

GREATERLONDONAUTHORITY

The London Sustainable Drainage Proforma

Introduction

This proforma is intended to accompany a drainage strategy prepared for a planning application where required by national or local planning policy. It should be used to summarise the key outputs from the strategy to allow assessing officers at the Lead Local Flood Authority (LLFA) to quickly assess compliance with sustainable drainage (SuDS)

The proforma is divided into 4 sections, which are intended to be used as follows:

- 1. Site and project information Provide summary details of the development, site and drainage
- Proposed discharge arrangement Summarise site ground conditions to determine potential for infiltration. Select a surface water discharge method (or mix of methods) following the hierarchical approach set out in the London Plan.
- 3. Drainage strategy Prioritise SuDS measures that manage runoff as close to source as possible and contribute to the four main pillars of SuDS; amenity, biodiversity, water quality and water quantity.
- 4. Supporting information Provide cross references to the page or section of the drainage strategy report where the detailed information to support each element can be found. This may be more than one reference

Policy

Drainage strategies for developments in the London Borough of [insert borough] need to comply with the following policies on SuDS:

- 1. Camden Local Plan Policy CC3
- 2. London Plan policy 5.13 and draft New London Plan policy SI13
- 3. The National Planning Policy Framework (NPPF)

Technical Guidance

- Post-development surface water discharge rate should be limited to greenfield runoff rates. Proposals for higher discharge rates should be agreed with the LLFA ahead of submission of the Planning Application. Clear evidence should be provided with the Planning Application to show why greenfield rates cannot be achieved.
- Greenfield runoff rate is the runoff rate from a site in its natural state, prior to any development. This should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS
- Attenuation storage volumes required to reduce post-development discharge rates to greenfield rates should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS
- 'CC' refers to climate change allowance from the current Environment Agency guidance.
- An operation and maintenance strategy for proposed SuDS measures should be submitted with the Planning Application and include the details set out in section 32.2 of CIRIA C753 The SuDS Manual. The manual should be site-specific and not directly reproduce parts of The SuDS Manual.
- Other useful sources of guidance are:
- o Camden Planning Guidance 'Water and Flooding'
- o The London Plan Sustainable Design and Construction SPG
- o DEFRA non-statutory technical standards for sustainable drainage
- o Environment Agency climate change guidance
- o CIRIA C753 The SuDS Manual
- o Camden's 'SuDS in planning applications' webpage

Camden

GREATER **LONDON** AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	- Channing Junior School - Car Park			
	Address & post code	Channing Junior School, 1 Highgate High St, London N6 5JR, United Kingdom			
	OS Grid ref (Easting Northing)	E 528712			
		N 187290			
tails	LPA reference (if applicable)				
1. Project & Site De	Brief description of proposed work	Small area of car park to be resurface			
	Total site Area	565 m ²			
	Total existing impervious area	565 m ²			
	Total proposed impervious area	565 m ²			
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No			
	Existing drainage connection type and location	to ground			
	Designer Name	Carmel Lennon			
	Designer Position	Associate Director			
	Designer Company	Heyne Tillett Steel			

	2a. Infiltration Feasibility						
	Superficial geology classification	Made Ground, Bagshot Formation					
	Bedrock geology classification	laygate Memb	er				
	Site infiltration rate	0.0001147	'92 m/s				
	Depth to groundwater level	c. 4	m belo	w ground level			
	Is infiltration feasible?		Yes				
	2b. Drainage Hierarchy						
			Feasible (Y/N)	Proposed (Y/N)			
ρ Ω	1 store rainwater for later use	Y	Ν				
	2 use infiltration techniques, such a surfaces in non-clay areas	Y	Y				
	3 attenuate rainwater in ponds or features for gradual release	Ν	Ν				
	4 attenuate rainwater by storing in sealed water features for gradual re	Y	Ν				
i	5 discharge rainwater direct to a w	Ν	Ν				
	6 discharge rainwater to a surface sewer/drain	Ν	Ν				
	7 discharge rainwater to the comb	ined sewer.	Y	Ν			
	2c. Proposed Discharge Details						
	Proposed discharge location	to ground via	a permeable p	aving subbase			
	Has the owner/regulator of the discharge location been consulted?		NA				

