WE ARE SYMMETRYS

ADDENDUM TO THE STRUCTURAL CALCULATION PACKAGE

43A REDINGTON ROAD LONDON NW3 7RA

REF: 21141

Symmetrys
Unit 6 The Courtyard
Lynton Road

Revision History

Revision	Description	Date	Ву	Checked
А	Issue	14.01.22	SB	DS

SYMMETRYS.COM

	D	AT	A	(F	201	Н	1	ec	Q.d.	(3)																														
	26	25	53	, U	RE		F	20	М		PE	T		W	A	L		Ar	J A	4	151	S	(C	47	E	RA.	L	u	OA	D	0,	NI	4)			17	, 2	_ ir	2	lui
	De	₹S	100	-N	1	45	Si	, ~	(P-	TIS	01)									+				4	7													,60		
-					46								cı	GI	17																	1	2	00	>	I	>		,00	,	
(N	H	er	હ	N-	7		377	F	FA	16	55	2	7	0						1		-		4		٥	,		ļ.	ø		2	5c	2						2
(36	-	c	Ar	PA	В	LE		96		ie	A	N	Pc	n	RI	N	G									,														
					'n		7	L	ЭA	D 5	5									00						•	1	'n			4		-								
U	NI	F	06	2 M	y															5					`	2						<u> </u>				+	8	. 0	00		
																				-	1														1	P					
																							./	-			6	00	2			1					-				
8	Τ.	121	P	F	jo.	12	0	+	-	-			-	1														3													
		0	Co	N	cn	ŧτ	E	-	(\frac{\fir}}}}}}}{\firac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fir}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\	ठि	·c		2	1	20	4	-	(7	=	-	5		M	3/	he														
•	>	5	T	RI	P	f	00	N	DA	177	101	0		5 6	-	7		W	£1	G	нт			•	5	. [16	, .	1,	55	0	· l	=	(2	4	-	XI	7		
1	J		7 .	71	, /		+	13	3,	9	-	=	8	5]	K /	V						-																		
7	0	TA	Ĺ		Vá	n	7	CA	2		6	OA	D	2-	-	8	5	-(-		12	, (4	1	-	9	7.	4		K	J											
		,				0	~					0																									,	2			
9	R	٥	0 /	۷.		6	ef	ta	1 1) (ir		1	Re	: 2'	> 0) (K	Ċ		11		9	6	,4	-	+		17	! <i>}</i>	2	=	7	B	,(Ks	U /	lu	1			
AT		D	W	K	Bí	طنا	F	3 <i>€</i>	A	RI	N	4		PR	6:	58	v	20		(0			В	. 6	20	,	Annual Princes		6	٥٥		CN	1	e u	,	>	2				
e ,			o P	-				Х					Di						から		CE			28						DA		1			Be			V			
6	2	2	6	LE	7	V	1 A	и	•																																

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	DINGTON ROA	21141			
Calcs for		Start page no./Revision			
	B-R'		1		
Calcs by SB	Calcs date 14/01/2022	Checked by DS	Checked date 14/01/2022	Approved by DS	Approved date 14/01/2022

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.12

Retaining wall details

Cantilever Stem type Stem height h_{stem} = **1200** mm Stem thickness t_{stem} = **250** mm Angle to rear face of stem α = **90** deg $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Stem density I_{toe} = **2560** mm Toe length Base thickness t_{base} = **250** mm Base density γ_{base} = 25 kN/m³ Height of retained soil $h_{ret} = 1200 \text{ mm}$ Angle of soil surface $\beta = 6 \deg$ Depth of cover $d_{cover} = 0 \text{ mm}$

Retained soil properties

Base soil properties

 $\begin{tabular}{lll} Soil type & Firm clay \\ Soil density & $\gamma_b = 19 \ kN/m^3$ \\ Characteristic effective shear resistance angle & $\phi'_{b,k} = 27 \ deg$ \\ Characteristic wall friction angle & $\delta_{b,k} = 13.5 \ deg$ \\ Characteristic base friction angle & $\delta_{bb,k} = 18 \ deg$ \\ Presumed bearing capacity & $P_{bearing} = 60 \ kN/m^2$ \\ \end{tabular}$

