

Energy and Sustainability Statement 17 North End, NW3 7HR

1st November 2021

Newark (Head) Office:

Newark Beacon, Beacon Hill Office Park, Cafferata Way, Newark, Notts, NG24 2TN. Tel: 01636 653 055 London Office: 344-354 Gray's Inn Road, King's Cross, London WCIX 8BP. Tel: 0207 033 3757 Birmingham Office:

2nd Floor Quayside Tower, 252-260 Broad St, Birmingham B1 2HF. Tel: 0121 285 2785

info@mesbuildingsolutions.co.uk | www.mesbuildingsolutions.co.uk

MES Building Solutions is part of Midland Energy Services Limited. Registered in England, Company no: 5945430

Document version & history

lssue No.	Date	Comment	Author	Signature
1.0	02/09/2021	Draft for comment	L Davies	Danes
1.1	29/09/2021	Updated SuDS & PV sections	L Davies	Davas
1.2	01/11/2021	Updated Section 4.3 - SuDS	L Davies	Lanua

About MES Building Solutions

MES Building Solutions is an established consultancy practice specialising in providing building solutions throughout the UK.

We offer a full range of services for both residential and commercial buildings from small individual properties through to highly complex mixed use developments.

We are an industry leader in delivering a professional, accredited and certified service to a wide range of clients including architects, developers, builders, housing associations, the public sector and private householders.

Employing highly qualified staff, our team comes from a variety of backgrounds within the construction industry with combined knowledge of building design, engineering, assessment, construction, development, research and surveying.

We are renowned for our creative thinking and provide a high quality, honest and diligent service.

MES Building Solutions maintains its position at the forefront of changes in planning, building regulations and neighbourly matters, as well as technological advances. Our clients, large or small are therefore assured of a cost effective, cohesive and fully integrated professional service.

List of contents

- 1. Introduction
 - 1.1 Executive Summary
 - 1.2 Introduction
 - 1.3 Planning Policy
- 2. Description of development
 - 2.1 Location
 - 2.2 Details of development
- 3. Energy Statement
 - 3.1 Energy Hierarchy
 - 3.2 Calculating Baseline Energy Demand
 - 3.3 Emission Reduction Targets
 - 3.4 Communal Heating and CHP
 - 3.5 CO₂ reduction through the use of renewable or low carbon technologies
- 4. Sustainability Statement
 - 4.1 Water Infrastructure
 - 4.2 Flood Risk Management
 - 4.3 Sustainable Drainage
- 5. Summary

Appendix A – SAP Calculations for 'Be Lean, Be Clean' Appendix B – SAP Calculations for 'Be Lean, Be Clean & Be Green' Appendix C – Water Use Calculations Appendix D – Run Off Rate Calculations

Section 1: Introduction

1.1 Executive Summary

This report is produced in support of a planning application to London Borough of Camden for the development at 17 North End, NW3 7HR.

The application is for the construction of a new dwelling, consisting of one 3-bed detached house. This proposal is to be considered a minor development.

For this development the recommended strategy is the implementation of a 'fabric first' holistic approach; that is based on ensuring the building fabric and core services are designed and installed correctly and implementation of LZC technology in the form of an Air Source Heat Pump (ASHP). This has allowed the proposed dwellings to achieve a compliant Fabric Energy Efficiency specification and achieves a 55% reduction in energy consumption & 56% reduction in carbon emissions from LZC technology, exceeding the 19% reduction target from London Borough of Camden.

Table 1a shows the reduction in kWh and tonnes of CO₂ per year through the fabric improvements, energy efficiency system measures and implementation of an ASHP, which ensure the development, will meet and exceed current building regulations.

Total reduction in regulated emissions & energy use – Part L 2013				
	kWh/year	Tonnes CO ₂ /year		
Baseline	13,558.07	2.86		
Be Lean & Be Clean	11,844.30	2.53		
Reduction over Baseline	12.64%	11.72%		
Be Green 5,896.70 1.28		1.28		
Reduction over Baseline	56.51%	55.34%		

1.2 Introduction

MES Building Solutions has been retained to provide an energy statement in order to address the energy and carbon reduction policies of the London Borough of Camden. The purpose of this statement is to establish the predicted energy requirements for the proposed development and show how energy efficiency measures in conjunction with renewable generation can be used to reduce the predicted energy consumption and associated carbon dioxide emissions. This is in line with the requirements of Camden's Local Plan policy CC1.

This is achieved by following the energy hierarchy which includes:

- Calculation of baseline energy consumption & CO₂ emissions using indicative SAP calculations
- Implementation of the energy hierarchy (be lean, be clean, be green)
- Calculation of energy consumption & CO₂ emissions at each stage of energy hierarchy
- Calculation of final energy consumption & CO₂ emissions
- Calculation of reduction in emissions achieved
- Calculation of contribution from renewable generation

1.3 Planning Policy

National Policy

In February 2019, the Government published the National Planning Policy Framework (NPPF) which superseded a number of planning policies including the Planning Policy Statement (PPS) suite.

The NPPF outlines the Government's planning policies for England. It provides a framework within which local people and accountable councils can produce their own distinctive local plan which reflect the needs and priorities of their neighbourhoods and communities. The purpose of the NPPF is to contribute to the achievement of sustainable development.

The NPPF aims to strengthen local decision making as a way to foster the delivery of sustainable developments. However, the NPPF also outlines that sustainable developments require careful attention to viability and costs in plan-making and decision-taking processes. Over everything else, plans should be deliverable. Therefore, the size and scale of development within the plan should not be subjected to large scale obligations and burdens, so that their ability to be developed viably is threatened.

The NPPF guidance promotes planning for climate change. Chapter 14 of the NPPF, Meeting the Challenge of Climate Change, Flooding and Coastal Change (paragraphs 149 to 154) state that:

Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures. Policies should support appropriate measures to ensure the future resilience of communities and infrastructure to climate change impacts, such as providing space for physical protection measures, or making provision for the possible future relocation of vulnerable development and infrastructure.

- New development should be planned for in ways that:
 - Avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
 - Can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.
- To help increase the use and supply of renewable and low carbon energy and heat, plans should:
 - Provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);
 - Consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and
 - Identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for co-locating potential heat customers and suppliers.
- Local planning authorities should support community-led initiatives for renewable and low carbon energy, including

developments outside areas identified in local plans or other strategic policies that are being taken forward through neighbourhood planning.

- In determining planning applications, local planning authorities should expect new development to:
 - Comply with any development plan policies on local requirements for decentralised energy supply unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable; and
 - Take account of landform, layout, building orientation, massing and landscaping to minimise energy consumption.
- When determining planning applications for renewable and low carbon development, local planning authorities should:
 - Not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions; and
 - Approve the application if its impacts are (or can be made) acceptable. Once suitable areas for renewable and low carbon energy have been identified in plans, local planning authorities should expect subsequent applications for commercial scale projects outside these areas to demonstrate that the proposed location meets the criteria used in identifying suitable areas.

Camden Local Plan 2017

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

Camden Local F	Plan
	Ocambri

The main policy in London Borough of Camden's Local

Plan that relates to energy and carbon dioxide emissions is CC1. This has been reproduced below.

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- support and encourage sensitive energy efficiency improvements to existing buildings;
- require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

The energy hierarchy

- 8.6 The Council's Sustainability Plan 'Green Action for Change' commits the Council to seek low and where possible zero carbon buildings. New developments in Camden will be expected to be designed to minimise energy use and CO2 emissions in operation through the application of the energy hierarchy. It is understood that some sustainable design measures may be challenging for listed buildings and some conservation areas and we would advise developers to engage early with the Council to develop innovative solutions.
- 8.7 The energy hierarchy is a sequence of steps that minimise the energy consumption of a building. Buildings designed in line with the energy hierarchy prioritise lower cost passive design measures, such as improved fabric performance over higher cost active systems such as renewable energy technologies. The following diagram shows a simplified schematic of the energy hierarchy, which is explained further in supplementary planning document Camden Planning Guidance on sustainability.

8.8

All developments involving five or more dwellings and/or more than 500 sqm of (gross internal) any floorspace will be required to submit an energy statement demonstrating how the energy hierarchy has been applied to make the fullest contribution to CO2 reduction. All new residential development will also be

required to demonstrate a 19% CO2 reduction below Part L 2013 Building Regulations (in addition to any requirements for renewable energy). This can be demonstrated through an energy statement or sustainability statement.

The combination of Policy CC1 and the above extract from London Borough of Camden's Local Plan gives a requirement that the development reduce its carbon emissions by a minimum of 19%. It is encouraged that developments go beyond this, so this report will demonstrate a larger improvement than this. This improvement does not have to be down to renewable technologies, but can be the result of any combination of fabric improvements, efficient building services, and decentralised energy or LZC technologies.

Policy CC2 Adapting to climate change

The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation measures such as:

a. the protection of existing green spaces and promoting new appropriate green infrastructure;

b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;

c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and

d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Any development involving 5 or more residential units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainability Statement.

Sustainable design and construction measures

The Council will promote and measure sustainable design and construction by:

e. ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;

f. encourage new build residential development to use the Home Quality Mark and Passivhaus design standards;

g. encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM domestic refurbishment; and

h. expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019.

The New London Plan (adopted March 2021)

Policy SI 2 Minimising greenhouse gas emissions

A Major development should be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the following energy hierarchy:

 be lean: use less energy and manage demand during operation
 be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly

3) be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site

4) be seen: monitor, verify and report on energy performance.

B Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.

C A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either:

1) through a cash in lieu contribution to the borough's carbon offset fund, or

2) off-site provided that an alternative proposal is identified and delivery is certain.

D Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.

E Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.

F Development proposals referable to the Mayor should calculate whole life-cycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.

Policy SI 3 Energy infrastructure

A Boroughs and developers should engage at an early stage with relevant energy companies and bodies to establish the future energy and infrastructure requirements arising from large-scale development proposals such as Opportunity Areas, Town Centres, other growth areas or clusters of significant new development.

B Energy masterplans should be developed for large-scale development locations (such as those outlined in Part A and other opportunities) which establish the most effective energy supply options. Energy masterplans should identify:

1) major heat loads (including anchor heat loads, with particular reference to sites such as universities, hospitals and social housing)

2) heat loads from existing buildings that can be connected to future phases of a heat network

3) major heat supply plant including opportunities to utilise heat from energy from waste plants

4) secondary heat sources, including both environmental and waste heat

5) opportunities for low and ambient temperature heat networks

6) possible land for energy centres and/or energy storage

7) possible heating and cooling network routes

8) opportunities for futureproofing utility infrastructure networks to minimise the impact from road works

9) infrastructure and land requirements for electricity and gas supplies10) implementation options for delivering feasible projects, considering

issues of procurement, funding and risk, and the role of the public sector

11) opportunities to maximise renewable electricity generation and incorporate demand-side response measures.

C Development Plans should:

1) identify the need for, and suitable sites for, any necessary energy infrastructure requirements including energy centres, energy storage and upgrades to existing infrastructure

2) identify existing heating and cooling networks, identify proposed locations for future heating and cooling networks and identify opportunities for expanding and inter-connecting existing networks as well as establishing new networks.

D Major development proposals within Heat Network Priority Areas should have a communal low-temperature heating system:

1) the heat source for the communal heating system should be selected in accordance with the following heating hierarchy:

a) connect to local existing or planned heat networks

b) use zero-emission or local secondary heat sources (in conjunction with heat pump, if required)

c) use low-emission combined heat and power (CHP) (only where there is a case for CHP to enable the delivery of an area-wide heat network, meet the development's electricity demand and provide demand response to the local electricity network)

d) use ultra-low NOx gas boilers

2) CHP and ultra-low NOx gas boiler communal or district heating systems should be designed to ensure that they meet the requirements in Part B of Policy SI 1 Improving air quality 3) where a heat network is planned but not yet in existence the development should be designed to allow for the cost-effective connection at a later date.

E) Heat networks should achieve good practice design and specification standards for primary, secondary and tertiary systems comparable to those set out in the CIBSE/ADE Code of Practice CP1 or equivalent.

Policy SI 4 Managing heat risk

A Development proposals should minimise adverse impacts on the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure.

B Major development proposals should demonstrate through an energy strategy how they will reduce the potential for internal overheating and reliance on air conditioning systems in accordance with the following cooling hierarchy:

1) reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure

2) minimise internal heat generation through energy efficient design

3) manage the heat within the building through exposed internal thermal mass and high ceilings

- 4) provide passive ventilation
- 5) provide mechanical ventilation

6) provide active cooling systems.

Policy SI 12 Flood risk management

A Current and expected flood risk from all sources (as defined in paragraph 9.12.2) across London should be managed in a sustainable and cost-effective way in collaboration with the Environment Agency, the Lead Local Flood Authorities, developers and infrastructure providers.

B Development Plans should use the Mayor's Regional Flood Risk Appraisal and their Strategic Flood Risk Assessment as well as Local Flood Risk Management Strategies, where necessary, to identify areas where particular and cumulative flood risk issues exist and develop actions and policy approaches aimed at reducing these risks. Boroughs should co-operate and jointly address cross-boundary flood risk issues including with authorities outside London.

