12 Pilgrim's Lane 2210419 Stage 2 Report – P1

A Proposed Structural Drawings and Preliminary Calculations

elliottwood

engineering a better **society**

A Elliott Wood Partnership Ltd

This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.

Do not scale from this drawing.

	Proposed Low Substructure F	er Ground Floor 'lan	/
Du DBa Preiiminary	scale (s)	uale	urawn

1:100

June 2022

PDu

P1 28/06/22 PDu DBa Preliminary rev date by chk description scale (s) 1:100

date June 2022

This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.

Do not scale from this drawing.

P1 28/06/22 PDu DBa Preliminary scale (s) date rev date by chk description 1:100 June 2022

10 Pilgrim's Lane

------ Steel beam Vertical X bracing Joist span Steel column Steel column below Crank in steelwork Steel moment connection or continuity RC Column / Wall

12 Pilgrim's Lane engineering a better society

Project

Elliott Wood Partnership Ltd **Central London • Wimbledon • Nottingham** Consulting Structural and Civil Engineers (020) 7499 5888 • elliottwood.co.uk

drawn

PDu

Drawing status Status Revision Preliminary S2 P1 Project no. Originator Zone Level Type Role drg no. 2210419-EWP-ZZ-02-SK-S-1040

P1 28/06/22 PDu DBa Preliminary scale (s) date

rev date by chk description

1:100

June 2022

10 Pilgrim's Lane

Joist span Steel column Steel column below \times Crank in steelwork Steel moment connection or continuity RC Column / Wall ^{Project} 12 Pilgrim's Lane

Steel beam

Vertical X bracing

Elliott Wood Partnership Ltd Central London • Wimbledon • Nottingham Consulting Structural and Civil Engineers (020) 7499 5888 • elliottwood.co.uk

Drawing status Status Revision Preliminary S2 P1 Project no. Originator Zone Level Type Role drg no. 2210419-EWP-ZZ-03-SK-S-1050

elliott wood	Project	12 Pilgri	m's Lane		Job no. 2210	0419
55 Whitfield Street London	Calcs for Prelin	minary Underpin	Toe and Prop S	Sizing	Start page no./Re	vision 1
W11 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3600 mm
Prop height	h _{prop} = 3000 mm
Stem thickness	t _{stem} = 325 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 25 kN/m ³
Toe length	l _{toe} = 1500 mm
Base thickness	t _{base} = 400 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 3600 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2300 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Firm clay
Moist density	γ _{mr} = 18 kN/m ³
Saturated density	γ _{sr} = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{r.k} = 20 deg
Characteristic wall friction angle	$\delta_{r.k}$ = 10 deg
Base soil properties	
Soil type	Stiff clay
Soil density	γ _b = 19 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 24 deg
Characteristic wall friction angle	δ _{b.k} = 12 deg
Characteristic base friction angle	δ _{bb.k} = 12 deg
Presumed bearing capacity	P _{bearing} = 125 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 5 kN/m ²
Variable surcharge load	Surcharge _Q = 5 kN/m ²
Vertical line load at 1650 mm	P _{G1} = 50 kN/m
	P _{Q1} = 15 kN/m

elliott wood	Project	12 Pilgri	m's Lane		Job no. 2210	0419
55 Whitfield Street London	Calcs for Prelin	minary Underpir	Toe and Prop S	Sizing	Start page no./Re	evision 2
W1I 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022

Calculate	retaining	wall	geometry
-----------	-----------	------	----------

Base length	I _{base} = I _{toe} + t _{stem} = 1825 mm
Saturated soil height	h _{sat} = h _{water} + d _{cover} = 2300 mm
Moist soil height	h _{moist} = h _{ret} - h _{water} = 1300 mm
Length of surcharge load	I _{sur} = I _{heel} = 0 mm
- Distance to vertical component	$x_{sur_v} = I_{base} - I_{heel} / 2 = 1825 \text{ mm}$
Effective height of wall	h _{eff} = h _{base} + d _{cover} + h _{ret} = 4000 mm
- Distance to horizontal component	x _{sur_h} = h _{eff} / 2 = 2000 mm
Area of wall stem	A _{stem} = h _{stem} × t _{stem} = 1.17 m ²
- Distance to vertical component	x _{stem} = I _{toe} + t _{stem} / 2 = 1663 mm
Area of wall base	$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = 0.73 \text{ m}^2$
- Distance to vertical component	x _{base} = I _{base} / 2 = 913 mm
Using Coulomb theory	
Active pressure coefficient	$K_{A} = \sin(\alpha + \phi'_{r,k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{[\sin(\phi'_{r,k} + \delta_{r,k})} \times \sin(\phi'_{r,k}) \times (\phi'_{r,k}) \times (\phi'_{\mathsf$
	- β) / (sin(α - $\delta_{r,k}$) × sin(α + β))]] ²) = 0.447
Passive pressure coefficient	$K_P = sin(90 - \phi'_{b.k})^2 / (sin(90 + \delta_{b.k}) \times [1 - \sqrt{sin(\phi'_{b.k} + \delta_{b.k})} \times sin(\phi'_{b.k}) / (sin(\phi'_{b.k} + \delta_{b.k})) $
	(sin(90 + δ _{b.k}))]] ²) = 3.337
Bearing pressure check	
Vertical forces on wall	
Wall stem	F _{stem} = A _{stem} × γ _{stem} = 29.3 kN/m
Wall base	$F_{base} = A_{base} \times \gamma_{base} = 18.3 \text{ kN/m}$

elliottwood	Project Job no. 12 Pilgrim's Lane 2210419					0419
55 Whitfield Street	Calcs for Start page no./Revis					vision
London	Preli	minary Underpin	Toe and Prop S	Sizing	3	
W1T 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022
Line loads		$F_{P_{v}} = P_{G1} +$	• P ₀₁ = 65 kN/m			
Total		F _{total_v} = F _{ste}	m + F _{base} + F _{P_v} -	+ F _{water_v} = 112.5	kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A >$	$c\cos(\delta_{r.k}) \times (Surc$	charge _G + Surch	arge _Q) × h _{eff} =	17.6 kN/m
Saturated retained soil		$F_{sat_h} = K_A \times$	$\cos(\delta_{r.k}) \times (\gamma_{sr} - $	γ_w) × (h _{sat} + h _{base}) ² / 2 = 13.1 kl	N/m
Water		$F_{water_h} = \gamma_w$	× (h _{water} + d _{cover} -	+ h _{base})² / 2 = 35	. 8 kN/m	
Moist retained soil		F _{moist_h} = K _A	$\times \cos(\delta_{r.k}) \times \gamma_{mr}$	× ((h _{eff} - h _{sat} - h _{ba}	_{ase}) ² / 2 + (h _{eff} -	h _{sat} - h _{base}) ×
		(h _{sat} + h _{base})) = 34.5 kN/m			
Base soil	$F_{pass_h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -5 \text{ kN/m}$					
Total	F _{total_h} = F _{sur_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{pass_h} = 96 kN/m					n
Moments on wall						
Wall stem	M _{stem} = F _{stem} × x _{stem} = 48.6 kNm/m					
Wall base	M _{base} = F _{base} × x _{base} = 16.7 kNm/m					
Surcharge load	M _{sur} = -F _{sur_h} × x _{sur_h} = - 35.2 kNm/m					
Line loads		M _P = (P _{G1} +	P _{Q1}) × p ₁ = 107 .	. 3 kNm/m		
Saturated retained soil		M _{sat} = -F _{sat_l}	h × Xsat_h = -11.8	kNm/m		
Water		M _{water} = -F _{wa}	ater_h × Xwater_h = -;	32.2 kNm/m		
Moist retained soil		M _{moist} = -F _{mo}	pist_h × Xmoist_h = -	5 8.5 kNm/m		
Total		M _{total} = M _{sten}	n + M _{base} + M _{sur} +	- M _P + M _{sat} + M _{wa}	ater + M _{moist} = 34	4.8 kNm/m
Check bearing pressure						
Propping force to stem		F _{prop_stem} = ($F_{total_v} \times I_{base} / 2$ ·	- M _{total}) / (h _{prop} + t	t _{base}) = 19.9 kN	l/m
Propping force to base		F _{prop_base} = F	F _{total_h} - F _{prop_stem}	= 76.1 kN/m		
Moment from propping force		$M_{prop} = F_{prop}$	$_{_{stem}} \times (h_{prop} + t_{ba})$	_{ase}) = 67.8 kNm/r	n	
Distance to reaction	$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / \mathbf{F}_{\text{total}_v} = 913 \text{ mm}$					
Eccentricity of reaction		$e = \overline{x} - I_{base}$	/ 2 = 0 mm			
Loaded length of base		I _{load} = I _{base} =	1825 mm			
Bearing pressure at toe		$q_{toe} = F_{total_v}$	/ $I_{base} \times$ (1 - 6 \times	e / I _{base}) = 61.6 k	N/m ²	
Bearing pressure at heel		$q_{heel} = F_{total}$	$_v$ / I _{base} × (1 + 6 >	<pre>< e / I_{base}) = 61.6</pre>	kN/m²	
Factor of safety		$FoS_{bp} = P_{be}$	_{aring} / max(q _{toe} , q	_{heel}) = 2.028		
	PASS - AI	lowable bearing	g pressure exc	eeds maximum	applied bear	ing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Concrete details - Table 3.1 - Strength	and deformation characted	eristics for concrete
---	---------------------------	-----------------------

