

Meinhardt (UK) Ltd Co. Reg. No. 4131858

10 Aldersgate Street London EC1A 4HJ

T: +44 (0) 20 7831 7969

www.meinhardt.co.uk

03 May 2022

Our Ref: 2750 – Camden Lifestyle, Bayham St. Your Ref: 2020/5647/P

Camden Council

Dear Sir/Madam,

RE: Camden Lifestyle, Bayham St – Discharge of Condition 9

We have been commissioned by our client (Camden Lifestyle (UK) Limited to discharge **Planning Condition 9** associated with the consented planning application reference 2018/3647/P.

This specific pre-commencement condition stated:

Prior to commencement of any development other then works of demolition, site clearance & preparation, details of a sustainable urban drainage system shall be submitted to and approved in writing by the local planning authority. Such system shall be based on a 1:100 year event with 30% provision for climate change demonstrating 50% attenuation of all runoff. The system shall be implemented as part of the development and thereafter retained and maintained.

The existing site has been calcauted to have an existing discharge rate of 25.0 l/s for the 1:100 year event period, refer to Appendix A for MicroDrainage Calculations. As such the scheme has been designed on the basis of limiting the surface water discharge rate to 12.5 l/s for the 1:100 year + 30% climate change event.

This will be soley achieved by the use of a blue roof system, with some of the roof areas and a small area of hardstanding outside the building footprint draining unrestricted towards the outfall manhole from the site. The total blue roof plan extent is $201m^2$ and 100mm deep blue roof crates are proposed. The proposed drainage strategy (Appendix B), shows that the site will discharge at a rate of 12.4 l/s or lower for the 1:100 year + 30% climate change event. Refer to Appendix C for Bauder blue roof caclautions.

A summary of the proposed discharge rates are provided below:

- 1:1 Year Event = 2.1 l/s
- 1:30 Year Event = 7.1 l/s
- 1:100 + 30% CC Year Event = 12.4 l/s

Therefore the proposed drainage strategy complies with the requirement of 50% reduction on existing rates. Table 1 outlines each catchment area and the breakdown of discharge rates from the site.

Catment Area Name	Catchment Area (m ²)	Blue Roof Area (m²)	Discharge Rate (I/s)
Roof 1	73	48	0.18 (discharge rate calculated by Bauder)
Roof 2a	24	12	0.18 (discharge rate calculated by Bauder)
Roof 2b	96 + (102 from roof 3b) = 198	77	1.74 (discharge rate calculated by Bauder)
Roof 2c	16	7	0.18 (discharge rate calculated by Bauder)
Roof 3a	104	57	0.37 (discharge rate calculated by Bauder)
Roof 3b	102	0	Routed to roof 2b
Roof 4	40	0	Modified rational method used: Q=2.78iA = 2.78 x137x0.0040 = 1.523
External areas at ground level	185	0	Modified rational method used: Q=2.78iA =2.78x137x0.0185 = 7.046
Total	640	201	11.22

Table 1: Catchment areas and discharge rates

Drainage exceedance routes have also been considered and allowed for as part of the development of parameters to ensure that any surface water runoff exceeding the drainage network capacity would naturally flow away towards the existing highway drainage network. These exceedance routes are shown on drawing BST-MHT-XX-GF-DR-CV-0100 in Appendix B

Thames Water have confirmed that a discharge rate of 12.4 l/s from the site is acceptable, refer to the Thames Water correspondence in Appendix D.

A Drainage Maintenance and Management Strategy has been produced based on the information provided within the SUDS Manual, this is outlined in Appendix E. Camden Lifestyle (UK) Limited will be responsible for maintaining the drainage systems on-site once operational. Accordingly Camden Lifestyle (UK) Limited will 'appoint suitably qualified maintenance specialists directly or via a management agreement to undertake the maintenance work'.

Page 3/3

As part of this package of information we have provided the following:

Appendix A – Existing Surface Water Dicharge Rates Model (1:100 Year)

- Appendix B Drainage Strategy Drawings
- Appendix C Bauder Blue Roof Design
- Appendix D Thames Water Consultation
- Appendix E Drainage Maintenance and Management Strategy

If you have any queries we would be very pleased to discuss these with you.

Yours sincerely

Jasmine Houze Senior Civil Engineer

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ TEL: 020 7831 7969

Appendix A – Existing Surface Water Dicharge Rates Model (1:100 Year)

10 Aldersgate Street London 2750 Excla 4RJ Date 06/10/2015 Designed by MB Designed by MB Designe	Mein	hardt	(UK)	Ltd							Page	1	
EG1A 4HJ Existing 1:100 Year Designed by MB File 2750Existing Surface Checked by VB Innovyze Network 2020.1 Mano CL (n) Depth Connection DiamLW P Epe Out Sameter N Fipes In Innever Backdor (m) Depth Connection DiamLW P Epe Out Sameter N Invert Diameter Backdor (n) (m) Connection DiamLW P Epe Out Sameter N Invert Diameter Backdor (n) (m) Connection DiamLW P Epe Out Sameter N Invert Diameter Backdor (n) (m) Connection DiamLW P Epe Out Sameter N Invert Diameter Backdor (n) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m						Cai	nden 1	Lifestyle					
Date 06/10/2015 Pile 2750Existing Surface Checked by GB Innovyze Network 2020.1 Manbole Schedules for Storm Mm MH Mepth Connection Diam.LW PR Pipe Out Inneter PN Pipes In Invert Diameter DN Invert Diameter DN Level (m) (mm) (mm) (mm) (mm) 1 100.000 1.200 Open Manhole 1200 1.001 98.900 150 2 100.000 1.375 Open Manhole 1200 1.001 98.425 150 1.000 98.500 150 1 00.000 1.375 Open Manhole Intersection Intersection Manhole Layout Name Easting Northing Easting Northing Access (Morth) (m) (m) (m) (m) (m) 1 -9.081 99.003 -9.081 99.003 Required 2 62.860 100.188 62.860 100.188 Required 1 05.234 101.569 No Entry	Lond	lon				27	50						
Delega de los	EC1A	4HJ				Ex	isting	g 1:100 Ye	ar		Micc		
Innovyze Network 2020.1 Hotwork 2020.1 Hotwork 2020.1 Name Carlon Dependent of the State Stat	Date	06/10,	/2015)		De	signed	d by MB			Dcair		
Manhole Schedules for Storm Mam MH MH MH MH MH MH Pipe Out Diameter FM Pipes In 1 100.000 1.200 Dpent Manhole 1200 1.000 98.800 150 1.000 98.500 150 7 1 100.000 1.875 Open Manhole 1200 1.001 98.425 150 1.001 98.500 150 7 100.000 1.875 Open Manhole 1200 1.001 98.425 150 1.001 98.125 150 7 MM Manhole Manhole 1200 1.001 98.425 150 1.001 98.125 150 7 MM Manhole Intersection Intersection Manhole Layout 1.001 99.125 150 7 MM Manhole Manhole Intersection Nothing Access (North) 1.001 99.003 Feguired	File	2750	Exi	sting	Surfac	ce Ch	ecked	by GB			DIGII	lage	
MH MH MH MH MH MH PI Pipe Out (mm)	Inno	vyze				Ne	twork	2020.1					
Name CI (n) Depth Connection Diam.1.47 PN Invert Diameter Diameter Diameter Level (n) (nn) (nn) (nn) (nn) (nn) (nn) (nn)					Mar	nhole Sch	nedule	es for Sto	<u>rm</u>				
(m) (mm) Level (n) (mm) Level (n) (mm)								-			-		
2 100.000 1.575 Open Manhole 1200 0 OUTFALL 150 1.000 98.500 150 1.501 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 98.125 150 1.001 99.003 1.01 1.01 99.003 1.01 1.01 99.003 1.01 </th <th>Name</th> <th>CL (m)</th> <th>-</th> <th></th> <th>ection</th> <th></th> <th>PN</th> <th></th> <th></th> <th>PN</th> <th></th> <th></th> <th></th>	Name	CL (m)	-		ection		PN			PN			
100.000 1.875 Open Manhole 0 OUTFALL 1.001 98.125 150				-									
MH Manhole Manhole Intersection Intersection Manhole Layout Name Easting Northing Easting Northing Access (North) (m) (n) (n) 1 -9.081 99.003 -9.081 99.003 Required 2 62.860 100.188 62.860 100.188 Required 105.234 101.569 No Entry	2								150				
Name Easting Northing Access (North) 1 -9.081 99.003 -9.081 99.003 Required 2 62.860 100.188 62.860 100.188 Required 105.234 101.569 No Entry		100.000	1.87	5 Open 1	Manhole	0		OUTFALL		1.001	98.125	150)
1 -9.081 99.003 -9.081 99.003 Required 2 62.860 100.188 62.860 100.188 Required 105.234 101.569 No Entry				Easting	Northi	.ng East	ing	Northing					
2 62.860 100.188 62.860 100.188 Required 105.234 101.569 No Entry			1			-	-		2 D .	,			
105.234 101.569 No Entry			Ţ	-9.081	99.0		-9.081	99.00	3 Kequire	ea			
			2	62.860	100.1	.88 (62.860	100.18	8 Require				
				105.234	101.5	69			No Enti	су			
©1982-2020 Innovyze						@1000 r)))))))))))))))))) ,)))) ,))) ,)) ,) ,)) ,) ,)) ,) ,) ,) ,) ,) ,) ,) ,) ,) ,) , ,) ,) , ,) , ,) , ,) , ,) ,	nnotitiza					

