soitechnics environmental - geotechnical - building fabric

Basement Impact Assessment Report

Proposed basement development 8A Hampstead Hill Gardens, London November 2021

Proposed basement development

8A Hampstead Hill Gardens, London

Document Title: Basement Impact Assessment Report

Document no.: STT5321-R01 Rev D

Date: November 2021

Soiltechnics Cedar Barn, White Lodge Walgrave, Northampton NN6 9PY 01604 781 877 <u>mail@soiltechnics.net</u> <u>www.soiltechnics.net</u>

Document history and status

Revision	Date	Description	Author	Checker	Reviewer
А	June 2021	First Issue	AW	ID	ID
В	Nov 2021	Revised following updated basement plans	AW	ID	ID
С	Nov 2021	Updated following minor Client comment	AW	ID	ID
D	Nov 2021	Updated following further minor Client comments	AW	ID	ID

© Copyright 2021 Soiltechnics Limited. This report has been prepared for the sole benefit of our client, but this report, and its contents, remains the property of Soiltechnics Limited until payment in full of our invoices in connection with production of this report

Limitations: Soiltechnics disclaims any responsibility to our Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence in accordance with the terms of our contract, taking account of the manpower, resources, investigations and testing devoted to it by agreement with our Client. This report is confidential to our Client and Soiltechnics accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

soiltechnics environmental • geotechnical • building fabric

iv

Table of Contents

Non Technical Summary

1	Introduction	1
	1.1 Objectives	1
	1.2 Client instructions and confidentiality	1
	1.3 Author qualifications	1
	1.4 Sources of information	1
	1.5 Revision B	1
2	Study	2
	2.1 Description of the existing site	2
	2.2 Project proposals	2
2	Dool: Study	2
5	Desk Study	3
	3.1 Site History	3
	3.2 Geology	4
	3.4 Hydrology drainage and flood risk	4
	3.5 Quarrying and mining	+
	3.6 Unexploded Ordnance (UXO)	5
	3.7 Below ground services and infrastructure	6
4	Screening	7
	4.1 Introduction	7
	4.2 Subterranean (groundwater) flow	7
	4.3 Slope stability	7
	4.4 Surface flow and flooding	8
	4.5 Non-technical summary of screening process	9
5	Scoping	10
	5.1 Introduction	10
	5.2 Potential damage to neighbouring properties	10
	5.3 Potential impact on railway tunnel	10
6	Ground Investigations	11
	6.1 Scope	11
	6.2 Ground conditions encountered	11
	6.3 Ground model	11
	6.4 Existing foundations	11
7	Engineering	12
'	7.1 Outling gootochnical decign parameters	12
	7.1 Outline geotechnical design parameters	nosals 12
	7.3 Ground movement and damage impact asses	sment 13
	7.4 Construction works controls	15 15
~		15
8	Basement Impact Assessment	16
	8.1 Ground stability	16
	8.2 Hydrogeology and groundwater flooding	16
	8.3 Hydrology, surface water flooding and sewer	flooding 16

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

soiltechnics environmental • geotechnical • building fabric

Drawings

Appendix A	Author's CV
Appendix B	Letter of Approval from Chartered Geologist
Appendix C	Project Proposals
Appendix D	Statutory Undertakers Responses
Appendix E	Ground Movement Analyses

List of Tables

Table 4-A:	Responses to subterranean (groundwater) flow screening questions	7
Table 4-B:	Responses to slope stability screening questions	8
Table 4-C:	Responses to surface flow and flooding screening questions	9
Table 6-A:	Adopted ground model	11
Table 7-A:	Geotechnical parameters – London Clay	12
Table 7-B:	Geotechnical parameters – Head	12
Table 7-C:	Geotechnical parameters – Made Ground	12

List of Figures

Figure 3-A:	Extract of 1879 mapping	3
Figure 3-B:	1896 and 1934 map extracts	3
Figure 7-A:	Extract from XDisp modelling with Burland categories shown	14

soiltechnics environmental • geotechnical • building fabric

Non Technical Summary

The site is located at 8A Hampstead Hill Gardens, London, NW3 2PL.

The site is generally flat although the garages to the rear are sunken with a sloped access road from Hampstead Hill Gardens. The site is part of a wider hillside setting with ground levels falling from west to east.

The site comprises the existing residential property (No. 8a) which is part of a four storey building, and a garage unit to the rear of the existing property with associated hardstanding. Hampstead Hill Tunnel, which carries the North London Line, is situated circa 20m from the site. The crown of the tunnel is approximately 14m below ground level in this locale.

