

ENERGY & SUSTAINABILITY ASSESSMENT

ST JOHN'S STUDIO

PROPERTY ADDRESS

Harley Road, London, NW3 3BY,

> **DATE** April 2022

PREPARED BY EAL Consult

Contents

1.	EXECUTIVE SUMMARY	3
	INTRODUCTION	
3.	PLANNING POLICY CONTEXT	6
4.	ENERGY STRATEGY	8
5.	SUSTAINABLE DESIGN	12
6.	Reuse and optimising resource efficiency	14
7.	CONCLUSION	17
R	APPENDIX	18

1. EXECUTIVE SUMMARY

This Sustainability statement has been prepared to support the planning application for the extension and alterations to St John's Studio in Harley Road, NW3 3BY. The strategy highlights how the proposed development will promote sustainability throught both design and operation and summarises the relevant regulatory and planning policies applicable and how the relevant policy targets will be addressed and achieved.

The strategy reponds to the UK Planning and regulatory framework, the National Planning Policy Framework 2021, the New London Plan 2021 and Camden Local Plan 2017.

In accordance with the Energy Hierarchy detailed within The New London Plan 2021, this statement outlines an overall commitment to reducing energy consumption under occupancy through the adoption of a 'Fabric First' principle, which will seek enhanced insulation standards and improved heating and lighting efficiencies in comparison to the standard requirements of Approved Document Part L1A 2013. Further carbon emission reduction can be achieved by using renewables (Air Source Heat Pumps).

Energy Effcicency & Carbon Reduction:

- Passive design principles including a high level of insulation and reduced air permeabilty to deliver Part L1A 2013 compliant Building in absence of renewable technologies. It will achieve 2.3% reduction in carbon emissions over Part L1A baseline.
- Air Source Heat Pumps have been proposed for the specific scheme and will deliver a
 further 46.2% reduction in regulated carbon emissions over Part L1A baseline when
 utilising the proposed carbon factor changes to building Regulations Part L.

Material and waste management:

- Minimising the use of virgin materials during construction by recycling and reusing where feasible
- Low waste benchmark levels will be targeted during construction with requirements identifying that the diversion of waste from landfill is to be achieved by the contractor.

Recommendation and Results:

This report demonstrates that the proposed development by incorporating the measures above can achieve an average carbon emission reduction of **48.5% with the use of:**

• Air Source Heat Pumps.

The following tables demonstrate the carbon emissions and savings.

Table 1. Carbon Dioxide emissions after each stage of the Energy Hierarchy

	Regulated Carbon dioxide emissions (Tonnes CO2 per annum)	
	Regulated	Total
Building Regs Notional Development	6.19	7.42
After Energy demand Reduction	6.04	7.25
After Renewables	3.19	3.82

Table 2. Carbon Dioxide Savings from each stage of the Energy Hierarchy

	Regulated Carbon dioxide savings (Tonnes CO ₂)	% Reduction
Savings from energy efficiency measures	0.14	2.3%
Savings from Renewables	2.86	46.2%
Total savings	3	48.5%

2. INTRODUCTION

Site description

Built in the late 1990's, the house has had various additions over the years, including a rear extension, porch, balconettes, and cornicing to the windows, that in addition to the choice of brickwork laid in stretcher bond, has resulted in a discordant pastiche of the surrounding context. The existing building is in need of retrofitting to meet modern building standards and become a positive contributor to the Conservation area. In addition to re-ordering the interior, the project aims to provide a new, contemporary reading of the context retaining carbon extensive parts of the existing structure but re-forming the facade openings, adding a floor to part of the structure, extending to the rear, and refacing the house with an angled terracotta rainscreen cladding.

Methodology

This energy assessment outlines the energy demand from the development together with the associated CO₂ emissions, using the present Building Regulations Part L as a baseline. It demonstrates how the emissions from energy use in the development will be reduced through energy efficiency measures.

The proposed scheme is required to achieve carbon emission reduction principles in accordance with the UK Planning and regulatory framework,

The methodology employed to determine the potential CO₂ savings is in accordance with the three-step Energy Hierarchy.

- **Be Lean** Improve the energy efficiency of the scheme;
- **Be Clean** Supply as much of the remaining energy requirement with low carbon; technologies such as district heating if available or combined heat and power (CHP); and
- **Be Green** Offset a proportion of the remaining carbon dioxide emissions by using renewable technologies.
- Be Seen monitor, verify and report on post-construction energy performance

The government approved Standard Assessment Procedure (SAP) methodology software (2013) has been used to determine the CO₂ emissions and energy requirements. It compares CO₂ emissions from regulated energy use (DER) with those of an equivalent dwelling built to Part L1A 2013 (TER), a notional dwelling of the same size and shape. These calculations do not include emissions from cooking or appliances.

Opportunities for incorporating features into the development that contribute to the objectives of sustainable development were explored during the design process, to ensure that where possible, the proposals achieve best practice.

3. PLANNING POLICY CONTEXT

National Planning Policy Framework 2021 – emphasised the concept of sustainable development by encouraging local authorities to adopt proactive strategies to mitigate and adapt to climate change. It recommends the move to a low carbon future by:

- Avoiding increased vulnerability to the range of impacts arising from climate change.
 When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
- Contributing to reduce greenhouse gas emissions, such as through its location, orientation
 and design. Any local requirements for the sustainability of buildings should reflect the
 Government's policy for national technical standards.
- To help increase the use and supply of renewable and low carbon energy and heat, plans should:
 - provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);
 - consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development;
 and
 - o identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for colocating potential heat customers and suppliers.

The London Plan 2021 provides the strategic framework for an integrated socio-economic, transportation and environmental development plan across the capital to 2050. The Plan seeks to ensure new developments are designed to enable the efficient use of energy and support the development of sustainable energy infrastructure to produce energy more efficiently. It sets out a range of policies that apply to new developments.

Policy SI 2 Minimising Greenhouse Gas Emissions:

- A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy: a) Be lean: use less energy and manage demand during operation, b) Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly, c) Be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site
- B. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- C. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either: 1) through a cash in lieu contribution to the borough's carbon offset fund, or 2) off-site provided that an alternative proposal is identified, and delivery is certain.
- D. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.

- E. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.
- F. Development proposals referable to the Mayor should calculate whole lifecycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.
- 9.2.1 The Mayor is committed to London becoming a zero-carbon city. This will require reduction of all greenhouse gases, of which carbon dioxide is the most prominent. London's homes and workplaces are responsible for producing approximately 78 per cent of its greenhouse gas emissions. If London is to achieve its objective of becoming a zero-carbon city by 2050, new development needs to meet the requirements of this policy. Development involving major refurbishment should also aim to meet this policy.
- 9.2.2 The energy hierarchy should inform the design, construction, and operation of new buildings. The priority is to minimise energy demand, and then address how energy will be supplied and renewable technologies incorporated. An important aspect of managing demand will be to reduce peak energy loadings.

Camden Local Plan 2017

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. support and encourage sensitive energy efficiency improvements to existing buildings;
- e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

4. ENERGY STRATEGY

The Energy strategy for the proposed housing is based on the Building Regulations Part L1A; it adopts a set of principles to guide design and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. It seeks to incorporate energy efficiency through the approach detailed below.

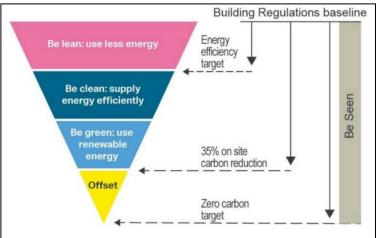


Figure 1. Energy Hierarchy

Be 'Lean' - Demand Reduction

The building fabric performance and engineering systems have been optimised in order to use less energy prior to the inclusion or consideration of Low and Zero Carbon (LZC) Technology.

Through passive design measures, efficient building fabric and engineering systems the building is estimated to achieve 2.3% reduction in annual regulated CO₂ emissions over Part L1A benchmark, therefore demonstrating compliance with Building Regulations Through passive means alone without the utilisation of renewable technologies.

Passive Design Measures:

Fabric Performance - The fabric performance values aim to reduce unwanted heat loss and heat gains, whilst maintaining a comfortable internal environment.

