

40 Frognal Lane Hampstead

Basement Impact Assessment

Appendix 5 Site Investigations

40 Frognal Lane Hampstead

Basement Impact Assessment

Standpipe Readings

	18.12.13		23.01.14		
Location	Depth BGL	OD	Depth BGL	OD	
WS1 [West]	2.8m	+88.0m	1.5m	+89.3m	
WS2 [East]	2.0m	+88.9m	0.8m	+90.1m	
Difference across site		0.9m		0.8m	

Road level at WS2 = +92.8m OD with road gradient at 1 in 10.

WS1 and WS2 spaced 18m apart so water table difference of 0.9m gives gradient of 1 in 20.

Extrapolating gradients:

- with water table in WS2 as +90.1m, water table at surface 55m to the west.
- with water table in WS2 as +88.9m, water table at surface 80m to the west.

Devonshire House 60 Station Road Addlestone Surrey KT 15 2AF

t 01932 848460 f 01932 851255 e maii@apgeotechnics.co.uk w www.apgeotechnics.co.uk

40 FROGNAL LANE CAMDEN LONDON NW3 6PP

Geotechnical Investigation

Client Mr A Matuzny

Consulting Engineer
Train and Kemp
Architect
TGN Architects

Report No. 3611-2

30 September 2011

CONTENTS

	Sec	etion		Page
	SYN	NOPSIS		I
Ī	Site	descri	ption	2
2	Dev	velopm	ent proposals	3
3	Ge	ology		3
4	Fiel	d work	C	3
5	Lab	orator	y testing	4
6	Gro	ound co		
	6.1	Stratig	5	
		6.1.1	Made Ground	5
		6.1.2	Claygate Member	6
		6.1.3	London Clay	6
	6.2	Groun	ndwater	6
7	Dis	cussior		
	7.1	Gener	-al	7
	7.2	Pile de	7	
	7.3	Excav	ations	
		7.3.1	Stability	9
		7.3.2	Groundwater	10
		7.3.3	Soil swelling	10
	7.4		sal of construction spoil	11
	7.5	Burie	d concrete	12

Procedural Notes

APPENDICES

Α	Figures
В	Borehole Records
C	Standpipe Records
D	In Situ Permeability Test
Е	Laboratory Test Results

40 FROGNAL LANE CAMDEN LONDON NW3 6PP

Geotechnical investigation

Synopsis

An investigation has been carried out at 40 Frognal Lane in Camden on the instructions of TGN Architects, professional advisors to client Mr. A Matuzny. Technical direction to the investigation has been provide by the client's Consulting Engineers, Messrs. Train and Kemp.

The purpose of the investigation was to determine the ground conditions and to provide recommendations in respect of foundation design and other geotechnical matters for the proposed underground swimming pool. An Hydrological Assessment⁷ been conducted which should be read in conjunction with the discussion and recommendations herein.

This report describes the work carried out in the field and the laboratory, presents the test results and discusses their implications for the proposals.

Data is provided in respect of lateral earth pressures and vertical load capacity for the perimeter pile wall, soil swelling at the base of the excavation and associated aspects of the proposed construction.

Report No. 3611: Hydrological Assessment, 40 Frognal Lane, Camden; AP Geotechnics Ltd., 21 September 2011

1

Site description

The property lies on the south side of Frognal Lane at the National Grid reference 5260 1855 with a general layout as illustrated at Figure 1 of Appendix A.

Frognal Lane is relatively flat in the vicinity of the existing property and to the east but falls at increasing gradient west of the property, reaching a slope of approximately 7° (1:8) at the western boundary.

The property is situated on the undulating land to the north of the River Thames. A tributary of the Westbourne rises about 200 m south south west of the site according to Barton². This location is some 15 m lower than the site, the stream now being entirely culverted.

The general arrangement of the site is shown at Figure 2. The house is an established large detached residence on two storeys above a lower ground floor. Overall plan dimensions are about 20m by 10m. It is aligned on approximately level ground north north west to south south east and surrounded by similar residential property. Access is provided via a drive from Frognal Lane which leads to a detached garage on the Frognal Lane frontage and thence to the north end of the house. A patio and landscaped garden adjoin the west side of the house. The garden is laid to lawn with ornamental planting, a pergola and fountain; and is about half a storey height below the ground floor level. The western edge of the site is a little lower than the garden level and was somewhat overgrown at the time of inspection.

² Lost Rivers of London, Nicholas Barton, Historical Publications Ltd., 1992

2

Development proposals

It is intended to construct an underground swimming pool beneath the garden as shown at Figures 3 & 4. Bored piles will be installed around the perimeter of the excavation to provide lateral support by means of a cantilever wall and they will also carry the imposed vertical loads, whether compression or tension.

3

Geology

The British Geological Survey indicate the property is underlain by the Claygate Member, the upper part of the London Clay Formation, with the younger Bagshot Formation being present on the higher ground to the north and north east, and the London Clay itself at outcrop to the south east as shown at Figure 5.

4

Field work

The field work comprised two boreholes drilled by light percussive techniques to 18 m depth at the approximate locations shown on Figure 2 of Appendix A.

Representative samples were recovered from the boreholes for subsequent laboratory examination and testing; whilst Standard Penetration Tests (SPT) were carried out as

appropriate. Details of the strata encountered are provided on the Borehole Records at Appendix B; together with particulars of the samples recovered, groundwater observations and SPT results. The profile of SPT with depth is also presented at Figure 6 of Appendix A.

A standpipe was installed in BH I to monitor groundwater levels. Readings are provided at Appendix C. A falling head was undertaken to establish the mass permeability of the soil as part of the Hydrological Assessment and the results included at Appendix D.

5

Laboratory testing

The following laboratory tests were conducted on samples recovered during the field work:-

- Natural moisture content: to assess the in situ condition of the soil.
- Liquid and Plastic Limits: to classify cohesive soil into behavioural groups.
- Unconsolidated undrained triaxial compression: to determine the shear strength of cohesive material under immediate loading and thus to assess its load bearing capacity.
- Consolidated undrained triaxial compression with pore pressure measurement: to assess the long term shear strength characteristics of cohesive soil.
- One dimensional consolidation: to determine the deformation characteristics of clay under applied loading and unloading.
- Sulphate concentration and pH value: for the specification of buried concrete.

Waste Acceptance Criteria: for disposal of construction spoil:-

Metals and semi - metals:

Arsenic, cadmium, chromium, lead, mercury,

selenium, copper, nickel, zinc and boron.

Waste Acceptance Criteria:

Full solid waste suite

Compliance leachate test at 10:1 dilution

Results of these tests are presented at Appendix E. The variation of shear strength with depth is also shown at Figure 7 of Appendix A.

6

Ground conditions

6.1

Stratigraphy

The general stratigraphy of the site as revealed by the boreholes is given in detail at Appendix B. It is illustrated in the section at right and described in general terms hereafter.

6.1.1

Made Ground

Both boreholes encountered Made Ground beneath the lawn, consisting of brick rubble within various parent clays. These layers extended to 1.3 m depth in BH 1 and 0.9 m in BH 2.

6.1.2

Claygate Member

Soil typical of the Claygate Member was found to between 5.1 & 5.6 m depth, generally comprising firm mottled brown and grey silty clay. Root penetration was observed in BH 2 to about 2.5 m depth and some fissures were evident below 4.5 m.

6.1.3

London Clay

The weathered part of this stratum was represented by a brown clay with occasional pockets of fine sand. At 7.8 - 8.6 m depth it was superceded by the grey clay which is typical of the fresh material. Fissures were noted throughout this formation and it was adjudged to be in a generally stiff condition, becoming very stiff at depth in BH 1.

6.2

Groundwater

During drilling, groundwater was encountered within the Made Ground of BH 1 at 1.6 m depth and at the base of the Claygate Member in both bores, at 5.0 - 5.3 m depth. Water levels rose only slightly during the subsequent observational pause in drilling. Full details of these strikes are provided on the appropriate Borehole Record.

The standpipe installed into BH I has been monitored on 5 August and 20 September 2011 and recorded water levels of 3.87 and 2.86 m below ground respectively.

7

Discussion

7.1

General

Some Made Ground has been found during the investigation and it is evident that the site has already carried development. It is therefore possible that other pockets of Made Ground may be present; perhaps of different character, deeper or associated with underground construction. Any remnants of underground construction should be removed to permit the proposals to be constructed without hindrance and to perform satisfactorily.

7.2

Pile design

The perimeter pile wall will be required to act as a retaining structure to resist the lateral earth pressures generated by the excavation for the pool without significant deformation. These may be assessed from the parameters of Table 1.

