

Channing School – Car Park Drainage Note

Issue	Date	Reason for Issue	Author
0	February 2022	Comment	CLennon

Contents

1.	Introduction	2
2.	Soakaway Design	3
3.	Existing & Proposed Run-off	3
4.	Detailed Design & Exceedance	3
5.	Maintenance Schedule	4

- Appendix A Letter from London Borough of Camden
- Appendix B Architects Drawings
- Appendix C SuDS Proforma
- Appendix D Calculations
- Appendix E Exceedance Plan
- Appendix F Maintenance Schedule

1. Introduction

This report has been compiled to respond to an email received from the SuDS officer at London Borough of Camden dated 11/01/2022. A copy of this email is contained in Appendix A.

The email sets out various information and clarifications which are required to allow the local authority to fully understand and assess how the proposed car park will drain. An extract from the email is set out below, where the outstanding information is described:

- 1. "It should be confirmed whether a soakaway will be provided and detailed designs of the size and position of this should also be provided. This is to ensure that the applicant is adhering to the hierarchy of drainage set out in the London Plan Policy SI 13 and that sufficient features have been provided to drain the site effectively.
- 2. Existing and proposed runoff rates should be provided, even if minimal runoff is not expected, to demonstrate that runoff will be as close as possible to greenfield rates. This is to comply with London Plan Policy SI 13 and Local Plan Policy CC3 which encourages developments to achieve greenfield runoff rates, or as close as possible, wherever possible.
- 3. Evidence and calculations should be provided to demonstrate that the site does not flood in the 1 in 30 year rainfall event, and that no buildings will be flooded in the 1 in 100 year event. Details should also be provided of exceedance flow paths in the case of events above the 1 in 100 year event, managed in a way that minimises risk from flooding on and off site. This is to comply with national planning policy guidance and best practice guidance to ensure that the development will not increase the risk of flooding on site or elsewhere.
- 4. Maintenance tasks and frequencies should be provided for each drainage feature, along with the maintenance owner."

Each point above will be addressed in turn in this report, with supporting information included in the appendices.

2. Soakaway Design

The permeable car park build up has been confirmed by the architects, refer to Appendix B for the email correspondence. The build-up contains a 150mm layer of hydraulically bound material which is understood to have a void ratio of approximately 10%.

The architects drawings in Appendix B confirm the location of the permeable car park which will act as its own soakaway. The total area of the permeable paving is c. 565m².

3. Existing & Proposed Run-off

The SuDS proforma, contained in Appendix C has been updated to include this information, as requested. The existing run-off rate has been calculated using the modified rational method, the proposed run-off rate is listed as "NA" as the car park will infiltrate to the ground.

4. Detailed Design & Exceedance

A source control model has been built in MicroDrainage which is based on the following parameters:

- Catchment area: 565 m²
- Permeable paving extent: 565 m²
- Infiltration rate: 1.148 x 10⁻⁴ m/s
- Effective storage volume (150mm deep at 10% void ratio): 8.5 m³

These calculations found that there will be no flooding in the 1 in 30 year and no flooding of buildings in the 1 in 100 year event. A copy of the calculations are contained in Appendix D.

It's worth noting that the rate of infiltration on site is very fast and far exceeds the requirements for the rainfall expected to fall on the car park, even in the 1 in 100 +40% climate change rainfall event. The calculations show that, in the worst case, the depth of water in the sub-base is less than 50% of the available depth.

An exceedance plan has also been compiled and is contained in Appendix E of this report.

5. Maintenance Schedule

A copy of the maintenance schedule is contained in Appendix F.

Appendix A

Letter from London Borough of Camden

Carmel Lennon

Subject:

RE: 2021/3234/P - Channing Junior School

From: Ewan Campbell <<u>Ewan.Campbell@camden.gov.uk</u>>
Sent: 11 January 2022 16:31
To: Oliver Coleman <<u>oliverc@rolfe-judd.co.uk</u>>
Cc: Philip Dunphy <<u>Philipd@rolfe-judd.co.uk</u>>
Subject: RE: 2021/3234/P - Channing Junior School

Hi Oliver

Hope you are well, I have been liaising with the LLFA regarding this application and I am afraid we still need more information. Below I have set out what was found and what we still need

This application has not sufficiently demonstrated the use of the London Plan's drainage hierarchy and is proposing the following key items:

- Type of development: Minor application reconfiguration of car park, gate installation and boundary wall alteration
- Flood risk: Low
- Types of conveyance / attenuation features: Infiltration through permeable paving and soakaway
- Runoff rate restriction (I/s): None
- Runoff attenuation volume (m3): Not stated
- Maintenance plan: Not stated

Recommendations and requests:

We require more information and improved proposals before recommending approval of the application for the following reasons:

- 1. The applicant has followed the drainage hierarchy by proposing drainage through infiltration. They have provided evidence of an appropriate infiltration rate. However, detailed designs of the size and location of the permeable paving has not been provided.
- 2. Existing and proposed runoff rates for the site area have not been included.
- 3. Evidence has not been provided to demonstrate that infiltration will be sufficient to drain the site in extreme rainfall events without risk of flooding.
- 4. Maintenance tasks and frequencies have not been provided for the permeable paving or soakaways to ensure that they continue to function for the foreseeable future. The maintenance owner has also not been stated.

