Aval Consulting Group.

Energy Strategy

52 Avenue Road, St. John's Wood, London NW8 6HS

52 Avenue Road Limited

July 2022

Project Information

Title	Energy Strategy
Job Code	91544
Sector	Environment
Report Type	Planning Report
Client	52 Avenue Road Limited
Revision	D
Status	Final
Date of Issue	26 July 2022

Revision History

Revision	Date	Author	Reviewer	Approver	Status
D	26 July 2022	MT	AC	AC	Final

Disclaimer

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party. This report may include data obtained from trusted third-party consultants/laboratories that have been supplied to us in good faith. Whilst we do everything, we can to ensure the quality of all the data we use, we cannot be held responsible for the accuracy or integrity of third party data.

Table of Contents

Project Information	i
1. Introduction	1
1.1 Overview	1
2. Applicable Standards and Policy	2
 2.1 Planning Policies 2.1.1 The National Planning Policy Framework 2.1.2 The London Plan 2.1.3 London Borough of Camden Local Plan 	2 2 3 4
3. Energy	6
3.1 Baseline Energy Prediction	6
3.2 Be Clean	7
3.3 Energy Efficient Building Design (Be Lean) 3.3.1 Summary of 'Be Lean' Measures	<i>8</i> 8
3.4 Renewable and Low Carbon Technology (Be Green) 3.4.1 Summary of 'Be Green' measures	<i>10</i> 12
3.5 Be Seen	14
3.6 Summary	<u>1</u> 4
4. Conclusion	15

1. Introduction

1.1 Overview

52 Avenue Road Ltd. ('the client') is seeking planning consent for development at 52 Avenue Road, St. John's Wood, London NW8 6HS (hereafter referred to as the 'proposed development'), which is within the London Borough of Camden (LBC).

The proposal is for the construction of 12 townhouses, with a spa and wellness centre.

Aval Consulting Group Limited (ACGL) was instructed by the client to produce an Energy Statement to accompany the planning application to LBC for consent to undertake the proposed work.

This report presents the sustainable design features of the development and demonstrates how they relate to applicable planning policy guidance as listed below:

- National Planning Policy Framework (NPPF) (2021).
- The London Plan (2021)
- The London Borough of Camden Planning Policy, including emerging policies.

This statement also provides a prediction of the proposed development's baseline energy prediction and outlines the use of energy efficiency measures.

The Energy strategy proposed adheres to the principles of the energy hierarchy by proposing "Lean and Green" measures to achieve a minimum of 35% reduction in carbon emissions by the use of passive measures and onsite renewable technology. The objective of the development is to exceed these requirements of the London Plan.

2. Applicable Standards and Policy

2.1 Planning Policies

2.1.1 The National Planning Policy Framework

The principal national planning policy guidance in respect of the proposed development is the National Planning Policy Framework (NPPF)¹. The most recent update of the NPPF was published in July 2021 by the Ministry of Housing, Communities & Local Government.

The section of the NPPF "Planning for Climate Change" states that:

153. Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures. Policies should support appropriate measures to ensure the future resilience of communities and infrastructure to climate change impacts, such as providing space for physical protection measures or making provision for the possible future relocation of vulnerable development and infrastructure.

154. New development should be planned for in ways that:

a) avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and

b) can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.

155. To help increase the use and supply of renewable and low carbon energy and heat, plans should:

a) provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);

b) consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and

c) identify opportunities for development to draw its energy supply from decentralised, renewable, or low carbon energy supply systems and for colocating potential heat customers and suppliers.

156. Local planning authorities should support community-led initiatives for renewable and low carbon energy, including developments outside areas identified in local plans or other strategic policies that are being taken forward through neighbourhood planning.

¹ National Planning Policy Framework. Accessible at:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/810197/NPPF_Feb_2019 _revised.pdf

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Unit 40, Denton Island, Newhaven, BN9 9BA T +44 (0) 333 006 2524 | E info@aval-group.co.uk | W www.aval-group.co.uk

157. In determining planning applications, local planning authorities should expect new development to:

a) comply with any development plan policies on local requirements for decentralised energy supply unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable; and

b) take account of landform, layout, building orientation, massing, and landscaping to minimise energy consumption.

158. When determining planning applications for renewable and low carbon development, local planning authorities should:

a) not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions; and

b) approve the application if its impacts are (or can be made) acceptable. Once suitable areas for renewable and low carbon energy have been identified in plans, local planning authorities should expect subsequent applications for commercial scale projects outside these areas to demonstrate that the proposed location meets the criteria used in identifying suitable areas.

2.1.2 The London Plan

The London Plan (2021) has been used in order to produce this strategy, as well as ensure that the proposed development meets all of the requirements imposed on it.

Policy SI 2: Minimising greenhouse gas emissions:

- A. Major development should be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the following energy hierarchy:
- 1) be lean: use less energy and manage demand during operation
- 2) be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly
- 3) be green: maximise opportunities for renewable energy by producing, storing, and using renewable energy on-site
- 4) be seen: monitor, verify and report on energy performance.
- B. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- C. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and nonresidential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either:

1) through a cash in lieu contribution to the borough's carbon offset fund, or

- 2) off-site provided that an alternative proposal is identified and delivery is certain.
- D. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually
- E. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.
- F. Development proposals referable to the Mayor should calculate whole lifecycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.

2.1.3 London Borough of Camden Local Plan

The London Borough of Camden Local Plan provides all relevant policies regarding planning for the borough.

"Policy CC1. Climate change mitigation" states:

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;

b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;

c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;

d. support and encourage sensitive energy efficiency improvements to existing buildings;

e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and

f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;

h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and

i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network. To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment."

3. Energy

An energy strategy has been developed following the energy hierarchy 'Be Lean, Be Clean, Be Green'. It addresses energy issues and responds to the planning policies and guidance through minimising the proposed development's overall environmental impact and reducing resources to comply with performance standards as outlined by Building Regulations.

This approach places the primary emphasis on mitigating energy use in the first instance via passive and energy-efficient design (Be Lean).

The second step is to deliver the required energy as cleanly and efficiently as possible (Be Clean).

Once the energy demand of the development has been reduced as far as practically possible, renewable energy sources are utilised to offset the demand for the development (Be Green).

In line with the GLA's Sustainable Design and Construction SPG, London Borough of Camden Planning Policy, and the requirements set out in the London Plan, the following targets have been considered applicable when developing the design.

- 10% reduction in regulated carbon emissions compared to Building Regulations via passive design & energy efficiency measures (Be Lean) for domestic properties.
- 15% reduction in regulated carbon emissions compared to Building Regulations via passive design and energy efficiency measures (Be Lean) for non-domestic properties.
- Maximise renewable energy contribution where possible.
- An on-site reduction of a minimum of 35% beyond Part L 2013 for the proposed development (total cumulative).

3.1 Baseline Energy Prediction

Energy modelling for the proposed development was executed using a combination of SAP and iSBEM software, based on Building Regulations 2013 Part L compliance. The notional energy prediction for the proposed development used the dimensions of the proposed development, as well as notional U-values and heating specifications stated in the Building Regulations 2013. The model defined the Target Emissions Rate (TER) for Building Regulations 2013 Part L through the following formula:

$$TER_{2013} = C_H X FF + C_{PF} + C_L$$

The TER was determined by applying a fuel factor (FF) to space heating and hot water (C_H) which is then added to the energy use of pumps and fans (C_{PF}) and then added to the internal lighting load (C_L).

The GLA released guidance on preparing an energy assessment to support planning applications. From January 2019, it is required that SAP10 carbon factors be used to report on carbon emissions using carbon factors in order to reflect the decarbonisation of the national grid. Therefore outputs from energy calculating software have been manually converted using the carbon factors in Table 3.1.

Fuel Type	SAP2012 carbon factor	SAP10 carbon factor	
Gas	0.216	0.210	
Electricity	0.519	0.233	

Table 3.1: SAP2012 and SAP10 carbon factor.

3.2 Be Clean

The London Plan includes the following hierarchy for considering the potential for supplying energy efficiently via heating and cooling infrastructure:

- Connect to local existing or planned heat networks.
- Use zero-emission or local secondary heat sources.
- Use low emission combined heat and power (CHP).

The GLA London Heat Map has been used to identify potential connections to existing and proposed district heating. The closest district heating network is the 'Church Street_COM' which is over 1km away (see Figure 3.1). Due to the distance from the site location, it is not deemed feasible to connect the proposed development to the network.