Meinhardt (UK) Ltd		Page 2
10 Aldersgate Street	Camden Lifestyle	
London	2750	
EC1A 4HJ	Existing 1:100 Year	Micro
Date 06/10/2015	Designed by MB	Drainage
File 2750Existing Surface	Checked by GB	Diamaye
Innovyze	Network 2020.1	1

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

- Indicates pipe length does not match coordinates

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	150	1	100.000	98.800	1.050	Open Manhole	1200
1.001	0	150	2	100.000	98.425	1.425	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
	30.000# 30.000#						Open Manhole Open Manhole	1200 0

Meinhardt (UK) Ltd		Page 3
10 Aldersgate Street	Camden Lifestyle	
London	2750	
EC1A 4HJ	Existing 1:100 Year	— Micro
Date 06/10/2015	Designed by MB	
File 2750Existing Surface	. Checked by GB	Drainag
Innovyze	Network 2020.1	
<u>Are</u> Pipe PIMP PIMP	a Summary for Storm PIMP Gross Imp. Pipe Total	
Number Type Name	(%) Area (ha) Area (ha) (ha)	
	100 0.032 0.032 0.032 100 0.032 0.032 0.032 Total Total Total 0.064 0.064 0.064	
Free Flowin	q Outfall Details for Storm	
<u>rice</u> riowiii	g outlatt betatts for Storm	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m))
1.001	100.000 98.125 0.000 0 0	0
Simulat	tion Criteria for Storm	
Number of Online Co) 0 Flow per Person per Day (l/pe:) 0.500 Run Time	r/day) 0.000 (mins) 60 (mins) 1 : 0 : 0
Synth	<u>etic Rainfall Details</u>	
		_
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R	FSR Profile Type 100 Cv (Summer) gland and Wales Cv (Winter) 20.700 Storm Duration (mins) 0.438	0.750 0.840

CIA 4HJ Date 06/10/20 Tile 27501 Ennovyze <u>1 year Retur</u> Manhole H Foul Se	D15 Existing Su En Period St Areal Reduction Hot Start Lo eadloss Coeff wage per hect. Number of Ing Number of Of Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	2750 Existin Designe Checked Network of Critica for St imulation 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu htrols 0 Nu htrols 0 Nu	<u>Criteria</u> dditional F MADD Fac w per Perso umber of Sto umber of Tin umber of Rea fall Details	by Ma by Ma low - % tor * 10 Inlet n per Da prage St me/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	Level (Al Flow 0 Storage 2 Lecient 0 er/day) 0 s 0 s 0 s 0	.000 .000 .800
Manhole H Foul Se	Areal Reducting Hot Start La eadloss Coeff wage per hect. Number of Inp Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	Existin Designe Checked Network of Critica for St imulation 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu	ed by MB d by GB c 2020.1 al Results corm Criteria dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Rea fall Details	s by Ma low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	Level (Al Flow 0 Storage 2 Lecient 0 er/day) 0 s 0 s 0 s 0	ainag Rank 1) .000 .000 .800
Date 06/10/2 Date 06/10/2 Date 27501 Ennovyze <u>1 year Retur</u> Manhole H Foul Se	Areal Reducting Hot Start La eadloss Coeff wage per hect. Number of Inp Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	Designe Checked Network of Critica for St imulation 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu	ed by MB d by GB c 2020.1 al Results corm Criteria dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Rea fall Details	s by Ma low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	Level (Al Flow 0 Storage 2 Lecient 0 er/day) 0 s 0 s 0 s 0	ainag Rank 1) .000 .000 .800
Tile 27501 Innovyze <u>1 year Retur</u> Manhole H Foul Se	Areal Reducting Hot Start La eadloss Coeff wage per hect. Number of Inp Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	Checked Network of Critica for St imulation 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu ntrols 0 Nu	d by GB c 2020.1 al Results orm <u>Criteria</u> dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Rea fall Details	low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	Level (Al Flow 0 Storage 2 Lecient 0 er/day) 0 s 0 s 0 s 0	ainag Rank 1 .000 .000 .800
nnovyze <u>1 year Retur</u> Manhole H Foul Se	Areal Reduction Hot Start Lo eadloss Coeff wage per hect. Number of Ing Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	Checked Network of Critica for St imulation 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu ntrols 0 Nu	d by GB c 2020.1 al Results orm <u>Criteria</u> dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Rea fall Details	low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	Level (al Flow 0 Storage 2 Lecient 0 er/day) 0 s 0 s 0 s 0	Rank 1)
Innovyze <u>1 year Retur</u> Manhole H Foul Se	Areal Reduction Hot Start Lo eadloss Coeff wage per hect. Number of Ing Number of Of Rainfall	<u>ummary o</u> on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor Efline Cor <u>Synth</u> L Model	Network	2020.1 al Results orm <u>Criteria</u> dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Res <u>fall Details</u>	low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	al Flow O Storage 2 Lecient O er/day) O s O s O	.000 .000 .800
<u>1 year Retui</u> Manhole H Foul Se	Areal Reducti Hot Sta Hot Start L eadloss Coeff wage per hect Number of Inp Number of Of Number of Of Rainfall	S on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor ffline Cor <u>Synth</u> I Model	<u>f Critica</u> <u>for St</u> <u>imulation</u> 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu ntrols 0 Nu	al Results orm Criteria dditional F MADD Fac w per Perso umber of Sto umber of Sto umber of Res fall Details	low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	al Flow O Storage 2 Lecient O er/day) O s O s O	.000 .000 .800
Manhole H Foul Se	Areal Reducti Hot Sta Hot Start L eadloss Coeff wage per hect Number of Inp Number of Of Number of Of Rainfall	S on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydrog Dnline Cor ffline Cor <u>Synth</u> I Model	<u>for St</u> <u>imulation</u> 1.000 A 0 0.500 Flo 0.000 graphs 0 Nu ntrols 0 Nu ntrols 0 Nu ntrols 0 Nu	<u>Criteria</u> dditional F MADD Fac w per Perso umber of Sto umber of Tin umber of Rea fall Details	low - % tor * 10 Inlet n per Da prage St ne/Area al Time	of Tota Dm³/ha S t Coeffi ay (l/pe ructure: Diagram:	al Flow O Storage 2 Lecient O er/day) O s O s O	.000 .000 .800
Manhole H Foul Se	Hot Sta Hot Start L eadloss Coeff wage per hect. Number of Inp Number of C Number of Of Rainfall	on Factor rt (mins) evel (mm) (Global) are (l/s) out Hydrog Online Cor Efline Cor <u>Synth</u> L Model	1.000 A 0 0.500 Flo 0.000 graphs 0 Nu htrols 0 Nu htrols 0 Nu htrols Rainf	dditional F MADD Fac w per Perso umber of Sto umber of Tin umber of Rea fall Details	tor * 1(Inlet n per Da prage St ne/Area al Time	Dm³/ha S c Coeffi ay (l/pe ructure: Diagram	Storage 2 lecient 0 er/day) 0 s 0 s 0	.000 .800
		50 (mm)	-	Wales Cv (9 20.600 Cv (9		0.750		
		50 (IIIII)	E.		, incer,	0.010		
Ret		rofile(s) s) (mins)	DTS Sta	tep Fine I tus ON 0, 120, 240,	Summ 360, 4	er and 1	Winter , 1440	
	Climate Cł	hange (%)				0, 0	, 0, 0	Water
US/MH			te First				Overflow	
PN Name	Storm Peri	iod Chang	e Surcha	arge Flo	ood O	verflow	Act.	(m)
	5 Winter 5 Winter)% 100/15 \$)% 20/15 \$					98.854 98.501
us/I	Surcharged M Depth		Flow / Ove		Drain H me H	Pipe Clow	Le	vel
PN Nam	-	(m³)					atus Exce	eded
1 000	1 0.000	0 000	0.00			4 7	0.11	
1.000 1.001	1 -0.096 2 -0.074		0.28 0.51			4.7 8.6	OK OK	
	0.071	5.000						