To address the above, please can the applicant submit information which:

- It should be confirmed whether a soakaway will be provided and detailed designs of the size and position of this should also be provided. This is to ensure that the applicant is adhering to the hierarchy of drainage set out in the London Plan Policy SI 13 and that sufficient features have been provided to drain the site effectively.
- 2. Existing and proposed runoff rates should be provided, even if minimal runoff is not expected, to demonstrate that runoff will be as close as possible to greenfield rates. This is to comply with London Plan Policy SI 13 and Local Plan Policy CC3 which encourages developments to achieve greenfield runoff rates, or as close as possible, wherever possible.
- 3. Evidence and calculations should be provided to demonstrate that the site does not flood in the 1 in 30 year rainfall event, and that no buildings will be flooded in the 1 in 100 year event. Details should also

be provided of exceedance flow paths in the case of events above the 1 in 100 year event, managed in a way that minimises risk from flooding on and off site. This is to comply with national planning policy guidance and best practice guidance to ensure that the development will not increase the risk of flooding on site or elsewhere.

4. Maintenance tasks and frequencies should be provided for each drainage feature, along with the maintenance owner.

Hopefully this makes sense, if this is going to take a significant time I would recommend a part discharge of the condition whilst we awaiting these details.

Look forward to hearing from you

Kind regards

Ewan Campbell Planning Officer Supporting Communities London Borough of Camden

Web: <u>camden.gov.uk</u>

5 Pancras Square London N1C 4AG

Architects Drawings

Carmel Lennon

From:John Bater <jbater@prime-meridian.co.uk>Sent:31 January 2022 10:25To:Carmel LennonCc:Oliver ColemanSubject:Channing School Fairseat Car Park

Carmel I have finally received the information you requested.

The site was reduced by 300mm. Layer of Tarram geotextile fabric. 150mm 6F2 crushed concrete. 150mm of HBW. It was relayed to the existing levels show on plan

REGARDS

John Bater Prime Meridian

ARCHITECTS & STRUCTURAL ENGINEERS

T : 020 7287 9917 M : 07730 527079 London Office : 26A Ganton Street, London W1F 7QZ Somerset Office : The Priory, Draycott Road, Shepton Mallet, Somerset BA4 5HS

This email (including attachments) is confidential. If you have received this email in error please notify the sender immediately and delete this email from your system without copying or disseminating it or placing any reliance upon its contents. We cannot accept liability for any breaches of confidence arising through use of email. Any opinions expressed in this email (including attachments) are those of the author and do not necessarily reflect our opinions. We will not accept responsibility for any commitments made by our employees outside the scope of our business. Although this email (including attachments) are believed to be free of any virus or other defect which might affect any computer or system into which this email is received and opened, it is the responsibility of the recipient to ensure that this email is virus free.

ELEVATION FROM HIGHGATE HIGH STREET

ELEVATION FROM HIGHGATE HIGH STREET

No.

343.47/PLC01

Notes: Do not scale from this drawing. Contractor to take and check all dimensions on site before work commences. Discrepancies to be reported to architect. Subcontractors to verify all dimensions on site before making shop drawings or commencing manufacture. This drawing is copyright.

PAVING SPECS:

- PAVING. MARSHALLS
- CONSERVATION PRIORA
 PERMEABLE FLAG PAVING SYSTEM COLOUR CHARCOL.
- MARSHALLS TARMAC KERB. DRIVESETT KERB EDGE TO BE LEVELLED WITH THE TARMAC. COLOUR PENNANT GREY.
- TARMAC. TARMAC TOP MIX PERMEABLE. COLOUR BLACK.
- GRASS. BS ECO-CLOVER GRASS SEED. TO REPAIR EXISTING LAWN

LIGHTING:

-

ALL EXTERNAL LIGHTING RETAINED REPLACEMENT LED TO MATCH EXISTING AS REQUIRED.

			22.06.2	0.31B
ev Description			Date	Initia
PF	RIME	MERIDI Architects and structural	AN	
cond Floor A Ganton Street ndon W1F 7QZ o@prime-meridian	T 020 7494 3522 F 020 7494 3533 .co.uk	The Priory, Draycott Rd Shepton Mallet Somerset BA4 5HS www.prime-meridian.co.u	T 01749 3 F 01749 3 k	34 66 9 4 66 7
lient:	CHANNI	NG SCHOOL	-	
Project:	PERMA ACCESS	NENT GATES GAND BINS		

Title: FAIRSEAT ACCESS AND PARKING

Date: JULY 19

Scale: 1/100 @A1

Drawn: JB

No.

343.47/PLC/01

SuDS Proforma

Camden

GREATERLONDONAUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	Channing Junior School - Car Park
	Address & post code	Channing Junior School, 1 Highgate High St, London N6 5JR, United Kingdom
	OS Grid ref (Fasting Northing)	E 528712
S		N 187290
call	LPA reference (if applicable)	
т. Project & site U	Brief description of proposed work	Small area of car park to be resurface
	Total site Area	565 m ²
	Total existing impervious area	565 m ²
	Total proposed impervious area	565 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No
	Existing drainage connection type and location	to ground
	Designer Name	Carmel Lennon
	Designer Position	Associate Director
	Designer Company	Heyne Tillett Steel

