

GOSH CCC Building Damage Ground Movement Assessment

20/05/2022 1226-A2S-XX-XX-RP-Y-0004-02

Great Ormond Street Hospital Children's Cancer Centre (GOSHCCC)

Building Damage Ground Movement Assessment

May 2022 1226-A2S-XX-XX-RP-Y-0004-02

Project Name	Great Ormond Street Hospital Children's Cancer Centre (GOSHCCC)
Project Number	1226
Client	Great Ormond Street Hospital for Children NHS Foundation Trust
Document Name	Building Damage Ground Movement Assessment

This document has been prepared for the sole benefit, use and information of Great Ormond Street Hospital for Children NHS Foundation Trust for the purposes set out in the document or instructions commissioning it. The liability of A-squared Studio Engineers Limited in respect of the information contained in this document is as per the A-squared Terms & Conditions and will not extend to any third party. All concepts and proposals are copyright © May 2022. Issued in commercial confidence.

A-squared Studio Engineers Limited One Westminster Bridge Rd London, SE1 7XW

020 7620 2868

contact@a2-studio.com www.a2-studio.com

Prepared by	Checked by	Approved by
Q. Sia MEng(Hons)	P. Smith BEng(Hons), MSc, DIC, CEng, MICE	A. Nikolic BEng(Hons), MSc, DIC, CEng, MICE, MSt(Cantab)
Engineer	Associate	Director MMMM

Document Reference	Status	Revision	Issued by	Date
1226-A2S-XX-XX-RP-Y-0004-00	Draft Issue	00	QS	18.01.2022
1226-A2S-XX-XX-RP-Y-0004-01	First Issue	01	QS	24.01.2022
1226-A2S-XX-XX-RP-Y-0004-02	Second Issue	02	QS	17.05.2022

Contents

1.	Introduction	1
2.	The Site & Development	2
3.	Ground Conditions	5
4.	Impact Assessment Methodology	6
5.	Conclusions & Closing Remarks	23

1. Introduction

A-squared Studio Engineers Ltd (A-squared) has been appointed by John Sisk & Son (Holdings) Ltd on behalf of Great Ormond Street Hospital for Children NHS Foundation Trust (the 'Applicant') to undertake a Ground Movement Assessment (GMA) for the proposed Great Ormond Street Hospital Children's Cancer Centre (GOSHCCC) development at the Great Ormond Street Hospital (GOSH) in London.

The A-squared scope comprises an assessment of the potential impact of the proposed redevelopment works on the various neighbouring properties.

1.1. Study Aims & Objectives

A ground movement and impact assessment has been carried out in order to estimate the potential damage induced by the proposed redevelopment works at GOSH on neighbouring properties including hospital and residential buildings.

The Redevelopment of the Great Ormond Street Hospital (GOSH) Frontage Building comprising demolition of the existing building and erection of a replacement 8 storey hospital building (Class C2 Use) together with 2 basement floors, roof top, balcony and ground floor landscaped amenity spaces, cycle storage, refuse storage and other ancillary and associated works pursuant to the development.

The assessment encompasses properties located within the *zone of influence* of the proposed scheme. The GMA assessment is based on *greenfield* ground movements which are unlikely to be exceeded. The adopted assessment methodology provides a robust and conservative assessment, representative of current industry best practice, as detailed in Section 4.

The assessment carried out and described herein aims to:

- Assess the impact of ground movements induced by the proposed works on properties adjacent to the development under consideration.
- Provide performance criteria and inform aspects of substructure construction and design.

This report provides a detailed description of the:

- Site and proposed development.
- Modelling parameters and input.
- Analyses and results.

2. The Site & Development

The proposed development site, herein referred to as 'the site', is located at Great Ormond Street, London, WC1N 3JH as shown in Figure 2.1. The site is located at an approximate grid reference of 530516E, 182024N and falls within the administrative boundaries of the London Borough of Camden (LBC). The site covers an area of approximately 0.2 hectares. The existing site comprises part of the GOSH Frontage Building as shown in Figure 2.2 and Figure 2.3. The current land uses surrounding the site are summarised in Table 2.1. The proposed building basement footprint and retaining wall outline are shown in Figure 2.4.

The majority of the site is currently occupied by the existing GOSH Frontage Building, a five storey building (inclusive of basement) dating from the 1950s that was constructed in two separate phases. The building is currently occupied by a number of GOSH departments including Audiology Department, Clinical Research Facility (CRF), Department of Child and Adolescent Mental Health and Paediatric Psychology Department.

The western most part of the site is occupied by the main GOSH Entrance providing connections to the wider GOSH island site and by a small rear element (external staircase) of the Paul O'Gorman Building that will be demolished to facilitate the proposed development.

The site is bounded by the Paul O'Gorman Building to the west, Octav Botnar Wing to the east, the Variety Club Building and Premier Inn Clinical Building to the north and Great Ormond Street to the south.

The site is relatively flat across the entire footprint, with an approximate ground level of +20mOD at the rear of the Frontage Building at lower ground level. The ground level at Great Ormond Street is approximately +23mOD.

The redevelopment of the Great Ormond Street Hospital (GOSH) Frontage Building comprising demolition of the existing building and erection of a replacement 8 storey hospital building (Class C2 Use) together with 2 basement floors, roof top, balcony and ground floor landscaped amenity spaces, cycle storage, refuse storage and other ancillary and associated works pursuant to the development.

Approximate site boundary marked in red. Image courtesy of Google.

Figure 2.1 Location of the proposed development

Figure 2.2 Current site condition - Frontage Building

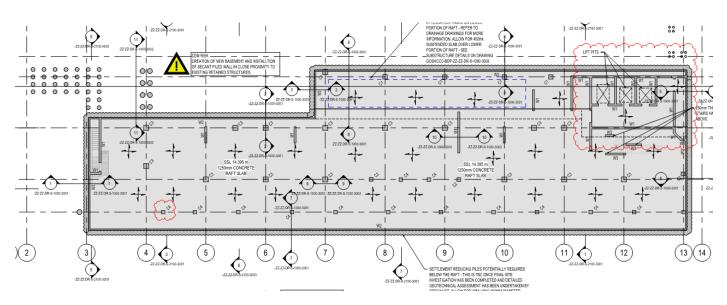


Figure 2.3 View of the current site condition, facing east towards the hospital entrance at Great Ormond Street

Table 2.1 Surrounding land uses summary

Bearing from Site	Features directly adjacent to the site boundary	Identified land uses and key structures
North	GOSH buildings	Russell square underground station located 200m to the northwest of the site.
East	Great Ormond Street with mixed commercial shops and residential terraced properties	GOSH buildings and commercial shops along Lambs Conduit Street. Open park space located 70m to the southeast of the site
South	Great Ormond Street	Terraced houses with gardens located across Great Ormond Street and two blocks of residential flats is located at approximately 70m south. Open park space located 70m to the southeast of the site, adjacent to the residential flats.
West	Paul O'Gorman Building	Queens Square gardens located approximately 90m to the west of the site. Russell Square located 250m to the west of the site.

Source: Great Ormond Street Hospital (2021) prepared by BDP Ltd.

Figure 2.4 Proposed building footprint (basement)

3. Ground Conditions

Site-specific ground investigation works have been completed at the time of writing. Based on a review of ground investigation data and historical data in the vicinity of the project site, the ground conditions at the site were generally found to comprise the following (in order of succession):

- Made Ground brownish grey to light brown sandy fine to coarse, angular to subangular Gravel.
- Lynch Hill Gravels Medium dense yellowish grey sandy fine to coarse angular to subrounded Gravel.
- London Clay firm to stiff dark grey silty CLAY.
- Lambeth Group stiff to very stiff grey/brown mottled clay.

The above include the strata of engineering interest and significance, taking cognisance of the scale of the proposed development, depth of the proposed basement excavation, and the zone of influence.

The ground model adopted for this assessment is presented in Table 3.1. Material strength and stiffness parameters have been derived and assumed from ground investigation data and previous experience in this area of London.

Table 3.1 Ground model and geotechncial parameters adopted for analysis purposes

Stratum	Elevation (mOD)	Thickness (m)	Undrained Young's Modulus, E _u ^[2] (MPa)	Drained Young's Modulus, E' ^[2] (MPa)
Made Ground	+20.00	1.20	-	10.0
Lynch Hill Gravels	+18.80	1.30	-	35.0
London Clay	+17.50	15.00	20.0 + 5.33z ^[4]	16.0 + 4.27z ^[4]
Lambeth Group	+2.50	19.50	115.0 + 3.85z ^[4]	92.0 + 3.08z ^[4]

1. Ground model based on site specific ground investigation data in the vicinity of the site. This data has been interpreted specifically for the scope of the GMA presented herein.

 Stiffness data (E_u and E') has been evaluated empirically from in-situ testing data taking into consideration the nature of the geotechnical/soil-structure interaction mechanisms and level of anticipated strain within the soil mass.

- 3. Rigid boundary was assumed at -17.0mOD / 37mBGL) for analytical purposes.
- 4. z refers to the depth in metres below the top of the London Clay/Lambeth Group formation. Lower bound stiffness values have been adopted for GMA purposes only.

4. Impact Assessment Methodology

4.1. Assessment Details

The assessment has been undertaken using proprietary spreadsheets and the commercially available software Oasys Pdisp and Xdisp, which consider the three-dimensional ground movement field induced by the proposed excavation works.

