Sub-Appendix Existing Surface Water Runoff Rate Calculation D

Modified Ration Method for Brownfield Runoff

Project Number:2210419Project Name:12 Pilgrim's LaneDate:04/05/2022

Q= 2.78 * Cv * Cr * I * A

Q = flow rate (I/s) Cv = Volumetric Runoff Coefficient Cr = Routing Coefficient I - Rainfall intensity A = Area (Ha)

Under summer rainfall conditions Cv ranges from 0.6 - 0.9, for fully impermeable areas value of 0.75 should be used.

The routing coeffcient varies between 1 and 2 and accounts for the effect of rainfall characterisits and catchment shape on the peak runoff magnitude. The SuDS manual recommends a fixed value for Cr of 1.3 for design.

Rainfall intensity is calculated following Walling Procedure Volume 4 and is as follows:

1.0 Determination of M5-60 min and r

60 minute, 5 year storm (M5-60) has a rainfall depth

M5-60	20.000
Ratio r	0.4

2.0 Determination of M5-D

M5-D = Z1 (M5-60min) Z1 is taken from A3.a or A.3b for values between 0.12 and 0.45 and for durations between 5 minutes and 48 hours read to 0.01.

Assuming 1yr 15min, 30yr 15 min, 100yr 15min

Z1	0.64
M5-15	12.8 mm

3.0 Determination of MT-D

MT-D is obtained from the relationship: MT-D = Z2(M5-D)

Taken from Table A1 for 1yr return period 15min storm			Taken from	Taken fro		
Z2 =	0.62		Z2=	1.56		Z2=
M1-15=	7.9		M30-15=	20.0		M100-15=

i=

79.872 mm/hr

Table A1 for 100yr return period 15min storm '2= 1.99 /100-15= 25.5

101.888 mm/hr

i=

4 Determination of point rainfall intensities

i= 31.744 mm/hr

5 Application of areal reduction factor

From chart A4 where area is greater than 1km2 ARF= 1

 Average 1yr intensity
 Average 30yr intensity
 Average 100yr intensity
 Average 100yr +40% intensity

 31.7
 79.9
 101.9
 142.6

Area (Ha)

0.033

Storm Return Period	Existing Discharge (L/S)
1yr	2.8
30yr	7.1
100yr	9.1
100yr+40%	12.8

Sub-Appendix Greenfield Runoff Rates

Print

HR Wallingford

Calculated by:	Mlke Ash
Site name:	12 Pilgrim's Lane
Site location:	12 Pilgrim's Lane

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria Refe in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS Date: (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

IH124

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details	
Latitude:	51.55571° N
Longitude:	0.17173° W
Reference:	2966501668
Date:	May 04 2022 12:08

Site characteristics

Runoff estimation approach

Total site area (ha): 0.	1								
Methodology									
QBAR estimation method: Calculate from SPR and SAAR									
SPR estimation method: Calculate from SOIL type									
Soil characteristics Default Edited									
SOIL type:	4		4						
HOST class:	N/A	N/A N/#							
SPR/SPRHOST:	0.47	0.47 0.47							
Hydrological charac	teristics	D	efault		Edited				
SAAR (mm):		650		65	0				
Hydrological region:		6		6					
Growth curve factor 1 y	ear:	0.85		0.85					
Growth curve factor 30	years:	2.3		2.0	3				
Growth curve factor 10	0 years:	3.19)	3.	19				
Growth curve factor 200 years: 3.74 3.74									

Notes

(1) Is Q_{BAR} < 2.0 l/s/ha?

When Q_{BAR} is < 2.0 I/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.44	0.44
1 in 1 year (l/s):	0.38	0.38
1 in 30 years (l/s):	1.02	1.02
1 in 100 year (l/s):	1.41	1.41
1 in 200 years (l/s):	1.66	1.66

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Sub-Appendix F Microdrainage Source Control Calculations

	Ju raithei	rship L	TD					Page
41 The Br	oadway							
london								
SW19 1SD								
ate 29/06	/2022 16.0	10		Degianed	by m.ash			– Micr
,					-			Drair
'ile Green	field rund	off rat	e	Checked b	су			Dian
Innovyze				Source Co	ontrol 2020	0.1.3		
	Sum	<u>mary of</u>	Resul	lts for 1	year Retur	n Peric	<u>d</u>	
		_			-			
		F	Half Dra	ain Time :	11 minutes.			
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event		-		on Control Σ			
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	5 min Summer	98.449	0.099	0.	0 1.8	1.8	1.4	ОК
30) min Summer	98.456	0.106	0.	0 1.8	1.8	1.5	ОК
60) min Summer	98.448	0.098	0.	0 1.8	1.8	1.3	ОК
120) min Summer	98.430	0.080	0.	0 1.5	1.5	1.1	ОК
180) min Summer	98.418	0.068	0.	0 1.3	1.3	0.9	ΟK
240) min Summer	98.410	0.060	0.	0 1.1	1.1	0.8	ΟK
360) min Summer	98.401	0.051	0.	0 0.9	0.9	0.7	ΟK
480) min Summer	: 98.395	0.045	0.	0 0.8	0.8	0.6	O K
600) min Summer	: 98.391	0.041	0.	0 0.6	0.6	0.6	ΟK
) min Summer			0.	0 0.6	0.6	0.5	
) min Summer			0.		0.5	0.5	
1440) min Summer			0.		0.3	0.4	
				0			0.3	ΟK
2160) min Summer				0 0.3	0.3		
2160 2880) min Summer	98.372	0.022	0.	0 0.2	0.2	0.3	
2160 2880 4320) min Summer) min Summer	98.372 98.369	0.022 0.019	0. 0.	0 0.2 0 0.2	0.2 0.2	0.3 0.3	ΟK
2160 2880 4320 5760) min Summer) min Summer) min Summer	98.372 98.369 98.367	0.022 0.019 0.017	0. 0. 0.	0 0.2 0 0.2 0 0.1	0.2 0.2 0.1	0.3 0.3 0.2	O K O K
2160 2880 4320 5760 7200) min Summer) min Summer) min Summer) min Summer	98.372 98.369 98.367 98.365	0.022 0.019 0.017 0.015	0. 0. 0.	0 0.2 0 0.2 0 0.1 0 0.1	0.2 0.2 0.1 0.1	0.3 0.3 0.2 0.2	0 K 0 K 0 K
2160 2880 4320 5760 7200 8640) min Summer) min Summer) min Summer) min Summer) min Summer	98.372 98.369 98.367 98.365 98.364	0.022 0.019 0.017 0.015 0.014	0. 0. 0. 0.	0 0.2 0 0.2 0 0.1 0 0.1 0 0.1	0.2 0.2 0.1 0.1 0.1	0.3 0.2 0.2 0.2	0 K 0 K 0 K
216 288 432 576 720 864 1008) min Summer) min Summer) min Summer) min Summer	2 98.372 98.369 98.367 98.365 98.364 98.364 98.363	0.022 0.019 0.017 0.015 0.014 0.013	0. 0. 0.	0 0.2 0 0.2 0 0.1 0 0.1 0 0.1 0 0.1	0.2 0.2 0.1 0.1	0.3 0.2 0.2 0.2	0 K 0 K 0 K 0 K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer		0.0	2.1	13
30	min	Summer	21.677	0.0	2.7	21
60	min	Summer	13.524	0.0	3.3	38
120	min	Summer	8.257	0.0	4.1	68
180	min	Summer	6.154	0.0	4.6	98
240	min	Summer	4.989	0.0	4.9	128
360	min	Summer	3.684	0.0	5.5	188
480	min	Summer	2.966	0.0	5.9	248
600	min	Summer	2.506	0.0	6.2	308
720	min	Summer	2.184	0.0	6.5	368
960	min	Summer	1.757	0.0	7.0	490
1440	min	Summer	1.294	0.0	7.7	734
2160	min	Summer	0.954	0.0	8.5	1100
2880	min	Summer	0.768	0.0	9.1	1468
4320	min	Summer	0.565	0.0	10.1	2200
5760	min	Summer	0.454	0.0	10.8	2936
7200	min	Summer	0.384	0.0	11.4	3576
8640	min	Summer	0.335	0.0	11.9	4392
10080	min	Summer	0.298		12.4	
			33.555	0.0		
10			227000	0.0	2.0	
		രി	982-20	20 Inno	VVZe	
		01	202 20	20 11110	vy2C	