	2a. Infiltration Feasibility				
	Superficial geology classification	Made Ground, Bagshot Formation			
	Bedrock geology classification	С	laygate Member		
	Site infiltration rate	0.0001147	'92 m/s		
	Depth to groundwater level	c. 4	m belo	w ground level	
	Is infiltration feasible?		Yes		
	2b. Drainage Hierarchy				
ements			Feasible (Y/N)	Proposed (Y/N)	
ang	1 store rainwater for later use		Y	Ν	
arge Arr	2 use infiltration techniques, such as porous surfaces in non-clay areas		Y	Y	
d Discha	 3 attenuate rainwater in ponds or open water features for gradual release 4 attenuate rainwater by storing in tanks or sealed water features for gradual release 		Ν	Ν	
ropose			Y	N	
2. F	5 discharge rainwater direct to a w	atercourse	Ν	Ν	
	6 discharge rainwater to a surface sewer/drain	water	Ν	N	
	7 discharge rainwater to the combined sewer.		Y	Ν	
	2c. Proposed Discharge Details				
	Proposed discharge location	to ground via	a permeable pa	aving subbase	
	Has the owner/regulator of the discharge location been consulted?	NA			

GREATERLONDONAUTHORITY

3a. Discharge Rates & Required Storage Required Existing Proposed Greenfield (GF) discharge storage for discharge runoff rate (l/s) GF rate (m³) rate (l/s) rate (l/s) Qbar 0.26 31.5 NA 1 in 1 0.22 5.11 0.59 12.56 24.5 NA 1 in 30 16.29 22.8 NA 1 in 100 0.81 1 in 100 + CC 34.5 NA Climate change allowance used 40% 3b. Principal Method of Flow **Drainage Strategy** NA Control 3c. Proposed SuDS Measures Catchment Plan area Storage area (m^2) (m^2) vol. (m^3) Rainwater harvesting m. 0 Infiltration systems Green roofs Ω C Blue roofs \cap 0 Filter strips 0 0 Filter drains \cap 0 Bioretention / tree pits 0 0 0 Pervious pavements 565 565 8.5 Swales 0 0 0 Basins/ponds 0 0 0 Attenuation tanks 0 0 565 565 8.5 Total

	4a. Discharge & Drainage Strategy	Page/section of drainage report
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Refer to attachments
	Drainage hierarchy (2b)	See above
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	NA
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	NA
9	Proposed SuDS measures & specifications (3b)	Refer to contractors details
5	4b. Other Supporting Details	Page/section of drainage report
5	Detailed Development Layout	Refer to architects drawings
F	Detailed drainage design drawings, including exceedance flow routes	Refer to architects drawings
	Detailed landscaping plans	Refer to architects drawings
	Maintenance strategy	See attachments
	Demonstration of how the proposed SuDS measures improve:	
	a) water quality of the runoff?	use of permeable paving
	b) biodiversity?	NA
	c) amenity?	NA

ū

Calculations

Heyne Tillett Steel						Page 1
4 Pear Tree Court						
London						
EC1R 0DS						Micco
Date 16/02/2022 15:59	De	esigned	by WRay	ment		
Eile Dormoble Daving CDCV	Ch	boglad 1		ymene		Drainage
Pile Permeable Paving.SRCA			<u> </u>	2000 1		
XP Solutions	SC	ource Co	ontrol 2	2020.1		
		1.0.0		_		
Summary of Result	ts for	100 ye	ar Retu:	rn Per:	iod (+40%)	
Ha	lf Drair	n Time :	1 minute:	s.		
Storm	Max M	lax	Max	Max	Status	
Event L	evel De	pth Infi	ltration	Volume	000000	
	(m) (i	m)	(1/s)	(m ³)		
15 min Summer 4	.907 0.	057	32.1	3.2	Flood Risk	
30 min Summer 4	.899 0.	049	31.7	2.7	Flood Risk	
60 min Summer 4	.885 U.	035	22./	2.0	Flood Risk	
120 min Summer 4	.0/3 U.	018	14.9 11 /	1.3 1 0	Flood Biak	
240 min Summer 4	.000 U. 861 0	010	11.4 0.2	1.U	Flood Risk	
360 min Summer A	860 0	010	5.2	0.0	Flood Rick	
480 min Summer 4	.858 0	008	5.3	0.0	Flood Rick	
600 min Summer 4	.857 0.	007	4.7	0.4	Flood Risk	
720 min Summer 4	.856 0.	006	4.0	0.3	Flood Risk	
960 min Summer 4	.855 0.	005	3.1	0.3	Flood Risk	
1440 min Summer 4	.854 0.	004	2.4	0.2	Flood Risk	
2160 min Summer 4	.853 0.	003	1.8	0.2	Flood Risk	
2880 min Summer 4	.852 0.	002	1.4	0.1	Flood Risk	
4320 min Summer 4	.852 0.	002	1.1	0.1	Flood Risk	
5760 min Summer 4	.851 0.	001	0.8	0.1	Flood Risk	
7200 min Summer 4	.851 0.	001	0.8	0.1	Flood Risk	
8640 min Summer 4	.851 0.	001	0.8	0.1	Flood Risk	
10080 min Summer 4	.851 0.	001	0.8	0.1	Flood Risk	
15 min Winter 4	.911 0.	061	32.1	3.4	Flood Risk	
Stor	-	Pain	Floodod	Time-De	- k	
Fuen	#	(mm/hr)	Volume	(mine)	aĸ	
Even	L	(1111)	(m ³)	(11115)		
			(
15 min	Summer	148.105	0.0		11	
30 min	Summer	95.415	0.0		18	
60 min	Summer	58.456	0.0	:	34	
120 min	Summer	34.606	0.0		64	
180 min	Summer	25.149	0.0		94	
240 min	Summer	19.947	0.0	1:	24	
360 min	Summer	14.347	0.0	1	84	
480 min	Summer	11.357	0.0	2	40 02	
600 min 720	Summer	9.468 0 157	0.0	31	0∠ 64	
120 min	Summer	6 111	0.0	2	82	
1440 min	Summer	4.616	0.0		16	
2160 min	Summer	3.302	0.0	10	72	
2880 min	Summer	2.601	0.0	14:	20	
4320 min	Summer	1.857	0.0	22	40	
5760 min	Summer	1.461	0.0	27	68	
7200 min	Summer	1.212	0.0	36	64	
8640 min	Summer	1.040	0.0	41	52	
10000		0 014	0 0	E 1 .	60	
10080 min	Summer	0.914	0.0	51	00	
10080 min 15 min	Summer Winter	148.105	0.0	51	11	
10080 min 15 min	Summer Winter	148.105	0.0	51	11	