Ground movements will arise as a result of various mechanisms which are mobilised as part of the construction works for the proposed scheme. The demolition of the existing buildings and basement excavations will induce ground movements arising from the overburden removal and installation of the proposed retention system. The permanent condition loading will partially reinstate a portion of the removed overburden, yielding settlements across the foundation system. The induced ground movements will extend over a given zone of influence surrounding the building/excavation footprint.

A series of three-dimensional models of the proposed scheme have been developed in Oasys Xdisp/Pdisp and combined by means of superposition in order to enable ground movement assessments to be carried out representing the various construction stages. The ground movement displacement fields were separated in two groups (A & B) based on the approach followed, as detailed below:

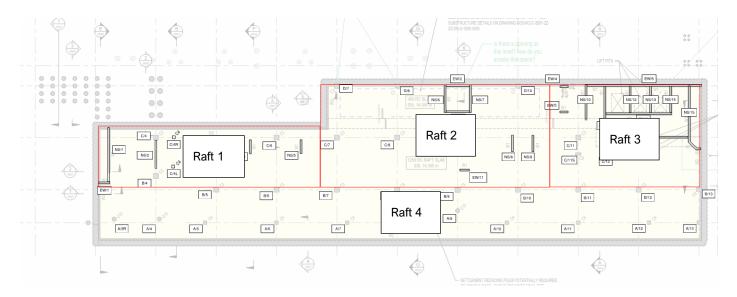
Group A - Unloading/Loading ground movements

- A1. Building demolition and basement excavation (short-term).
- A2. Building demolition, basement excavation, and application of the proposed building loading (long-term).

Group B - CIRIA-based ground movements

- B1. Secant pile wall installation and basement excavation.
- B2. Secant pile wall, basement excavation, and application of the proposed building loading (long-term).

The Group A assessments are based on *greenfield* ground movements evaluated from linear half-space (Pdisp) analyses and focus on vertical ground movements induced by the overburden removal unloading and reloading processes.


Demolition pressures equivalent to 12kPa/storey have been applied over the footprints of the existing site building footprint. A total of 48kPa demolition upward pressure is applied in Pdisp to represent the demolition of existing building on site. Excavation unloading pressures have been modelled at the basement formation levels representing the removal of approximately 6.85m (137kPa) of overburden to form the additional basement level.

At this stage, it is envisaged that the proposed structures will be supported by a piled raft foundation. Based on a preliminary loading plan provided by BDP Ltd, uniformly distributed loading zones have been modelled at the proposed basement formation level. Figure 4.1 and Table 4.1 show the modelled loading pressures for the proposed structures. An uniformly distributed load of 31kPa has been adopted to represent the 1.2m thick Raft Foundation self-weight assuming a 25kN/m³ reinforced concrete unit weight.

Table 4.1	Proposed	building	loads	modelled	in Pdisp
-----------	----------	----------	-------	----------	----------

Raft area	Total load from columns (kN)	Area (m ²)	Total load including raft self-weight (kPa)
1	49215	308	190.0
2	75650	540	171.2
3	79355	333	268.8
4	111020	775.4	174.5

 Source: Sheet SK_S_XXX - LEVEL 0 Loading Plan drawing (Jan 2022) prepared by BDP Ltd.

 Figure 4.1
 Modelled loading areas in Pdisp

The loadings on the retaining wall and piles from ground floor level are modelled as equivalent raft uniformly distributed loads acting at 2/3 of the embedded wall / pile length (i.e. circa 10.7mOD and 6.7mOD respectively) and assuming a 1:4 (horizontal:vertical) load spread distribution with depth. The retaining walls are assumed to be 10.5m long and the piles under the pile cap at northwest corner of the building are assumed 20m long. The loadings are provided by BDP Ltd and shown below in Figure 4.2. Examples of the loading scenarios applied in Pdisp are shown below in Figure 4.3 and Figure 4.4.

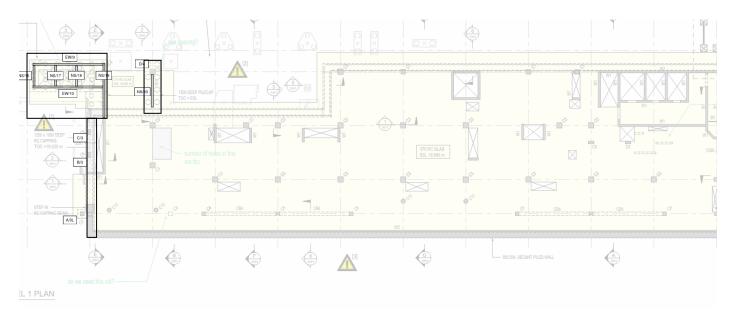


Figure 4.2 Loadings on the retaining walls and pile cap at ground floor level

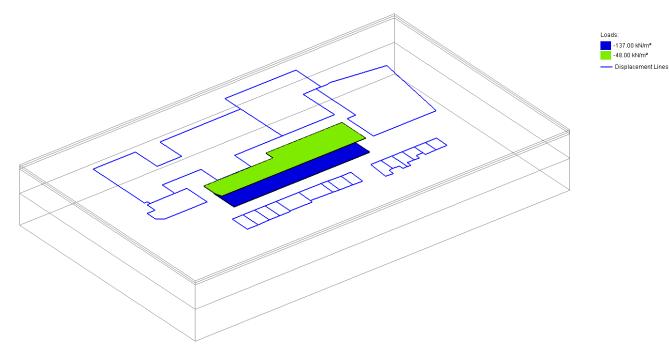
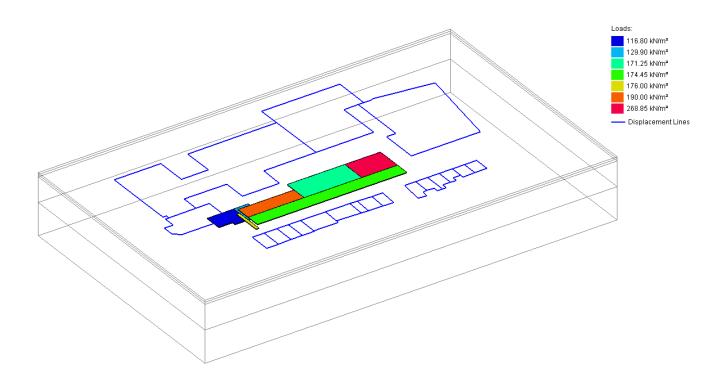
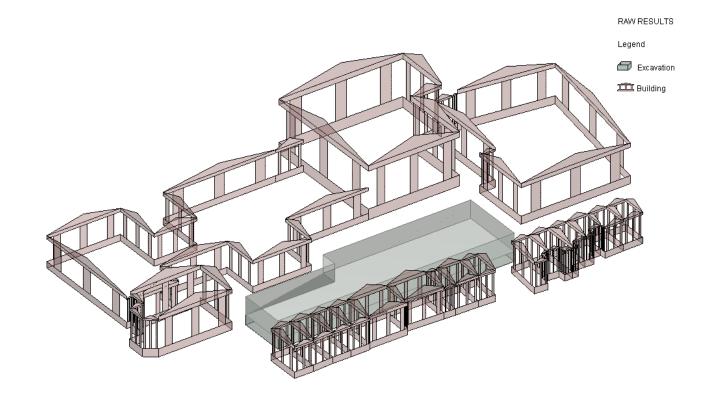



Figure 4.3 Loadings in Pdisp - ST Excavation + Demolition

Figure 4.4 Loadings in PDisp - LT Structural Loadings

The Group B assessments adopt the normalised ground displacement curves reported in CIRIA C760. In addition to the effects arising from the basement excavation, the ground movement effects associated with the installation of the secant pile wall have been considered. The following CIRIA C760 normalised ground movement curves were adopted to assess ground movements due to retention system installation and excavation works:


- Secant pile wall. Installation of contiguous bored pile wall in stiff clay.
- Excavation to formation: Excavation in front of a high stiffness wall in stiff clay.

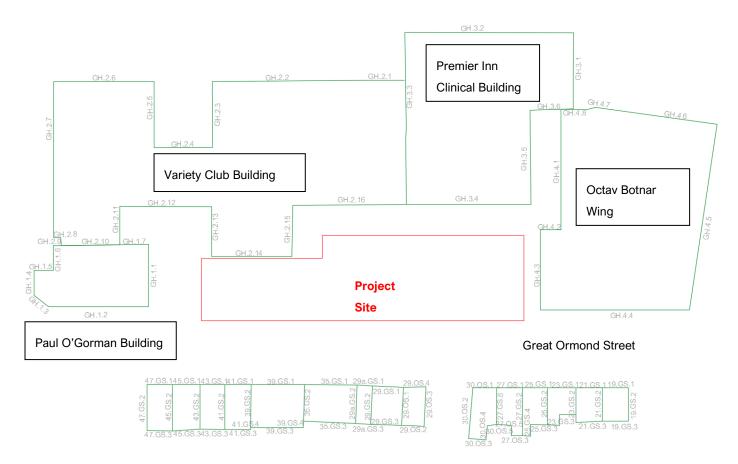
The modelling of the contiguous pile wall curve has been deemed suitable for calculating the installation effects of secant piled walls, contiguous piled walls, and/or sheet pile walls (assuming pre-boring or jetting installation aids, which may be required). For this assessment, the secant piles have been assumed to be 10.5m long (from existing lower ground level (+20.00mOD)).