GREATER **LONDON** AUTHORITY

3a Discharge Rates & Required Storage

	sa. Diserial Se nates a required storage										
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (l/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)						
	Qbar	0.26		\geq							
	1 in 1	0.22									
	1 in 30	0.59									
	1 in 100	0.81									
	1 in 100 + CC		\geq								
	Climate change a	llowance used	40%								
ge Strategy	3b. Principal Met Control	hod of Flow	NA								
	3c. Proposed SuDS Measures										
inag			Catchment	Plan area	Storage						
Drai			area (m²)	(m ²)	vol. (m ³)						
з.	Rainwater harves	ting	0	\geq	0						
	Infiltration systen	ns	0	$>\!$	0						
	Green roofs		0	0	0						
	Blue roofs		0	0	0						
	Filter strips		0	0	0						
	Filter drains		0	0	0						
	Bioretention / tre	e pits	0	0	0						
	Pervious paveme	nts	565	0	0						
	Swales		0	0	0						
	Basins/ponds		0	0	0						
	Attenuation tank	S	0		0						
	Iotal		565	0	0						

	4a. Discharge & Drainage Strategy	Page/section of drainage report		
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Refer to attachments		
	Drainage hierarchy (2b)	See above		
ting Information	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	NA		
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	NA		
	Proposed SuDS measures & specifications (3b)	Refer to contractors details		
Iodc	4b. Other Supporting Details	Page/section of drainage report		
. Su	Detailed Development Layout	Refer to architects drawings		
4	Detailed drainage design drawings, including exceedance flow routes	Refer to architects drawings		
	Detailed landscaping plans	Refer to architects drawings		
	Maintenance strategy	See attachments		
	Demonstration of how the proposed SuDS measures improve:			
	a) water quality of the runoff?	use of permeable paving		
	b) biodiversity?	NA		
	c) amenity?	NA		

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Carmel Lennon				Site Details						
Site name:	Chanr	nina Juni	or Schoo	bl		Latitude:				
Site location:	Llicho	uata				Longitude:				
	Highg	ale								
This is an estimation of the greenfield runoff rates that are used to meet no in line with Environment Agency guidance "Rainfall runoff management for SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statu (Defra, 2015). This information on greenfield runoff rates may be the basis to the drainage of surface water runoff from sites.				at are used t runoff manag 2015) and the rates may be	o meet norm ement for de non-statuto the basis for	Al Dest practice criteria evelopments", Reference: ry standards for SuDS setting consents for Date:	1510773876 Dec 21 2021 08:49			
Runoff estimati	on app	roach	IH124							
Site characteris	stics					Notes				
Total site area (ha): 0.05	65				(1) Is $Q_{BAB} < 2.0 \text{ I/s/ha}$?				
Methodology										
Q _{BAR} estimation method: Calc			late from	m SPR and SAAR		When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are				
SPR estimation method: Calc			late from	SOIL type		at 2.0 l/s/ha.				
Soil characteristics Default Edited										
SOIL type:		0		4		(2) Are flow rates < 5.0 l/s?				
HOST class:		N/A		N/A		Where flow rates are less than 5.0 1/2 concept for discharge				
SPR/SPRHOST:		0.00		0.47		usually set at 5.0 l/s if blockage from vegetation and other				
Hydrological cl	naracte	ristics	Defa	ult	Edited	materials is possible. Lower con	sent flow rates may be set			
SAAR (mm):			0	6	61	drainage elements.	social by using appropriate			
Hydrological regio	on:		1	1						
Growth curve fac	tor 1 yea	ar:	-	C).85	(3) IS SPR/SPRIOSI $\leq 0.3?$				
Growth curve factor 30 years:		ears:	-		2.3	Where groundwater levels are low enough the use of				
Growth curve factor 100 years:		years:	- 3.19		3.19	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
Growth curve factor 200 years:			- 3.74		27/					

Greenfield runoff rates	Default	Edited	
Q _{BAR} (I/s):	0	0.26	
1 in 1 year (l/s):		0.22	~
1 in 30 years (l/s):		0.59	
1 in 100 year (l/s):		0.81	
1 in 200 years (l/s):		0.95	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