Table 3. Fabric energy Efficiency Standard

The word alone and	Part L1A Minimum
Thermal element	Standard
Wall	0.30W/m ² k
Roof	0.20 W/m ² k
Floor	0.25 W/m ² k
Glazing	1.2 W/m ² k
Doors	1.2 W/m ² k

The heat loss of different building elements is dependent upon their U –value. A building with low U values provides better levels of insulation and reduced heating demand.

The development will incorporate high levels of insulation and efficient glazing; thereby reduce demand for space heating. The table below shows the U values for the development and the associated improvements over Building Regulations.

Table 4. Energy Efficient design Specification

Element	Standard	Specification
Wall New Wall Existing	0.30 W/m²k	0.15W/m²k 0.25W/m²k
Floor	0.25W/ m ² k	0.2W/m²k
Roof	0.2 W/ m²k	0.11 W/ m²k
Glazing	1.4 W/ m²k	1.1W/ m²k

Space Heating & Cooling - Space heating could be provided by underfloor heating for the dwelling;

Efficient Lighting and Controls - Throughout the development natural lighting will be optimised. The development will also incorporate low energy light fittings throughout. All light fittings will be specified as low energy lighting and will accommodate compact fluorescent (CFLs) or fluorescent luminaries only.

Ventilation - The use of natural ventilation is proposed for the dwelling;

Domestic hot water (DHW) system – domestic hot water is supplied for the dwelling; via the air source heat pump and cylinder.

Be 'Clean' - Supply Energy Efficiently

The Be Clean step of the energy hierarchy refers to the use of 'Clean energy supply'. This includes, but is not limited to, the use of Combined Heat and Power (CHP) and District Heat Networks. Policy TP1 seeks for new development to promote the use of CHP and district heating.

In light of the small scale nature of the proposed development, it is apparent that the use of CHP is also technically and financially unviable in this instance.

Be 'Green' - Renewable Energy

Once energy demand reduction measures have been applied, methods for generating low and zero carbon energy can be assessed. The following renewable technologies can be considered for the project: Biomass, Water source heat pump, air source heat pump, Wind energy and solar photovoltaic panels.

Table 5. Renewable Technologies Feasibility Table

Technology	Pros	Cons	
Biomass Heating A biomass system designed for wood pellets, which have a high-energy content, would fuel this development.	 Less volume of storage Less maintenance and produce considerably less ash residue 	 Nox Emissions which may impacts High Costs Not suitable for the project 	
Ground Source Heat Pump It circulates a mixture of water and antifreeze around a loop of pipe, called a ground loop, which is buried in the garden. Heat from the ground is absorbed into the fluid and passes through a heat exchanger into the heat pump	Use all through the year	 High Costs Not suitable for this project 	
Air Source Heat Pump They are an efficient and environmentally- friendly way of heating using air drawn freely from the atmosphere. They operate rather like a refrigerator in reverse, absorbing heat from the air into a working fluid which is passed into a compressor where its temperature is increased before it is transferred into the heating and hot water circuits of the building	 Can generate less CO₂ than conventional heating systems. Cheaper Provides heating and hot water Less maintenance Can be used as airconditioning in the summer 	Needs electricityCan be noisy	
Wind Turbines Wind turbines are available in various sizes from large rotors able to supply whole communities to small roof or wall-mounted units for individual dwellings.	CheaperLess CO₂	 Local wind speeds in the area is likely to be below the level generally required for investment in large wind turbines. Noise and signal interference. Detrimental aesthetic impact 	

Solar Photovoltaic Panels (PV)

Photovoltaic panels extract the energy of the sun to generate electricity. They operate most efficiently when oriented to the south and are inclined to about 35 degrees.

- Cheaper
- Less CO₂
- No input power in order to generate electricity.

Not enough space

Renewable Technologies Feasibility Review Conclusion

The renewable energy sources that have been reviewed for this project are Biomass Heating, Ground Source Heat Pump, Air Source Heat Pump, Domestic Wind Turbine and Solar Photovoltaic Panels (PV).

On review of the above technologies, it has been concluded that the use of an air source heat pump is to be incorporated in the design because it achieves a CO2 percentage reduction of **46.2%** contributing to an overall reduction of 48.5% in carbon emissions.

Be Seen: Post-Construction Monitoring

To truly achieve net zero-carbon buildings we need to have a better understanding of their actual operational energy performance. To reduce the 'performance gap' the fourth stage, 'be seen', is a critical element in minimising greenhouse gas emissions and keeping running costs low.

Quality assurance mechanisms and commitments that will be considered as part of the energy strategy are:

- Gaining quality assurance accreditation (e.g. Heat Trust)
- Following quality standards (e.g. CIBSE Code of Practice)
- Transparent billing, including separation of the ongoing maintenance and capital replacement aspects of the standing charge
- Aftercare support (e.g. BREEAM Man 05 Aftercare)
- Heat tariffs options given to occupants
- Consumer choice for metering arrangements at no extra cost (e.g. Prepayment Meters (PPM)
- Thermal storage linked to pricing signals and renewable generation

5. SUSTAINABLE DESIGN

The proposed project incorporates sustainable design and construction measures capable of mitigating and adapting to climate change to meet future needs. This section details site-specific initiatives which demonstrate how the conversion helps to meet the sustainability objectives set out in the National Planning Framework 2021.

Energy Use and Pollution

The design of the development has taken into consideration day lighting to habitable spaces to improve the wellbeing of occupants. Good levels of daylight will offer occupants a pleasant and highly valued connection to the outdoors and plenty of natural light. It will also reduce the use of artificial lighting and therefore energy use. All light fittings will be specified as low energy lighting.

No external lighting is required. The location and orientation of windows help to create a design that avoids overheating in the summer.

Pollution: Air, Noise and Light

The layout of the development can provide good internal air quality for habitable areas but not too much so as to waste heat. The use of openable windows will create horizontal airflow. By achieving a good naturally ventilated building the energy demand for air conditioning and mechanical ventilation will thereby be eliminated within the development.

The development will not increase the air pollution of the area by reducing as a start, its energy consumption, which in turn will reduce emissions that lead to air pollution.

Other measures will include:

- a. Use of eco-friendly building materials
- b. Non-toxic paints
- c. Installation of energy efficient appliances and devices
- d. Use of renewable technologies

Light pollution can best be described as artificial light that is allowed to illuminate or intrude upon areas not intended to be lit. Light in the wrong place at the wrong time can be intrusive.

Intrusive light is over bright or poorly directed lights shining onto neighbouring property which affect the neighbours' right to enjoy their property. Therefore, the proposal will incorporate lighting measures in order to avoid causing a nuisance.

Water: Water Efficiency

In domestic and non-domestic buildings, the demand for water can be reduced as much as 50% using a variety of simple and innovative strategies that are integrated into the plumbing and mechanical systems. In order to reduce water consumption the proposed development will include efficient fixtures with low flow rates. Total internal water consumption will not exceed 105 litres/person/day.

Table 7. Water Fittings Standards

Schedule Appliance Water Consumption			
Appliance	Appliance Flow rate or Capacity		
WC	Dual flush WC 4/2.6 litre	14.72	
Basin	nsin 1.7 litres/min		
Shower 8 litres/minute flow		24.00	
Bath	160 litres	25.60	
Sink	4 litres/min	14.13	
W/machine	Default used	16.66	
Dish Washer	Default used	3.90	
		104.99	

Pollution

All contractors would be required to sign up to the nationally recognised Considerate Constructors Scheme which requires, amongst other things that dust emissions, potential noise pollution, impacts on water quality and the potential for ground contamination are minimised during demolition and construction. The Contractor would also be obliged to adhere to a site specific Code of Construction Practice to reduce potential nuisance effects.

Waste

A space for reuse and recycling has been included at the ground floor unit for the residents exclusive use.

Flood Risk

The development site is located in a Low Flood Risk Area on the Environment Agency Flood Risk Map.

Biodiversity

The proposed development will incorporate measures to support and enhance the environment through consideration of the existing site, including measures to mitigate the impact of the development and enhance site biodiversity.

6. Reuse and optimising resource efficiency

The proposed development aims to optimise resource efficiency and use circular economy principles and section 9 of Energy efficiency CPG Jan 2021.

Reusing existing building

The proposed development seeks to retain existing elements of substantial embodied carbon such as the structural concrete floors, foundations and flank walls. This will minimise the need to construct new extensive structural elements of high embodied carbon. To achieve this a lightweight structure will be used in the additional floor and new front/rear facades to remain within the weight capacity of the existing structure.

The material demolished in the front and rear facades will be reused. More details are provided on table 8.