Table 1: Design parameters for lateral earth pressure assessment

Stratum	Approximate depth m	Bulk density Mg/m³	Effective cohesion kPa	Effective angle of internal shearing resistance degrees
Made Ground	GL - 1.3	1.8	0	20
Claygate Member	1.3 - 5.6	1.8	0	25
London Clay	5.6 - 18.0	2.1	0	22

The piles should be installed with minimal vibration to reduce the risk of damage to the house and any other nearby structures. Cfa piles are therefore preferred. The pile wall should be sufficiently rigid to ensure there is no loss of support to the house and should be able to withstand any superimposed loading in addition to those generated by the ground conditions.

It is assumed the pile wall and swimming pool will form a single structural unit and tensile or compressive vertical load carried by the piles may be assessed from Tables 2 & 3.

Table 1: Preliminary design parameters for bored piles - Shaft friction

Stratum	Depth, m	Ultimate unit shaft friction
All material London Clay	0.0 - 7.0 7.0 - 18.0	Ignore Increases linearly from 70 to 90

Table 3: Preliminary design parameters for bored piles - End bearing capacity

Stratum	Depth, m	Ultimate unit end bearing capacit			
London Clay	7.0 - 18.0	Increases linearly from 1050 to 1350 kPa			

The parameters of Table 2 are derived in conjunction with an adhesion factor of 0.6. No shaft friction should be adopted within the depth of construction, assumed to 7 m below ground, in view of the relaxation from lateral earth pressures on the active side of the perimeter piles and due to construction disturbance. Piles are to be installed at close centres and thus shaft friction will not be generated over their full cross section.

Factors of safety must be applied to the ultimate loads calculated from the Tables 2 & 3. A value of 3 is recommended on both shaft friction and end bearing.

The actual load capacity achieved in practice depends upon the precise installation procedures. Advice should therefore be sought from specialist contractors to verify the load capacity and settlement characteristics of their particular piles in the ground conditions revealed by this investigation.

7.3

Excavations

7.3.1

Stability

The main excavation will be supported by the perimeter pile wall.

Should the proposals required local excavation for subsidiary construction, the Made Ground should be regarded as unstable. Although the silty clays of the Claygate Member are generally able to support vertical excavated faces of moderate depth in the short term, the softer material at the contact with the Made Ground in BH I should also be regarded as unstable.

It is unlikely that sufficient space will be available to batter potentially unstable material to a safe angle of repose and excavations in these materials should therefore be supported at all times, as should all excavations greater than 1.2 m depth and those that are required to remain open for some time.

7.3.2

Groundwater

Groundwater observations during the investigation indicate a standing water level of about 2.8 m depth although this may rise as a result of heavy rainfall. Water was also found below the Made Ground at just over 1 m depth during drilling, indicating the potential for a perched water table.

Except for perhaps any perched water at high level or in the Made Ground, the Claygate Member has a fairly low permeability and the rate of inflow is expected to be limited. Nevertheless, water ingress should be expected during pile construction and through the completed pile wall.

Hydrostatic uplift will therefore act upon the development proposals and the underground construction should be designed to withstand the resulting forces.

7.3.3

Soil swelling

The underlying London Clay will swell as the vertical effective stress is reduced by the excavation. Movement will consist of two components; immediate elastic relaxation followed by long term swelling at gradually decreasing rate. The former, elastic, component will be unnoticed as it will be removed during final trimming of the excavation.

The magnitude of long term swelling in the centre of the pool is calculated at about 45 mm. A void should therefore be formed beneath the base slabs of the pool and of the upper level construction to accommodate the soil swelling. Alternatively, the base slabs and piles should be designed to resist the resulting upward forces

7.4

Disposal of construction spoil

The Waste Acceptance Criteria for disposal of construction spoil were ascertained on an aggregated sample by the full solid waste suite and then by the compliance leaching test. The data sheets are presented at Appendix E and show that all results fall within the Inert Waste Landfill classification.

All material that is removed from site should be transported to a suitable receiving facility. The results of the Waste Acceptance Criteria testing should be forwarded to the facility to ensure that it is acceptable and copies of all Transfer Notices retained to comply with the legislation.

In addition, analysis was conducted for a suite of heavy metals and semi - metals as listed at Section 5 to assist the receiving facility. The results have been compared with CLEA Soil Guideline Values (SGVs)³ and LQM/CIEH Generic Assessment Criteria (GAC)⁴ and the relevant thresholds are included on the data sheets. All those for which an SGV or GAC has been published lie below the residential threshold. For contaminants where no published

3611-2

The Contaminated Land Exposure Assessment Model,, R & D Publications SGV | et al, Department for Environment, Food and Rural Affairs & The Environment Agency, March 2002

The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition); Nathanail, C.P., McCaffrey, C. et al; Land Quality Management Ltd., 2009

guidance is available, the results were either below the limit of detection for the tests or are not considered significant based upon our experience and current industry practice.

Appropriate health and safety precautions, such as detailed in HS(G)66⁵ and elsewhere, must be followed by the construction workforce and others who may come into contact with contaminated soil. These should be agreed with the Health and Safety Executive and are likely to include, but not be restricted to, the following:-

- maintain good standards of personal hygiene.
- wear personal protective clothing that is changed and cleaned frequently to eliminate skin contact.
- prevent ingestion by using washing and changing facilities at all break times.
- not eating, drinking or smoking between break times.
- control the spread of dust and airborne mists to prevent inhalation.

7.5

Buried concrete

Laboratory tests yielded a maximum soluble sulphate concentration of 2.03 g/l which results in a Design Sulphate $Class^6$ of DS-3 for the site. The comparable test on groundwater found a maximum sulphate concentration of 0.24 g/l which is less onerous.

Protection of workers and the general public during the development of contaminated land, HS(G)66, Health and Safety Executive, 1991

Concrete in aggressive ground, BRE Special Digest 1, Building Research Establishment, 2005

Groundwater conditions must be considered mobile and both soil and groundwater were close to neutral. The aggressive chemical environment for concrete, ACEC, is therefore class AC-3.

A W Parr

AP GEOTECHNICS LTD.

30 September 2011

This report has been prepared for the sole and specific use of Mr A Matuzny for the purpose of the proposed development at 40 Frognal Lane, Camden and should not be relied upon by any third party. Any other persons who use any information contained herein without the written permission of AP GEOTECHNICS LTD. do so at their own risk. The copyright to this report remains the property of AP GEOTECHNICS LTD.

PROCEDURAL NOTES for GROUND INVESTIGATIONS

General

This report is based upon data obtained from field descriptions of the strata and examination of the samples by an engineer, together with the results of in situ and laboratory tests as appropriate. Responsibility cannot be accepted for variations in ground conditions between and around any of the exploratory points that is not revealed by the data. Whilst the report may offer an opinion on the ground conditions between exploratory points and below the depth of investigation, this is for guidance only and no liability is accepted for its accuracy. Unless specifically included in the report, it should be assumed that no testing has been carried out in respect of asbestos or Japanese Knotweed and no liability is inferred or will be accepted.

Drilling procedure

Boring by light cable percussion drilling allows the ground conditions to be reasonably well established. However, a certain amount of disturbance is inevitable and some mixing of soils can occur.

Sampling procedure

"Undisturbed" samples of predominantly cohesive soils are taken with a 100mm diameter open tube sampler, generally in accordance with BS 5930: 1999.

Where appropriate, or where an undisturbed sample is unsuccessful, disturbed samples are recovered and sealed into polythene bags.

Groundwater samples are taken when water is encountered in sufficient quantity.

Standard penetration tests

The test is conducted generally in accordance with BS 1377: Part 9: 1990. The sampler tube is subject to a seating drive of 150mm into the soil at the base of the borehole. Results are given on the Borehole Records as the number of blows required to drive the sampler tube a further 300mm and this is known as the "N" value. Where the driving resistance is such that full penetration is not achieved, the test is generally terminated after 50 blows and the actual distance penetrated is recorded.

Groundwater

Groundwater observations necessarily reflect the conditions encountered at the time of the exploratory work. Long term monitoring of standpipes is usually required to establish an equilibrium water level since the normal rate of boring is too fast to permit steady state conditions to be achieved.

Groundwater levels are subject to variations caused by changes in drainage conditions and seasonal climatic changes.

Water may necessarily be added to advance the bore whilst casing may be required to maintain an open hole. These can both mask subsequent groundwater observations and are therefore noted on the individual Borehole Record.