Given the depth of the walls and proximity to sensitive infrastructure, utilities, and buildings, it is assumed that suitable construction controls and temporary works, including rigorous monitoring methodologies, will be implemented during the wall installation and basement excavation works on site to reduce the overall impact of the development.

In the B2 assessment, the CIRIA ground movements are combined with the long-term settlements induced by the loading redistribution (evaluated in Pdisp).

The two sets of analyses enabled the evaluation of an envelope of damage classification results, with the worst-case results presented herein. A simplified representative geometry has been adopted for defining the excavation/installation geometry implemented in the 3D modelling efforts, as shown in Figure 4.5.

Figure 4.5 Indicative plot of the three-dimensional analytical model using the Oasys Xdisp software suite


4.2. Impact Assessment

4.2.1. General

The potential impact/damage induced on primary façade/wall elements of the buildings surrounding the proposed scheme have been evaluated on the basis of the calculated ground movement fields. The masonry walls of concern are shown in Figure 4.6, including the wall nomenclature/reference system adopted. The arrangement is based on the currently available survey information and presents an array of masonry façades running both perpendicular and parallel to the proposed basements (covering the key deformation mechanisms). In total, 95 façades of the neighbouring buildings were considered for the current study and these are grouped in the following manner:

- GH.1.1 GH.1.7: Paul O'Gorman Building
- GH.2.1 GH.2.16: Variety Club Building
- GH.3.1 GH.3.6: Premier Inn Clinical Building
- GH.4.1 GH.4.8: Octav Botnar Wing
- 47.GS.1 47.GS.3: 47 Great Ormond Street
- 29.OS.1 29.OS.4: 29 Orde Hall Street

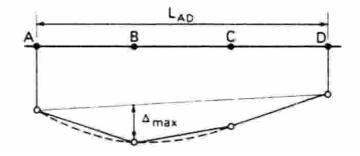


Figure 4.6 Simplfied scheme and nomenclature for each building façade/masonry wall element

Each wall has been assumed to behave as an equivalent beam subject to a bending and extension/compression deformation mechanism, based on the evaluated greenfield ground movement, as outlined previously.

Tensile strains induced within the building masonry walls have been evaluated based on the deflection ratios Δ /L and horizontal extension mechanisms estimated from the analyses. The assessment considers the well-established Burland (1997) damage classification method, as presented and summarised in Figure 4.7 and Figure 4.8. This method involves a relatively simple but robust means of assessment, which is widely adopted and is considered to comprise an industry standard/best practice basis for impact assessments of this typology.

Potential damage categories are directly related to the tensile strains induced by the proposed construction stages, arising from a combination of direct tension and bending induced tension mechanisms. The evaluated damage categories correspond to an unlikely to be exceeded scenario (on the basis of the data sets adopted and greenfield assumptions).

	ategory of mageDescription of typical damage (ease of repair is underlined)		Approximate crack width (mm)	Limiting tensile strain ɛ _{lim} (per cent)	
0	Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible.	< 0.1	0.0-0.05	
1	Very slight	Fine cracks that can easily be treated during normal decoration. Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection.	< 1	0.05-0.075	
2	Slight	<u>Cracks easily filled. Redecoration probably</u> <u>required.</u> Several slight fractures showing inside of building. Cracks are visible externally and <u>some repointing may be required externally</u> to ensure weathertightness. Doors and windows may stick slightly.	< 5	0.075–0.15	
3	Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings, Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5–15 or a number of cracks > 3	0.15-0.3	
4	Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 but also depends on number of cracks	> 0.3	
5	Very severe	This requires a major repair involving partial or complete rebuilding. Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion. Danger of instability.	usually > 25 but depends on number of cracks.		

After Burland et al. 1977, Boscardin and Cording 1989, and Burland 2001.

Figure 4.8 Building damage classification – relationship between category of damage and limiting strain ϵ_{lim}

4.2.2. Results

The results of the assessment indicate that four façades will experience damage *Category* 1 - Very *Slight* throughout the construction works. The affected façades are presented in Table 4.2. The remaining façades are not expected to exceed damage *Category* 0 - Negligible and are omitted from the table below. Figure 4.11 and Figure 4.12 depict the vertical and horizontal displacements, respectively, induced by the secant wall installation and excavation calculated using CIRIA C760 datasets (i.e. assessment B1).

\mathbb{N}

Table 4.2 Evaluated damage categories resulting from the assessment (façades which do not exceed Category 0 are not presented)

Façade				
Reference	A1	A2	B1	B2
GH.1.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.6	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.1.7	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.6	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.7	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.8	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible

Façade				
Reference	A1	A2	B1	B2
GH.2.9	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.10	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.11	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.12	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.2.13	Category 0 –	Category 0 –	Category 1 – Very	Category 1 – Very
	Negligible	Negligible	Slight	Slight
GH.2.14	Category 0 –	Category 1 – Very	Category 0 –	Category 0 –
	Negligible	Slight	Negligible	Negligible
GH.2.15	Category 1 – Very	Category 0 –	Category 1 – Very	Category 1 – Very
	Slight	Negligible	Slight	Slight
GH.2.16	Category 0 –	Category 0 –	Category 1 – Very	Category 1 – Very
	Negligible	Negligible	Slight	Slight
GH.3.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.3.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.3.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.3.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.3.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.3.6	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –

Façade Reference				
Reference	A1	A2	B1	B2
	Negligible	Negligible	Negligible	Negligible
GH.4.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.6	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.7	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
GH.4.8	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
47.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
47.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
47.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
45.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
45.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
45.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
43.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
43.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
43.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible

Façade				
Reference	A1	A2	B1	B2
41.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
41.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
41.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
41.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
39.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
39.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
39.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
39.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
35.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
35.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
35.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29a.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29a.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29a.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –

Façade				
Reference	A1	A2	B1	B2
	Negligible	Negligible	Negligible	Negligible
29.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.OS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.OS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.OS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
29.OS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
30.OS.6	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
27.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
27.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
27.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
27.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible

Façade				
Reference	A1	A2	B1	B2
27.GS.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
25.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
25.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
25.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
25.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
25.GS.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
23.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
23.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
23.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
23.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
23.GS.5	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
21.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
21.GS.2	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
21.GS.3	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
21.GS.4	Category 0 –	Category 0 –	Category 0 –	Category 0 –
	Negligible	Negligible	Negligible	Negligible
19.GS.1	Category 0 –	Category 0 –	Category 0 –	Category 0 –

Façade				
Reference	A1	A2	B1	B2
	Negligible	Negligible	Negligible	Negligible
19.GS.2	Category 0 – Negligible	Category 0 – Negligible	Category 0 – Negligible	Category 0 – Negligible
19.GS.3	Category 0 – Negligible	Category 0 – Negligible	Category 0 – Negligible	Category 0 – Negligible

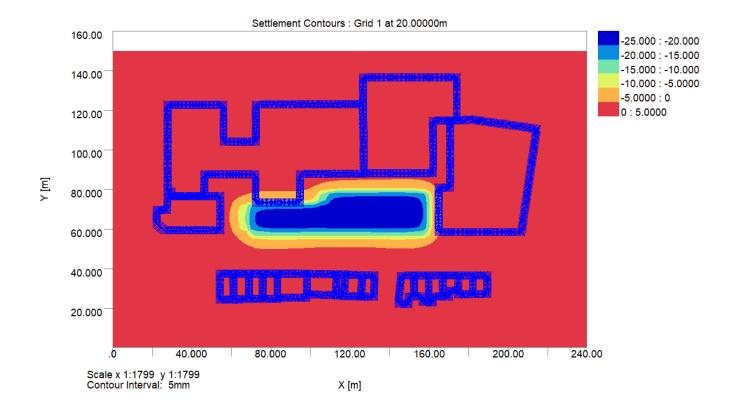


Figure 4.9 Resultant vertical displacement contours for Scenario A1 - units in mm - short-term unload

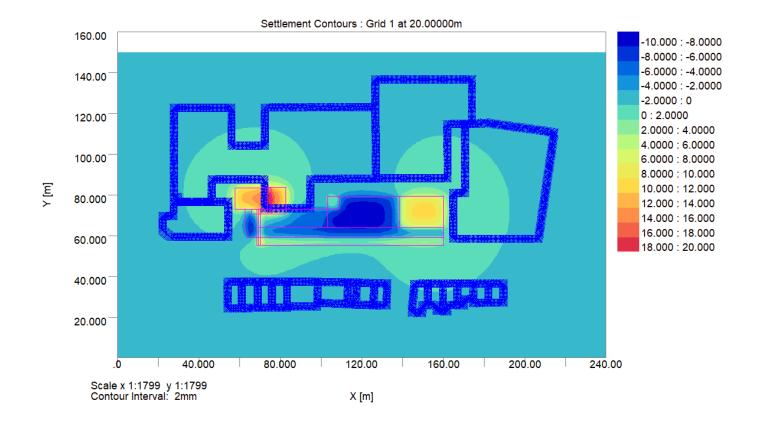


Figure 4.10 Resultant Pdisp vertical displacement contours for scenario A2 – units in mm – long-term unload and reload