4 Pear Tree Court London EC1R ODS Date 16/02/2022 15:59 Designed by WRayment File Permeable Paving.SRCX Checked by Checked by XP Solutions Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Storm Max Max Max Max Status Event Level Depth Infiltration Volume (n) (n) (1/s) 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 106 Flood min Winter 4.893 0.013 8.5 0.7 Flood Risk 100 min Winter 4.868 0.018 11.4 1.0 Flood Risk 100 min Winter 4.865 0.006 4.0 0.3 Flood Risk 100 min Winter 4.855 0.006 3.4 0.3 Flood Risk 100 min Winter 4.855 0.006 4.0 0.3 Flood Risk 100 min Winter 4.855 0.006 4.0 2.7 0.2 Flood Risk 1000 min Winter 4.855 0.000 3.4 0.3 Flood Risk 1000 min Winter 4.855 0.002 1.1 0.1 Flood Risk 1001 Minter 4.855 0.002 1.1 0.1 Flood Risk 20 min Winter 4.851 0.001 0.8 0.1 Flood Risk] e	
London ECIR ODS Date 16/02/2022 15:59 Designed by WRayment Checked by File Permeable Paving.SRCX Checked by XP Solutions Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Storm Max Max Status Event Na Max Volume (n) Volume (n) Status 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.894 0.044 28.4 2.5 Flood Risk 120 min Winter 4.894 0.044 28.4 2.5 Flood Risk 16 Flood Risk 120 min Winter 4.894 0.014 28.5 0.7 Flood Risk 120 min Winter 4.894 0.010 6.6 0.6 Flood Risk 120 min Winter 4.850 0.010 6.6 0.6 Flood Risk 360 min Winter 4.855 0.006 4.0 0.3 Flood Risk 720 min Winter 4.855 0.001 0.4 Flood Risk 720 min Winter 4.851 0.001 0.4 Flood Risk 720 min Winter 4.851 0.001 0.4 Flood Risk 720 min Winter 4.851 0.001 0.5 0.1 Flood Risk]0	
ECIR ODS Designed by WRayment Checked by Designed by WRayment Checked by XP Solutions Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Storm Max Max Max Max Status File Permeable Paving.SRCX Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Storm Max Max Max Max Status File Permeable Paving.SRCX Max Max Max Max Status Storm Max Max Max Status Storm Max Max Max Max Status Storm Max Max Max Status Max Max Max Status Max Max Stat	<u>je</u>	
Date 16/02/2022 15:59 Designed by WRayment Checked by File Permeable Paving.SRCX Designed by WRayment Checked by XP Solutions Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Max Max Max Max Max Max Summary of Results for 100 year Return Period (+40%) Summary of Results for 100 year Return Period (+40%) Max Max Max Max Status Max Max Max Max Status Max Max Max Max Status Max Max Max Status Max Max Status Max <td colsp<="" td=""><td>]e</td></td>	<td>]e</td>]e
File Permeable Paving.SRCXChecked byXP SolutionsSource Control 2020.1Summary of Results for 100 year Return Period (+40%)StormMaxMaxMaxStatusEventDepthInfiltrationVolume (n')30 min Winter 4.8940.04428.42.5 Flood Risk120 min Winter 4.8680.01811.41.0 Flood Risk120 min Winter 4.8680.01811.41.0 Flood Risk180 min Winter 4.8680.0106.60.6 Flood Risk180 min Winter 4.8560.0064.00.3 Flood Risk360 min Winter 4.8560.0064.00.3 Flood Risk180 min Winter 4.8550.0053.40.3 Flood Risk600 min Winter 4.8550.0012.40.2 Flood Risk600 min Winter 4.8550.0021.10.1 Flood Risk1400 min Winter 4.8510.0012.80.1 Flood Risk2160 min Winter 4.8520.0021.10.1 Flood Risk2160 min Winter 4.8510.0010.80.1 Flood Risk7200 min Winter 4.8510.0010.50.1 Flood Risk7200	<u>je</u>	
XP Solutions Source Control 2020.1 Summary of Results for 100 year Return Period (+40%) Storm Max Max Max Max Status Event Level Depth Infiltration Volume (m³) 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 60 min Winter 4.879 0.029 18.8 1.6 Flood Risk 120 min Winter 120 min Winter 4.863 0.013 8.5 0.7 Flood Risk 124 min Winter 120 min Winter 4.860 0.010 6.6 0.6 Flood Risk 126 min Winter 200 min Winter 4.858 0.008 5.0 0.4 Flood Risk 126 min Winter 300 min Winter 4.855 0.006 4.0 0.3 Flood Risk 126 min Winter 300 min Winter 4.854 0.004 2.4 0.2 Flood Risk 126 min Winter 300 min Winter 4.854 0.004 2.4 0.2 Flood Risk 126 min Winter 300 min Winter 4.852 0.002		
Summary of Results for 100 year Return Period (+40%) Storm Max Max Depth Infiltration Max Column 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.894 0.029 18.8 1.6 Flood Risk 120 min Winter 4.868 0.018 11.4 1.0 Flood Risk 120 min Winter 4.863 0.013 8.5 0.7 Flood Risk 240 min Winter 4.858 0.008 5.0 0.4 Flood Risk 360 min Winter 4.858 0.008 5.0 0.4 Flood Risk 360 min Winter 4.858 0.006 4.0 0.3 Flood Risk 200 min Winter 4.855 0.005 3.4 0.3 Flood Risk 200 min Winter 4.854 0.004 2.4 0.2 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk 220 min Winter 4.851 0.001 0.8		
Summary of Results for 100 year Return Period (+40%) Storm Max Max Max Max Max Max Status No 0		
Storm Max Muter Muter 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 120 min Winter 4.863 0.013 11.4 1.0 Flood Risk 130 min Winter 4.863 0.010 6.6 0.6 Flood Risk 240 min Winter 4.855 0.006 4.0 0.3 Flood Risk 360 min Winter 4.855 0.001 2.4 0.2 Flood Risk 720 min Winter 4.852 0.002 1.1 0.1 Flood Risk 740 min Winter 4.85		
Storm Max Max Max Max Max Max Status 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.879 0.029 18.8 1.6 Flood Risk 120 min Winter 4.868 0.013 8.5 0.7 Flood Risk 120 min Winter 4.868 0.010 6.6 0.6 Flood Risk 120 min Winter 4.868 0.010 6.16 0.6 Flood Risk 140 min Winter 4.868 0.008 5.0 0.4 Flood Risk 240 min Winter 4.855 0.005 3.4 0.3 Flood Risk 360 min Winter 4.855 0.002 1.1 0.1 Flood Risk 720 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk		
Event Level Depth Infiltration Volume (m) (m) (m) (1/s) (m ³) 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.868 0.018 11.4 1.0 Flood Risk 120 min Winter 4.863 0.013 8.5 0.7 Flood Risk 180 min Winter 4.863 0.010 6.6 0.6 Flood Risk 240 min Winter 4.863 0.008 5.0 0.4 Flood Risk 360 min Winter 4.856 0.006 4.0 0.3 Flood Risk 360 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.851 0.002 1.1 0.1 Flood Risk 280 min Winter 4.851 0.001		