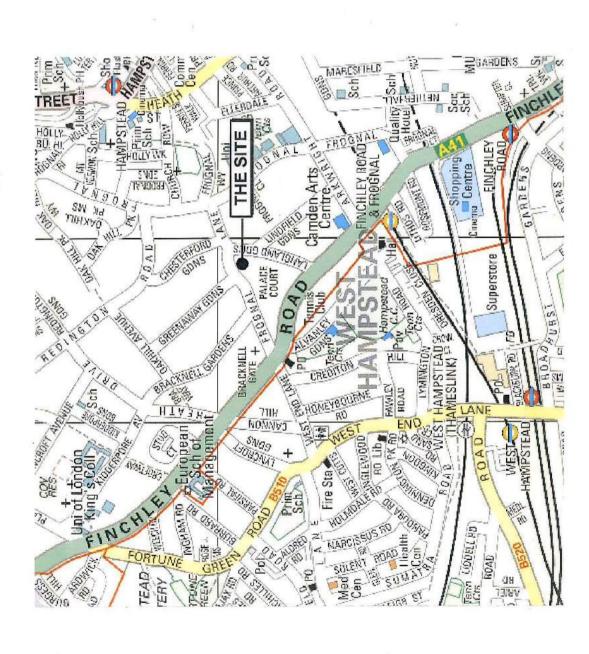
APPENDICES

A Figures

- Figure I Site location
- Figure 2 Plan showing general arrangement of the site
- Figure 3 Development proposals: Plan and Section AA
- Figure 4 Development proposals: Section BB
- Figure 5 Geology
- Figure 6 SPT Profile
- Figure 7 Shear Strength Profile

B Borehole Records

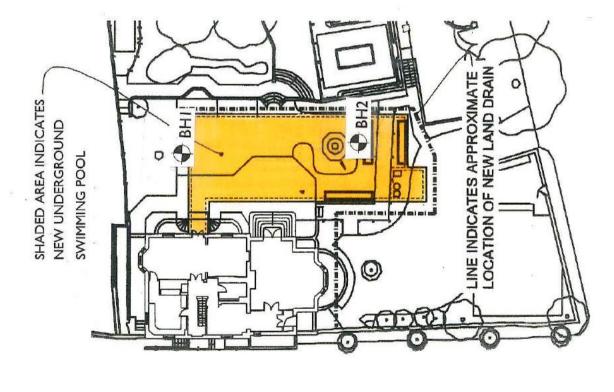
Symbols and Abbreviations Borehole Records


- C Standpipe Records
- D In Situ Permeability Test

E Laboratory Test Results

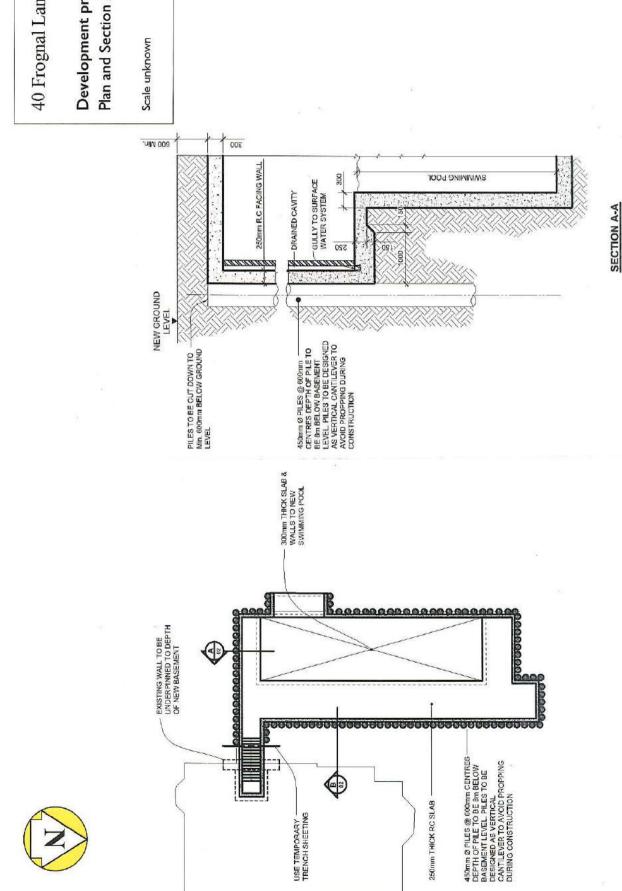
Summary of Geotechnical Tests
One - dimensional Consolidation
Contaminants in Soil
Waste Acceptance Criteria

APPENDIX A

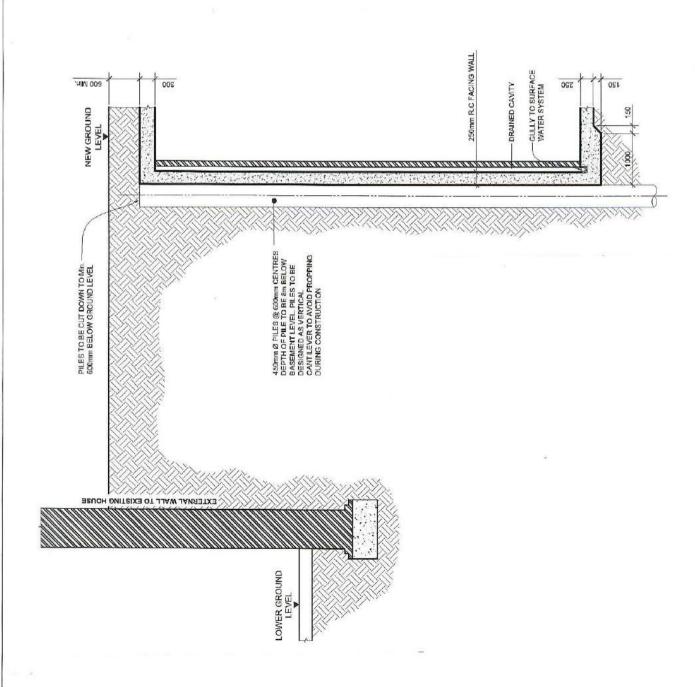

FIGURES

40 Frognal Lane, Camden

Site location


Scale unknown

40 Frognal Lane, Camden


Plan showing general arrangement of the site

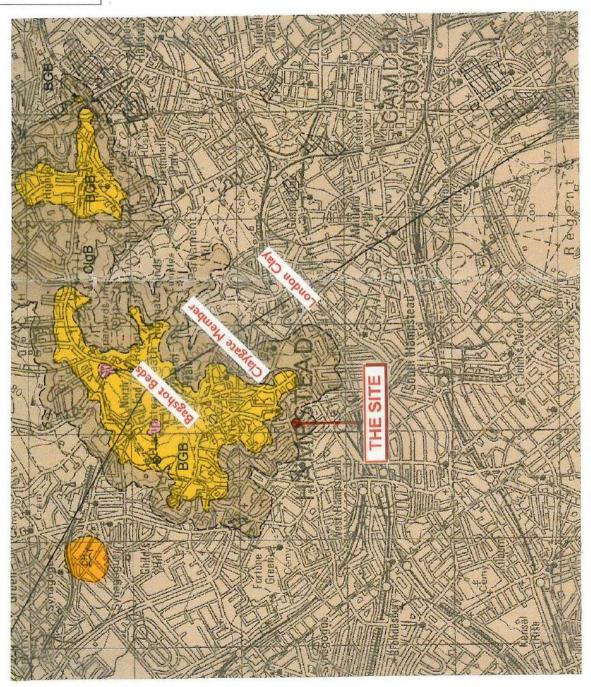
Scale unknown

40 Frognal Lane, Camden

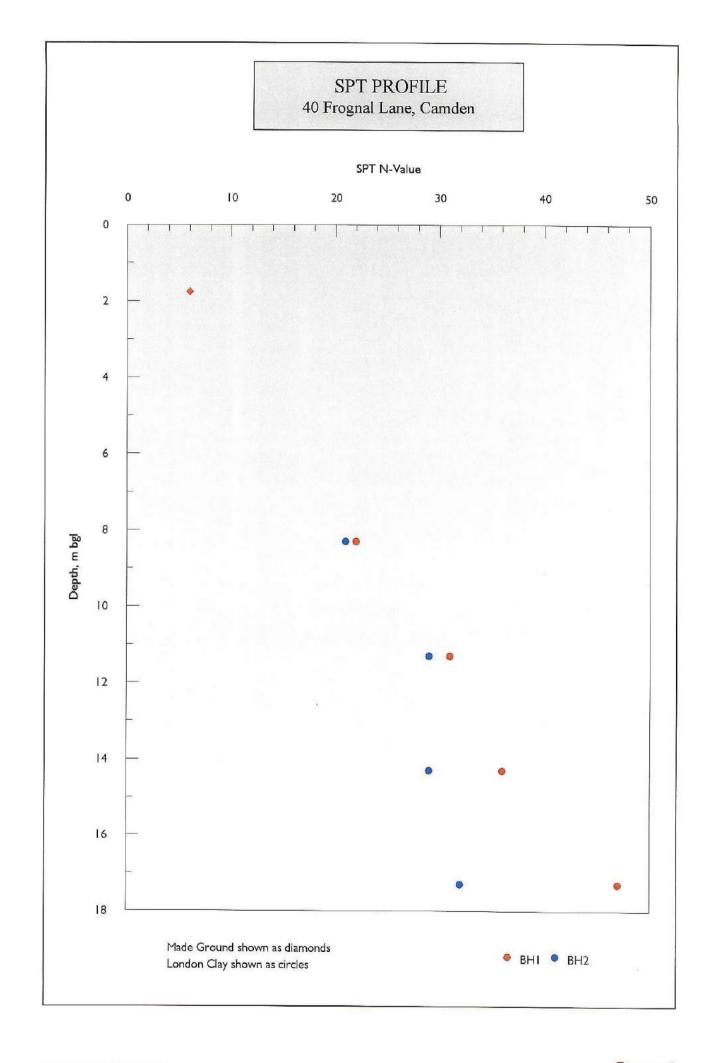
Development proposals Plan and Section AA