There are no proposed district heating networks in closer proximity to the site. Therefore, this has not been included within the calculations in this report.

Figure 3.1: An extract of the GLA London Heat Map.

3.3 Energy Efficient Building Design (Be Lean)

The design approach targets demand reduction measures, giving priority to the optimisation of the building fabric to reduce the need for heating, cooling, and artificial lighting. The objective is to have buildings as energy-efficient (i.e. 'lean') as possible without relying on systems or technologies which require energy to operate and deliver low carbon performance. Where energy is required to operate systems, the efficient plant has been selected to minimise demand.

The following passive design features are proposed.

- High levels of insulation for exposed solid envelope elements;
- High level of air-tightness;
- Maximised passive ventilation potential; and
- Double-glazed windows with enhanced u-values.

Building Fabric

The Building Regulation Part L presents the minimum requirements for the building fabric component highlighted in Table 3.3. The table presents the minimum specification, which can then be improved on during the detailed building fabric design to achieve the minimum Be Lean criteria. During the detailed building fabric design stage, a minimum of 10% reduction should be achieved.

Element	Building Regulations for Residential Buildings	Target Values for Town Houses	Building Regulations for Commercial Buildings	Target Values for Health and Wellness Centre
External walls	0.18 W/(m ² K)	0.13 W/(m ² K)	0.35 W/(m ² K)	0.15 W/(m ² K)
Floor	0.13 W/(m ² K)	0.11 W/(m ² K)	0.25 W/(m ² K)	0.15 W/(m ² K)
Roof	0.13 W/(m2 K)	0.12 W/(m ² K)	0.25 W/(m ² K)	0.15 W/(m ² K)
Windows	1.4 W/(m2 K)	1.2 W/(m ² K)	2.2 W/(m ² K)	1.4 W/(m ² K)
Airtightness	5.0 m ³ /(hm ²)	3 m ³ /(hm ²)	10.0m ³ /(hm ²)	3m ³ /(hm ²)
Thermal Mass Parameter	-	Low	-	-

Table 3.3: Minimum U-value requirement for the proposed development and target values.

3.3.1 Summary of 'Be Lean' Measures

The first step in the energy hierarchy is to reduce emissions through energy efficiency measures. Buildings can reduce their energy usage by passive means. This includes orientation, thermal insulation, and air infiltration. Table 3.4 below presents the minimum reduction expected following the implementation of the 'Be Lean' measures.

For the purpose of this assessment, the development has been considered as 'mixed-use' to determine carbon emissions for the townhouses and the health and wellness centre. Therefore residential and non-residential have been separated to determine compliance with the aforementioned requirements. However, it should be noted that the planning application is not for a mixed-use development, and therefore policies relating to new residential developments apply.

	Target emission rate (kgCO₂/m²/year)	Targetted CO ₂ Emissions (tonnesCO ₂ /year)	'Be Lean' dwelling emission rate (kgCO₂/m²/year)	CO ₂ Emissions (tonnesCO ₂ /year)
Town House 1	14.2	6.7	12.6	5.85
Town House 2	13.3	6.2	11.7	5.46
Town House 3	13.3	6.2	11.7	5.46
Town House 4	14.7	6.9	13.0	6.02
Town House 5	14.4	6.8	12.8	5.93
Town House 6	13.1	6.1	11.6	5.37
Town House 7	13.1	6.1	11.6	5.37
Town House 8	14.4	6.8	12.8	5.93
Town House 9	14.2	6.7	12.6	5.20
Town House 10	13.3	6.2	11.7	5.46
Town House 11	13.3	6.2	11.7	5.46
Town House 12	14.7	6.9	13.0	5.36
Total CO2 (tonne	es/yr)	77.76		68.8

Table 3.5: Summary of predicted emissions following 'Be Lean' measures implemented within the Wellness and Health Centre.

	Target emission rate (kgCO₂/m²/year)	Targetted CO ₂ Emissions (tonnesCO ₂ /year)	'Be Lean' Building emission rate (kgCO₂/m²/year)	CO₂ Emissions (tonnesCO₂/year)
Wellness and Health Centre	71.2	51.6	63.3	45.9
Total		129.4		114.7
Percentage diff	ference			11.3%

By implementing these 'Lean' measures, it is anticipated that a carbon reduction of approximately 11% can be achieved by the development, which exceeds the 10% requirement of the London Plan. Although some aspects of the proposed development have been cosindered using the non-residential software, overall the development is considered residential and therefore been assessed against the policies relating to residential development.

3.4 Renewable and Low Carbon Technology (Be Green)

The 'Be Green' measures are achieved by generating energy by implementing renewable energy technologies. The following key points have been considered within the feasibility study:

- Local, regional, and national policies;
- The energy demand of the development;
- Practical implementation, installation, delivery and maintains procedures;
- The implication of site layout and design impact;
- Site geography, public acceptability, security, environment, and visual impact;
- Cost, benefit, payback and grants; and
- Availability of fuel supply and interaction of technologies with one another.

The following sections present the feasibility

As part of the policy requirement, developments (including refurbishments) of 5 or more dwellings and/or 500 sqm or more of any gross internal floorspace must demonstrate at least 20% 'Be Green'. The following strategies were considered for the proposed development:

Renewable/ Low Carbon Technology	Feasibility	Further consideration
Photovoltaics	Solar photovoltaic technology can provide a guaranteed,	No
	although modest, contribution to the proposed development's	
	electrical demand. It can be connected to the electrical mains	
	distribution board via an inverter. The system does not contain	
	any moving parts and is silent during operation. Therefore, will	
	not contribute to any noise pollution. As the proposal includes	
	green roofs, PV will not be included as there are concerns that	
	they would reduce the impact of the green roofs.	
Solar Hot	Solar water heating systems convert solar radiation to heat	No
Water	carried by water for use in space heating or the provision of	
	domestic hot water. Although there is adequate space for this	
	provision, there is concern regarding the cost. Potential gains of	
	this method are also capped for domestic appliances as there is	
	only a certain amount of water that can be used within a	
	household. Thus, energy can be wasted.	
Biomass	Biomass boilers require a constant supply of fuel, which has	No
	traditionally been an issue, and therefore the transport of fuel in	
	London may be an issue. Emissions of biomass boilers	
	(particularly NOx and particulate matter) are also a big issue.	
	Therefore this could compromise the air quality within the area.	
Wind turbines	Small scale wind turbines, building-integrated wind power, are	No
	proven, and viable technology. However, the average surface	
	roughness in built-up areas is high, leading to both reduced	
	wind speeds and increased turbulence. Due to the location of	
	this site, in a dense urban area, there is a lack of open space. It	
	is for these reasons, as well as noise pollution and lack of	
	aesthetic appeal associated with wind turbines, that it has been	
	deemed not feasible.	
Heat Pumps	Ground or Air Source Heat pumps are common methods of	Yes
	providing buildings with heating and cooling via heat pumps.	
	However, Ground Source Heat pumps require a large amount of space, which will be provided within the allotted basement	
	plant areas. Further this system is far more efficient than an Air	
	Source Heat Pump. Typical efficiencies are within the region of	
	150% and 350% although some are even higher than this.	

Ground Source Heat Pumps have been incorporated as a low carbon heating system. Space heating and hot water will be provided through electric ground source heat pumps (GSHP). These will be located in the basement. The exact specification has not been decided, however, the developer will aim for the best possible specification and therefore the Viessmann Vitocal 222-G has been used to model the 'Be Green' stage of the hierarchy for the dwellings. Similarly, the efficiencies of this GSHP were used in iSBEM, and therefore this report should be used to provide an indication of the reductions that the development has the potential to achieve.

It should be noted that "the proposed ground source heat pump (GSHP) installation will provide the primary heat source for the development, comprising multiple ground source heat pumps connecting to a common closed loop heat exchange network via multiple boreholes. The results of ground investigations suggest that the ground conditions are favourable for a closed loop borehole heat exchange network, this is evidenced in the similar completed GSHP installations in the local vicinity.

The heat pumps will be configured in a modular arrangement to provide both optimal efficiency and redundancy and will heat up a series of thermal stores for the delivery of low temperature hot water to the development. Each thermal store will include electric immersion heating elements to provide further resilience in the event of failure or prolonged/unscheduled maintenance of the heat pumps.

The use and the proposed configuration of the ground source heat pump installation presents an opportunity to generate chilled water simultaneously with the production of low temperature hot water, the chilled water being available for cooling of the residential areas and reducing overheating risks where passive measures are not possible or effective. This can be achieved simply by bypassing the ground loop borehole network and charging chilled thermal stores directly whilst generating hot water, or by rejecting heat to the ground loop, this has the added benefit of improving the annual efficiency of the GSHP system and reducing the risk of over cooling of the ground during prolonged winter heating periods."

