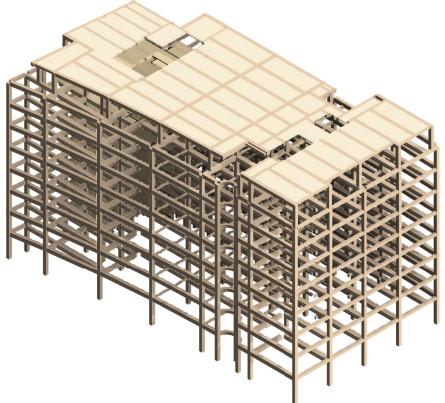


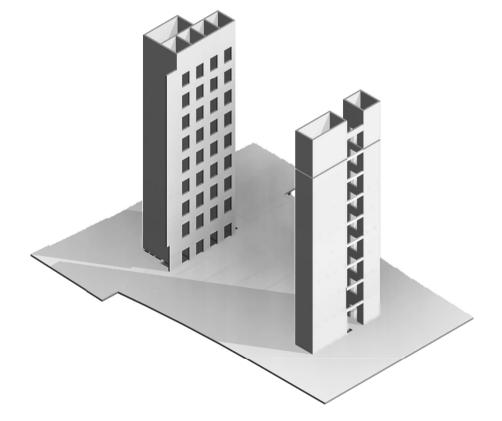
Overall Analysis


Total embodied CO ₂ e	2,095,910 kgCO₂e				
Total GIA*	12,680 m ²				
Embodied CO ₂ e Rate	165 kgCO ₂ e/m ²				
LETI 2030 target	193 kgCO ₂ e/m ²				

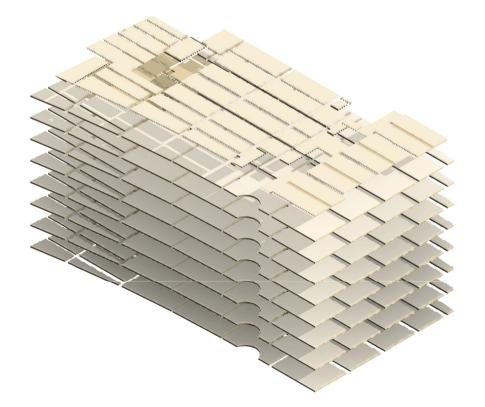
Proposed Structure Analysis

Total embodied CO ₂ e	2,094,00
Total GIA*	12,680 r
Embodied CO ₂ e Rate	165 kgC
LETI 2030 target	193 kgC

<u>Concrete Sub Structure</u>



Embodied Energy - Demolished Structure


		Density		Material C02	Site Emissions	Total C02
Material	Category	(kg/m³)	Weight (kG)	(kG)	C02 (kG)	(tonnes)
Concrete - RC Pile	Structural Foundations	2500	5643	62	15	0.08
Existing Concrete - Cast In Situ	Structural Columns	2500	2052	23	5	0.03
Existing Concrete - Cast In Situ	Structural Foundations	2500	2855	31	7	0.04
Existing Concrete - Cast In Situ	Structural Framing	2500	11244	124	29	0.15
Existing Concrete - Cast In Situ	Walls	2500	118931	1308	309	1.62
		i	140725	1548	366	1.91

0 kgCO ₂ e	
1 ²	
D ₂ e/m ²	
D ₂ e/m ²	

<u>Concrete Super Structure</u>

Embodied Carbon for Steel

Columns

Material	Density (kg/m³)	Volume (m³)	Weight (kg)	Embodied CO2e

Beams

Material	Density (kg/m ³)	Volume (m³)	Weight (kg)	Embodied CO2e
HTS_Concrete - C30/40	2500	2.19	5479	0.177
HTS_Metal - Steel - General	7850	0.91	7125	2.050
		3.10	12604	