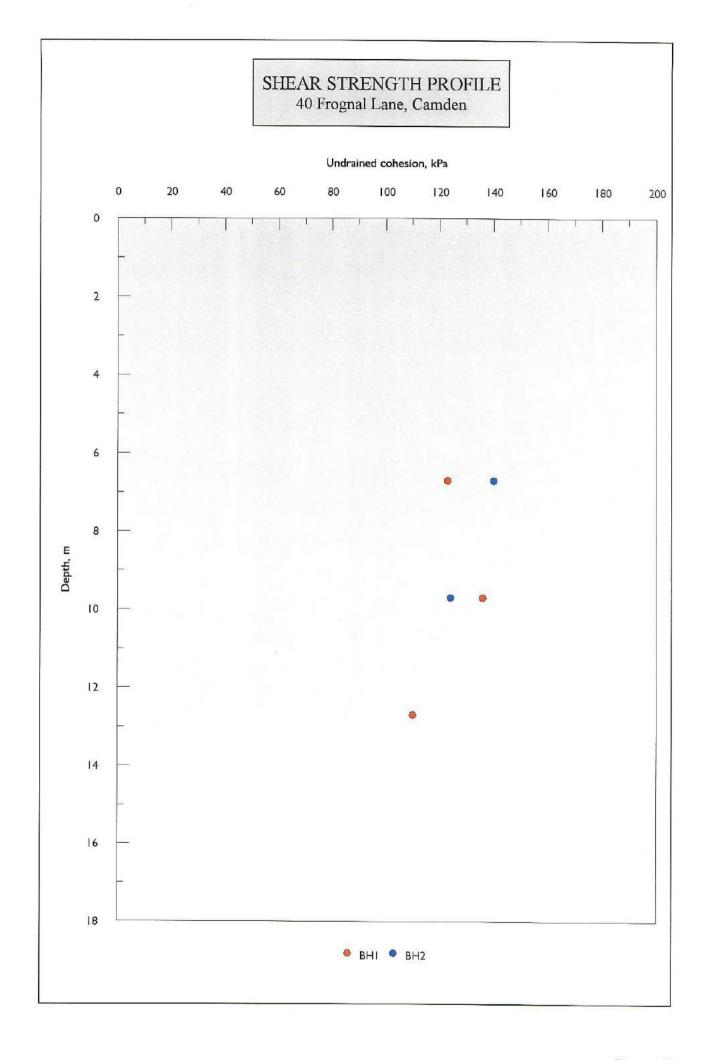
40 Frognal Lane, Camden

Development proposals


Section BB

Scale unknown




Geology

Scale unknown

APPENDIX B

BOREHOLE RECORDS

SYMBOLS and ABBREVIATIONS

Samples

Undisturbed

U Standard open drive "undisturbed"
102mm dia. in boreholes

38mm dia. in trial pits, window sampler and hand auger

T Thin wall open drive

P Piston

C CBR mould

Disturbed

D Small

B Bulk

C Contaminants: plastic tub

J brown glass jar

W Water

In situ tests

CPT

SPT Standard Penetration Test, open shoe

solid cone

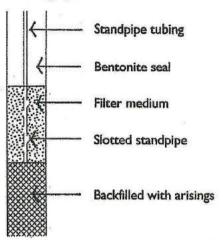
N value is number of blows for 300mm penetration.

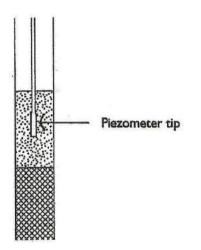
Blow count also given as seating drive followed by four increments of 75mm.

V () Vane test (c, kPa)

P() Hand penetrometer $(c_u \text{ kg/cm}^2)$

M() Mexe probe (CBR %)


Water records


▼1 Standing level

☑₁ Depth encountered

suffix identifies separate strikes

Standpipes

AI					Papgeotech	851255 nics.co.uk	40 FROGNAL LANE, CAMDEN			Num BH	
Boring M Cable Per		1	g Diamet 50mm ca	ter ased to 6.00m	Ground Level (mOD)		Client Mr A Matuzny			Job Num 361	
			on lee Site P	lan	Dates 22/07/2011- 25/07/2011		Engineer Train and Kemp / TGN Architects			Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	Water	In	nstr
0.20 0.35	J1 J2					(0.35) 0.35 (0.25)	MADE GROUND: Grass and topsoll over brick fragments MADE GROUND: Compact brick rubble		80000000		
0.50	J3					0.60	MADE GROUND: Soft dark brown silty clay and				
0.90	J4 J5					0.75	brick fragments MADE GROUND: Soft grey clay and brick	-	XXX		
1.30 1.40	J7 W6					0.60 (0.15) 0.75 (0.15) 0.90 (0.40) 1.30 (0.20) 1.50 (0.20) 1.70	πagments	_	▼1		
1.45-1.90 1.50-1.70	SPT N=6 B8	1.00	DRY	1,1/1,1,2,2 medium(1) at		1.30 (0.20) 1.50	MADE GROUND: Soft brown and grey clay with brick fragments	× ×	∇1		
1.75	J9	E		1.60m, rose to 1.40m in 20 mins		(0.20)	Soft brown grey CLAY with silt veins	×	-		
2.00-2.45	U10	2.00	DRY	sealed at 2,00m. 20 blows		Ē	Firm brown gravelly silty CLAY Firm brown mottled orange brown and grey silty	× <u>*</u>			
2.45	C11						CLAY	, <u>*</u>	4		
			100000000					<u>* — *</u>	-		
3.00-3.45	U12	3.00	DRY	23 blows				××	-		
3.45	C13							××			
						(3,90)		××	-		
4.00-4.45	U14	3.00	DRY	21 blows		(3,90)		<u> </u>	1		
								× ×	-		
4.45	C15					Ē		xx	1		
5.00	W24			slow(2) at 5.00m,				<u>x</u> x	₹2		
				rose to 4.95m in 20 mins, sealed at		<u>.</u>		<u> </u>			
5.00-5.45 5.45	U16 C17	3.00	DAMP	6.00m. 30 blows		5.60	Stiff fissured brown CLAY with occasional pockets	xx			
5.60	J18						of fine orange brown sand	` =			
6.50-6.95	U19	6.00	DRY	35 blows		- 1					
6.95	C20				F	(3.00)		=	F	7	
			1		Ē					/	
					Ē					/,	
8.00-8,75	SPT N=22	6.00	DRY	2,6/4,5,6,7	E	- 1				//	
					Ē				1	/	1
8.60	J21				E	8.60	Stiff fissured grey CLAY			/,	
				İ	Ē	_	energia de la composição de la de composição de la defenda de la composição de la composição de la composição de La composição de la composi		1	/,	
					Ē				1	//	
9.50-9.95	U22	6.00	DRY	40 blows	E				1	/,	
										/,	1
Remarks	warning tane in each	vices nit at	nam n	it extended to ::-	_			Scale	La	/	/
Excavating fr	rom 0.00m to 1.00m f	or 2 hours	. J.4III. P	it extended to one side	э.			Scale (approx)	By	gged	1
								1:50		ljs	
								Figure No 3611		1	

A P	CEOTE		VIC:	S E mail@	T 01932 F 01932 Japgeotech	2 848460 2 851255 Inics.co.uk	Site 40 FROGNAL LANE, CAMDEN		Borehol Number BH1	
Boring Met Cable Perci	thod	Casing	Diamet			d Level (mOD)	Client Mr A Matuzny			
		Locatio	on ee Site P	lan	Dates 2 2	2/07/2011- 5/07/2011	Engineer Train and Kemp / TGN Architects		3611 Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	ja lnstr	
9.95 11.00-11.75 12.50-12.95 12.95		6.00	DRY	22/07/2011:DRY 25/07/2011:DRY 3,6/7,7,8,9 40 blows		12.30	Stiff fissured grey CLAY Very stiff fissured dark grey CLAY			
15.50-15.95 15.95 17.00-17.75	U27 C28 SPT N=47	6.00	DRY	45 blows 5,7/8,10,15,14		(5.70)	becoming silty			
18.00	J29			25/07/2011:DRY		18.00	Complete at 18.00m			
Remarks					=			Scale (approx)	Logged By	
								Figure No. 3611.B		