The provision of Ground Source Heat Pumps eliminates the need for low NOx boilers and therefore not only improves carbon emissions but also beneficial in eliminating NO_x emissions. It should be noted that small electric boilers will also be installed as a 'back-up' system on the extremely rare ocassion that the GSHP might need maintenance or repair. For the purpose of the model, it was assumed that the electric boilers would be responsible for 1% of the heating load.

3.4.1 **Summary of 'Be Green' measures**

The same calculation was repeated, this time incorporating the ground source heat pumps. The results are summarised in Table 3.7. The table below shows the expected carbon emission at the 'Be Green' stage for the proposed development.

Table 3.7: A summary of emissions following the installation of electric ground source heat pumps.	

	Target emission rate (kgCO₂/m²/year)	Targetted CO ₂ Emissions (tonnesCO ₂ /year)	'Be Green' dwelling emission rate (kgCO₂/m²/year)	CO ₂ Emissions (tonnesCO ₂ /year)
Town House 1	14.2	6.7	3.9	1.8
Town House 2	13.3	6.2	3.6	1.7
Town House 3	13.3	6.2	3.6	1.7
Town House 4	14.7	6.9	4.0	1.9
Town House 5	14.4	6.8	4.0	1.9

Town House 6	13.1	6.1	3.5	1.7	
Town House 7	13.1	6.1	3.5	1.7	
Town House 8	14.4	6.8	4.0	1.9	
Town House 9	14.2	6.7	3.9	1.9	
Town House 10	13.3	6.2	3.6	1.7	
Town House 11	13.3	6.2	3.6	1.7	
Town House 12	14.7	6.9	4.0	1.9	
Total CO2 (tonn	es/yr)	77.76		21.1	
		Percentage	change (%)	72.9%	

Table 3.8: Summary of emissions associated with the 'Be Green' stage of the hierarchy for the Health and Wellness Centre.

	Target emission rate (kgCO₂/m²/year)	Targetted CO ₂ Emissions (tonnesCO ₂ /year)	'Be Green' Building emission rate (kgCO ₂ /m²/year)	CO₂ Emissions (tonnesCO₂/year)
Wellness and Health Centre	71.2	50.7	16.7	12.1
		Percentage chang	e (%)	76%

It was estimated that the total targetted CO_2 emissions for the whole development would be 129.4 tonnes per year. However, it is predicted that the proposed development would produce around 33.2 tonnes of CO_2 annually with the adoption of the "Be Lean" and "Be Green" initiatives, which is a 74% improvement over the target CO_2 emissions. The final GSHP design will determine if a cash-in-lieu contribution is necessary. This improvement goes above and beyond what is required by the London Plan, which calls for projects to cut carbon emissions by at least 35%.

3.5 Be Seen

The exact measures in terms of 'Be Seen' have not yet been finalised, however, it is proposed that energy metres will be installed into the dwellings. The proposal seeks to ensure that energy usage is minimised during the operational phase of the development.

3.6 Summary

The proposed development's energy strategy prioritises demand reduction measures, by prioritising building fabric optimization to lessen the need for artificial lighting, heating, and cooling. The goal is to create as energy-efficient (or "lean") as feasible without using intricate systems or technologies to achieve low carbon performance.

It is suggested that by improving u-values and lowering air permeability in contrast to Part L of the Building Regulations, a reduction of 11% can be achieved. By adding electric Ground Source Heat Pumps in addition to the "Be Lean" measures, it is predicted that a reduction of 74.3% may be made over the whole development.

4. Conclusion

This report summarises the proposed energy strategy for the proposed development at 52 Avenue Road, St John's Wood, London, NW8 6HS.

Relevant policies have been identified and both passive energy-efficient measures and renewable and low carbon technologies have been considered. This report has summarised the ways in which the proposed development will follow the Energy Hierarchy.

By following the Energy Hierarchy and incorporating passive energy efficient measures (Be Lean), a reduction of 11% across the development, is proposed to be achieved. In order to achieve further reduction, Ground Source Heat Pumps were the most feasible renewable and low carbon technology to incorporate as part of the Be Green stage in the energy hierarchy.

It is proposed that space heating and hot water should be provided by GSHP. However, the exact specification was not known, and therefore this report should be used to provide an indication of the reductions that the development has the potential to achieve. There will also be electric boilers as a backup.

By incorporating these measures, an overall 74.3 % reduction in beyond Building Regulations is expected, through the combination of Be Lean and Be Green measures. This is an exceedance of the requirements of the London Plan. However, it should be noted that any change in design relative to this energy strategy could result in a variation in CO₂ emissions.

It can, therefore, be concluded that by incorporating measures outlined within this report, the proposed development is not considered to conflict with any national, regional, or local planning policy in relation to carbon emissions or energy consumption and instead seeks to exceed policy in all regards.

Appendix A: Be Lean

		User Details:					
Assessor Name: Software Name:	Stroma FSAP 2012	Stroma Softwar	e Ver	rsion:	Versio	n: 1.0.5.53	
	Pro	operty Address: T	⁻ own ⊦	louse 1			
Address :							
1. Overall dwelling dimen	1510115.	Area(m ²)		Av. Height(n	n)	Volume(m ³	\ \
Basement			a) x	3.6	(2a) =	292.9	/ (3a)
Ground floor			b) x	4.25	(2b) =	608.09	(3b)
First floor			c) x	3.6	(2c) =	292.9	(3c)
Second floor			d) x	3.6	(2d) =	292.9	(3d)
Third floor			e) x	3.6	(2e) =	292.9	(3e)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e)+(1n)	468.52 (4	.)		[]
Dwelling volume		(;	3a)+(3b))+(3c)+(3d)+(3e)+	+(3n) =	1779.67	(5)
2. Ventilation rate:							
	main secondary heating heating	other		total		m ³ per hou	r
Number of chimneys		+ 0	=	0	x 40 =	0	(6a)
Number of open flues	0 + 0	+ 0	= [0	x 20 =	0	(6b)
Number of intermittent fan	s			0	x 10 =	0	(7a)
Number of passive vents			Ī	0	x 10 =	0	(7b)
Number of flueless gas fire	es			0	x 40 =	0	(7c)
					Air ch	anges per ho	ur
Infiltration due to chimney	s, flues and fans = $(6a)+(6b)+(7a)$)+(7b)+(7c) =	Г	0	÷ (5) =	0	(8)
•	en carried out or is intended, proceed		ntinue fr		. (0)	0	
Number of storeys in the	e dwelling (ns)				[0	(9)
Additional infiltration				[(9)-1]x0.1 =	0	(10)
	25 for steel or timber frame or 0			ruction	[0	(11)
if both types of wall are pre deducting areas of opening	sent, use the value corresponding to ti (s): if equal user 0.35	he greater wall area (after				
	por, enter 0.2 (unsealed) or 0.1	(sealed), else er	nter 0		[0	(12)
If no draught lobby, ente	er 0.05, else enter 0					0	(13)
Percentage of windows	and doors draught stripped				ĺ	0	(14)
Window infiltration		0.25 - [0.2 x	(14) ÷ 1	00] =	Ì	0	(15)
Infiltration rate		(8) + (10) + ((11) + (1	2) + (13) + (15) =	•	0	(16)
Air permeability value, q	50, expressed in cubic metres	per hour per squ	lare m	etre of envelo	pe area	3	(17)
If based on air permeability	y value, then (18) = [(17) ÷ 20]+(8),	, otherwise (18) = (16	;)		ĺ	0.15	(18)
	if a pressurisation test has been done	or a degree air perm	eability	is being used	-		_
Number of sides sheltered		(20) - 1 [0	075 - 4	0)] _		0	(19)
Shelter factor	a abaltar fastar	(20) = 1 - [0.		[]] =	l	1	(20)
Infiltration rate incorporatin	ng sheiter factor	(21) = (18) x	(∠∪) =			0.15	(21)