Loading details

Variable surcharge load Surcharge Q = 10 kN/m²

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	DINGTON ROA	21141			
Calcs for		Start page no./Revision			
		2			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
SB	14/01/2022	DS	14/01/2022	DS	14/01/2022

Calculate retaining wall geometry

Base length Moist soil height

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Using Coulomb theory

Active pressure coefficient

Passive pressure coefficient

Bearing pressure check

Vertical forces on wall

 $\begin{array}{lll} \text{Wall stem} & & F_{\text{stem}} = A_{\text{stem}} \times \gamma_{\text{stem}} = \textbf{7.5 kN/m} \\ \text{Wall base} & & F_{\text{base}} = A_{\text{base}} \times \gamma_{\text{base}} = \textbf{17.6 kN/m} \\ \text{Total} & & F_{\text{total_v}} = F_{\text{stem}} + F_{\text{base}} = \textbf{25.1 kN/m} \\ \end{array}$

Horizontal forces on wall

Surcharge load $F_{sur} h = K_A \times cos(\delta_{r,k}) \times Surcharge_Q \times h_{eff} = 5.2 \text{ kN/m}$

 $I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} = 2810 \text{ mm}$

 h_{moist} = h_{soil} = 1200 mm

 $I_{sur} = I_{heel} = 0 \text{ mm}$

 $x_{sur v} = I_{base} - I_{heel} / 2 = 2810 \text{ mm}$

 $h_{\text{eff}} = h_{\text{base}} + d_{\text{cover}} + h_{\text{ret}} + I_{\text{sur}} \times tan(\beta) = \textbf{1450} \text{ mm}$

 $x_{sur_h} = h_{eff} / 2 = 725 \text{ mm}$

 $A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = \textbf{0.3} \text{ m}^2$

 $x_{stem} = I_{toe} + t_{stem} / 2 = 2685 \text{ mm}$

 $A_{base} = I_{base} \times t_{base} = 0.703 \text{ m}^2$

 $x_{base} = I_{base} / 2 = 1405 \text{ mm}$

 $\mathsf{K}_\mathsf{A} = \sin(\alpha + \phi'_\mathsf{r,k})^2 \, / \, (\sin(\alpha)^2 \times \sin(\alpha - \delta_\mathsf{r,k}) \times [1 + \sqrt{\sin(\phi'_\mathsf{r,k} + \delta_\mathsf{r,k})} \times \sin(\phi'_\mathsf{r,k}) \times [1 + \sqrt{\sin(\phi'_\mathsf{r,k} + \delta_\mathsf{r,k})} \times \sin(\phi'_\mathsf{r,k})] \times [1 + \sqrt{\sin(\phi'_\mathsf{r,k} + \delta_\mathsf{r,k})} \times \sin(\phi'_\mathsf{r,k})]$

- β) / (sin(α - $\delta_{r,k}$) × sin(α + β))]]²) = **0.367**

 $K_P = \sin(90 - \phi'_{b.k})^2 / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k}) / (\sin(\phi'_{b.k} + \delta_{b.k}) \times (\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k}) / (\sin(\phi'_{b.k} + \delta_{b.k}) \times (\sin$

 $(\sin(90 + \delta_{b.k}))]]^2) = 4.044$

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	DINGTON ROA	21141			
Calcs for				Start page no./Re	evision
	B-R'	;	3		
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
SB	14/01/2022	DS	14/01/2022	DS	14/01/2022

Moist retained soil $F_{moist_h} = K_A \times cos(\delta_{r.k}) \times \gamma_{mr} \times h_{eff}^2 / 2 = 7.1 \text{ kN/m}$

Base soil $F_{pass_h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -2.3 \text{ kN/m}$

Total $F_{total_h} = F_{sur_h} + F_{moist_h} + F_{pass_h} = 10 \text{ kN/m}$

Moments on wall

Wall stem $M_{stem} = F_{stem} \times x_{stem} = 20.1 \text{ kNm/m}$ Wall base $M_{base} = F_{base} \times x_{base} = 24.7 \text{ kNm/m}$ Surcharge load $M_{sur} = -F_{sur_h} \times x_{sur_h} = -3.8 \text{ kNm/m}$ Moist retained soil $M_{moist} = -F_{moist\ h} \times x_{moist\ h} = -3.4 \text{ kNm/m}$