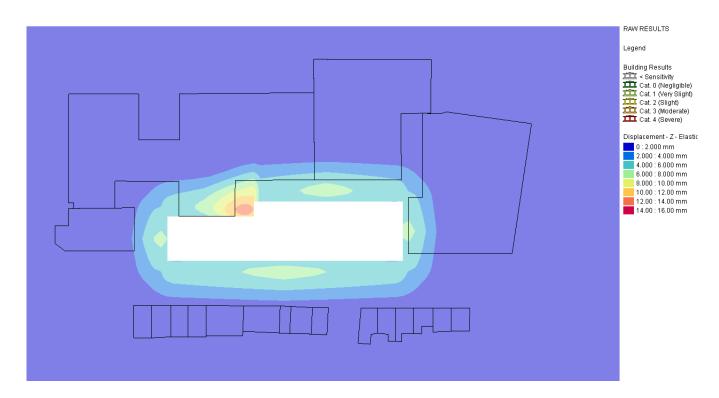


Figure 4.11 Resultant Xdisp vertical displacement contours for scenario B1 – units in mm – retaining wall installation and excavation (CIRIA C760)

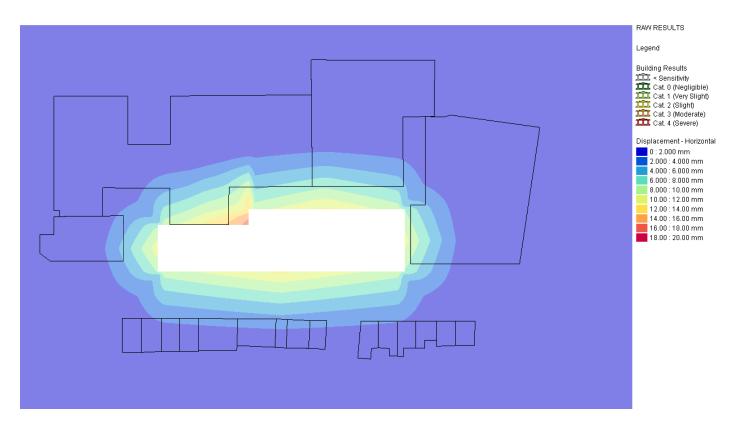


Figure 4.12 Resultant Xdisp horizontal displacement contours for scenario B1 – units in mm – retaining wall installation and excavation (CIRIA C760)

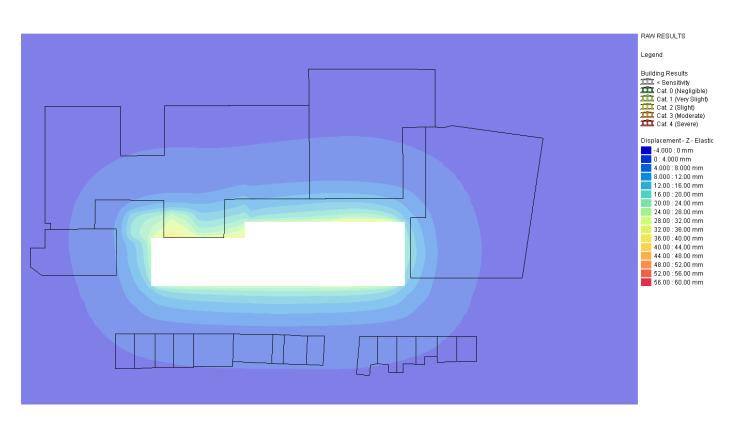


Figure 4.13 Resultant Xdisp vertical displacement contours for scenario B2 – units in mm – retaining wall installation and excavation (CIRIA C760) + long term loading

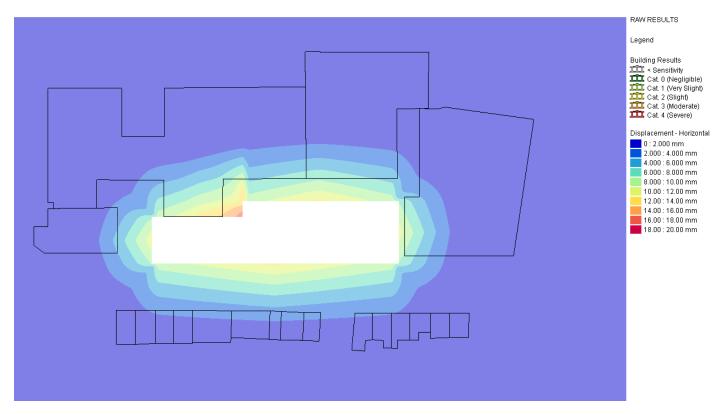


Figure 4.14 Resultant Xdisp horizontal displacement contours for scenario B2 – units in mm – retaining wall installation and excavation (CIRIA C760) + long term loading

4.3. Basement Excavation Criteria

The results of this analysis show that all buildings fall within acceptable damage classifications if the ground movements caused by the proposed development are limited to that predicted by this assessment.

It is recommended that ground movement / earth retention system design and construction movement criteria are developed based on the results presented herein. This will enable the design of the secant walls and any required temporary propping measures to be undertaken in a holistic fashion, ensuring ground movements are limited to no greater than that presented herein.

Specific wall/façade deflection limits and trigger levels may also be developed as part of the scheme monitoring regime. Such limits and trigger levels should be coordinated with the scheme monitoring specification and monitoring action plan / emergency preparedness plan.

5. Conclusions & Closing Remarks

The interaction between the proposed GOSHCCC development and the neighbouring properties within the zone of influence of the schemes has been reviewed as part of the GMA study presented herein. The proposed development comprises the demolition of demolition of the existing building and erection of a replacement 8 storey hospital building (Class C2 Use) together with 2 basement floors, roof top, balcony and ground floor landscaped amenity spaces, cycle storage, refuse storage and other ancillary and associated works pursuant to the development.

The impact of the various construction stages has been reviewed on the basis of two alternative methods, i.e. evaluating the effects of unloading / overburden removal using Pdisp and simulating the excavation-induced ground movement fields using empirical CIRIA curves in Xdisp. In the latter case, a propped embedded retaining wall solution (during the temporary works stage) has been considered, utilising the CIRIA C760 ground movement curves for excavation in front of *high stiffness walls in stiff clay*.

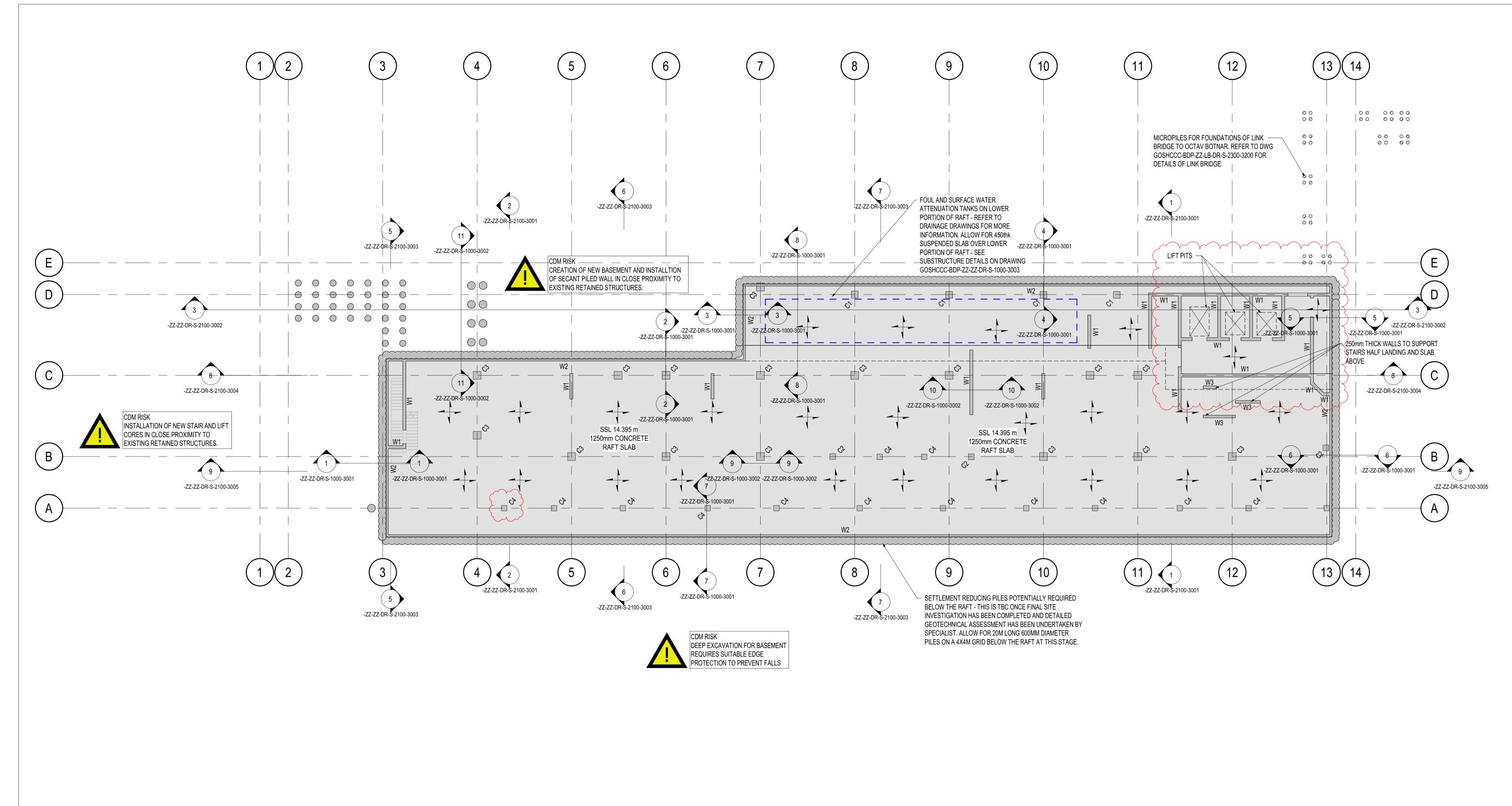
These two different scenarios have been considered in order to bind the potential ground movements arising from excavation operations (i.e. maximum potential heave and settlement respectively). This strategy ensures a robust evaluation of potential impact in light of the bespoke, intricate and workmanship-dependent construction methodology. Both short-term (undrained) and long-term (drained) conditions have been assessed by adopting the relevant soil stiffness parameters for each case.