Infiltrat	ion rate	modifie	d for mo	nthly wir	nd speed	ł								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthl	y avera	ge wind	speed fi	rom Tab	le 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
			(00)											
1	,	22a)m =	(22)m ÷	4	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	l	
(22a)m=	1.27	1.20	1.23	1.1	1.00	0.95	0.95	0.92		1.00	1.12	1.10		
Adjuste	ed infiltr	ation rat	e (allow	ing for sl	nelter an	d wind s	speed) =	= (21a) x	(22a)m	-				
Onlawl	0.19	0.19	0.18	0.16	0.16	0.14	0.14	0.14	0.15	0.16	0.17	0.18		
		al ventila	-	rate for t	ne appli	cable ca	ise						0	(23a)
				endix N, (2	23b) = (23a	ı) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
lf bala	anced with	heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fror	n Table 4h) =				0	(23c)
a) If	balance	d mecha	anical ve	entilation	with he	at recov	ery (MV	HR) (24a	a)m = (22	2b)m + (2	23b) × [′	1 – (23c)	÷ 100]	`````
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat red	covery (l	MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	e input v	ventilatio	on from c	outside				-	
		n < 0.5 ×	(23b), t	then (24	c) = (23b); other	wise (24	c) = (22t	o) m + 0.	5 × (23b)		_	
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
								on from I 0.5 + [(2		0.51				
(24d)m=		0.52	0.52	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.52		(24d)
· ·			rate - er	nter (24a) or (24b) or (24	c) or (24	l ld) in boy	(25)					
(25)m=	0.52	0.52	0.52	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.52		(25)
2 40	ot loooo	o ond he		noromot	ori							1		
ELEN		Gros		paramet Openin		Net Ar	ea	U-valu	IP	AXU		k-value	2	AXk
		area		r	0	A ,r		W/m2		(W/I	<)	kJ/m²·ł		kJ/K
Doors						3	x	1	=	3				(26)
Window	ws Type	e 1				14.26	з <mark>х</mark> 1	/[1/(1.2)+	0.04] =	16.33				(27)
Window	ws Type	2				14.52	<u>2</u> x1	/[1/(1.2)+	0.04] =	16.63				(27)
Window	ws Type	e 3				15.82	<u>2</u> x1	/[1/(1.2)+	0.04] =	18.11				(27)
Floor						115.2	<u>2</u> x	0.11	=	12.672				(28)
Walls		504	.1	47.6	6	456.5	5 X	0.13	=	59.34			7 6	(29)
Roof		115.	.2	0		115.2	<u>2</u> x	0.12	= =	13.82			7	(30)
Total a	rea of e	lements	, m²			734.5	5							(31)
				effective wi			lated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph	1 3.2	
		s, W/K :				·		(26)(30)) + (32) =				139.9	91 (33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	4163 <i>′</i>	

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Indicative Value: Low

100

(35)

can be ι	an be used instead of a detailed calculation.													
Thermal bridges : $S(L \times Y)$ calculated using Appendix K110.18if details of thermal bridging are not known (36) = $0.05 \times (31)$ (36)												(36)		
if details	of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			250.08	(37)
Ventila	tion hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	304.39	303.97	303.56	301.64	301.28	299.61	299.61	299.3	300.25	301.28	302.01	302.77		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	554.47	554.05	553.65	551.73	551.37	549.69	549.69	549.38	550.34	551.37	552.09	552.85		
										-	Sum(39)1.	₁₂ /12=	551.72	(39)
	· ·	meter (H	,							= (39)m ÷			I	
(40)m=	1.18	1.18	1.18	1.18	1.18	1.17	1.17	1.17	1.17	1.18	1.18	1.18		-
Numbe	er of day	vs in mor	nth (Tab	le 1a)					/	Average =	Sum(40) ₁ .	12 /12=	1.18	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
1 \\/	tor boot	ing ener		romont:								kWh/ye	oor:	
4. 996	lier nea	ing ener	gy requi	rement.						_		KVV1//yt	5al.	
Assumed occupancy, N 3.35 (42)													(42)	
if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1														
			ater usar	ne in litre	s per da	v Vd av	- enere	(25 x N)	+ 36		141	3.79		(43)
								o achieve		se target o		5.79		(43)
not more	e that 125	litres p <mark>e</mark> r p	person per	day (all w	ater use, I	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres per	day for ea	ach m <mark>onth</mark>	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	125.17	120.61	116.06	111.51	106.96	102.41	102.41	106.96	111.51	116.06	120.61	125.17		
										Total = Su	m(44) ₁₁₂ =	-	1365.44	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600	kWh/mon	oth (see Ta	bles 1b, 1	c, 1d)		
(45)m=	185.62	162.34	167.52	146.05	140.14	120.93	112.06	128.59	130.12	151.65	165.53	179.76		
										Total = Su	m(45) ₁₁₂ =	=	1790.3	(45)
lf instan	taneous w	ater heatir	ng at point	of use (no	hot water	storage),	enter 0 in i	boxes (46,) to (61)			_		
(46)m=	27.84	24.35	25.13	21.91	21.02	18.14	16.81	19.29	19.52	22.75	24.83	26.96		(46)
	storage												l	
-		. ,					•	within sa	ime ves	sel		110		(47)
	•	-			-		litres in	• •	、 <i>.</i>		47			
			not wate	er (this in	ciudes i	nstantar	ieous co	mbi boil	ers) ente	er 'O' in (47)			
	Water storage loss: 0 (48) a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)													
							vuay).					0		(48)
		actor fro						(0		(49)
			-	, kWh/ye ylinder l		or is not		(48) x (49)	=		1	10		(50)
,				om Tabl							0	01		(51)
		eating s			(,					<u>0</u> .	• •	l	(~)
	•	from Tal									1.	03		(52)
Tempe	erature f	actor fro	m Table	2b							0.	54		(53)

	nergy lost from water storage, kWh/year Enter (50) or (54) in (55)							(47) x (51)) x (52) x (53) =		0.6 0.6		(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m	L			
(56)m=	18.62	16.82	18.62	18.02	18.62	18.02	18.62	18.62	18.02	18.62	18.02	18.62		(56)
	er contain	s dedicate	l d solar sto	nage, (57)	I m = (56)m	x [(50) – (L H11)] ÷ (50	0), else (5	1 7)m = (56)	m where (H11) is fro	n Append	l lix H	
(57)m=	18.62	16.82	18.62	18.02	18.62	18.02	18.62	18.62	18.02	18.62	18.02	18.62		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo		factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatir	<u> </u>	cylinde		stat)	1	1	
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m					_	
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)	m
(62)m=	227.5	200.17	209.41	186.58	182.02	161.46	153.94	170.47	170.66	193.53	206.07	221.65		(62)
Solar Dł	HW input	calculated	using App	endix G o	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (<u>3)</u>					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter				-							
(64)m=	227.5	200.17	209.41	186.58	182.02	161.46	153.94	170.47	170.66	193.53	206.07	221.65		
								Outp	out from wa	ater heate	r (annual)₁	12	2283.47	(64)
Hea <mark>t g</mark>	<mark>jain</mark> s fro	m water	heating	, kWh/m	onth 0.2	5 [′] [0.85	× (45)m	+ (61)m	n] + 0.8 x	(<mark>46)m</mark>	+ (57)m	+ (<mark>59)m</mark>]	
(65)m=	95.23	84.24	89.21	80.99	80.1	72.64	70.77	76.26	75.69	83.93	87.47	9 <mark>3.28</mark>		(65)
inclu	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	<mark>or ho</mark> t w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table {	5 and 5a):									
Metab	olic gair	s (Table	e 5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55		(66)
Lightin	ig gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	60.71	53.92	43.85	33.2	24.82	20.95	22.64	29.43	39.5	50.15	58.53	62.4		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	583.75	589.8	574.54	542.04	501.02	462.47	436.71	430.65	445.92	478.42	519.44	557.99		(68)
Cookir	ng gains	(calcula	Ited in A	ppendix	L, equa	tion L15	or L15a)), also se	e Table	5	•			
(69)m=	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76		(69)
Pumps	s and fa	ns gains	(Table	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	, aporatic	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	<u> </u>	-134.04	<u> </u>	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04		(71)
Water	heating	ı gains (T	able 5)							L			I	
(72)m=	127.99	125.36	119.91	112.48	107.67	100.88	95.12	102.51	105.13	112.81	121.48	125.37		(72)
	internal	gains =	! :		ļ	(66)	m + (67)m	ı n + (68)m +	⊦ (69)m + ((70)m + (7	ı 1)m + (72))m	I	
(73)m=	848.72	845.36	814.56	763.99	709.77	660.57	630.73	638.85	666.81	717.64	775.72	822.03		(73)
	lar gains	S:								L	1			