Elliott Wood Partnership LTD		Page 2
241 The Broadway		
London		
SW19 1SD		Micro
Date 29/06/2022 16:08	Designed by m.ash	Drainage
File Greenfield runoff rate	Checked by	Diamacje
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	Winter	98.463	0.113	0.0	1.8	1.8	1.5	ОК
60	min V	Winter	98.446	0.096	0.0	1.7	1.7	1.3	ОК
120	min V	Winter	98.422	0.072	0.0	1.4	1.4	1.0	ОК
180	min V	Winter	98.409	0.059	0.0	1.1	1.1	0.8	ОК
240	min V	Winter	98.402	0.052	0.0	0.9	0.9	0.7	ОК
360	min V	Winter	98.393	0.043	0.0	0.7	0.7	0.6	ОК
480	min V	Winter	98.388	0.038	0.0	0.6	0.6	0.5	ОК
600	min V	Winter	98.385	0.035	0.0	0.5	0.5	0.5	ОК
720	min V	Winter	98.382	0.032	0.0	0.4	0.4	0.4	ОК
960	min V	Winter	98.379	0.029	0.0	0.3	0.3	0.4	ОК
1440	min V	Winter	98.374	0.024	0.0	0.3	0.3	0.3	ОК
2160	min V	Winter	98.371	0.021	0.0	0.2	0.2	0.3	ОК
2880	min V	Winter	98.368	0.018	0.0	0.1	0.1	0.3	ОК
4320	min V	Winter	98.366	0.016	0.0	0.1	0.1	0.2	ОК
5760	min V	Winter	98.364	0.014	0.0	0.1	0.1	0.2	ОК
7200	min V	Winter	98.363	0.013	0.0	0.1	0.1	0.2	ОК
8640	min V	Winter	98.362	0.012	0.0	0.1	0.1	0.2	ОК
10080	min V	Winter	98.361	0.011	0.0	0.1	0.1	0.2	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
					0.0	
		Winter		0.0	3.0	22
		Winter	13.524	0.0	3.7	38
120	min	Winter	8.257	0.0	4.6	70
180	min	Winter	6.154	0.0	5.1	100
240	min	Winter	4.989	0.0	5.5	130
360	min	Winter	3.684	0.0	6.1	188
480	min	Winter	2.966	0.0	6.6	248
600	min	Winter	2.506	0.0	6.9	308
720	min	Winter	2.184	0.0	7.3	366
960	min	Winter	1.757	0.0	7.8	492
1440	min	Winter	1.294	0.0	8.6	736
2160	min	Winter	0.954	0.0	9.5	1084
2880	min	Winter	0.768	0.0	10.2	1472
4320	min	Winter	0.565	0.0	11.3	2140
5760	min	Winter	0.454	0.0	12.1	2920
7200	min	Winter	0.384	0.0	12.8	3672
8640	min	Winter	0.335	0.0	13.4	4336
10080	min	Winter	0.298	0.0	13.9	5104

Elliott Wood Partnership LTD		Page 3
241 The Broadway		
London		
SW19 1SD		Micro
Date 29/06/2022 16:08	Designed by m.ash	- Micro Drainage
File Greenfield runoff rate	Checked by	Dialitacje
Innovyze	Source Control 2020.1.3	
Ra	<u>infall Details</u>	
Rainfall Model		es
Return Period (years) Region Engla	and and Wales Cv (Summer) 0.7 Cv (Winter) 0.8	
M5-60 (mm)		15
Ratio R	0.436 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change %	+0
<u>Tin</u>	ne Area Diagram	
Tota	al Area (ha) 0.033	
Ti	me (mins) Area	
Fr	om: To: (ha)	
	0 4 0.033	

lliott Wood Partnershi	o LTD				F	age 4
41 The Broadway						
ondon						
W19 1SD						Micro
ate 29/06/2022 16:08		-	d by m.ash	1		Drainag
ile Greenfield runoff :	rate					Jianag
nnovyze		Source	Control 20	020.1.3		
		<u>Model De</u>	<u>tails</u>			
Sto	rage is O	nline Cove	r Level (m)	99.900		
	<u>Cellul</u>	<u>ar Storag</u>	e Structu:	<u>re</u>		
Infiltration Co Infiltration Co	pefficient	: Base (m/h		-		
Depth (m) Area (m ²) Inf. A	rea (m²) De	epth (m) Are	a (m²) Inf	. Area (m²	²)
	. 4 . 4	0.0	0.801	0.0	0.	. 0
Hydı	ro-Brake	® Optimum	Outflow (Control		
			e MD-SHE-00	70-2000-080		
		gn Head (m Flow (l/s			0.800	
	Design	Flush-Flo		Calc	ulated	
		-	e Minimise	-	-	
		Applicatio		S	Surface	
		p Availabl ameter (mm			Yes 70	
		t Level (m			98.350	
Minimum Outle					100	
Suggested M	lanhole Di	ameter (mm)		1200	
	Control P	oints	Head (m) F	low (l/s)		
Desig	n Point (C	Calculated)		2.0		
		Flush-Flo™ Kick-Flo®		2.0 1.6		
Mean 3	Flow over	Head Range		1.7		
The hydrological calculati Hydro-Brake® Optimum as sp Hydro-Brake Optimum® be ut invalidated	ecified.	Should an	other type o	of control	device oth	ner than a
Depth (m) Flow (1/s) Dept			-		-	
0.100 1.8 0.200 2.0	1.200	2.4	3.000 3.500	3.7 3.9	7.000 7.500	5.5 5.6
0.300 2.0	1.600	2.7	4.000	4.2	8.000	5.8
0.400 1.9	1.800	2.9	4.500	4.4	8.500	6.0
0.500 1.6 0.600 1.8	2.000	3.0 3.2	5.000 5.500	4.7	9.000 9.500	6.2 6.3
0.800 2.0	2.200	3.3	6.000	5.1	5.000	0.0
1.000 2.2	2.600	3.4	6.500	5.3		