Embodied Carbon for Concrete

Foundations (Dile

Material	Density (kg/m³)	Volume (m ³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)	Total C02 (tonnes)
HTS_Concrete - RC Pile	2500	79.56	198911	0.177	35
HTS_Concrete Foundations - C35/45		12.07	0		0
Columns		91.64	198911		35
Material	Density (kg/m ³)	Volume (m ³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)	Total C02 (tonnes)
HTS_Concrete - C40/50		32.48	53036		15
		32.48	53036		15
Beams					
Material	Density (kg/m ³)	Volume (m ³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)	Total C02 (tonnes)
HTS_Concrete - C30/40	2500	2.19	5479	0.177	1
		2.19	5479		1
Structure Walls					
Material	Density (kg/m ³)	Volume (m ³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)	Total C02 (tonnes)
HTS_Concrete - C30/40	2500	148.74	371856	0.166	62
HTS_Concrete - C35/45	2500	738.06	1845138		334
HTS_Concrete - Mass concrete	2400	74.30	178325	0.106	19
		961.10	2395319		414

Structure Floors					
Material	Density (kg/m³)	Volume (m ³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)	Total C02 (tonnes)
HTS_Concrete - C30/40		1156.02	2655719		465
HTS_Concrete - C35/45	2500	461.05	1152617		200
		1617.07	3808337		664

Embodied Carbon for Timber

Material	Density (k	g/m³)	Volume (m³)	Weight (kg)	Embodied CO2e (kg CO2e per kg)		Total C02 (tonnes)			
HTS_Wood - Glulam	470		410.72	193040 0.764						147
			410.72	193040						147
Beams										
Material	Density (k	g/m³)	Volume (m ³)	Weight (kg)	Emboo	died C	02e (kg 0	02e	per kg)	Total C02 (tonnes)
HTS_Wood - Glulam	470		1049.11	493081	0.764					377
Wood - Dimensional Lumber	470		2.99	1404	0.764			1		
Floors			1052.10	494485						378
Material	Area (m²)	Densi (kg/m	•	Weight (kg)	Emboo	died C	CO2e (kg 0	CO2e	per kg)	Total C02 (tonnes)
HTS_Wood - Plywood	732	500	13.18	6588	0.889					6
HTS_Wood - Structural Lumber	845	500	15.21	7605	0.889					7
HTS_Wood CLT	49745	470	1705.56	801612	0.456					366
51322			1733.94	733.94 815805		378				
						P3	29.09.20	SH	AR	Issued For Planning
						P2	07.09.20	SH	AH	Revised Preliminary Issue
						Ρ1	17.08.20	SH	AH	Preliminary Issue
						Rev	Date	By	Eng	Amendments

e (kg CO2e per kg) Total CO2 (tonnes)

(kg CO2e per kg)	Total C02 (tonnes)
	1
	15
	16

100mm @ A1 (50mm @ A3)

- 1 This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
- 2 Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check drawing has been printed to the intended scale the above bar should be 100mm
- All proposed details shown are based on archive drawings and 3 limited opening up works. Assumptions have been made regarding existing construction. All proposed details are preliminary only and final detailing will be required following completion of further opening up works

Concrete Assumptions

- Concrete sourced 10km from site
- C32/40 w/ 50% GGBS for all foundations (piles, pile caps, Ground beams, basement and ground floor slabs)
- 50% GGBS in remaining RC
- Rebar 97% recycled content, 300km
- FSC plywood formwork reused 3 times (general not applicable for visual concrete) 5% site waste (concrete)

Steelwork Assumptions

- 20% recycled content
- Sourced from 300km from site
- Connections assumed to be 10% of frame

Demolition Assumptions

 Values include energy released by site plant during demolition period

Other Assumptions

- All figures exclude sequestration and are taken up to practical completion only
- All items transported to site using HGV lorries
- Organic waste impacts from formwork considered in practical completion
- No direct consideration of site program considered (eg. concrete slower than steel)
- Site emissions considered, though transport carbon attributed to excavation assumed to have been excluded

Rev Date By Eng Amendments

STRUCTURAL ENGINEERS

hts.uk.com

^{Job Name} 100 Grays Inn Road, WC1X 8AL

Drawing Title Embodied Carbon Assesment

Purpose of Issue **Preliminary** Scale at A1

Drg No 2423-HTS-ZZ-XX-DR-S-1800

1:1