C Development proposals should ensure that flood risk is minimised and mitigated, and that residual risk is addressed. This should include, where possible, making space for water and aiming for development to be set back from the banks of watercourses.

D Developments Plans and development proposals should contribute to the delivery of the measures set out in Thames Estuary 2100 Plan. The Mayor will work with the Environment Agency and relevant local planning authorities, including authorities outside London, to safeguard an appropriate location for a new Thames Barrier.

E Development proposals for utility services should be designed to remain operational under flood conditions and buildings should be designed for quick recovery following a flood.

F Development proposals adjacent to flood defences will be required to protect the integrity of flood defences and allow access for future maintenance and upgrading. Unless exceptional circumstances are demonstrated for not doing so, development proposals should be set back from flood defences to allow for any foreseeable future maintenance and upgrades in a sustainable and cost-effective way.

G Natural flood management methods should be employed in development proposals due to their multiple benefits including increasing flood storage and creating recreational areas and habitat.

Section 2: Description of development

2.1 Location

This report is produced in support of a planning application to the London Borough of Camden for a development of a single new dwelling at 17 North End, NW3 7HR.

The site is approximately 0.6 miles away from Golders Green tube station, with the site also in close proximity to bus stops along North End Way. The site location can be found in the aerial photo below;

Figure 2.1 – Aerial photograph of site location



Figure 2.2: Site location (Studio RO\ST)

2.2 Details of development

The application is for the construction of a new dwelling, consisting of one 3-bed detached house. This proposal is to be considered a minor development.

It is proposed a fabric first holistic approach is to be taken to ensure sustainability for now and the future, while implementing LZC technology in the form of an Air Source Heat Pump to further reduce energy demand and CO2 emissions. Dedicated bicycle storage will be provided (see image 2.4) to promote active and sustainable travel.

Figures 2.3 & 2.4, below, show the ground and first floor layouts of the proposed dwelling.

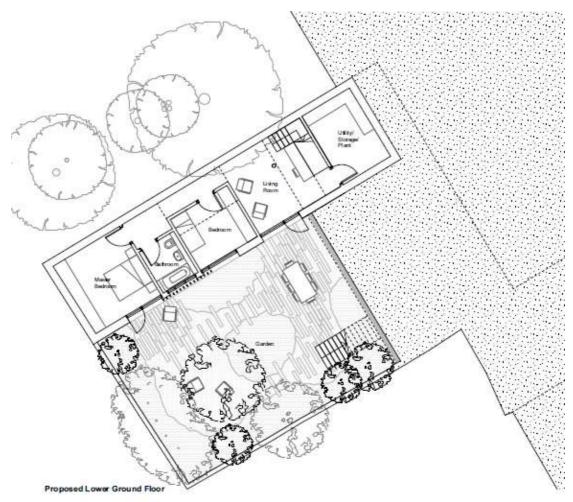


Figure 2.3: Proposed Ground Floor plan (Studio RO\ST))

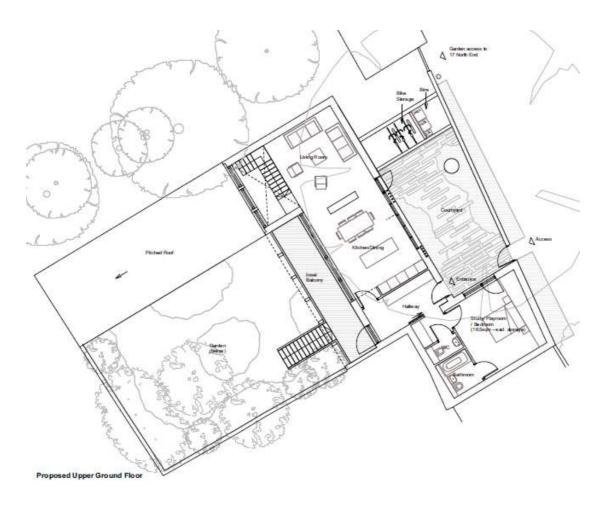


Figure 2.4: Proposed First Floor (Studio RO\ST)

Section 3: Energy

3.1 The Energy Hierarchy

In order to address energy efficiency and in particular the 19% reduction in CO_2 emissions that is being targeted the design team have adopted the energy hierarchy. The energy hierarchy is generally accepted as the most effective way of reducing a buildings' carbon emissions.

- 1. Be lean: use less energy
- 2. Be clean: supply energy efficiently
- 3. Be green: use renewable energy
- 4. Be seen: monitor, verify and report on energy performance

Development proposals should:

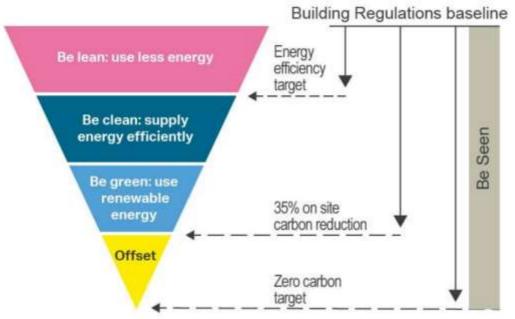


Figure 3.1: The Energy Hierarchy

• Reducing energy demand

The first step in the process of reducing the overall energy used and CO_2 produced by the building is to minimise the energy required to heat it. A well-insulated building envelope and passive design will reduce the energy requirement for heating and ventilating the building.

• Energy efficient systems

The second step is to specify services and controls, lighting and appliances that are energy efficient and which result in further reduction in energy requirements.

• Making use of Low or zero-carbon (LZC) technologies

When the energy demand has been reduced by implementing the processes of improving the fabric and energy efficiency, then LZC technologies can be employed to reduce the environmental impact of the remaining energy consumption.

• Monitoring and reporting

Ensure comprehensive monitoring and reporting of energy demand and carbon emissions. Major developments are required to undertake this process for at least five years.

3.2 Calculating Baseline Energy Demand

The first step is to calculate a Building Regulations Part L1 2013 compliant specification in order to establish notional baseline emissions for the development. Calculated data using the government's approved methodology (SAP 2012 and NCM) has been used to establish baseline energy requirements which comply with the 2013 edition of Part L minimum elemental standards.

Full SAP calculations have been used at each stage of the energy hierarchy as the basis for both energy consumption and CO₂ emissions.

The baseline emissions and energy consumption figures – based on the TER for each unit – produced by the calculations taken from the software modelling are shown in table 3a below:

3a: Total Annual Part L Notional Baseline Regulated Emissions & Fabric Energy Efficiency		
Emissions 2.86 Tonnes CO ₂ /yr		
Energy 13,558.07 kWh/yr		

3.3 Emission Reduction Targets (Be Lean and Be Clean)

The first two steps of the energy hierarchy look at reducing energy consumption in the building through improvements to its fabric and by increasing the efficiency of the building services. This reduces the energy required to run the building and thus the emissions associated with that energy use.

The current 2013 Part L is already stringent in terms of fabric performance targets. The fabric specification used in the 'notional building' (used to calculate the target/building emission rate) can be difficult to achieve in reality and further opportunities for improvement to the building fabric and services beyond those which meet the

current 2013 Building Regulations requirements can be very limited when compared with those which may be expected from buildings constructed to earlier versions of the Regulations, but further improvements are possible by considering the following steps:

- Reduce elemental U-Values
- Reducing heat loss through uncontrolled ventilation (air leakage)
- Increased control of necessary ventilation
- Improving mechanical & electrical system efficiency
- Increasing control over mechanical & electrical systems.

The full specification proposed for the 'Be Lean & Be Clean' stages can be found in Table 3b, below.

Element	Be Lean and Be Clean Proposed Specification	
Walls	0.23W/m²K	
Flat Roof	0.14W/m²K	
Sloped Roof	0.14W/m²K	
Ground Floor	0.10W/m²K	
Glazed Openings	1.20W/m²K	
Doors	1.40W/m²K	
Air Permeability	4.00m ³ /m ² /hr	
Thermal Bridging	Calculated	
Ventilation	Mechanical Ventilation with Heat Recovery	
Lighting	100% low energy lamps	
Space Heating	Gas Combi Boiler	
Controls	At least two heating zones, each with their own time and temperature control	
DHW	Via main heating	
LZC Generation	none	

Table 3b: 'Be Lean and Be Clean' Proposed specification

The performance of this specification – relating to both energy consumption and carbon dioxide emissions – can be found in Table 3d, below.

3d: Total reduction in regulated emissions & energy use – Part L 2013		
	kWh/year Tonnes CO ₂ /year	
Baseline	13,558.07	2.86
Be Lean & Be Clean 11,844.30 2.53		2.53
Reduction over Baseline	12.64%	11.72%

3.4 District Heating and CHP

District heating

We have investigated the feasibility of connecting to a district heating network. Unfortunately it appears that the nearest proposed network(s) are approximately 5km away – see the extract from the Mayor of London's Heat Map in Figure 3a, below.

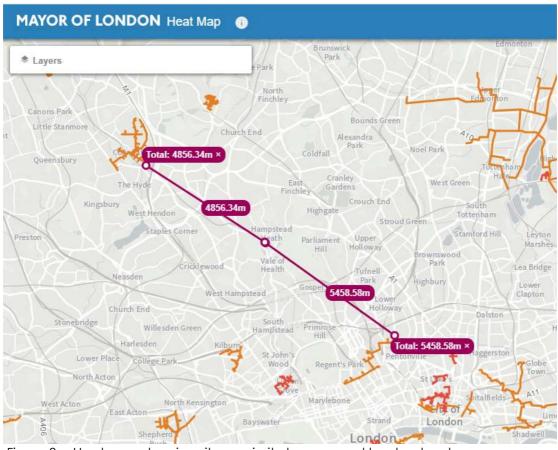


Figure 3a: Heat map showing site proximity to proposed heat networks

As such, connection to a district heating network is not a viable option on this occasion.

Communal heating scheme

The benefit of communal heating systems becomes questionable for small scale residential installation when compared to more traditional self-contained individual boilers. Additional space is required for centralised plant rooms and ducting/pipework. The increased cost and complexity of such systems is not offset by the minimal performance improvement that may be achieved and given this; communal heating is not proposed for the development.

Combined heat & power (CHP)

Combined heat and power uses an electricity generator, generally a gas powered internal combustion engine, with heat recovery on the exhaust used to heat water for heating and domestic hot water supply.

The proportions of heat and

electricity produced are normally in the region of 65:35. This requires a constant heat load throughout the year for the system to perform efficiently.

For CHP to be viable on residential developments a minimum of 100 units is usually required in order to generate sufficient heating baseload. As this is not the case on this occasion CHP is not viable for consideration.

3.5 'Be Green' - CO_2 reduction through the use of renewable or low carbon technology

Energy resources accepted as renewable or low carbon technologies are defined by the Department of Energy & Climate Change Low Carbon Buildings Program as:

- Solar photovoltaics
- Wind turbines
- Small hydro
- Solar thermal hot water
- Ground source heat pumps
- Air source heat pumps
- Bio-energy

- Renewable CHP
- Micro CHP (Combined heat and power)

Given the nature of the site (being overshaded by existing trees) the most appropriate LZC technology for this development would be an air source heat pump. This also has the benefit of being the Government's currently preferred low carbon heat source as per the upcoming Future Homes Standard.

Solar Photovoltaics

Solar panel electricity systems, also known as solar photovoltaics (PV), capture the sun's energy using photovoltaic cells. These cells do not need direct sunlight to work – they can still generate some electricity on a cloudy day. The cells convert the sunlight into electricity, which can be used to run household appliances and lighting.

This technology is still under consideration by the client, but currently not included due to considerations surrounding the green roof(s) proposed.

Wind Turbines

Wind turbines harness the power of the wind and use it to generate electricity. Forty percent of all the wind energy in Europe blows over the UK, making it an ideal country for domestic turbines. Urban sites such as the location of this development are generally unsuitable for wind turbine installations due to the interrupted turbulent wind flows caused by surrounding buildings and large obstacles. There are also possible issues with noise and 'flicker' for the neighbouring buildings.

The NOABL wind resource database for the site location records average wind speeds as shown in Table 3g below. The British Wind Energy

Association (BWEA) generally recommends an average wind speed of at least 7m/s for viable system performance.

Table 3h: Average wind speeds for the site		
45m above ground level	6.9m/s	
25m above ground level	6.5m/s	
10m above ground level	5.5m/s	

The urban nature of the site, lack of space and low average wind speeds mean that a wind turbine cannot be recommended as a viable option for this development. There are also general issues surrounding the use of building mounted turbines with the potential for excessive noise and vibration within the building.

Small Hydro Generation

Hydroelectricity generation uses water running to generate electricity, whether it is a small stream or a larger river. All streams and rivers flow downhill. Before the water flows down the hill, it has potential energy because of its height. Hydro power systems convert this potential energy into kinetic energy in a turbine, which drives a generator to produce

electricity. Small, or 'micro' hydro generation requires a reliable source of flowing water with a reasonably constant flow velocity. Systems of this nature are normally installed in locations with a natural moving water source such as a river, stream or spring where part of the flow can be diverted through a generator.