Development options

Table 8 presents the potential options explored to assess the condition of the existing building. The options were outlined in the Section 9.5 of Energy efficiency CPG Jan 2021. These are: i) Refit, ii) Refurbish, iii) Substantial refurbishment and extension, and iv) Reclaim and recycle.

Table 8. Development options

Option	Comment
Refit	The proposal looks to significantly improve the insulative capacity of the existing elements to be retained. This includes internally lining existing walls with insulation and upgrading windows.
	It will couple the improved insulation with a MVHR system to provide ventilation and reduce heat waste. It will also introduce an ASHP to provide a clean and efficient heat source.
	However, the proposal does not retain the existing structure as is and instead seeks to retain elements of high embodied carbon such as the concrete foundations, flank walls, and concrete beam and block floors.
Refurbish	The proposal looks to introduce an efficient and clean heat source whilst improving insulative qualities of the existing building. Doing so would significantly extend the life of the existing building.
	Adaptation measures include an adjustable solar shading sunscreen with the terracotta baguette façade and permeable paving throughout the exterior.
Substantial refurbishment and extension	The proposal seeks to demolish and reconstruct the front and rear facades to effectively accommodate an additional floor. In doing so the proposal will have the capacity to accommodate a growing extended family.
	However, whilst doing the above works existing elements of substantial embodied carbon will be retained such as the structural

	concrete floors, foundations, and flank walls. This minimises the need to construct new extensive structural elements of high embodied carbon. To achieve this a lightweight structure will be used in the additional floor and new front/rear facades to remain within the weight capacity of the existing structure.
	The material demolished in the front and rear facades will be reused in the existing building. This mainly consists of concrete blockwork and bricks. The bricks will be reused to extend the flank walls to accommodate the new front/rear façade. Concrete blockwork will be used to repair existing concrete beam and block floors.
Reclaim and recycle	The partial demolition of the building includes front/rear facades, windows, and the pitched roof timber structure and tile finish. The construction will seek to re-use the materials on site where possible.
	On site opportunities for re-use include the extension of flank brick walls, repairing existing beam and block floors, infill elements to the garden and permeable paving to exterior hard surfaces.
	When not possible to reuse on site material will be suitably recycled off site.

Resource efficiency and Circular economy principles

The proposed development seeks to incorporate measures to improve resource efficiency and reduce the waste through the various stages of the development process. These are summarised in the table below.

Table 9. Resource efficiency measures

Stage	Measures	Comment
Design	Energy efficiency building design	 The proposal aims to design highly energy efficient building by incorporation passive design measures and renewables (Air source heatpump) Refer to section 4 and 6 of this report
	Material efficiency	 The reuse of existing materials from the demolition of existing buildings (Brick walls, brickwork,) Existing concrete floors repaired and retained At least 20% of the total value of materials used should derive from recycled and reused content in the products and materials selected; Steel will have a high recycled content;

Construction	Minimise the use of resources (energy, water, land) Resource efficiency	 Monitor the water and energy consumption and report the equivalent carbon emissions. Pre-demolition audit to be carried out and target benchmark of ≤ 11.1 tonnes of construction waste per 100m2;
	Minimise waste generation	 Reusable packing solutions with key product manufacturers will be explored at the earliest opportunity. Solutions may include flat pallets, bulk bags, steel stillages and returnable cable drums; Pre-fabrication of materials/elements such as bathroom pods, pipework and
	Diversion of waste from landfill	 riser materials will be considered; Construction waste – minimum 80% diversion from landfill rate; Demolition waste – minimum 90% diversion from landfill rate;
	Sustainable sourcing	 All timber used in the development will come from a legal Source (FSC Scheme). At least 80% of the building materials will be responsibly sourced and will use suppliers who can provide an EMS certificate or equivalent. Materials rated with an A or B in the BRE Green Guide to Specification will be preferred.
Operation	Maintenance	 Implement a good maintenance/ repair strategy to maximise life of materials Consider repair before replacement When replacements required select high durability materials with low maintenance requirements
Deconstruction/end of life	Deconstruction	 Design for deconstruction and reuse of materials Divert waste from landfill (via reuse, recycling or recovery) Demolition and construction waste - 95% to reuse, recycling, recovery

7. CONCLUSION

The development has been designed to exceed Part L1A building regulations requirements. In line with the national and local policies, regulated CO₂ emissions from the development will be reduced by **48.5%** from the notional emissions once energy efficiency measures and lean measures are taken into account.

In order to achieve the required carbon emissions reduction, the report concludes and proposes the use of energy efficient measures outlined in the section 4 of this report.

An appraisal of the proposed development has been undertaken against key sustainability objectives identified from relevant policy guidance. The framework for the appraisal was guided by the National Plan. This process has ensured that the development responds to the sustainable development objectives that are relevant to the area. Key sustainability initiatives in ecology, waste management, water, health and wellbeing, materials, pollution and Surface water management have been incorporated in the design of the proposed Development.

8.APPENDIX

I. SAP Calculations

Project Information

Building type Semi-detached house

Reference

Date 22 April 2022

Email: none Project The Studio

St. Johns Lodge Harley Road LONDON NW3 3BY

SAP 2012 worksheet for New dwelling as designed - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	146.83	3.31	486.01	(3a)
First floor	118.87	3.20	380.38	(3b)
Secondfloor	111.86	3.00	335.58	(3c)
Thirdfloor	56.04	2.10	117.68	(3d)
	433.60			(4)
			1319.66	(5)

2. Ventilation rate

											m³ per ho	our
							main + s	eondar	y + othe	r		
							heating					4- >
	er of chim	•					0 + 0 + 0		< 40		0.00	(6a)
	er of oper						0 + 0 + 0)	<i><</i> 20		0.00	(6b)
Numbe	er of inter	mittent fa	ans				7)	< 10		70.00	(7a)
Numbe	er of pass	ive vents	;				0)	< 10		0.00	(7b)
		ess gas f					0)	< 40		0.00	(7c)
											Air chand	ges per hour
											0.05	(8)
Pressu	re test. r	esult q50)						3.50			(17)
	meability								0.00		0.23	(18)
7 tii poi i	noability										2.00	(19)
											0.85	(20)
Infiltrat	ion rata i	acarnara	tina chal	ter factor							0.19	(20)
		•	_	hly wind s							0.19	(21)
					peeu	1						
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
											52.50	(22)
Wind F	actor											
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
											13.13	(22a)
Adjuste	ed infiltra	tion rate	(allowing	g for shelt	ter and w	ind spee	ed)					
0.25	0.24	0.24	0.21	0.21	0.18	0.18	0.18	0.19	0.21	0.22	0.23	
											2.54	(22b)
Ventila	tion : nat	ural vent	ilation, ii	ntermitte	nt extrac	t fans						, ,
		inge rate	,									
0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.53	(25)
0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.53	(23)

3. Heat losse	s and heat lo	ss paramete	r				
Element	Gross	Openings	Net area	U-value	AxU	kappa-value A x k	(
	area, m²	m²	A, m²	W/m²K	W/K	kJ/m²K kJ/K	
Window - Doul	ble-glazed,		6.190	1.05 (1.10)	6.52		(27)
argon filled, lo	w-E, En=0.1,			` ,			, ,
soft coat (Sou	th)						
FRONT-SID	EENTRANCE	DOOR					
Window - Doul	ble-glazed,		17.245	1.05 (1.10)	18.17		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Sou	thWest)						
FRONTGF							
Window - Doul	ble-glazed,		5.824	1.05 (1.10)	6.14		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Sou	th)						
FRONT-SID	EFF						
Window - Doul	ble-glazed,		15.584	1.05 (1.10)	16.42		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Nort	h)						
REAR-SIDE	FF						
Window - Doul	ble-glazed,		5.460	1.05 (1.10)	5.75		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Sou							
FRONT-SID	ESF						
Window - Doul	ble-glazed,		14.610	1.05 (1.10)	15.39		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Nort							
REAR-SIDE							
Window - Doul	-		11.123	1.05 (1.10)	11.72		(27)
argon filled, lo							
soft coat (Nort	hEast)						
REAR SF							
Window - Doul	-		12.620	1.05 (1.10)	13.30		(27)
argon filled, lo							
soft coat (Nort	hEast)						
REAR FF							
Window - Doul	-		14.160	1.05 (1.10)	14.92		(27)
argon filled, lo							
soft coat (Sou	thWest)						
FRONTFF					40.4-		(o=)
Window - Doul			12.480	1.05 (1.10)	13.15		(27)
argon filled, lo							
soft coat (Sou	tnvvest)						
FRONTSF			44.540	4.40	45.00		(00)
Full glazed do			14.510	1.10	15.96		(26)
Double-glazed							
low-E, En=0.1	, son coar						
(SouthWest) FRONT3F							
	or -		19.496	1.10	21.45		(26)
Full glazed do Double-glazed			13.430	1.10	Z1.40		(26)
low-E, En=0.1	-						
(North)	, son coal						
REAR-SIDE							
INLAIN SIDE							

