwater

8.14

Groundwater flooding can occur following an extended prolonged period of low intensity rainfall. The future risk from this source is more uncertain than surface water as the climate change predictions indicate that although sea levels will rise, thus possibly raising groundwater levels, overall summer rainfall will decrease, therefore having a long-term effect of lowering the groundwater levels. However, long periods of wet weather are predicted to increase, and these are the type of weather patterns that can cause groundwater flooding to occur.

8.15

A Ground investigation report has been prepared by GEA Ltd in August 2016. Boreholes between 5 & 25m below ground level (bgl) were undertaken as part of the survey works. The boreholes found the ground conditions to be Made Ground (general depth of made ground was found to be 1-4m bgl) with underlying London Clay, which extended the full extent of the 25m deep borehole. British Geological Survey (BGS) maps show that the clay may extend to a depth of up to 95m bgl.

8.16

Ground water seepage was encountered on site (approximately 1-4m bgl); however, this was thought to be perched water, refer to Appendix B for the

SI Borehole Logs. Data from BGS indicates that the continuous standing groundwater level is approximately 90m below ground level.

8.17

The EA does not have any historic evidence of flooding in the area arising from groundwater.

8.18

The LBC SFRA shows areas within the borough that are susceptible to elevated ground water (refer to Figure 9); the development site is not located within one of these areas.

8.19

The site itself and majority of the surrounding area is paved which reduces the risk of ground water at the surface. Flooding due to ground water elsewhere in the area would follow localised flow paths, similar to those shown on the GOV.uk surface water flood risk map, and would then discharge into the local sewer system.

8.20

After review of the relevant information this development is considered to be at **low risk** of flooding from groundwater.

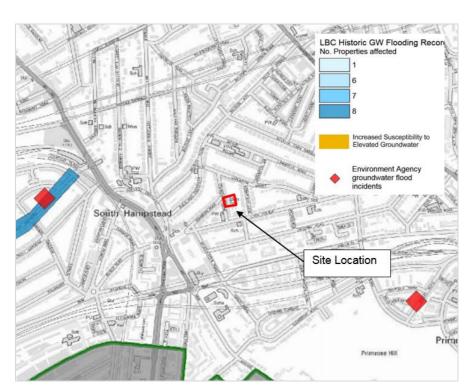


Figure 9 – LBC SFRA Increased Susceptibility to Elevated Groundwater Map

Flooding from Artificial Water Bodies

8.21

The closest watercourses to the site are the Hampstead Ponds (which are located approximately 1,250m north of the site) and the Regents Canal (which is located approximately 1,350m south of the site). Refer to Figure 10 which shows the 'Risk of Flooding from Reservoirs' map found on the EA website.

8.22

The LBC SFRA confirms that no flooding incidents associated with the Regents Canal have been recorded within the borough, and that the risk of flooding as a result of overtopping or breaching of the canal is considered to be low.

8.23

The LBC SFRA also notes that inspection of the Hampstead Ponds is carried out as required under the Reservoirs Act 1975, routine maintenance is carried out as and when required.

8.24

After review of the relevant information this development is considered to be at **low risk** of flooding from artificial water bodies.

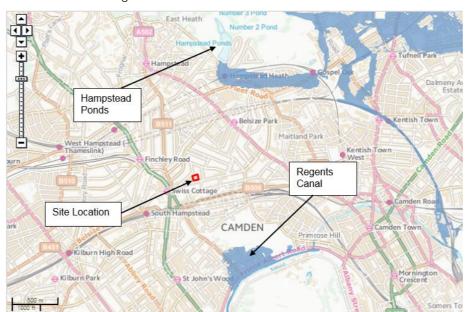
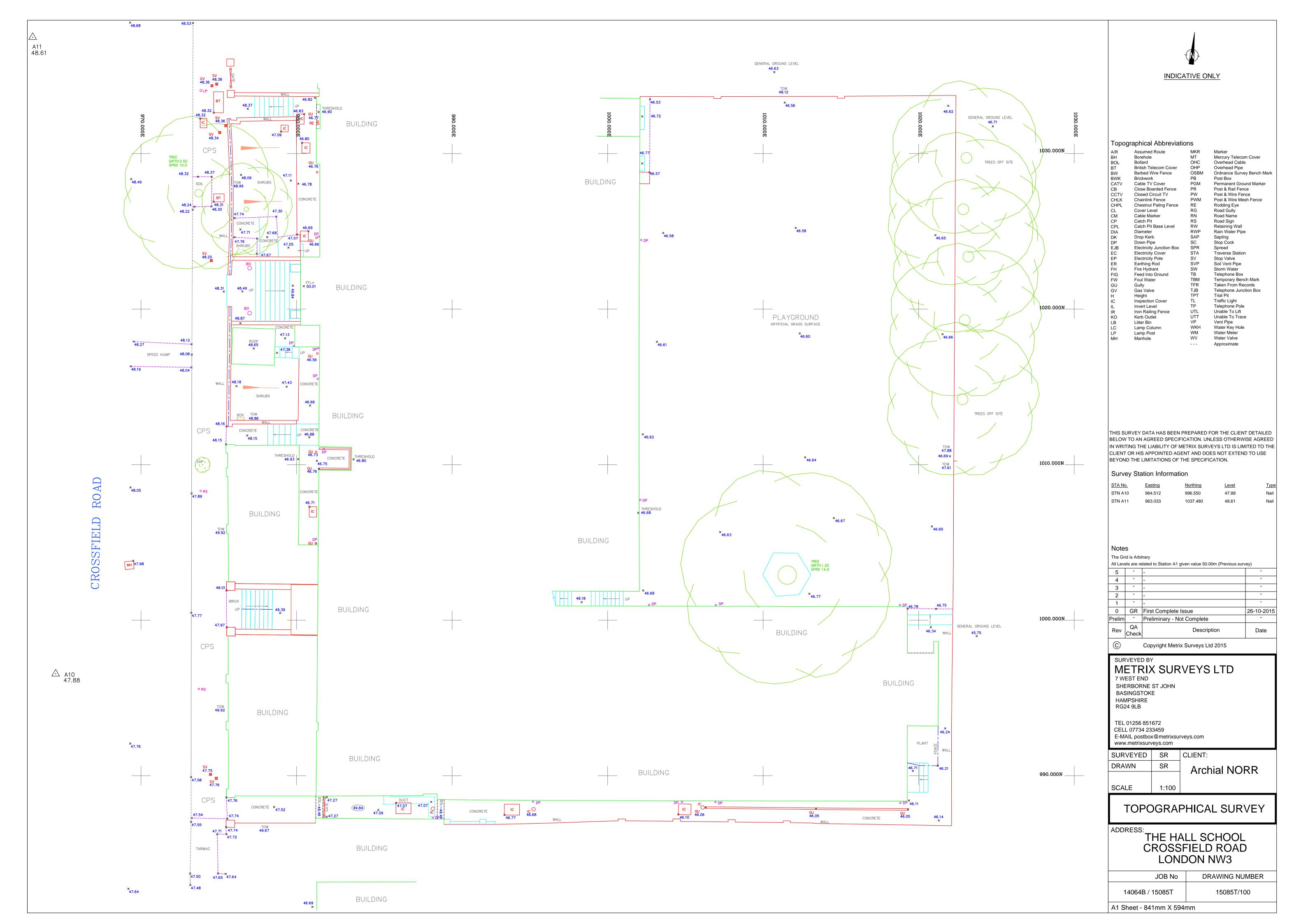