There is no such source of flowing water in this case and small hydro generation is not an option for this development.

Solar Water heating

Solar water heating systems use free heat from the sun to warm domestic hot water. Solar hot water heating can generate a large proportion of a dwelling's annual DHW requirement. The displaced fuel would be mains gas meaning that the CO₂ savings of this type of system would be relatively low due to the low carbon intensity of the displaced fuel.

Consequently, solar thermal is not considered to be a suitable system for this development and the roof space would be better used for PV as it offsets electricity meaning the CO_2 saving is considerably more than solar thermal, although SAP 10 emission factors will alter this going forward.

Heat Pumps

Heat pumps use similar technology as refrigerators but reversed. A refrigerant liquid is used as a medium to extract heat from a source and convert it into useful heat energy. The heat source used can be generally one of three types; the ground, the air or a body of water. Both ground and water sourced

heat pumps use a long circuitous pipe through which a refrigerant is pumped. In ground sourced heat pumps this can be either a coiled pipe or 'slinky' that is buried in a series of horizontal trenches or a loop inside a vertical bore hole to depths that can be up to 200m or deeper. Water sourced heat pumps generally use a similar system to the 'slinky' used for ground sourced systems but either floated on or submerged in a body of water (either a large pool or running water source). Air source heat pumps have a refrigerant coil mounted outside the building through which is passed air so that heat can be extracted. All three types of heat pump generally use the collected heat from the source to heat water. The heated water can then be used for space heating and DHW. Heat pumps require an input of energy to drive pumps, this is usually electricity and so they cannot be considered to be zero carbon unless the supplied electricity is from renewable sources; they do however have very good efficiencies; energy produced by heat pumps is typically in the region of 2.5 times that which is required to run them, giving efficiencies of 250%.

Due to its efficiency and low carbon fuel source of mains electricity an air source heat pump is considered to be the most appropriate LZC technology for this development.

Bio Energy

The Low Carbon Buildings Program (LCBP) defines biomass as follows:

"Biomass is often called 'bioenergy' or 'biofuels'. These biofuels are produced from organic materials, either directly from plants or indirectly from industrial, commercial, domestic or agricultural products. Biofuels fall into two main categories:

- Woody biomass includes forest products, untreated wood products, energy crops, short rotation coppice (SRC), e.g. willow.
- Non-woody biomass includes animal waste, industrial and biodegradable municipal products from food processing and high energy crops, e.g. rape, sugar cane, maize."

For small-scale domestic [and small scale commercial] applications of biomass the fuel usually takes the form of wood pellets, wood chips and logs. The LCBP goes on to state:

"There are two main ways of using biomass to heat a domestic property:

- Stand-alone stoves providing space heating for a single room. These can be fuelled by logs or pellets but only pellets are suitable for automatic feed. Generally they are 5-11 kW in output, and some models can be fitted with a back boiler to provide water heating.
- Boilers connected to central heating and hot water systems. These are suitable for pellets, logs or chips, and are generally larger than 15 kW"

This technology is dismissed as the space requirements needed for the boiler and pellet store make this impractical along with complying with the clean air zone requirements.

The full specification for the 'Be Green' stage, including an ASHP as man heating and hot water source can be found in Table 3e, below.

Element	Be Lean and Be Clean Proposed Specification
Walls	0.23W/m²K
Flat Roof	0.14W/m²K

Sloped Roof	0.14W/m²K	
Ground Floor	0.10W/m²K	
Windows	1.20W/m ² K	
Doors	1.40W/m²K	
Air Permeability	4.00m ³ /m ² /hr	
Thermal Bridging	Calculated	
Ventilation	Mechanical Ventilation with Heat Recovery	
Lighting	100% low energy lamps	
Space Heating	Air Source Heat Pump (ASHP) – Flow temperature <=35°C	
Controls	At least two heating zones, each with their own time and temperature control	
DHW	250l cylinder heat from ASHP (supplementary immersion for DHW only)	
LZC Generation	none	

Table 3e: 'Be Lean, Be Clean & Be Green' Proposed specification

Table 3f, below, shows the overall performance of this specification broken down by step of the energy hierarchy.

Total reduction in regulated emissions & energy use – Part L 2013				
	kWh/year	Tonnes CO ₂ /year		
Baseline	13,558.07	2.86		
Be Lean & Be Clean	11,844.30	2.53		
Reduction over Baseline	12.64%	11.72%		
Be Green	5,896.70	1.28		
Reduction over Baseline	56.51%	55.34%		

Section 4: Sustainability

4.1 SI5 Water Infrastructure

Policy SI5 of the London Plan 2021 states that developments should;

Through the use of Planning Conditions minimise the use of mains water in line with the Optional Requirement of the Building Regulations (residential development), achieving mains water consumption of 105 litres or less per head per day (excluding allowance of up to five litres for external water consumption)

Water calculations have been undertaken and can be found in detail in Appendix C to this report. However, the summary rates can be found below;

Taps (other than kitchen	6.00(litres/min)	
Kitchen and Utility Taps		8.00(litres/min)
Showers		8.00(litres/min)
Baths (with shower over)		180(litres to overflow)
WCs (Flush Volume)	Full Flush:	4.00(litres)
	Part Flush:	2.60(litres)
Washing Machine		8.17(litres/kg dry load)
Dishwasher		1.25(litres/place setting)

The resulting estimated consumption of wholesome water (excluding external use) has been calculated as 104.6 litres per person per day. Including external use this is 109.61/s.

4.2 SI12 Flood risk management

The development's location can be found marked on the Environment Agency's flood risk maps in Figures 4.1 and 4.2, below. This shows that the development location is not located in an area that benefits from any flood defences. However, it is also not in an area at risk of flooding from rivers or seas. The risk map in Figure 4.2, for surface water flooding, does show that some of the wider area surrounding the site is at risk – but the site itself is, in the main, not at risk. There is one small area (that is in the location of the rear garden of the proposed development) that shows a low risk, but this is very small and localised on the site. As such, it would appear that the proposed development is not at significant risk of flooding.

Extent of flooding from rivers or the sea

🔵 Hish 👩 Medium 👩 Law 💿 Very Law 💮 Location you selected

Figure 4.1: Flood risk map (rivers & sea) for 17 North End

Extent of flooding from surface water

● High ● Medium ● Low ○ Very Low ⊕ Location you selected Figure 4.2: Flood risk map (surface water) for 17 North End

4.3 SI13 Sustainable drainage

Policy SI13 of the London Plan 2021 states that developments should;

Aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

- 1. Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2. Rainwater infiltration to ground or close to source
- 3. Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4. Rainwater discharge direct to a watercourse (unless not appropriate)
- 5. Controlled rainwater discharge to a surface water sewer or drain
- 6. Controlled rainwater discharge to a combined sewer

This is broadly the same as Camden Council's policy CC2.

It is assumed that the development will connect into existing public sewer(s) running in Wildwood Terrace to the north-east of the site. This is also the highest point of the site, with the land falling away to the southwest.

Table 4a, below, shows the change in impermeable area that will result from the development.

Total Site Area	383m ²
Impermeable area (as a percentaç	ge of the total area of the proposed
development fo	otprint of 383m ²)
Pre-development	Post-development
32m ²	150m ²
Impermeable Land Use: existing	Impermeable Lane use: building
buildings	footprint, storage areas and hard
	landscaping

Table 4.a: Change in impermeable area of the proposed development site.

This is based on the existing site being domestic garden with one outbuilding. For the post-development site the proposed garden area and the green roof have been taken as permeable, with all other parts of the site (dwelling & stores) being impermeable.

An increase in impermeable area on site will result in greater rainfall runoff. Reduction in runoff will help mitigate flood risk both on and off site. As such it is proposed to limit the discharge rate of surface water from the site to the greenfield run off rate for the 1 in 100 year rainfall event. Initial calculations of this can be found in Appendix D.

To mitigate against an increase of surface water flooding, an area of green roof will be located on the roof of the lower volume (adjacent to the garden). This can be considered to be a permeable area, as can the main garden to the rear of the property and the upper courtyard. The remaining pitched roofs will, where possible, feed into the green roof and also into planters in the courtyard and rear garden, which will be designed as raingardens. Rainwater butts will be incorporated to absorb some of the water from the roofs, to be used for gardening. This is subject to detailed design demonstrating that there is sufficient infiltration capacity in the garden area. The roof over the stores, sloped roof pitches facing the courtyard and the courtyard itself may be able to drain to permeable paving in this area. However, due to the slope of the site and the location of the lower around floor this will not be possible if it would cause issues with water levels and ingress into the lower level walls. As such it is assumed that these areas may need to discharge via storage below the courtyard in order to limit the run off rate to the greenfield rate. Initial calculations showing the amount of storage required to limit the development run off rate to the greenfield rate can also be found in Appendix D to this report.

The above approach following the SI3 hierarchy in the following way;

- 1. Use of rainwater as a resource drainage into planters in the courtyard and rear garden using rainwater at source.
- 2. Infiltration through the rear garden
- 3. Attenuation via the green roof
- 4. Discharge via hydrobrake (or other suitable device) to the public sewer at a rate no greater than the greenfield

It should be noted that the above is not a detailed design proposal and is based on limited information on the detailed site conditions and locations of existing drainage. A detailed design should be commissioned for the full drainage package (surface water, SUDS and foul water) prior to site commencement.

Section 5: Summary

the recommended strategy For this development is: the implementation of a 'fabric first' holistic approach that is based on ensuring the building fabric and core services are designed and installed correctly, and implementation of an Air Source Heat pump to reduce energy demand and CO2 emissions, This has allowed the proposed dwellings to achieve a compliant Fabric Energy Efficiency specification and achieves a 56% reduction in energy consumption and 55% reduction in carbon emissions, exceeding the 19% reduction target from London Borough of Camden.

Table 5a below shows the reduction in kWh and tonnes of CO_2 per year through the fabric improvements and energy efficiency system measures which ensure the development will meet and exceed current building regulations.

5.a: Total reduction in regulated emissions & energy use – Part L 2013					
	kWh/year	Tonnes CO ₂ /year			
Baseline	13,558.07	2.86			
Be Lean & Be Clean	11,844.30	2.53			
Reduction over Baseline	12.64%	11.72%			
Be Green	5,896.70	1.28			
Reduction over Baseline	56.51%	55.34%			

The development will also be specified with water use fittings that limit the use of potable water to below 1101/person/day (including allowance for external water use). It has also been shown that the proposed SUDs strategy has the ability to reduce rainwater run off to the same rate as the greenfield rate for the site pre-development.

Appendix A

SAP Calculations for 'Be Lean, Be Clean'

17 North End, NW3 7HR

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

Property Reference	e 0001-Artefact-S-17-North	-End			Issued on Date	07/09/2021
Assessment	Be lean & Be Clean			Prop Type Ref	17 North End	
Reference						
Property	17, North End, NW3 7HR					
SAP Rating		82 B	DER	18.02	TER	18.19
Environmental		82 B	% DER <ter< th=""><th></th><th>0.96</th><th></th></ter<>		0.96	
CO ₂ Emissions (t/y	ear)	2.65	DFEE	57.58	TFEE	72.35
General Requireme	ents Compliance	Pass	% DFEE <tfee< th=""><th></th><th>20.41</th><th></th></tfee<>		20.41	
Assessor Details	Miss Lorelei Davies, Lorelei D Lorelei.Davies@mesbuildings	,	,		Assessor ID	W996-0001
Client						

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE REPORT - Approv		
DWELLING AS DESIGNED		
Detached House, total floor area 170 m	2	
This report covers items included with It is not a complete report of regulat		
la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (T Dwelling Carbon Dioxide Emission Rate	(DER) 18.02 kgCO /m²OK	
lb TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFE	E)57.6 kWh/m²/yrOK	
2 Fabric U-values		
Element Average External wall 0.23 (max. 0.30)	Highest 0.23 (max. 0.70) OK	
	0.10 (max. 0.70) OK	
Roof 0.14 (max. 0.20) Openings 1.20 (max. 2.00)		
Openings 1.20 (max. 2.00)	1.20 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calculated using user		
3 Air permeability		
Air permeability at 50 pascals: Maximum	4.00 (design value) 10.0	OK
4 Heating efficiency	Boiler system with radiators or underfloor - Mai	ns gas
Minimum: 88.0%	OK	
	0N	
Secondary heating system:	None	
	None No cylinder	
5 Cylinder insulation Hot water storage 6 Controls	None No cylinder	
5 Cylinder insulation Hot water storage	None No cylinder	OK
5 Cylinder insulation Hot water storage 6 Controls	None No cylinder	OK
5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock	None No cylinder Time and temperature zone control No cylinder Yes	OK OK
5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock	None No cylinder Time and temperature zone control No cylinder Yes	
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	OK
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	OK
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	0K
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	OK
5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-energy Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum WVHR efficiency: Minimum:	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	0K
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75%	ок ок
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight	ок ок
5 Cylinder insulation Hot water storage 	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage</pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage </pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang 19.44 m², No overhang 19.44 m², No overhang	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage </pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang 16.47 m², No overhang 19.44 m², No overhang 19.44 m², No overhang	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage </pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang 16.47 m², No overhang 19.44 m², No overhang 4.41 m², No overhang 8.00 ach	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage </pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang 16.47 m², No overhang 19.44 m², No overhang 19.44 m², No overhang	ок ок ок ок
<pre>5 Cylinder insulation Hot water storage</pre>	None No cylinder Time and temperature zone control No cylinder Yes ergy fittings:100% 75% 1.50 1.5 84% 70% Slight Average 9.88 m², No overhang 16.47 m², No overhang 19.44 m², No overhang 4.41 m², No overhang 8.00 ach	ок ок ок ок