Page 3 of 12

Assume	e r heatin g ed occupa	ancy, N	_								kWh/yea 3.31	(42
Annual	average l	hot water	usage ir	n litres pe	er day Vd	,average)				112.71	(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres p	oer day f	or each r	nonth							
123.98	119.47	114.96	110.45	105.95	101.44	101.44	105.95	110.45	114.96	119.47	123.98	(44)
Energy	content c	of hot wat	er used		,	J				J		
183.86	160.80	165.93	144.67	138.81	119.78	111.00	127.37	128.89	150.21	163.97	178.06	
	content (a	annual)				JC					1773.34	(45
27.58	24.12	24.89	21.70	20.82	17.97	16.65	19.11	19.33	22.53	24.59	26.71	(46
,	r volume,						300.00					(47
	cturer's d		cylinder I	oss facto	or (kWh/c	day)	2.14					(48
•	ature Factorial lost from		r ovlinde	r (le\\/b/e	lov ()		0.5400				1.16	(49 (55
	orage los		er Cyllride	i (KVVII/C	iay)						1.10	(33)
35.82	32.36	35.82	34.67	35.82	34.67	35.82	35.82	34.67	35.82	34.67	35.82	(56
Net stor	age loss		JL			J	JL		JI.	JL		
35.82	32.36	35.82	34.67	35.82	34.67	35.82	35.82	34.67	35.82	34.67	35.82	(57
Primary	loss		Л			J	Л	,	JI.	Л		
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59
Total he	at require	ed for wa	ter heati	ng calcul	ated for	each mo	nth		1	,		
242.94	214.17	225.02	201.85	197.90	176.96	170.08	186.46	186.07	209.30	221.15	237.14	(62
Output f	from wate	er heater	for each	month, l	kWh/mor	nth						
242.94	214.17	225.02	201.85	197.90	176.96	170.08	186.46	186.07	209.30	221.15	237.14	(64
						-					2469.03	(64
Heat ga	ins from	water he	ating, kV	/h/month	1							
108.40	96.16	102.44	93.85	93.42	85.57	84.17	89.62	88.60	97.21	100.26	106.47	(65

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabol	ic gains,	Watts										
198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	
Lighting	gains				•							
124.63	110.70	90.03	68.16	50.95	43.01	46.48	60.41	81.08	102.95	120.16	128.10	
Applianc	es gains	•										
834.64	843.30	821.48	775.01	716.36	661.24	624.41	615.75	637.57	684.04	742.69	797.81	
Cooking	gains											
58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	
Pumps a	and fans	gains										
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	
Lossese	e.g. evap	oration (r	negative	values)								
-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	
Water he	eating ga	ins										
145.70	143.10	137.69	130.34	125.57	118.85	113.14	120.46	123.06	130.66	139.25	143.11	
Total inte	ernal gair	าร										
1232.23	1224.35	1176.45	1100.76	1020.13	950.35	911.28	923.87	968.97	1044.91	1129.36	1196.27	

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E,	0.9 x 6.190 46.75	0.63 x 0.80	0.77	101.0728
En=0.1, soft coat (South)				
FRONT-SIDE ENTRANCE DOOR				
Window - Double-glazed, argon filled, low-E,	0.9 x 17.245 36.79	0.63 x 0.80	0.77	221.6165
En=0.1, soft coat (SouthWest)				
FRONTGF				
Window - Double-glazed, argon filled, low-E,	0.9 x 5.824 46.75	0.63 x 0.80	0.77	95.1012
En=0.1, soft coat (South)				
FRONT-SIDE FF	0.045 504.40.00	0.00 0.00	0.77	F7 0704
Window - Double-glazed, argon filled, low-E,	0.9 x 15.584 10.63	0.63 X 0.80	0.77	57.8781
En=0.1, soft coat (North) REAR-SIDE FF				
Window - Double-glazed, argon filled, low-E,	0.9 x 5.460 46.75	0.63 x 0.80	0.77	89.1574
En=0.1, soft coat (South)	0.9 X 3.400 40.73	0.03 X 0.00	0.77	09.1374
FRONT-SIDE SF				
Window - Double-glazed, argon filled, low-E,	0.9 x 14.610 10.63	0.63 x 0.80	0.77	54.2608
En=0.1, soft coat (North)	0.0 % 1 1.0 10 10.00	0.00 X 0.00	0	0 112000
REAR-SIDE SF				
Window - Double-glazed, argon filled, low-E,	0.9 x 11.123 11.28	0.63 x 0.80	0.77	43.8337
En=0.1, soft coat (NorthEast)				
REAR SF				
Window - Double-glazed, argon filled, low-E,	0.9 x 12.620 11.28	0.63 x 0.80	0.77	49.7331
En=0.1, soft coat (NorthEast)				
REAR FF				
Window - Double-glazed, argon filled, low-E,	0.9 x 14.160 36.79	0.63 x 0.80	0.77	181.9709
En=0.1, soft coat (SouthWest)				
FRONTFF				

Page 5 of 12

6. Solar gains (calculation for January)	Area & Flux	~ 0 ГГ	Chadina	Caina	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONTSF	0.9 x 12.480 36.79	g & FF 0.63 x 0.80	Shading 0.77	Gains 160.3812	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT3F	0.9 x 14.510 36.79	0.63 x 0.80	0.77	186.4688	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE	0.9 x 19.496 10.63	0.63 x 0.80	0.77	72.4067	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) REAR GF	0.9 x 23.766 11.28	0.63 x 0.80	0.77	93.6574	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) REAR 3F	0.9 x 14.580 11.28	0.63 x 0.80	0.77	57.4571	
Rooflight at 70° or less - Double-glazed, argon filled, low-E, En=0.1, soft coat (n/a) ROOF	0.9 x 10.130 26.00	0.63 x 0.80	1.00	119.4692	
Total solar gains, January				1584.46	(83-1)
Solargains					
	503.5 7122.6 6093	.9 4858.0 324	8.5 1924.23	1338.93	(83)
Total gains					(0.1)
2816.7 4068.8 5458.4 7066.1 8308.4 8	453.8 8033.8 7017	.8 5826.9 429	3.4 3053.6	2535.2	(84)
Lighting calculations					
	Area	g 0.80	FF x Shad		
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	Area 0.9 x 6.19	g 0.80	FF x Shad 1.00 x 0.8	-	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR				3 3.70	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	0.9 x 6.19	0.80	1.00 x 0.83	3 3.70	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	0.9 x 6.19	0.80	1.00 x 0.83	3 3.70	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North)	0.9 x 6.19 0.9 x 17.25	0.80	1.00 x 0.83	3 3.70 3 10.31 3 3.48	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	0.9 x 6.19 0.9 x 17.25 0.9 x 5.82	0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	3 3.70 3 10.31 3 3.48 3 9.31	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E,	0.9 x 6.19 0.9 x 17.25 0.9 x 5.82 0.9 x 15.58	0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	3 3.70 3 10.31 3 3.48 3 9.31 3 3.26	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF	0.9 x 6.19 0.9 x 17.25 0.9 x 5.82 0.9 x 15.58 0.9 x 5.46	0.80 0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	3 3.70 3 10.31 3 3.48 3 9.31 3 3.26 3 8.73	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE ENTRANCE DOOR Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF	0.9 x 6.19 0.9 x 17.25 0.9 x 5.82 0.9 x 15.58 0.9 x 5.46 0.9 x 14.61	0.80 0.80 0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	3 3.70 3 10.31 3 3.48 3 9.31 3 3.26 3 8.73 3 6.65	