In order to best limit ground movements in proximity to movement sensitive neighbouring buildings, due consideration may be given to suitable means and methods of construction. For example, reducing the extent of temporary excavations during earth removal operations in close proximity to buildings considered to be at most risk of damage.

The results from the GMA (denoting the evaluated damage categorisation in accordance with the Burland criteria described herein) considering neighbouring properties are presented in Table 4.2. It is observed that the maximum damage classification for the neighbouring properties is *Category 1 – Very Slight*.

It is noted that the predicted ground movements, the associated wall tensile strains, and the level of damage categorisation are considered to be moderately conservative in view of the relatively cautious data selection and *greenfield* nature of the assessment undertaken.

It is also noted that the GMA will be supplemented by a project-specific monitoring regime and Action Plan, which will delineate lines of responsibility, trigger levels in accordance with those presented in this GMA, and appropriate mitigation measures. The assessment presented herein is dependent and reliant on the works being undertaken by an experienced contractor, high quality workmanship and appropriate supervision of construction means and methods by experienced personnel.


It is recommended that this report is reviewed and understood in full by the project team and relevant stakeholders. Where significant changes are made to items such as construction sequencing, temporary propping arrangements and scheme design, the engineer should thoroughly review the change and evaluate any potential impacts on ground movement and building damage. If necessary, the building damage categories should be re-evaluated.

During the design of the secant walls and temporary propping measures, deflection performance criteria for these design elements should be derived on the basis of the results presented herein to ensure that the maximum damage classification of *Category 1 – Very Slight* is not breached.

It is critical that the permanent and temporary works designs are carried out in a coordinated manner between performance specified elements and substructure contractors, with the aim to ensure that such design elements are in alignment with the assumptions / findings of the GMA and overall design intent.

Appendix A: Selected Project Information

RC COLUMN SCHEDULE				
MARK	TYPE			
C1	650x650mm SQ			
C2	550x550mm SQ			
C3	750x750mm SQ			
C4	525x525mm SQ			
C5	700x700mm SQ			
C6	300x750mm			
C7	300x525mm			
C8	350x800mm			
C9	525Dia			
C10	475Dia			
C11	750Dia			
C12	775Dia			
C13	350x350mm SQ			

RC BEAM SCHEDULE				
MARK	TYPE			
CB1	1200wd x 1000dp CAPPING BEAM			
CB2	500x750 DEEP RC DOWNSTAND			
CB3	650x800 DEEP RC DOWNSTAND			
CB4	300x600 DEEP RC DOWNSTAND			
RC WALL SCHEDULE				
MARK	TYPE			
W1	300mm THK RC CORE WALL			
W2	200mm THK RC LINER WALL			

W3

250mm THK RC WALL

STEEL COLUMN SCHEDULE				
MARK	TYPE			
SC1	UKC152x152x23			
SC2	UKC254x254x73			
SC3	UKC305x305x158			
SC4	UKC203x203x60			
SC5	SHS 150x150x10			
SC6	CHS 88.9x5			
SC7	SHS 200x200x10			

STEEL BEAM SCHEDULE				
MARK	TYPE			
B1	UKC254x254x89			
B2	UKC305x305x198			
B3	UKC254x254x107			
B4	UKB356x171x57			
B5	UKB203x133x30			
B6	UKB178x102x19			
B7	UKB457x152x74			
B8	UKC305x305x137			
B9	UKC305x305x158			
B10	UKC152x152x23 (DIAGONAL)			
B11	UKC356x406x235 (DIAGONAL)			
B12	305SFB198x15			
B13	356SFB177x15			
B14	SHS 150x150x10			
B15	RHS 200x100x10			
B16	CHS88.9x5 CROSS BRACING			
B17	UKPFC150x90x24			
B18	UKC356x406x287			
B19	UKC254x254x167			

	KEY
	DENOTES SPAN OF TWO WAY SPANNING 1250mm THICK RC RAFT SLAB
	DENOTES SPAN OF TWO WAY SPANNING 300mm THICK RC SLAB
	DENOTES SPAN OF 300mm THICK HOLLOWCORE SLAB WITH 200mm RC TOPPING
- +	DENOTES SPAN OF 350mm THICK HOLLOWCORE SLAB WITH 100mm RC TOPPING
	DENOTES SPAN OF 150mm THICK COMPOSITE SLAB WITH 1.25mm GAUGE COMFLOR 80 DECK
	DENOTES 300mm THICK INSITU CONCRETE WALL UNO.
GOSHCCC-BDP-Z	REFER TO DRAWINGS Z-ZZ-DR-S-2100-3001/3002/3007/3008/3009 FOR BUILDING SECTIONS
	D DRAWING GOSHCCC-BDP-ZZ-ZZ-DR- 04 FOR SUBSTRUCTURE TYPICAL DETAILS.
	D DRAWING GOSHCCC-BDP-ZZ-ZZ-DR- 6 FOR SUPERSTRUCTURE TYPICAL DETAILS.

BUILDING DESIGN PARTNERSHIP SHALL HAVE NO RESPONSIBILITY FOR ANY USE MADE OF THIS DOCUMENT OTHER THAN FOR THAT WHICH IT WAS PREPARED AND ISSUED. ALL DIMENSIONS SHOULD BE CHECKED ON SITE.

DO NOT SCALE FROM THIS DRAWING

ANY DRAWING ERRORS OR DIVERGENCIES SHOULD BE BROUGHT TO THE ATTENTION OF BUILDING DESIGN PARTNERSHIP AT THE ADDRESS SHOWN BELOW.

DRAWINGS SHALL BE READ IN CONJUNCTION WITH THE FOLLOWING BEFORE WORK COMMENCES: • THE CDM DESIGN ISSUES REGISTER

THE BDP RISK SERIES OF DRAWINGS
THE PROJECT CDM RISK REGISTER

NOTES

 DESIGN AND COORDINATION IS ONGOING. THIS IS A WORK IN PROGRESS DRAWING AND MEMBER SIZES OR LOCATIONS MAY CHANGE AS THE DESIGN DEVELOPS DURING STAGE 3.
 ALL INFORMATION IS INDICATIVE - SPECIALIST INPUT REQUIRED FROM CONTRACTORS TO FULLY DEVELOP DETAILS IN FUTURE STAGES.

3. LOCATION AND SIZE OF RISERS AND OTHER SERVICE OPENINGS TO BE CONFIRMED DURING THE DESIGN STAGE

4. OPENINGS IN CORE WALLS NOT SHOWN, TO BE COORDINATED DURING THE DESIGN STAGE5. INTUMESCENT PAINT REQUIRED FOR ALL STEEL BEAMS AND

COLUMNS TO ACHIEVE A 90 MIN FIRE RATING TYPICALLY. 6. EXTERNAL STEEL ELEMENTS SUCH AS PLANT SCREEN STEELWORK AND OTHER ITEMS AT ROOF LEVEL TO BE GALVANSIED OR STAINLESS STEEL.

7. ASSUMED THAT ALL STAIRS PRECAST CONCRETE TO SUBCONTRACTOR DESIGN

8. FOR MATERIAL GRADES PLEASE REFER TO STRUCTURAL OUTLINE SPECIFICATION GOSHCCC-BDP-ZZ-ZZ-SP-2000-3001

9. SECONDARY STEELWORK IS CURRENTLY BEING DEVELOPED AND IS NOT NECESSARILY COVERED DRAWINGS. PLANT SCREEN STEELWORK CAN BE FOUND ON THE DRAWINGS AND SECONDARY STEELWORK FOR THE CHIMNEYS CAN BE FOUND IN THE SKETCHBOOKS. OTHER ITEMS SUCH AS SECONDARY STEELWORK FOR THE FACADE AND PLANT SUPPORTS WILL BE DEVELOPED AS FURTHER INFORMATION BECOMES

AVAILABLE DURING THE DESIGN STAGE. 10. SITE INVESTIGATIONS REQUIRED TO CONFIRM FOUNDATIONS AND STRUCTURE OF EXISTING ADJACENT BUILDINGS. SUITABLE ASSUMPTIONS HAVE BEEN MADE WHERE INFORMATION IS NOT AVAILABLE.