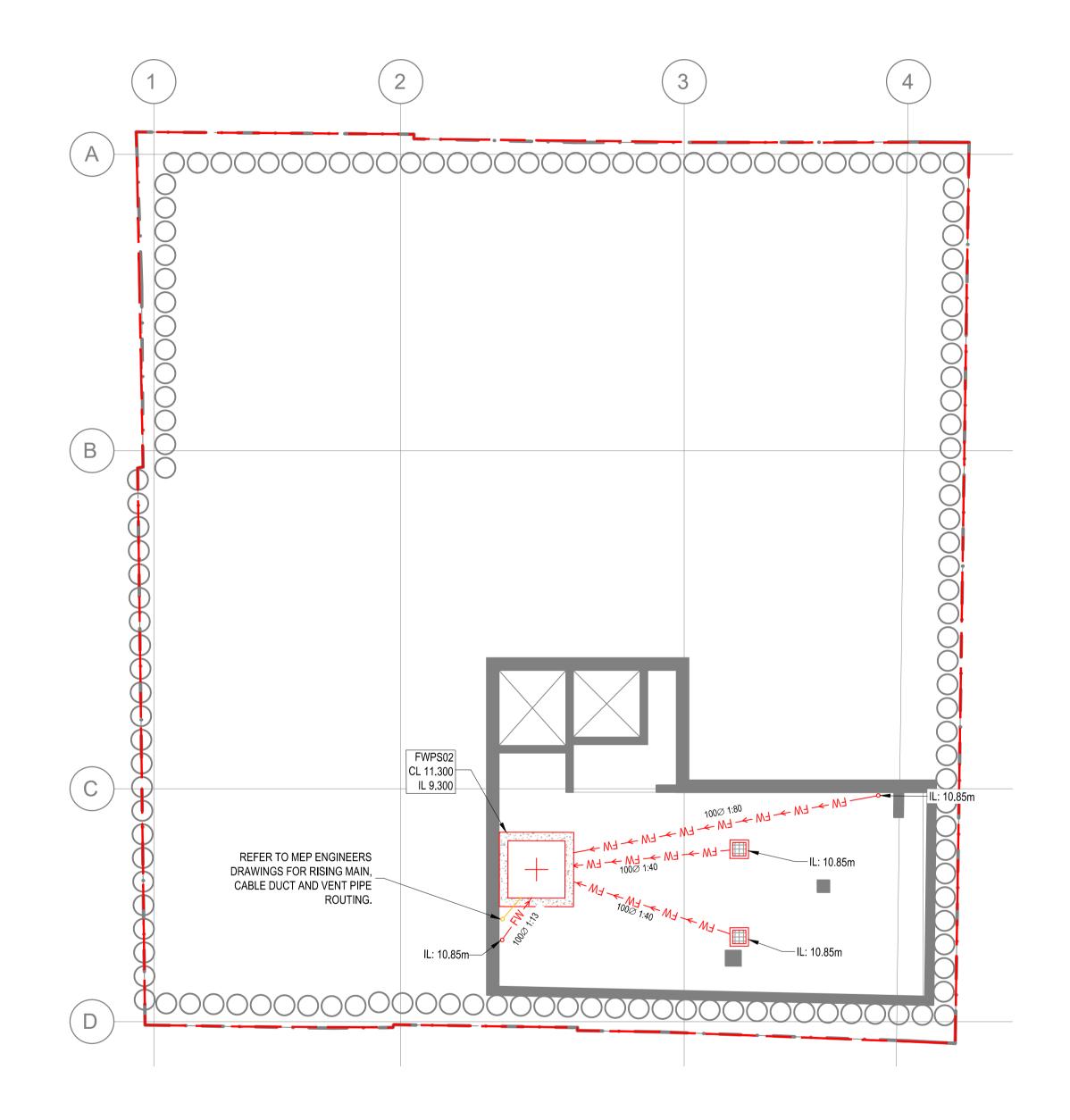
©1982-2020 Innovyze

ondon CIA 4HJ Date 06/10 Tile 2750- nnovyze 20 year Re Manhol	Existing eturn Period Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	L Summary Stion Factor Start (mins) E Level (mm) Stf (Global) Sctare (l/s) Input Hydro f Online Co Offline Co	2750 Existin Designe Checked Network of Critic for St Simulation r 1.000 A 0 0 0 0.500 Flo 0 0.500 Flo 0 0.000	2020.1 al Results orm <u>Criteria</u> dditional Flow MADD Factor	by Maxim w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage offiecient /per/day)	0.000 2.000 0.800
C1A 4HJ Vate 06/10 Vile 2750- nnovyze 20 year Re Manhol	Existing eturn Period Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	L Summary Stion Factor Start (mins) E Level (mm) Stf (Global) Sctare (l/s) Input Hydro f Online Co Offline Co	Existin Designe Checked Network of Critic for St Simulation r 1.000 A 0 0 0 0.500 Flo 0 0.500 Flo 0 0.000	ed by MB d by GB c 2020.1 cal Results corm Criteria dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	by Maxim w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage offiecient /per/day)	Drainage L (Rank 1 . 0.000 2.000 0.800
Date 06/10 Pile 2750- nnovyze 20 year Re Manhol	Existing eturn Period Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	L Summary Stion Factor Start (mins) E Level (mm) Stf (Global) Sctare (l/s) Input Hydro f Online Co Offline Co	Designe Designe Checked Network of Critic for St Simulation r 1.000 A 0 0 0 0 0 0 0 0 0 0 0 0 0	ed by MB d by GB c 2020.1 cal Results corm Criteria dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	by Maxim w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage offiecient /per/day)	Drainage L (Rank 1 . 0.000 2.000 0.800
'ile 2750- nnovyze 20 year Re Manhol	Existing eturn Period Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	L Summary Stion Factor Start (mins) E Level (mm) Stf (Global) Sctare (l/s) Input Hydro f Online Co Offline Co	Checked Network of Critic for St Simulation r 1.000 A 0 0 0 0.500 Flo 0 0.000 ographs 0 Nu ntrols 0 Nu	d by GB 2020.1 Cal Results Orm Criteria dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage offiecient /per/day)	Drainage L (Rank 1 . 0.000 2.000 0.800
nnovyze 20 year Re Manhol	eturn Period Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	L Summary Stion Factor Start (mins) E Level (mm) Stf (Global) Sctare (l/s) Input Hydro f Online Co Offline Co	Network of Critic for St Simulation r 1.000 r 0 0	2020.1 <u>al Results</u> <u>orm</u> <u>Criteria</u> dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	otal Flow a Storage ffiecient /per/day)	0.000 2.000 0.800
20 year Re Manhol	Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	stion Factor Start (mins) Level (mm) off (Global) ectare (l/s) Input Hydro f Online Co Offline Co	<u>of Critic</u> <u>for St</u> <u>Simulation</u> r 1.000 A) 0) 0.500 Flo) 0.000 ographs 0 Nu ntrols 0 Nu	<u>orm</u> <u>Criteria</u> dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage ffiecient /per/day)	0.000 2.000 0.800
Manhol	Areal Reduc Hot S Hot Start e Headloss Coe Sewage per he Number of Number of	stion Factor Start (mins) Level (mm) off (Global) ectare (l/s) Input Hydro f Online Co Offline Co	<u>for St</u> Simulation r 1.000 A) 0) 0.500 Flo) 0.000 ographs 0 Nu ntrols 0 Nu	<u>Orm</u> <u>Criteria</u> dditional Flow MADD Factor w per Person p umber of Stora umber of Time/	w - % of T r * 10m³/h Inlet Coe per Day (1 ge Structu Area Diagu	Cotal Flow a Storage ffiecient /per/day)	0.000 2.000 0.800
			ntrols 0 Nu	umber of Real			
	Rainfa		hetic Rainf	all Details	Time Conti		
	M	all Model	ingland and	FSR Rat Wales Cv (Sum 20.600 Cv (Win	mer) 0.75	0	
	Margin for		lysis Timest	nm) 300.0 tep Fine Ine: tus ON			
	Return Period		15, 30, 60), 120, 240, 3	60, 480, 9 1, 20,	nd Winter 960, 1440 , 30, 100 , 0, 0, 0	
				arge Flood Summer	(Y) First I Overf]		
	Surcharged			Half Drain	-		
	/MH Depth ame (m)		low / Overf Cap. (1/s		Flow (1/s)	Status	Level Exceeded
1.000 1.001	1 -0.063 2 0.100		0.61 1.15		10.4 19.6 St	OK JRCHARGED	