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientat	ion:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
East	0.9x	0.77	x	15.82	x	19.64	x	0.63	x	0.7	=	94.96	(76)
East	0.9x	0.77	x	15.82	x	38.42	x	0.63	x	0.7	=	185.76	(76)
East	0.9x	0.77	x	15.82	x	63.27	x	0.63	x	0.7	=	305.91	(76)
East	0.9x	0.77	x	15.82	x	92.28	x	0.63	x	0.7	=	446.16	(76)
East	0.9x	0.77	x	15.82	x	113.09	x	0.63	x	0.7	=	546.78	(76)
East	0.9x	0.77	x	15.82	x	115.77	x	0.63	x	0.7	=	559.73	(76)
East	0.9x	0.77	x	15.82	x	110.22	x	0.63	x	0.7	=	532.88	(76)
East	0.9x	0.77	x	15.82	x	94.68	x	0.63	x	0.7	=	457.74	(76)
East	0.9x	0.77	x	15.82	x	73.59	x	0.63	x	0.7	=	355.79	(76)
East	0.9x	0.77	x	15.82	x	45.59	x	0.63	x	0.7	=	220.41	(76)
East	0.9x	0.77	x	15.82	x	24.49	x	0.63	x	0.7	=	118.4	(76)
East	0.9x	0.77	x	15.82	x	16.15	x	0.63	x	0.7	=	78.09	(76)
South	0.9x	0.77	x	14.52	x	46.75	x	0.63	x	0.7	=	207.46	(78)
South	0.9x	0.77	x	14.52	x	76.57	x	0.63	x	0.7	=	339.77	(78)
South	0.9x	0.77	x	14.52	x	97.53	x	0.63	x	0.7	=	432.81	(78)
South	0.9x	0.77	x	14.52	×	110.23	Х	0.63	х	0.7	=	489.17	(78)
Sout <mark>h</mark>	0.9x	0.77	x	14.52	x	114.87	x	0.63	x	0.7	=	5 <mark>09.74</mark>	(78)
Sout <mark>h</mark>	0.9x	0.77	x	14.52	x	110.55	×	0.63	x	0.7	=	4 <mark>90.56</mark>	(78)
Sout <mark>h</mark>	0.9x	0.7 <mark>7</mark>	x	14.52	x	108.01	x	0.63	x	0.7	=	479.3	(78)
Sout <mark>h</mark>	0.9x	0.77	x	14.52	x	104.8 <mark>9</mark>	x	0.63	x	0.7	=	4 <mark>65.47</mark>	(78)
Sout <mark>h</mark>	0.9x	0.77	x	14.52	x	101.89	x	0.63	x	0.7	=	4 <mark>52.12</mark>	(78)
Sout <mark>h</mark>	0.9x	0.77	x	14.52	x	82.59	x	0.63	x	0.7	=	3 <mark>66.47</mark>	(78)
South	0.9x	0.77	x	14.52	x	55.42	x	0.63	x	0.7	=	245.91	(78)
South	0.9x	0.77	x	14.52	x	40.4	x	0.63	x	0.7	=	179.27	(78)
West	0.9x	0.77	x	14.26	x	19.64	x	0.63	x	0.7	=	85.59	(80)
West	0.9x	0.77	x	14.26	×	38.42	x	0.63	x	0.7	=	167.44	(80)
West	0.9x	0.77	x	14.26	x	63.27	x	0.63	x	0.7	=	275.75	(80)
West	0.9x	0.77	x	14.26	x	92.28	x	0.63	x	0.7	=	402.16	(80)
West	0.9x	0.77	x	14.26	x	113.09	x	0.63	x	0.7	=	492.86	(80)
West	0.9x	0.77	x	14.26	x	115.77	x	0.63	x	0.7	=	504.53	(80)
West	0.9x	0.77	x	14.26	x	110.22	x	0.63	x	0.7	=	480.34	(80)
West	0.9x	0.77	x	14.26	x	94.68	x	0.63	x	0.7	=	412.6	(80)
West	0.9x	0.77	x	14.26	×	73.59	x	0.63	x	0.7	=	320.71	(80)
West	0.9x	0.77	x	14.26	×	45.59	x	0.63	x	0.7	=	198.68	(80)
West	0.9x	0.77	x	14.26	×	24.49	x	0.63	x	0.7	=	106.72	(80)
West	0.9x	0.77	x	14.26	×	16.15	x	0.63	x	0.7	=	70.39	(80)

Solar g	ains in	watts, ca	alculated	for eacl	h month			(83)m = S	um(74)m.	(82)m			
(83)m=	388.01	692.96	1014.47	1337.48	1549.38	1554.82	1492.52	1335.81	1128.61	785.57	471.04	327.74	(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	1236.73	1538.32	1829.03	2101.47	2259.16	2215.38	2123.26	1974.66	1795.42	1503.21	1246.76	1149.77	(84)

7. Me	an inter	nal temp	oerature	(heating	season)								
Temp	erature	during h	eating p	periods ir	n the livi	ng area	from Ta	ble 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	living are	ea, h1,m	(see Ta	ble 9a)		. ,					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.96	0.93	0.86	0.77	0.8	0.92	0.98	0.99	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to	7 in Tabl	e 9c)		-	-		
(87)m=	17.97	18.21	18.65	19.24	19.86	20.39	20.7	20.64	20.19	19.39	18.57	17.93		(87)
Temp	erature	during h	eating p	periods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)		-	-		
(88)m=	19.93	19.93	19.93	19.94	19.94	19.94	19.94	19.94	19.94	19.94	19.94	19.94		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)			-	-		
(89)m=	0.99	0.99	0.98	0.96	0.91	0.81	0.67	0.72	0.89	0.97	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to	7 in Tabl	le 9c)				
(90)m=	15.83	16.17	16.82	17.68	18.56	19.31	19.71	19.65	19.04	17.9	16.7	15.76		(90)
								-	1	fLA = Livin	g area ÷ (4	4) =	0.12	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = f	LA x T1	+ (1 – fL	.A) × T2					
(92)m=	16.08	16.41	17.03	17.86	18.71	19.44	19.82	19.76	, 19.18	18.07	16.92	16.01		(92)
Ap <mark>ply</mark>	adjustn	nent to t	he mear	n interna	l temper	ature fro	m Table	e 4e, whe	ere appro	opriate				
(93)m=	1 <mark>6.08</mark>	16.41	17.03	17.86	18.71	19.44	19.82	19.76	19.18	18.07	16.92	16.01		(93)
8. Sp	ace hea	ting reզւ	uiremeni											
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Util <mark>isa</mark>	ation fac	tor for g	ains, hm					. <u> </u>						
(94)m=	0.99	0.98	0.96	0.93	0.88	0.78	0.65	0.7	0.86	0.95	0.98	0.99		(94)
Usefu	ıl gains,	hmGm	, W = (9	4)m x (8	4)m		-							
(95)m=				1961.23			1386.23	1374.95	1536.96	1429.91	1224.72	1138.83		(95)
	nly aver	age exte	rnal tem	perature	e from Ta	able 8	i		i		·	·	I	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	r	r	r	· · ·	r	1		x [(93)m	<u> </u>			0504.40	l	(07)
(97)m=				4945.96				1847.82				6531.46		(97)
Space (98)m=		g require 3273.47	3025.25	2149.01	1401.54		n = 0.02	24 x [(97)m – (95 0	2000.96	· · · · · · · · · · · · · · · · · · ·	4012.12		
(50)11-	0040.20	0210.41	0020.20	2140.01	1401.04	0	Ů		l per year				22833.29	(98)
Space	e heatin	a require	ement in	kWh/m²	2/vear						, (-	- ,	48.73	(99)
		• •			•	unto monit							40.73	(00)
	ergy rec e heatir		ns – Ind	ividual n	eating s	ystems I	nciuainę	g micro-C						
•		-	at from s	econdar	y/supple	mentary	v system						0	(201)
Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fracti	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								93.9	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g systen	า, %						0	(208)