Concrete strength class	C30/37
Characteristic compressive cylinder strength	f _{ck} = 30 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 37 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32837 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85

elliottwood	Project Ja Dilgrim's Long					0410		
					221	0419		
55 Whitfield Street	Calcs for	liminon (Indomin	Tao and Dran	Citing	Start page no./Revision			
W1T 4AH	Pre		Toe and Prop a	Sizing		4		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	PDu	30/06/2022	DDa	29/06/2022	Бра	29/00/2022		
Design compressive concrete s	trength - exp.3.	15 $f_{cd} = \alpha_{cc} \times f_{c}$	_k / γc = 17.0 N/m	1m²				
Maximum aggregate size		h _{agg} = 20 m	m					
Ultimate strain - Table 3.1		ε _{cu2} = 0.003	5					
Shortening strain - Table 3.1		ε _{cu3} = 0.003	5					
Effective compression zone heig	ght factor	$\lambda = 0.80$						
Effective strength factor		η = 1.00						
Jending coefficient k₁		K ₁ = 0.40	K ₁ = 0.40					
Bending coefficient k2		K ₂ = 1.00 ×	$K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$					
Bending coefficient k ₃		K ₃ = 0.40	K ₃ = 0.40					
Bending coefficient k4		$K_4 = 1.00 \times$	$K_4 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$					
Reinforcement details								
Characteristic yield strength of r	einforcement	f _{yk} = 500 N/	mm²					
Modulus of elasticity of reinforce	ement	E _s = 20000	E _s = 200000 N/mm ²					
Partial factor for reinforcing stee	el - Table 2.1N	γs = 1.15	γs = 1.15					
Design yield strength of reinford	ement	$f_{yd} = f_{yk} / \gamma_S$	f _{yd} = f _{yk} / γs = 435 N/mm ²					
Cover to reinforcement								
Front face of stem	e of stem		c _{sf} = 40 mm					
Rear face of stem	c _{sr} = 50 mm							
Top face of base	c _{bt} = 50 mm							
			-					

elliottwood	Project				Job no.	
		12 Pilgri	m's Lane		221	0419
55 Whitfield Street	Calcs for				Start page no./R	evision
	Preliminary Underpin Toe and Prop Sizing					5
W114AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022
	·	•				

h = 325 mm
M = 18.8 kNm/m
d = h - c _{sf} - φ _{sx} - φ _{sfM} / 2 = 267 mm
$K = M / (d^2 \times f_{ck}) = 0.009$
$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2))$
K' = 0.207
K' > K - No compression reinforcement is required
z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d = 254 mm
x = 2.5 × (d – z) = 33 mm
$A_{sfM.req} = M / (f_{yd} \times z) = 170 \text{ mm}^2/\text{m}$
12 dia.bars @ 200 c/c
$A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 565 \text{ mm}^2/\text{m}$
$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 402 \text{ mm}^2/\text{m}$
A _{sfM.max} = 0.04 × h = 13000 mm ² /m
max(A _{sfM.req} , A _{sfM.min}) / A _{sfM.prov} = 0.711

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.001$
Required compression reinforcement ratio	ρ' = A _{sfM.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)})$
	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 11.2
	PASS - Span to depth ratio is less than deflection control limit

elliott wood	Project Job no. 12 Pilgrim's Lane 2210419					10419
55 Whitfield Street	Calcs for				Start page no./Revision	
London	Prel	liminary Underpin Toe and Prop Sizing 6				
W1I 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3 r	mm			
Variable load factor - EN1990 - 7	Table A1.1	ψ2 = 0.6				
Serviceability bending moment		M _{sls} = 13.3	kNm/m			
Tensile stress in reinforcement		σ_{s} = M _{sls} / (A	A _{sfM.prov} × z) = 9	92.8 N/mm ²		
Load duration		Long term				
Load duration factor		k _t = 0.4				
Effective area of concrete in tens	ion	A _{c.eff} = min(A _{c.eff} = 9720	2.5 × (h - d), (ł)8 mm²/m	1 - x) / 3, h / 2)		
Mean value of concrete tensile st	trength	f _{ct.eff} = f _{ctm} =	2.9 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{sfM,p}$	orov / A _{c.eff} = 0.0	06		
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp.7.	11	$s_{r.max} = k_3 \times$	$\textbf{c}_{sf}\textbf{+}\textbf{k}_1\times\textbf{k}_2\times$	$k_4 \times \phi_{sfM}$ / $\rho_{p.eff}$ = 4	87 mm	
Maximum crack width - exp.7.8	7.8 $w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}$			$6 \times \sigma_s) / E_s$		
		w _k = 0.135	mm			
		$w_k / w_{max} =$	0.451			
		PASS	- Maximum cı	rack width is les	s than limitin	g crack widtl
Check stem design at base of	stem					
Depth of section		h = 325 mn	n			
Rectangular section in flexure	- Section 6.1					
Design bending moment combination	ation 1	M = 40.5 ki	Nm/m			
Depth to tension reinforcement		d = h - c _{sr} -	φ _{sr} / 2 = 267 m	im		
		$K = M / (d^2)$	× f _{ck}) = 0.019			
		K' = (2 × η : K' = 0.207	× α _{cc} /γc)×(1 - λ	\times (δ - K ₁)/(2 \times K ₂)))×(λ × (δ - K ₁)	/(2 × K ₂))
			K' > K -	No compression	n reinforceme	nt is required
Lever arm		z = min(0.5	+ 0.5 × (1 - 2	$ imes$ K / (η $ imes$ $lpha_{ ext{cc}}$ / $\gamma_{ ext{C}}$)) ^{0.5} , 0.95) × d =	= 254 mm
Depth of neutral axis		x = 2.5 × (d	− z) = 33 mm			
Area of tension reinforcement red	quired	$A_{sr.req} = M /$	(f _{yd} × z) = 367	mm²/m		
Tension reinforcement provided		16 dia.bars	@ 100 c/c			
Area of tension reinforcement pro	sion reinforcement provided $A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 2011 \text{ mm}^2/\text{m}$					
Minimum area of reinforcement -	exp.9.1N	A _{sr.min} = ma	$x(0.26 \times f_{ctm} / f_{y})$	_{yk} , 0.0013) × d = 4	102 mm²/m	
Maximum area of reinforcement	- cl.9.2.1.1(3)) A _{sr.max} = 0.04 × h = 13000 mm²/m				
		max(A _{sr.req} ,	Asr.min) / Asr.prov	= 0.2		
F	PASS - Area o	f reinforcement	provided is g	ireater than area Li	of reinforcer	ment required Igular single outpu
Deflection control - Section 7.4	L .					•
Reference reinforcement ratio		$ ho_0 = \sqrt{f_{ck}} / 1$	I N/mm²) / 100	0 = 0.005		
Required tension reinforcement r	atio	$\rho = A_{sr.req} / c$	d = 0.001			
Required compression reinforcer	nent ratio	ρ ' = A _{sr.2.req}	/ d ₂ = 0.000			
uctural system factor - Table 7.4N K _b = 1						