lliott Woo	d Pa	artner	ship L	TD						Page 1
241 The Bro	adwa	ау								
London										
SW19 1SD										Micco
Date 29/06/	2022	2 16:0	9		Desi	gned b	y m.ash			
File Greenf	field	d runo	ff rat	e	Chec	ked by	_ ,			Draina
Innovyze						-	trol 2020	0.1.3		
1										
		Summa	ary of	Resul	ts fo	<u>r 30 y</u>	vear Retu	rn Peri	od	
			F	Half Dr	ain Ti	me : 21	minutes.			
	Stor	m	Max	Max	м	ax	Max	Max	Max	Status
	Even						Control S			
			(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	98.631	0.281		0.0	2.0	2.0	3.8	ОК
			98.661			0.0	2.0	2.0	4.3	
60	min	Summer	98.653	0.303		0.0	2.0	2.0	4.1	ОК
120	min	Summer	98.596	0.246		0.0	2.0	2.0	3.4	ОК
180	min	Summer	98.544	0.194		0.0	2.0	2.0	2.6	0 K
240	min	Summer	98.503	0.153		0.0	1.9	1.9	2.1	0 K
360	min	Summer	98.454	0.104		0.0	1.8	1.8	1.4	ОК
			98.433			0.0	1.6	1.6	1.1	ОК
			98.421			0.0	1.4	1.4		
			98.413			0.0	1.2	1.2		
			98.404			0.0	1.0	1.0	0.7	
			98.394			0.0	0.7	0.7	0.6	
			98.386 98.382			0.0	0.5	0.5	0.5 0.4	
			98.382			0.0	0.4	0.4	0.4	
			98.373			0.0	0.3	0.3	0.4	
			98.373			0.0	0.2	0.2		
			98.370			0.0		0.2		
			98.368			0.0	0.1	0.1		
			98.672			0.0	2.0	2.0	4.4	
			Storm Event		Rain m/hr)	Flooded	l Discharge Volume	e Time-Pe (mins		
					-, /	(m ³)	(m ³)	, <u>.</u>		
		15	min Sur	nmar 8	2 122	0.0) 5.1	1	15	

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume	Volume	(mins)
		(m³)	(m³)	
15 min Sum	mer 82.422	0.0	5.1	15
30 min Sum	mer 52.865	0.0	6.5	25
60 min Sum	mer 32.372	0.0	8.0	42
120 min Sum	mer 19.231	0.0	9.5	74
180 min Sum	mer 14.034	0.0	10.4	106
240 min Sum	mer 11.177	0.0	11.1	136
360 min Sum	mer 8.104	0.0	12.0	192
480 min Sum	mer 6.446	0.0	12.8	250
600 min Sum	mer 5.394	0.0	13.3	308
720 min Sum	mer 4.662	0.0	13.8	370
960 min Sum	mer 3.701	0.0	14.6	490
1440 min Sum	mer 2.671	0.0	15.9	734
2160 min Sum	mer 1.926	0.0	17.2	1096
2880 min Sum	mer 1.526	0.0	18.1	1460
4320 min Sum	mer 1.098	0.0	19.6	2168
5760 min Sum	mer 0.869	0.0	20.7	2936
7200 min Sum	mer 0.725	0.0	21.5	3584
8640 min Sum	mer 0.625	0.0	22.3	4400
10080 min Sum	mer 0.551	0.0	22.9	5136
15 min Win	ter 82.422	0.0	5.7	16
	©1982-20	20 Inno	vyze	

Elliott Wood Partnership LTD		Page 2
241 The Broadway		
London		
SW19 1SD		Mirro
Date 29/06/2022 16:09	Designed by m.ash	Drainage
File Greenfield runoff rate	Checked by	Diamade
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min W	Vinter	98.706	0.356	0.0	2.0	2.0	4.9	ОК
60	min W	Vinter	98.687	0.337	0.0	2.0	2.0	4.6	ОК
120	min W	Vinter	98.598	0.248	0.0	2.0	2.0	3.4	ОК
180	min W	Vinter	98.521	0.171	0.0	1.9	1.9	2.3	ОК
240	min W	Vinter	98.470	0.120	0.0	1.8	1.8	1.6	ОК
360	min W	Vinter	98.429	0.079	0.0	1.5	1.5	1.1	ОК
480	min W	Vinter	98.414	0.064	0.0	1.2	1.2	0.9	ОК
600	min W	Vinter	98.406	0.056	0.0	1.0	1.0	0.8	ОК
720	min W	Vinter	98.401	0.051	0.0	0.9	0.9	0.7	ОК
960	min W	Vinter	98.394	0.044	0.0	0.7	0.7	0.6	ОК
1440	min W	Vinter	98.386	0.036	0.0	0.5	0.5	0.5	ОК
2160	min W	Vinter	98.380	0.030	0.0	0.4	0.4	0.4	ОК
2880	min W	Vinter	98.377	0.027	0.0	0.3	0.3	0.4	ОК
4320	min W	Vinter	98.372	0.022	0.0	0.2	0.2	0.3	ОК
5760	min W	Vinter	98.370	0.020	0.0	0.2	0.2	0.3	ΟK
7200	min W	Vinter	98.368	0.018	0.0	0.1	0.1	0.2	ΟK
8640	min W	Vinter	98.367	0.017	0.0	0.1	0.1	0.2	ОК
10080	min W	Vinter	98.366	0.016	0.0	0.1	0.1	0.2	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	7.3	27
60	min	Winter	32.372	0.0	9.0	46
120	min	Winter	19.231	0.0	10.7	80
180	min	Winter	14.034	0.0	11.7	110
240	min	Winter	11.177	0.0	12.4	138
360	min	Winter	8.104	0.0	13.5	192
480	min	Winter	6.446	0.0	14.3	252
600	min	Winter	5.394	0.0	14.9	308
720	min	Winter	4.662	0.0	15.5	370
960	min	Winter	3.701	0.0	16.4	492
1440	min	Winter	2.671	0.0	17.8	716
2160	min	Winter	1.926	0.0	19.2	1076
2880	min	Winter	1.526	0.0	20.3	1456
4320	min	Winter	1.098	0.0	21.9	2144
5760	min	Winter	0.869	0.0	23.1	2936
7200	min	Winter	0.725	0.0	24.1	3672
8640	min	Winter	0.625	0.0	24.9	4464
10080	min	Winter	0.551	0.0	25.7	5168