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	ey height		Volume
		(m2)		(m)		(m3)
Ground floor		72.5400 (1b)	х	2.8500 (2b)	=	206.7390 (1b) - (3b)
First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln)	170.0900	97.5500 (1c)	х	2.8400 (2c)	=	277.0420 (1c) - (3c) (4)
Dwelling volume		(3a)+(3)	o)+(3c)	+(3d)+(3e)(3n) =	483.7810 (5)

2. Ventilation	rate 												
					main heating	5	secondary heating	0	other	tot	al m3	3 per hour	
Number of chimn	eys				0	+	0	+	0 =		0 * 40 =	0.0000	(6a)
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
Number of inter		15									0 * 10 =	0.0000	
Number of passi											0 * 10 =	0.0000	
Number of fluel	ess gas fin	es									0 * 40 =	0.0000	(7c)
											Air changes		
Infiltration du	e to chimne	eys, flues a	and fans =	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	
Pressure test												Yes	
Measured/design												4.0000	
Infiltration ra Number of sides												0.2000	(18)
Number of sides	sneitered											1	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.9250	(20)
Infiltration ra	te adjusted	d to include	e shelter fa	actor					(2)	L) = (18)	x (20) =	0.1850	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(0.0)
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	
Wind factor Adj infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
-	0.2359	0.2313	0.2266	0.2035	0.1989	0.1758	0.1758	0.1711	0.1850	0.1989	0.2081	0.2174	(22b)
Balanced mecha			heat recov	very									
If mechanical v												0.5000	()
If balanced wit	h heat reco	overy: effic	ciency in %	a⊥⊥owing fo	or in-use fa	actor (fro	om Table 4h)	=				71.4000	(23c)
Effective ac	0.3789	0.3743	0.3696	0.3465	0.3419	0.3188	0.3188	0.3141	0.3280	0.3419	0.3511	0.3604	(05)

З.	Heat	losses	and	heat	loss	parameter	

Element				Gross	Opening		tArea	U-value	A x		-value	АхК	
				m2	m		m2	W/m2K	W/		kJ/m2K	kJ/K	
Windows/Glazed		= 1.20)					.2000	1.1450	57.480				(27)
Roof Lights (U	Jw = 1.20)						.3600	1.1450	14.152				(27a)
Ground Floor							.0800	0.1000	14.908			11181.0000	
External Wall			:	249.1000	50.200		.9000	0.2300	45.747			11934.0000	
Wall below Gro				20.8300			.8300	0.2300	4.790		9.0000	187.4700	
External Slope				127.0300	12.360		.6700	0.1400	16.053		9.0000	1032.0300	
External Flat				29.9900			.9900	0.1400	4.198	6	9.0000	269.9100	
Total net area						576	.0300						(31)
Fabric heat lo		Sum (A x U)						30) + (32) =	= 157.331				(33)
Internal Stud							.0500				9.0000	1773.4500	
Internal Floor							.0100				8.0000	378.1800	
Internal Ceili	.ng 1					21	.0100			1	8.0000	378.1800	(32e)
Heat capacity	Cm = Sum (A	x k)						(28).	(30) + (32) + (32a).	(32e) =	27134.2200	(34)
Thermal mass p	arameter ('	TMP = Cm /	TFA) in kJ/r	m2K								159.5286	(35)
Thermal bridge	s (User de	fined value	0.041 * to	tal exposed	area)							23.6172	(36)
Total fabric h	leat loss			-						(33)	+ (36) =	180.9491	(37)
Ventilation he	at loss ca	lculated mo	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	60.4865	59.7482	59.0098	55.3179	54.5796	50.8877	50.8877	50.1493	52.3645	54.5796	56.0563	57.5331	(38)
Heat transfer	coeff												
	241.4357	240.6973	239.9589	236.2671	235.5287	231.8368	231.8368	231.0985	233.3136	235.5287	237.0054	238.4822	(39)
Average = Sum((39)m / 12 =	=										236.0825	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.4195	1.4151	1.4108	1.3891	1.3847	1.3630	1.3630	1.3587	1.3717	1.3847	1.3934	1.4021	(40)
HLP (average)												1.3880	
Days in month													,

4. Water heat	ing energy r	equirement	s (kWh/year)								
Assumed occup Average daily		use (litres	/day)									2.9627 (42) 104.5640 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

30

31

31

30

31

30

31

28

31

30

31

31 (41)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Daily hot wate	er use												
-	115.0204	110.8378	106.6553	102.4727	98.2901	94.1076	94.1076	98.2901	102.4727	106.6553	110.8378	115.0204	(44)
Energy conte	170.5719	149.1833	153.9438	134.2119	128.7795	111.1269	102.9754	118.1658	119.5771	139.3556	152.1175	165.1898	(45)
Energy content	: (annual)									Total = Su	um (45) m =	1645.1986	(45)
Distribution 1	Loss (46)m	$= 0.15 \times (4)$	45)m										
	25.5858	22.3775	23.0916	20.1318	19.3169	16.6690	15.4463	17.7249	17.9366	20.9033	22.8176	24.7785	(46)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder co	ontains ded:	icated sola:	r storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Combi loss	50.9589	46.0274	50.9589	49.3151	50.0876	46.4092	47.9562	50.0876	49.3151	50.9589	49.3151	50.9589	(61)
Total heat req	quired for w	water heatin	ng calculate	ed for each	month								
	221.5308	195.2107	204.9027	183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326	216.1487	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of :	months) = Su	1m (63) m =	0.0000	(63)
Output from w/	'h												
	221.5308	195.2107	204.9027	183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326	216.1487	(64)
								Total pe	er year (kW	h/year) = Su	1m (64)m =	2237.5473	(64)
Heat gains fro	om water hea	ating, kWh/m	nonth										
	69.4549	61.1103	63.9260	56.9542	55.3411	48.5520	46.2284	51.8120	52.0882	59.0755	62.9078	67.6653	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts
 Metabolic gains (Table 5), Watts
 Mar
 Apr
 May
 Jun
 <th Jul Aug Sep Oct Nov Dec 148.1347 148.1347 148.1347 148.1347 148.1347 (66) 11.3576 14.7630 19.8149 25.1595 29.3649 31.3041 (67) 255.5882 252.0430 260.9767 279.9955 304.0034 326.5674 (68) 37.8135 37.8135 3.0000 37.8135 (69) 3.0000 (70) 37.8135 37.8135 37.8135 3.0000 3.0000 3.0000 3.0000 Losses e.g. evaporation (negative values) (Table 5) -118.5078 -18 93.3533 90.9579 03.922 7.1112 Total internal gains 535.8928 533.6171 514.6157 483.4333 450.5002 419.0471 399.5211 406.8862 423.5766 454.9979 491.1806 519.2599 (73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	9.8800	11.2829	0.6300	0.8000	0.7700	38,9353 (75)
Southeast	16.4700	36.7938	0.6300	0.8000	0.7700	211.6569 (77)
Southwest	19.4400	36.7938	0.6300	0.8000	0.7700	249.8245 (79)
Northwest	4.4100	11.2829	0.6300	0.8000	0.7700	17.3790 (81)
Northeast	12.3600	22.3677	0.6300	0.7000	1.0000	109.7287 (82)

Solar gains 627.5244 1131.7622 1705.5581 2360.2640 2857.4019 2927.6086 2784.9421 2402.2355 1931.5141 1294.1369 763.3169 529.3373 (83) Total gains 1163.4172 1665.3794 2220.1739 2843.6972 3307.9021 3346.6557 3184.4632 2809.1217 2355.0907 1749.1349 1254.4975 1048.5972 (84)

7. Mean intern	nal temperat	ure (heatin	g season)										
Temperature d	uring heatin	ıg periods i	n the livin	ig area from	Table 9, T	'hl (C)						21.0000	(85)
Utilisation fa	actor for ga	ins for liv	ing area, n	il,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	31.2186	31.3144	31.4107	31.9015	32.0016	32.5112	32.5112	32.6150	32.3054	32.0016	31.8022	31.6052	
alpha	3.0812	3.0876	3.0940	3.1268	3.1334	3.1674	3.1674	3.1743	3.1537	3.1334	3.1201	3.1070	
util living a:	rea												
	0.9845	0.9566	0.8928	0.7597	0.5870	0.4239	0.3144	0.3675	0.6015	0.8675	0.9690	0.9885	(86)
MIT	19.3459	19.6729	20.0987	20.5320	20.7780	20.8792	20.9045	20.8982	20.8085	20.4040	19.7784	19.2947	(87)
Th 2	19.7484	19.7518	19.7551	19.7717	19.7751	19.7918	19.7918	19.7952	19.7851	19.7751	19.7684	19.7617	(88)
util rest of 1	house												
	0.9808	0.9472	0.8711	0.7179	0.5269	0.3505	0.2306	0.2758	0.5189	0.8314	0.9607	0.9858	(89)
MIT 2	17.5627	18.0346	18.6346	19.2234	19.5219	19.6426	19.6627	19.6629	19.5761	19.0827	18.2043	17.4975	(90)
Living area f:	raction								fLA =	Living area	(4) =	0.1540	(91)
MIT	17.8373	18.2870	18.8601	19.4250	19.7154	19.8330	19.8540	19.8532	19.7659	19.2862	18.4468	17.7743	(92)
Temperature ad	djustment											-0.1500	
adjusted MIT	17.6873	18.1370	18.7101	19.2750	19.5654	19.6830	19.7040	19.7032	19.6159	19.1362	18.2968	17.6243	(93)
adjusted MIT	17.6873	18.1370	18.7101	19.2750	19.5654	19.6830	19.7040	19.7032	19.6159	19.1362	18.2968	17.6243	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9721	0.9307	0.8487	0.6988	0.5160	0.3437	0.2244	0.2686	0.5063	0.8080	0.9467	0.9788	(94)
Useful gains	1130.9548	1549.9978	1884.3113	1987.2015	1706.7472	1150.0816	714.6054	754.4288	1192.4674	1413.3036	1187.5784	1026.3825	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	3232.1809	3186.1035	2929.9334	2451.2635	1852.5199	1178.4372	719.6267	763.3563	1286.9398	2010.5154	2653.6970	3201.4648	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1563.3123	1099.4631	777.9429	334.1246	108.4549	0.0000	0.0000	0.0000	0.0000	444.3256	1055.6054	1618.2613	(98)
Space heating												7001.4900	(98)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Space heating	per m2									(98) / (4) =	41.1634	(99)
3c. Space cool													
Not applicable													
oc approable	-												
9a. Energy rec	quirements -	Individua	l heating sy	stems, inc	luding micr	O-CHP							
Fraction of sp Fraction of sp Efficiency of Efficiency of Space heating	bace heat fr bace heat fr main space secondary/s	com seconda: com main sys heating sys supplementa:	ry/supplemer stem(s) stem 1 (in %	itary system								0.0000 1.0000 92.8000 0.0000 7544.7091	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1563.3123	1099.4631	777.9429		108.4549	0.0000	0.0000	0.0000	0.0000	444.3256	1055.6054	1618.2613	(98)
Space heating	92.8000	92.8000	92.8000	.) 92.8000	92.8000	0.0000	0.0000	0.0000	0.0000	92.8000	92.8000	92.8000	(210
	1684.6037	1184.7662	838.3005	360.0481	116.8695	0.0000	0.0000	0.0000	0.0000	478.7992	1137.5059	1743.8160	(211
Water heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215
Nater heating Nater heating	requirement 221.5308	195.2107	204.9027	183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326	216.1487 80.5000	
(217)m Fuel for water	88.5306	88.2625	87.6880	86.2666	83.7749	80.5000	80.5000	80.5000	80.5000	86.7931	88.1678	88.5940	
Water heating	250.2309		233.6724	212.7439	213.5091	195.6971	187.4927	209.0104	209.8039	219.2737	228.4651	243.9767 2625.0464	
nnual totals pace heating pace heating	kWh/year fuel - mair											7544.7091 0.0000	(211
	VithHeatRecc ventilation ating pump city for the or lighting	overy, Datas fans (SFP above, kWI (calculated	h/year d in Appendi	3750)	1.2500, SF	P = 1.8750)						1106.6490 30.0000 1136.6490 537.8905 11844.2951	(230 (231 (232
12a. Carbon di	loxide emiss	ions - Ind:	ividual heat	ing system	s including								
Space heating Space heating Water heating Space and wate	- secondary (other fuel	7						Energy kWh/year 7544.7091 0.0000 2625.0464		ion factor kg CO2/kWh 0.2160 0.0000 0.2160	k	Emissions cg CO2/year 1629.6572 0.0000 567.0100 2196.6672	(261) (263) (264)
Pumps and fans Energy for lig Fotal CO2, kg/ Dwelling Carbo	ghting Yyear	mission Rat	te (DER)					1136.6490 537.8905		0.5190 0.5190		589.9209 279.1652 3065.7532 18.0200	(267) (268) (272)
16 CO2 EMISSIC DER Potal Floor Ar Assumed number CO2 emissions CO2 emissions Total CO2 emis sions Fotal CO2 eda Additional all	rea c of occupar Factor in Ta from applia from cookin ssions missions of Lowable elect	ts ble 12 for inces, equat ig, equation ffset from 1 ctricity gen	electricity tion (L14) n (L16) biofuel CHP neration, kW	/ displaced M/m²/year			TY GENERATI	ON TECHNOLO	GIES		TFA N EF	18.0200 170.0900 2.9627 0.5190 11.9025 1.1177 31.0402 0.0000 0.0000	ZC2 ZC3 ZC4 ZC5 ZC6