London EC1A 4HJ Date 06/10 File 2750- Innovyze	gate Street)/2015 Existing eturn Peric	g Surface.	275 Exi Des Che Net	isting 1 signed by ecked by twork 202 itical F	:100 Yea y MB GB 20.1			Micro Drainage
EC1A 4HJ Date 06/10 File 2750- Innovyze	Existing		Exi Des Che Net	isting 1 signed by ecked by twork 202 itical F	y MB GB 20.1			
Date 06/10 File 2750- Innovyze	Existing		Des Che Net	ecked by work 202	y MB GB 20.1			
File 2750- Innovyze	Existing		Des Che Net	ecked by work 202	y MB GB 20.1			
File 2750- Innovyze	Existing		Net	ecked by work 202	GB 20.1			urainage
Innovyze			Net	twork 202	20.1		•	
-	eturn Peric	od Summary	y of Cr	itical F				
<u>30 year R</u>	eturn Peric	od Summary			Results h			
				<u>or Storm</u>	<u>tebureb</u> x	<u>oy Maxi</u>	<u>mum Leve</u>	<u>l (Rank 1)</u>
	Hot Hot Sta e Headloss C Sewage per Number of Number		tor 1.000 (15) ((15) (0 MA 0 0 Flow per 0 0 Number 0 Number	ional Flow ADD Factor r Person p of Storag of Time/2	e * 10m³/ Inlet Co per Day (ge Struc Area Diag	'ha Storage beffiecient (l/per/day) tures 0 grams 0	e 2.000 c 0.800
		nfall Model	England	l and Wale			50	
	Margin f	or Flood Ri An	nalysis 7		Fine Iner			
	Return Perio	Profile(ion(s) (min od(s) (year te Change (s) 15, 3 s)	80, 60, 12	0, 240, 30	60, 480, 1, 2	and Winter 960, 1440 0, 30, 100 0, 0, 0, 0	
US/M PN Nam 1.000 1.001		Return Clin Period Cha 30 30	ange S +0% 100	First (X) Surcharge 0/15 Summe 0/15 Summe	Flood		: (Z) Overf flow Act	
119	Surcharge /MH Depth	ed Flooded	Flow /	I Overflow	Half Drain Time	n Pipe Flow		Level
	ume (m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
			0.67			11.4	OK	

einhardt (UK) Ltd			Page 7
0 Aldersgate Street	Camden Lif	festyle	
ondon	2750		
C1A 4HJ	Existing 1	:100 Year	Micco
ate 06/10/2015	Designed k		Micro
ile 2750Existing Surfa		-	Drainago
nnovyze	Network 20		
	Network 20	20.1	
<u>100 year Return Period S</u>	ummary of Critica <u>1) for Stor</u>		ximum Level (Rank
Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onl	el (mm) 0 Global) 0.500 Flow pe	ional Flow - % of MADD Factor * 10m³ Inlet Co er Person per Day r of Storage Struc r of Time/Area Dia	/ha Storage 2.000 beffiecient 0.800 (l/per/day) 0.000 stures 0 grams 0
Rainfall M Re M5-60	gion England and Wale	SR Ratio R 0.4	50
Margin for Floc	od Risk Warning (mm) Analysis Timestep DTS Status	Fine Inertia Sta	
		20, 240, 360, 480,	and Winter 960, 1440 0, 30, 100 0, 0, 0, 0
·		er	Water t (Z) Overflow Level flow Act. (m) 99.110 98.932
		Welf Durin Dine	
Surcharged Floc US/MH Depth Vol	ume Flow / Overflow	Half Drain Pipe Time Flow	Level
· –	(1/s)	(mins) (1/s)	Status Exceeded
1.000 1 0.160 0.	.000 0.77	13.1	SURCHARGED
1.001 2 0.357 0.	.000 1.47	25.0	SURCHARGED