Total $M_{total} = M_{stem} + M_{base} + M_{sur} + M_{moist} = 37.6 \text{ kNm/m}$

Check bearing pressure

Propping force $F_{prop_base} = F_{total_h} = \textbf{10 kN/m}$ Distance to reaction $\overline{x} = M_{total} / F_{total_v} = \textbf{1501 mm}$ Eccentricity of reaction $e = \overline{x} - I_{base} / 2 = \textbf{96 mm}$ Loaded length of base $I_{load} = I_{base} = \textbf{2810 mm}$

Bearing pressure at toe $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = \textbf{7.1 kN/m}^2$ Bearing pressure at heel $q_{heel} = F_{total_v} / I_{base} \times (1 + 6 \times e / I_{base}) = \textbf{10.7 kN/m}^2$

Factor of safety FoS_{bp} = $P_{bearing} / max(q_{toe}, q_{heel}) = 5.587$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.12

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

 $\begin{tabular}{lll} Concrete strength class & C30/37 \\ Characteristic compressive cylinder strength & f_{ck} = {\bf 30} \ N/mm^2 \\ Characteristic compressive cube strength & f_{ck,cube} = {\bf 37} \ N/mm^2 \\ \hline \end{tabular}$

Mean value of compressive cylinder strength $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$

Mean value of axial tensile strength $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$

5% fractile of axial tensile strength $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$

Secant modulus of elasticity of concrete $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$

Partial factor for concrete - Table 2.1N $\gamma_C = 1.50$ Compressive strength coefficient - cl.3.1.6(1) $\alpha_{cc} = 0.85$

Design compressive concrete strength - exp.3.15 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 17.0 \text{ N/mm}^2$

 $\begin{array}{lll} \text{Maximum aggregate size} & h_{\text{agg}} = \textbf{20} \text{ mm} \\ \text{Ultimate strain - Table 3.1} & \epsilon_{\text{cu2}} = \textbf{0.0035} \\ \text{Shortening strain - Table 3.1} & \epsilon_{\text{cu3}} = \textbf{0.0035} \\ \text{Effective compression zone height factor} & \lambda = \textbf{0.80} \\ \text{Effective strength factor} & \eta = \textbf{1.00} \\ \text{Bending coefficient k}_1 & \text{K}_1 = \textbf{0.40} \\ \end{array}$

Bending coefficient k_2 $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Bending coefficient k_3 $K_3 = 0.40$

Bending coefficient $k_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Reinforcement details

Characteristic yield strength of reinforcement $f_{yk} = 500 \text{ N/mm}^2$

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	DINGTON ROA	21141			
Calcs for	Start page no./Revision				
	B-R'		4		
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
SB	14/01/2022	DS	14/01/2022	DS	14/01/2022

Modulus of elasticity of reinforcement E_s = **200000** N/mm²

 $\gamma_{\rm S} = 1.15$ Partial factor for reinforcing steel - Table 2.1N

Design yield strength of reinforcement $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Cover to reinforcement

Front face of stem c_{sf} = **40** mm Rear face of stem $c_{sr} = 50 \text{ mm}$ Top face of base $c_{bt} = 50 \text{ mm}$ Bottom face of base $c_{bb} = 75 \text{ mm}$

Check stem design at base of stem

Depth of section h = 250 mm

Rectangular section in flexure - Section 6.1

Design bending moment combination 1 M = 6.5 kNm/m

Depth to tension reinforcement $d = h - c_{sr} - \phi_{sr} / 2 = 192 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.006$

 $K' = (2 \times \eta \times \alpha_{cc}/\gamma_C) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$

K' = 0.207

K' > K - No compression reinforcement is required

Lever arm $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_{C}))^{0.5}, 0.95) \times d = 182 \text{ mm}$

 $x = 2.5 \times (d - z) = 24 \text{ mm}$ Depth of neutral axis

 $A_{sr.req} = M / (f_{yd} \times z) = 82 \text{ mm}^2/\text{m}$ Area of tension reinforcement required