Elliott Wood Partnership LTD		Page 3
241 The Broadway		
London		
SW19 1SD		Micco
Date 29/06/2022 16:09	Designed by m.ash	Micro Drainage
File Greenfield runoff rate	Checked by	Diamaye
Innovyze	Source Control 2020.1.3	
Ra	<u>infall Details</u>	
Rainfall Model		es
Return Period (years) Region Engl.	30 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8	
M5-60 (mm)		15
Ratio R	0.436 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change %	+0
Tir	ne Area Diagram	
Tot	al Area (ha) 0.033	
	ime (mins) Area om: To: (ha)	
	0 4 0.033	

lliott Wood Partnership	LTD				P	age 4
41 The Broadway						
ondon						
W19 1SD					N	<i>licro</i>
ate 29/06/2022 16:09	I	Designed	l by m.as	h)chinha
ile Greenfield runoff r	ate 0	Checked	by)rainag
nnovyze	2	Source (Control 2	020.1.3		
	Mc	del Det	<u>ails</u>			
Stor	age is Onl:	ine Cover	Level (m)	99.900		
	<u>Cellular</u>	Storage	e Structi	<u>ire</u>		
Infiltration Cod Infiltration Cod	efficient B	ase (m/hi	c) 0.00000			
Depth (m) Area (m²)						
0.000 14.4 0.800 14.4	1	0.0	0.801	0.0	0.	0
Hydro	o-Brake® (Optimum	Outflow	Control		
				070-2000-080		
	-	Head (m)			0.800	
	Design Fi	low (1/s) lush-Flo™		Calc	2.0 ulated	
				e upstream s		
		plication		-	urface	
	Sump A	Available			Yes	
		eter (mm)			70	
		Level (m)			98.350	
Minimum Outlet Suggested Ma					100 1200	
с	ontrol Poir	nts	Head (m)	Flow (l/s)		
Design	Point (Cal	culated)	0.800	2.0		
	Fl	ush-Flo™	0.240	2.0		
		ick-Flo®		1.6		
Mean F.	low over He	ad Range	-	1.7		
The hydrological calculatic Hydro-Brake® Optimum as spe Hydro-Brake Optimum® be uti invalidated	ecified. Sl	hould and	ther type	of control of	device oth	er than a
Depth (m) Flow (1/s) Depth	n (m) Flow	(1/s) Dej	pth (m) Fl	.ow (l/s) Dep	oth (m) Fl	ow (1/s)
	L.200	2.4	3.000	3.7	7.000	5.5
	L.400	2.6	3.500	3.9	7.500	5.6
	L.600 L.800	2.7	4.000 4.500	4.2	8.000 8.500	5.8 6.0
	2.000	3.0	4.300 5.000	4.4	9.000	6.2
	2.200	3.2	5.500	4.9	9.500	6.3
	2.400	3.3	6.000	5.1		
1.000 2.2	2.600	3.4	6.500	5.3		

lliott Woo	od Pa	artner	ship L'	ΓD					Page 1
241 The Bro	adwa	ау							
London									
SW19 1SD									Micco
Date 29/06/	2022	2 16:1	0		Designed b	v m.ash			- Micro
File Greenf				e	Checked by	-			Drain
Innovyze				· · · ·	Source Con) 1 3		
					bource con	2020			
		Summa	urv of	Result	s for 100	vear Retu	rn Peri	od	
		<u>o anano</u>	<u> </u>	1100410	.0 101 100	<u>year needa</u>	111 1011	<u></u>	
			F	Half Dra	ain Time : 33	minutes.			
	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)	
15	min	Summor	98.736	0 386	0.0	2.0	2.0	5.3	ОК
			98.792		0.0	2.0	2.0	6.0	
			98.793		0.0	2.0	2.0		
			98.730		0.0	2.0	2.0	5.2	
			98.661		0.0	2.0	2.0	4.3	
			98.600		0.0	2.0	2.0	3.4	
360	min	Summer	98.516	0.166	0.0	1.9	1.9	2.3	ОК
480	min	Summer	98.467	0.117	0.0	1.8	1.8	1.6	ОК
600	min	Summer	98.442	0.092	0.0	1.7	1.7	1.3	ОК
720	min	Summer	98.430	0.080	0.0	1.5	1.5	1.1	ОК
960	min	Summer	98.415	0.065	0.0	1.2	1.2	0.9	O K
1440	min	Summer	98.401	0.051	0.0	0.9	0.9	0.7	ΟK
			98.392		0.0	0.7	0.7	0.6	0 K
			98.386		0.0	0.5	0.5	0.5	
			98.380		0.0	0.4	0.4		
			98.376		0.0	0.3	0.3	0.4	
			98.374		0.0	0.2	0.2	0.3	
			98.372		0.0	0.2	0.2		ОК
			98.371		0.0	0.2	0.2		
15	mın	winter	98.792	0.442	0.0	2.0	2.0	6.0	ОК
			Storm			d Discharge			
			Event	(m	m/hr) Volume		(mins))	
					(m ³)	(m³)			

	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)	
15	min	Summer	107.269	0.0	6.6	16	
30	min	Summer	69.314	0.0	8.6	29	
60	min	Summer	42.578	0.0	10.5	44	
120	min	Summer	25.252	0.0	12.5	78	
180	min	Summer	18.359	0.0	13.6	110	
240	min	Summer	14.561	0.0	14.4	142	
360	min	Summer	10.503	0.0	15.6	200	
480	min	Summer	8.323	0.0	16.5	256	
600	min	Summer	6.944	0.0	17.2	310	
720	min	Summer	5.987	0.0	17.8	370	
960	min	Summer	4.734	0.0	18.7	490	
1440	min	Summer	3.396	0.0	20.2	734	
2160	min	Summer	2.432	0.0	21.7	1088	
2880	min	Summer	1.918	0.0	22.8	1460	
4320	min	Summer	1.371	0.0	24.4	2188	
5760	min	Summer	1.079	0.0	25.6	2920	
7200	min	Summer	0.896	0.0	26.6	3640	
8640	min	Summer	0.769	0.0	27.4	4376	
10080	min	Summer	0.676	0.0	28.1	5032	
15	min	Winter	107.269	0.0	7.4	17	
		©	1982-202	20 Innov	vyze		

Elliott Wood Partnership LTD	Page 2	
241 The Broadway		
London		
SW19 1SD		Micro
Date 29/06/2022 16:10	Designed by m.ash	
File Greenfield runoff rate	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	98.868	0.518	0.0	2.0	2.0	7.1	ОК
60	min V	Winter	98.864	0.514	0.0	2.0	2.0	7.0	ОК
120	min V	Winter	98.762	0.412	0.0	2.0	2.0	5.6	ОК
180	min V	Winter	98.654	0.304	0.0	2.0	2.0	4.2	ОК
240	min V	Winter	98.566	0.216	0.0	2.0	2.0	3.0	ОК
360	min V	Winter	98.467	0.117	0.0	1.8	1.8	1.6	ОК
480	min V	Winter	98.433	0.083	0.0	1.6	1.6	1.1	ОК
600	min V	Winter	98.419	0.069	0.0	1.3	1.3	0.9	ОК
720	min V	Winter	98.411	0.061	0.0	1.2	1.2	0.8	ОК
960	min V	Winter	98.402	0.052	0.0	0.9	0.9	0.7	ОК
1440	min V	Winter	98.392	0.042	0.0	0.7	0.7	0.6	ОК
2160	min V	Winter	98.384	0.034	0.0	0.5	0.5	0.5	ОК
2880	min V	Winter	98.380	0.030	0.0	0.4	0.4	0.4	ОК
4320	min V	Winter	98.375	0.025	0.0	0.3	0.3	0.3	ОК
5760	min V	Winter	98.372	0.022	0.0	0.2	0.2	0.3	ОК
7200	min V	Winter	98.370	0.020	0.0	0.2	0.2	0.3	ОК
8640	min V	Winter	98.369	0.019	0.0	0.2	0.2	0.3	ОК
10080	min V	Winter	98.367	0.017	0.0	0.1	0.1	0.2	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	9.6	30
60	min	Winter	42.578	0.0	11.8	50
120	min	Winter	25.252	0.0	14.0	86
180	min	Winter	18.359	0.0	15.3	118
240	min	Winter	14.561	0.0	16.1	148
360	min	Winter	10.503	0.0	17.5	200
480	min	Winter	8.323	0.0	18.5	252
600	min	Winter	6.944	0.0	19.2	312
720	min	Winter	5.987	0.0	19.9	372
960	min	Winter	4.734	0.0	21.0	490
1440	min	Winter	3.396	0.0	22.6	728
2160	min	Winter	2.432	0.0	24.3	1100
2880	min	Winter	1.918	0.0	25.5	1484
4320	min	Winter	1.371	0.0	27.3	2240
5760	min	Winter	1.079	0.0	28.7	2904
7200	min	Winter	0.896	0.0	29.8	3648
8640	min	Winter	0.769	0.0	30.7	4408
10080	min	Winter	0.676	0.0	31.5	4968