Figure 10 – Risk of Flooding from Reservoirs Map(Contains Environment Agency information © Environment Agency and/or database rights. Based on information © Local Authorities)

Flood Risk Summary

8.25


A review of all potential sources of flooding has found the site be at low. The new proposed drainage network should ensure that the building remains safe from flooding in the event of a localised drainage failure. In addition, levels across the site should ensure that surface water is directed away from building entrances.

$e^{10}twood$

Appendices

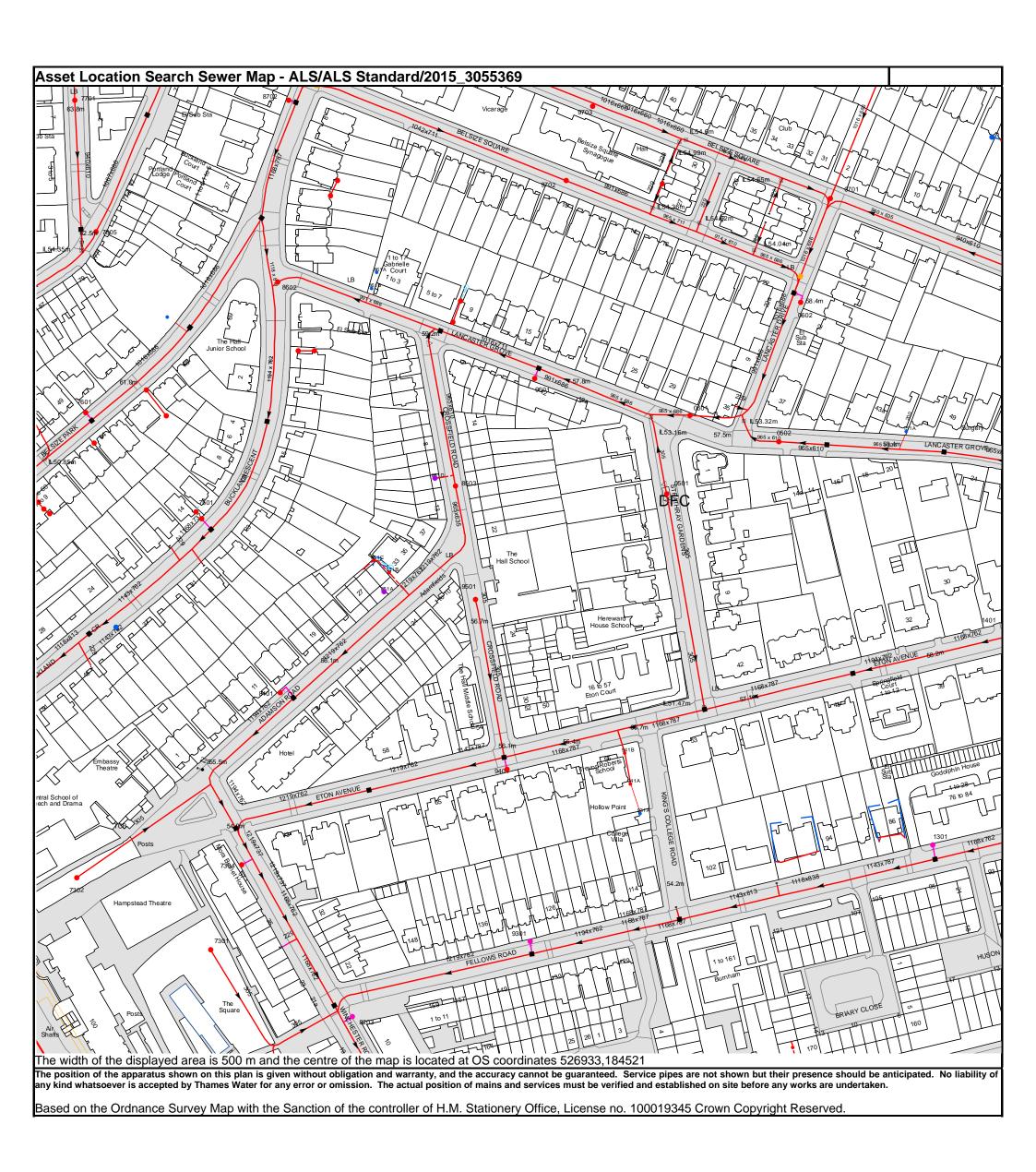
engineering a better society

A Topographic Survey

B Site Investigation – Borehole Logs

Dender Ad at	Associates		6 - : -	N	Ī	SG12 7QE	The Hall School, 23 Crossfield Street, London NW3 4NU	BH1 Job	_
Boring Metho	d Cable Percussion	De	pth	Diameter Diameter	Ground	Level (mOD)		Numbe	
Dismantiable (Rig	Lable Percussion		00	150			The Hall School	J15302	
		Location				Dates	Engineer	Sheet	
		526946.00E 184515.00N		L5.00N	28/10/2015		Elliott Wood	Sheet 1	of
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.20	D1					- (0.10) - (8:38) - (8:38)	Astro Turf surface over foam underlay and asphalt		¥
0.30	D2					⊢ (β:₹β)	Lean-mix concrete over stone chippings Asphalt		Š
).50	В3					-	Made Ground (brownish grey silty clay with rootlets, gravel,		8
0.75	D4					(1.05)	brick, coal and concrete fragments)		8
						_			8
20 - 1.65	B5	4.00				1.35			8
20 - 1.65	SPT (C)N=11	1.00		N=11 (1,2/2,2,3,4)		- 1.55	Medium to firm fissured brown silty CLAY with pockets of	×_×_	_
75	D6			(+)=,=,=,~,¬,¬,		E	orange-brown silt and fine sand and fine selenite, has blocky fissuring.	<u> </u>	Ì
2.00 - 2.45	U7					L		×_×_	_
00 - 2.45	07					_ _ (1.65)		× ×	4
						Ė ,		×— →	<
						F		×—	<
2.75	D8					E		×——	<
3.00 - 3.45	D9					3.00	Stiff high strength locally fissured brown silty laminated CLAY	×	4
3.00 - 3.45	SPT (S)N=15	2.00		N=15		F	with partings and pockets of orange-brown and grey silt and	\times — \longrightarrow	<
				(1,2/3,3,4,5)		L	fine to coarse selenite crystals.	×	×
75	D10					<u> </u>		\times	×
3.75	D10					Ė		\times	7
.00 - 4.45	U11					_		<u> </u>	Ì
						F		<u> </u>	1
								× ×	_
1.75	D12					_			<u><</u>
5.00 - 5.45	D13					_		×——	<
5.00 - 5.45	SPT (S)N=16	2.00		N=16		-		×——>	<
				(1,2/3,3,4,6)		F		×——>	<
						E		×	K