GROUND CONDITIONS

The investigation has generally encountered the expected ground conditions in that, beneath a moderate to significant thickness of made ground, extending to depths of between 0.32 m and 2.90 m (115.49 m OD and 110.20 m OD), the Bagshot Formation overlies the Claygate Member, proved to the maximum depth investigated of 17.45 m. The Bagshot Formation generally comprises fine to coarse sand with varying quantities of flint gravel and nodules of sandstone. This stratum has been interpreted to extend to depths of between 3.25 m and 5.60 m (111.25 m OD and 108.40 m OD). The Claygate Member generally comprises light brown silty fine sand, extending to depths of 11.55 m (102.10 m OD) and 12.20 m (101.80 m OD), although an upper horizon of clay was noted locally. At depth, the Claygate Member becomes stiff locally firm dark grey silty clay and was proved to the maximum depth investigated of 17.45 m (96.55 m OD). Groundwater was encountered during drilling at depths of 4.00 m, 5.10 m and 15.50 m and subsequent monitoring of the installed standpipes has measured water at depths of 3.89 m and 4.80 m (110.56 m OD and 109.15 m OD).

Carmel Lennon

From:	Alex Lever <alexlever@curoconstruction.com></alexlever@curoconstruction.com>
Sent:	13 May 2020 18:06
То:	Carmel Lennon; Gordon Armstrong-Payne
Cc:	Kieran Barnes; Lee Anderson; Joseph Stapleton
Subject:	FW: Infiltration test results

Hi Carmel/Gordon

Please see a table below of the results taken form the infiltration test carried out last week. This test was carried out using the shingle backfill and perforated pipe as per the guidance issued by yourself. As I explained we had quite the challenge on filling the area again as it drained extremely quickly which you will note from the results. Hopefully this data is sufficient to complete the necessary calculations and finalise the storm water design.

Excavation depth = 1800mm Excavation width = 500mm Excavation length = 1700mm Required fill level = 1800mm

Vp75-25 = 0.765m3 Ap50 = 4.81m2

Channing Junior School Infiltration Test										
Time at level (mm:ss)										
Water level (mm)	Water level (mm) Test 1 Test 2 Test 3 Test 4									
Test start time	11.20am	12.45pm	13.53pm	2.44pm						
1600	0.24	0.15	0.16	0.16						
1400	0.59	0.50	0.55	0.56						
1200	1.31	1.26	1.30	1.37						
1000	2.36	2.30	2.43	2.42						
800	6.00	5.35	6.15	6.19						
600	12.59	11.40	12.51	13.30						
400	24.08	25.10	27.00	28.00						

Should you have any queries or require any further information please do not hesitate to contact me.

Regards,

×

Alex Lever Project Manager

Mobile: 07730683768 Channing Junior School, Highgate Hill, London, N6 5HF www.curoconstruction.com

Nape and a feed of the feed of				
	The second secon	2	×	

BRE 365 Soakaway Calculations

			Volume
Length		1.7	
Width		0.5	
	100%	1.8	
Donth	75%	1.35	1.1475
Deptil	50%	0.9	0.765
	25%	0.45	0.3825
ap50	4.81		
Vp75-25	0.77		

Soil infiltration rate,
$$f = \frac{V_{p75-25}}{a_{p50} \times t_{p75-25}}$$

Info from site:										
Excavation depth = 1800mm										
Excavation width = 500m	m									
Excavation length = 1700	mm									
Required fill level = 1800	mm									
Vp75-25 = 0.765m3										
Ap50 = 4.81m2										
Channing	Junic	or School I	nfiltration	Test						
Mator loval (mm)		•	Time at le	vel (mm:ss	5)					
water iever (iiiii)		Test 1	Test 2	Test 3	Test 4					
Test start time		11.20am	12.45pm	13.53pm	2.44pm					
	1600	24	15	16	16					
	1400	59	50	55	56					
	1200	91	86	90	97					
	1000	156	150	163	162					
	800	360	335	375	379					
	600	779	700	771	810					
	400	1448	1510	1620	1680					