Page 6 of 12

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

C:\Users\HP\Desktop\St john studio\St John Studios.JDP

Lighting calculations

	Area	g	FF x Shading	
Window - Double-glazed, argon filled, low-E,	0.9 x 14.16	0.80	1.00 x 0.83	8.46
En=0.1, soft coat (SouthWest) FRONTFF				
Window - Double-glazed, argon filled, low-E,	0.9 x 12.48	0.80	1.00 x 0.83	7.46
En=0.1, soft coat (SouthWest) FRONTSF				
Rooflight at 70° or less - Double-glazed,	0.9 x 10.13	0.80	0.80 x 1.00	5.83
argon filled, low-E, En=0.1, soft coat (n/a)				
01 7474/40000 0470				

GL = 74.74 / 433.60 = 0.172

C1 = 0.500 C2 = 0.960EI = 880

7. Mean internal temperature

Temperature during heating periods in the living area, Th1 (°C)

Heating	ı system ı	esponsiv	veness								0.75	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau		·			,		·		•			
29.51	29.54	29.56	29.68	29.70	29.80	29.80	29.82	29.76	29.70	29.65	29.61	
alpha							-					
2.97	2.97	2.97	2.98	2.98	2.99	2.99	2.99	2.98	2.98	2.98	2.97	
Utilisation	on factor	for gains	for living	area			-					
0.98	0.96	0.90	0.77	0.60	0.44	0.33	0.39	0.62	0.88	0.97	0.99	(86)
Mean in	ternal te	mperatur	e in living	area T1			-					
19.24	19.57	20.01	20.46	20.74	20.86	20.89	20.88	20.77	20.32	19.67	19.18	(87)
Temper	ature du	ring heat	ing perio	ds in rest	of dwelli	ng Th2						
19.73	19.73	19.73	19.74	19.74	19.74	19.74	19.74	19.74	19.74	19.74	19.74	(88)
Utilisation	on factor	for gains	for rest	of dwellir	ng	•						

21.00

(85)

(93)

0.98	0.95	0.88	0.73	0.54	0.36	0.24	0.29	0.54	0.84	0.96	0.99	(89)
Mean in	ternal ter	nperatur	e in the r	est of dw	elling T2							
17.41	17.88	18.49	19.10	19.45	19.57	19.60	19.60	19.50	18.95	18.03	17.31	(90)

Living ar	ea fractio	on (146.8	33/433.6	(0)				0.3	34	(91)
Mean int	ernalten	nneratur	e (for the	whole dv	vellina)					

Wicarrin	ciriai toi	nperatar	c (ioi tiic	WIIOIC G	weiling)							
18.03	18.45	19.01	19.56	19.88	20.01	20.04	20.03	19.93	19.41	18.59	17.94	(92)
Apply ac	diustmen	t to the m	ean inte	rnal temi	oerature.	. where a	ppropria	te	,			

										•	
18.03 18.45 19.01 19.56 19.88 20.01 20.04 20.03 19.93 19.4	18.59 17.94	19.41	19.93	20.03	20.04	20.01	19.88	19.56	19.01	18.45	18.03

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisatio	on factor	for gains	,			,			,	,		
0.98	0.94	0.86	0.72	0.55	0.38	0.26	0.31	0.55	0.83	0.95	0.98	
Useful g	ains	,	,			,			,	,		
2746.5	3814.9	4710.5	5117.5	4552.3	3219.2	2100.4	2197.2	3225.7	3569.2	2909.6	2487.0	
Monthly	average	external	tempera	ture		,	,	^	,			
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	
Heat los	s rate for	mean in	ternal te	mperatu	re				,			
8581.8	8464.2	7805.3	6628.5	5084.3	3349.9	2130.2	2248.7	3613.3	5475.3	7147.6	8564.0	
Fraction	of month	n for heat	ing						,			
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	
Space h	eating re	quireme	nt for eac	ch month	, kWh/m	onth			,			
4341.5	3124.4	2302.6	1087.90	395.78	-	-	-	-	1418.09	3051.4	4521.3	
Total sp	ace heat	ing requi	rement p	er year (kWh/yea	ar) (Octo	ber to Ma	ay)	,		20242.86	;
Space h	eating re	quireme	nt per m²	kWh/m	²/year)						46.69)

8c. Space cooling requirement - not applicable

9a. Ene	ergy requ	uiremen	ts									
	ondary he										kWh/year	
	n of space cy of mai			• ,	s)				1.0000 3.90%			(202) (206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(
Spaceh	eating re	quireme	nt		JI				JL			
4341.5	3124.4	2302.6	1087.90	395.78	-	-	-	-	1418.09	3051.4	4521.3	(98)
Append	lix Q - mo	nthly en	ergy sav	ed (main	heating	system 1	1)		JI.	JL		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space h	neating fu	iel (main	heating	system 1	ĺ)	JL .		,	Л	JI.		
4623.5	3327.3	2452.2	1158.57	421.49	-	-	-]-	1510.21	3249.6	4815.0	(211)
Append	lix Q - mo	nthly en	ergy sav	ed (main	heating	system 2	2)	,	Л	JI.		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
Space h	neating fu	iel (main	heating	system 2	2)				,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(213)
Append	lix Q - mo	nthly en	ergy save	ed (seco	ndary he	ating sys	stem)		,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Space h	eating fu	el (secor	ndary)		,	<u>, </u>	.,		,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Waterh		,			,				,			
	eating re											
	214.17	JL	201.85	197.90	176.96	170.08	186.46	186.07	209.30	221.15	237.14	(64)
	cy of wate										80.20	(216)
90.26	90.13	89.83	89.04	87.03	80.20	80.20	80.20	80.20	89.37	90.09	90.30	(217)
_	eating fu		06									
269.15	237.63	250.49	226.69	227.39	220.65	212.07	232.49	232.01	234.20	245.48	262.62	(219)
Annual	totals										kWh/year	
Space h	neating fu	ıel used,	main sy	stem 1							21557.89	(211)
	neating fu		ndary)								0.00	(215)
	eating fu										2850.86	(219)
	ity for pui I heating	•	s and ele	ectric kee	ep-not						30.00	(230c)
	with a far		d flue								45.00	(230c)
	ectricity f			n/vear							75.00	(231)
	ity for ligh										880.44	(232)
• • • • • • • • • • • • • • • • • • • •	saving/ge	eneration	technolo	ogies								
Append											0.000	(000)
•	y saved (•	ated ():								0.000	(236a)
Energ	y used ()	١.									0.000	(237a)
Total de	livered e	nergy for	all uses								25364.18	(238)

10a	Fuel	costs	เมรากต	Table	12	prices
ıva.	ı ucı	CUSIS	usiiiu	Iabic	12	มเเษยง

,	kWh/year	Fuel price p/kWh	£/year	
Space heating - main system 1	21557.886	3.480	750.21	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Water heating cost	2850.86	3.480	99.21	(247)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	75.000	13.190	9.89	(249)
Energy for lighting	880.436	13.190	116.13	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			1095.45	(255)
11a. SAP rating			0.42	(256)
0.5			0.96	(257)
SAPvalue			86.59	(050)
			87	(258)
SAP band			В	

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	Emission kg CO2/y	_
Space heating, main system 1	21557.89	0.216	4656.50	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	2850.86	0.216	615.79	(264)
Space and water heating			5272.29	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	880.44	0.519	456.95	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			5768.16	(272)
			kg/m²/yea	ar
CO2 emissions per m ²			13.30	(273)
Elvalue			83.85	(273a)
El rating			84	(274)
El band			В	

Calculation of stars for heating and DHW

Main heating energy efficiency
Main heating environmental impact
Water heating energy efficiency
Water heating environmental impact

 $(3.48 / 0.9090) \times (1 + (0.29 \times 0.25)) = 4.1059$, stars = 4 $(0.2160 / 0.9090) \times (1 + (0.29 \times 0.25)) = 0.2549$, stars = 4 3.48 / 0.8640 = 4.0276, stars = 4 0.2160 / 0.8640 = 0.2500, stars = 4

Page 10 of 12

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd C:\Users\HP\Desktop\St john studio\St John Studios.JDP

Project Information

Building type Semi-detached house

Reference

Date 22 April 2022

Email: none Project The Studio

St. Johns Lodge Harley Road LONDON NW3 3BY

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.054, printed on 02/05/2022 at 10:05:19

New dwelling as designed

1 TER and DER

Fuel for main heating system: Gas (mains) (fuel factor = 1.00)

Target Carbon Dioxide Emission Rate TER = 14.27

Dwelling Carbon Dioxide Emission Rate DER = 13.94

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

Dwelling Fabric Energy Efficiency (DFEE)