						_		×	K
5.00	D14					_		×	K
						(6.50)		×_×_	- ×
5.50 - 6.95	U15					F		×_×_	_ _
						E		×_×_	_
						L		<u> </u>	Ì
						<u> </u>		<u> </u>	Ì
						Ė		× ×	_
7.50	D16					E		× ×	<
						E		×——>	<
3.00 - 8.45	D17					<u> </u>		×>	<
3.00 - 8.45	SPT (S)N=19	2.00		N=19 (4,3/4,5,5,5)		_		×	<
				(1)01-1,0,0,0		F		×———	<
						E		<u> </u> <u> </u>	<
0.00	D18					L		<u>×–×</u>	K
,.00	D10					L	abundant partings of orange-brown silty sand.	×	K
						<u> </u>		\times _ \times _ \to	×
9.50 - 9.95	U19					9.50	Very stiff high strength to very high strength dark grey silty	×_×_	=
						F	CLAY, locally very laminated with fine selenite, occasional	<u> </u>	<u> </u>
							white shells, occasional pale grey veins and white Continued on Next Page		1
Remarks							Scale (approx)	Logged By	
1 hrs spent ma	oving rig and all ec	juipment :	to boreho	le location.			1:50	ML	
	ction pit excavated						1.30	IVIL	

	Associates	Ι				SG12 7QE		lab
Boring Method		De	Casing I	Diameter Diameter	Ground	Level (mOD)	Client	Job Number
Rig	able Percussion	2.	00	150			The Hall School	J15302
		Location				Engineer	Sheet Sheet 2 of	
Danth		526946.00E 184515.00N					Elliott Wood	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						E	foraminifera.	<u>×</u> x
10.50	D20					E		× – ×
						E		××
11.00 - 11.45	D21					_		××
11.00 - 11.45	SPT (S)N=24	2.00		N=24 (3,4/5,6,6,7)		F		××
				(5) 1, 5, 5, 5, 7		E		××
						_		××
12.00	D22					_		×
						E		××
12.50 - 12.95	U23					_		× × ×
						_		××
						_		×_ × ^
13.50	D24					_		××
13.30	D24					-		×
14.00 - 14.45	D25					_		××
14.00 - 14.45	SPT (S)N=27	2.00		N=27		_		××
				(3,5/5,6,7,9)		F		××
						E		× × ×
15.00	D26					(15.50)		××
						E		××
15.50 - 15.95	U27					_		<u>×</u> ×
						E		××
						_		××
46.50	D20					-		<u>×</u> x
16.50	D28					E		×——×
17.00 - 17.45	D29							××
17.00 - 17.45	SPT (S)N=33	2.00		N=33		E	claystone at 17.00 m	×_ × ^
				(14,15/11,8,6,8)		_		<u>×x</u>
						E		××
18.00	D30					E		×
						E		<u>×</u> x
18.50 - 18.95	U31					E		×—×
						E		^—x
						_		××
						F		××
19.50	D32					E		××
20.00 - 20.45	D33					_	Continued on Next Page	<u>×_^_x</u>
Remarks					<u> </u>	1	Continued on Next Page Scale (approx	Logged By
	ving rig and all ed						1:50	ML
Services inspec	ction pit excavate aystone between	d from GL	to 1.2 m	for 1 hr.				
	oving rig and equ							