Elliott Wood Partnership LTD		Page 3
241 The Broadway		
London		
SW19 1SD		Mirro
Date 29/06/2022 16:10	Designed by m.ash	Micro Drainage
File Greenfield runoff rate	Checked by	Diamage
Innovyze	Source Control 2020.1.3	
Ra	infall Details	
Rainfall Model Return Period (years)	FSR Winter Storms Y 100 Cv (Summer) 0.7	es 50
	and and Wales Cv (Winter) 0.8	
M5-60 (mm)		15
Ratio R Summer Storms	0.436 Longest Storm (mins) 100 Yes Climate Change %	+0
	ioo orimado onango o	
<u>Tir</u>	ne Area Diagram	
Tot.	al Area (ha) 0.033	
	ime (mins) Area om: To: (ha)	
	0 4 0.033	

lliott Wood Partnership	LTD			Pa	age 4
41 The Broadway					
ondon					
W19 1SD				Ν	lirm
ate 29/06/2022 16:10	Design	ned by m.ash	L		
ile Greenfield runoff ra	ate Checke	ed by			rainag
nnovyze	Source	e Control 20	20.1.3		
	<u>Model I</u>	Details			
Stor	age is Online Co	ver Level (m)	99.900		
	<u>Cellular Stor</u>	age Structui	<u>ce</u>		
	Invert Level efficient Base (m efficient Side (m		-		
Depth (m) Area (m²)					
0.000 14.4 0.800 14.4	0.0	0.801	0.0	0.0)
Hydro	-Brake® Optim	um Outflow (Control		
	Unit Refere	nce MD-SHE-007	0-2000-0800		
	Design Head			0.800	
	Design Flow (1, Flush-F		Calcu	lated	
		ive Minimise			
	Applicat	ion	Su	irface	
	Sump Availa			Yes	
	Diameter (1			70	
Minimum Outlot	Invert Level Pipe Diameter (1		ç	100 100	
	nhole Diameter (1			1200	
с	ontrol Points	Head (m) F	low (l/s)		
Design	Point (Calculate	d) 0.800	2.0		
	Flush-Fl	0.240	2.0		
	Kick-Fl		1.6		
Mean Fl	low over Head Ran	.ge –	1.7		
The hydrological calculatio Hydro-Brake® Optimum as spe Hydro-Brake Optimum® be uti invalidated	cified. Should	another type c	of control d	levice othe	er than a
Depth (m) Flow (1/s) Depth	n (m) Flow (l/s)	Depth (m) Flo	w (l/s) Dep	oth (m) Flo	ow (l/s)
	.200 2.4	3.000	3.7	7.000	5.5
	400 2.6 600 2.7	3.500 4.000	3.9 4.2	7.500 8.000	5.6 5.8
	.800 2.9	4.500	4.2	8.000	5.8 6.0
	.000 3.0	5.000	4.7	9.000	6.2
	.200 3.2	5.500	4.9	9.500	6.3
0.800 2.0 2	3.3	6.000	5.1		
1.000 2.2 2	3.4	6.500	5.3		

Elliott Woo			ship L	TD						Page 1	1
241 The Bro	adwa	ay									
London											
SW19 1SD											0
					Deci	anad by	y m.ash			– Micro	
Date 29/06/2022 16:11							y m.asn			Drair	าลต
File Greenf	ield	d runo	ii rat	e		ked by				Brain	
Innovyze					Sour	ce Cont	trol 2020	0.1.3			
	Sum	mary (of Resu	ults f	or 10	0 year	Return 1	Period	(+40%)	_	
			F	Half Dra	ain Ti	me : 51	minutes.				
	Stor	m	Max	Max	M	ax	Max	Max	Max	Status	
	Even	t	Level	Depth	Infilt	ration	Control S	Outflow	Volume		
			(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)		
		~					0.0				
			98.927			0.0	2.0	2.0	7.9		
			99.028			0.0	2.0	2.0	9.3		
			99.046			0.0	2.0	2.0	9.5		
			98.994			0.0	2.0	2.0	8.8		
			98.923 98.842			0.0	2.0	2.0	7.8		
						0.0	2.0	2.0	6.7		
			98.696			0.0	2.0	2.0	4.7		
			98.595 98.528			0.0	2.0 2.0	2.0 2.0	3.3 2.4		
						0.0	2.0				
			98.484 98.441			0.0	1.9	1.9 1.7	1.8 1.2		
			98.441 98.416			0.0	1.7	1.7	0.9		
			98.410			0.0	0.9	1.3	0.9		
			98.394			0.0	0.9	0.9	0.7		
			98.386			0.0	0.5	0.5	0.0		
			98.382			0.0	0.4	0.3	0.3		
			98.379			0.0	0.4	0.4	0.4		
			98.379			0.0	0.3	0.3	0.4		
			98.375			0.0	0.3	0.3			
			99.004			0.0	2.0	2.0	9.0		
			Storm	F	Rain	Flooded	Discharge	a Time-Pe	ak		
			Event	(m	m/hr)	Volume	Volume	(mins)		
						(m³)	(m³)				
		15	min Sur	mmer 15	0.176	0.0	9.3	3	17		
			min Sur		7.039	0.0			31		
			min Sur		9.609	0.0			50		
			min Sur		5.353	0.0			84		
			min Sur		5.703	0.0			.18		
			min Sur		0.385	0.0			.52		
			min Sur		4.704	0.0			212		
			min Sur		1.652	0.0			268		
			min Sur		9.722	0.0			326		
			min Sur		8.381	0.0			82		
			min Sur		6.627	0.0			92		
			min Sur		4 754	0.0			134		

1440 min Summer

2160 min Summer 2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter 150.176