Reinforcement factor - exp.7.17

 $K_{s} = min(500 \text{ N/mm}^{2} / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$

elliottwood	Project	Job no.				10419
55 Whitfield Street London	Calcs for Preli	iminary Underpir	n Toe and Prop	Start page no./F	7	
W11 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022
Limiting span to depth ratio - exc		min(K _s × K		(f _{ck} / 1 N/mm²) ×	$\rho_0 / \rho + 3.2 \times$	√(f _{ck} / 1
		$N/mm^2) \times ($	$(0, 1)^{3/2}$ 40	、 × Κ _b) = 40		,
Actual span to depth ratio		b / d = 1	19 19			
		PASS	- Snan to denti	h ratio is less th	nan deflectio	n control limit
		1400	opun to uopti			
Crack control - Section 7.3						
Limiting crack width		$W_{max} = 0.3$	mm			
Variable load factor - EN1990 –	Table A1.1	ψ2 = 0.6				
Serviceability bending moment		M _{sls} = 28.8	kNm/m			
Tensile stress in reinforcement		σ_{s} = M _{sls} / ($A_{sr.prov} \times z$) = 56.	5 N/mm²		
Load duration		Long term				
Load duration factor		kt = 0.4				
Effective area of concrete in tens	sion	A _{c.eff} = min($2.5 \times$ (h - d), (h	- x) / 3, h / 2)		
		A _{c.eff} = 972	08 mm²/m			
Mean value of concrete tensile s	trength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{sr.pr}$	ov / A _{c.eff} = 0.021			
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091			
Bond property coefficient		k₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp.7.	.11	$s_{r.max} = k_3 \times$	c_{sr} + $k_1 \times k_2 \times k_3$	4 × φsr / ρp.eff = 30)2 mm	
Maximum crack width - exp.7.8	w _k = s _{r.max} >	$\propto \max(\sigma_{s} - k_{t} \times (1$	$f_{\rm ct.eff} / ho_{ m p.eff}) imes$ (1 +	$\cdot \alpha_{e} \times \rho_{p.eff}$), 0.	$6 imes \sigma_s$) / Es	
		w _k = 0.051	mm			
		w _k / w _{max} =	0.17			
		PASS	- Maximum cra	ck width is les	s than limitin	ng crack width
Rectangular section in shear -	Section 6.2					
Design shear force		V = 78.7 kM	N/m			
		$C_{Rd,c} = 0.18$	8 / γc = 0.120			
		k = min(1 +	· √(200 mm / d),	2) = 1.865		
Longitudinal reinforcement ratio		$\rho_{\rm I} = \min(A_{\rm st})$	prov / d. 0.02) = 0	0.008		
5		$V_{min} = 0.035$	5 N ^{1/2} /mm × k ^{3/2}	× f _{ck} ^{0.5} = 0.488 N	/mm ²	
Design shear resistance - eyo 6	2a & 6 2h	V _{Rdo} = max	$r(C_{\text{Ed}} \times k \times (100))$	$N^2/mm^4 \times \alpha \times f$	$(1/3 V_{min}) \times d$	
	28 0 0.20				ck), vmin) ^ u	
		$V_{Rd.c} - 109$				
).400 S. Dosian cho	ar rocistanco o	vaade daeid	an choor forco
		FA3	o - Designi sile	ai resistance ez	10000 ACCEUS (1851)	n snear iorce
Check stem design at prop						
Depth of section		h = 325 mr	n			
Rectangular section in flexure	- Section 6.1					
Design bending moment combin	ation 1	M = 1.5 kN	m/m			
Depth to tension reinforcement		d = h - c _{sr} -	φ _{sr1} / 2 = 267 m	m		
		K = M / (d²	× f _{ck}) = 0.001			
		K' = (2 × n	× αcc/γc)×(1 - λ >	< (δ - K1)/(2 × K2)))×(λ × (δ - Κ ₁))/(2 × K ₂))
		K' = 0.207		· · · · · · · · · · · · · · · · · · ·		-//
			K' > K - N	o compression	reinforceme	ent is reauired
Lever arm		z = min(0.5)	+ 0.5 × (1 - 2 ×	$K / (n \times \alpha_{cc} / v_c)$) ^{0.5} , 0.95) × d	= 254 mm
		(0.0		, (, ,, . u	

elliott wood	Project	12 Pilgri	m's Lane		Job no. 221	0419		
55 Whitfield Street	Calcs for	Calcs for			Start page no./Revision			
	Preli	minary Underpir	Toe and Prop	Sizing		8		
V 11 7/11	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022		
Depth of neutral axis		x = 2.5 × (d	– z) = 33 mm					
Area of tension reinforcement	required	A _{sr1.req} = M /	/ (f _{yd} × z) = 14 m	nm²/m				
Tension reinforcement provide	ed	16 dia.bars	@ 100 c/c					
Area of tension reinforcement	provided	$A_{sr1.prov} = \pi$	$\times \phi_{sr1}^2$ / (4 $\times s_{sr1}^2$)) = 2011 mm²/m				
Minimum area of reinforcemer	nt - exp.9.1N	A _{sr1.min} = ma	$ax(0.26 \times f_{ctm} / f_y)$	_{rk} , 0.0013) × d = 4	402 mm²/m			
Maximum area of reinforceme	nt - cl.9.2.1.1(3)	$A_{sr1.max} = 0.0$	04 × h = 13000	mm²/m				
		max(A _{sr1.req} ,	, A _{sr1.min}) / A _{sr1.pro}	_{bv} = 0.2				
	PASS - Area of	f reinforcement	provided is gr	eater than area	of reinforcer	nent required		
				Lit	orary item: Rectar	gular single output		
Deflection control - Section	7.4							
Reference reinforcement ratio		ρ₀ = √(f _{ck} / 1	N/mm ²) / 1000	= 0.005				
Required tension reinforcement	nt ratio	ho = A _{sr1.req} /	d = 0.000					
Required compression reinfor	cement ratio	$\rho' = A_{sr1.2.req}$	/ d ₂ = 0.000					
Structural system factor - Tabl	e 7.4N	K _b = 0.4						
Reinforcement factor - exp.7.1	7	K₅ = min(50	00 N/mm² / (f _{yk} ×	Asr1.req / Asr1.prov)	, 1.5) = 1.5			
Limiting span to depth ratio - e	exp.7.16.a	$min(K_s \times K_b)$	× [11 + 1.5 × √	(f _{ck} / 1 N/mm ²) ×	ρ₀ / ρ + 3.2 ×	√(f _{ck} / 1		
		$N/mm^2) \times (p$	ο ₀ / ρ - 1) ^{3/2}], 40	× K _b) = 16				
Actual span to depth ratio		$(h_{\text{stem}} - h_{\text{prop}}) / d = 2.2$						
		PASS	- Span to deptl	h ratio is less th	an deflection	n control limit		
Crack control - Section 7.3								
Limiting crack width		w _{max} = 0.3 r	nm					
Variable load factor - FN1990	– Table A1.1	$w_{12} = 0.6$						
Serviceability bending momen	t	φ₂ 0.0 M _{els} = 0.9 kl	Nm/m					
Tensile stress in reinforcemen	t	$\sigma_{s} = M_{sls} / (A)$	$A_{sr1 prov} \times 7) = 1.8$	8 N/mm ²				
Load duration	-	Long term						
Load duration factor		k _t = 0.4						
Effective area of concrete in te	ension	A _{c.eff} = min(2.5 × (h - d), (h	- x) / 3, h / 2)				
		A _{c.eff} = 9720)8 mm²/m	, , ,				
Mean value of concrete tensile	e strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²					
Reinforcement ratio	-	$\rho_{p.eff} = A_{sr1.p}$	rov / Ac.eff = 0.02	1				
Modular ratio		$\alpha_{e} = E_{s} / E_{cr}$	m = 6.091					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k ₃ = 3.4						
		k ₄ = 0.425						
Maximum crack spacing - exp	.7.11	$s_{r.max} = k_3 \times$	$c_{sr} \textbf{+} \textbf{k}_1 \times \textbf{k}_2 \times \textbf{k}$	$_4 imes \phi_{sr1}$ / $\rho_{p.eff}$ = 3	02 mm			
Maximum crack width - exp.7.8	8	w _k = s _{r.max} ×	max($\sigma_{s} - k_{t} \times (1)$	$f_{ct.eff}$ / $ ho_{p.eff}$ $ imes$ (1 +	$\alpha_{e} \times \rho_{p.eff}$), 0.	$6 imes \sigma_s$) / Es		
		w _k = 0.002	mm					
		$w_k / w_{max} = 0$	0.005					
		PASS	- Maximum cra	ack width is less	s than limitin	g crack width		
Rectangular section in shea	r - Section 6.2							
Design shear force		V = 27.1 kN	l/m					
		C _{Rd,c} = 0.18	3 / γc = 0.120					
		k = min(1 +	√(200 mm / d),	2) = 1.865				
		•	,,					
Longitudinal reinforcement rat	io	ρι = min(A _{sr}	1.prov / d, 0.02) =	0.008				