ΑP	GEOTE		IIC:	S E mail@	T 01932 F 01932 apgeotech	851255	Site 40 FROGNAL LANE, CAMDEN	Boreh Numb BH:
Boring Method Casing Diameter Cable Percussion 150mm cased to 6,00m		Ground	d Level (mOD)	Client Mr A Matuzny	Job Numb			
			Location See Site Plan			0/07/2011- 1/07/2011	Engineer Train and Kemp / TGN Architects	Sheet
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Annual Control of Cont	Legend
).10).15	J1 J2					(0.15)	MADE GROUND: Grassed topsoil with brick and gravel fragments	
).50	J3					0.15 (0.75)	MADE GROUND: Friable brown clay with builder's rubble	
.90 .00-1.45	J4 U5	1.00	DRY	16 blows			Firm brown mottled light brown silty CLAY	* - *
45	C6					<u> </u>		× ×
00-2.45	U7	1.20	DRY	20 blows				* <u>*</u> *
45	C8					(4.20)	tree roots visible to 2.5m	x
0-3.45	U9	1.20	DRY	20 blows		(4.20)		× ×
15	C10							xx
0-4.45	U11	1.20	DRY	25 blows				xx
5	C12						becoming fissured	* *
0-5.45	U13	1.20	DRY	25 blows		5.10	Stiff fissured brown CLAY with occasional pockets of fine	1 1 2 2 2 2 2 2 2
5	C14			medium(1) at 5.30m, rose to 5.10m in 20 mins, sealed at 5.50m.			sand sand	
0-6.95	U15	6.00	DRY	35 blows		(2.70)		
5	C16							園
D-8.75	J16A SPT N=21	6.00	DRY	2,3/4,4,6,7			Stiff fissured dark grey CLAY	
	U17	6.00		45 blows 20/07/2011:DRY 21/07/2011:DRY				
narks filled with avating fror	arisings n 0.00m to 1.00m fo	or 1.50 hou	rs.		300		Scale (approx)	Logged By
							1:50	ljs
							Figure N	o. 1.BH2

A P	CEOTE		IICS		T 01932 F 01932 apgeotechr	851255	Site 40 FROGNAL LANE, CAMDEN		Boreho Number	er	
Boring Met Cable Percu	hod	Casing	Diamete		Ground Level (mOD)		Client Mr A Matuzny		Job Numbe 3611	er	
		Locatio Se	on ee Site Pla	an	Dates 20/07/2011- 21/07/2011		Engineer Train and Kemp / TGN Architects	/TGN Architects		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water	
9.95	C18 SPT N=29	6.00	DRY	3,5/6,7,7,9			Stiff fissured dark grey CLAY				
12.50-12.95 12.95	U19 G20	6.00	DRY	45 blows		(7.20)					
14.00-14.75	SPT N=29	6.00	DRY	3,4/5,7,8,9							
15.50-15,95 15.95	U21 C22					15.00	Stiff fissured grey CLAY with pockets of silt				
17.00-17.45	SPT N=32			3,4/6,8,9,9		(3.00)					
18.00	J23			21/07/2011:DRY		18.00 -	Complete at 18.00m				
Remarks							,				
Kemarks								Scale (approx)	Logged By		
								1:50 Figure No	ljs o.	-	
								3611			

APPENDIX C

STANDPIPE RECORDS

STANDPIPE RECORDS

WATER LEVELS

Project No. 3611 Sheet No. 1/1

40 FROGNAL LANE, CAMDEN Mr A Matuzny Train and Kemp / TGN Architects Project: Client: Agent:

Water level m OD lgd m m OD BH m bg] 2.86 3.87 05/08/2011 20/09/2011 Location Red. level Date

Remarks

APPENDIX D

IN SITU PERMEABILITY TEST

IN SITU PERMEABILITY TEST

HVORSLEV'S TIME LAG

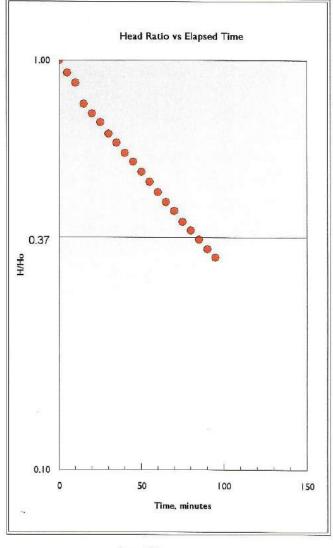
Project: 40 FROGNAL LANE, CAMDEN

Client: Arlington Management Services Limited

Project No: 3611 Sheet No: 1/1

Location: BH I

Test depti


7.00 m

from 1.00 m

Height of casing above g.l., m	0.00
Depth of casing below g l., m	1.00
Diameter of casing, m	0.15
Depth to water at start of test, m b g.l.	2.86

Time min 0 5 10 15 20 25	6.00 5.79 5.63 5.32 5.19 5.08	6.00 5.79 5.63 5.32 5.19	-3.14 -2.93 -2.77	1.000 0.933 0.882
0 5 10 15 20	6.00 5.79 5.63 5.32 5.19	6.00 5.79 5.63 5.32	-2.93 -2.77	0.933
5 10 15 20	5.79 5.63 5.32 5.19	5.79 5.63 5.32	-2.93 -2.77	0.933
10 15 20	5.63 5.32 5.19	5.63 5.32	-2.77	100000
15 20	5.32 5.19	5.32	2002	0.000
20	5.19	10 Page 10 10 Page 10	241	0.002
1500000		519	-2.46	0.783
25	F 00		-2.33	0.742
	5.00	5.08	-2.22	0.707
30	4.94	4.94	-2.08	0.662
35	4.84	4.84	-1.98	0.631
40	4.73	4.73	-1.87	0.596
45	4.64	4.64	-1.78	0.567
50	4.54	4.54	-1.68	0.535
55	4.45	4.45	-1.59	0.506
60	4.36	4.36	-1.50	0.478
65	4.28	4.28	-1.42	0.452
70	4.21	4.21	-1.35	0.430
75	4.13	4.13	-1.27	0.404
80	4.07	4.07	-1.21	0.385
85	4.01	4.01	-1.15	0.366
90	3.95	3.95	-1.09	0.347
95	3.90	3.90	-1.04	0.331

Description of stratum under test	
Claygate Member to 5.6m then London Clay	
Claygate Member to 5.6m then London Clay	

k = A/FT A = 0.018 m² F= 8.603 m T = 82 min k = 4.18E-007 m/s APPENDIX E

LABORATORY TEST RESULTS

SUMMARY OF GEOTECHNICAL TESTS

Project No: 3611 Sheet No: 1/2

40 FROGNAL LANE, CAMDEN **Project**:

Mr A Matuzny Client: Agent:

Train and Kemp/TGN Architects

6.79 6.47 7.48 6.82 4.7 7.31 CHEMICAL Sulphate (SO4)
Water Soil
(Sol) <0.01 0.49 0.11 2.03 0.18 0.24 Cohesion
cu, kPa cu, kPa
assuming Ou, deg $Q_{\mathbf{u}} = 0$ TRIAXIAL COMPRESSION - TOTAL STRESS 136 133 (premature failure) Radial Deviator Stress Stress kPa 220 247 273 250 kPa 30 90 Moisture Bulk
Content Density Mg/m³ 2.07 2.01 2.1 % 28 28 29 Type UU 102 UU 102 US 25 Class F S Plastic Plast. Passing Mod. Limit Index 425µm Plast. Index % 46 2 00 100 % CLASSIFICATION % 46 2 8 20 22 Liquid % 99 73 Natural Moisture Content % 28 28 Stiff fissured brown CLAY with occasional Firm mottled brown, orange brown and Firm mottled brown, orange brown and U25 | 12.50 | Very stiff fissured dark grey CLAY 0.35- Made Ground: clay and brick 1.35-Description Stiff fissured grey CLAY pockets of fine sand grey silty CLAY grey silty CLAY Groundwater Groundwater -.40 Depth 2.00 5.00 5.00 6.50 9.50 Sample W24 010 910 **%** 5 **U22** 77 Location BH

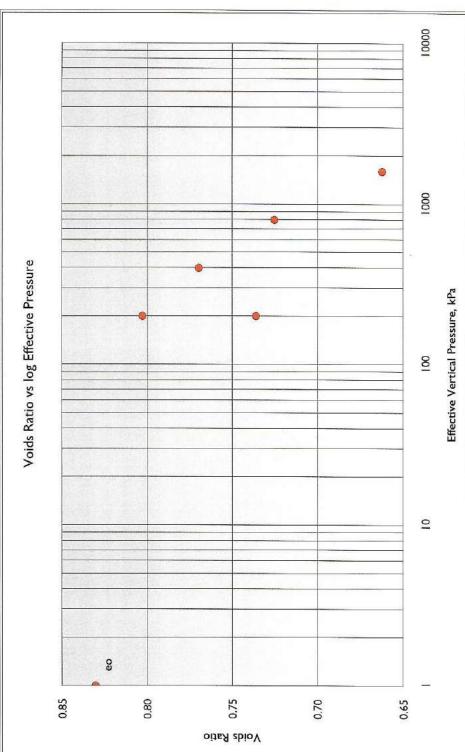
Note: Soil Classification based upon unmodified Plasticity Index