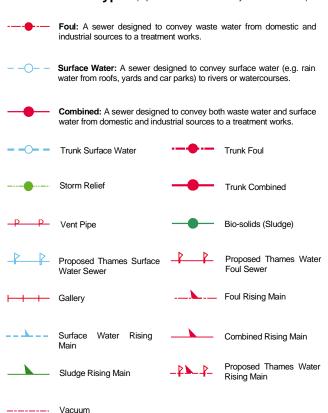

43	Geotechnical & Environmental Associates					Widbury Barn Widbury Hill Ware		Nu	rehole umber
Boring Metho			Casina	Diameter	Cround	SG12 7QE		Jol	H1 _b
	able Percussion		pth	Diameter	Ground	Level (IIIOD)	The Hall School	Nu	umber 5302
Rig		2. Location	00	150		Dates	Engineer		eet
		526946.00E 184515.00N							eet 3 of 3
Depth	Sample / Tests	Casing	Water	Field Besends	Level	Depth (m)		le le	gend
Depth (m) 20.00 - 20.45 21.00 21.50 - 21.95 22.50 23.00 - 23.45 23.00 - 23.45 24.00 24.55 - 25.00 24.55 - 25.00 24.55 - 25.00	Sample / Tests SPT (S)N=34 D34 U35 D36 D37 SPT (S)N=35 D38 D40 SPT (S)N=37 U39	Casing		Field Besends		/10/2015 Depth (m) (Thickness)	Complete at 25.000m		gend
Services inspec Chiselling on c	iving rig and all ed tion pit excavate aystone between ioving rig and equ	d from GL 17.0 m to	to 1.2 m 17.30 m	for 1 hr.			Scale (appro 1:50	x) Log	

EF	Geotechnical & Environmental					Widbury Barn Widbury Hill Ware	Site	Number BH2
	Associates	Т			SG12 7QE		The Hall School, 23 Crossfield Street, London NW3 4NU	
Boring Meth	od	Casing Diameter		Ground Level (mOD)		Client	Job Number	
rive-in Wind	dow Sampler	De	pth	Diameter	-		The Hall School	J15302
		Location	ı	1		Dates	Engineer	Sheet
		526939.0	OOE 1845	39.00N	30/	10/2015	Elliott Wood	Sheet 1 o
Depth (m)	Sample / Tests	Casing	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
(m)		Deptii (iii)	Deptii (iii)		(IIIOD)		Concrete	3.57
						(0.20) - (0.20) - (0.40)	Made Ground (dark brown and black silty sandy gravel with	
						- 0.10	\ash) Made Ground (brown silty clay with gravel and fine brick	
							fragments)	
						_		
						(2.00)		
						(2.00)		
						_		
00	D1					_		
						2.40		
				Seepage		- 2.40 - (0.40)	Made Ground (crushed brick and gravel)	
						2.80	Made Cround (growish brown legsely comented gravel and	
							Made Ground (greyish brown loosely cemented gravel and brick)	
						(1.00)		
						- - 3.80		
00	D2					_	Firm fissured locally very thinly laminated silty CLAY with partings of bluish grey silt occasional pockets of dark orange-	
							brown fine sand, coarse selenite and fine white shells	
.50	D3					(1.50)		
.00	D4					_		
						- 5.30	0 1 1 5000	
						_	Complete at 5.300m	
						_		
						E		
						_		
						_		
						_		
						_		
						_		
						_		
						-		
						_		
						_		
						E		
						_		
							Scale	Logged
emarks							(approx)	By
	anced through the				m.		1:50	ML
oundwater	monitoring standp	ipe install	led in bor	ehole to 5.00 m.				

Boring Method Casing Diameter Depth Description D	BH3 Job Numbe J15302 Sheet Sheet 1 Legend
Depth Diameter Depth Diameter Dates Engineer Elliott Wood Depth Sample / Tests Casing Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel) Depth (m) Description (Thickness) Concrete with 6 mm reinforcement Concrete with 6 mm rei	Numbe J15302 Sheet Sheet 1 Legend
Location Sample The Hall School Location S26964.00E 184508.00N 30/10/2015 Elliott Wood Depth (m) Sample Tests Casing Depth (m) Depth (m) Depth (m) Depth (m) Description (Thickness)	Sheet Sheet 1
Depth (m) Sample / Tests Casing Depth (m) Field Records Level (moD) Thickness Concrete with 6 mm reinforcement	Sheet 1
Depth (m) Sample / Tests Casing Depth (m) Depth (m) Field Records Level (moD) (Thickness) Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments)	Legend
(m) Sample / lests Depth (m) Depth (m) Pield Records (mob) (Thickness) Description (m) Thickness Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) (1.05) Made Ground (brown silty clay with gravel) Seepage Made Ground (brown silty clay with gravel) Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
Concrete with 6 mm reinforcement Made Ground (dark brown silty clay with gravel, decayed roots, brick and coal fragments) Seepage Made Ground (brown silty clay with gravel) Made Ground (brown silty clay with gravel) Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
7.00 D1 Seepage Seepage Made Ground (brown silty clay with gravel) Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
D1 Seepage Seepage Made Ground (brown silty clay with gravel) Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
Seepage C120 Made Ground (brown silty clay with gravel) Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
1.60 D2 Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
1.60 D2 Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
Birely veries) deceasional simular positions of circulate simulate	
2.60 D3	
	===
.60 D4 - (4.60)	
(4.60)	
	====
.60 D5 Coarse selenite and pockets of pale grey silt below 4.50 m	
	===
5.60 D6	
6.00 Complete at 6.000m	
Complete at 6.000m	
Scale Scale	Logged
Remarks (approx)) By
Borehole advanced through the base of Trial Pit No 2 at a depth of 0.70 m. 1:50	ML