(m) (m) (175) (m²) 30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.868 0.018 11.4 1.0 Flood Risk 120 min Winter 4.863 0.013 8.5 0.7 Flood Risk 180 min Winter 4.868 0.010 6.6 0.6 Flood Risk 30 min Winter 4.858 0.008 5.0 0.4 Flood Risk 300 min Winter 4.858 0.006 4.0 0.3 Flood Risk 480 min Winter 4.855 0.005 3.4 0.3 Flood Risk 600 min Winter 4.854 0.004 2.7 0.2 Flood Risk 600 min Winter 4.854 0.004 2.4 0.2 Flood Risk 960 min Winter 4.852 0.002 1.1 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk 720 min Winter 4.851 0.001 0.8 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.5 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.5 0.1 Flood Risk 720 min Winter 4.851 0.001 0.5 0.1 Flood Risk 700 min Winter 4.851 0.001 0		
30 min Winter 4.894 0.044 28.4 2.5 Flood Risk 60 min Winter 4.879 0.029 18.8 1.6 Flood Risk 120 min Winter 4.868 0.018 11.4 1.0 Flood Risk 180 min Winter 4.868 0.013 8.5 0.7 Flood Risk 240 min Winter 4.868 0.010 6.6 0.6 Flood Risk 240 min Winter 4.858 0.008 5.0 0.4 Flood Risk 360 min Winter 4.858 0.006 4.0 0.3 Flood Risk 480 min Winter 4.855 0.005 3.4 0.3 Flood Risk 600 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk 2120 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.00		
60 min Winter 4.879 0.029 18.8 1.6 Flood Risk 120 min Winter 4.868 0.018 11.4 1.0 Flood Risk 180 min Winter 4.863 0.013 8.5 0.7 Flood Risk 240 min Winter 4.860 0.010 6.6 0.6 Flood Risk 360 min Winter 4.858 0.008 5.0 0.4 Flood Risk 360 min Winter 4.856 0.006 4.0 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 600 min Winter 4.854 0.004 2.7 0.2 Flood Risk 720 min Winter 4.854 0.004 2.4 0.2 Flood Risk 960 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2180 min Winter 4.851 0.001 0.8 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk 2160 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7000 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7000 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7000 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7000 min Winter 4.851 0.00		
120 min Winter 4.868 0.018 11.4 1.0 Flood Risk 180 min Winter 4.863 0.013 8.5 0.7 Flood Risk 240 min Winter 4.860 0.010 6.6 0.6 Flood Risk 360 min Winter 4.858 0.008 5.0 0.4 Flood Risk 360 min Winter 4.856 0.006 4.0 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.852 0.002 1.1 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2180 min Winter 4.851 0.001 0.8 0.1 Flood Risk 320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 320 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3700 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 3640 min Winter 4.851 0.00		
180 min Winter 4.863 0.013 8.5 0.7 Flood Risk 240 min Winter 4.860 0.010 6.6 0.6 Flood Risk 360 min Winter 4.858 0.008 5.0 0.4 Flood Risk 480 min Winter 4.855 0.005 3.4 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.853 0.003 1.8 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 220 min Winter 4.851 0.001 0.8 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 70080 min Winter 4.851 0.		
240 min Winter 4.850 0.010 6.6 0.6 Flood Risk 360 min Winter 4.858 0.008 5.0 0.4 Flood Risk 480 min Winter 4.856 0.006 4.0 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.853 0.003 1.8 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 280 min Winter 4.851 0.001 0.8 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 700 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk		
300 min winter 4.858 0.008 5.0 0.4 Flood Risk 480 min Winter 4.856 0.006 4.0 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.853 0.003 1.8 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 280 min Winter 4.851 0.001 0.8 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk		
400 min Winter 4.850 0.006 4.0 0.3 Flood Risk 600 min Winter 4.855 0.005 3.4 0.3 Flood Risk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.853 0.003 1.8 0.1 Flood Risk 1440 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 280 min Winter 4.851 0.001 0.8 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.5 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk		
720 min Winter 4.853 0.003 3.4 0.3 Flood Kisk 720 min Winter 4.854 0.004 2.7 0.2 Flood Risk 960 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.853 0.003 1.8 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2880 min Winter 4.852 0.002 1.1 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk		
960 min Winter 4.854 0.004 2.4 0.2 Flood Risk 1440 min Winter 4.853 0.003 1.8 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2880 min Winter 4.852 0.002 1.1 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk		
1440 min Winter 4.851 0.001 1.1 0.1 Flood Risk 2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2880 min Winter 4.852 0.002 1.1 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak Storm Storm Rain Flooded Time-Peak		
2160 min Winter 4.852 0.002 1.1 0.1 Flood Risk 2880 min Winter 4.852 0.002 1.1 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
2880 min Winter 4.852 0.002 1.1 0.1 Flood Risk 4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
4320 min Winter 4.851 0.001 0.8 0.1 Flood Risk 5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
5760 min Winter 4.851 0.001 0.8 0.1 Flood Risk 7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
7200 min Winter 4.851 0.001 0.5 0.1 Flood Risk 8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
8640 min Winter 4.851 0.001 0.5 0.1 Flood Risk 10080 min Winter 4.851 0.001 0.5 0.1 Flood Risk Storm Rain Flooded Time-Peak		
Storm Rain Flooded Time-Peak		
Storm Rain Flooded Time-Peak		
Storm Rain Flooded Time-Peak		
Storm Rain Flooded Time-Peak		
Event (mm/hr) Volume (mins)		
(m ³)		
30 min Winter 95.415 0.0 18		
60 min Winter 58.456 0.0 34		
120 min Winter 34.606 0.0 64		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
480 min Winter 11.357 0.0 238		
600 min Winter 9.468 0.0 316		
720 min Winter 8.157 0.0 356		
960 min Winter 6.444 0.0 484		
1440 min Winter 4.616 0.0 738		
2160 min Winter 3.302 0.0 1092		
2880 min Winter 2.601 0.0 1352		
4320 min Winter 1.857 0.0 2500		
5760 min Winter 1.461 0.0 3328		
7200 min Winter 1.212 0.0 3712		
8640 min Winter 1.040 U.U 5608		
10000 mill Willer 0.914 0.0 4404		
©1982-2020 Innovyze		