10080 min Summer

4.754

3.405

2.685

1.919

1.511

1.254

1.077

0.947

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

28.2

30.3

31.9

34.2

35.9

37.2

38.4

39.4

10.4

734

1100

1468

2144

2880

3632

4328

5088

17

e 2
-
cio
ainago
s
К
K
K
K
К
K
К
K
K
K
K
K
K
K
K
K
K
K

Elliott Wood Partnership LTD		Page 3
241 The Broadway		
London		
SW19 1SD		Mirro
Date 29/06/2022 16:11	Designed by m.ash	Micro Drainage
File Greenfield runoff rate	Checked by	Diamage
Innovyze	Source Control 2020.1.3	·
Ra	<u>infall Details</u>	
Rainfall Model	FSR Winter Storms Y	
Return Period (years)	FSR Winter Storms Y 100 Cv (Summer) 0.7	es 50
	and and Wales Cv (Winter) 0.8	
M5-60 (mm)		15
Ratio R Summer Storms	0.436 Longest Storm (mins) 100 Yes Climate Change % +	40
	······································	
<u> </u>	ne Area Diagram	
Tot.	al Area (ha) 0.033	
	ime (mins) Area om: To: (ha)	
	0 4 0.033	

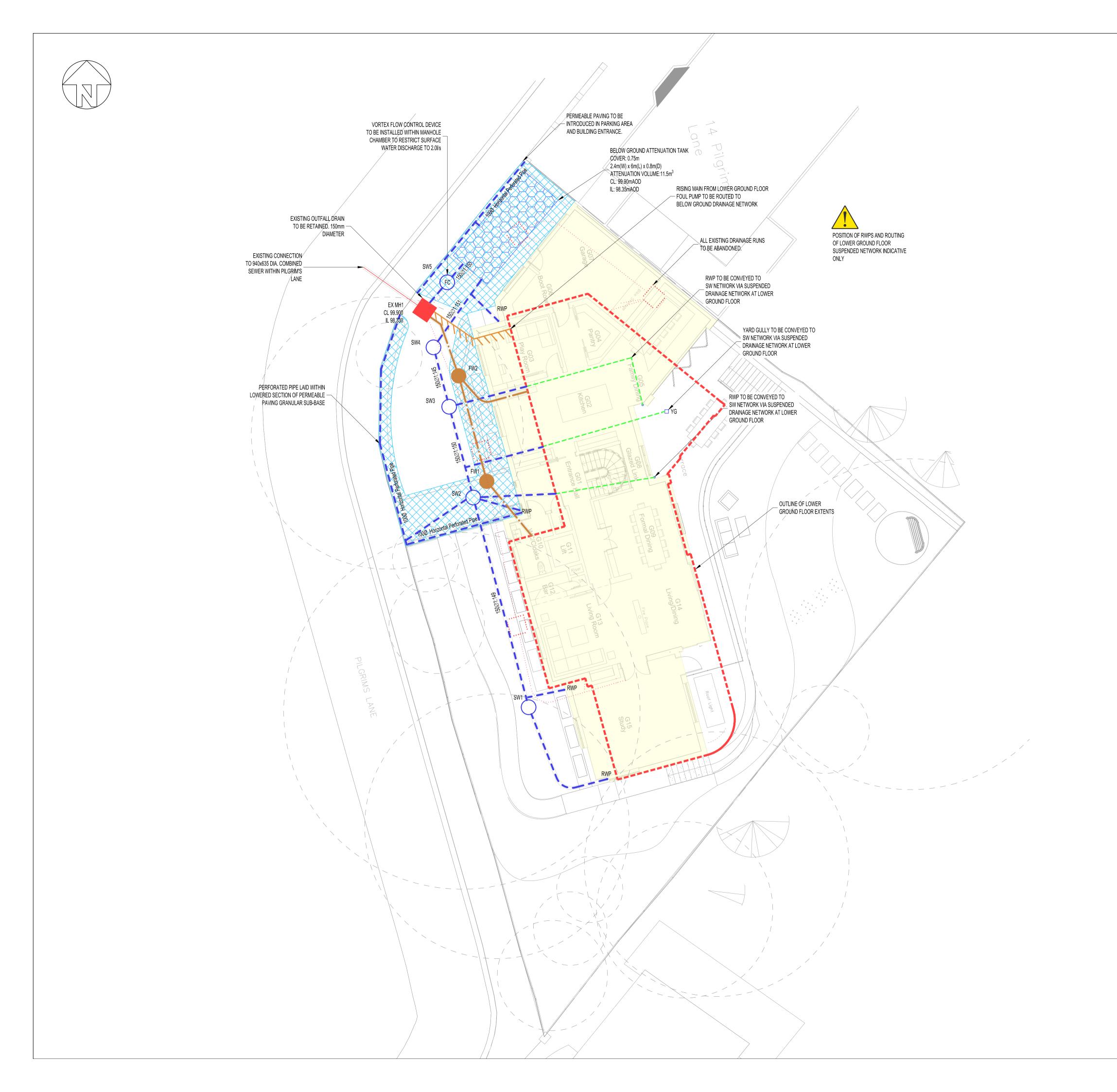
lliott Wood Partnership	LTD			Pa	age 4
41 The Broadway					
ondon					
W19 1SD				Ν	licro
ate 29/06/2022 16:11	Designe	ed by m.ash	1		
ile Greenfield runoff rat	te Checked	d by			Irainag
nnovyze	Source	Control 20	20.1.3		
	<u>Model De</u>	tails			
Stora	ge is Online Cove	er Level (m)	99.900		
<u>(</u>	Cellular Stora	ge Structui	<u>ce</u>		
Infiltration Coef Infiltration Coef		hr) 0.00000	-		
Depth (m) Area (m²)					
0.000 14.4 0.800 14.4		0.801	0.0	0.0)
Hydro-	-Brake® Optimu	m Outflow (Control		
	Unit Referenc	ce MD-SHE-007	70-2000-0800		
	Design Head (m			0.800	
	Design Flow (1/s Flush-Flo		Calcu	2.0 lated	
		, ve Minimise			
	Applicatio		-	ırface	
	Sump Availabl	e		Yes	
	Diameter (mn			70	
	Invert Level (n	,	9	8.350	
	Pipe Diameter (mn hole Diameter (mn			100 1200	
Co	ntrol Points	Head (m) F	low (l/s)		
Design B	oint (Calculated) 0.800	2.0		
	Flush-Flo	0.240	2.0		
	Kick-Flo		1.6		
Mean Flo	w over Head Rang	e –	1.7		
The hydrological calculation Hydro-Brake® Optimum as spec Hydro-Brake Optimum® be util invalidated	ified. Should ar	nother type o	of control d	levice othe	er than a
Depth (m) Flow (1/s) Depth	(m) Flow (l/s) D	epth (m) Flo	w (l/s) Dep	oth (m) Fl	ow (l/s)
	200 2.4	3.000	3.7	7.000	5.5
	400 2.6 600 2.7	3.500 4.000	3.9 4.2	7.500 8.000	5.6 5.8
	800 2.9	4.000	4.2	8.000	5.8 6.0
	000 3.0	5.000	4.7	9.000	6.2
	200 3.2	5.500	4.9	9.500	6.3
0.800 2.0 2.	400 3.3	6.000	5.1		
1.000 2.2 2.	600 3.4	6.500	5.3		