SUMMARY OF GEOTECHNICAL TESTS

Project No: 3611 Sheet No: 2/2

40 FROGNAL LANE, CAMDEN Mr A Matuzny Train and Kemp/TGN Architects Project: Client: Agent:

13	1													
AL.	Hd				7.46									
CHEMICAL	Sulphate (SO4)	Soil	(Sol)	l/g	0.15									
0	Sulphat	Water		1/6										
	noise	cu, kPa	Ou, deg										1925	
STRESS	Cohesion	cu, kPa	assuming	0= nØ		140		124						
- TOTAL	Deviator	Stress		kPa		280		248						
PRESSION	Radial	Stress		kPa		130		061						
TRIAXIAL COMPRESSION - TOTAL STRESS	Bulk	Density		Mg/m³		2.1		2.11						
TRIA	Moisture	Content		%		28		27						
	Type					n	102	UC 20						
	Class													
	Mod.	Plast.	Index	%									Hav.	
NO	Passing	425µm		%									-	= 10
FICATI	1000	Index		8										
CLASSIFICATION	$\overline{}$	Limit		8									 -	
	1772	Linit.	- 1	8										
		ern e	Content	28										
	Description				Made Ground: Friable clay with builder's rubble	Stiff fissured brown CLAY with occasional	pockets of fine sand	Stiff fissured dark grey CLAY	9					
	Depth			E	0.50	6.50		9.50						
	Sample	So.			<u> </u>	UIS		ZIO						
	Location Sample Depth				BH2			1 220						

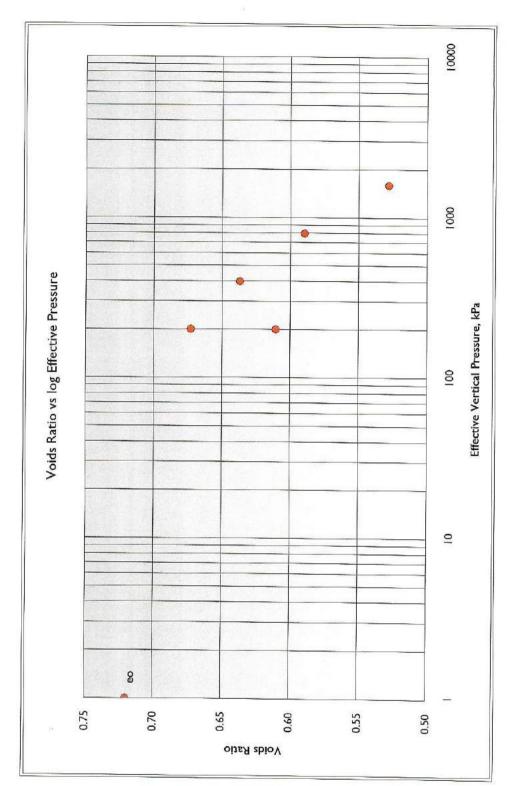

Note: Soil Classification based upon unmodified Plasticity Index

ONE - DIMENSIONAL CONSOLIDATION TEST

Project No: 3611 Sheet No. 1/2

40 FROGNAL LANE Mr A Matuzny Train and Kemp / TGN Architects Project: Client: Agent:

u u			0.85		ity			0.80	tof	ility		Ratio	sbic	·Λ			0.70				0 6 6 7	=
Depth, m	6.50		th occasional		Dry Density	Mg/m³	1.502		Coefficient of	Compressibility	m²/MIN	Ī	0.076	0.00	7,00	0.063		0.046		0.032		
Sample	610		Stiff fissured brown CLAY with occasional	fine sand	Moisture Cont.	%		finish 24	Coefficient of	Consolidation	m²/year		0.649	0 554	7	0.600		0.523		0.456		
Borehole	-	Description	Stiff fissured	pockets of fine sand	Specific	Gravity	2.750	measured	Pressure		kPa	0	9	2007	400		800		0091		200	


ONE - DIMENSIONAL CONSOLIDATION TEST

Project No: 3611 Sheet No. 2/2

Project: Client: Agent:

40 FROGNAL LANE Mr A Matuzny Train and Kemp / TGN Architects

1	U22 Moisture Cont. % start 25 finish 23 Coefficient of Consolidation m²/year 0.375 0.375 0.489	U22	
ont.	Agrey CLAY Moisture Cont. % start 25 finish 23 Coefficient of Consolidation m²/year 0.374 0.375 0.489		9.50
Moisture Cont. % start 25 finish 23 Coefficient of Consolidation m²/year 0.379 0.379 0.375	ont.		
Moisture Cont. % start 25 finish 23 Coefficient of Consolidation m²/year 0.374 0.379 0.375	Moisture Cont. % start 25 finish 23 Coefficient of Consolidation m²/year 0.374 0.379 0.375 0.489	grey CLAY	
start 25 d finish 23 Coefficient of Consolidation m²/year 0.379 0.379 0.379	9% start 25 finish 23 Coefficient of Consolidation m²/year 0.374 0.379 0.375		Dry Density
start 25 finish 23 Coefficient of Consolidation m²/year 0.344 0.379 0.375 0.489	start 25 finish 23 Coefficient of Consolidation m²/year 0.374 0.375 0.375 0.489	%	Mg/m³
Coefficient of Consolidation m²/year 0.344 0.379 0.375 0.489	Coefficient of Consolidation m²/year 0.344 0.379 0.375 0.489		1.599
Consolidation m²/year 0.344 0.375 0.375 0.489	Consolidation m²/year 0.344 0.375 0.489		Coefficient of
0.344 0.379 0.375 0.489	0.344 0.379 0.375 0.489		Compressibility
0.379 0.375 0.489	0.379 0.375 0.489	m²/year	m²/MN
0.375	0.375	0.344	0.137
0.375	0.375		
0.375	0.375	0.379	0.108
0.375	0.375		
0.489	0.489	0.375	0.072
0.441	0.441	0.489	0.048
0.441	0.44		
200	200	0.441	0.039

CONTAMINANTS IN SOIL

40 FROGNAL LANE, CAMDEN Project: Client: Agent:

Mr A Matuzny Train and Kemp/TGN Architects

Project No: 3611 Sheet No: 1/1

SED LED SON COLO OID OID SON COLO OID SON CO					
\$50. [60 \$10. 610 \$10. 610 \$10. 610					
\$50. [60 \$10. 610 \$10. 610 \$10. 610					
Olo					100
Olo					
Ollowium C8. Clo				110	
Chominn					
Olfodillen					
in.	Ç				
P.P. Alfonous 704		210	1100000		
ID SIDS					
70s salen	2	291	192000		
	8.			350	0000
	<u> </u>	3750	665000		
	20	2330	71700		
	23			130	1000
NWS NOIT	9.			170	3500
- N	291				
	64	627	8840		
	×0.5	3	348		
	——————————————————————————————————————		1100	32	440
40	1.30	sidential	nmercial	sidential	commercia
			COU	res	F
	37th Blott	18.1 <0.5 49 291 0.6 23 50 113 0.8	18.1 <0.5 49 291 0.6 23 50 113 0.8 3 627 3 627 330 3750	18.1 <0.5 49 291 0.6 23 50 113 0.8	18.1

1. LQM/CIEH GAC given at 1% soil organic matter

2. CLEA SGVs given at 6% soil organic matter

© AP GEOTECHNICS LTD.