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	170.0900	Area (m2) 72.5400 (1b) 97.5500 (1c)	x x	rey height (m) 2.8500 (2b) 2.8400 (2c)	=	Volume (m3) 206.7390 (1b) - (3b) 277.0420 (1c) - (3c) (4)
Dwelling volume		(3a)+(3)	o)+(3c)	+(3d)+(3e)(3r) =	483.7810 (5)

					main	5	secondary		other	tota	1 m3	3 per hour
					heating		heating					-
Number of chimn	eys				0	+	0	+	0 =	. (0 * 40 =	0.0000 (6a)
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000 (6b)
Number of inter		ns									4 * 10 =	40.0000 (7a)
Number of passi											0 * 10 =	0.0000 (7b)
Number of fluel	ess gas fin	ces								(0 * 40 =	0.0000 (7c)
											Air changes	
Infiltration du	e to chimne	eys, flues a	and fans :	= (6a)+(6b)-	+(7a)+(7b)+((7c) =				40.0000 /	/ (5) =	0.0827 (8)
Pressure test												Yes
Measured/design Infiltration ra												5.0000 0.3327 (18)
Number of sides												1 (19)
NUMBER OF STRES	shertered											1 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.9250 (20)
Infiltration ra	te adjusted	d to includ	e shelter fa	actor					(2	(18) = (18) x	(20) =	0.3077 (21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000 (22)
Wind speed		1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
Wind factor	1.2750	1.2000										
Wind factor		0.3847	0.3770	0.3385	0.3308	0.2923	0.2923	0.2847	0.3077	0.3308	0.3462	0.3616 (22b) 0.5654 (25)

3. Heat losses	and heat	loss parame	ter										
Element				Gross	Openings	Ne	tArea	U-value	A x	U K	-value	АхК	
				m2	m2		m2	W/m2K	W	/K	kJ/m2K	kJ/K	
TER Opening Typ	pe (Uw = 1	.40)				34	.1200	1.3258	45.23	48			(27)
TER Room Window	w (Uw = 1.	70)				8	.4000	1.5918	13.37	08			(27a)
Ground Floor						149	.0800	0.1300	19.38	04			(28a)
External Wall				249.1000	34.1200	214	.9800	0.1800	38.69	64			(29a)
Wall below Grow	und			20.8300		20	.8300	0.1800	3.74	94			(29a)
External Slope	d Roof			127.0300	8.4000	118	.6300	0.1300	15.42	19			(30)
External Flat 1	Roof			29,9900		29	.9900	0.1300	3.89	87			(30)
Total net area	of extern	al elements	Aum(A, m2)			576	.0300						(31)
Fabric heat los	ss, W/K =	Sum (A x U)					(26)(30) + (32)	= 139.75	24			(33)
Thermal mass pa	arameter (TMP = Cm /	TFA) in kJ/	m2K								250.0000	(35)
Thermal bridge:	s (Sum(L x	Psi) calcu	lated using	Appendix K)							30.4297	(36)
Total fabric he				11						(33)	+ (36) =	170.1821	
Ventilation hea	at loss ca	lculated mo	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	92.1123	91.6351	91.1674	88.9705	88.5594	86.6460	86.6460	86.2917	87.3830	88.5594	89.3910	90.2603	(38)
Heat transfer of	coeff												()
	262.2944	261.8172	261.3495	259.1526	258.7416	256.8282	256.8282	256.4738	257.5652	258.7416	259.5731	260.4424	(39)
Average = Sum (3	39)m / 12	=										259.1506	(39)
													()
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.5421	1.5393	1.5365	1.5236	1.5212	1.5100	1.5100	1.5079	1.5143	1.5212	1.5261	1.5312	(40)
HLP (average)												1.5236	
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)
			•-		•-								/

4. Water heat	ing energy :	requirement	s (kWh/year)									
Assumed occup Average daily		use (litres	/day)									2.9627 104.5640	• •
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	115.0204	110.8378	106.6553	102.4727	98.2901	94.1076	94.1076	98.2901	102.4727	106.6553	110.8378	115.0204	(44)
Energy conte	170.5719	149.1833	153.9438	134.2119	128.7795	111.1269	102.9754	118.1658	119.5771	139.3556	152.1175	165.1898	(45)
Energy conten	t (annual)									Total = St	um (45) m =	1645.1986	(45)
Distribution	loss (46)m	= 0.15 x (45)m										
	25.5858	22.3775	23.0916	20.1318	19.3169	16.6690	15.4463	17.7249	17.9366	20.9033	22.8176	24.7785	(46)
Water storage													

Total storage loss

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder	contains ded:	icated solar	storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Combi loss	50.9589	46.0274	50.9589	49.3151	50.0876	46.4092	47.9562	50.0876	49.3151	50.9589	49.3151	50.9589	(61)
Total heat r	equired for w	water heatin	ng calculate	ed for each	month								
	221.5308	195.2107	204.9027	183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326	216.1487	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
-								Solar inpu	ut (sum of r	months) = Su	_m(63)m =	0.0000	(63)
Output from	w/h							-					
-	221.5308	195.2107	204.9027	183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326	216.1487	(64)
								Total pe	er year (kWl	h/vear) = Si	1m (64) m =	2237.5473	(64)
Heat gains f	rom water hea	ating, kWh/r	nonth					-		-			
	69.4549	61.1103	63.9260	56.9542	55.3411	48.5520	46.2284	51.8120	52.0882	59.0755	62.9078	67.6653	(65)

5.	Internal	gains	(see	Table	5	and 5a)	

 Metabolic gains (teb labels), Watts
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.1347
 148.13 93.3333 90.9373 90.9373 90.9272 9.1221 Total internal gains 535.8928 533.6171 514.6157 483.4333 450.5002 419.0471 399.5211 406.8862 423.5766 454.9979 491.1806 519.2599 (73)

6. Solar gains						
[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	6.7100	11.2829	0.6300	0.7000	0.7700	23.1375 (
Southeast	11.2000	36.7938	0.6300	0.7000	0.7700	125.9403 (
Southwest	13.2100	36.7938	0.6300	0.7000	0.7700	148.5421 (
Northwest	3.0000	11.2829	0.6300	0.7000	0.7700	10.3446 (
Northeast	8.4000	22.3677	0.6300	0.7000	1.0000	74.5729 (

382.5376 692.7298 1050.3178 1462.1721 1776.5290 1822.5945 1732.8159 1490.6937 1192.4886 793.9008 918.4304 1226.3469 1564.9335 1945.6054 2227.0292 2241.6416 2132.3370 1897.5799 1616.0653 1248.8987 465.8449 957.0256 Solar gains Total gains 322.3318 (83) 841.5917 (84)

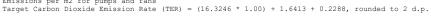
7. Mean inte	ernal temperat	ure (heatir	ng season)										
	during heatir					'h1 (C)						21.0000	(85
Utilisation	factor for ga												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	45.0326	45.1147	45.1954	45.5786	45.6510	45.9911	45.9911	46.0546	45.8595	45.6510	45.5047	45.3529	
alpha	4.0022	4.0076	4.0130	4.0386	4.0434	4.0661	4.0661	4.0703	4.0573	4.0434	4.0336	4.0235	
util living	area												
5	0.9985	0.9950	0.9829	0.9393	0.8315	0.6633	0.5103	0.5844	0.8384	0.9754	0.9965	0.9989	(86)
MIT	19.2152	19.4557	19.8387	20.3237	20.7132	20.9188	20.9783	20.9633	20.7814	20.2383	19.6283	19.1750	(87)
Th 2	19.6561	19.6582	19.6602	19.6698	19.6716	19.6800	19.6800	19.6816	19.6768	19.6716	19.6680	19.6642	(88)
util rest of	f house												
	0.9979	0.9931	0.9764	0.9158	0.7698	0.5532	0.3668	0.4344	0.7524	0.9619	0.9950	0.9985	(89)
MIT 2	17.3077	17.6600	18.2161	18.9056	19.4079	19.6311	19.6733	19.6684	19.5096	18.8037	17.9196	17.2540	(90)
Living area	fraction								fLA =	Living area	(4) =	0.1540	(91)
MIT	17.6015	17.9366	18.4661	19.1241	19.6090	19.8294	19.8743	19.8678	19.7055	19.0246	18.1828	17.5499	(92)
Temperature	adjustment											0.0000	
adjusted MI	r 17.6015	17.9366	18.4661	19.1241	19.6090	19.8294	19.8743	19.8678	19.7055	19.0246	18.1828	17.5499	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9965	0.9893	0.9680	0.9033	0.7664	0.5668	0.3889	0.4571	0.7547	0.9522	0.9921	0.9975	(94)
Useful gains	915.1863	1213.2772	1514.7910	1757.3827	1706.8912	1270.5854	829.2472	867.3159	1219.5840	1189.2022	949.4581	839.4722	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	3488.9045	3413.2001	3127.3229	2649.5928	2046.3826	1343.0613	840.9371	889.4125	1443.7806	2179.8064	2876.7879	3476.8868	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1914.8463	1478.3482	1199.7237	642.3912	252.5816	0.0000	0.0000	0.0000	0.0000	737.0095	1387.6774	1962.2365	(98)
Space heating												9574.8146	(98)
Space heating	per m2									(98) / (4) =	56.2926	(99)

8c. Space cooling requirement

Not applicable



Regs Region: England **Elmhurst Energy Systems** SAP2012 Calculator (Design System) version 4.14r10

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy requirements - Individual heating systems, inc									
Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement								0.0000 1.0000 93.4000 0.0000 10251.4075	(202) (206) (208)
Jan Feb Mar Apr Space heating requirement	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
1914.8463 1478.3482 1199.7237 642.3912	252.5816	0.0000	0.0000	0.0000	0.0000	737.0095	1387.6774	1962.2365	(98)
Space heating efficiency (main heating system 1) 93.4000 93.4000 93.4000 93.4000 93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000	(210)
Space heating fuel (main heating system) 2050.1567 1582.8139 1284.5008 687.7851	270.4300	0.0000	0.0000	0.0000	0.0000	789.0894	1485.7360	2100.8956	(211)
Water heating requirement 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating									
Water heating requirement 221.5308 195.2107 204.9027 183.5270	178.8671	157.5362	150.9316	168.2534	168.8922	190.3145	201.4326		
Efficiency of water heater (217)m 89.2361 89.0929 88.7712 87.9421	85.9198	80.3000	80.3000	80.3000	80.3000	88.1252	88.9813	80.3000 89.2857	
Fuel for water heating, kWh/month 248.2523 219.1091 230.8211 208.6907	208.1792	196.1845	187.9597	209.5310	210.3265	215.9593	226.3762		
Water heating fuel used Annual totals kWh/year								2603.4763	
Space heating fuel - main system Space heating fuel - secondary								10251.4075 0.0000	
Electricity for pumps and fans: central heating pump main heating flue fan Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Total delivered energy for all uses								30.0000 45.0000 75.0000 537.8905 13467.7742	(230e) (231) (232)
12a. Carbon dioxide emissions - Individual heating systems									
Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans Energy for lighting				Energy kWh/year 10251.4075 0.0000 2603.4763 75.0000		ion factor kg CO2/kWh 0.2160 0.2160 0.2160 0.5190 0.5190	1	Emissions kg CO2/year 2214.3040 0.0000 562.3509 2776.6549 38.9250	(261) (263) (264) (265) (267)
Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and water heating Fuel factor (mains gas) Emissions per m2 for lighting Emissions per m2 for pumps and fans Target Carbon Dioxide Emission Rate (TER) = (16.3246 * 1.(20) + 1.641	3 + 0.2288.	rounded to	537.8905 2 d.p.		0.5190		279.1652 3094.7451 16.3246 1.0000 1.6413 0.2288 18.1900	(272) (272a) (272b) (272c)

Appendix B

SAP Calculations for 'Be Lean, Be Clean & Be Green'