GEV	Geotechnical & Environmental Associates					Widbury Barn Widbury Hill Ware SG12 7QE	Site The Hall School, 23 Crossfield Street, London NW3 4NU	Borehol Number BH4	
Boring Method		Casing Diameter			Ground Level (mOD)				
Drive-in Windov	v Sampler	De	pth	Diameter	1		The Hall School	Number J15302	
		Location				Dates	Engineer	Sheet	
		526920.0	OOE 18452	20.00N	30/	10/2015	Elliott Wood	Sheet 1 c	of 1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
						(8.20)	Concrete	~~~	П
						(0.80) - (1.00	Made Ground (brown silty clay with gravel and brick fragments)		
						- 1.00 - (4.00) - (5.00	Firm fissured locally very thinly laminated silty CLAY with partings of bluish grey silt occasional pockets of dark orangebrown fine sand, coarse selenite and fine white shells Complete at 5.000m		
Remarks Groundwater m	onitoring standp	l vipe install	led in bore	ehole to a depth o	I f 5.00 m.		Scale (approx) 1:50	Logged By ML	

C Thames Water Sewer Records


<u>Thames Water Utilities Ltd,</u> Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

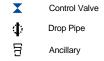
Manhole Reference	Manhole Cover Level	Manhole Invert Level
17CC	n/a	n/a
17CB	n/a	n/a
7701	64.11	59.55
7601	n/a	n/a
75AI	n/a	n/a
7605	62.39	54.49
76CB	n/a	n/a
75BC	n/a	n/a
761A	n/a	n/a
	60.58	52.1
8602		
8702	n/a	n/a
86BD	n/a	n/a
86BC	n/a	n/a
87BB	n/a	n/a
87AJ	n/a	n/a
861B	n/a	n/a
861A	n/a	n/a
851D	n/a	n/a
86AB	n/a	n/a
8503	58.09	52.29
96AF	n/a	n/a
96AE	n/a	n/a
9601	n/a	n/a
9702	60.11	54.16
9703	60.69	54.89
07BJ	n/a	n/a
0601	n/a	n/a
0502	n/a	n/a
0602	n/a	n/a
0701	59.18	54.13
151A	n/a	n/a
941A	n/a	n/a
9401	n/a	n/a
941B	n/a	n/a
8401	n/a	n/a
74BA	0	0
9501	57.16	52.81
851A	n/a	n/a
851B	n/a	n/a
85BA	n/a	n/a
851C	n/a	n/a
7501	n/a	n/a
65CG	n/a	n/a
75BI	n/a	n/a
65CH	n/a	n/a
65CI	n/a	n/a
0501 0501	57.19	n/a
8203	n/a	n/a
		52.42
7301	54.25	
7302	57.15	54.52
7304	n/a	n/a
9301	n/a	n/a
931A	n/a	n/a
	I =	40.05
021A	50.62	49.35
	50.62 n/a	49.35 n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.



Σ Meter

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Other Symbols

Symbols used on maps which do not fall under other general categories

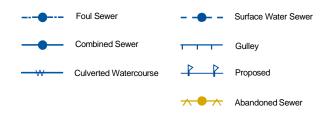
Public/Private Pumping Station Change of characteristic indicator (C.O.C.I.)

Ø Invert Level

 \triangleleft Summit

Areas

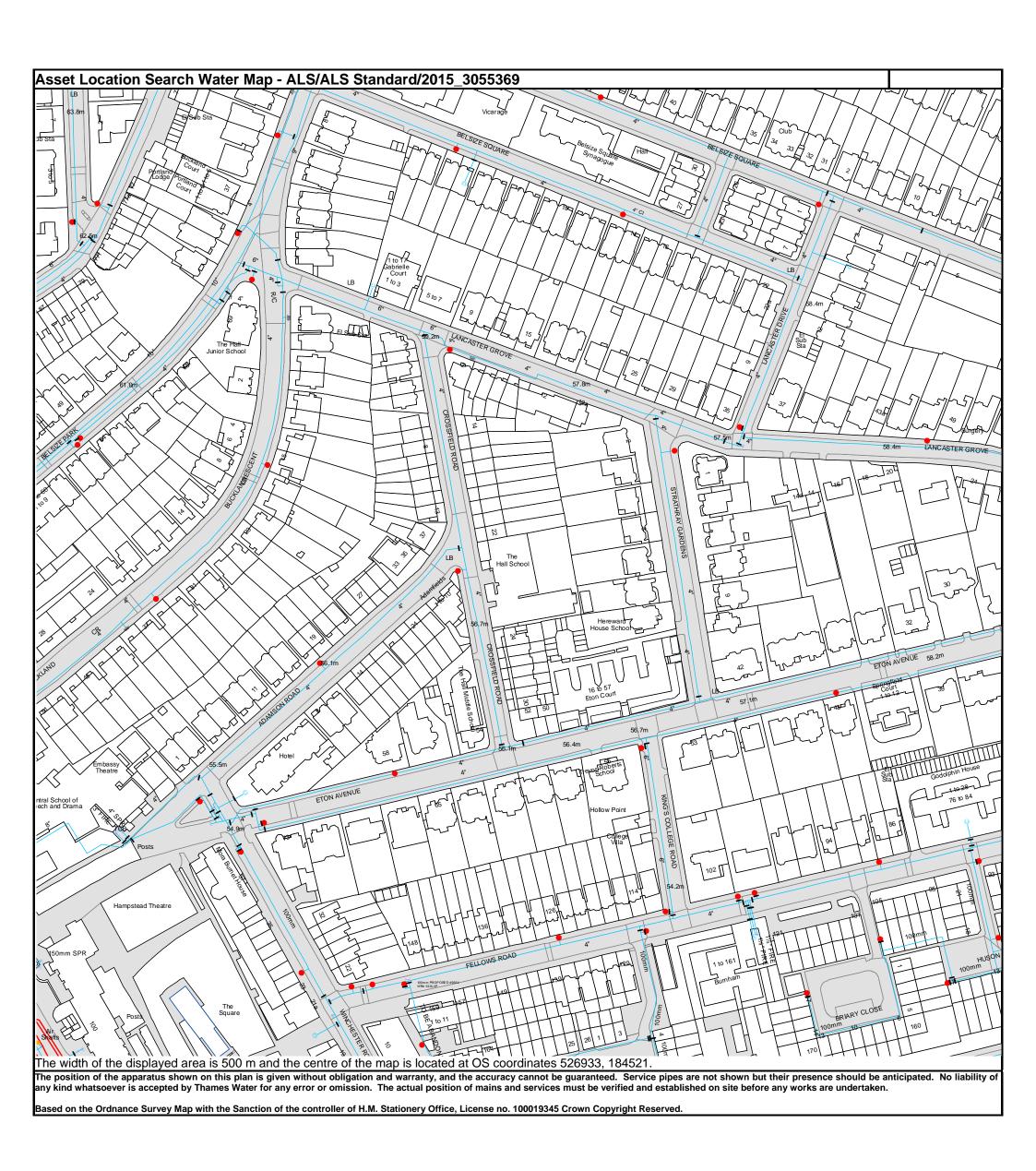
Lines denoting areas of underground surveys, etc.