TFEE = 62.9

DFEE = 55.8

DFEE = 55.8 OK

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

Element **Highest** <u>Average</u> Wall 0.25 (max. 0.30) 0.25 (max. 0.70) OK **Curtain Wall** 0.15 (max. 2.20) 0.15 (max. 2.20) OK Floor 0.12 (max. 0.25) 0.12 (max. 0.70) OK Roof 0.11 (max. 0.20) 0.11 (max. 0.35) OK **Openings** 1.10 (max. 2.00) 1.10 (max. 3.30) OK

3 Air permeability

Air permeability at 50 pascals: 3.50
Maximum: 10.00

OK

OK

4 Heating efficiency

Main heating system:

Boiler and underfloor heating, mains gas

Vaillant ecoFIT pure 630

Source of efficiency: from boiler database

Vaillant ecoFIT pure 630 VU 306/6-3 (H-GB)

Efficiency: 89.9% SEDBUK2009

Minimum: 88.0%

Secondary heating system:

None -

Page 11 of 12

5 Cylinder insulation Hot water storage Manufacturer's declared cylinder loss factor (kWh/day) 2.14 Permitted by DBSCG 2.86 OK Primary pipework insulated Yes OK **6 Controls** (Also refer to "Domestic Building Services Compliance Guide" by the DCLG) Time and temperature zone control OK Space heating controls Cylinderstat - Yes OK Independent timer for DHW - Yes OK **Boiler Interlock** Yes OK 7 Low energy lights Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% OK 8 Mechanical ventilation Not applicable 9 Summertime temperature Overheating risk (Thames Valley): OK Slight OK Based on: Thermal mass parameter: 153.18 Overshading: Average or unknown (20-60 % sky blocked) Orientation: SouthWest Ventilation rate: 8.00 Blinds/curtains: None with blinds/shutters closed 0.00% of daylight hours 10 Key features

Double-glazed, argon filled, low-E, En=0.1, soft coat U-value 1.10 W/m²K

Flat roofs U-value 0.11 W/m²K Ground floors U-value 0.12 W/m²K

Pitched roofs insulated between rafters U-value 0.11 W/m²K

Design air permeability 3.5 m³/h.m²

Project Information

Building type Semi-detached house

Reference

Date 22 April 2022

Email: none Project The Studio

St. Johns Lodge Harley Road LONDON NW3 3BY

SAP 2012 worksheet for New dwelling as designed - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Groundfloor (1)	146.83	3.31	486.01	(3a)
First floor	118.87	3.20	380.38	(3b)
Secondfloor	111.86	3.00	335.58	(3c)
Thirdfloor	56.04	2.10	117.68	(3d)
	433.60			(4)
			1319.66	(5)

2. Ventilation rate

											m³ per ho	our
							main + s	eondar	y + othe	r		
							heating					4- >
	er of chim	•					0 + 0 + 0		< 40		0.00	(6a)
	er of oper						0 + 0 + 0)	<i><</i> 20		0.00	(6b)
Numbe	er of inter	mittent fa	ans				7)	< 10		70.00	(7a)
Numbe	er of pass	ive vents	;				0)	< 10		0.00	(7b)
		ess gas f					0)	< 40		0.00	(7c)
											Air chand	ges per hour
											0.05	(8)
Pressu	re test. r	esult q50)						3.50			(17)
	meability								0.00		0.23	(18)
7 tii poi i	noability										2.00	(19)
											0.85	(20)
Infiltrat	ion rata i	acarnara	tina chal	ter factor							0.19	(20)
		•	_	hly wind s							0.19	(21)
					peeu	1						
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
											52.50	(22)
Wind F	actor											
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
											13.13	(22a)
Adjuste	ed infiltra	tion rate	(allowing	g for shelt	ter and w	ind spee	ed)					
0.25	0.24	0.24	0.21	0.21	0.18	0.18	0.18	0.19	0.21	0.22	0.23	
											2.54	(22b)
Ventila	tion : nat	ural vent	ilation, ii	ntermitte	nt extrac	t fans						, ,
		inge rate	,									
0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.53	(25)
0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.53	(23)

3 Heat losse	s and heat lo	ss naramete	r				
Element	Gross	Openings	Net area	U-value	AxU	kappa-value A x K	
	area, m²	m²	A, m ²	W/m²K	W/K	kJ/m²K kJ/K	
Window - Doul	•		14.610	1.05 (1.10)	15.39		(27)
argon filled, lo	•			` ,			` '
soft coat (Nort	h)						
REAR-SIDE	SF						
Window - Doul	ole-glazed,		5.460	1.05 (1.10)	5.75		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Sou							
FRONT-SID							
Window - Doul	•		15.584	1.05 (1.10)	16.42		(27)
argon filled, lo							
soft coat (Nort	•						
REAR-SIDE							(O-)
Window - Doul	•		5.824	1.05 (1.10)	6.14		(27)
argon filled, lo							
soft coat (Sou	•						
FRONT-SID			47.045	4.05 (4.40)	40.47		(07)
Window - Doul	•		17.245	1.05 (1.10)	18.17		(27)
argon filled, lo							
soft coat (Sou FRONT GF	uivvesi)						
Window - Doul	nle-alazed		6.190	1.05 (1.10)	6.52		(27)
argon filled, lo	•		0.130	1.03 (1.10)	0.52		(21)
soft coat (Sou							
,	E ENTRANCE	DOOR					
Window - Doul		Doon	12.480	1.05 (1.10)	13.15		(27)
argon filled, lo	•			,	10.10		(=,)
soft coat (Sou							
FRONTSF	,						
Window - Doul	ole-glazed,		14.160	1.05 (1.10)	14.92		(27)
argon filled, lo				` ,			, ,
soft coat (Sou	thWest)						
FRONTFF							
Window - Doul	ole-glazed,		12.620	1.05 (1.10)	13.30		(27)
argon filled, lo	w-E, En=0.1,						
soft coat (Nort	hEast)						
REAR FF							
Window - Doul	•		11.123	1.05 (1.10)	11.72		(27)
argon filled, lo							
soft coat (Nort	hEast)						
REAR SF			44.500	4.40	40.04		(00)
Full glazed do			14.580	1.10	16.04		(26)
Double-glazed							
low-E, En=0.1 (NorthEast)	, soit coat						
REAR 3F							
Full glazed do	or -		23.766	1.10	26.14		(26)
Double-glazed			23.700	1.10	20.17		(20)
low-E, En=0.1							
(NorthEast)	,						
REAR GF							

	e r heatin ged occupa		y require	ements							kWh/yea 3.31
Annual	average l	hot water	usage ir	n litres pe	er day Vd	,average)				112.71
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Hot wat	er usage	in litres p	oer day f	or each r	nonth	,			,		
123.98	119.47	114.96	110.45	105.95	101.44	101.44	105.95	110.45	114.96	119.47	123.98
Energy	content c	of hot wat	ter used						,		
183.86	160.80	165.93	144.67	138.81	119.78	111.00	127.37	128.89	150.21	163.97	178.06
	content (a tion loss	annual)									1773.34
27.58	24.12	24.89	21.70	20.82	17.97	16.65	19.11	19.33	22.53	24.59	26.71
,	r volume,			_			150.00				
	cturer's d		cylinder l	oss facto	or (kWh/c	day)	2.00				
•	ature Factorial lost from		er cylinde	r (kWh/c	lav)		0.5400				1.08
	orage los		,, oyac	. (ω,,						1.00
33.48	30.24	33.48	32.40	33.48	32.40	33.48	33.48	32.40	33.48	32.40	33.48
Net stor	age loss		JL			J	JL		JI.	J	
33.48	30.24	33.48	32.40	33.48	32.40	33.48	33.48	32.40	33.48	32.40	33.48
Primary	loss	,	Л		,	,	Л		JI.	,	
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26
Total he	at requir	ed for wa	ter heati	ng calcul	ated for	each mo	nth		JL.	Д	
240.60	212.05	222.68	199.58	195.55	174.69	167.74	184.11	183.80	206.95	218.88	234.80
Output 1	from water	er heater	for each	month, k	«Wh/mor	nth					
240.60	212.05	222.68	199.58	195.55	174.69	167.74	184.11	183.80	206.95	218.88	234.80
	-8-	*									2441.44
Heat ga	ins from	water he	ating, kV	/h/month	1						
106.53	94.47	100.57	92.03	91.55	83.76	82.30	87.74	86.79	95.34	98.45	104.60