17 North End, NW3 7HR

Property Reference	e 0001-Artefact-S-17-North	-End		Issued on Date	07/09/2021					
Assessment Reference	Be Green			Prop Type Ref	17 North End					
Property	17, North End, NW3 7HR									
SAP Rating		80 C	DER	17.88	TER	26.95				
Environmental		82 B	% DER <ter< th=""><th></th><th colspan="4">33.65</th></ter<>		33.65					
CO ₂ Emissions (t/y	ear)	2.67	DFEE	57.58	TFEE	72.35				
General Requireme	ents Compliance	Pass	% DFEE <tfe< th=""><th>E</th><th>20.41</th><th></th></tfe<>	E	20.41					
Assessor Details	Assessor ID W996-000 Use of the second se									
Client										

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE REPORT - Approv	ed Document L1A, 2013 Edition, England	
DWELLING AS DESIGNED		
Detached House, total floor area 170 m	2	
This report covers items included with It is not a complete report of regulat		
la TER and DER Fuel for main heating:Electricity Fuel factor:1.55 (electricity) Target Carbon Dioxide Emission Rate (T Dwelling Carbon Dioxide Emission Rate	(DER) 17.88 kgCO /m²OK	
lb TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFE	72.3 kWh/m²/yr E)57.6 kWh/m²/yrOK	
2 Fabric U-values Element Average	Highest	
	0.23 (max. 0.70) OK	
Floor 0.10 (max. 0.25)	0.10 (max. 0.70) OK 0.14 (max. 0.35) OK	
Roof 0.14 (max. 0.20) Openings 1.20 (max. 2.00)	0.14 (max. 0.35) OK 1.20 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calculated using user	-specified y-value of 0.041	
3 Air permeability Air permeability at 50 pascals: Maximum	4.00 (design value) 10.0	OK
4 Heating efficiency Main heating system: Air-to-water heat pump	Heat pump with radiators or underfloor - Electri	c
Secondary heating system:	None	
5 Cylinder insulation Hot water storage Permitted by DBSCG 2.56 Primary pipework insulated:	Measured cylinder loss: 2.56 kWh/day OK Yes	OK
6 Controls Space heating controls:	Time and temperature zone control	OK
Hot water controls:	Cylinderstat Independent timer for DHW	OK OK
7 Low energy lights Percentage of fixed lights with low-en Minimum	ergy fittings:100% 75%	OK
9 Machanical wontilation		
8 Mechanical ventilation Continuous supply and extract system		
Specific fan power:	1.50	
Maximum MVHR efficiency:	1.5 84%	OK
Minimum:	845 70%	OK
0 Cumpostino temposeture		
9 Summertime temperature Overheating risk (Thames Valley): Based on:	Slight	OK
Overshading:	Average	
Windows facing North East:	9.88 m², No overhang	
Windows facing South East:	16.47 m², No overhang	
Windows facing South West: Windows facing North West:	19.44 m², No overhang 4.41 m², No overhang	
Air change rate:	8.00 ach	
Blinds/curtains:	None	
10 Key features		
Floor U-value	0.10 W/m²K	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	ey height		Volume
		(m2)		(m)		(m3)
Ground floor		72.5400 (1b)	х	2.8500 (2b)	=	206.7390 (1b) - (3b)
First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln)	170.0900	97.5500 (1c)	х	2.8400 (2c)	=	277.0420 (1c) - (3c) (4)
Dwelling volume		(3a)+(3)	o)+(3c)	+(3d)+(3e)(3n) =	483.7810 (5)

2. Ventilation	rate 												
					main heating	5	secondary heating	0	other	tot	al m3	3 per hour	
Number of chimn	eys				0	+	0	+	0 =		0 * 40 =	0.0000	(6a)
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
Number of inter		15									0 * 10 =	0.0000	
Number of passi											0 * 10 =	0.0000	
Number of fluel	ess gas fin	es									0 * 40 =	0.0000	(7c)
											Air changes		
Infiltration du	e to chimne	eys, flues a	and fans =	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	
Pressure test												Yes	
Measured/design												4.0000	
Infiltration ra Number of sides												0.2000	(18)
Number of sides	sneitered											1	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.9250	(20)
Infiltration ra	te adjusted	d to include	e shelter fa	actor					(2)	L) = (18)	x (20) =	0.1850	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(0.0)
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	
Wind factor Adj infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
-	0.2359	0.2313	0.2266	0.2035	0.1989	0.1758	0.1758	0.1711	0.1850	0.1989	0.2081	0.2174	(22b)
Balanced mecha			heat recov	very									
If mechanical v												0.5000	()
If balanced wit	h heat reco	overy: effic	ciency in %	a⊥⊥owing fo	or in-use fa	actor (fro	om Table 4h)	=				71.4000	(23c)
Effective ac	0.3789	0.3743	0.3696	0.3465	0.3419	0.3188	0.3188	0.3141	0.3280	0.3419	0.3511	0.3604	(05)

З.	Heat	losses	and	heat	loss	parameter	

Element				Gross	Opening		tArea	U-value	A x		-value	АхК	
				m2	m		m2	W/m2K	W/		kJ/m2K	kJ/K	
Windows/Glazed		= 1.20)					.2000	1.1450	57.480				(27)
Roof Lights (U	Jw = 1.20)						.3600	1.1450	14.152				(27a)
Ground Floor							.0800	0.1000	14.908			11181.0000	
External Wall			:	249.1000	50.200		.9000	0.2300	45.747			11934.0000	
Wall below Gro				20.8300			.8300	0.2300	4.790		9.0000	187.4700	
External Slope				127.0300	12.360		.6700	0.1400	16.053		9.0000	1032.0300	
External Flat				29.9900			.9900	0.1400	4.198	6	9.0000	269.9100	
Total net area						576	.0300						(31)
Fabric heat lo		Sum (A x U)						30) + (32) =	= 157.331				(33)
Internal Stud							.0500				9.0000	1773.4500	
Internal Floor							.0100				8.0000	378.1800	
Internal Ceili	ng 1					21	.0100			1	8.0000	378.1800	(32e)
Heat capacity	Cm = Sum (A	x k)						(28).	(30) + (32) + (32a).	(32e) =	27134.2200	(34)
Thermal mass p	arameter ('	TMP = Cm /	TFA) in kJ/r	m2K								159.5286	(35)
Thermal bridge	s (User de	fined value	0.041 * to	tal exposed	area)							23.6172	(36)
Total fabric h	leat loss			-						(33)	+ (36) =	180.9491	(37)
Ventilation he	at loss ca	lculated mo	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	60.4865	59.7482	59.0098	55.3179	54.5796	50.8877	50.8877	50.1493	52.3645	54.5796	56.0563	57.5331	(38)
Heat transfer	coeff												
	241.4357	240.6973	239.9589	236.2671	235.5287	231.8368	231.8368	231.0985	233.3136	235.5287	237.0054	238.4822	(39)
Average = Sum((39)m / 12 =	=										236.0825	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.4195	1.4151	1.4108	1.3891	1.3847	1.3630	1.3630	1.3587	1.3717	1.3847	1.3934	1.4021	(40)
HLP (average)												1.3880	
Days in month													,

4. Water heat	ing energy r	equirement	s (kWh/year)								
Assumed occup Average daily		use (litres	/day)									2.9627 (42) 104.5640 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

30

31

31

30

31

30

31

28

31

30

31

31 (41)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Daily hot wate	ar 1190												
Daily not wat	115.0204	110.8378	106.6553	102.4727	98.2901	94.1076	94.1076	98.2901	102.4727	106.6553	110.8378	115.0204	(44)
Energy conte	170.5719	149.1833	153.9438	134.2119	128.7795	111.1269	102.9754	118.1658	119.5771	139.3556	152.1175	165.1898	
Energy content										Total = Si	um (45) m =	1645.1986	
Distribution		= 0.15 x (45)m										
	25.5858	22.3775	23.0916	20.1318	19.3169	16.6690	15.4463	17.7249	17.9366	20.9033	22.8176	24.7785	(46)
Water storage	loss:												
Store volume												250.0000	(47)
a) If manufa	cturer decla	ared loss f	actor is kno	own (kWh/da	ay):							2.5600	(48)
Temperature												0.5400	
Enter (49) or	(54) in (55	5)										1.3824	(55)
Total storage													
	42.8544	38.7072	42.8544	41.4720	42.8544	41.4720	42.8544	42.8544	41.4720	42.8544	41.4720	42.8544	(56)
If cylinder co													
	42.8544	38.7072	42.8544	41.4720	42.8544	41.4720	42.8544	42.8544	41.4720	42.8544	41.4720	42.8544	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red													
	236.6887	208.9017	220.0606	198.1959	194.8963	175.1109	169.0922	184.2826	183.5611	205.4724	216.1015	231.3066	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	12							Solar inp	it (sum of i	months) = Si	1m (63)m =	0.0000	(63)
Output from w.													100
	236.6887	208.9017	220.0606	198.1959	194.8963	175.1109	169.0922	184.2826	183.5611	205.4724	216.1015	231.3066	
Noch going for	om woton bo	ation little /	manth					Total p	er year (kw	h/year) = Si	1m (64) m =	2423.6706	(64)
Heat gains fro	109.6086	97.3782	104.0797	95.8127	95.7126	88.1369	87.1328	92.1836	90.9466	99.2292	101.7663	107.8190	(65)
	T03.0080	91.3182	104.0/9/	90.8127	90./126	00.1369	0/.1328	92.1836	90.9466	33.2292	TOT./003	101.8190	(65)

5. Internal gains (see Table 5 and 5a)
Metabolic gains (Table 5), Watts
Metabolic gains (Table 5), Watts
Metabolic gains (Table 5), Watts
May 148.1347 1

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	9.8800	11.2829	0.6300	0.8000	0.7700	38.9353 (7
Southeast	16.4700	36.7938	0.6300	0.8000	0.7700	211.6569 (7
Southwest	19.4400	36.7938	0.6300	0.8000	0.7700	249.8245 (7
Northwest	4.4100	11.2829	0.6300	0.8000	0.7700	17.3790 (8
Northeast	12.3600	22.3677	0.6300	0.7000	1.0000	109.7287 (8

 Solar gains
 627.5244
 1131.7622
 1705.5581
 2360.2640
 2857.4019
 2927.6086
 2784.9421
 2402.2355
 1931.5141
 1294.1369
 763.3169
 529.3373
 (83)

 Total gains
 1217.3873
 1719.3494
 2274.1439
 2897.6673
 3362.1649
 3401.6347
 3239.4422
 2863.3846
 2409.0607
 1803.1049
 1308.4676
 1102.5673
 (84)

7. Mean internal temperature (heating season) _____ Temperature during heating periods in the living area from Table 9, Th1 (C) Utilisation factor for gains for living area, ni1,m (see Table 9a) Jan Feb Mar Apr May Jun tau 31.2186 31.3144 31.4107 31.9015 32.0016 32.53 alpha 3.0812 3.0876 3.0940 3.1268 3.1334 3.1 21.0000 (85) Jun 32.5112 Jul 32.5112 3.1674 Aug 32.6150 3.1743 Oct 32.0016 3.1334 Dec 31.6052 3.1070 Sep 32.3054 Nov 31.8022 3.1674 3.1537 3.1201 util living area 0.9824 0.9531 0.8873 0.7525 0.5800 0.4178 0.3093 0.3610 0.5917 0.8593 0.9654 0.9868 (86) 20.1181 19.3734 19.6976 19.7518 20.7826 20.8806 19.7751 19.7918 20.8990 19.7952 20.5431 20.9050 20.8134 20.4215 19.8044 19.3227 (87) MIT 19.7617 (88) Th 2 19.7484 19.7551 19.7717 19.7918 19.7918 19.7851 19.7751 19.7684 util rest of house 0.9784 0.8218 0 9430 0.8648 0.7103 0.5201 0.3452 0.2268 0 2707 0 5095 0.9563 0.9837 (89) MIT 2 17.6024 18.0696 18.6607 19.6633 17.5381 (90) 0.1540 (91) 17.8130 (92) 0.0000 19.2368 19.5265 19.6436 19.6630 19.5803 19.1047 18.2412 MIT 2 Living area fraction MIT 17.8752 18.3204 18.8852 fLA = Living area / (4) 19.4380 19.7200 19.8342 19.8543 19.8536 19.7703 19.3075 18.4820 Temperature adjustment adjusted MIT 17.875 17.8752 18.3204 18.8852 19.7200 19.8342 18.4820 17.8130 (93) 19.4380 19.8543 19.8536 19.7703 19.3075

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9697	0.9278	0.8459	0.6975	0.5173	0.3478	0.2311	0.2752	0.5084	0.8044	0.9432	0.9767	(94)
Useful gains	1180.5593	1595.1683	1923.6692	2021.0854	1739.2092	1183.2387	748.7200	788.1065	1224.7201	1450.4999	1234.2079	1076.8533	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	3277.5301	3230.2424	2971.9288	2489.7793	1888.9295	1213.4704	754.4618	798.1327	1322.9530	2050.8742	2697.5961	3246.4657	(97)