Heyne Tillett Steel		Page 3
4 Pear Tree Court		
London		
EC1R 0DS		Micco
Date 16/02/2022 15:59	Designed by WRayment	
File Permeable Paving.SRCX	Checked by	Dialitada
XP Solutions	Source Control 2020.1	
Ra	ainfall Details	
Rainfall Model	FSR Winter Storms Y	es
Recuili Period (years) Region Engl	and and Wales Cv (Summer) 0.8	40
M5-60 (mm)	20.600 Shortest Storm (mins)	15
Ratio R	0.445 Longest Storm (mins) 100	80
Summer Storms	Yes Climate Change % +	40
<u>Ti</u>	me Area Diagram	
Tot	al Area (ha) 0.057	
T F1	ime (mins) Area rom: To: (ha)	
	0 4 0.057	

Heyne Tillett Steel		Page 4
4 Pear Tree Court		
London		
EC1R 0DS		Mirro
Date 16/02/2022 15:59	Designed by WRayment	Dcainago
File Permeable Paving.SRCX	Checked by	Diamage
XP Solutions	Source Control 2020.1	
Storage is Or	Model Details	

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.41325	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	28.0
Max Percolation (l/s)	155.6	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.10	Evaporation (mm/day)	3
Invert Level (m)	4.850	Membrane Depth (m)	0