elliott wood	Project	Project Job no. 12 Pilgrim's Lane 2210419				
55 Whitfield Street	Calcs for	Calcs for Start page				Revision
	Prel	iminary Underpi	n Toe and Pro	p Sizing		9
WTT 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022
Design shear resistance - ex	p.6.2a & 6.2b	V _{Rd.c} = max V _{Rd.c} = 169	(C _{Rd.c} × k × (۱۱ kN/m	00 N²/mm ⁴ × ρι × f	_{ck}) ^{1/3} , V _{min}) × d	
		$V / V_{Rd.c} = 0$	0.160			
		PAS	SS - Design sh	ear resistance e	xceeds desi	gn shear force
Horizontal reinforcement p	arallel to face of	stem - Section	9.6			
Minimum area of reinforcement	ent – cl.9.6.3(1)	A _{sx.req} = ma	$ax(0.25 \times A_{sr.pro})$	v, $0.001 \times t_{stem}$ = 4	503 mm²/m	
Maximum spacing of reinford	cement – cl.9.6.3(2	$s_{sx_max} = 40$)0 mm			
Transverse reinforcement pr	ovided	12 dia.bars	s @ 200 c/c			
Area of transverse reinforcer	nent provided	$A_{sx.prov} = \pi$	$\times \phi_{sx}^2 / (4 \times s_{sx})^2$) = 565 mm²/m		
	PASS - Area o	f reinforcemen	t provided is g	greater than area	of reinforce	ment required
Check base design at toe						
Depth of section		h = 400 mr	n			
Rectangular section in flex	ure - Section 6.1					
Design bending moment con	nbination 1	M = 79.8 k	Nm/m			
Depth to tension reinforceme	ent	d = h - c _{bb} -	- φ _{bb} / 2 = 317 ι	mm		
		$K = M / (d^2)$	$\times f_{ck}$) = 0.026			
		K' = (2 × n	$\times \alpha_{cc}/\gamma_{c} \times (1 - \lambda)$	× (δ - K1)/(2 × K2)))×(λ × (δ - K1)/(2 × K ₂))
		K' = 0.207		(*** (*********************************	,)	/(_ // 2/)
			K' > K -	No compression	reinforcem	ent is required
Lever arm		z = min(0.5	5 + 0.5 × (1 - 2	\times K / (n $\times \alpha_{cc}$ / γ_{c})) ^{0.5} . 0.95) × d	- = 301 mm
Depth of neutral axis		$x = 2.5 \times (0)$	(1 - 7) = 40 mm		, , ,	
Area of tension reinforcemer	tension reinforcement required $\Delta u = 2.5 \times (u - 2) = 610 \text{ mm}^2/\text{m}$					
Tension reinforcement provid	ded	16 dia bars	s @ 100 c/c	,, ,		
Area of tension reinforcemer	nt provided	$A_{bb prov} = \pi$	$\times d_{hh}^2 / (4 \times s_{hh})^2$) = 2011 mm ² /m		
Minimum area of reinforcem	ent - exp 9 1N	$A_{\rm bb,min} = m_{\rm i}$	ax(0.26 × form /	$f_{\rm W} = 0.0013$ × d = 4	477 mm²/m	
Maximum area of reinforcem	ent = cl 9 2 1 1(3)	$A_{\rm bb,max} = 0$	$0.4 \times h = 16000$	$n_{\rm mm^2/m}$	•••••	
	iont - 01.3.2.1.1(3)	$max(\Delta_{hh})$	Διμ	= 0 303		
	PASS - Area o		, ADD.min) / ADD.pr t provided is (ov – 0.505 preater than area	of reinforce	ment required
				Li	brary item: Recta	ngular single output
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3	mm			
Variable load factor - EN199	0 – Table A1.1	ψ ₂ = 0.6				
Serviceability bending mome	ent	M _{sls} = 58.1	kNm/m			
Tensile stress in reinforceme	ent	σ_{s} = M _{sls} / ($A_{bb.prov} \times z) = 9$	6 N/mm ²		
Load duration		Long term				
Load duration factor		k _t = 0.4				
Effective area of concrete in	tension	A _{c.eff} = min	(2.5 × (h - d), (h - x) / 3, h / 2)		
		A _{c.eff} = 120	125 mm²/m			
Mean value of concrete tens	ile strength	f _{ct.eff} = f _{ctm} =	2.9 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{bb.p}$	rov / A _{c.eff} = 0.0	17		
Modular ratio		$\alpha_{e} = E_{s} / E_{o}$	cm = 6.091			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - ex	p.7.11	$s_{r.max} = k_3 \times$	c_{bb} + $k_1 \times k_2 \times k_2$	$k_4 \times \phi_{bb} / \rho_{p,eff} = 4$	18 mm	

elliottwood	Project				Job no.	
		12 Pilgri	m's Lane		2210419	
55 Whitfield Street	Calcs for				Start page no./Revision	
	Prelim	ninary Underpir	n Toe and Prop	o Sizing		10
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	FDu	30/00/2022	DDa	29/00/2022	DDa	29/00/2022
Maximum crack width - exp.7	.8	W _k = S _{r.max} ×	× max(σ _s – k _t ×	$(f_{ct,eff} / \rho_{p,eff}) \times (1 +$	$-\alpha_{e} \times \rho_{p,eff}$, 0.	.6 × σs) / Es
		w _k = 0.12 n	nm	() [) (p.p,, -	
		w _k / w _{max} =	0.401			
		PASS	- Maximum c	rack width is les	s than limitin	ng crack width
Rectangular section in she	ar - Section 6.2					
Design shear force		V = 106.4 k	κN/m			
		$C_{Rd,c} = 0.18$	3 / γc = 0.120			
		k = min(1 +	√(200 mm / d), 2) = 1.794		
Longitudinal reinforcement ra	itio	ρι = min(A _{bi}	_{o.prov} / d, 0.02) :	= 0.006		
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	² × f _{ck} ^{0.5} = 0.461 N	l/mm²	
Design shear resistance - ex	o.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$00 \text{ N}^2/\text{mm}^4 \times \rho_\text{I} \times f_0$	ck) ^{1/3} , Vmin) \times d	
		V _{Rd.c} = 182 .	. 2 kN/m			
		$V / V_{Rd.c} = 0$).584			
		PAS	S - Design sh	ear resistance e	xceeds desig	n shear force
Secondary transverse reinf	orcement to base ·	Section 9.3				
Minimum area of reinforceme	ent – cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	$\times A_{bb,prov} = 40$	2 mm²/m		
Maximum spacing of reinforc	ement – cl.9.3.1.1(3	5) s _{bx_max} = 45	0 mm			
I ransverse reinforcement pro		12 dia.bars	@ 200 c/c			
Area of transverse reinforcen	nent provided	$A_{bx,prov} = \pi$	× φ _{bx} ∠ / (4 × S _{bx}) = 565 mm²/m		
	PASS - Area of I	reinforcement	provided is g	greater than area	of reinforce	ment requirea
		40-▶ ◀▶	4 −50			
	12 c horizo para	dia.bars @ 200 c/c Intal reinforcement Ilel to face of stem				
	12 0	dia.bars @ 200 c/c				
		1 1				
		1 1				
	12 0	dia.bars @ 200 c/c	— 12 dia.bars @ 200 c/c			
	12 0	dia.bars @ 200 c/c	16 dia.bars @ 100 c/c			
	12 dia 150	a.uais @ 200 C/C	50 ±			
	Ť [
	16 dia	a.bars @ 100 c/c	↑ 75			