Appendix B – Drainage Strategy Drawings

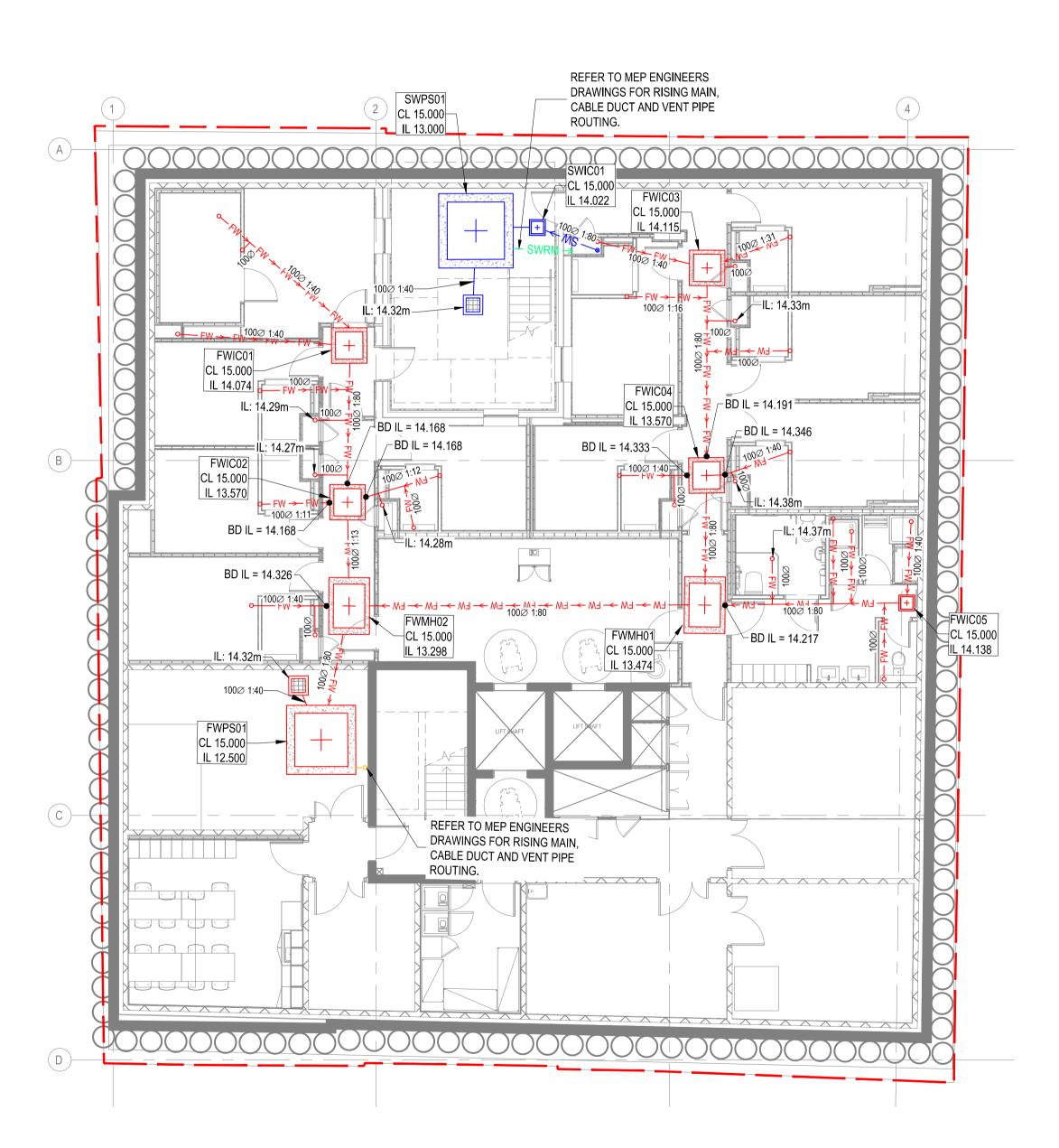


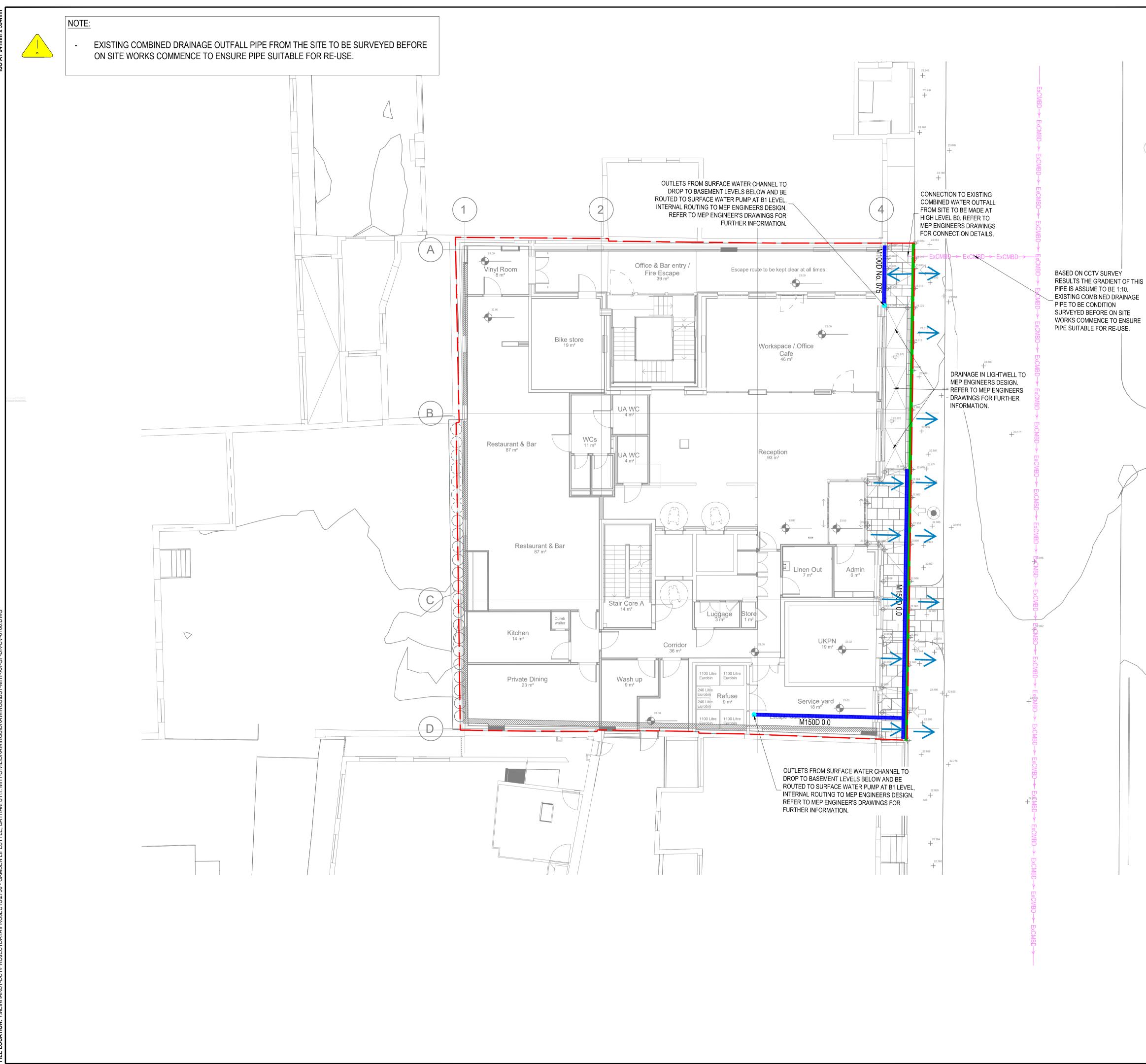
 CAVITY DRAINAGE NETWORK AND ASSOCIATED PUMP REQUIREMENTS DESIGNED BY DELTA MEMBRANES. REFER TO DELTA MEMBRANES DRAWINGS FOR LOCATIONS OF SUMPS AND CAVITY DRAINAGE SYSTEMS.
 FOUL WATER PUMP STATION ELECTRICAL SUPPLY TO BE CONNECTED TO BACK UP

GENERATOR.

NOTE:

STAGE 4+ ISSUE		
REV DESCRIPTION P01 STAGE 3 ISSUE P02 STAGE 4 ISSUE P03 STAGE 4 ISSUE	DHF JH	DATE 23.07.21 17.12.21
P03 STAGE 4+ ISSUE	JH	21.04.22
NOTES: 1. DO NOT SCALE FROM THIS DRAWING		
 ALL DIMENSIONS ARE IN METRES UNLESS NOTE OTHERWISE. THIS DRAWING IS FOR STAGE 4+ PURPOSES ONL)
 SHOULD NOT BE USED FOR CONSTRUCTION. 4. DRAWINGS ARE TO BE READ IN CONJUNCTION W RELEVANT ARCHITECTS, ENGINEERS AND CONS 		
 DRAWINGS AND SPECIFICATIONS. 5. DRAWING BASED ON: TOPOGRAPHICAL SURVEY RECEIVED MAY 		
POINT 2 SURVEYORSTHAMES WATER ASSET RECORDS OBTAINED	ED 16	
 DEXTER MOREN ASSOCIATES ARCHITECTULAYOUTS RECEIVED 23.03.22 MEINHARDT STRUCTURAL DRAWINGS ISSU 	ED 09	9.09.21
 MEINHARDT MEP LAYOUTS ISSUED 11.04.22 6. ALL DOWN POINTS TO BE RODDABLE FROM ABO STRUCTURAL SLAB 		ΗE
 RISING MAIN AND VENT PIPE ROUTING FROM PU CHAMBER TO MEP ENGINEERS DESIGN. FOR BELOW GROUND DRAINAGE DETAILS REFERENCE 		инт
DRAWING SERIES 2750-MHT-CV-BG-DR-20X. 9. FOR BELOW GROUND DRAINAGE MANHOLE SCH	EDUL	ES
REFER TO MHT DRAWING SERIES 2750-MHT-CV-	3G-DF	₹-25X.
KEY:		
SITE BOUNDARY		
→ FW → PROPOSED FOUL WATER F → FWRM → PROPOSED FOUL WATER F		6 MAIN
PROPOSED FOUL WATER I CHAMBER / MANHOLE	NSPE	CTION
FOUL WATER GULLY FOUL WATER DRAIN POINT	r	
BACKDROP	I	
CDM RESIDUAL CIVIL / STRUCTURAL DESIGN F	risks	
10 Aldersgate Street, London EC1A 4JU		
Telephone: +44 (0)20 7831 7969 www.meinhardt.co.uk		
7 A,B,C BAYHAM STREET		
LONDON NW1 0EY		
CLIENT CAMDEN LIFESTYLE (UK)		
PROPOSED BELOW GROUND		
FOUL WATER DRAINAGE LAYOUT BASEMENT -2		
	SCALI	
CIVIL DRAWN DESIGNED CHECKED	1:1 APPR	OVED
JH JH CM	GB	Ē
BST-MHT-XX-B2-DR-CV-0120	PC)3


GENERATOR.


594

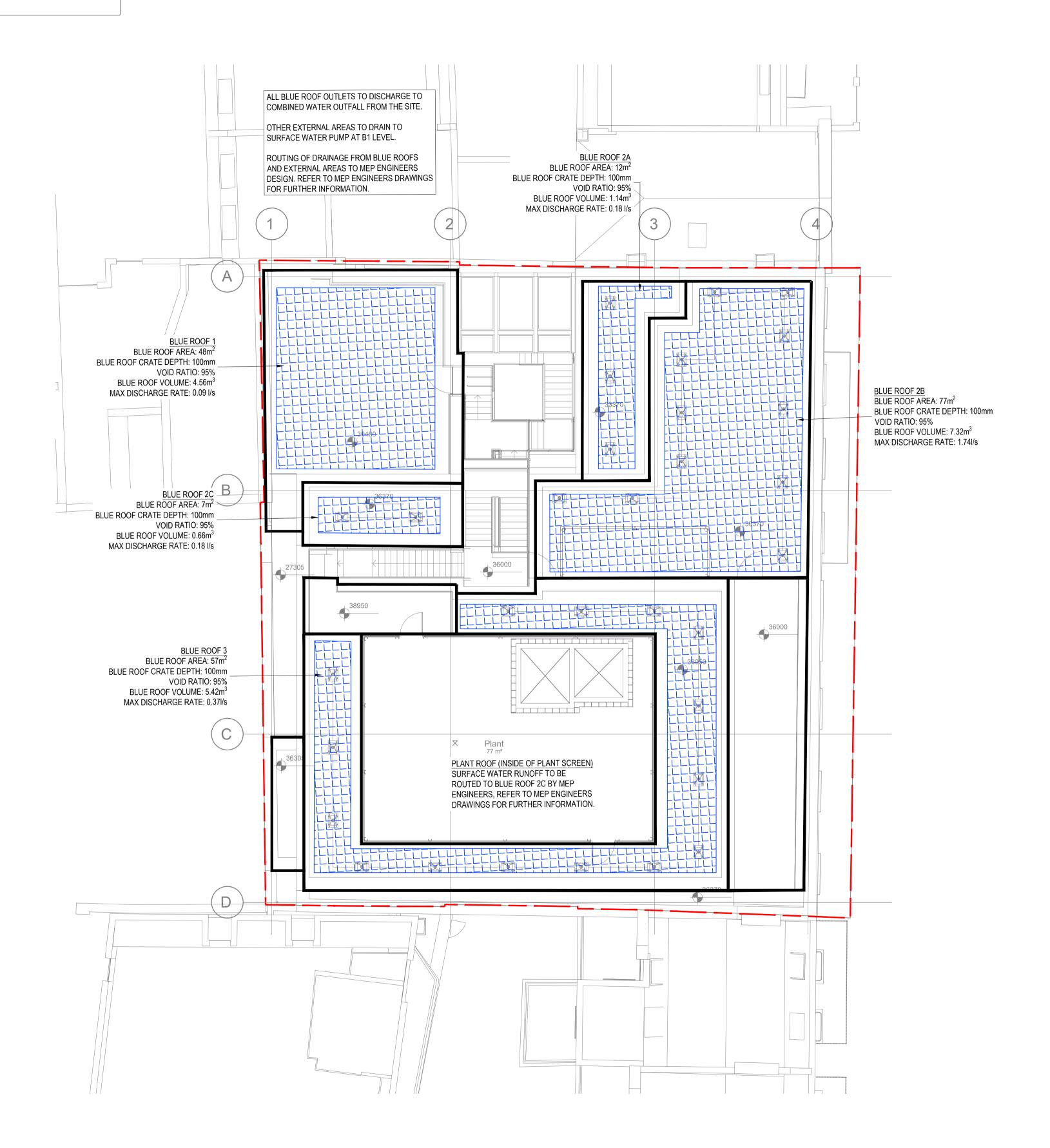
ISO A1 841mm

 CAVITY DRAINAGE NETWORK AND ASSOCIATED PUMP REQUIREMENTS DESIGNED BY DELTA MEMBRANES. REFER TO DELTA MEMBRANES DRAWINGS FOR LOCATIONS OF SUMPS AND CAVITY DRAINAGE SYSTEMS.
 FOUL WATER PUMP STATION ELECTRICAL SUPPLY TO BE CONNECTED TO BACK UP