All units are mg/kg dry weight of soil unless otherwise stated, except for pH which is dimensionless

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone (01424) 718618 Facsimile (01424) 729911

THE ENVIRONMENTAL LABORATORY LTD

Report No:		ANALYTICAL REPORT No.	AR34276A			Page 3 of
				CLIENT	AP Geotechnics L	
Project Name:		Frognal Lane	(
Lab Reference		10351		Landfl	Il Waste Acceptance	Critena
	-	20102			Limits	
Sampling Date		5.			Stable Non- reactive	
Sample ID		BH1		Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste Landfil
Depth		0,35 - 1.30			hazardous Landfill	
Solid Waste Analysis						_
TOC (%)	1.6			3%	5%	6%
Loss on Ignition (%)**	4.0				-	10%
BTEX (mg/kg)**	1,97			6	-	70%
Sum of PCBs (mg/kg)**	0.03			1	-	-
Mineral Oil (mg/kg)**	<5			500	725	-
Total PAH (mg/kg)**	3.7			100		_
pH (Unite)**	7.9			_		342
Acid Neutralisation Capacity (mol/kg)	<0.1			2	To be evaluated	To be evaluated
STARTING OF THE START	21	8:1	Cumulative 10:1	Limit value	es for compliance le	
Eluate Analysis	1,000	1010-00			12457-3 at L/S 10	
Arsenie*	mg/l	mg/l	mg/kg			7 01 2 0
Arsenic* Barjum*	<0.005	<0.005	<0.1	0.5	2	25
Cadmium*	<0.040	0.011	<0.1	20	100	300
Chromium*		<0.001	<0.01	0.04	1	5
	<0.005	<0.005 <0.005	<0.1	0,5	10	70
Copper* Mercury*	<0.0001	20000000	<0.1	2	50	100
Molybdenum*	0.010	<0.0001	<0.001 <0.1	0.01	0.2	2
Nickel*	<0.005	0.006 <0.005		0.5	10	30
Lead*	<0.005		<0,1	0.4	10	40
Antimony	<0.005	<0.005	<0.1	0.5	10	50
Selenium	<0.005	<0.005	<0.01	0.06	0.7	5
Zine*		<0.005	<0.01	0.1	0.5	7
Chloride*	0.013 48	<0.005	<0.1	4	50	200
Fluoride*	22.00	22	131	800	15000	25000
Sulphate*	110	1 24	5	10	150	500
IDS	76	18	193	1000	20000	50000
Phenol Index	<0.5	<0.5	139	4000	50000	100000
DOC	<50.5	<80.8	<0.5	500		
Leach Test Information	-50	Sau	NI.	500	800	1000
oH *	8.1	8.1				
EC*	592	247				
Sample Mass (kg)	0.208					
Ory Matter (%)	84			10.0		****
Moisture (%)	20					
Stage 1						
/olume Eluate L2 (litres)	0.316					
iltered Eluate VE1 (litres)	0.146					485

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepancies with surrent legislation

^{*=} UKAS accredited

^{** -} MCERTS accredited test

Cross Road Tadworth

> KT20 5SR T: 44(0)1737 814221

Surrey

Newton House

www.soilslimited.co.uk

Fitzpatrick Construction Ltd

Via Email Only: shelly@fitzp.com

FAO: Brian Fitzpatrick

10 January 2014

Our ref: 14005/FDL/RG

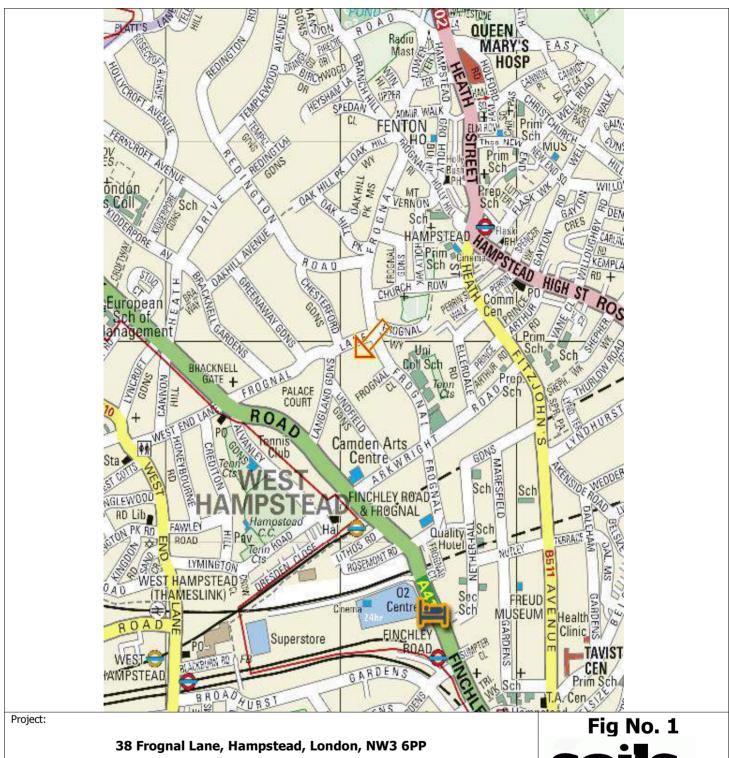
Dear Sir

Re: 38 Frognal Lane, Hampstead, London, NW3 6PP

Please find enclosed the field data on the Ground Investigation undertaken on the aforementioned site.

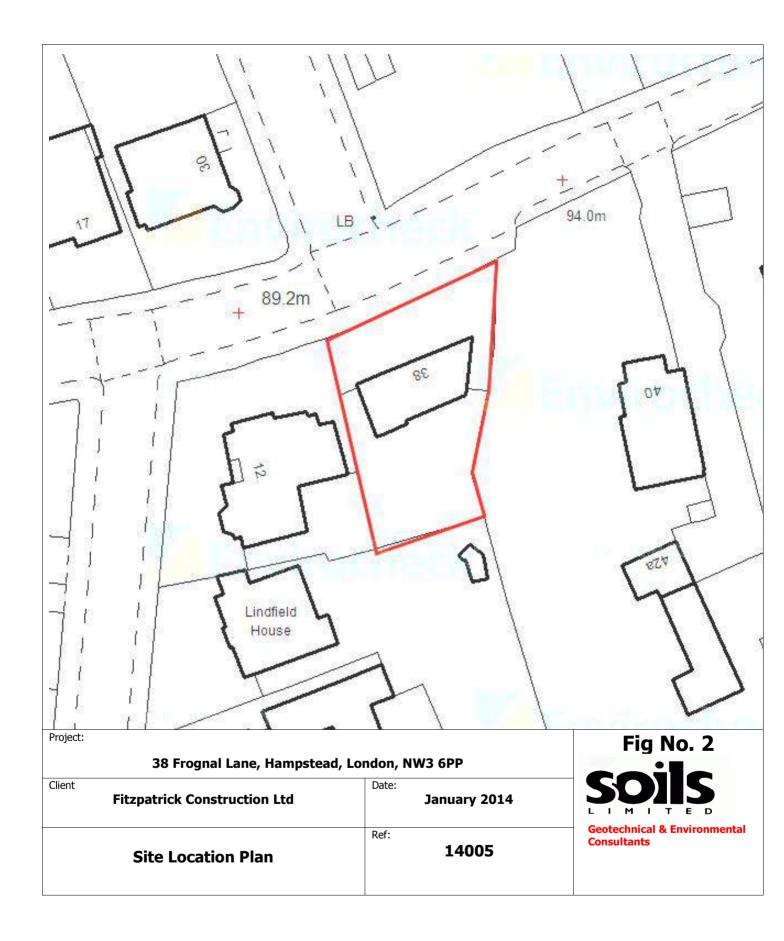
We trust this is the requested data, though should you have any queries please do not hesitate to contact us.

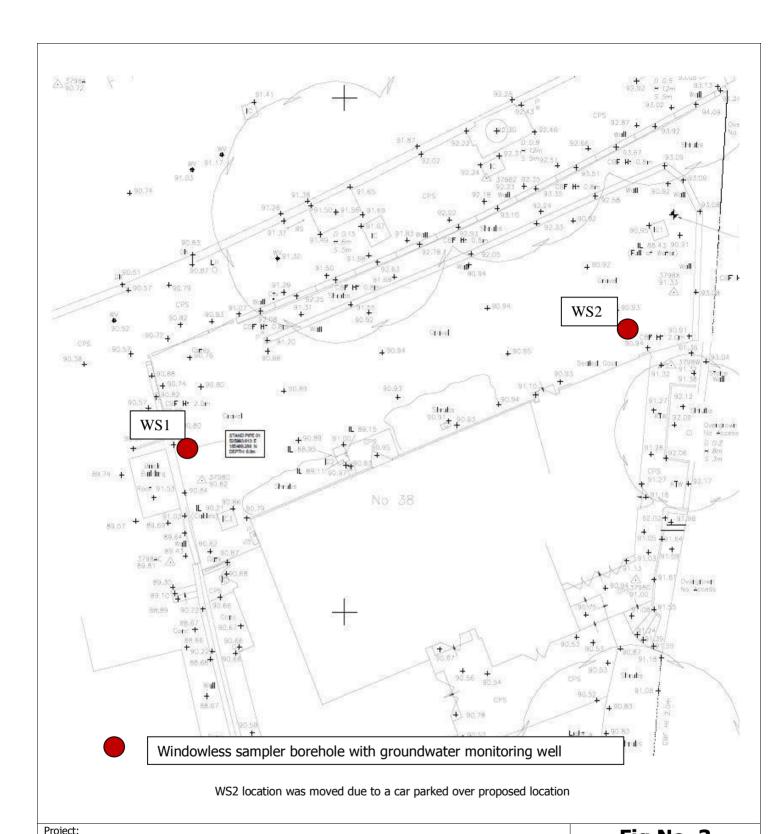
Yours sincerely


Roland Galinski

belindi

rg@soilslimited.co.uk


for and on behalf of Soils Limited


enc

Jo 110gilai zailo, Ilailipotoa	,
Client	Date:
Fitzpatrick Construction Ltd	January
	2014
	Ref:
Site Location Map	14005