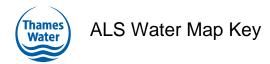


Chamber

Tunnel

Conduit Bridge


Other Sewer Types (Not Operated or Maintained by Thames Water)


Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

3" SUPPLY

3" FIRE

3" METERED

Water Pipes (Operated & Maintained by Thames Water)

Distribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.

Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.

Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.

Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.

Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.

Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.

Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

Valves

General PurposeValve

Air Valve

Pressure ControlValve

Customer Valve

Hydrants

Single Hydrant

Meters

Meter

End Items

Symbol indicating what happens at the end of $^{\perp}$ a water main.

Blank Flange
Capped End

Emptying Pit
Undefined End

Manifold

Customer Supply

Fire Supply

Operational Sites

Booster Station
Other

Other (Proposed)

Pumping Station

Service Reservoir

Shaft Inspection

Treatment Works

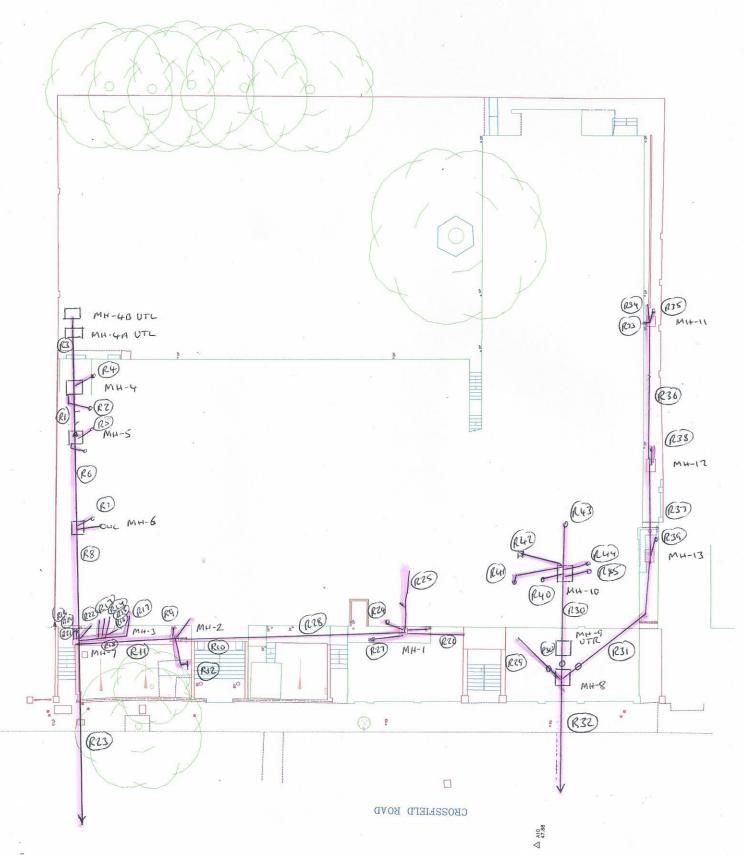
____Unknown

———── Water Tower

Other Symbols

_____ Data Logger

PIPE DIAMETER DEPTH BELOW GROUND


Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

D CCTV Drainage Survey Plan

A11 48.61 E Previous Correspondence with Thames Water

Hi Keri,

Please find below our formal response sent to the Local Authority on 27th March 2018.

London Borough of Camden Camden Town Hall Argyle Street Euston Road London WC1H 8EQ 27 March 2018

Our DTS Ref: 53960 Your Ref: 2016/6319/P - Disc of surface water

Dear Sir/Madam

Re: THE HALL SCHOOL, 23 CROSSFIELD ROAD, LONDON, NW3 4NT

Waste Comments

Thank you for consulting Thames Water for the discharge of matters relating to surface water. Thames Water confirm they are happy for the surface water condition referenced to be discharged based on the information submitted

Water Comments

Supplementary Comments

Further to discussions with Keri Trimmer from the Elliot Wood Partnership, Thames Water confirms that we are happy with the surface water proposals and as such agree to the discharge of the related condition.

Yours faithfully

Development Planning Department

Development Planning, Thames Water, Maple Lodge STW, Denham Way, Rickmansworth, WD3 9SQ <u>Tel:020</u> 3577 9998 Email: devcon.team@thameswater.co.uk

Kind regards

John Georgoulias

Developer Services – Thames Valley Regional Development Planning Lead Mobile 07747 645428 Landline 020 3577 9959 john.georgoulias@thameswater.co.uk

Maple Lodge Sewage Treatment Works, Denham Way, Rickamsworth, WD3 9SQ Find us online at <u>developers.thameswater.co.uk</u>

F MicroDrainage Calculations

Elliott Wood Partnership LTD				
241 The Broadway	2190008			
London	The Hall School			
SW19 1SD	Existing Runoff Rates	Micro		
Date 02/09/2022 13:51	Designed by HH	Drainage		
File 2190008 Existing Runoff Rates	Checked by	niairiade		
Innovyze	Network 2020.1.3			

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 100 PIMP (%) 100

M5-60 (mm) 21.000 Add Flow / Climate Change (%) 0

Ratio R 0.434 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Elliott Wood Partnership LTD				
241 The Broadway	2190008			
London	The Hall School			
SW19 1SD	Existing Runoff Rates	Micro		
Date 02/09/2022 13:51	Designed by HH	Drainage		
File 2190008 Existing Runoff Rates	Checked by	Diamage		
Innovyze	Network 2020.1.3			

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
s1	10.000	2.000	Open Manhole	1200	S1.000	8.000	150				
S2	10.000	2.100	Open Manhole	1200	S1.001	7.900	150	s1.000	7.900	150	
S	10.000	2.200	Open Manhole	0		OUTFALL		S1.001	7.800	150	

No coordinates have been specified, layout information cannot be produced.