			AG SSI	E 4+ JF						
REV P01	DESCRIPTION STAGE 3 ISSU				BY DHF	DATE 23.07.21				
P01 P02 P03	STAGE 3 ISSU STAGE 4 ISSU STAGE 4+ ISS	JE			JH JH	17.12.21 21.04.22				
-										
NO	TES:									
	DO NOT SC									
	OTHERWISE	Ξ.		RES UNLESS NO		5				
	SHOULD NO	T BE USED	FOR C	4+ PURPOSES OF						
4.	RELEVANT	ARCHITECT	S, ENG	IN CONJUNCTION GINEERS AND CO						
5.	DRAWINGS DRAWING B	ASED ON:			V 0000					
	POINT	2 SURVEY	ORS							
	 DEXTE 	R MOREN /	ASSOC	RECORDS OBTA						
	MEINH			03.22. AL DRAWINGS IS	SUED					
		ARDT MEP		JTS ISSUED 11.04						
	STRUCTUR	AL SLAB		DDABLE FROM A		IHE				
	CHAMBERS	TO MEP EN	IGINEE	ROUTING FROM I ERS DESIGN.						
	TO BE +14.3	20mAOD UI	NLESS	OWN POINTS AT E	TED.					
	FOR BELOW	/ GROUND I	DRAINA	AUM GRADIENT C AGE DETAILS REF						
11.	FOR BELOW	/ GROUND I	DRAINA	CV-BG-DR-20X. AGE MANHOLE S		_				
	REFER TO N	/HT DRAWI	NG SEI	RIES 2750-MHT-C	V-BG-E)R-25X.				
KEY	<u>/:</u>									
_		SI	LE BOL	JNDARY						
	- SW → SV	V→ PR	OPOS	ED SURFACE WA	TER PI	PE				
	- FW → FV FWRM -			ED FOUL WATER ED FOUL WATER						
				ED SURFACE WA						
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	21		ED SURFACE WA	TFR					
		5		ION CHAMBER / N		LE				
		3		ed foul water R / Manhole	INSPE	CTION				
		SU	IRFACE	E WATER DRAINA	GE CH	ANNEL				
				E WATER GULLY						
	•			E WATER DRAIN F	POINT					
	0			TER DRAIN POIN	т					
	•	BA	CKDRO	OP						
				JCTURAL DESIGN						
	CDIM RESI	DUAL CIVIL	/ 5180	JCTURAL DESIGN	RISK	>				
			V	Y RD						
		•		ondon EC1A 4JU						
			ie: +44 (0) w.meinhar	20 7831 7969 rdt.co.uk						
PROJE		ΑΛΛΗ		STREET						
	NDON			OTTELT						
	V1 OE									
			: / /)						
	MDEN LIF	LOTILE	- _{(U} N	J						
	OPOSED MBINED	-	GRC	UND						
			BAS	EMENT -1						
					scal 1:1	.е 00				
DRAW		DESIGNED		CHECKED		ROVED				
	/ING No	JH		СМ	GE					
	T-MHT-X	X-B1-DR	-CV-0)100	P(

© MEINHARDT (UK). ALL RIGHTS RESERVED

à


	STAGE 4+ ISSUE
	REV DESCRIPTION P01 STAGE 3 ISSUE P02 STAGE 4 ISSUE P03 STAGE 4+ ISSUE
	NOTES: 1. DO NOT SCALE FROM THIS DRAWING 2. ALL DIMENSIONS ARE IN METRES UN OTHERWISE. 3. THIS DRAWING IS FOR STAGE 4+ PUF SHOULD NOT BE USED FOR CONSTRI 4. DRAWINGS ARE TO BE READ IN CON
	 RELEVANT ARCHITECTS, ENGINEER: DRAWINGS AND SPECIFICATIONS. 5. DRAWING BASED ON: TOPOGRAPHICAL SURVEY RECPOINT 2 SURVEYORS THAMES WATER ASSET RECOFDINT 2 SURVEYORS DEXTER MOREN ASSOCIATES A LAYOUTS RECEIVED 30.03.22. MEINHARDT STRUCTURAL DRA MEINHARDT MEP LAYOUTS ISS 6. FOR BELOW GROUND DRAINAGE DE DRAWING SERIES 2750-MHT-CV-BG-ID
	<u>KEY:</u>
	EXCMBD EXISTING COME EXISTING COME SURFACE WATE OUTLET TO BAS FLUSH KERB SURFACE WATE ROUTES
	CDM RESIDUAL CIVIL / STRUCTURA
	10 Aldersgate Street, London EC Telephone: +44 (0)20 7831 79 www.meinhardt.co.uk
	PROJECT 7 A, B, C BAYHAM STR LONDON NW1 0EY
	CLIENT CAMDEN LIFESTYLE (UK)
	TITLE PROPOSED BELOW GROUND COMBINED WATER DRAINAGE LAYOUT GROUND
	DRAWN DESIGNED CHECKE JH JH CM DRAWING №
\bigwedge	BST-MHT-XX-GF-DR-CV-0100

			GE 4+ SUE			
EV P01 P02	DESCRIPTION STAGE 3 ISSU STAGE 4 ISSU				BY DHF JH	DATE 23.07.21 17.12.21
P03	STAGE 4+ ISS	SUE			JH	21.04.22
10	TES:					
4. 5.	ALL DIMEN OTHERWIS THIS DRAW SHOULD NO DRAWINGS RELEVANT DRAWINGS DRAWING E • TOPO POINT • THAM • DEXTI LAYOU • MEINH • MEINH FOR BELOW	E. ING IS FOR ST DT BE USED FO ARE TO BE RE ARCHITECTS, AND SPECIFIC BASED ON: GRAPHICAL SU C SURVEYOR ES WATER ASS ER MOREN ASS JTS RECEIVED HARDT STRUCT HARDT MEP LA V GROUND DR	METRES UNLES AGE 4+ PURPOS OR CONSTRUCTIO EAD IN CONJUNC ENGINEERS AND CATIONS. JRVEY RECEIVE S SET RECORDS C SOCIATES ARCH	ES ON ON. CTION D CON D CON D MA DBTAII IITEC GS ISS 11.04. S REF	ULY AN WITH ISULT Y 2020 NED 1 FURAL SUED 9 22	ALL ANTS) BY 6.04.20 - 09.09.21
	<u>·</u> — ExCMBD	 EXIS SURF SURF OUTL FLUS 	BOUNDARY TING COMBINED ACE WATER DF ACE WATER DF ET TO BASEME SH KERB FACE WATER EX TES	RAINAG RAINAG NT LE	GE CH GE CH VELS	iannel Iannel Below.
	CDM RES	DUAL CIVIL / S	TRUCTURAL DE	SIGN	RISKS	6
	N		I-J/AR eet, London EC1A 4JU			
		Telephone: +4	eet, London EC1A 4JU 44 (0)20 7831 7969 sinhardt.co.uk			
LC		١	/I STREE	T		
		ESTYLE (I	JK)			
TITLE PRO	OPOSED MBINED	BELOW G WATER		OR		
DISCII CIV					scal 1:1	
DRAW					APPF	ROVED
JH		JH	CM		GE	•

P03

594mn	
×	
841mm x 594mn	
A1	
ISO /	

NOTE:

S	TAGE 4+
	ISSUE

	STAGE 4	ł		
REV			BY	DATE
P01 P02 P03	STAGE 3 ISSUE STAGE 4 ISSUE STAGE 4+ ISSUE		DHF JH JH	23.07.21 17.12.21 21.04.22
100			511	21.04.22
NO	TES:			
	DO NOT SCALE FROM THIS DRAWIN	G		
	ALL DIMENSIONS ARE IN METRES U OTHERWISE.	NLESS NOT	ED	
	THIS DRAWING IS FOR INFORMATION DRAWINGS ARE TO BE READ IN CON			
	RELEVANT ARCHITECTS, ENGINEER DRAWINGS AND SPECIFICATIONS.	RS AND CON	SULT	ANTS
5.	DEXTER MOREN ASSOCIATES		URAL	
	 LAYOUT RECEIVED 23.03.2022 BAUDER BLUE ROOF CALCULA 		/ D) D/	ATED
	04.03.2022.			
KEY	<u>/:</u>			
_	SITE BOUNDAR	Y		
	PROPOSED BLU	JE ROOF CR	ATES	
	CDM RESIDUAL CIVIL / STRUCTUR	AL DESIGN	RISKS	;
	10 Aldersgate Street, London E Telephone: +44 (0)20 7831 7			
PROJI	www.meinhardt.co.uk			
	A,B,C BAYHAM STF	REET		
LC	NDON			
N٧	W1 0EY			
	יד MDEN LIFESTYLE (UK)			
	OPOSED ROOF LEVEL			
	AINAGE LAYOUT			
			scali	
DRAW		KED		OVED
JH	JH CM		GB	
	^{VING No} T-MHT-XX-RF-DR-CV-0100		ISSUE PC	
				-

Appendix C – Bauder Blue Roof Design

Bauder Ltd, 70 Landseer Road, Ipswich, IP3 0DH. T: +44 (0)1473 257671 e: info@bauder.co.uk

Date: 04/	/03/2022		Revisio	n: D (1209)	Page: 1
Client:					
Project:	Cam	den Lifestyle			
Location:	Lond	lon			
Roof Loca	ition: Roof	1			
Roof Deta	ils			Storage Details:	
	113.	10 0		5	
BlueRoof		48 m ²	x 100 %	Length	48 m
Additional A		25 m ²	x 100 %	Width	1 m
Effective Are	ea	73 m²		Depth	100 mm
				Porosity	95 %
				Slope	none
Rainfall D	etails - FSF	R Method:		Outflow Details:	
Return Perio	od	100 years		Attenuation Control	BlueRoof Outlet
Climate Cha	ange Factor	30 %		Control	1 hole
r value	-	0.44		Sump Depth	None
M5-60		20.7 mm		Discharge rate	0.18 l/s
Summer Sto	orm Profile			Outlet	2 No
Duration	Inte	nsity	Required	Flow Per Outlet	0.09 l/s
	mm	mm/h	storage(m ³)		
5 min	19.5	233.8	1.4		
10 min	28.7	172.3	2.1	Result:	
15 min	34.4	137.7	2.4		
30 min	44.4	88.9	3.1	Outcome	Pass
45 min	50.3	67.1	3.4	Critical Storm Duration	2.5 hrs
60 min	54.5	54.5	3.6	Hmax	86 mm
2 hours	64.7	32.3	3.9	Required Volume	3.9 m³
6 hours	80.6	13.4	3.8	Time to half empty	3 hrs
24 hours	104.1	4.3	2.7	Roof Loading	81.25 Kg/m²

All results based on input data. Please check that input data has been correctly interpreted.

The Bauder Blue Flat Roof Rainwater Calculation Software will perform calculations in accordance with industry best practice for blue roof design based upon provided data relating to a specific building's dimensions geographical location and the flow rate performance of the selected Bauder rainwater outlet product.

Whilst the information contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors omissions or otherwise arising therefrom.

Details practices principles values and calculations should be verified for accuracy and suitability for the required purpose for use.

NOTE: These calculations are valid for a zero fall roof with minimal variation in levels. Any significant variation will affect the volume of water stored and the roofs ability to attenuate extreme rain events. Typically variations in roof level should be less than 0 to +30mm with no back falls. The H-Max is measured from the mean roof level

Overflow discharge requirements based on a CAT1 storm event to BSEN12056-3:2000.

Total flow rate: 73m2x0.023l/s/m2 = 1.68l/s

Bauder Ltd, 70 Landseer Road, Ipswich, IP3 0DH. T: +44 (0)1473 257671 e: info@bauder.co.uk

Date: 04	/03/2022		Revisio	n: D (1209)	Page: 2
Client:					
Project:	Cam	den Lifestyle			
Location:	Lond	lon			
Roof Loca	ation: Roof	2			
		-			
Roof Deta	ails:			Storage Details:	
BlueRoof		12 m²	x 100 %	Length	12 m
Additional A	Area	12 m²	x 100 %	Width	1 m
Effective A	rea	24 m²		Depth	100 mm
				Porosity	95 %
				Slope	none
Rainfall D	etails - FSF	R Method:		Outflow Details:	
Return Peri	iod	100 years		Attenuation Control	BlueRoof Outlet
Climate Ch	ange Factor	30 %		Control	1 hole
r value	-	0.44		Sump Depth	None
M5-60		20.7 mm		Discharge rate	0.18 l/s
Summer St	orm Profile			Outlet	2 No
Duration	Inte mm	nsity mm/h	Required storage(m ³)	Flow Per Outlet	0.09 l/s
E main			0.4		
5 min	19.5 28.7	233.8 172.3	-		
10 min 15 min	28.7 34.4	172.3 137.7	0.6 0.7	Result:	
15 min 30 min	34.4 44.4	88.9	0.7	Outcome	Pass
45 min	44.4 50.3	88.9 67.1	0.9	Critical Storm Duration	Pass 1.28 hrs
45 min 60 min	50.3 54.5	54.5	0.9		82 mm
2 hours	54.5 64.7	54.5 32.3	0.9	Hmax Required Volume	0.9 m ³
2 hours 6 hours	64.7 80.6	32.3 13.4	0.9 0.7	Time to half empty	44.3 min
24 hours	80.6 104.1	4.3	0.7		
24 NOUIS	104.1	4.3	0.3	Roof Loading	75 Kg/m²

All results based on input data. Please check that input data has been correctly interpreted.

The Bauder Blue Flat Roof Rainwater Calculation Software will perform calculations in accordance with industry best practice for blue roof design based upon provided data relating to a specific building's dimensions geographical location and the flow rate performance of the selected Bauder rainwater outlet product.

Whilst the information contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors omissions or otherwise arising therefrom.

Details practices principles values and calculations should be verified for accuracy and suitability for the required purpose for use.

NOTE: These calculations are valid for a zero fall roof with minimal variation in levels. Any significant variation will affect the volume of water stored and the roofs ability to attenuate extreme rain events. Typically variations in roof level should be less than 0 to +30mm with no back falls. The H-Max is measured from the mean roof level

Overflow discharge requirements based on a CAT1 storm event to BSEN12056-3:2000.

Total flow rate: 24m2x0.023I/s/m2 = 0.55I/s.

Bauder Ltd, 70 Landseer Road, Ipswich, IP3 0DH. T: +44 (0)1473 257671 e: info@bauder.co.uk

Date: 04/	/03/2022		Revisio	n: D (1209)	Page: 3
Client:					
Project:	Cam	den Lifestyle			
Location:	Lond	lon			
Roof Loca					
		20			
Roof Deta	ils:			Storage Details:	
BlueRoof		77 m²	x 100 %	Length	77 m
Additional A	rea	121 m²	x 100 %	Width	1 m
Effective Are	ea	198 m²		Depth	100 mm
				Porosity	95 %
				Slope	none
Rainfall D	etails - FSF	R Method:		Outflow Details:	
Return Perio	bd	100 years		Attenuation Control	BlueRoof Outlet
Climate Cha	inge Factor	30 %		Control	9 holes
r value		0.44		Sump Depth	None
M5-60		20.7 mm		Discharge rate	1.74 l/s
Summer Sto	orm Profile			Outlet	2 No
Duration	Inte mm	nsity mm/h	Required storage(m³)	Flow Per Outlet	0.87 l/s
5 min	19.5	233.8	3.6		
10 min	28.7	172.3	5.0 5.1		
15 min	34.4	137.7	5.9	Result:	
30 min	44.4	88.9	6.9	Outcome	Pass
45 min	50.3	67.1	7.1	Critical Storm Duration	1.1 hrs
60 min	54.5	54.5	7.2	Hmax	99 mm
2 hours	64.7	32.3	6.9	Required Volume	7.2 m ³
6 hours	80.6	13.4	4.9	Time to half empty	34.6 min
24 hours	104.1	4.3	1.6	Roof Loading	93.51 Kg/m ²

All results based on input data. Please check that input data has been correctly interpreted.

The Bauder Blue Flat Roof Rainwater Calculation Software will perform calculations in accordance with industry best practice for blue roof design based upon provided data relating to a specific building's dimensions geographical location and the flow rate performance of the selected Bauder rainwater outlet product.

Whilst the information contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors omissions or otherwise arising therefrom.

Details practices principles values and calculations should be verified for accuracy and suitability for the required purpose for use.