		-												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space		ř	, ``	alculate	· · · · · · · · · · · · · · · · · · ·	í – – –							1	
				2149.01		0	0	0	0	2000.96	3021.69	4012.12		
(211)m			1	$100 \div (20)$	· ·					0400.05	2047.00	4070 70	1	(211)
	4205.81	3486.13	3221.77	2288.01	1492.59	0	0	0 Tota	0 l (kWh/ve	2130.95 ar) =Sum(2			24316.61	(211)
Space	a heatin	a fuel (s	econdar	y), kWh/	month						···/15,1012		24310.01	
•			00 ÷ (20	• ·	monun									
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
					-			Tota	al (kWh/yea	ar) =Sum(2	215) _{15,1012}	-	0	(215)
	heating													
Output	from w 227.5	ater hea 200.17	ter (calc 209.41	ulated a	bove) 182.02	161.46	153.94	170.47	170.66	193.53	206.07	221.65	1	
Efficier		ater hea		100.00	102.02	101.40	100.04	170.47	170.00	100.00	200.07	221.00	83.8	(216)
(217)m=	-	93.25	93.17	93	92.62	83.8	83.8	83.8	83.8	92.91	93.18	93.31		
Fuel fo	r water	ı heating,	, kWh/m	onth			1	1					1	
(219)m	<u>i = (64)</u>	<u>m x 100</u>	<u>)</u> ÷ (217)) <u>m</u>	400.50	400.00	1 400 7	000.40	000.05		004.44	007.50	1	
(219)m=	243.87	214.66	224.75	200.62	196.53	192.68	183.7	203.43	203.65 al = Sum(2	208.3	221.14	237.53	2530.86	(219)
Annua	l totals									112	Nh/year		kWh/year	
			ed, main	system	1						, your		24316.61	1
Water	heating	fuel use	ed										2530.86	ī
Electric	city for r	oumps, f	ans and	electric	keep-ho	t								_]
		Ig pump										30	1	(230c)
				k///b/voo	r			sum	of (230a)	(230g) =		00	20	(231)
			above,	kWh/yea	u .			Juli	01 (2004)	(2009) –			30	
	city for l												1072.2	(232)
Total d	elivered	d energy	for all u	ses (211)(221)	+ (231)	+ (232).	(237b)	=				27949.67	(338)
12a. (CO2 em	issions ·	– Individ	ual heat	ing syste	ems inclu	uding mi	cro-CHF)					
						En	ergy			Emiss	ion fac	tor	Emissions	
						kW	/h/year			kg CO	2/kWh		kg CO2/yea	ar
Space	heating	(main s	system 1)		(21	1) x			0.2	16	=	5252.39	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	546.67	(264)
Space	and wa	ter heati	ing			(26	1) + (262)	+ (263) + ((264) =				5799.05	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	15.57	(267)
Electric	city for l	ighting				(23	2) x			0.5	19	=	556.47	(268)
Total C	:02, kg/	/year							sum c	of (265)(2	271) =		6371.1	(272)
Dwelli	ng CO2	Emissi	ion Rate	•					(272)	÷ (4) =			13.6	(273)
El ratir	ıg (secti	on 14)											83](274)

Appendix B: Be Green

		User Details:					
Assessor Name: Software Name:	Stroma FSAP 2012	Stroma Softwar	e Ver	rsion:	Versio	n: 1.0.5.53	
	Pro	operty Address: T	⁻ own ⊦	louse 1			
Address :							
1. Overall dwelling dimen	1510115.	Area(m ²)		Av. Height(n	n)	Volume(m ³	\ \
Basement			a) x	3.6	(2a) =	292.9	/ (3a)
Ground floor			b) x	4.25	(2b) =	608.09	(3b)
First floor			c) x	3.6	(2c) =	292.9	(3c)
Second floor			d) x	3.6	(2d) =	292.9	(3d)
Third floor			e) x	3.6	(2e) =	292.9	(3e)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e)+(1n)	468.52 (4	.)		[]
Dwelling volume		(;	3a)+(3b))+(3c)+(3d)+(3e)+	+(3n) =	1779.67	(5)
2. Ventilation rate:							
	main secondary heating heating	other		total		m ³ per hou	r
Number of chimneys		+ 0	=	0	x 40 =	0	(6a)
Number of open flues	0 + 0	+ 0	= [0	x 20 =	0	(6b)
Number of intermittent fan	s			0	x 10 =	0	(7a)
Number of passive vents			Ī	0	x 10 =	0	(7b)
Number of flueless gas fire	es			0	x 40 =	0	(7c)
					Air ch	anges per ho	ur
Infiltration due to chimney	s, flues and fans = $(6a)+(6b)+(7a)$)+(7b)+(7c) =	Г	0	÷ (5) =	0	(8)
•	en carried out or is intended, proceed		ntinue fr		. (0)	0	
Number of storeys in the	e dwelling (ns)				[0	(9)
Additional infiltration				[(9)-1]x0.1 =	0	(10)
	25 for steel or timber frame or 0			ruction	[0	(11)
if both types of wall are pre deducting areas of opening	sent, use the value corresponding to ti (s): if equal user 0.35	he greater wall area (after				
	por, enter 0.2 (unsealed) or 0.1	(sealed), else er	nter 0		[0	(12)
If no draught lobby, ente	er 0.05, else enter 0					0	(13)
Percentage of windows	and doors draught stripped				ļ	0	(14)
Window infiltration		0.25 - [0.2 x	(14) ÷ 1	00] =	Ì	0	(15)
Infiltration rate		(8) + (10) + ((11) + (1	2) + (13) + (15) =	•	0	(16)
Air permeability value, q	50, expressed in cubic metres	per hour per squ	lare m	etre of envelo	pe area	3	(17)
If based on air permeability	y value, then (18) = [(17) ÷ 20]+(8),	, otherwise (18) = (16	i)		ĺ	0.15	(18)
	if a pressurisation test has been done	or a degree air perm	eability	is being used	-		_
Number of sides sheltered		(20) - 1 [0	075 - 4	0)] _		0	(19)
Shelter factor	a abaltar fastar	(20) = 1 - [0.		[]] =	l	1	(20)
Infiltration rate incorporatin	ng sheiter factor	(21) = (18) x	(∠∪) =			0.15	(21)

Infiltrat	ion rate	modifie	d for mo	nthly wir	nd speed	ł								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthl	y avera	ge wind	speed fi	rom Tab	le 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
			(00)											
1	,	22a)m =	(22)m ÷	4	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	I	
(22a)m=	1.27	1.20	1.23	1.1	1.00	0.95	0.95	0.92		1.00	1.12	1.10		
Adjuste	ed infiltr	ation rat	e (allow	ing for sl	nelter an	d wind s	speed) =	= (21a) x	(22a)m	-				
Oslavi	0.19	0.19	0.18	0.16	0.16	0.14	0.14	0.14	0.15	0.16	0.17	0.18		
		al ventila	-	rate for t	ne appli	cable ca	ise						0	(23a)
				endix N, (2	23b) = (23a	ı) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
lf bala	anced with	heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fror	n Table 4h) =				0	(23c)
a) If	balance	d mecha	anical ve	entilation	with he	at recov	ery (MV	HR) (24a	a)m = (22	2b)m + (2	23b) × [′	1 – (23c)	÷ 100]	`````
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat red	covery (l	MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	e input v	ventilatio	on from c	outside				-	
		n < 0.5 ×	(23b), t	then (24	c) = (23b); other	wise (24	c) = (22t	o) m + 0.	5 × (23b)		_	
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
								on from I 0.5 + [(2		0.51				
(24d)m=		0.52	0.52	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.52		(24d)
· ·			rate - er	nter (24a) or (24b) or (24	c) or (24	l ld) in boy	(25)					
(25)m=	0.52	0.52	0.52	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.52		(25)
2 40	ot loooo	o ond he		noromot	ori							1		
ELEN		Gros		paramet Openin		Net Ar	ea	U-valu	IP	AXU		k-value	2	AXk
		area		r	0	A ,r		W/m2		(W/I	<)	kJ/m²·ł		kJ/K
Doors						3	x	1	=	3				(26)
Window	ws Type	e 1				14.26	з <mark>х</mark> 1	/[1/(1.2)+	0.04] =	16.33				(27)
Window	ws Type	2				14.52	<u>2</u> x1	/[1/(1.2)+	0.04] =	16.63				(27)
Window	ws Type	e 3				15.82	<u>2</u> x1	/[1/(1.2)+	0.04] =	18.11				(27)
Floor						115.2	<u>2</u> x	0.11	=	12.672				(28)
Walls		504	.1	47.6	6	456.5	5 X	0.13	=	59.34			7 6	(29)
Roof		115.	.2	0		115.2	<u>2</u> x	0.12	= =	13.82			=	(30)
Total a	rea of e	lements	, m²			734.5	5							(31)
				effective wi			lated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph	1 3.2	
		s, W/K :				·		(26)(30)) + (32) =				139.9	91 (33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	4163 <i>′</i>	