G Sub-Appendix G London Borough of Camden SuDS Pro-Forma

GREATER LONDON AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	12 Pilgrim's Lane
	Address & post code	12 Pilgrim's Lane, NW3 1SN
	OS Crid rof (Fasting Northing)	E 526850
	OS Grid ref. (Easting, Northing)	N 185676
tails	LPA reference (if applicable)	
1. Project & Site Details	Brief description of proposed work	A refurbishment of a residential dwelling with a new lower ground floor.
	Total site Area	785 m ²
	Total existing impervious area	330 m ²
	Total proposed impervious area	330 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No
	Existing drainage connection type and location	Combined Water Outfall Manhole, To the northwest of site.
	Designer Name	Mike Ash
	Designer Position	Civil Engineer
	Designer Company	Elliott Wood

	2a. Infiltration Feasibility							
	Superficial geology classification		None Recorded					
	Bedrock geology classification	and London Clay member						
	Site infiltration rate		m/s					
	Depth to groundwater level		m belo	w ground level				
	Is infiltration feasible?		No					
	2b. Drainage Hierarchy							
ments		Feasible (Y/N)	Proposed (Y/N)					
ang	1 store rainwater for later use	Ν	Ν					
irge Arr	2 use infiltration techniques, such a surfaces in non-clay areas	Ν	Ν					
2. Proposed Discharge Arrangements	3 attenuate rainwater in ponds or features for gradual release	Ν	Ν					
ropose	4 attenuate rainwater by storing in sealed water features for gradual re		Y	Y				
7.1	5 discharge rainwater direct to a w	atercourse	N	Ν				
	6 discharge rainwater to a surface sewer/drain	Ν	Ν					
	7 discharge rainwater to the comb	ined sewer.	Y	Y				
	2c. Proposed Discharge Details							
	Proposed discharge location	sting outfall m	anhole					
	Has the owner/regulator of the discharge location been consulted?	Yes						


GREATER LONDON AUTHORITY

	3a. Discharge Rat	tes & Required Ste	orage			
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (l/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)	
	Qbar	0.44	\geq	\geq	$>\!$	
	1 in 1	0.38	2.8	3.15	1.8	
	1 in 30	1.02	7.1	6.6	2	
	1 in 100	1.41	9.1	8.2	2	
	1 in 100 + CC		\geq	14		
	Climate change a	llowance used	40%			
3. Drainage Strategy	3b. Principal Metl Control	hod of Flow	Vortex Flow Control			
je St	3c. Proposed SuD	S Measures				
rainag			Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)	
З. Г	Rainwater harves	ting	0		0	
	Infiltration system	าร	0	\leq	0	
	Green roofs		0	0	0	
	Blue roofs		0	0	0	
	Filter strips		0	0	0	
	Filter drains		0	0	0	
	Bioretention / tre	e pits	0	0	0	
	Pervious paveme	nts	70	70	0	
	Swales		0	0	0	
	Basins/ponds		0	0	0	
	Attenuation tanks	5	260	\geq	11.5	
	Total		330	70	11.5	

	4a. Discharge & Drainage Strategy	Page/section of drainage report			
4. Supporting Information	4a. Discharge & Dramage Strategy	Puge/section of urainage report			
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	3			
	Drainage hierarchy (2b)	3			
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	4			
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	4			
	Proposed SuDS measures & specifications (3b)	3			
	4b. Other Supporting Details	Page/section of drainage report			
	Detailed Development Layout	65 - Appendix H			
	Detailed drainage design drawings, including exceedance flow routes	65 - Appendix H			
	Detailed landscaping plans	65 - Appendix H			
	Maintenance strategy	6			
	Demonstration of how the proposed SuDS measures improve:				
	a) water quality of the runoff?	3			
	b) biodiversity?	3			
	c) amenity?	3			