Heyne Tillett Steel						Page 1
4 Pear Tree Court						
London						
EC1R 0DS						Micro
Date 16/02/2022 16:03	D	esigned	by cler	nnon		
File Permeable Paving.SRCX	CI	hecked]	ру			Diamada
XP Solutions	S	ource Co	ontrol 2	2020.1		
Summary of Re	esults	for 30	year Re	eturn	Period	
Hal	lf Drai	n Time :	2 minutes	5.		
Storm 1	Max M	lax	Max	Max	Status	
Event Le	evel De (m) (epth Infi (m)	ltration (l/s)	Volume (m³)		
			10.0			
15 min Summer 4 30 min Summer 4	.876 0	.∪∠/ 026	1/.5 16 0	1.5 1 5	Flood Risk	
60 min Summer 4	.869 0.	.019	12.4	1.1	Flood Risk	
120 min Summer 4	.863 0.	.013	8.2	0.7	Flood Risk	
180 min Summer 4	.860 0.	.010	6.3	0.5	Flood Risk	
240 min Summer 4	.858 0.	.008	5.0	0.4	Flood Risk	
360 min Summer 4	.856 0.	.006	3.7	0.3	Flood Risk	
480 min Summer 4	.855 0.	.005	3.1	0.3	Flood Risk	
600 min Summer 4	.854 0.	.004	2.4	0.2	Flood Risk	
720 min Summer 4	.853 0.	.003	2.1	0.2	Flood Risk	
960 min Summer 4	.853 0.	.003	1.8	0.2	Flood Risk	
1440 min Summer 4 2160 min Summer 4	.852 0.	.002	1.4	0.1	Flood Risk	
2160 min Summer 4	.852 U. 851 O	002	1.1	0.1	Flood Risk	
4320 min Summer 4	.851 0.	.001	0.8	0.1	Flood Risk	
5760 min Summer 4	.851 0.	.001	0.5	0.1	Flood Risk	
7200 min Summer 4	.851 0.	.001	0.5	0.1	Flood Risk	
8640 min Summer 4	.851 0.	.001	0.5	0.1	Flood Risk	
10080 min Summer 4	.851 0.	.001	0.5	0.1	Flood Risk	
15 min Winter 4	.879 0.	.029	18.5	1.6	Flood Risk	
Storr	n	Rain	Flooded !	Time-Pe	ak	
Event	t	(mm/hr)	Volume (m³)	(mins)		
15 min	Summer	81.322	0 0		11	
30 min	Summer	52.001	0.0		18	
60 min	Summer	31.749	0.0		34	
120 min	Summer	18.815	0.0		64	
180 min	Summer	13.715	0.0		94	
240 min	Summer	10.917	0.0	1	22	
360 min	Summer	7.895	0.0	1	86	
480 min	Summer	6.272	0.0	2	44	
600 min	Summer	5.243	0.0	3	U6 70	
/20 min	Summer	4.528	0.0	3	/ U	
900 Min 1440 min	Summer	3.391 2 587	0.0	4 7	20	
2160 min	Summer	1.862	0.0	10	76	
2880 min	Summer	1.474	0.0	14	48	
4320 min	Summer	1.059	0.0	21	88	
5760 min	Summer	0.838	0.0	28	56	
7200 min	Summer	0.698	0.0	34	32	
8640 min	Summer	0.601	0.0	40	08	
10080 min	Summer	0.530	0.0	54	48	
15 min	Winter	81.322	0.0		ΤΤ	
	<u>∩1000</u>	_2020 T~	00000000			
	STA07-	-ZUZU II	шоууге			

Heyne Tillett Stee	1						Page 2
4 Pear Tree Court							
London							
EC1R ODS							Micco
Date 16/02/2022 16	:03		Desig	ned by cler	inon		
File Permeable Pav	ing.SRCX		Check	ed by			Dialitacje
XP Solutions			Sourc	ce Control 2	2020.1		
Su	mmary of	Resul	ts for	r 30 year Re	eturn	Period	
	-						
5	Storm	Max	Max	Max	Max	Status	
E	Ivent	Level	Depth	Infiltration	Volume		
		(m)	(m)	(1/s)	(m³)		
30	min Winter	4.874	0.024	15.3	1.3	Flood Risk	
60	min Winter	4.866	0.016	10.1	0.9	Flood Risk	
120	min Winter	4.860	0.010	6.3	0.5	Flood Risk	
180	min Winter	4.857	0.007	4.7	0.4	Flood Risk	
240	min Winter	4.856	0.006	3.7	0.3	Flood Risk	
360	min Winter	4 854	0 001	27	0 2	Flood Risk	
480	MITH WINCEL	1.001	0.004	2.1	0.2	I TOOG ICTOR	
	min Winter	4.853	0.004	2.1	0.2	Flood Risk	
600	min Winter min Winter	4.853	0.003	2.1 1.8	0.2	Flood Risk Flood Risk	
600 720	min Winter min Winter min Winter	4.853 4.853 4.853	0.003 0.003 0.003	2.1 1.8 1.8	0.2 0.2 0.2 0.1	Flood Risk Flood Risk Flood Risk	
600 720 960	min Winter min Winter min Winter min Winter	4.853 4.853 4.853 4.852	0.003 0.003 0.003 0.002	2.1 1.8 1.4	0.2 0.2 0.1 0.1	Flood Risk Flood Risk Flood Risk Flood Risk	
600 720 960 1440	min Winter min Winter min Winter min Winter min Winter	4.853 4.853 4.853 4.852 4.852 4.852	0.003 0.003 0.003 0.002 0.002	2.1 2.1 1.8 1.8 1.4 1.1	0.2 0.2 0.1 0.1 0.1	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk	

0.8

0.5

0.5

0.5

0.2 0.1 Flood Risk 0.0 0.0 Flood Risk

0.1 Flood Risk

0.0 Flood Risk

0.1 Flood Risk 0.1 Flood Risk

0.1 Flood Risk

2880 min Winter 4.851 0.001

4320 min Winter 4.851 0.001

5760 min Winter 4.851 0.001

7200 min Winter 4.851 0.001 8640 min Winter 4.850 0.000

10080 min Winter 4.850 0.000

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
30	min	Winter	52 001	0 0	18
60	min	Winter	31.749	0.0	34
120	min	Winter	18.815	0.0	62
180	min	Winter	13.715	0.0	92
240	min	Winter	10.917	0.0	120
360	min	Winter	7.895	0.0	186
480	min	Winter	6.272	0.0	236
600	min	Winter	5.243	0.0	308
72.0	min	Winter	4,528	0.0	352
960	min	Winter	3.591	0.0	496
1440	min	Winter	2.587	0.0	730
2160	min	Winter	1.862	0.0	976
2880	min	Winter	1.474	0.0	1556
4320	min	Winter	1.059	0.0	2232
5760	min	Winter	0.838	0.0	3016
7200	min	Winter	0.698	0.0	3256
8640	min	Winter	0.601	0.0	4712
10080	min	Winter	0.530	0.0	0