12 dia.bars @ 200 c/c transverse reinforcement in base

Reinforcement details

elliott wood	Project				Job no.	
		12 Pilgrii	m's Lane		2210	0419
55 Whitfield Street	Calcs for				Start page no./Re	evision
	Prelir	ninary Underpin	Toe and Prop S	Sizing	11	
W11 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022

elliott wood	Project 12 Pilgrim's Lane				Job no. 2210	0419
55 Whitfield Street London	Calcs for Preliminary Retaining Wall				Start page no./Revision 1	
W11 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3600 mm
Prop height	h _{prop} = 3000 mm
Stem thickness	t _{stem} = 250 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 25 kN/m ³
Toe length	l _{toe} = 1500 mm
Base thickness	t _{base} = 400 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 3600 mm
Angle of soil surface	$\beta = 0 \operatorname{deg}$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2300 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Firm clay
Moist density	γ _{mr} = 18 kN/m ³
Saturated density	γ _{sr} = 18 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 20 deg
Characteristic wall friction angle	δ _{r.k} = 10 deg
Base soil properties	
Soil type	Stiff clay
Soil density	γ _b = 19 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 24 deg
Characteristic wall friction angle	δ _{b.k} = 12 deg
Characteristic base friction angle	δ _{bb.k} = 12 deg
Presumed bearing capacity	P _{bearing} = 125 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 25 kN/m ²
Variable surcharge load	Surcharge _Q = 25 kN/m ²
Vertical line load at 1650 mm	P _{G1} = 50 kN/m
	P _{Q1} = 15 kN/m

elliott wood	Project	12 Pilgri	m's Lane		Job no. 2210	0419
55 Whitfield Street London	Calcs for Preliminary Retaining Wall				Start page no./Revision 2	
W1T 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022

Wall stem Wall base

$$\label{eq:Fstem} \begin{split} \mathsf{F}_{stem} &= \mathsf{A}_{stem} \times \gamma_{stem} = \textbf{22.5 kN/m} \\ \mathsf{F}_{base} &= \mathsf{A}_{base} \times \gamma_{base} = \textbf{17.5 kN/m} \end{split}$$

elliott wood	Project Job no 12 Pilgrim's Lane					0419	
55 Whitfield Street London	Calcs for	Preliminary R	Retaining Wall		Start page no./Revision 3		
W1T 4AH	Calcs by PDu	Calcs date Checked by Checked date Approved by Du 30/06/2022 DBa 29/06/2022 DBa					
Line loads		F _{P_v} = P _{G1} +	• P _{Q1} = 65 kN/m	1			
Total		F _{total_v} = F _{ste}	m + F _{base} + F _{P_v}	+ F _{water_v} = 105 k	:N/m		
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A >$	$c\cos(\delta_{r.k}) \times (Su)$	rcharge _G + Surch	arge _Q) × h _{eff} =	88 kN/m	
Saturated retained soil		$F_{sat_h} = K_A \times$	$(\cos(\delta_{r.k}) \times (\gamma_{sr}))$	- γ_w) × (h _{sat} + h _{base}	∍)² / 2 = 13.1 k	N/m	
Water		$F_{water_h} = \gamma_w$	× (h _{water} + d _{cover}	+ h _{base}) ² / 2 = 35	.8 kN/m		
Moist retained soil		F _{moist_h} = K _A	$\times \cos(\delta_{r.k}) \times \gamma_{m}$	r imes ((h _{eff} - h _{sat} - h _{ba}	_{ase}) ² / 2 + (h _{eff} -	h _{sat} - h _{base}) ×	
		(h _{sat} + h _{base})) = 34.5 kN/m				
Base soil	$F_{pass_h} = -K_P \times cos(\delta_{b,k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -5 \text{ kN/m}$						
Total		F _{total_h} = F _{sur_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{pass_h} = 166.4 kN/m					
Moments on wall							
Wall stem	M _{stem} = F _{stem} × x _{stem} = 36.6 kNm/m						
Wall base	M _{base} = F _{base} × x _{base} = 15.3 kNm/m						
Surcharge load		$M_{sur} = -F_{sur}$	h × X _{sur_h} = -176	kNm/m			
Line loads		M _P = (P _{G1} +	P _{Q1}) × p ₁ = 10 7	7.3 kNm/m			
Saturated retained soil		M _{sat} = -F _{sat_t}	h × X sat_h = -11.8	kNm/m			
Water		M _{water} = -F _{wa}	ater_h × Xwater_h =	-32.2 kNm/m			
Moist retained soil		$M_{moist} = -F_{mo}$	$p_{\text{bist}_h} \times \mathbf{x}_{\text{moist}_h} = \mathbf{x}_{\text{moist}_h}$	-58.5 kNm/m			
Total		M _{total} = M _{sten}	n + M _{base} + M _{sur}	+ M _P + M _{sat} + M _w	ater + M _{moist} = -	119.4 kNm/m	
Check bearing pressure							
Propping force to stem		F _{prop_stem} = ($F_{total_v} \times I_{base} / 2$	- M _{total}) / (h _{prop} +	t _{base}) = 62.1 kN	l/m	
Propping force to base		F _{prop_base} = F	- total_h - Fprop_stem	n = 104.3 kN/m			
Moment from propping force		$M_{prop} = F_{prop}$	stem × (h _{prop} + t _i	_{base}) = 211.2 kNm	ı/m		
Distance to reaction		$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / F_{\text{total}_v} = 875 \text{ mm}$					
Eccentricity of reaction		$e = \overline{x} - I_{base}$, / 2 = 0 mm				
Loaded length of base		I _{load} = I _{base} =	1750 mm				
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 60 \text{ kN/m}^2$						
Bearing pressure at heel		$q_{\text{heel}} = F_{\text{total}}$	_v / $I_{base} \times (1 + 6)$	× e / I _{base}) = 60 k	N/m²		
Factor of safety		$FoS_{bp} = P_{be}$	_{aring} / max(q _{toe} , o	q _{heel}) = 2.083			
	PASS -	Allowable bearing	g pressure exc	ceeds maximum	applied bear	ing pressure	

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Concrete details - Table 3.1 - Strength and deformation chara	acteristics for concrete
---	--------------------------

Concrete strength class	C30/37
Characteristic compressive cylinder strength	f _{ck} = 30 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 37 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.0 N/mm ²
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32837 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85

elliottwooo	Project	Project 12 Pilgrim's Lane				Job no. 2210419		
55 Whitfield Street	Calcs for				Start page no./Revision			
London		Preliminary F	Retaining Wall			4		
W1T 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da		
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/20		
Design compressive concret	e strenath - exp.3.	15 $f_{cd} = \alpha_{cc} \times f_{cd}$	ck / γc = 17.0 Ν	/mm ²				
Maximum aggregate size		h _{agg} = 20 m	im					
Ultimate strain - Table 3.1		ε _{cu2} = 0.003	35					
Shortening strain - Table 3.1		ε _{cu3} = 0.003	35					
Effective compression zone	height factor	$\lambda = 0.80$						
Effective strength factor		η = 1.00						
Bending coefficient k1		K ₁ = 0.40						
Bending coefficient k2		$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$						
Bending coefficient k ₃		K ₃ = 0.40	K ₃ = 0.40					
Bending coefficient k ₄		K ₄ = 1.00 ×	(0.6 + 0.0014	′ε _{cu2}) =1.00				
Reinforcement details								
Characteristic yield strength	of reinforcement	f _{yk} = 500 N/	/mm²					
Modulus of elasticity of reinfo	orcement	E _s = 20000	0 N/mm ²					
Partial factor for reinforcing	steel - Table 2.1N	γs = 1.15						
Design yield strength of rein	forcement	f_{yd} = f_{yk} / γ_S	= 435 N/mm ²					
Cover to reinforcement								
Front face of stem		c _{sf} = 40 mn	า					
Rear face of stem		c _{sr} = 50 mn	n					
Top face of base		c _{bt} = 50 mn	n					
Bottom face of base		c _{bb} = 75 mr	n					

elliott wood	Project 12 Pilgrim's Lane				Job no. 2210419	
55 Whitfield Street London	Calcs for Preliminary Retaining Wall				Start page no./Revision 5	
W1T 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022