Project:	38 Frognal Lane, Hampstea	d, London, NW3 6PP	Fig No. 3
Client	Fitzpatrick Construction Ltd	Date: January 2014	SOILS
	Trial Hole Location Plan	Ref: 14005	Geotechnical & Environmental Consultants

Soils Limited Newton House Cross Road Tadworth Surrey KT20 5SR Tel: 01737 814221 Fax: 01737 812557

Roots observed to 2.80m bgl

Record of Borehole WS 1

Sheet 1 of 1

 Start Date:
 18/12/2014
 Ground Level:

 End Date:
 18/12/2014
 Easting:

 Logged By:
 GB
 Northing:

Boring Method:

Weather:

Site: 38 Frognal Lane, Hampstead, London, NW3 6PP

Client: Fitzpatrick Construction Ltd

Project No: 14005

roject in													Driller:		SN		
San	nples,	n-situ	Tests &	Installa	ations						S	trata					
Depth	Type		Result		S/Pipe	E	Elev L	egend	Depth/(1	hk)				Descrip	tion		
							}	****		0.13	10mm shi	ngle over	block pavi	ing, reinford	ement grid.		
0.40	D&J						₿	≫₩	0.55).22			1445	E ODOLINI			
0.60	D&J						3	XXXX	().55				E GROUNI			
0.80 1.00	D&J D						Ě	XXXXX	0.90	Æ	Soft to fire	n dark ora ragments	angish red and occas	sandy CLA ional rootle	Y with brick s. MADE		
1.00				ľ	:::'目:::		-			4/	GROUNE)	ana occas	ionai rootio	.o. W/\DL		
1.50	D			,	.:: ±.::	1		-		3	Soft to ve	ry soft ligh	ht orangish	brown bec at 2.80m wit	oming dark		
1.50					∵⊟∵	:}	-			=	greyish m	ottled bro	wn CLAY a	at 2.80m wit TE MEMBE	h B		
2.00	D			ľ							occasiona	ii rooneis.	. CLATGA	I E IVIEIVIDE	K		
2.00				-	· . 🖯 · .	1	-	1		=							
0.50	D				.∵H`	;}			3	3.10 _							
2.50	D			ľ	∵.⊟∵.	.i	-		·	E							
				ŀ	目: .]				=							
3.00	D				⊟ . `	; †	-			3							
					. ∃ .	.]		<u></u> -		=							
3.50	D			-	∵目:	`.				=							
				l.	. 目.	:†				3							
4.00	D				·:::':	.‡	F		4.00	+	Soft to fire	n brown c	closely fissu	ured CLAY.			
				ŀ	∵∄∴	`.				=	CLAYGA	ГЕ МЕМВ	BER				
4.50	D				. 目.	;∱	F										
					::'目::	. 1	-			=							
5.00	D			ŀ	:::目::.	1			2	2.00 -							
					目	;†		1		=							
5.50	D				- 月.・	.1	F			=							
				ľ	. 追.	`.		<u></u>		=							
6.00	D				: 'Ħ'.	:1	F		6.00	4-				Borehole at			
										landandandandandandan							
aily Progre	ess			Water	Strikes						Chise	lling		Hole	~=	Casing Diamet	~-
ate Tir	me Ho	е	Wate	r Strike	Casing	Date	Time	Post	Elapsed	Depth	Start	End	Hours	Diamet			
			pth Deptl	Depth	Depth				Minutes	Sealed	Depth	Depth		Depth	Diam.	Depth	Dian
								Depth			<u> </u>				(mm)		(mm
				2.80	-	18/12/2014	0000	5.25	10	-							
	1			1		1	1			1	l						

Soils Limited Newton House Cross Road Tadworth Surrey KT20 5SR Tel: 01737 814221 Fax: 01737 812557

Roots observed to 2.00m bgl

Record of Borehole WS 2

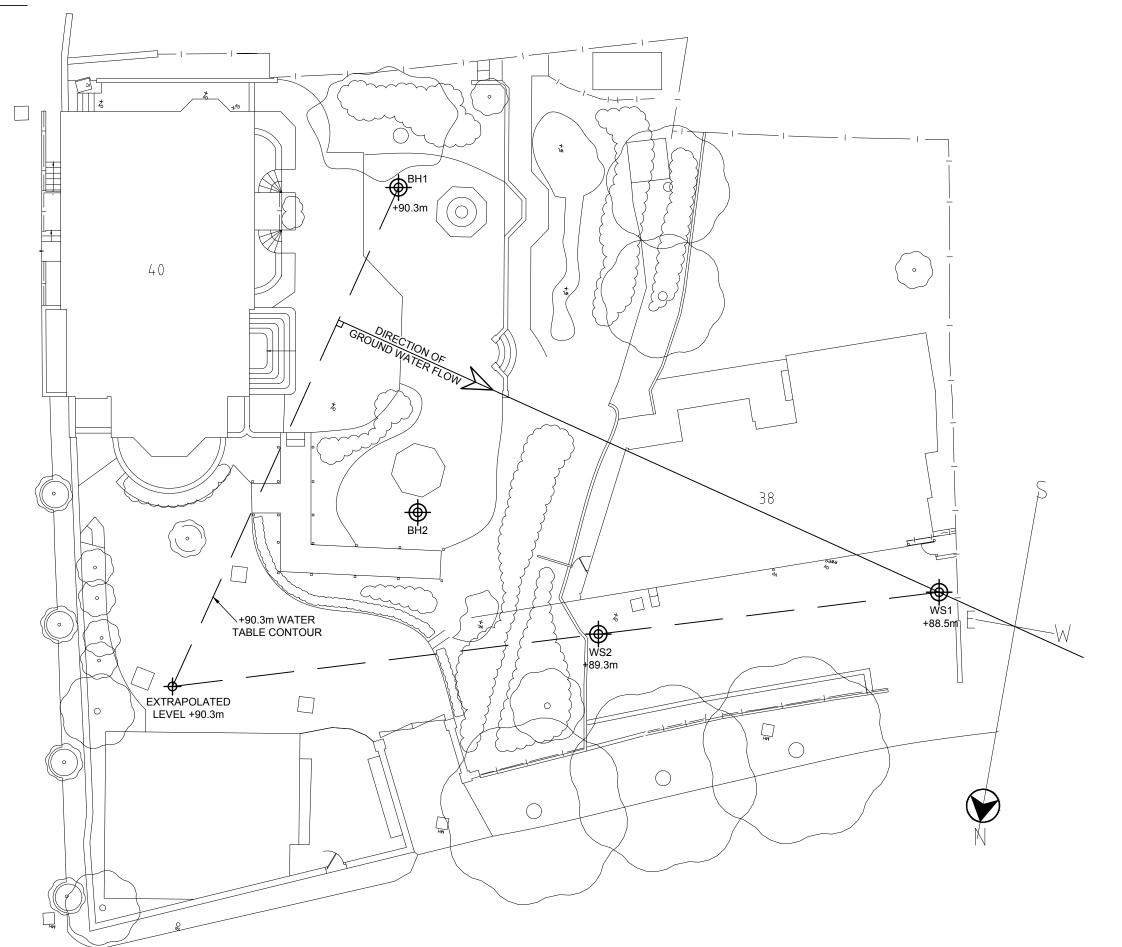
Sheet 1 of 1

 Start Date:
 18/12/2014
 Ground Level:

 End Date:
 18/12/2014
 Easting:

 Logged By:
 GB
 Northing:

Boring Method:


Weather:

Site: 38 Frognal Lane, Hampstead, London, NW3 6PP

Client: Fitzpatrick Construction Ltd

Project No: 14005

in
ly silty
iy Siity
) m
Casing
Diameter
Diameter am. Depth Di
Diameter
Diameter am. Depth Di
Diameter am. Depth Di
Diameter am. Depth Di

GENERAL NOTES:

WATER LEVELS TAKEN FROM SITE INVESTIGATION.

10 Kennington Park Place Kennington London SE11 4AS Tel: +44 (0) 20 7582 1276 Fax: +44 (0) 20 7582 5728 mail@trainandkemp.co.uk www.trainandkemp.co.uk

Client:

Project: 40 FROGNAL LANE

BOREHOLE LOCATIONS & WATER TABLE TRIANGULATION

_	Drawing S	Status:	PRELIMINARY ISSUE	
	Date:	AUG 2015	Drawing No.	Rev.
	Scale:	1:200 @A3	10998/SI/01	D1
•	Drawn:	AL	10990/31/01	
	Chkd:	NCT		