Tension reinforcement provided 16 dia.bars @ 150 c/c

Area of tension reinforcement provided $A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1340 \text{ mm}^2/\text{m}$

Minimum area of reinforcement - exp.9.1N $A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 289 \text{ mm}^2/\text{m}$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$

 $max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.216$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	DINGTON ROA	21141			
Calcs for				Start page no./Re	evision
	B-R'	W06		;	5
Calcs by SB	Calcs date 14/01/2022	Checked by DS	Checked date 14/01/2022	Approved by DS	Approved date 14/01/2022

Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = \textbf{0.005}$

Required tension reinforcement ratio $\rho = A_{sr.req} / d = \textbf{0.000}$ Required compression reinforcement ratio $\rho' = A_{sr.2.req} / d_2 = \textbf{0.000}$

Structural system factor - Table 7.4N $K_b = 0.4$

Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr,req} / A_{sr,prov}), 1.5) = 1.5$

Limiting span to depth ratio - exp.7.16.a $\min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.$

N/mm²) × (ρ_0 / ρ - 1)^{3/2}], 40 × K_b) = **16**

Actual span to depth ratio h_{stem} / d = **6.3**

PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3

Limiting crack width $w_{max} = 0.3 \text{ mm}$

Variable load factor - EN1990 – Table A1.1 $\psi_2 = 0.6$

Serviceability bending moment $M_{sis} = 3.5 \text{ kNm/m}$

Tensile stress in reinforcement $\sigma_s = M_{sls} / (A_{sr,prov} \times z) = 14.3 \text{ N/mm}^2$

Load duration Long term Load duration factor $k_i = 0.4$

Effective area of concrete in tension $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

 $A_{c.eff} = 75333 \text{ mm}^2/\text{m}$

Mean value of concrete tensile strength $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$

Reinforcement ratio $\rho_{p.eff} = A_{sr,prov} / A_{c.eff} =$ **0.018**

Modular ratio $\alpha_e = E_s / E_{cm} = 6.091$

Bond property coefficient $k_1 = 0.8$ Strain distribution coefficient $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$

Maximum crack spacing - exp.7.11 $s_{r,max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p,eff} = 323 \text{ mm}$

Maximum crack width - exp.7.8 $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), \ 0.6 \times \sigma_s) / E_s$

 $w_k = 0.014 \text{ mm}$ $w_k / w_{max} = 0.046$

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force V = 13 kN/m

 $C_{Rd,c} = 0.18 / \gamma_C = 0.120$

 $k = min(1 + \sqrt{(200 \text{ mm} / d)}, 2) = 2.000$

Longitudinal reinforcement ratio $\rho_{l} = min(A_{sr,prov} / d, 0.02) = 0.007$

 $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.542 \text{ N/mm}^2$

Design shear resistance - exp.6.2a & 6.2b $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min}) \times d$

 $V_{Rd.c}$ = **127** kN/m $V / V_{Rd.c}$ = **0.103**

PASS - Design shear resistance exceeds design shear force

Horizontal reinforcement parallel to face of stem - Section 9.6

Minimum area of reinforcement – cl.9.6.3(1) $A_{sx,req} = max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 335 \text{ mm}^2/\text{m}$

Maximum spacing of reinforcement – cl.9.6.3(2) $s_{sx_max} = 400 \text{ mm}$ Transverse reinforcement provided 10 dia.bars @ 200 c/c

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	21141				
Calcs for	Start page no./Revision				
	B-R		6		
Calcs by SB	Calcs date 14/01/2022	Checked by DS	Checked date 14/01/2022	Approved by DS	Approved date 14/01/2022
36	14/01/2022	D3	14/01/2022	DS	14/01/2022

Area of transverse reinforcement provided

 $A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

h = 250 mm Depth of section

Rectangular section in flexure - Section 6.1

Design bending moment combination 2 M = 9.4 kNm/m

Depth to tension reinforcement $d = h - c_{bb} - \phi_{bb} / 2 = 167 \text{ mm}$

 $K = M / (d^2 \times f_{ck}) = 0.011$

 $K' = (2 \times \eta \times \alpha_{cc}/\gamma_C) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$

K' = 0.207

K' > K - No compression reinforcement is required

 $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_{C}))^{0.5}, 0.95) \times d = 159 \text{ mm}$ Lever arm