The site was occupied by a field prior to the development of Hampstead Hill Gardens at some point between 1871 and 1895, by which point several of the current properties recorded. A structure is recorded onsite in 1896 but the structure is hatched to suggest a glazed roof structure (possible conservatory to adjacent property). By 1934 the structure onsite is recorded as a more permanent structure consistent with the adjacent property. There are no other significant changes until circa 1970 when the garage structure to the rear is recorded. There are some changes to the main building of No. 8 Hampstead Hill gardens at this time and it is conjectured the entire site was redeveloped. No further significant changes are recorded to modern day.

The proposed development comprises demolition of the existing garage unit followed by the construction of a two storey building including single storey basement. The footprint of the existing garage will be marginally increased.

A ground investigation was undertaken in April 2021. Ground conditions comprise Made Ground sequentially overlying Head and London Clay. Groundwater was encountered during the site investigation within the Head deposits. Post fieldwork monitoring recorded groundwater at a depth of circa 2.50m below ground level.

Ground movement analyses have been undertaken to assess the impact on the adjoining properties from the proposed works. Those analyses conclude that with appropriate controls, the potential damage to adjoining properties can be limited to Burland Category 1, in accordance with planning guidance

1 Introduction

1.1 Objectives

- 1.1.1 This report presents a Basement Impact Assessment (BIA) for a proposed basement at 8A, Hampstead Hill Gardens, London, NW3 2PL. This report considers the effect of the proposed basement on the local hydrology, geology, hydrogeology and potential impacts to neighbours and the wider environment. A site location plan is presented as Drawing 01.
- 1.1.2 The principal objective of the assessment is to present evidence to support a planning application for the project as required by policy A5 Basements in the Camden Local Plan (2017), Policy BA1 in the Hampstead Neighbourhood Plan (2018) and Camden Planning Guidance Basements (March 2018).

1.2 Client instructions and confidentiality

1.2.1 This report has been produced following instructions received from Price and Myers on behalf of our mutual client, Mr Daniel Jaffe.

1.3 Author qualifications

- 1.3.1 The report has been prepared by a Chartered Civil Engineer with 10 years relevant experience in geotechnical engineering. A copy of the CV is presented in Appendix A.
- 1.3.2 This report has also been reviewed by a Chartered Geologist to satisfy Camden planning guidance with respect to groundwater flow; a letter of approval is presented as Appendix B.

1.4 Sources of information

- 1.4.1 Specific documents are referenced at appropriate places within this report. Reference has also been made to the following documents:
 - Camden Planning Guidance Basements (London Borough of Camden, 2018)
 - Camden geological, hydrogeological and hydrological study Guidance for subterranean development (Arup, 2010)
 - Camden Local Plan (London Borough of Camden, 2017)
- 1.4.2 A construction method statement has been prepared by a Structural Engineer which is presented separately.

1.5 Revision B

1.5.1 This report has been updated following initial issue due to the proposed basement layout changing. The changes are considered to be minor. Whilst the changes are considered minor, a holistic review of all elements (including ground movement analysis) has been undertaken to ensure the validity of the original conclusions.

2 Study

2.1 Description of the existing site

- 2.1.1 The existing features at the site are presented as Drawing 02.
- 2.1.2 The site comprises the existing residential property (No. 8a) which is part of a four storey building. The site also includes a large garage unit to the rear of the existing property and associated hardstanding. The existing property and garage unit are currently unoccupied.
- 2.1.3 The site is located on the side of a hill with the ground sloping down towards the east at a gradient of approximately 1V:15H. The level of the site is approximately 72m above Ordnance Datum (AOD).
- 2.1.4 The locale is dominated by residential properties of masonry construction, many of which have a basement or lower ground floor.
- 2.1.5 There is a gap in the houses along both sides of Hampstead Hill Gardens circa 20m to the south of the site. This gap coincides with the alignment of a railway line, owned and operated by London Overground, which passes through a tunnel.

2.2 Project proposals

- 2.2.1 The proposed development comprises demolition of the existing garage unit followed by the construction of a two storey building including single storey basement.
- 2.2.2 The project proposals are shown on the drawings presented as Appendix C.

3 Desk Study

3.1 Site History

- 3.1.1 A review of Ordnance survey and London town maps dating back to 1850 has been undertaken.
- 3.1.2 The site is recorded as undeveloped until ~1896 although significant development is recorded in the wider area on mapping from 1879 including the railway entering the assumed tunnel to the east. A map extract from 1879 is shown below.