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts	,		,	,			,	,	
198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34	198.34
Lighting	gains				•				•		-
124.63	110.70	90.03	68.16	50.95	43.01	46.48	60.41	81.08	102.95	120.16	128.10
Appliand	ces gains	3									
834.64	843.30	821.48	775.01	716.36	661.24	624.41	615.75	637.57	684.04	742.69	797.81
Cooking	gains	•					•				
58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14	58.14
Pumps a	and fans	gains									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Losses	e.g. evap	oration (r	negative	values)							
-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22	-132.22
Water he	eating ga	ins									
143.18	140.58	135.17	127.82	123.05	116.33	110.62	117.94	120.54	128.14	136.73	140.59
Total inte	ernal gaiı	ns									
1226.71	1218.83	1170.93	1095.24	1014.61	944.83	905.76	918.35	963.45	1039.39	1123.84	1190.75

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E,	0.9 x 14.610 10.63	0.63 x 0.80	0.77	54.2608
En=0.1, soft coat (North)				
REAR-SIDE SF				
Window - Double-glazed, argon filled, low-E,	0.9 x 5.460 46.75	0.63 x 0.80	0.77	89.1574
En=0.1, soft coat (South)				
FRONT-SIDE SF	0.045 50440.00	0.000.00	0.77	FZ 0704
Window - Double-glazed, argon filled, low-E,	0.9 x 15.584 10.63	0.63 X 0.80	0.77	57.8781
En=0.1, soft coat (North) REAR-SIDE FF				
Window - Double-glazed, argon filled, low-E,	0.9 x 5.824 46.75	0.63 x 0.80	0.77	95.1012
En=0.1, soft coat (South) FRONT-SIDE FF				
Window - Double-glazed, argon filled, low-E,	0.9 x 17.245 36.79	0.63 x 0.80	0.77	221.6165
En=0.1, soft coat (SouthWest)				
FRONTGF				
Window - Double-glazed, argon filled, low-E,	0.9 x 6.190 46.75	0.63 x 0.80	0.77	101.0728
En=0.1, soft coat (South)				
FRONT-SIDE ENTRANCE DOOR				
Window - Double-glazed, argon filled, low-E,	0.9 x 12.480 36.79	0.63 x 0.80	0.77	160.3812
En=0.1, soft coat (SouthWest) FRONTSF				
Window - Double-glazed, argon filled, low-E,	0.9 x 14.160 36.79	0.63 x 0.80	0.77	181.9709
En=0.1, soft coat (SouthWest) FRONTFF				
Window - Double-glazed, argon filled, low-E,	0.9 x 12.620 11.28	0.63 x 0.80	0.77	49.7331
En=0.1, soft coat (NorthEast)				
REAR FF				

Page 5 of 14

6. Solar gains (calculation for January)		. ==	O		
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) REAR SF	Area & Flux 0.9 x 11.123 11.28	g & FF 0.63 x 0.80	Shading 0.77	Gains 43.8337	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) REAR 3F	0.9 x 14.580 11.28	0.63 x 0.80	0.77	57.4571	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast) REAR GF	0.9 x 23.766 11.28	0.63 x 0.80	0.77	93.6574	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE	0.9 x 19.496 10.63	0.63 x 0.80	0.77	72.4067	
Full glazed door - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT3F	0.9 x 14.510 36.79	0.63 x 0.80	0.77	186.4688	
Rooflight at 70° or less - Double-glazed, argon filled, low-E, En=0.1, soft coat (n/a) ROOF	0.9 x 10.130 26.00	0.63 x 0.80	1.00	119.4692	
Total solar gains, January				1584.46	(83-1)
Solar gains					
	03.5 7122.6 6093.	9 4858.0 3248	3.5 1924.23 <i>1</i>	1338.93	(83)
Total gains	10.0 0000 0 7010	0 5004 4 4007	0 00404	2502.7	(0.4)
2811.2 4063.3 5452.9 7060.6 8302.9 84	48.3 8028.3 7012.	3 5821.4 4287	7.9 3048.1 2	2529.7	(84)
Lighting calculations					
	Area	g 0.80	FF x Shadir	-	
Lighting calculations Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF	Area 0.9 x 14.61	g 0.80	FF x Shadir 1.00 x 0.83	ng 8.73	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)				-	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North)	0.9 x 14.61	0.80	1.00 x 0.83	8.73	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	0.9 x 14.61 0.9 x 5.46	0.80	1.00 x 0.83 1.00 x 0.83	8.73 3.26	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South)	0.9 x 14.61 0.9 x 5.46 0.9 x 15.58	0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	8.73 3.26 9.31	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E,	0.9 x 14.61 0.9 x 5.46 0.9 x 15.58 0.9 x 5.82	0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	8.73 3.26 9.31 3.48	
Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE SF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (North) REAR-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (South) FRONT-SIDE FF Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest) FRONT GF Window - Double-glazed, argon filled, low-E,	0.9 x 14.61 0.9 x 5.46 0.9 x 15.58 0.9 x 5.82 0.9 x 17.25	0.80 0.80 0.80 0.80	1.00 x 0.83 1.00 x 0.83 1.00 x 0.83 1.00 x 0.83	8.73 3.26 9.31 3.48	

Page 6 of 14

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

C:\Users\HP\Desktop\St john studio\St John Studios.JDP

Lighting calculations

	Area	g	FF x Shading	
Window - Double-glazed, argon filled, low-E,	0.9 x 12.62	0.80	1.00 x 0.83	7.54
En=0.1, soft coat (NorthEast)				
REAR FF				
Window - Double-glazed, argon filled, low-E,	0.9 x 11.12	0.80	1.00 x 0.83	6.65
En=0.1, soft coat (NorthEast)				
REAR SF				
Rooflight at 70° or less - Double-glazed,	0.9 x 10.13	0.80	0.80 x 1.00	5.83
argon filled, low-E, En=0.1, soft coat (n/a)				
ROOF				
GL = 74.74 / 433.60 = 0.172				
C1 = 0.500				

C2 = 0.960

EI = 880

Temper	n interna rature du	ring heat	ing perio	ds in the	living are	ea, Th1 (°	°C)				21.00
	system		- N	1				T -			0.75
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau			70						1		
29.51	29.54	29.56	29.68	29.70	29.80	29.80	29.82	29.76	29.70	29.65	29.61
alpha											
2.97	2.97	2.97	2.98	2.98	2.99	2.99	2.99	2.98	2.98	2.98	2.97
Utilisati	on factor	for gains	for living	area		_					
0.99	0.96	0.90	0.77	0.60	0.44	0.33	0.39	0.62	0.88	0.97	0.99
Tweekd	lay										
18.99	19.37	19.87	20.38	20.70	20.84	20.88	20.87	20.74	20.22	19.48	18.92
Tweeke	nd										
19.86	20.07	20.36	20.65	20.83	20.91	20.93	20.93	20.85	20.56	20.14	19.82
24 inste	ad of 16	•			•				·		
8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 inste	ad of 9										
21.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16 inste	ad of 9				1						
1.00	20.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.00
Mean in	ternal te	mperatu	re in livin	garea T1			_*				
20.93	20.07	20.12	20.45	20.74	20.86	20.89	20.88	20.77	20.32	19.66	19.82
Temper	rature du	ring heat	ing perio	ds in res	t of dwell	ing Th2					
19.73	19.73	19.73	19.74	19.74	19.74	19.74	19.74	19.74	19.74	19.74	19.74
Utilisati	on factor	for gains	for rest	of dwelli	ng					IL	
0.98	0.95	0.88	0.73	0.54	0.36	0.24	0.29	0.54	0.84	0.96	0.99
Tweekd	lay		_			_					
17.41	17.88	18.49	19.10	19.45	19.57	19.60	19.60	19.50	18.95	18.03	17.31
Tweeke	nd		_			_					
17.41	17.88	18.49	19.10	19.45	19.57	19.60	19.60	19.50	18.95	18.03	17.31
	nternal te			rest of dv							
19.58	17.88	18.49	19.10	19.45	19.57	19.60	19.60	19.50	18.95	18.03	17.31
	rea fracti	_				1		1.0.00	1	1 2 2 2 2	0.34
_	iternal te	`		,	welling)						
20.04	18.62	19.04	19.56	19.88	20.01	20.04	20.03	19.93	19.41	18.58	18.16
Apply a	 djustmer	nt to the r	nean inte	rnal tem	perature	_	_ L	ate			
20.04	18.62	19.04	19.56	19.88	20.01	20.04	20.03	19.93	19.41	18.58	18.16