©1982-2020 Innovyze

4 Pear Tree Court	
i icai iico obaic	
London	
EC1R 0DS	
Date 16/02/2022 16:03 Designed by clennon Designed	
File Permeable Paving.SRCX Checked by	dyc
XP Solutions Source Control 2020.1	
Rainfall Details	
Rainfall Model FSR Winter Storms Yes	
Return Period (years) 30 CV (Summer) 0.750 Region England and Wales CV (Winter) 0.840	
M5-60 (mm) 20.600 Shortest Storm (mins) 15	
Ratio R 0.445 Longest Storm (mins) 10080	
Summer Storms Yes Climate Change % +0	
Time Area Diagram	
Total Area (ha) 0.057	
Time (mins) Area From: To: (ha)	
0 4 0.057	

©1982-2020 Innovyze

Heyne Tillett Steel		Page 4		
4 Pear Tree Court				
London				
EC1R ODS		Micro		
Date 16/02/2022 16:03	Designed by clennon	Dcainago		
File Permeable Paving.SRCX	Checked by	Diamage		
XP Solutions	Source Control 2020.1			
Model Details				
Storage is On	nline Cover Level (m) 5.000			

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.41325	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	28.0
Max Percolation (l/s)	155.6	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.10	Evaporation (mm/day)	3
Invert Level (m)	4.850	Membrane Depth (m)	0

Exceedance Plan

Job	Channing School Car I	Park	
Title	Exceedance Plan		
Job No	. 1843	Sheet	SKC01

Date	16.02.2022	
Eng.	CL	
Rev.	P1	STEEL

Maintenance Schedule

Drainage Inspection and Maintenance Strategy

This document has been prepared to support the inspection and maintenance of the proposed below ground drainage of the car park area off Highgate Hill at Channing Junior School. The drainage network comprises surface and foul water drainage systems:

- The surface water network consists of a permeable car park which serves its own footprint.

In accordance with CIRIA C625 it is recommended that a private SuDS maintenance agreement is undertaken as a simple contract between the property owner and the maintenance provider (the maintainer). It is mainly to facilitate continuing maintenance of the SuDS that are in private ownership. The maintenance requirements are in accordance with the CIRIA C753 SuDS Manual 2015 and product manufacturer's requirements.

The following Drainage / SuDS measures are proposed within the development:

Maintenance Period	Maintenance Task	Frequency	
	Inspect and identify areas that are not operating correctly. If required, take remedial action.	Monthly	
Regular	Inspect surface structures and covers removing obstructions and silt as necessary.		
maintenance	Check there is no physical damage.	Monthly or as required	
	Remove overgrown vegetation 1m min. around structures and keep hard aprons free from silt and debris.		
	Remove sediment from pre-treatment structures (e.g. gullies, channels silt traps) and non-return valves.	Six-monthly or as required after large storm events	
Occasional Maintenance	Remove cover and inspect inside, ensuring water is flowing freely and that the exit route for water is unobstructed.	Annually or as required	
	Remove debris and silt.	after large storm events.	
	Undertake inspection after leaf fall in autumn.		
Remedial Actions	Repair/rehabilitation of inlets, outlets, overflows and vents.	As required	
Monitoring	Inspect all manholes, inspection chambers, inlets, outlets, overflows and vents to ensure they are in good condition and operating as designed.	Annually or after large storms.	

- General Drainage:

- Overflows and Flood Routes:

Maintenance Period	Maintenance Task	Frequency
Regular maintenance	Remove any accumulated grass cuttings or other debris on top of grass weirs or stone filled baskets overflows.	Monthly
	Make visual inspection of flood routes. Check route is not blocked by new fences, walls, soil or other rubbish. Remove as necessary.	
	Jet pipes leading from overflow structures annually and check by running water through overflow. Check free flow at next SuDS feature – inlet to basin or chamber.	Annually
Remedial Actions	If overflow is not clear, then dismantle structure and reassemble to design detail.	As Required

- Permeable paving system:

Maintenance Period	Maintenance Task	Frequency
Regular	Inspect for sediment and debris in the inlet chambers and trim any roots that may be causing blockages.	Annually or as required
maintenance	Cleaning of gutters and any filters on downpipes	
	Brushing and vacuuming (standard cosmetic sweep over whole surface).	Once a year, after autumn leaf fall, or as required,
Occasional maintenance	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying.	As required, based on inspections
	Remedial work to any depressions, rutting, cracked or broken blocks considered detrimental to the permeable paving performance.	As required
Remedial Actions	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required
	Jet washing and suction cleaning will substantially reinstate pavement to 90% efficiency (CIRIA RP992).	As required
	Initial inspection.	Monthly for three months after installation
Monitoring	Inspect inspection chambers and note rate of sediment accumulation and establish appropriate brushing frequencies.	Monthly in the first year and then annually
	Inspect for evidence of poor operation and/or week growth – if required, take remedial action.	Annually
	Monitor effectiveness of permeable pavement and when water does not infiltrate immediately advise Client of possible need for reinstatement of top layers or specialist cleaning.	As required

Reference shall be made to CIRIA publication C753 (The SuDS Manual) and to the relevant maintenance guidance from the products manufacturers.