 $x = 2.5 \times (d - z) = 21 \text{ mm}$ Depth of neutral axis

Area of tension reinforcement required $A_{bb.req} = M / (f_{yd} \times z) = 136 \text{ mm}^2/\text{m}$

16 dia.bars @ 150 c/c Tension reinforcement provided

 $A_{bb.prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 1340 \text{ mm}^2/\text{m}$ Area of tension reinforcement provided

Minimum area of reinforcement - exp.9.1N $A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 252 \text{ mm}^2/\text{m}$

 $A_{bb,max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$ Maximum area of reinforcement - cl.9.2.1.1(3)

 $max(A_{bb.req}, A_{bb.min}) / A_{bb.prov} = 0.188$

 $\sigma_{\rm s} = M_{\rm sls} / (A_{\rm bb.prov} \times z) = 30.1 \text{ N/mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Crack control - Section 7.3

Load duration factor

Limiting crack width $w_{max} = 0.3 \text{ mm}$ $\psi_2 =$ **0.6**

Variable load factor - EN1990 - Table A1.1

 $M_{sis} = 6.4 \text{ kNm/m}$ Serviceability bending moment Tensile stress in reinforcement

Load duration Long term

 $k_t = 0.4$ Effective area of concrete in tension $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

 $A_{c.eff} = 76375 \text{ mm}^2/\text{m}$

Mean value of concrete tensile strength $f_{\text{ct.eff}} = f_{\text{ctm}} = 2.9 \text{ N/mm}^2$

 $\rho_{p.eff}$ = $A_{bb.prov}$ / $A_{c.eff}$ = **0.018** Reinforcement ratio

Modular ratio $\alpha_e = E_s / E_{cm} = 6.091$

Bond property coefficient $k_1 = 0.8$ Strain distribution coefficient $k_2 = 0.5$ $k_3 = 3.4$

 $k_4 = 0.425$

Maximum crack spacing - exp.7.11 $s_{r.max}$ = $k_3 \times c_{bb}$ + $k_1 \times k_2 \times k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 410 mm

Maximum crack width - exp.7.8 $W_k = S_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$

> $w_k = 0.037 \text{ mm}$ $W_k / W_{max} = 0.123$

> > PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force V = 8.8 kN/m

 $C_{Rd,c} = 0.18 / \gamma_C = 0.120$

Unit 6 The Courtyard, Lynton Road London N8 8SL

Project				Job no.	
43a RE	21141				
Calcs for				Start page no./Re	evision
		7			
Calcs by SB	Calcs date 14/01/2022	Checked by DS	Checked date 14/01/2022	Approved by DS	Approved date 14/01/2022

 $k = min(1 + \sqrt{200 \text{ mm} / d}), 2) = 2.000$

Longitudinal reinforcement ratio $\rho_l = min(A_{bb,prov} / d, 0.02) = 0.008$

 $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = \textbf{0.542 N}/\text{mm}^2$

Design shear resistance - exp.6.2a & 6.2b $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min}) \times d$

 $V_{Rd.c}$ = 115.7 kN/m V / $V_{Rd.c}$ = 0.076

PASS - Design shear resistance exceeds design shear force

Secondary transverse reinforcement to base - Section 9.3

Minimum area of reinforcement – cl.9.3.1.1(2) $A_{bx,req} = 0.2 \times A_{bb,prov} = 268 \text{ mm}^2/\text{m}$

Maximum spacing of reinforcement – cl.9.3.1.1(3) $s_{bx_max} = 450 \text{ mm}$ Transverse reinforcement provided 10 dia.bars @ 200 c/c

Area of transverse reinforcement provided $A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Reinforcement details

CONTINUE THE CONVERSATION

TO DISCUSS YOUR PROJECT WITH US PLEASE GET IN TOUCH ON 020 8340 4041 OR EMAIL US AT INFO@SYMMETRYS.COM

```
ineers . JAC
Jan Construct
ark Pinney . Ma
Pegasus Life . pH-
Soda Studio . Spacela
                                                    and Stephen . Sergison Bates . Soda Studio . Spacelab . Squa
al Trillium . Temperley London . Threefold Architects
```