Sub-Appendix H Proposed Below Ground Drainage Layout

BELOW GROUND DRAINAGE NOTES

- 1. THE LOCATION AND LEVEL OF EXISTING DRAINAGE CONNECTIONS AND EXISTING SERVICES IS TO BE CHECKED PRIOR TO COMMENCEMENT OF DRAINAGE WORKS. ANY VARIANCE TO THE DETAILS ON THIS DRAWING AND THE SCHEDULE IS TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
- 2. THE DESIGN IS BASED ON THE INFORMATION AVAILABLE ON THE DATE OF ISSUE FROM OTHER PARTIES (EG. ARCHITECT AND M & E ENGINEER). IT IS SUBJECT TO CHANGE RESULTING FROM UPDATES TO THE AVAILABLE INFORMATION FROM OTHERS.
- 3. THE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE NBS SPECIFICATIONS, ASSOCIATED MANHOLE SCHEDULE AND STANDARD DRAINAGE DETAIL DRAWINGS WHERE APPLICABLE.
- 4. THE POSITIONS OF FOUL AND SURFACE WATER DRAINAGE POINTS ARE INDICATIVE ONLY, REFER TO THE ARCHITECTS DRAWINGS FOR SETTING OUT DETAILS.
- 5. PRIVATE FOUL AND SURFACE WATER DRAINAGE IS TO BE CONSTRUCTED IN ACCORDANCE WITH BUILDING REGULATIONS PART H, BS EN752 AND BS EN12056.
- 6. DRAINS AT LOWER GROUND FLOOR LEVEL ARE TO BE CONSTRUCTED USING CAST IRON (ENSIGN OR EQUIVALENT) AND FLEXIBLY JOINTED TO BS 437.
- 7. DRAINS AT GROUND LEVEL ARE TO BE CONSTRUCTED USING VITRIFIED CLAY PIPES TO BS EN 295-1 SUPER STRENGTH SPECIFICATION (HEPWORTH SUPERSLEVE) OR SIMILAR APPROVED.
- 8. ALL SOIL CONNECTIONS UNDER BUILDINGS TO BE 100mm DIA LAID AT A MINIMUM GRADIENT OF 1/40 UNLESS NOTED OTHERWISE.
- 9. ALL SURFACE WATER CONNECTIONS TO BE 150mm DIAMETER AND TO BE LAID AT A MINIMUM GRADIENT OF 1/80 UNLESS NOTED OTHERWISE .
- 10. ALL SOIL CONNECTIONS AND RAINWATER PIPES SHOULD BE RODDABLE FROM GROUND LEVEL.
- 11. RAINWATER DOWN PIPES ARE TO CONNECT TO A DRAIN VIA A REST BEND. WHERE DRAINAGE IS COMBINED A 'P' TRAP MUST ALSO BE PROVIDED.
- 12. IN CASES OF IN SITU CONCRETE FLOOR SLABS, DRAINS ARE TO BE CAST INTEGRAL WITH THE SLAB WHERE PIPE COVER TO THE CROWN IS LESS THAN 300mm. - NOTE SPECIAL PROVISIONS APPLY TO LOWER GROUND FLOOR SLABS - SEE DETAILED DRAINAGE AND STRUCTURAL DRAWINGS. CONCRETE ENCASEMENT TO BE REINFORCED AS PER DRAINAGE DETAIL.
- 13. IN CASES OF SUSPENDED FLOORS WHERE A VOID OF 300mm OR MORE EXISTS BELOW FLOOR DRAINS ARE TO BE SUSPENDED USING A PROPRIETARY HANGER SYSTEM OR CAST INTEGRAL WITH THE FLOOR.
- 14. WHERE DRAINS PASS THROUGH FOUNDATIONS OR OTHER RIGID STRUCTURES A LINTEL OR SLEEVE IS TO BE USED AND PROVISION FOR FLEXIBILITY IS TO BE MADE USING ROCKER PIPES.
- 15. BACKFILLING OF DRAIN TRENCHES ADJACENT TO BUILDING OR OTHER STRUCTURES IS TO BE IN ACCORDANCE WITH DIAGRAM 8 OF THE BUILDING REGULATIONS.
- 16. ANY PIPE OR GULLY OR OTHER FITTING OR DUCT PENETRATING THE LOWER GROUND FLOOR SLAB OR WALL IS TO BE WATERPROOFED USING HYDROPHILIC STRIPS OR PUDDLE FLANGES TO ENSURE A WATER TIGHT JOINT. CONCRETE SURROUND TO DRAINAGE PIPES AND FITTINGS MAY BE REQUIRED IN CERTAIN CASES - REFER TO DETAILED DRAINAGE DRAWINGS AND RELEVANT STRUCTURAL DETAILS.
- 17. EXISTING FOUNDATIONS AND RETAINING WALLS MUST NOT BE UNDERMINED BY NEW DRAINAGE RUNS UNLESS AGREED IN WRITING WITH THE STRUCTURAL ENGINEER. CONTRACTOR TO SUBMIT METHOD STATEMENTS AND TEMPORARY WORKS PROPOSALS TO THE STRUCTURAL ENGINEER FOR COMMENT PRIOR TO COMMENCEMENT OF WORKS.
- 18. ALL DRAINAGE EXCAVATIONS SHOULD BE RISK ASSESSED BY THE CONTRACTOR TO ENSURE TRENCH SAFETY / STABILISATION MEASURES ARE CONSIDERED DURING THE CONSTRUCTION PERIOD. ANY EXCAVATIONS LEFT EXPOSED SHOULD BE INSPECTED BY A COMPETENT PERSON ON A DAILY BASIS. GROUND CONDITIONS SHOULD BE MONITORED AND TOOL BOX TALKS SHOULD INCLUDE SITE INVESTIGATION INFORMATION TO AID THE CONTRACTORS ONGOING RISK ASSESSMENT AND METHOD OF EXCAVATION. ALL EXCAVATIONS SHOULD BE ASSESSED BY A COMPETENT PERSON FOR CONFINED SPACES REQUIREMENTS.
- 19. THE CONTRACTOR IS TO CONSIDER PHASING OF THE DRAINAGE INSTALLATION AND ARE TO PROVIDE TEMPORARY DRAINAGE MEASURES THEY DETERMINE ARE REQUIRED.
- 20. SuDS ARE TO BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS MADE WITHIN THE CIRIA SUDS MANUAL C753 (WITH PARTICULAR ATTENTION DRAWN TO CHAPTER 31) AND CIRIA GUIDANCE ON THE CONSTRUCTION OF SuDS C768. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONSIDER CONSTRUCTION PROGRAMME OF SuDS.
- 21. DETAILED DESIGN OF GEOCELLULAR ATTENUATION CRATES IS A CDP ITEM AND SHOULD BE BASED ON LEVEL, LAYOUT AND VOLUME DETAILS SHOWN. DETAILED DESIGN INFORMATION SHOULD BE PROVIDED TO THE CIVIL ENGINEER TO PASS COMMENT.
- 22. ALL MANHOLE COVER LEVELS SHOWN ARE APPROXIMATE AND ARE TO SUIT THE FINAL GROUND OR BUILDING LEVELS .
- 23. MANHOLE COVERS IN BLOCK PAVED AREAS ARE TO BE RECESSED UNLESS NOTED OTHERWISE.
- 24. ALL INTERNAL MANHOLE COVERS ARE TO BE NON-VENTILATING AND DOUBLE SEALED.
- 25. ALL EXTERNAL FOUL AND COMBINED WATER MANHOLE COVERS IN FOOTPATHS AND PAVED AREAS (OTHER THAN ROADS) ARE TO BE NON-VENTILATING AND SINGLE SEALED UNLESS NOTED OTHERWISE.
- 26. ALL EXTERNAL SURFACE WATER MANHOLE COVERS ARE TO BE NON-VENTILATING UNLESS NOTED OTHERWISE.
- 27. ALL MANHOLE COVERS ARE TO BE INSTALLED SQUARE TO PAVING, KERB LINES OR BUILDINGS.
- 28. FOR ADOPTED DRAINAGE, MANHOLE COVERS ARE TO BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE DCG OR SPECIFIC WATER AUTHORITY REQUIREMENT.
- 29. INSPECTION CHAMBERS ARE TO HAVE A REDUCED ACCESS PIECE WHEN THE DEPTH IS GREATER THAN 1.2m TO THE BASE OF THE CHAMBER.

This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.

Do not scale from this drawing.

	COMBINED WATER MANHOLE				
0	SURFACE WATER MANHOLE				
	EXISTING COMBINED WATER				
	PROPOSED SURFACE WATER				
•••••	COMBINED WATER PIPE TO BE ABANDONED				
• RWP	RAIN WATER PIPE				
🗖 YG	YARD GULLY				
RESERVENCE AND	GEOCELLULAR SURFACE WATER ATTENUATION (TO CONTRACTOR DESIGN)				
	PERMEABLE SURFACING WITH 4/20 GRANULAR SUB-BASE LINED WITH IMPERMEABLE GEO-MEMBRANE				
	PROPOSED BUILDING				
	LOWER GROUND FLOOR EXTENT OUTLINE				
	INDICATIVE SUSPENDED LOWER GROUND FLOOR DRAINAGE NETWORK (TO BE DESIGNED BY MEP ENGINEER)				
FC	FLOW CONTROL CHAMBER				
	PROPOSED FOUL MANHOLE				
	PROPOSED FOUL WATER				
	PROPOSED FOUL WATER RISING MAIN				

NOT FOR CONSTRUCTION

P1 S2 29.06.22 MAs KTr Issued for information rev sc date by chk description

engineering a better society

Elliott Wood Partnership Ltd Central London • Wimbledon • Nottingham Consulting Structural and Civil Engineers (020) 7499 5888 • elliottwood.co.uk

12 Pilgrim's Lane Camden

Project

Drawing title Proposed Below Ground Drainage General Arrangement

Scale (s)		Date	Date			Drawn
1:100@ A1; 1:200@ A3		June	June 2022			MAs
Drawing status					Status	Revision
Preliminary					S2	P1
Project no.	Originator	Zone	Level	Туре	Role	drg no.
2210419	-EWP	-ZZ-	- 00-	DR	- C -	10000