Check stem design at 1734 mm	
Depth of section	h = 250 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 32.7 kNm/m
Depth to tension reinforcement	$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 192 \text{ mm}$
	$K = M / (d^2 \times f_{ck}) = 0.030$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_{1}) / (2 \times K_{2})) \times (\lambda \times (\delta - K_{1}) / (2 \times K_{2}))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{C})) ^{0.5} , 0.95) × d = 182 mm
Depth of neutral axis	x = 2.5 × (d − z) = 24 mm
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 413 mm2/m$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 289 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sfM.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$
	max(A _{sfM.req} , A _{sfM.min}) / A _{sfM.prov} = 0.73

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.002$
Required compression reinforcement ratio	ρ' = A _{sfM.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.37$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)})$
	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 15.6
	PASS - Span to depth ratio is less than deflection control limit

	12 Pilgrim's Lane 2210419					10419		
55 Whitfield Street	alcs for				Start page no./I	Revision		
London		Preliminary F	Retaining Wall			6		
W1T 4AH	alcs by	Calcs date	Checked by	Checked date	Approved by	Approved d		
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/20		
Crack control - Section 7.3								
Limiting crack width		w _{max} = 0.3 I	mm					
Variable load factor - EN1990 – Ta	able A1.1	ψ ₂ = 0.6						
Serviceability bending moment		M _{sls} = 21.1	kNm/m					
Tensile stress in reinforcement		σ_{s} = M _{sls} / ($A_{sfM.prov} \times z) = 2$	204.8 N/mm ²				
Load duration		Long term						
Load duration factor		kt = 0.4						
Effective area of concrete in tension	on	A _{c.eff} = min((2.5 × (h - d), (l	h - x) / 3, h / 2)				
		A _{c.eff} = 753	33 mm²/m					
Mean value of concrete tensile stre	ength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²					
Reinforcement ratio		$\rho_{p.eff} = A_{sfM,j}$	prov / A _{c.eff} = 0.0	08				
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k ₃ = 3.4						
		k ₄ = 0.425						
Maximum crack spacing - exp.7.17	$s_{r.max} = k_3 \times$	$c_{sf} + k_1 \times k_2 \times k_2$	$k_4 \times \varphi_{sfM} \ / \ \rho_{p.eff} = 4$	108 mm				
Maximum crack width - exp.7.8		$W_k = S_{r.max} >$	$<$ max(σ_s – k _t \times	(f _{ct.eff} / $\rho_{p.eff}$) × (1 +	+ α _e × ρ _{p.eff}), 0	$.6 \times \sigma_s) / E_s$		
		w _k = 0.251	mm					
		$w_k / w_{max} =$	0.835					
		PASS	- Maximum c	rack width is les	s than limitir	ng crack wi		
Check stem design at base of st	tem							
Depth of section		h = 250 mr	n					
Rectangular section in flexure -	Section 6.1							
Design bending moment combinat	tion 1	M = 66.4 kl	Nm/m					
Depth to tension reinforcement		d = h - c _{sr} -	ϕ_{sr} / 2 = 192 m	าท				
		K = M / (d²	× f _{ck}) = 0.060					
		K' = (2 × η	× α _{cc} /γc)×(1 - λ	$\lambda \times (\delta - K_1)/(2 \times K_2)$))×(λ × (δ - K ₁)/(2 × K ₂))		
		K' = 0.207						
Lovor arm		$z = \min(0.5)$	~ ~ ~ ~	K / (m x q / yo)		– 191 mm		
		z = 1111(0.5)	(1 - 2) = 27 mm	\times K / (II \times Ucc / γ C))**, 0.93) × u	- 101 11111		
Area of tanaian nainfanaanant nam	بالمع ما	X - 2.5 × (0	(f - 2) - 21 (((((
Area or tension reinforcement requ	urea	Asr.req = IVI /	$(1yd \times Z) = 843$	11111-/111				
Area of tension roinforcement area	vided	To uld. Dats ($(100 \text{ G})^2$						
Minimum area of roinforcement		Asr.prov – π >	×ψsr /(4+×Ssr)	- 2011 11111-/111	280 mm ^{2/m}			
Maximum area of reinforcement - e	-xh.a. III			$y_{\rm K}$, 0.0013) × a = 2	203 -/[[]			
waximum area or reinforcement -	0.9.2.1.1(3)	$A_{sr.max} = 0.0$	µ4 × ח = 10000 ∧	- 0 440				
D	ASS - Aros o	max(Asr.req,	Asr.min) / Asr.prov	/ - U.419 proator than area	of reinforce	ment room		
F7		, rennorcenieni		Li	brary item: Recta	ngular single o		
Deflection control - Section 7.4								
Reference reinforcement ratio		$ ho_0 = \sqrt{f_{ck}} / 2$	1 N/mm²) / 100	00 = 0.005				
Required tension reinforcement ra	itio	$\rho = A_{sr,req} / $	d = 0.004					
Required compression reinforcem	ent ratio	ρ' = A _{sr.2.rea}	/ d ₂ = 0.000					

 $K_b = 1$

 $K_{s} = min(500 \text{ N/mm}^{2} / (f_{yk} \times A_{sr.req} / A_{sr.prov}), \ 1.5) = \textbf{1.5}$