Elliott Wood Partnership LTD				
241 The Broadway	2190008			
London	The Hall School			
SW19 1SD	Existing Runoff Rates	Micro		
Date 02/09/2022 13:51	Designed by HH	Drainage		
File 2190008 Existing Runoff Rates	Checked by	niailiade		
Innovyze	Network 2020.1.3			

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	150	S1	10.000	8.000	1.850	Open Manhole	1200
S1.001	0	150	S2	10.000	7.900	1.950	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	10.000	100.0	S2	10.000	7.900	1.950	Open Manhole	1200
S1.001	10.000	100.0	S	10.000	7.800	2.050	Open Manhole	0

©1982-2020 Innovyze

Elliott Wood Partnership LTD				
241 The Broadway	2190008			
London	The Hall School			
SW19 1SD	Existing Runoff Rates	Micro		
Date 02/09/2022 13:51	Designed by HH	Drainage		
File 2190008 Existing Runoff Rates	Checked by	niailiade		
Innovyze	Network 2020.1.3			

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	_	_	100	0.027	0.027	0.027
1.001	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.027	0.027	0.027

Elliott Wood Partnership LTD				
241 The Broadway	2190008			
London	The Hall School			
SW19 1SD	Existing Runoff Rates	Micro		
Date 02/09/2022 13:51	Designed by HH	Drainage		
File 2190008 Existing Runoff Rates	Checked by	Diamade		
Innovyze	Network 2020.1.3			

Network Classifications for Storm

PN		Pipe Dia (mm)		Max Cover Depth (m)	Pipe Type	MH Dia (mm)		MH Ring Depth (m)	MH Type
S1.000	S1	150	1.850	1.950	Unclassified	1200	0	1.850	Unclassified
S1.001	S2	150	1.950	2.050	Unclassified	1200	0	1.950	Unclassified

Free Flowing Outfall Details for Storm

Outfall	Outfall	С.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

S1.001 S 10.000 7.800 0.000 0 0

Simulation Criteria for Storm

w 0.000	of Total Flow	Additional Flow -	0.750	Volumetric Runoff Coeff
e 2.000	m³/ha Storage	MADD Factor *	1.000	Areal Reduction Factor
t 0.800	Coeffiecient	Inl	0	Hot Start (mins)
) 0.000	y (1/per/day)	Flow per Person per	0	Hot Start Level (mm)
) 60	n Time (mins)		0.500	Manhole Headloss Coeff (Global)
) 1	terval (mins)	Output	0.000	Foul Sewage per hectare (1/s)

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	.l Model		FSR		Profi	le Type	Summer
Return	Period	(years)		100		Cv (Summer)	0.750
		Region	England	and Wales		Cv (Winter)	0.840
	M5-	-60 (mm)		21.000	Storm	Duration	(mins)	30
		Ratio R		0.434				

Elliott Wood Partnership LTD	Page 6	
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Existing Runoff Rates	Micro
Date 02/09/2022 13:51	Designed by HH	Drainage
File 2190008 Existing Runoff Rates	Checked by	pramade
Innovyze	Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

									Water	Surcharged	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	
S1.000	S1	15 Summer	1	+0%	100/15 Summer				8.053	-0.097	
S1.001	S2	15 Summer	1	+0%	100/15 Summer				7.954	-0.096	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
c1 000	C1	0.000	0.20			4.4	OK	
21.000	21	0.000	0.20			4.4	ON	
S1.001	S2	0.000	0.28			4.4	OK	

Elliott Wood Partnership LTD		Page 7
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Existing Runoff Rates	Micro
Date 02/09/2022 13:51	Designed by HH	Drainage
File 2190008 Existing Runoff Rates	Checked by	niairiade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

										Water	Surcharged
	US/MH			Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth
PN	Name	S	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)
S1.000	S1	15	Summer	30	+0%	100/15 Summe	er			8.091	-0.059
S1.001	S2	15	Summer	30	+0%	100/15 Summe	er			7.992	-0.058

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.000	0.68			10.7	OK	
S1.001	S2	0.000	0.68			10.7	OK	

Elliott Wood Partnership LTD		Page 1
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Existing Runoff Rates	Micro
Date 06/09/2022 15:33	Designed by HH	Drainage
File 2190008 Existing Runoff Rates	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

									Water	Surcharged	Flooded	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	
S1.000	S1	15 Summer	100	+0%					8.109	-0.041	0.000	
S1.001	S2	15 Summer	100	+0%					8.010	-0.040	0.000	

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.88			13.9	OK	
S1.001	S2	0.88			14.0	OK	

Elliott Wood Partnership LTD		Page 8
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Existing Runoff Rates	Micro
Date 02/09/2022 13:51	Designed by HH	Drainage
File 2190008 Existing Runoff Rates	Checked by	niairiade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	
S1.000	S1	15 Winter	100	+40%	100/15 Summer				8.232	0.082	
S1.001	S2	15 Winter	100	+40%	100/15 Summer				8.085	0.035	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.000	1.19			18.8	SURCHARGED	
S1.001	S2	0.000	1.18			18.7	SURCHARGED	

Elliott Wood Partnership LTD		Page 1
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 100 PIMP (%) 100 M5-60 (mm) 21.000 Add Flow / Climate Change (%) 0 Ratio R 0.434 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (1/s/ha) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
	10.000							0.600			Pipe/Conduit Pipe/Conduit	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	4.17	8.000	0.027		0.0	0.0	0.0	1.00	17.8	3.7
S1.001	50.00	4.33	7.900	0.027		0.0	0.0	0.0	1.00	17.8	3.7

Elliott Wood Partnership LTD		Page 2
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	10.000	2.000	Open Manhole	1200	S1.000	8.000	150				
S2	10.000	2.100	Open Manhole	1200	S1.001	7.900	150	S1.000	7.900	150	
S	10.000	2.200	Open Manhole	0		OUTFALL		S1.001	7.800	150	

No coordinates have been specified, layout information cannot be produced.