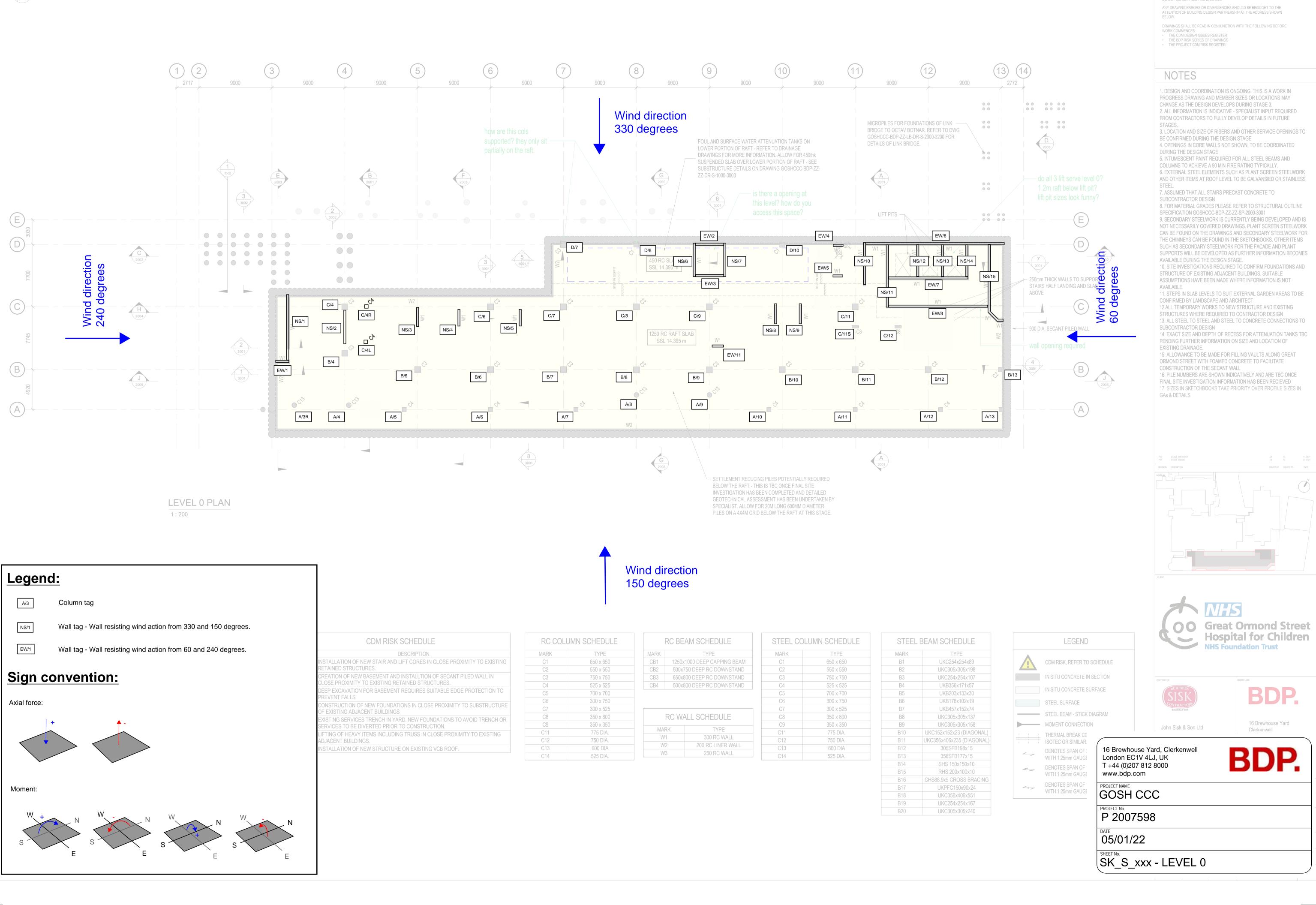
11. STEPS IN SLAB LEVELS TO SUIT EXTERNAL GARDEN AREAS TO BE CONFIRMED BY LANDSCAPE AND ARCHITECT

12 ALL TEMPORARY WORKS TO NEW STRUCTURE AND EXISTING STRUCTURES WHERE REQUIRED TO CONTRACTOR DESIGN 13. ALL STEEL TO STEEL AND STEEL TO CONCRETE CONNECTIONS TO SUBCONTRACTOR DESIGN

14. EXACT SIZE AND DEPTH OF RECESS FOR ATTENUATION TANKS TBC PENDING FURTHER INFORMATION ON SIZE AND LOCATION OF EXISTING DRAINAGE.

15. ALLOWANCE TO BE MADE FOR FILLING VAULTS ALONG GREAT ORMOND STREET WITH FOAMED CONCRETE TO FACILITATE CONSTRUCTION OF THE SECANT WALL

16. PILE NUMBERS ARE SHOWN INDICATIVELY AND ARE TBC ONCE FINAL SITE INVESTIGATION INFORMATION HAS BEEN RECIEVED 17. SIZES IN SKETCHBOOKS TAKE PRIORITY OVER PROFILE SIZES IN GAS & DETAILS


GREAT ORMOND STREET HOSPITAL

LEVEL 00 PLAN

DRAWING NO.							
GOSHC	GOSHCCC-BDP-ZZ-00-DR-S-2300-1300						
STATUS/SUITABILITY			SCALE	DRAWING SIZE	REVISION DATE		
S3 - For Review & Comment		As indicated	@ A1	11.0	8.21		
DRAW BY	CHECKED BY	APPROVED BY	PURPOSE OF ISSUE			REVISION	
OB	TC	TC	Preliminary			P02	

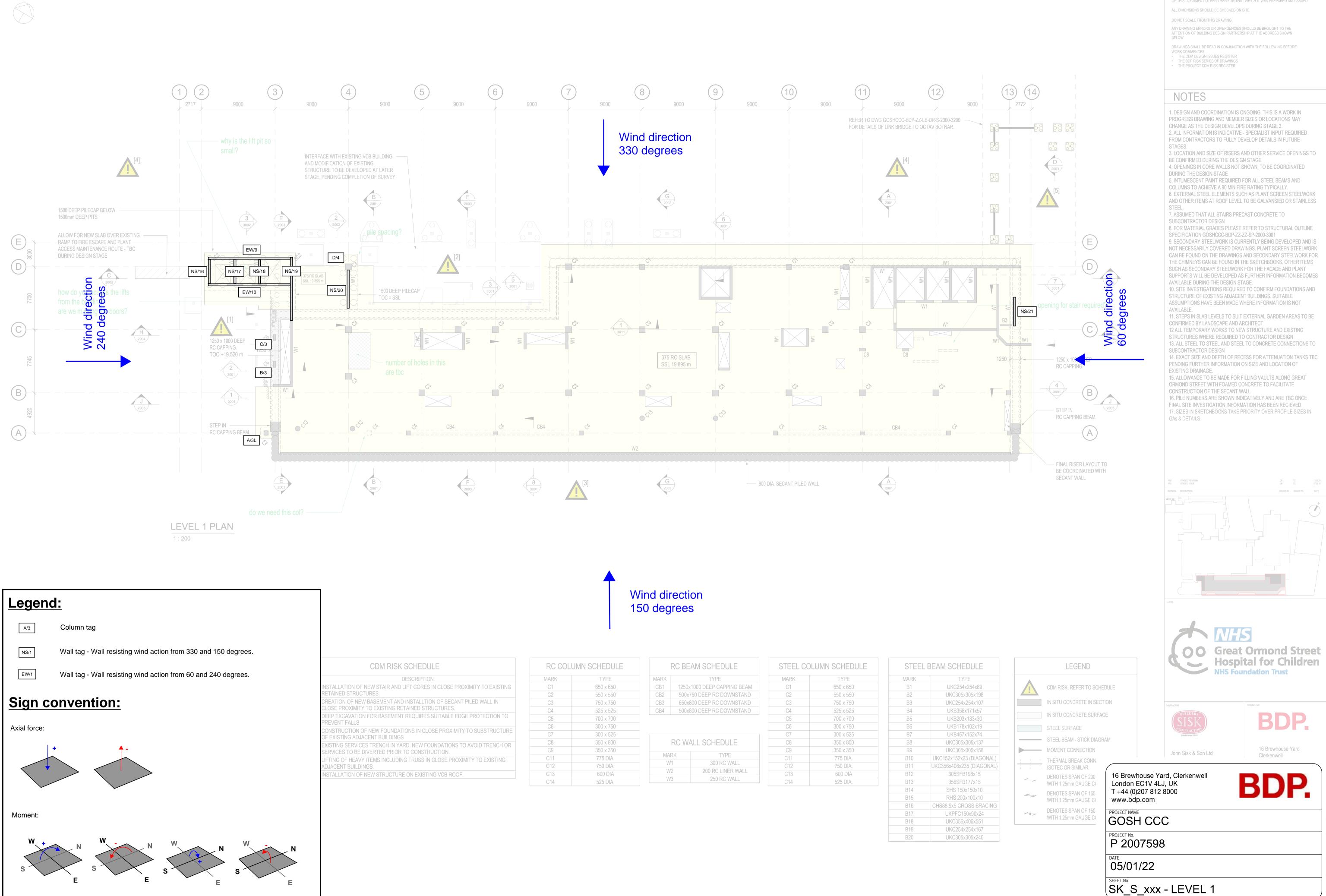
PROJECT NUMBER

2007598

EXISTING	
LIN	
TION TO	
RUCTURE	
RENCH OR	
(ISTING	

RC	RFAM	SCHEDUI	

NO DEAM OUTEDOLL		
MARK	TYPE	
CB1	1250x1000 DEEP CAPPING BEAM	
CB2	500x750 DEEP RC DOWNSTAND	
CB3	650x800 DEEP RC DOWNSTAND	


0DJ	030X000 DELI ING DOWINGTAND	
CB4	500x800 DEEP RC DOWNSTAND	

RC WALL SCHEDULE		
MARK	TYPE	
VV1	300 RC WALL	
W2	200 RC LINER WALL	
W3	250 RC WALL	

STEEL COLUMN SCHEDULE	
MARK	TYPE
C1	650 x 650
C2	550 x 550
C3	750 x 750
C4	525 x 525
C5	700 x 700
C6	300 x 750
C7	300 x 525
C8	350 x 800
С9	350 x 350
C11	775 DIA.
C12	750 DIA.
C13	600 DIA
C14	525 DIA.