Structural system factor - Table 7.4N

Reinforcement factor - exp.7.17

elliottwood	Project Job no.					
_		12 Pilgr	im's Lane		221	0419
55 Whitfield Street C London	Calcs for	Preliminary F	Retaining Wall		Start page no./Re	evision 7
W1T 4AH	Calcs by PDu	Calcs date 30/06/2022	Checked by DBa	Checked date 29/06/2022	Approved by DBa	Approved date 29/06/2022
Limiting span to depth ratio - exp.	.7.16.a	min(K₅ × Kı	₀ × [11 + 1.5 × √([f _{ck} / 1 N/mm ²) ×	ρ₀ / ρ + 3.2 × ኀ	(f _{ck} / 1
		N/mm²) × (ρ₀ / ρ - 1) ^{3/2}], 40	× K _b) = 35.1		
Actual span to depth ratio		h _{prop} / d = 1	5.6			
		PASS	- Span to depth	n ratio is less th	an deflection	control limit
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3	mm			
Variable load factor - EN1990 – T	able A1.1	ψ ₂ = 0.6				
Serviceability bending moment		M _{sls} = 43.4	kNm/m			
Tensile stress in reinforcement		σ_{s} = M _{sls} / (A _{sr.prov} × z) = 119).1 N/mm ²		
Load duration		Long term				
Load duration factor		k _t = 0.4				
Effective area of concrete in tensi	ion	A _{c.eff} = min((2.5 × (h - d), (h - 49 mm²/m	- x) / 3, h / 2)		
Mean value of concrete tensile st	renath	$f_{c.eff} = f_{-t-r} =$	2 9 N/mm ²			
Reinforcement ratio	rongui	$O_{\rm R} = A_{\rm er} = A_{\rm er}$	$\Delta_{0.0} = 0.027$			
Modular ratio		pp.ell = Asr.pr	- 6 091			
Rond property coefficient		$u_e = E_s / E_c$	m – 0.091			
Strain distribution coefficient		$k_1 = 0.8$				
Strain distribution coefficient		k ₂ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp.7.1	1	$s_{r,max} = k_3 \times$	$c_{sr} + k_1 \times k_2 \times k_2$	$4 \times \phi_{sr} / \rho_{p,eff} = 27$	1 mm	
Maximum crack width - exp.7.8		Wk = Sr.max >	$\langle \max(\sigma_s - \mathbf{k}_t \times (\mathbf{f})) \rangle$	$_{\rm ct.eff}/\rho_{\rm p.eff}) \times (1 +$	$\alpha_{\rm e} \times \rho_{\rm p.eff}$). 0.6	$\delta \times \sigma_{\rm s}) / E_{\rm s}$
······································		w _k = 0.097	mm		510 Pp.511, 515	
		$W_k / W_{max} =$	0.322			
		PASS	- Maximum cra	ck width is less	s than limiting	rack width
Rectangular section in shear -	Section 6.2					
Design shear force		∨ = 123.5 ∤	κN/m			
C C		C _{Rd,c} = 0.18	3 / γc = 0.120			
		k = min(1 +	- √(200 mm / d),	2) = 2.000		
Longitudinal reinforcement ratio		$\rho_{\rm I} = \min(A_{\rm sl})$	(1, 1)). 0.010		
5		$V_{min} = 0.03!$	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	≺ f _{ck} ^{0.5} = 0.542 N	/mm²	
Design shear resistance - exp.6.2	Pa & 6.2b	$V_{\text{Rd}c} = max$	$(C_{Rdc} \times \mathbf{k} \times (100))$	$N^2/mm^4 \times o \times f_c$	$(k)^{1/3}$, V_{min} × d	
g		V _{Rd c} = 145	.4 kN/m		, , , , , , <u>,</u>	
		$V / V_{Rd.c} = 0$	0.849			
		PAS	S - Design shea	ar resistance ex	ceeds desigr	n shear force
Check stem design at prop			-		-	
Depth of section		h = 250 mr	n			
Poctangular soction in flowure	Soction 6 4					
Design bending moment combine	tion 1	M = 6 kNm	/m			
Depth to tension reinforcement		$d = h - c_{m-1}$	 رفعت / ۲ = 197 mr	m		
		$K = M / (d^2)$	$y_{\text{sin}} = 0.005$			
		$k' = (2) + \frac{1}{2}$	$\sim 10 \text{ kg} = 0.000$	$(8 - \mathbf{K})/(2 - \mathbf{K})$	$(\lambda \times (S \times M))$	$(2 \vee \mathbf{k}_{2}))$
		r、 – (Ζ × η κ' – ο 207	\times UccryCJ×(1 - \wedge ×	$(0 - \pi_1)/(2 \times \pi_2)$	/^(∿ × (0 - №1)/	(~ × 1\2 <i>))</i>
		rx – U.2U/	K' > K _ N	o compression	reinforcemer	nt is required
l ever arm		z = min/0 5	5+05×(1-2×	$K / (n \times \alpha_{co} / \gamma_{c})$	^{0.5} 0 95) v d =	: 182 mm
		2 - mm(0.0	· · · · · · · · · · · · · · · · · · ·	$(1 \land (0 \land $, 0.80) × u –	

elliottwooa			12 Pilgrim's Lane					
55 Whitfield Street London	Calcs for Start page Preliminary Retaining Wall		Start page no./I	Revision 8				
W1T 4AH	Calcs by	Calcs date Checked by Checked d			Approved by	by Approved		
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2		
Depth of neutral axis		x = 2.5 × (d	– z) = 24 mm					
Area of tension reinforceme	ent required	$A_{sr1.req} = M$	/ (f _{yd} × z) = 76	mm²/m				
Tension reinforcement prov	ided	16 dia.bars	@ 100 c/c					
Area of tension reinforceme	ent provided	$A_{sr1.prov} = \pi$	$\times \phi_{sr1}^2 / (4 \times s_{sr1})^2$	1) = 2011 mm²/m				
Minimum area of reinforcem	nent - exp.9.1N	A _{sr1.min} = ma	$ax(0.26 \times f_{ctm} /$	f_{yk} , 0.0013) × d =	289 mm²/m			
Maximum area of reinforcer	nent - cl.9.2.1.1(3) $A_{sr1.max} = 0.$	04 × h = 1000) mm²/m				
		max(A _{sr1.req}	, A _{sr1.min}) / A _{sr1.p}	prov = 0.144				
	PASS - Area	of reinforcement	provided is g	reater than area	of reinforce	ment requ		
				Li	brary item: Recta	ngular single		
Deflection control - Section	on 7.4	115 1	NU 20 1 4 9 9					
Reference reinforcement ra	ແດ	$\rho_0 = \sqrt{t_{ck}} / 1$	N/mm ²) / 100	U = U.005				
Required tension reinforcen	nent ratio	$\rho = A_{sr1.req} / $	a = v.vv0					
Required compression reinf	orcement ratio	$\rho' = A_{sr1.2.req}$	/ d ₂ = 0.000					
Structural system factor - 1a	able 7.4N	K _b = 0.4	2.1.15					
Reinforcement factor - exp.	7.17	$K_s = min(50)$	00 N/mm² / (t _{yk}	× Asr1.req / Asr1.prov), 1.5) = 1.5	1		
Limiting span to depth ratio	- exp.7.16.a	$min(K_s \times K_t)$	× [11 + 1.5 ×	√(f _{ck} / 1 N/mm²) ×	ρ₀ / ρ + 3.2 ×	√(f _{ck} / 1		
		N/mm²) × (_I	ο ₀ / ρ - 1) ^{3/2}], 40	0 × K _b) = 16				
Actual span to depth ratio		(h _{stem} - h _{prop}	$(n_{\text{stem}} - n_{\text{prop}}) / d = 3.1$					
		PASS	- Span to dep	th ratio is less ti	nan deflectio	n control		
Crack control - Section 7.3	3							
Limiting crack width		$W_{max} = 0.3$ r	nm					
Variable load factor - EN19		$\psi_2 = 0.6$						
Serviceability bending mom	ent	$M_{sls} = 3.4 \text{ KNM/m}$						
	ent	σ _s – IVIsis / (/	Asr1.prov × Z) – S	.4 N/IIIII-				
Load duration factor		k, = 0 4						
Effective area of concrete in	tension	$A_{c,eff} = min($	$A_{a,aff} = \min(2.5 \times (h - d) (h - x) / 3 h / 2)$					
		$A_{c,eff} = 7533$	33 mm²/m	,,, 0,, 2)				
Mean value of concrete tens	sile strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²					
Reinforcement ratio	0	$\rho_{p.eff} = A_{sr1.p}$	rov / A _{c.eff} = 0.0 2	27				
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficien	t	k ₂ = 0.5						
		k ₃ = 3.4						
		k ₄ = 0.425						
Maximum crack spacing - e	xp.7.11	$s_{r.max} = k_3 \times$	$c_{sr} \textbf{+} \textbf{k}_1 \times \textbf{k}_2 \times$	$k_4 \times \phi_{sr1} / \rho_{p.eff} = 2$	272 mm			
Maximum crack width - exp	.7.8	$W_k = S_{r.max} \times$	max($\sigma_s - k_t \times$	$(f_{ct.eff} / \rho_{p.eff}) \times (1 +$	• α _e × ρ _{p.eff}), 0	.6 × σs) / E		
		w _k = 0.008	mm					
		$W_k / W_{max} =$	0.026					
		PASS	- Maximum ci	rack width is les	s than limitir	ng crack v		
Rectangular section in sh	ear - Section 6.2							
Design shear force		V = 57.6 kM	l/m					
		$C_{Rd,c} = 0.18$	s / γc = 0.120					
		k = min(1 +	√(200 mm / d), 2) = 2.000				
Longitudinal reinforcement	ratio	$\rho_{\rm l} = \min(A_{\rm sr})$	_{1.prov} / d, 0.02)	= 0.010				
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	² × f _{ck} ^{0.5} = 0.542 N	l/mm²			