- 3.1.3 The railway tunnel, which connects Hampstead Heath Station in the East to Finchley Road and Frognal Station in the west, is understood to have been opened in 1860 (https://www.theundergroundmap.com/article.html?id=3364)
- 3.1.4 By 1896 Hampstead Hill Gardens is recorded with several of the current properties recorded. The remaining properties along Hampstead Hill Gardens were largely constructed prior to 1915.
- 3.1.5 In 1896 a structure is recorded onsite which is largely consistent with the current layout, although the structure is hatched to suggest a glazed roof structure (possible conservatory to adjacent property). By 1934 the structure onsite is recorded as a more permanent structure consistent with the adjacent property. The extracts below show this transition. Two houses below are also recorded at this time.

Figure 3-B: 1896 and 1934 map extracts

3.1.6 There are no other significant changes until construction of the garage. There are OS maps indicating the presence of the garage in 1954, however other maps do not record it until 1970. There are some changes to the main building of 8 Hampstead Hill gardens at this time and it is understood that the entire site was re-developed. No further significant changes are recorded to modern day.

3.2 Geology

- 3.2.1 Reference has been made to the 1:50 000 scale geological map published by the British Geological Survey (BGS) Sheet 256 North London (2006). Reference has also been made to historical exploratory hole logs available from the BGS GeoIndex.
- 3.2.2 The site is indicated to be underlain by London Clay, which is anticipated to extend for tens of metres beneath the site.
- 3.2.3 No superficial deposits have been mapped at or in close proximity to the site. However, head propensity is mapped at the site indicating a possible chance of encountering head deposits.

3.3 Hydrogeology

- 3.3.1 The site is underlain by London Clay which is designated as an unproductive stratum.
- 3.3.2 The site is not located within a Source Protection Zone.

3.4 Hydrology, drainage and flood risk

- 3.4.1 The site is not located within close proximity (250m) of any surface water features.
- 3.4.2 Reference has been made to Figure 11 from the Camden Geological, Hydrogeological and Hydrological Study (Arup, 2010). The site is not located within close proximity to any historical watercourses. An extract of Figure 11 is presented below with the approximate position of the site represented by the red box.

- 3.4.3 The site lies outside of the catchment of the Hampstead Heath Ponds.
- 3.4.4 The site is hard surfaced to facilitate access to the garage. It is understood that there is an existing drainage pipe situated between the garage and the existing building which discharges to the main sewer on the street.
- 3.4.5 Reference has been made to GOV.UK website to assess the risk of flooding due to a variety of sources. The site is indicated to be at low to medium risk of flooding from surface water, sometimes referred to as flash flooding.

- 3.4.6 Reference has been made to Figure 15 of the Camden Geological, Hydrogeological and Hydrological Study (Arup, 2010). That Figure shows the property to be remote from areas of historical flooding.
- 3.4.7 Reference has been made to the London Borough of Camden, Strategic Flood Risk Assessment (URS, 2014). Figure 6 of that document indicates that the site is not situated within a Critical Drainage Area. A Critical Drainage Area (CDA) is defined as "a discrete geographic area (usually a hydrological catchment) where multiple and interlinked sources of flood risk (surface water, groundwater, sewer, main river and/or tidal) cause flooding in one or more Local Flood Risk Zones during severe weather thereby affecting people, property or local infrastructure"

3.5 Quarrying and mining

- 3.5.1 The site is not within an area affected by mining.
- 3.5.2 Inspection of historical Ordnance Survey maps dating back to 1850 does not reveal any quarrying activities within 250m of the property.

3.6 Unexploded Ordnance (UXO)

3.6.1 Reference has been made to The London County Council Bomb Damage Maps, 1939 – 1945 (Ward, 2015). Those maps show that the site and immediate vicinity did not suffer bomb damage during World War 2.

soiltechnics environmental - geotechnical - building fabric

3.6.2 Additionally, a preliminary risk review was commissioned by Soiltechnics and undertaken by MACC International Ltd who are a UXO specialist. They concluded that the risk of encountering UXO within the site boundary was low.

3.7 Below ground services and infrastructure

- 3.7.1 We have contacted the following Statutory Undertakers (SUs) to obtain copies of their records for the purposes of our ground investigation activities. Copies of statutory undertaker's responses are presented in Appendix D.
 - BT Openreach Ltd;
 - Cadent Gas Ltd;
 - Thames Water;
 - UK Power Networks; and
 - London Underground Ltd.
- 3.7.2 There is an existing railway tunnel situated circa 20m to the south of the site. The crown of the tunnel is estimated to be ~14m below ground level.
- 3.7.3 There is a sewer and a water main indicated to be located within the centre of the highway. BT cables are indicated to be present beneath the pavement closest to the site. A gas pipe is indicated to be present in the footpath furthest from the site.

soiltechnics environmental • geotechnical • building fabric

4 Screening

4.1 Introduction

4.1.1 A screening process has been undertaken to satisfy Stage 1 of Camden Planning Guidance – Basements; this section of the report provides direct responses to the questions posed in Figures 12 to 14.