STEEL BEAM SCHEDULE		
MARK	TYPE	
B1	UKC254x254x89	
B2	UKC305x305x198	
B3	UKC254x254x107	
B4	UKB356x171x57	
B5	UKB203x133x30	
B6	UKB178x102x19	
B7	UKB457x152x74	
B8	UKC305x305x137	
B9	UKC305x305x158	
B10	UKC152x152x23 (DIAGONAL)	
B11	UKC356x406x235 (DIAGONAL)	
B12	305SFB198x15	
B13	356SFB177x15	
B14	SHS 150x150x10	
B15	RHS 200x100x10	
B16	CHS88.9x5 CROSS BRACING	
B17	UKPFC150x90x24	
B18	UKC356x406x551	
B19	UKC254x254x167	
B20	UKC305x305x240	

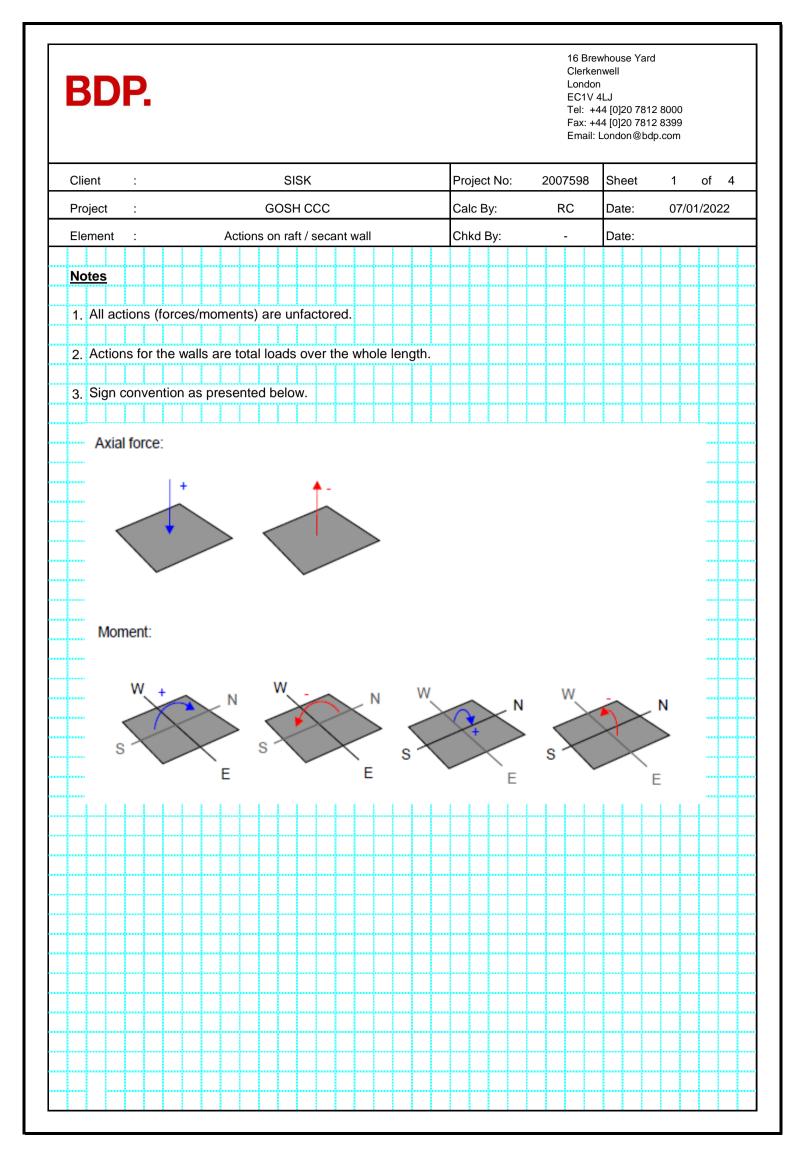
OF THIS DOCUMENT OTHER THAN FOR THAT WHICH IT WAS PREPARED AND ISSUED. ALL DIMENSIONS SHOULD BE CHECKED ON SITE.

EXISTING	
_L IN	
TION TO	
RUCTURE	
RENCH OR	
KISTING	

	RC COLU	MN SCHEDULE
	MARK	TYPE
TING	C1	650 x 650
	C2	550 x 550
	C3	750 x 750
	C4	525 x 525
ITO	C5	700 x 700
TURE	C6	300 x 750
IURE	C7	300 x 525
HOR	C8	350 x 800
	C9	350 x 350
NG	C11	775 DIA.
	C12	750 DIA.
	C13	600 DIA
	C14	525 DIA

RC BEAM	SCHEDULE
---------	----------

MARK	TYPE
CB1	1250x1000 DEEP CAPPING BEAM
CB2	500x750 DEEP RC DOWNSTAND
CB3	650x800 DEEP RC DOWNSTAND
004	


0 - 0	
CB4	500x800 DEEP RC DOWNSTAND

RC WALL SCHEDULE		
MARK	TYPE	
VV1	300 RC WALL	
W2	200 RC LINER WALL	
W3	250 RC WALL	

STEEL COLUMN SCHEDULE	
MARK	TYPE
C1	650 x 650
C2	550 x 550
C3	750 x 750
C4	525 x 525
C5	700 x 700
C6	300 x 750
C7	300 x 525
C8	350 x 800
C9	350 x 350
C11	775 DIA.
C12	750 DIA.
C13	600 DIA
C14	525 DIA.

STEEL E	BEAM SCHEDULE
MARK	TYPE
B1	UKC254x254x89
B2	UKC305x305x198
B3	UKC254x254x107
B4	UKB356x171x57
B5	UKB203x133x30
B6	UKB178x102x19
B7	UKB457x152x74
B8	UKC305x305x137
B9	UKC305x305x158
B10	UKC152x152x23 (DIAGONAL)
B11	UKC356x406x235 (DIAGONAL)
B12	305SFB198x15
B13	356SFB177x15
B14	SHS 150x150x10
B15	RHS 200x100x10
B16	CHS88.9x5 CROSS BRACING
B17	UKPFC150x90x24
B18	UKC356x406x551
B19	UKC254x254x167
B20	UKC305x305x240

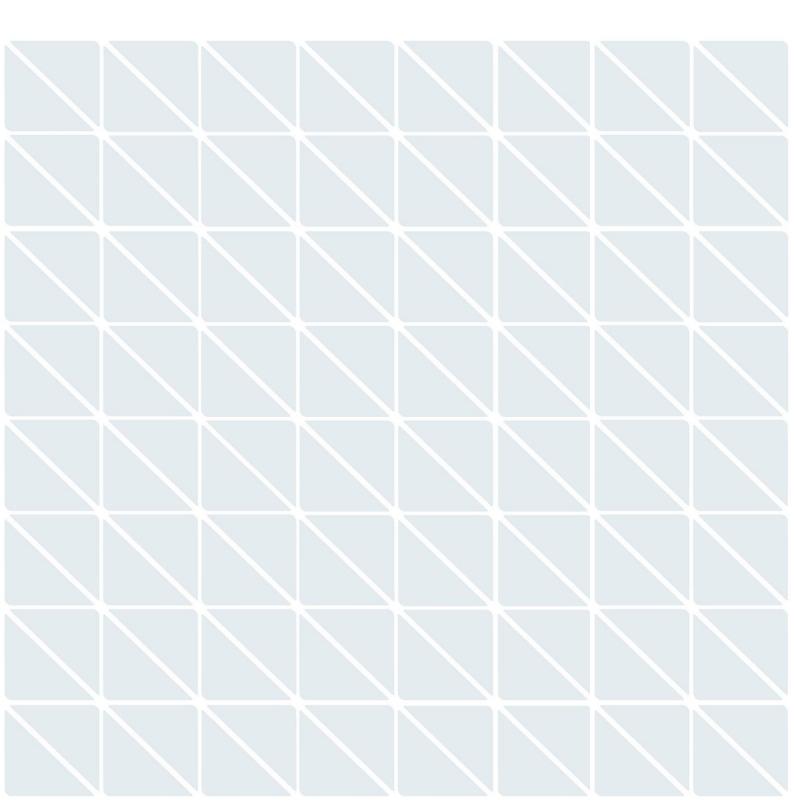
OF THIS DOCUMENT OTHER THAN FOR THAT WHICH IT WAS PREPARED AND ISSUED.