elliott wood	Project	12 Pilar	m's Lane		Job no.	10419
55 Whitfield Street	Calco for	12 1 1191			Start page po //	Povision
		Preliminary F	Retaining Wall		Start page no./	9
WIT 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022
Design shear resistance - exp	.6.2a & 6.2b	V _{Rd.c} = max V _{Rd.c} = 145 V / V _{Rd.c} = (:(C _{Rd.c} × k × (10 .4 kN/m).396	$100 \text{ N}^2/\text{mm}^4 \times \rho_1 \times \text{f}$	$_{\rm ck})^{1/3},{\sf V}_{\rm min}) imes {\sf d}$	
		PAS	S - Design sh	ear resistance e	xceeds desig	gn shear force
Horizontal reinforcement pa	rallel to face of s	tem - Section 9	9.6		_	
Minimum area of reinforcemen	nt – cl.9.6.3(1)	A _{sx.req} = ma	x(0.25 × Asr.prov	v, 0.001 × t _{stem}) = t	503 mm²/m	
Maximum spacing of reinforce	ment – cl.9.6.3(2)	s _{sx_max} = 40	0 mm			
I ransverse reinforcement pro	vided	12 dia.bars	@ 200 c/c	2/		
Area of transverse reinforcem	ent provided	$A_{sx.prov} = \pi$	< φ _{sx} ² / (4 × S _{sx})) = 565 mm²/m		
	PASS - Area of	reinforcement	provided is g	reater than area	of reinforce	ment required
Check base design at toe						
Depth of section		h = 400 mr	n			
Rectangular section in flexu	re - Section 6.1					
Design bending moment coml	pination 1	M = 77.4 k	Nm/m			
Depth to tension reinforcemer	ıt	d = h - c _{bb} -	- φ _{bb} / 2 = 317 r	nm		
		$K = M / (d^2)$	× f _{ck}) = 0.026			
		K' = (2 × η	× α _{cc} /γ _C)×(1 - λ	$\times (\delta - K_1)/(2 \times K_2)$))×(λ × (δ - K ₁)/(2 × K ₂))
		K' = 0.207				
			K' > K -	No compression	reinforceme	ent is required
Lever arm		z = min(0.5	+ 0.5 × (1 - 2	× K / (η × α_{cc} / γ_c)) ^{0.5} , 0.95) × d	= 301 mm
Depth of neutral axis		x = 2.5 × (c	−z) = 40 mm			
Area of tension reinforcement	required	$A_{bb.req} = M$	$(f_{yd} \times z) = 591$	mm²/m		
Tension reinforcement provide	ed	16 dia.bars	@ 100 c/c			
Area of tension reinforcement	provided	$A_{bb.prov} = \pi$	$\times \phi_{bb}^2 / (4 \times s_{bb})$) = 2011 mm²/m		
Minimum area of reinforcement	nt - exp.9.1N	A _{bb.min} = ma	$ax(0.26 \times f_{ctm} / f_{ctm})$	f_{yk} , 0.0013) × d = 4	477 mm²/m	
Maximum area of reinforceme	nt - cl.9.2.1.1(3)	$A_{bb.max} = 0.$	04 × h = 16000) mm²/m		
		max(A _{bb.req}	A _{bb.min}) / A _{bb.pro}	_{pv} = 0.294		
	PASS - Area of	reinforcement	provided is g	reater than area	of reinforce	ment required
				Li	brary item: Recta	ngular single output
Crack control - Section 7.3						
	T 11 A4 4	$W_{max} = 0.3$	nm			
Variable load factor - EN1990		$\psi_2 = 0.6$	LeN line /ine			
Serviceability bending momen	۱L ۰	$ V _{sis} = 50.3$	KIN(T)/TT	20 M/mm^2		
	it.	σ _s – Misis / (Abb.prov × Z) – 9	2.9 N/IIIII-		
Load duration factor						
Effective area of concrete in te	ansion	$A_{1} = min($	$2.5 \times (h_{-}d)$ (l	(x - x)/3 + (2)		
		Δ	<u>2.5 ^ (ii - u), (i</u> 125 mm²/m	1 - Aj / J, 11 / Z)		
Mean value of concrete tensile	e strength	$f_{\text{ct off}} = f_{\text{ctro}} =$	2.9 N/mm ²			
Reinforcement ratio	- sa sa gai	$O_{\text{D} \text{ eff}} = A_{\text{bb}}$	$r_{OV} / A_{c eff} = 0.01$	17		
Modular ratio		$\alpha_{\rm e} = F_{\rm e} / F_{\rm e}$	m = 6.091			
Bond property coefficient		k1 = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp	.7.11	$s_{r.max} = k_3 \times$	$c_{\text{bb}} \textbf{+} \textbf{k}_1 \times \textbf{k}_2 \times$	$k_4 \times \phi_{bb} \ / \ \rho_{p.eff} = \textbf{4}$	18 mm	

elliottwood	Project				Job no.	
		12 Pilgri	m's Lane		22	10419
55 Whitfield Street London	Calcs for	Preliminary F	Start page no./Revision 10			
W1T 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022
Maximum crack width - exp.7	7.8	Wk = Sr.max ×	× max(σ _s – k _t ×	$(f_{ct.eff} / \rho_{p.eff}) \times (1 +$	$\alpha_{e} \times \rho_{p,eff}$). 0	.6 × σs) / Es
		w _k = 0.116	mm	(1000) (1	ere percent, er	
		w _k / w _{max} =	0.388			
		PASS	- Maximum c	rack width is les	s than limitin	ng crack width
Rectangular section in she	ar - Section 6.2					
Design shear force		∨ = 103.2 k	κN/m			
		$C_{Rd,c} = 0.18$	8 / γc = 0.120			
		k = min(1 +	√(200 mm / d), 2) = 1.794		
Longitudinal reinforcement ra	atio	ρι = min(A _{bl}	_{o.prov} / d, 0.02) :	= 0.006		
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{2} \times f_{ck}^{0.5} = 0.461 \text{ N}$	/mm²	
Design shear resistance - ex	p.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	00 N ² /mm ⁴ × ρ_l × for	ck) ^{1/3} , Vmin) $ imes$ d	
		V _{Rd.c} = 182 .	. 2 kN/m			
		$V / V_{Rd.c} = 0$).566			
		PAS	S - Design sh	ear resistance ex	xceeds desig	yn shear force
Secondary transverse rein	forcement to bas	se - Section 9.3		• 3/		
Minimum area of reinforceme	ent – cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	$\times A_{bb,prov} = 40$	2 mm²/m		
Maximum spacing of reinforce	cement – cl.9.3.1.	$1(3)$ S _{bx_max} = 45	u mm @ 200 do			
Area of transverse reinforcement pr			$(\frac{1}{2}) = \frac{2}{1} \frac{1}{1} $	$- \mathbf{E}\mathbf{E}\mathbf{E} \mathbf{m}^{2}/\mathbf{m}$		
Area of transverse reinforcer		Abx.prov - n	× ψ _{bx} - / (4 × S _{bx} ,	roator than area	of roinforco	mont roquiroo
	FASS - Alea	orrennorcement	provided is g	leater than area	orrennorce	inent required
		40-►	4 −50			
		12 dia.bars @ 200 c/c horizontal reinforcement parallel to face of stem				
		12 dia.bars @ 200 c/c	— 16 dia.bars @ 100 c/c			
		11				
		11				
		12 dia.bars @ 200 c/c	— 12 dia.bars @ 200 c/c			
		11				
		12 dia.bars @ 200 c/c	16 dia.bars @ 100 c/c			
	150	12 Uld.Val S @ 200 C/C	50 ↓			
	τĮ		<u>↓</u>			
		16 dia bars @ 100 c/c	↑ 75			

16 dia.bars @ 100 c/c 12 dia.bars @ 200 c/c transverse reinforcement in base

Reinforcement details

elliottwood	Project				Job no.	
		12 Pilgrii	2210419			
55 Whitfield Street	Calcs for	Calcs for			Start page no./Revision	
London	Preliminary Retaining Wall			11		
W1I 4AH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PDu	30/06/2022	DBa	29/06/2022	DBa	29/06/2022