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisatio	n factor	for gains		,		,			,	,	
0.98	0.94	0.86	0.72	0.55	0.38	0.26	0.31	0.55	0.83	0.95	0.98
Usefulgains											
2762.0	3817.6	4711.4	5115.1	4551.6	3218.9	2100.3	2197.1	3224.8	3566.3	2904.8	2483.8
Monthly average external temperature											
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
Heat los	s rate for	mean in	ternal te	mperatu	re						
9837.4	8570.4	7828.7	6627.1	5084.3	3349.8	2130.2	2248.7	3613.1	5475.0	7144.1	8699.2
Fraction	of month	n for heat	ting								
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00
Space h	eating re	quireme	nt for ea	ch month	, kWh/m	onth					
5264.1	3193.9	2319.2	1088.63	396.32	-	-	-	-	1420.13	3052.3	4624.3
	ace heat	•		•		ar) (Octo	ber to Ma	ay)	,	,	21358.9
Space h	eating re	quireme	nt per m²	kWh/m	²/year)						49.2

8c. Space cooling requirement - not applicable

9a. Energy requirements	
-------------------------	--

		uiremen									kWh/year	
Fraction	of spac	eating sy e heat fro in heating	om main	system(s)			5	1.0000 04.98%			(202) (206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	eating re	quireme	nt						,			
5264.1	3193.9	2319.2	1088.63	396.32	-	-	-	-	1420.13	3052.3	4624.3	(98)
Append	ix Q - mo	onthly en	ergy sav	ed (main	heating	system 1	1)		Л	J.		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space heating fuel (main heating system 1)												
1042.43	632.48	459.27	215.58	78.48	-	-	-]-	281.23	604.44	915.74	(211)
Append	ix Q - mo	onthly en	ergy sav	ed (main	heating	system 2	2)		Л	J(
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
Space h	neating fu	uel (main	heating	system 2	2)				,			
0.00	0.00	0.00	0.00	0.00]-	-	-]-	0.00	0.00	0.00	(213)
Append	ix Q - mo	nthly en	ergy sav	ed (seco	ndary he	ating sys	stem)		,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Space h	eating fu	iel (secor	ndary)	ж		<u>, </u>	.,		JI.	-J.		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Waterh			J.						,			
Waterh	eating re	quiremer	nt									
240.60	212.05	222.68	199.58	195.55	174.69	167.74	184.11	183.80	206.95	218.88	234.80	(64)
Efficiend	cy of wat	er heater									313.50	(216)
313.50	313.50	313.50	313.50	313.50	313.50	313.50	313.50	313.50	313.50	313.50	313.50	(217)
Waterh	eating fu	el	_									
76.75	67.64	71.03	63.66	62.38	55.72	53.51	58.73	58.63	66.01	69.82	74.90	(219)
Space h Water h	neating fu neating fu eating fu	uel used, iel (secor el mps, fan:	ndary)		on hot						kWh/year 4229.65 0.00 778.77	(211) (215) (219)
Total ele Electrici	ectricity fity for ligh	or the ab nting (100 eneration	ove, kWl 0.00% fix	h/year ked LEL)	;р-поt						0.00 880.44	(231) (232)
• • • • • • • • • • • • • • • • • • • •	ity gener	ated - µC		-							0.00	(235)
		or genera	ated ():								0.000	(236a)
	y used ()										0.000	(237a)
Total de	livered e	nergy for	all uses								5888.86	(238)

10a. Fuel costs using Table 12 prices

	kWh/year	Fuel price p/kWh	£/year	
Space heating - main system 1	4229.654	13.190	557.89	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
High-rate percentage	100.000%			(243)
Low-rate percentage	0.000%			(244)
High-rate cost	778.77	13.190	102.72	(245)
Low-rate	0.00	13.190	0.00	(246)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	0.000	13.190	0.00	(249)
Energy for lighting	880.436	13.190	116.13	(250)
Additional standing charges			0.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			776.74	(255)
11a. SAP rating				
· ·			0.42 0.68	(256) (257)
SAPvalue			90.49	(050)
SAP band			90 B	(258)

12a. Carbon dioxide emissions

	Energy	Emission factor	Emission	S	
	kWh/year	kg CO2/kWh	kg CO2/y	ear	
Space heating, main system 1	4229.65	0.519	2195.19	(261)	
Space heating, main system 2	0.00	0.000	0.00	(262)	
Space heating, secondary	0.00	0.519	0.00	(263)	
Waterheating	778.77	0.519	404.18	(264)	
Space and water heating			2599.37	(265)	
Electricity for pumps and fans	0.00	0.519	0.00	(267)	
Electricity for lighting	880.44	0.519	456.95	(268)	
Electricity generated - PVs	0.00	0.519	0.00	(269)	
Electricity generated - µCHP	0.00	0.519	0.00	(269)	
Appendix Q -					
Energy saved ():	0.00	0.000	0.00	(270)	
Energy used ():	0.00	0.000	0.00	(271)	
Total CO2, kg/year			3056.32	(272)	
			kg/m²/year		
CO2 emissions per m ²			7.05	(273)	
Elvalue			91.44	(273a)	
El rating			91	(274)	
El band			В		

Calculation of stars for heating and DHW

Main heating energy efficiency Main heating environmental impact Water heating energy efficiency Water heating environmental impact $(13.19 / 5.0498) \times (1 + (0.29 \times 0.25)) = 2.8014$, stars = 5 $(0.5190 / 5.0498) \times (1 + (0.29 \times 0.25)) = 0.1102$, stars = 5 13.19 / 3.1350 = 4.2073, stars = 4 $0.52 / + (0.00 \times 0.52) = 0.1656$, stars = 5

Project Information

Building type Semi-detached house

Reference

22 April 2022 Date

Email: none Project The Studio

> St. Johns Lodge Harley Road LONDON NW3 3BY

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.054, printed on 02/05/2022 at 10:05:19

New dwelling as designed

1 TER and DER

Fuel for main heating system: Standard tariff (fuel factor = 1.55)

Target Carbon Dioxide Emission Rate TER = 21.46**Dwelling Carbon Dioxide Emission Rate** DER = 7.35

OK

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) TFEE = 62.9Dwelling Fabric Energy Efficiency (DFEE)

DFEE = 55.8OK

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

Element Highest <u>Average</u> Wall 0.25 (max. 0.30) 0.25 (max. 0.70) OK **Curtain Wall** 0.15 (max. 2.20) 0.15 (max. 2.20) OK Floor 0.12 (max. 0.25) 0.12 (max. 0.70) OK Roof 0.11 (max. 0.20) 0.11 (max. 0.35) OK **Openings** 1.10 (max. 2.00) 1.10 (max. 3.30) OK

3 Air permeability

Air permeability at 50 pascals: 3.50 Maximum: 10.00

4 Heating efficiency

Main heating system:

Air source heat pump, underfloor, electric

Grant AERONA3

Source of efficiency: from boiler database

Secondary heating system:

None -

5 Cylinder insulation

Hot water storage No cylinder

Page 13 of 14

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

C:\Users\HP\Desktop\St john studio\St John Studios.JDP

6 Controls

(Also refer to "Domestic Building Services Compliance Guide" by the DCLG)

Space heating controls 2207 Time and temperature zone control

Hot water controls No cylinder

Boiler Interlock No OK

7 Low energy lights

Percentage of fixed lights with low-energy fittings: 100.0%

Minimum: 75.0% OK

8 Mechanical ventilation

Not applicable

9 Summertime temperature

Overheating risk (Thames Valley):

Slight OK

OK

Based on:

Thermal mass parameter: 153.18

Overshading: Average or unknown (20-60 % sky blocked)

Orientation: SouthWest

Ventilation rate: 8.00

Blinds/curtains:

None with blinds/shutters closed 0.00% of daylight hours

10 Key features

Double-glazed, argon filled, low-E, En=0.1, soft coat U-value 1.10 W/m²K

Flat roofs U-value 0.11 W/m²K Ground floors U-value 0.12 W/m²K

Pitched roofs insulated between rafters U-value 0.11 W/m²K

Design air permeability 3.5 m³/h.m²