Clerkenwell **BDP**. London EC1V 4LJ Tel: +44 [0]20 7812 8000 Fax: +44 [0]20 7812 8399 Email: London@bdp.com Client : SISK Project No: 2007598 Sheet 2 4 of Project GOSH CCC Calc By: RC Date: 07/01/2022 : Element : Actions on raft / secant wall Chkd By: Date: _ Column / Wall Ref. **Permanent load** Imposed load kΝ kΝ ЗL 1620 300 А 3R 1570 405 А 4 715 А 2645 5 А 3405 805 А 6 4290 960 7 3120 705 А А 8 2575 675 А 9 2530 650 А 10 3240 725 А 11 4495 1000 А 12 3435 855 Α 13 1180 320 В 3 1650 190 4 1545 В 5105 4R В 490 225 6235 В 5 2105 В 6 5990 2055 В 7 6800 2395 В 8 7400 2205 В 9 6620 1880 В 10 6020 2020 5825 1990 В 11 В 12 6055 2120 В 13 2245 760 С 3 1650 190 С 4 1675 560 С 4R 190 85 С 6 3165 1100 2470 С 7 5840 С 8 8120 3455 С 9 5445 2120 С 11 2105 735 11S 2920 1155 С С 12 2500 920 D 4 2475 790 D 7 5495 2050 D 8 4215 1560 D 10 3140 1030

16 Brewhouse Yard

Client	:		Project No	· 2007	7598 SI	Sheet 3 of 4					
					Calc By:				7/01/2022		
Eleme	nt :	Actions on	raft / secant wall		Chkd By:		- D	ate:			
Column /	/ Wall Ref.	Permanent load	Imposed load	Wind lo	ad (330)	Wind lo	ad (150)	Wind (60)	Wind (240)		
		kN	kN	N (kN)	M (kNm)	N (kN)	M (kNm) N (kN)	N (kN)		
NS	1	4785	970	595	-585	-600 590		-20	45		
NS	2	4460	1465	50	-5	-55	5	0	0		
NS	3	6210	2240	-10	-5	10	5	0	0		
NS	4	4665	1705	5	-20	-5	20	5	-5		
NS	5	5255	2000	10	-20	-10	20	-5	5		
NS	6	2800	860	35	-320	-35	315	20	-35		
NS	7	2790	855	-10	-330	10	325	-20	35		
NS	8	5500	2115	5	-35	-5	35	0	0		
NS	9	4685	1790	5	-35	-5	35	5	-5		
NS	10	3295	540	50	-480	-55	465	90	-145		
NS	11	5660	970	280	-1530	-270	1470	135	-225		
NS NS	12 13	3110 3195	440 450	-130	-360	125	345	20	30		
NS NS	13 14	3195	450	-175 -230	-340 -280	165 220	325 270	-20 -55	35 90		
NS	14	7575	455 1465	-230 40	-280 -2150	-25	270	-55	90 220		
NS	15	1645	1405	-95	-2150	100	2045	105	220		
NS	10	1800	135	-115	-213	115	285	45	-80		
NS	17	1840	155	-195	-200	200	310	-10	15		
NS	10	6920	1260	-180	-1725	175	1735	-150	305		
NS	20	8905	2775	-70	-1470	70	1470	-5	5		
	21	2615	300	50	-840	-45 795		-20	30		
NS							-				
NS	21							the second s) Wind (150		
	/ Wall Ref.	Permanent load	Imposed load	Wind lo	oad (60)	Wind lo	ad (240)	Wind (330)	Wind (150		
		Permanent load kN	Imposed load kN		oad (60) M (kNm)		ad (240) M (kNm		Wind (150) N (kN)		
			•		. ,		. ,				
Column /	/ Wall Ref. 1 2	kN 1465 2510	kN 295 735	N (kN) -5 -10	M (kNm) 0 -15	N (kN) 10 20	M (kNm 5 25) N (kN) 215 -340	N (kN) -220 330		
EW EW EW	/ Wall Ref. 1 2 3	kN 1465 2510 3075	kN 295 735 980	N (kN) -5 -10 10	M (kNm) 0 -15 -20	N (kN) 10 20 -20	M (kNm 5 25 25) N (kN) 215 -340 370	N (kN) -220 330 -360		
EW EW EW EW EW	/ Wall Ref. 1 2 3 4	kN 1465 2510 3075 2070	kN 295 735 980 555	N (kN) -5 -10 10 10	M (kNm) 0 -15 -20 0	N (kN) 10 20 -20 -15	M (kNm 5 25 25 0) N (kN) 215 -340 370 -20	N (kN) -220 330 -360 20		
EW EW EW EW EW EW	/ Wall Ref. 1 2 3 4 5	kN 1465 2510 3075 2070 2280	kN 295 735 980 555 810	N (kN) -5 -10 10 10 15	M (kNm) 0 -15 -20 0 0	N (kN) 10 20 -20 -15 -20	M (kNm 5 25 25 0 0	 N (kN) 215 -340 370 -20 15 	N (kN) -220 330 -360 20 -15		
EW EW EW EW EW EW EW	/ Wall Ref. 1 2 3 4 5 6	kN 1465 2510 3075 2070 2280 11290	kN 295 735 980 555 810 1440	N (kN) -5 -10 10 10 15 -50	M (kNm) 0 -15 -20 0 0 -960	N (kN) 10 20 -20 -15 -20 100	M (kNm 5 25 25 0 0 1555	 N (kN) 215 -340 370 -20 15 -1800 	N (kN) -220 330 -360 20 -15 1715		
EW EW EW EW EW EW EW EW	V Wall Ref. 1 2 3 4 5 6 7	kN 1465 2510 3075 2070 2280 11290 7125	kN 295 735 980 555 810 1440 1160	N (kN) -5 -10 10 10 15 -50 40	M (kNm) 0 -15 -20 0 0 -960 -265	N (kN) 10 20 -20 -15 -20 100 65	M (kNm 5 25 25 0 0 1555 430	 N (kN) 215 -340 370 -20 15 -1800 385 	N (kN) -220 330 -360 20 -15 1715 -375		
EW EW EW EW EW EW EW EW	/ Wall Ref. 1 2 3 4 5 6 7 8	kN 1465 2510 3075 2070 2280 11290 7125 9650	kN 295 735 980 555 810 1440 1160 2170	N (kN) -5 -10 10 10 15 -50 40 65	M (kNm) 0 -15 -20 0 0 -960 -265 -460	N (kN) 10 20 -20 -15 -20 100 65 -115	M (kNm 5 25 25 0 0 1555 430 770	 N (kN) 215 -340 370 -20 15 -1800 385 1270 	N (kN) -220 330 -360 20 -15 1715 -375 -1210		
EW EW EW EW EW EW EW EW EW	V Wall Ref. 1 2 3 4 5 6 7 8 9	kN 1465 2510 3075 2070 2280 11290 7125 9650 2785	kN 295 735 980 555 810 1440 1160 2170 -155	N (kN) -5 -10 10 10 15 -50 40 65 35	M (kNm) 0 -15 -20 0 0 -960 -265 -460 -470	N (kN) 10 20 -20 -15 -20 100 65 -115 -85	M (kNm 5 25 25 0 0 1555 430 770 980	N (kN) 215 -340 370 -20 15 -1800 385 1270 -1380	N (kN) -220 330 -360 20 -15 1715 -375 -1210 1390		
EW EW EW EW EW EW EW EW EW	/ Wall Ref. 1 2 3 4 5 6 7 8	kN 1465 2510 3075 2070 2280 11290 7125 9650	kN 295 735 980 555 810 1440 1160 2170	N (kN) -5 -10 10 10 15 -50 40 65	M (kNm) 0 -15 -20 0 0 -960 -265 -460	N (kN) 10 20 -20 -15 -20 100 65 -115	M (kNm 5 25 25 0 0 1555 430 770	 N (kN) 215 -340 370 -20 15 -1800 385 1270 	N (kN) -220 330 -360 20 -15 1715 -375 -1210		

16 Brewhouse Yard Clerkenwell London EC1V 4LJ Tel: +44 [0]20 7812 8000 Fax: +44 [0]20 7812 8399 Email: London@bdp.com


Client		SISK					Project No	598	She	et	4	of	4					
Project : GOSH CCC				Calc By:		R	C	Date	e:	07/	22							
Element :		Actions on raft / secant wall						Chkd By:	-			Date:						
							Column /	Wall Ref.		ngth								
	ļļ									ım								
	ļļ						NS	1		60								
							NS	2		160								
							NS	3		100								
							NS	4		00								
							NS	5		000								
							NS	6		300								
							NS	7		300								
	ļļ						NS	8		230								
					ļ		NS	9		230								
					ļ		NS	10		25								
	ĮĮ						NS	11		700								
	ĮĮ						NS	12		250								
	ĮĮ				Ļ		NS	13		250								
	ĮĮ				ļ		NS	14		250								ļ
	ļ						NS	15		676							d	
							NS	16		260								
							NS	17	32	260								
							NS	18		260								
							NS	19		45								
							NS	20	47	40								
							NS	21	35	590								
							EW	1	14	75								
							EW	2	38	300								
							EW	3		300								
							EW	4	11	60								
							EW	5	11	60								
							EW	6	17	070								
							EW	7	98	350								
							EW	8	12	600								
							EW	9	10	075								
	l						EW	10	10	075								
	Ĩ						EW	11	14	60								
								0										
											i i i i i i i i i i i i i i i i i i i							
	la l		in the second		Î												un din nun	
	li anti anti anti anti anti anti anti ant				,	1								, in the second s		, in the second s		Ú.
	1				1	-								1				
	1				1	-				4								
	1				1							-		-		1		
	1				1					1	h			- free fr				<u>.</u>

BDP.

A-squared Studio Engineers Limited One Westminster Bridge Rd London, SE1 7XW

020 7620 2868 contact@a2-studio.com www.a2-studio.com