CALCULATION OF D	WELLING							Jan 2014	l			
CALCOLATION OF L		S LIVIISSI						5011 2014				
Month fracti 1.0000 Space heating kWh	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
1560.1463 Space heating	1098.7698	779.9051	337.4596	111.3919	0.0000	0.0000	0.0000	0.0000	446.6784	1053.6395	1614.1916 7002.1822	
Space heating per m2									(98) / (4) =	41.1675	(99)
8c. Space cooling require	ement											
Not applicable												
9a. Energy requirements -												
Fraction of space heat fi	com secondar	y/supplemer									0.0000	
Fraction of space heat for Efficiency of main space	heating sys	stem 1 (in §									1.0000 249.9000	(206)
Efficiency of secondary/s Space heating requirement		ry heating s	system, %								0.0000 2801.9937	(208) (211)
Jan Space heating requirement	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 1560.1463 Space heating efficiency	1098.7698		337.4596	111.3919	0.0000	0.0000	0.0000	0.0000	446.6784	1053.6395	1614.1916	(98)
	249.9000	249.9000		249.9000	0.0000	0.0000	0.0000	0.0000	249.9000	249.9000	249.9000	(210)
	439.6838		135.0378	44.5746	0.0000	0.0000	0.0000	0.0000	178.7429	421.6245	645.9350	(211)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement												
236.6887 Efficiency of water heate	er	220.0606	198.1959	194.8963	175.1109	169.0922	184.2826	183.5611	205.4724	216.1015	231.3066 175.1000	(216)
Fuel for water heating, b		175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	
135.1734 Water heating fuel used Annual totals kWh/year	119.3042	125.6771	113.1901	111.3057	100.0062	96.5690	105.2442	104.8322	117.3457	123.4161	132.0997 1384.1637	
Space heating fuel - main Space heating fuel - seco	n system ondarv										2801.9937 0.0000	
Electricity for pumps and												(/
(BalancedWithHeatReco mechanical ventilation			se factor = 3750)	1.2500, SF	P = 1.8750)						1106.6490	(230a)
central heating pump Total electricity for the											30.0000 1136.6490	(231)
Electricity for lighting Total delivered energy fo		d in Appendi	ix L)								537.8905 5860.6969	
12a. Carbon dioxide emiss	ione - Indi	widual heat	ing evetom	e including	micro-CHP							
							Energy	Emiss	ion factor		Emissions	
Space heating - main syst	em 1						kWh/year 2801.9937		kg CO2/kWh 0.5190	k	g CO2/year 1454.2347	(261)
Space heating - secondary Water heating (other fuel							0.0000 1384.1637		0.0000 0.5190		0.0000 718.3809	
Space and water heating Pumps and fans							1136.6490		0.5190		2172.6157 589.9209	(267)
Energy for lighting Total CO2, kg/year							537.8905		0.5190		279.1652 3041.7017	(272)
Dwelling Carbon Dioxide H	Smission Rat	te (DER)									17.8800	(2/3)
16 CO2 EMISSIONS ASSOCIA: DER	TED WITH APP	PLIANCES ANI	COOKING A	ND SITE-WID	E ELECTRICI	TY GENERATI	ON TECHNOLO	GIES			17.8800	201
Total Floor Area Assumed number of occupar	nts										170.0900 2.9627	
CO2 emission factor in Ta CO2 emissions from applia	able 12 for		/ displaced	from grid						EF		
CO2 emissions from cookin Total CO2 emissions	ng, equation	n (L16)									1.1177 30.9002	ZC3 ZC4
Residual CO2 emissions of Additional allowable elect	ctricity ger	neration, kW									0.0000	ZC6
Resulting CO2 emissions of Net CO2 emissions	offset from	additional	allowable	electricity	generation						0.0000 30.9002	

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	170.0900	Area (m2) 72.5400 (1b) 97.5500 (1c)	x x	rey height (m) 2.8500 (2b) 2.8400 (2c)	=	Volume (m3) 206.7390 (1b) - (3b) 277.0420 (1c) - (3c) (4)
Dwelling volume		(3a)+(3)	o)+(3c)	+(3d)+(3e)(3r) =	483.7810 (5)

2. Ventilation	rate												
					main heating		secondary heating		other	total	l m3	per hour	
Number of chimne	eys				ō	+	ō	+	0 =	. (0 * 40 =	0.0000 (6	ба)
Number of open :	flues				0	+	0	+	0 =	. (0 * 20 =	0.0000 (6	6b)
Number of intern	mittent fa	ns								4	4 * 10 =	40.0000 (7	7a)
Number of passiv	ve vents										0 * 10 =	0.0000 (7	7b)
Number of fluele	ess gas fi	res								(0 * 40 =	0.0000 (7	7c)
											Air changes		
Infiltration due	e to chimn	eys, flues	and fans	= (6a)+(6b)-	+(7a)+(7b)+((7c) =				40.0000 /	/ (5) =	0.0827 (8	8)
Pressure test												Yes	
Measured/design												5.0000	
Infiltration rat												0.3327 (1	
Number of sides	sheltered											1 (1	19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.9250 (2	20)
Infiltration rat	te adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.3077 (2	21)
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000		3.7000		4.3000	4.5000	4.7000 (2	221
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500		0.9250		1.0750	1.1250	1.1750 (2	
Adj infilt rate		1.2000	1.2200	1.1000	1.0700	0.0000		0.0200	1.0000	1.0700	1.1200	1.1/00 (2	
.,	0.3924	0.3847	0.3770	0.3385	0.3308	0.2923	0.2923	0.2847	0.3077	0.3308	0.3462	0.3616 (2	22b)
Effective ac	0.5770	0.5740	0.5711	0.5573	0.5547	0.5427		0.5405		0.5547	0.5599	0.5654 (2	
													-

3. Heat losses	and heat	loss parame	ter										
Element				Gross	Openings	Ne	tArea	U-value	A x	U K	-value	АхК	
				m2	m2		m2	W/m2K	W	/K	kJ/m2K	kJ/K	
TER Opening Typ	pe (Uw = 1	.40)				34	.1200	1.3258	45.23	48			(27)
TER Room Window	w (Uw = 1.	70)				8	.4000	1.5918	13.37	08			(27a)
Ground Floor						149	.0800	0.1300	19.38	04			(28a)
External Wall				249.1000	34.1200	214	.9800	0.1800	38.69	64			(29a)
Wall below Grow	und			20.8300		20	.8300	0.1800	3.74	94			(29a)
External Slope	d Roof			127.0300	8.4000	118	.6300	0.1300	15.42	19			(30)
External Flat 1	Roof			29,9900		29	.9900	0.1300	3.89	87			(30)
Total net area	of extern	al elements	Aum(A, m2)			576	.0300						(31)
Fabric heat los	ss, W/K =	Sum (A x U)					(26)(30) + (32)	= 139.75	24			(33)
Thermal mass pa	arameter (TMP = Cm /	TFA) in kJ/	m2K								250.0000	(35)
Thermal bridge:	s (Sum(L x	Psi) calcu	lated using	Appendix K)							30.4297	(36)
Total fabric he				11						(33)	+ (36) =	170.1821	
Ventilation hea	at loss ca	lculated mo	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	92.1123	91.6351	91.1674	88.9705	88.5594	86.6460	86.6460	86.2917	87.3830	88.5594	89.3910	90.2603	(38)
Heat transfer of	coeff												()
	262.2944	261.8172	261.3495	259.1526	258.7416	256.8282	256.8282	256.4738	257.5652	258.7416	259.5731	260.4424	(39)
Average = Sum (3	39)m / 12	=										259.1506	(39)
													()
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.5421	1.5393	1.5365	1.5236	1.5212	1.5100	1.5100	1.5079	1.5143	1.5212	1.5261	1.5312	(40)
HLP (average)												1.5236	
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)
			•-		•-								/

4. Water heat	ing energy 1	requirement:	s (kWh/year)									
Assumed occup	ancy											2.9627	(42)
Average daily	hot water u	use (litres	/day)									104.5640	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	115.0204	110.8378	106.6553	102.4727	98.2901	94.1076	94.1076	98.2901	102.4727	106.6553	110.8378	115.0204	(44)
Energy conte	170.5719	149.1833	153.9438	134.2119	128.7795	111.1269	102.9754	118.1658	119.5771	139.3556	152.1175	165.1898	(45)
Energy conten Distribution		= 0.15 x (45)m							Total = S	um(45)m =	1645.1986	(45)
	25.5858	22.3775	23.0916	20.1318	19.3169	16.6690	15.4463	17.7249	17.9366	20.9033	22.8176	24.7785	(46)
Water storage Store volume	loss:											250.0000	(47)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

a) If manufac			actor is kn	own (kWh/da	ay):							1.8903	
Temperature												0.5400	
Enter (49) or	(54) in (55	5)										1.0208	(55)
Total storage	loss												
	31.6444	28.5820	31.6444	30.6236	31.6444	30.6236	31.6444	31.6444	30.6236	31.6444	30.6236	31.6444	(56)
If cylinder co	ontains dedi	cated solar	r storage										
	31.6444	28.5820	31.6444	30.6236	31.6444	30.6236	31.6444	31.6444	30.6236	31.6444	30.6236	31.6444	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red	uired for w	ater heatin	ng calculat	ed for each	month								
	225.4787	198.7765	208.8506	187.3475	183.6863	164.2625	157.8822	173.0726	172.7127	194.2624	205.2531	220.0966	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of :	months) = Si	um(63)m =	0.0000	(63)
Output from w,	'h							-					
-	225.4787	198.7765	208.8506	187.3475	183.6863	164.2625	157.8822	173.0726	172.7127	194.2624	205.2531	220.0966	(64)
								Total pe	er vear (kWl	h/year) = Si	um (64) m =	2291.6817	(64)
Heat gains fro	om water hea	ting, kWh/r	nonth					-		-			
<u> </u>	100.6406	89.2780	95.1117	87.1339	86.7446	79.4582	78.1648	83.2156	82.2679	90.2612	93.0876	98.8510	(65)
													()

5. Internal gains (see Table 5 and 5a)

Metabolic gain	s (Table 5)	, Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	148.1347	(66)
Lighting gains	(calculate	ed in Append	dix L, equa	tion L9 or	L9a), also	see Table 5							
	30.4576	27.0522	22.0003	16.6556	12.4503	10.5111	11.3576	14.7630	19.8149	25.1595	29.3649	31.3041	(67)
Appliances gai	ns (calcula	ated in Appe	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	341.6415	345.1867	336.2529	317.2341	293.2263	270.6623	255.5882	252.0430	260.9767	279.9955	304.0034	326.5674	(68)
Cooking gains	(calculated	d in Appendi	x L, equat	ion L15 or	L15a), also	see Table	5						
	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	37.8135	(69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	(70)
Losses e.g. ev	aporation ((negative va	alues) (Tab	le 5)									
	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	-118.5078	(71)
Water heating	gains (Tabl	Le 5)											
	135.2696	132.8542	127.8384	121.0194	116.5922	110.3586	105.0602	111.8489	114.2609	121.3188	129.2883	132.8643	(72)
Total internal													
	577.8091	575.5334	556.5320	525.3495	492.7092	461.9724	442.4463	449.0953	465.4929	496.9142	533.0969	561.1761	(73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	6.7100	11.2829	0.6300	0.7000	0.7700	23.1375 (75)
Southeast	11.2000	36.7938	0.6300	0.7000	0.7700	125.9403 (77)
Southwest	13.2100	36.7938	0.6300	0.7000	0.7700	148.5421 (79)
Northwest	3.0000	11.2829	0.6300	0.7000	0.7700	10.3446 (81)
Northeast	8.4000	22.3677	0.6300	0.7000	1.0000	74.5729 (82)

Solar gains 382.5376 692.7298 1050.3178 1462.1721 1776.5290 1822.5945 1732.8159 1490.6937 1192.4886 793.9008 465.8449 322.3318 (83) Total gains 960.3466 1268.2632 1606.8498 1987.5216 2269.2382 2284.5669 2175.2622 1939.7890 1657.9815 1290.8150 998.9418 883.5080 (84)

7. Mean internal temperature (heating season)

Temperature during heating periods in the living area from Table 9, Th1 (C) Utilisation factor for gains for living area, nil,m (see Table 9a)

Utilisation i	factor for ga	ins for liv	ring area, n	nil,m (see 1	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	45.0326	45.1147	45.1954	45.5786	45.6510	45.9911	45.9911	46.0546	45.8595	45.6510	45.5047	45.3529	
alpha	4.0022	4.0076	4.0130	4.0386	4.0434	4.0661	4.0661	4.0703	4.0573	4.0434	4.0336	4.0235	
util living a	area												
	0.9982	0.9943	0.9813	0.9354	0.8245	0.6543	0.5014	0.5740	0.8291	0.9726	0.9959	0.9987 (86)	
MIT	19.2366	19.4768	19.8586	20.3401	20.7231	20.9228	20.9796	20.9656	20.7915	20.2576	19.6496	19.1965 (87)	
Th 2	19.6561	19.6582	19.6602	19.6698	19.6716	19.6800	19.6800	19.6816	19.6768	19.6716	19.6680	19.6642 (88)	
util rest of	house												
	0.9975	0.9922	0.9743	0.9108	0.7617	0.5444	0.3598	0.4256	0.7410	0.9578	0.9941	0.9983 (89)	
MIT 2	17.3390	17.6906	18.2445	18.9272	19.4186	19.6338	19.6738	19.6693	19.5191	18.8302	17.9505	17.2855 (90)	
Living area 1	fraction								fLA =	Living area	/ (4) =	0.1540 (91)	
MIT	17.6313	17.9657	18.4931	19.1448	19.6195	19.8324	19.8749	19.8690	19.7151	19.0501	18.2122	17.5799 (92)	
Temperature a	adjustment											0.0000	
adjusted MIT	17.6313	17.9657	18.4931	19.1448	19.6195	19.8324	19.8749	19.8690	19.7151	19.0501	18.2122	17.5799 (93)	