4.2 Subterranean (groundwater) flow

Question	Response	Details
1a. Is the site located directly above an aquifer?	No	The site is underlain by London Clay.
1b. Will the proposed basement extend beneath the water table surface?	No	The London Clay Formation comprises reasonably homogenous relatively impermeable clays which are not able to transmit groundwater under normal hydraulic gradients
2. Is the site within 100m of a watercourse, well (used / disused) or potential spring line?	No	The site is remote (in excess of 100m) of any known watercourse. The geology of the area is not conducive to spring lines or wells for extraction of water.
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No	The site is outside the catchment area.
4. Will the proposed basement development result in a change in the proportion of hard surfaced / paved areas?	No	The basement will be almost entirely beneath the existing garage unit. Accordingly, there will be negligible change to the impermeable area.
5. As part of site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to the ground (e.g. via soakaways and/or SUDS)?	No	The site is hard surfaced and therefore no water currently discharges to the ground. This approach will continue.
6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond (not just the pond chains on Hampstead Heath) or spring line?	No	There are no ponds or spring lines within 100m of the site.

 Table 4-A:
 Responses to subterranean (groundwater) flow screening questions

4.3 Slope stability

Question	Response	Details
 Does the existing site include slopes, natural or man-made greater than 7 degrees (approximately 1 in 8)? 	No	The site is generally flat although the garage structure is slightly sunken with a slope down from Hampstead Hill Gardens.
		The slope is <7°
2. Will the proposed re-profiling of landscaping at the site change slopes at the property boundary to more than 7 degrees (approximately 1 in 8)?	No	N/A
3. Does the development neighbour land, including railway cuttings and the like, with a slope greater than 7 degrees (approximately 1 in 8)?	No	The site is located on the side of a hill with the ground sloping down from west to east at a gradient of approximately 1V:15H
4. Is the site within a wider hillside setting in which the general slope is greater than 7 degrees (approximately1 in 8)?	No	The wider site setting comprises a hill sloping down to the east at a gradient of circa 1V:15H.

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

soiltechnics

environmental • geotechnical • building fabric

Question	Response	Details
5. Is the London Clay the shallowest strata at the site?	Yes	A nominal, inconsequential, thickness of Made Ground associated with the existing garage unit is anticipated.
6. Will any trees be felled as part of the development and/or are any works proposed within any tree protection zones where trees are to be retained?	No	No trees to be removed.
7. Is there a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site?	Yes	London Clay is susceptible to shrink swell subsidence. However, the proposed basement foundations will be below the depth of susceptibility.
8. Is the site within 100m of a watercourse or a potential spring line?	No	The site is remote from any current watercourses. The geology of the area is not conducive to spring lines or wells for extraction of water.
9. Is the site within an area of previously worked ground?	No	There is no evidence to suggest quarrying has taken place at the site.
10. Is the site within an aquifer. If so, will the proposed basement extend beneath the water table such that dewatering may be required during construction?	No	The property is underlain by London Clay, which is relatively impermeable.
11. Is the site within 50m of the Hampstead Heath Ponds?	No	The site is circa 350m away from the Hampstead No. 1 Pond.
12. Is the site within 5m of a highway or pedestrian right of way?	No	The basement will be beneath the existing garage unit and therefore remote from the existing highway.
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	Yes	Excavation of a basement will naturally increase the differential depth of foundations.
14. Is the site over (or within the exclusion zone of) any tunnels, e.g. railway lines?	Yes	The site is situated circa 20m north of an existing railway tunnel. The crown is of the tunnel is understood to be at circa 14m below ground level.

Table 4-B:Responses to slope stability screening questions

4.4 Surface flow and flooding

Question	Response	Details
1. Is the site within the catchment of the ponds chains on Hampstead Heath?	No	The site is outside the catchment of the ponds.
2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route?	No	The existing site is hard surfaced and positively drained. Flows will not be materially changed by the development.
3. Will the proposed basement development result in a change in the proportion of hard surfaced / paved external areas?	No	The existing site is hard surfaced.
4. Will the proposed basement result in changes to the profile of the inflows (instantaneous and long-term) of surface water being received by adjacent properties or downstream watercourses?	No	There will be negligible change to the drainage pattern on site.
5. Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?	No	There will be negligible change to the drainage pattern on site.

environmental • geotechnical • building fabric

Question	Response	Details
6. Is the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature.	No	The site is indicated to be at low to medium flood risk from surface water flooding. However, there have been no floods recorded at the site historically. Furthermore, the strategic flood risk assessment does not record the site as being at risk from flooding.