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Indicative Value: Low

100

(35)

can be used instead of a detailed calculation.														
													(36)	
if details of thermal bridging are not known $(36) = 0.05 \times (31)$ Total fabric heat loss $(33) + (36) = 250$														
Total fa	abric he	at loss							(33) +	(36) =			250.08	(37)
Ventila	tion hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)		_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	304.39	303.97	303.56	301.64	301.28	299.61	299.61	299.3	300.25	301.28	302.01	302.77		(38)
Heat tr	ansfer o	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	554.47	554.05	553.65	551.73	551.37	549.69	549.69	549.38	550.34	551.37	552.09	552.85		
Average = Sum(39) ₁₁₂ /12= Heat loss parameter (HLP) W/m ² K (40)m = (39)m \div (4)												551.72	(39)	
Heat loss parameter (HLP), W/m ² K (40)m = $(39)m \div (4)$													1	
(40)m=	1.18	1.18	1.18	1.18	1.18	1.17	1.17	1.17	1.17	1.18	1.18	1.18		
Average = $Sum(40)_{112}/12 =$ 1.18Number of days in month (Table 1a)												(40)		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													1	
4. Water besting energy requirement:														
4. Water heating energy requirement: kWh/year:														
											(42)			
if TFA > 13.9, $N = 1 + 1.76 \times [1 - \exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, $N = 1$														
			ater usad	ne in litre	s per da	w Vd av	erane -	(25 x N)	+ 36		141	3.79	1	(43)
								o achieve		se target o		5.79		(43)
not more	e that 125	litres p <mark>e</mark> r p	person per	day (all w	ater use, I	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres per	day for ea	ach m <mark>onth</mark>	Vd,m = fa	ctor from T	able 1c x	(43)						
(44)m=	125.17	120.61	116.06	111.51	106.96	102.41	102.41	106.96	111.51	116.06	120.61	125.17		
										Fotal = Su	m(44) ₁₁₂ =		1365.44	(44)
Energy of	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600	kWh/mon	oth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	185.62	162.34	167.52	146.05	140.14	120.93	112.06	128.59	130.12	151.65	165.53	179.76		
										Total = Su	m(45) ₁₁₂ =	-	1790.3	(45)
lf instan	taneous w	ater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46)) to (61)				_	
(46)m=	27.84	24.35	25.13	21.91	21.02	18.14	16.81	19.29	19.52	22.75	24.83	26.96		(46)
	storage												1	
-		. ,					-	within sa	ame vess	sel	11	0		(47)
	•	-			-		litres in	• •		(0) . ((-)			
			hot wate	er (this in	cludes i	nstantar	ieous co	mbi boil	ers) ente	er '0' in (47)			
	storage		aclared I	oss facto	nr is kno	wn (k\//k	v(dav).					F 4	1	(49)
							vuay).					54		(48)
			m Table								0.8	1648		(49)
			-	, kWh/ye :ylinder l		or is not		(48) x (49)	=			0		(50)
,				om Tabl								0		(51)
If com	munity h	eating s	ee secti	on 4.3							·		ı	
		from Ta										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)

•••		om water (54) in (5	-	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	0			(54) (55)
	. ,	loss cal		for each	month			((56)m = (55) × (41)ı	m		-		
(56)m=	25.31	22.86	25.31	24.49	25.31	24.49	25.31	25.31	24.49	25.31	24.49	25.31		(56)
If cylinde	er contain	s dedicate	l d solar sto	rage, (57)	I m = (56)m	x [(50) – (L H11)] ÷ (50	0), else (5	1 7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	25.31	22.86	25.31	24.49	25.31	24.49	25.31	25.31	24.49	25.31	24.49	25.31		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatir	ng and a	cylinde	r thermo	stat)		I	
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)	m
(62)m=	210.93	185.2	192.83	170.54	165.45	145.42	137.37	153.9	154.62	176.96	190.03	205.07		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter				-							
(64)m=	210.93	185.2	192.83	170.54	165.45	145.42	137.37	153.9	154.62	176.96	190.03	205.07		
								Outp	out from wa	ater heate	r (annual)₁	12	2088.32	(64)
Hea <mark>t g</mark>	l <mark>ain</mark> s fro	m water	heating	kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	(<mark>46)m</mark>	+ (57)m	+ (<mark>59)</mark> m]	
(65)m=	<mark>6</mark> 1.72	53.98	<mark>5</mark> 5.7	48.56	46.6	40.21	37.26	42.76	43.27	50.42	55.04	5 <mark>9.77</mark>		(65)
in <mark>clu</mark>	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the c	dwelling	<mark>or ho</mark> t w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table {	5 and 5a):									
Metab	olic gair	s (Table	e 5), Wat	ts				-				_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55	167.55		(66)
Lightin	ig gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	60.71	53.92	43.85	33.2	24.82	20.95	22.64	29.43	39.5	50.15	58.53	62.4		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Tal	ble 5				
(68)m=	583.75	589.8	574.54	542.04	501.02	462.47	436.71	430.65	445.92	478.42	519.44	557.99		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m=	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76	39.76		(69)
Pumps	s and fa	ns gains	(Table !	5a)				-						
(70)m=	10	10	10	10	10	10	10	10	10	10	10	10		(70)
Losses	s e.g. ev	vaporatic	n (nega	tive valu	es) (Tab	le 5)					•			
(71)m=	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04	-134.04		(71)
Water	heating	gains (T	able 5)							<u> </u>				
(72)m=	82.95	80.32	74.87	67.45	62.63	55.85	50.08	57.47	60.09	67.77	76.44	80.34		(72)
Total i	internal	gains =				(66)	m + (67)m	• n + (68)m -	• + (69)m + ((70)m + (7	1)m + (72)	m	I	
(73)m=	810.68	807.32	776.53	725.95	671.73	622.53	592.7	600.81	628.77	679.6	737.68	783.99		(73)
6. So	lar gains	S:						•						

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientat	ion:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
East	0.9x	0.77	x	15.82	x	19.64	x	0.63	x	0.7	=	94.96	(76)
East	0.9x	0.77	x	15.82	x	38.42	x	0.63	x	0.7	=	185.76	(76)
East	0.9x	0.77	x	15.82	x	63.27	x	0.63	x	0.7	=	305.91	(76)
East	0.9x	0.77	x	15.82	x	92.28	x	0.63	x	0.7	=	446.16	(76)
East	0.9x	0.77	x	15.82	x	113.09	x	0.63	x	0.7	=	546.78	(76)
East	0.9x	0.77	x	15.82	x	115.77	x	0.63	x	0.7	=	559.73	(76)
East	0.9x	0.77	x	15.82	x	110.22	x	0.63	x	0.7	=	532.88	(76)
East	0.9x	0.77	x	15.82	x	94.68	x	0.63	x	0.7	=	457.74	(76)
East	0.9x	0.77	x	15.82	x	73.59	x	0.63	x	0.7	=	355.79	(76)
East	0.9x	0.77	x	15.82	x	45.59	x	0.63	x	0.7	=	220.41	(76)
East	0.9x	0.77	x	15.82	x	24.49	x	0.63	x	0.7	=	118.4	(76)
East	0.9x	0.77	x	15.82	x	16.15	x	0.63	x	0.7	=	78.09	(76)
South	0.9x	0.77	x	14.52	x	46.75	x	0.63	x	0.7	=	207.46	(78)
South	0.9x	0.77	x	14.52	x	76.57	x	0.63	x	0.7	=	339.77	(78)
South	0.9x	0.77	x	14.52	x	97.53	x	0.63	x	0.7	=	432.81	(78)
South	0.9x	0.77	x	14.52	×	110.23	Х	0.63	х	0.7	=	489.17	(78)
South	0.9x	0.77	x	14.52	x	114.87	x	0.63	x	0.7	=	5 <mark>09.74</mark>	(78)
South	0.9x	0.77	x	14.52	x	110.55	×	0.63	x	0.7	=	4 <mark>90.56</mark>	(78)
South	0.9x	0.77	x	14.52	x	108.01	x	0.63	x	0.7	=	479.3	(78)
South	0.9x	0.77	x	14.52	x	104.8 <mark>9</mark>	x	0.63	x	0.7	=	4 <mark>65.47</mark>	(78)
South	0.9×	0.77	x	14.52	x	101.89	x	0.63	x	0.7	=	4 <mark>52.12</mark>	(78)
South	0.9x	0.77	x	14.52	x	82.59	x	0.63	x	0.7	=	3 <mark>66.47</mark>	(78)
South	0.9x	0.77	x	14.52	x	55.42	x	0.63	x	0.7	=	245.91	(78)
South	0.9x	0.77	x	14.52	x	40.4	x	0.63	x	0.7	=	179.27	(78)
West	0.9x	0.77	x	14.26	x	19.64	x	0.63	x	0.7	=	85.59	(80)
West	0.9x	0.77	x	14.26	×	38.42	x	0.63	x	0.7	=	167.44	(80)
West	0.9x	0.77	x	14.26	x	63.27	x	0.63	x	0.7	=	275.75	(80)
West	0.9x	0.77	x	14.26	x	92.28	x	0.63	x	0.7	=	402.16	(80)
West	0.9x	0.77	x	14.26	x	113.09	x	0.63	x	0.7	=	492.86	(80)
West	0.9x	0.77	x	14.26	x	115.77	x	0.63	x	0.7	=	504.53	(80)
West	0.9x	0.77	x	14.26	x	110.22	x	0.63	x	0.7	=	480.34	(80)
West	0.9x	0.77	x	14.26	x	94.68	x	0.63	x	0.7	=	412.6	(80)
West	0.9x	0.77	x	14.26	x	73.59	x	0.63	x	0.7	=	320.71	(80)
West	0.9x	0.77	x	14.26	×	45.59	x	0.63	x	0.7	=	198.68	(80)
West	0.9x	0.77	x	14.26	×	24.49	x	0.63	x	0.7	=	106.72	(80)
West	0.9x	0.77	x	14.26	×	16.15	x	0.63	x	0.7	=	70.39	(80)

Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m													
(83)m=	388.01	692.96	1014.47	1337.48	1549.38	1554.82	1492.52	1335.81	1128.61	785.57	471.04	327.74	(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	1198.69	1500.28	1790.99	2063.44	2221.12	2177.35	2085.22	1936.62	1757.38	1465.17	1208.72	1111.73	(84)

7. Me	an inter	nal temp	erature	(heating	season)								
							from Tal	ole 9, Th	1 (°C)				21	(85)
		-	ains for l			-			、]
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.97	0.93	0.87	0.77	0.81	0.92	0.98	0.99	1		(86)
Mean	n interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(87)m=	19.8	18.2	18.64	19.21	19.85	20.39	20.69	20.64	20.17	19.38	18.53	18.86		(87)
Temp	perature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)					
(88)m=	19.93	19.93	19.93	19.94	19.94	19.94	19.94	19.94	19.94	19.94	19.94	19.94		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.99	0.99	0.98	0.96	0.91	0.82	0.67	0.72	0.89	0.97	0.99	1		(89)
Mean	n interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to	7 in Tab	le 9c)				
(90)m=	17.4	16.15	16.8	17.66	18.55	19.3	19.7	19.64	19.03	17.88	16.68	15.74		(90)
										fLA = Livin	g area ÷ (4	4) =	0.12	(91)
Mear	n interna	l temper	ature (fo	r the wh	ole dwe	llina) = fl	LA × T1	+ (1 – fL	A) × T2			I		
(92)m=	17.68	16.39	17.01	17.84	18.7	19.43	19.82	19.76	19.16	18.05	16.9	16.1		(92)
	/ adiustn	nent to t	he mear	interna	temper	ature fro	n Table	e 4e, whe	re appro	priate				
(93)m=	17.68	16.39	17.01	17.84	18.7	19.43	19.82	19.76	19.16	18.05	16.9	16.1		(93)
8. Sp	ace hea	ting requ	uirement											
8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate														
			or gains								ŕ			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1										
(94)m=	0.99	0.98	0.97	0.94	0.88	0.79	0.66	0.7	0.86	0.95	0.98	0.99		(94)
Usefu	ul gains,	hmGm	, W = (94	4)m x (8-	4)m								L	
(95)m=	1189.31	1472.03			1956.91	1714.99	1374.42	1360.84	1512.27	1397.14	1188.72	1102.14		(95)
Mont	hly avera	age exte	rnal tem	perature	e from Ta	able 8							1	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			1	· · ·	-	1	<u> </u>	x [(93)m	<u> </u>				I	
	7421.19									4109.48		6581.68		(97)
-			i					1)m] x (4′			I	
(98)m=	4636.52	3290.22	3043.07	2163.64	1415.03	0	0	0	0	2017.98		4076.78		
								Tota	ll per year	(kWh/year) = Sum(9	8)15,912 =	23681.97	(98)
Spac	e heatin	g require	ement in	kWh/m²	/year								50.55	(99)
9a. En	ergy rec	luiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	y micro-C	CHP)					
•	e heatir	-	at from s	acondar	v/supple	montary	evetom						0	(201)
	-		at from m			mentary	-	(202) = 1	- (201) =				0	(201)
			ing from	-	. ,			(/	()				0.01	(202)
			ng from					(204) = (2	02) × [1 –	(203)] =			0.99	(204)
			ng from	-					02) × (203				0.93	(205)
1 1001	.511 01 10	anout		in oy				、 / (-	, (_30	,			0.01	

г #:-:					4								· · ·	
	-			ting syste									401.86	(206)
	-			ting syste			<i></i>						91	(207)
Efficie	ency of s	i	1	ementar	- 	g systen I		1	1	1	i		0	(208)
0	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Spac		g require 3290.22	r · · ·	2163.64	r i	r	0	0	0	2017.98	3038.73	4076.78		
(211)n				100 ÷ (20		Ů			Ů	2017.00	0000.70	4070.70		(211
(211)11	$I = \{I(90) 1142.24 \}$	í Ó	749.68	533.03	348.6	0	0	0	0	497.14	748.61	1004.34		(211
				I		I		I Tota	I Il (kWh/yea	l ar) =Sum(2			5834.23	(211
(213)n	n =(98)m	ר x (203)) x 100 ÷	- (207)										
(213)m=		36.16	33.44	23.78	15.55	0	0	0	0	22.18	33.39	44.8		
				•		•		Tota	l (kWh/yea	ar) =Sum(2	213) _{15,101}	2=	260.24	(213
•		• ·		′y), kWh	month									
·	3)m x (20	<u>,,,,</u>	r Ì	T T									l	
(215)m=	0	0	0	0	0	0	0	0 Tota		0 ar) =Sum(2	0	0		(215
Motor	heating							1010			- 10) _{15,101}	2	0	(213
			ter (calc	ulated a	bove)									
	210.93	185.2	192.83	170.54	165.45	145.42	137.37	153.9	154.62	17 <mark>6.96</mark>	190.03	205.07		
Effic <mark>ie</mark>	ncy of w	ater hea	ater										3 <mark>09.51</mark>	(216
(217) <mark>m=</mark>	309.51	309.51	<u>30</u> 9.51	309 <mark>.</mark> 51	309.51	309.51	309.51	309.51	309.51	309.51	309.51	309.51		(217
	or water													
• •	n = (64) 68.15	59.84	62.3	55.1	53,46	46.98	44.38	49.72	49.96	57.17	61.4	66.26		
								I Tota	l l = Sum(2	19a) ₁₁₂ =		<u> </u>	674.72	(219
Annua	ai totais									k	Wh/yea	r	kWh/year	
Space	heating	fuel use	ed, main	system	1								5834.23	
Space	heating	fuel use	ed, main	system	2								260.24	
Water	heating	fuel use	d										674.72	Ī
Electri	city for p	oumps, f	ans and	electric	keep-ho	t								_
centra	al heatin	a pump	:		•							30		(230
		• • •		kWh/yea	r			sum	of (230a)	(230g) =			30) (231
	-		above,	KVVII/yee	u			ourn		(2009) –				4
	city for li												1072.2	(232
Total o	delivered	d energy	for all u	ises (211)(221)	+ (231)	+ (232).	(237b)	=				7871.38	(338
12a.	CO2 em	issions -	– Individ	lual heat	ing syste	ems inclu	uding mi	cro-CHF)					
							ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	
Space	heating	(main s	ystem 1)		(21	1) x			0.5	19	=	3027.96	(26
•	heating		-			(21:	3) x			0.5		=	135.07	`](262
•	heating		-	,			5) x					=		_(263
Juard	neaing	เอธิบบที่ไ	Jaiy)			(21,	~, ^			0.5	19	_	0	(∠0

Water heating	(219) x	0.519	=	350.18	(264)
Space and water heating	(261) + (262) + (263) + (264)	4) =		3513.21	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	15.57	(267)
Electricity for lighting	(232) x	0.519	=	556.47	(268)
Total CO2, kg/year		sum of (265)(271) =		4085.25	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =		8.72	(273)
EI rating (section 14)				89	(274)