8. Space heating requirement

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul

 Utilisation
 0.9959
 0.9881
 0.9654
 0.8983
 0.7589
 0.5582
 0.3816

 Useful gains
 956.3884
 1253.1943
 1551.2798
 1785.3390
 1722.0224
 1275.1864
 830.1709

 Ext temp.
 4.3000
 4.9000
 6.5000
 8.9000
 11.7000
 14.6000
 16.6000

 Heat loss rate W
 3496.7160
 3420.8278
 3134.3922
 2654.9766
 2049.1118
 1343.8151
 841.0887

 Month fracti
 1.0000
 1.0000
 1.0000
 1.0000
 0.0000
 0.0000

 Space heating kWh
 1890 0038
 1475 511
 1475 511
 14887
 AugSepOct0.44810.74400.9477869.13441233.59721223.2965 Nov 0.9909 989.8339 Dec 0.9970 (94) 880.8666 (95) 16.4000 14.1000 10.6000 7.1000 4.2000 (96) 889.7082 1446.2628 2186.3812 2884.4300 3484.6808 (97) 1.0000 1.0000 1.0000 (97a) 0.0000 0.0000 1890.0038 1456.6497 1177.8356 626.1391 243.3501 0.0000 0.0000 0.0000 0.0000 716.5350 1364.1092 1937.2378 (98) Space heating Space heating per m2 9411.8603 (98) 55.3346 (99) (98) / (4) =

21.0000 (85)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

8c. Space cooling requirement Not applicable

9a. Energy re													
Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fr pace heat fr main space secondary/s	om seconda om main sy heating sy upplementa	ary/supplemen ystem(s) ystem 1 (in s	ntary syste %)								0.0000 1.0000 93.5000 0.0000 10066.1608	(202) (206) (208)
Space heating	Jan requirement	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1890.0038	1456.6497		626.1391	243.3501	0.0000	0.0000	0.0000	0.0000	716.5350	1364.1092	1937.2378	(98)
Space heating	93.5000	93.5000	93.5000	1) 93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating	fuel (main 2021.3944			669.6675	260.2675	0.0000	0.0000	0.0000	0.0000	766.3476	1458.9403	2071.9121	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating	requirement		200 0506	107 2475	102 0002	1.64 0.605	157 0000	173.0726	170 7107	104 0004	205.2531	222 226	(64)
Efficiency of	water heate		208.8506	187.3475	183.6863	164.2625	157.8822		172.7127	194.2624		220.0966 79.8000	(216)
(217)m Fuel for wate	89.2248 r heating, k	89.0660 Wh/month	88.7086	87.7891	85.5650	79.8000	79.8000	79.8000	79.8000	87.9838	88.9403	89.2787	(217)
Water heating	252.7084 fuel used	223.1789	235.4345	213.4064	214.6746	205.8428	197.8474	216.8830	216.4320	220.7934	230.7763	246.5275 2674.5053	
Annual totals Space heating Space heating	fuel - main											10066.1608 0.0000	
Electricity f central he main heati Total electri Electricity f Total deliver	ating pump ng flue fan city for the or lighting	above, kW (calculate	ed in Append	ix L)								30.0000 45.0000 75.0000 537.8905 13353.5566	(230e) (231) (232)
12a. Carbon d		ions - Inc	dividual hea	ting system	s including	micro-CHP							
Space heating Space heating Water heating Pumps and fan Energy for li Total CO2, kg Emissions per Fuel factor (Emissions per Emissions per	- main syst - secondary (other fuel er heating s m2/year m2 for spac electricity) m2 for ligh	em 1) e and wate	er heating					Energy kWh/year 10066.1608 0.0000 2674.5053 75.0000 537.8905		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190	J	Emissions c02/year 2174.2907 0.0000 577.6931 2751.9839 38.9250 279.1652 3070.0740 16.1796 1.5500 1.6413 0.2288	(261) (263) (264) (265) (267) (268) (272) (272a)

Appendix C

Water Use Calculations

17 North End, NW3 7HR

breglobal

Job no:	
Date:	
Assessor name:	Tom Reynolds
Registration no:	
Development name:	17 North End
Issue Date:	
Rainwater Greyv	vater Results

WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS

(for use with the Code for Sustainable Homes issues Wat 1 for the May 2009 and subsequent versions)

Dwelling Description n/a

- Select from options below:	otions below:	1st step - Select from or
Rain and/or Greywater No system specified?		Is a Rain and/or Greywater system specified?
ver AND bath present? Yes	Yes	Is a shower AND bath present?
washing machine been specified? No	No	Has a washing machine been specified?
las a dishwasher been No specified?	No	Has a dishwasher been specified?

2nd step - Build spreadsheet (click button below)

BUILD SPREADSHEET

As soon as this button is pressed the spreadsheet will change according to the options selected previously in the 1st step. Scroll down to see the changes.

3rd step - Enter consumption details for the specified fittings

TAPS (excluding kitchen taps)	Fitting type	Flow rate (litres/min)	Number of fittings
	1 Basin Taps	6.00	3
	2		
	3		
	4		
	Proport	tionate flow rate (litres/min)	4.20

Consumption / person / c	day (Litres) 11.06
--------------------------	--------------------

CSH Wat Tool May 09

BATHS		Fitting type	Capacity to overflow (litres)	Number of fittings
	1	Baths	180.00	2
	2			
	3			
	4			
		Proportionate of	capacity to overflow (litres)	126.00
	·	Consum	otion / person / day (Litres)	19.80
SHOWERS		Fitting type	Flow rate (litres/min)	Number of fittings
	1	Showers	8.00	2
	2			
	3			
	4			
		Proporti	onate flow rate (litres/min)	5.60
		Consum	otion / person / day (Litres)	34.96
DISHWASHER				
Where no dishwasher is specified, a default consumption figure of 1.25 litres per place setting is used.				
		Consum	otion / person / day (Litres)	4.50

WASHIN	IG MACHINES			Number of fittings
machine is default co figure of 8. kilogram o	o washing s specified, a onsumption .17 litres per of dry load is sed.			
Where no		ave been specified but plu grey/rainwater was installe		
		Consumptio	on / person / day (Litres)	17.16
WC's	Fitting Type	Flush Type	Volume**	Number of fittings
	Fitting Type	Flush Type Full Flush	Volume** 4.00	fittings
WC's				
		Full Flush	4.00	fittings
1		Full Flush Part Flush Full Flush	4.00	fittings
1 2		Full Flush Part Flush Full Flush Part Flush Full Flush	4.00	fittings
1 2 3		Full Flush Part Flush Full Flush Part Flush Full Flush Part Flush Full Flush Part Flush	4.00	fittings

KITCHEN SINK T	APS	Fitting Type	Flow rate (litres/minute)	Number of fittings
	1	Kitchen and Utility Taps	8.00	2
	2			
	3			
	4			
		Proport	ionate flow rate (litres/min)	5.60
		Consum	ption / person / day (Litres)	13.88
WASTE DISPOSA	L UNIT			
ls a waste disposal	unit spec	ified for the dwelling?	No	
		Consum	otion / person / day (Litres)	0.00
WATER SOFTEN	ER			
	W	ater Softener in use?	No	
Total capa	acity used	d per regeneration (%)		
Water con	isumed p	er regeneration (litres)		
Average number of re	generatio	on cycles per day (No.)		
Number of occupa	ants serve	ed by the system (No.)		
		Water consume	ed beyond 4% person / day (Litres)	0.00

Go to Start

4th step - Analyse Results

INTERNAL WATER CONSUMPTION		
NET INTERNAL WATER CONSUMPTION	(litres/person/day)	114.89
RAINWATER ONLY COLLECTION SAVING	(litres/person/day)	0.00
GREYWATER ONLY RECYCLING SAVING	(litres/person/day)	0.00
RAIN/GREYWATER COLLECTION SAVING (combined system)	(litres/person/day)	0.00
NORMALISATION FACTOR	(litres/person/day)	0.91
TOTAL WATER CONSUMPTION	(litres/person/day)	104.6
	CSH CREDITS ACHIEVED	3
	CSH MANDATORY LEVEL:	Level 3/4

17. K COMPLIANCE			
EXTERNAL WATER USE	(litres / person / day)	5.00	
TOTAL WATER CONSUMPTION	(litres / person / day)	109.6	
	17. K COMPLIANCE?	Yes	

BRE Global 2009. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 75% (maximum)

Appendix D

Run Off Rate Calculations

17 North End, NW3 7HR

Runoff estimation approach

Tom Reynolds

17 North End

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the basis for setting consents for the drainage of surface water runoff from sites.

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

London

Calculated by:

Site name:

be

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

51.56810° N
0.18155° W
3675823271
Sep 07 2021 15:38

	louon	IH124		J
Site characteristics				Notes
Total site area (ha):		0.1		(1) Is Q _{BAR} < 2.0 I/s/ha?
Methodology				
Q _{BAR} estimation method: Calculate from SPR and SAAR		When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation method:	Calculate fro	om SOIL typ	е	Ĵ
Soil characteristics				
SOIL type:		Default	Edited	(2) Are flow rates < 5.0 l/s?
		4	4	
HOST class:		N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is
SPR/SPRHOST:		0.47	0.47	usually set at 5.0 l/s if blockage from vegetation and other
Hydrological characte	ristics	Default	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):		670	670	
Hydrological region:		6	6	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year:		0.85	0.85	Where groundwater levels are low enough the use of soakaways
Growth curve factor 30 year	rs:	2.3	2.3	to avoid discharge offsite would normally be preferred for disposal of surface water runoff.
Growth curve factor 100 years	ars:	3.19	3.19	
Growth curve factor 200 years	ars:	3.74	3.74	j
				·

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	0.46	0.46
1 in 1 year (l/s):	0.39	0.39
1 in 30 years (l/s):	1.05	1.05
1 in 100 year (l/s):	1.46	1.46
1 in 200 years (l/s):	1.72	1.72

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Calculated by: Tom Reynolds Site name: 17 North End Site location: London

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the design of the drainage scheme.

Site characteristics

Total site area (ha):	0.037	esti
Significant public open space (ha):	0	Q _{BAR} estimation method
Area positively drained (ha):	0.037	SPR estimation method:
Impermeable area (ha):	0.025889	Soil characteristic
Percentage of drained area that is impermeable (%):	70	
Impervious area drained via infiltration (ha):	0.017815	SOIL type:
Return period for infiltration system design (year):	10	SPR:
Impervious area drained to rainwater harvesting (ha):	0	Hydrological char
Return period for rainwater harvesting system (year):	10	Rainfall 100 yrs 6 hrs:
Compliance factor for rainwater harvesting system (%):	66	Rainfall 100 yrs 12 hrs:
Net site area for storage volume design (ha):	0.03	FEH / FSR conversion fa
Net impermable area for storage volume design (ha):	0.02	SAAR (mm)

Pervious area contribution to runoff (%):

* where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50% of the 'area positively drained', the 'net site area' and the estimates of $\mathsf{Q}_{\mathsf{BAR}}$ and other flow rates will have been reduced accordingly

Design criteria

Site discharge rates

Climate change allowance factor:	1.4	
Urban creep allowance		
factor:	1.1	
Volume control approach	Flow control to max of 2 l/s/ha or Qba	ır
Interception rainfall depth		
Interception rainfall depth (mm):	5	
	5	

Methodolo

рду	
	IH124
on method:	Calculate from SPR and SAAR

Calculate from SOIL type

Default

4

0.47

Default

Edited

4

0.47

Edited

Soil characteristics

lydrological characteristics

	Rainfall 100 yrs 6 hrs:)	63
	Rainfall 100 yrs 12 hrs:		98.56
	FEH / FSR conversion factor:	1.28	1.28
	SAAR (mm):	670	670
h	M5-60 Rainfall Depth (mm):	20	20
	'r' Ratio M5-60/M5-2 day:	0.4	0.4
	Hydological region:	6	6
	Growth curve factor 1 year:	0.85	0.85
	Growth curve factor 10 year:	1.62	1.62
	Growth curve factor 30 year:	2.3	2.3
	Growth curve factor 100 years:	3.19	3.19
	Q _{BAR} for total site area (I/s):	0.17	0.17
	Q _{BAR} for net site area (I/s):	0.15	0.15

Estimated storage volumes

	Default	Edited		Default	Edited	
1 in 1 year (l/s):	2	2	Attenuation storage 1/100 years (m ³):	3	3	
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m³):	0	0	
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m³):	3	3	

30

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

1/1

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Site Details

Latitude: Longitude:	51.56812° N 0.18153° W
Reference:	3463685277
Date:	Sep 07 2021 15:57