Elliott Wood Partnership LTD		Page 3
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Diali lade
Innovyze	Network 2020.1.3	,

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	150	S1	10.000	8.000	1.850	Open Manhole	1200
S1.001	0	150	S2	10.000	7.900	1.950	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	10.000	100.0	S2	10.000	7.900	1.950	Open Manhole	1200
S1.001	10.000	100.0	S	10.000	7.800	2.050	Open Manhole	0

Elliott Wood Partnership LTD	Illiott Wood Partnership LTD		
241 The Broadway	2190008		
London	The Hall School		
SW19 1SD	Green Roof Calcs	Micro	
Date 02/09/2022 13:47	Designed by HH	Drainage	
File 2190008 Green Roof Calcs.MDX	Checked by	niairiade	
Innovyze	Network 2020.1.3	'	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	_	_	100	0.027	0.027	0.027
1.001	-	_	100	0.000	0.000	0.000
				Total	Total	Total
				0.027	0.027	0.027

Elliott Wood Partnership LTD		Page 5
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Network Classifications for Storm

PN	USMH	Pipe	Min Cover	Max Cover	Pipe Type	MH	MH	MH Ring	MH Type
	Name	Dia	Depth	Depth		Dia	Width	Depth	
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
S1.000	S1	150	1.850	1.950	Unclassified	1200	0	1.850	Unclassified
S1.001	S2	150	1.950	2.050	Unclassified	1200	0	1.950	Unclassified

Free Flowing Outfall Details for Storm

Outfall		Outfall	C. Level		I.	Level	Min		D,L	W	
Pipe Num	nber	Name		(m)		(m)	I.	Level	(mm)	(mm))
								(m)			
S1.	.001	S		10.000		7.800		0.000	0	(0

Simulation Criteria for Storm

	Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow (0.000
	Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage 2	2.000
	Hot Start (mins)	0	Inlet Coeffiecient (0.800
	Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) (0.000
Ma	anhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
	Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	21.000	Storm Duration (mins)	30
Ratio R	0.434		

Time Area Diagram for Green Roof at Pipe Number S1.000 (Storm)

Area (m³) 269 Evaporation (mm/day) 3 Depression Storage (mm) 5 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)									
rrom.	10.	(IIa)	FIOII.	10.	(IIa)	FIOII.	10.	(IIa)	FIOII.	10.	(IIa)
0	4	0.004888	32	36	0.000987	64	68	0.000199	96	100	0.000040
4	8	0.004002	36	40	0.000808	68	72	0.000163	100	104	0.000033
8	12	0.003277	40	44	0.000662	72	76	0.000134	104	108	0.000027
12	16	0.002683	44	48	0.000542	76	80	0.000109	108	112	0.000022
16	20	0.002196	48	52	0.000443	80	84	0.000090	112	116	0.000018
20	24	0.001798	52	56	0.000363	84	88	0.000073	116	120	0.000015
24	28	0.001472	56	60	0.000297	88	92	0.000060			
28	32	0.001205	60	64	0.000243	92	96	0.000049			

Elliott Wood Partnership LTD		Page 6
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

									Water	Surcharged	Flooded	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	
S1.000	S1	60 Winter	1	+0%					8.026	-0.124	0.000	
S1.001	S2	60 Winter	1	+0%					7.925	-0.125	0.000	

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.07			1.0	OK	
S1.001	S2	0.06			1.0	OK	

Elliott Wood Partnership LTD		Page 7
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

									Water	Surcharged	Flooded	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	
S1.000	S1	30 Winter	30	+0%					8.044	-0.106	0.000	
S1.001	S2	30 Winter	30	+0%					7.946	-0.104	0.000	

	US/MH	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	•	•	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000 S1.001					3.0 3.1		

Elliott Wood Partnership LTD		Page 1
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 06/09/2022 15:32	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

									Water	Surcharged	Flooded	
	US/MH	1	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	
PN	Name S	torm 1	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	
S1.000	S1 30 1	Winter	100	+0%					8.051	-0.099	0.000	
S1.001	S2 30 1	Winter	100	+0%					7.951	-0.099	0.000	

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.25			3.9	OK	
S1.001	S2	0.25			3.9	OK	

Elliott Wood Partnership LTD		Page 8
241 The Broadway	2190008	
London	The Hall School	
SW19 1SD	Green Roof Calcs	Micro
Date 02/09/2022 13:47	Designed by HH	Drainage
File 2190008 Green Roof Calcs.MDX	Checked by	Diamade
Innovyze	Network 2020.1.3	•

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 21.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.436 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

									Water	Surcharged	Flooded	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	
S1.000	S1 :	30 Winter	100	+40%					8.061	-0.089	0.000	
S1.001	S2 :	30 Winter	100	+40%					7.961	-0.089	0.000	

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.35			5.5	OK	
S1.001	S2	0.35			5.5	OK	

engineering a better society

London

55 Whitfield Street Fitzrovia W1T 4AH +44 207 499 5888

Wimbledon

241 The Broadway London SW19 1SD +44 208 544 0033

Nottingham

1 Sampsons Yard Halifax Place Nottingham NG1 1QN +44 870 460 0061

www.elliottwood.co.uk