NOTE: These calculations are valid for a zero fall roof with minimal variation in levels. Any significant variation will affect the volume of water stored and the roofs ability to attenuate extreme rain events. Typically variations in roof level should be less than 0 to +30mm with no back falls. The H-Max is measured from the mean roof level

Overflow discharge requirements based on a CAT1 storm event to BSEN12056-3:2000.

Total flow rate: 198m2x0.023l/s/m2 = 4.55l/s.

Bauder Ltd, 70 Landseer Road, Ipswich, IP3 0DH. T: +44 (0)1473 257671 e: info@bauder.co.uk

Date: 04/	03/2022		Revisio	n: D (1209)	Page: 4
Client:					
Project:	Cam	den Lifestyle			
Location:	Lond	lon			
Roof Loca					
		20			
Roof Deta	ils:			Storage Details:	
BlueRoof		7 m²	x 100 %	Length	7 m
Additional A	rea	9 m²	x 100 %	Width	1 m
Effective Are	ea	16 m²		Depth	100 mm
				Porosity	95 %
				Slope	none
Rainfall D	etails - FSF	R Method:		Outflow Details:	
Return Perio	bd	100 years		Attenuation Control	BlueRoof Outlet
Climate Cha	inge Factor	30 %		Control	1 hole
r value	-	0.44		Sump Depth	None
M5-60		20.7 mm		Discharge rate	0.18 l/s
Summer Sto	orm Profile			Outlet	2 No
Duration	Inte mm	nsity mm/h	Required storage(m³)	Flow Per Outlet	0.09 l/s
5 min	19.5	233.8	0.3		
10 min	28.7	172.3	0.3		
15 min	34.4	137.7	0.4	Result:	
30 min	44.4	88.9	0.5	Outcome	Pass
45 min	50.3	67.1	0.5	Critical Storm Duration	55 min
60 min	54.5	54.5	0.5	Hmax	81 mm
2 hours	64.7	32.3	0.5	Required Volume	0.5 m ³
6 hours	80.6	13.4	0.3	Time to half empty	25.6 min
24 hours	104.1	4.3	0.1	Roof Loading	71.43 Kg/m ²

All results based on input data. Please check that input data has been correctly interpreted.

The Bauder Blue Flat Roof Rainwater Calculation Software will perform calculations in accordance with industry best practice for blue roof design based upon provided data relating to a specific building's dimensions geographical location and the flow rate performance of the selected Bauder rainwater outlet product.

Whilst the information contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors omissions or otherwise arising therefrom.

Details practices principles values and calculations should be verified for accuracy and suitability for the required purpose for use.

NOTE: These calculations are valid for a zero fall roof with minimal variation in levels. Any significant variation will affect the volume of water stored and the roofs ability to attenuate extreme rain events. Typically variations in roof level should be less than 0 to +30mm with no back falls. The H-Max is measured from the mean roof level

Overflow discharge requirements based on a CAT1 storm event to BSEN12056-3:2000.

Total flow rate: 16m2x0.023l/s/m2 = 0.37l/s.

Bauder Ltd, 70 Landseer Road, Ipswich, IP3 0DH. T: +44 (0)1473 257671 e: info@bauder.co.uk

Date: 04/	/03/2022		Revisio	n: D (1209)	Page: 5
Client:					
Project:	Cam	den Lifestyle			
Location:	Lond	lon			
Roof Loca	ition: Roof	2			
		3			
Roof Deta	ils:			Storage Details:	
BlueRoof		57 m²	x 100 %	Length	58 m
Additional A	rea	47 m²	x 100 %	Width	1 m
Effective Are	ea	104 m²		Depth	100 mm
				Porosity	95 %
				Slope	none
Rainfall D	etails - FSF	R Method:		Outflow Details:	
Return Perio	bd	100 years		Attenuation Control	BlueRoof Outlet
Climate Cha	ange Factor	30 %		Control	2 holes
r value		0.44		Sump Depth	None
M5-60		20.7 mm		Discharge rate	0.37 l/s
Summer Sto	orm Profile			Outlet	2 No
Duration	Inte mm	nsity mm/h	Required storage(m³)	Flow Per Outlet	0.19 l/s
5 min	19.5	233.8	2.0		
10 min	28.7	172.3	2.9	Deput	
15 min	34.4	137.7	3.4	Result:	
30 min	44.4	88.9	4.2	Outcome	Pass
45 min	50.3	67.1	4.6	Critical Storm Duration	2.13 hrs
60 min	54.5	54.5	4.9	Hmax	92 mm
2 hours	64.7	32.3	5.1	Required Volume	5.1 m ³
6 hours	80.6	13.4	4.6	Time to half empty	1.9 hrs
24 hours	104.1	4.3	2.8	Roof Loading	89.47 Kg/m²

All results based on input data. Please check that input data has been correctly interpreted.

The Bauder Blue Flat Roof Rainwater Calculation Software will perform calculations in accordance with industry best practice for blue roof design based upon provided data relating to a specific building's dimensions geographical location and the flow rate performance of the selected Bauder rainwater outlet product.

Whilst the information contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors omissions or otherwise arising therefrom.

Details practices principles values and calculations should be verified for accuracy and suitability for the required purpose for use.

NOTE: These calculations are valid for a zero fall roof with minimal variation in levels. Any significant variation will affect the volume of water stored and the roofs ability to attenuate extreme rain events. Typically variations in roof level should be less than 0 to +30mm with no back falls. The H-Max is measured from the mean roof level

Overflow discharge requirements based on a CAT1 storm event to BSEN12056-3:2000.

Total flow rate: 104m2x0.023l/s/m2 = 2.39l/s.

Appendix D – Thames Water Consultation

Jasmine Houze

MEINHARDT (UK) LTD 10 ALDERSGATE STREET LONDON EC1A 4HJ Wastewater pre-planning Our ref DS6094071

28 April 2022

Pre-planning enquiry: Confirmation of sufficient capacity

Site: 7 A, B & C Bayham Street, London, NW1 0EY

Dear Jasmine,

Thank you for providing information on your development.

Proposed demolished Restaurant/day care (147 cap), Offices (208m2)

Proposed Hotel (79 beds)

Existing FW discharge into d/s vent combined TQ29832425

Existing SW discharge at 25 I/s into d/s vent combined TQ29832425 with impermeable area of 640m2

Proposed FW discharge into d/s vent combined TQ29832425

Proposed SW discharge at 12.5 l/s into d/s vent combined TQ29832425 with impermeable area of 640m2

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

When developing a site, policy SI 13 of the London Plan states "Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:"

The disposal hierarchy being:

- 1. rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2. rainwater infiltration to ground at or close to source
- 3. rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4. rainwater discharge direct to a watercourse (unless not appropriate)
- 5. controlled rainwater discharge to a surface water sewer or drain
- 6. controlled rainwater discharge to a combined sewer

Where connection to the public sewerage network is still required to manage surface water flows, we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 12.5 l/s for all storm events up to and including 1:100yr+40%CC., then Thames Water would not have any objections to the proposal. Please see the attached 'Planning your wastewater' leaflet for additional information.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you have any further questions, please contact me on 0774 764 6498.

Kind Regards,

Long Dru

Long Tran Developer Services – Adoptions Engineer, Sewer Adoptions Team Tel: 0800 009 3921 **Get advice on making your sewer connection correctly at <u>connectright.org.uk</u> Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>**

Appendix E - Drainage Maintenance and Management Strategy

Table 2: Proposed	l Drainage	Maintenance	Strategy
-------------------	------------	-------------	----------

Drainage Feature	Regular Maintenance	Occasional Maintenance	Monitoring
Drainage Channels	Inspections will be frequent and regular, depending on local conditions, but at least annually by Site management. Inspections will include gratings; covers including their locking bolts; sumps and sump buckets; exposed concrete surround and adjacent paving. Channels will be flushed with water or high-pressure jetting (no boiling water or cleaning agent will be used). All silt buckets and sumps will be cleaned out replaced back into the units ensuring they are correctly fitted.	All channel surfaces and joints will be checked and repaired as necessary.	Inspected every 6 months or after large storm.
Geo-Cellular Blue Roof	Blue roofs to be maintained in accordance way include:		
	 Remove debris from the catchmen performance (monthly). 	t surface where it may cau	use risk to
	 Inspection chambers will be check debris and silt and cleaned as nec 	-	accumulation of
	 Inspect all inlets, outlets, vents and condition and operating as designed 		they are in good
	 Inspect waterproofing membrane a 	and underside of roof for e	vidence of leakage.
Manholes / Inspection	Inspection chambers will be checked every 6 months for the accumulation of		Inspect every 6 months or after
Chambers	debris and silt and cleaned as necessary.		large storm.
Pumps	Pumps to be maintained in accordance with	pump manufacturers reco	ommendations.