 Table 4-C:
 Responses to surface flow and flooding screening questions

4.5 Non-technical summary of screening process

- 4.5.1 The screening process has identified the following issues to be carried forward to scoping for further assessment:
 - Potential damage to neighbouring properties
 - Potential impact on the railway tunnel that passes underground close to the site

5 Scoping

5.1 Introduction

5.1.1 A scoping assessment has been undertaken to satisfy Stage 2 of Camden Planning Guidance – Basements; this section of the report provides an assessment and discussion of each of the issues that have arisen from the screening process.

5.2 Potential damage to neighbouring properties

- 5.2.1 Construction of the proposed basement will cause ground movements that have the potential to cause damage to existing neighbouring structures.
- 5.2.2 It is considered that the scheme can be suitably designed and constructed to maintain stability therefore minimise damage. A detailed ground movement analysis is presented in Section 7.

5.3 Potential impact on railway tunnel

5.3.1 The proposed building has the potential to result in an increased stress on the existing Network Rail tunnel. The tunnel crown is situated circa 14m below ground level and circa 20m south of the site. Accordingly, it is considered that the impact to the tunnel from the scheme will be negligible. Nevertheless, it is understood that Network Rail will be consulted, and approval sought, as the project progresses.

soiltechnics environmental • geotechnical • building fabric

6 Ground Investigations

6.1 Scope

- 6.1.1 A ground investigation was undertaken in April 2021 and comprised:
 - 1 no. borehole drilled using cable percussive techniques to a depth of 10m to confirm underlying ground conditions
 - 3 no. trial pits to investigate existing foundation details of the garage unit

6.2 Ground conditions encountered

- 6.2.1 Ground conditions in the vicinity of the proposed basement comprised Made Ground sequentially overlying Head and London Clay Formation.
- 6.2.2 The Made Ground was encountered in TP03 to a depth of 0.45m and was described as a very soft brown and grey gravelly Clay. The trial pit was terminated at this depth and therefore the base of the Made Ground was not proven. Made Ground was also encountered to 0.25m in BH01.
- 6.2.3 Head was encountered in the borehole and is interpreted to extend to 3.00m BGL. It was described as firm bluish brown slightly gravelly Clay overlying firm to stiff blue grey Clay. The gravel comprised fine to medium subrounded to rounded flint. A possible claystone bound was encountered at 2.70m BGL and was recovered as coarse sandy gravel.
- 6.2.4 London Clay Formation was encountered from 3.00m BGL. The unit comprised firm brown mottled grey Clay becoming firm to stiff blue and grey Clay.
- 6.2.5 Groundwater was encountered at 2.70m BGL in BH01 and was sealed out with casing as the hole advanced. There was no observed rise in water level after the strike.
 Subsequent monitoring recorded groundwater at 2.57m BGL. It is interpreted that flow rates will be relatively minor given the predominantly clayey nature of the soil.

6.3 Ground model

6.3.1 The following table summarises the ground model proposed for the site:

Stratum	Depth to top (m BGL)	Depth to base (m BGL)
Made Ground	0	0.25
Head	0.25	3.00
London Clay	3.00	>>10

Table 6-A:Adopted ground model

6.3.2 Groundwater is assumed to be at 2.50 m below ground level.

6.4 Existing foundations

6.4.1 It is understood that No. 10 has a lower ground floor. However, the footprint extent is not known. Similarly, the foundations of No. 8 Hampstead Hill Gardens are not known. Given the age and size of these buildings it is assumed that foundations will be circa 1.00m BGL.

7 Engineering

7.1 Outline geotechnical design parameters

- 7.1.1 Relevant geotechnical parameters have been derived from laboratory testing, technical standards, industry publications and wider literature. The following table summarises those parameters:
- 7.1.2 Relevant geotechnical parameters for London Clay have been derived from laboratory testing, technical standards, industry publications and wider literature. The following table summarises those parameters:

Parameter / Property	Value	Derivation
Characteristic unit weight, γ (kN/m³)	20	BS8004
Characteristic constant volume angle of shearing resistance, ϕ (°)	21	Correlation with plasticity index
Characteristic undrained shear strength, c _u (kN/m ²)	70 + 6Z where z = depth below 3.00	In situ and laboratory testing
Undrained modulus, E _u (MN/m ²)	29.75 + 2.55Z where z = depth below 3.00	Correlation with $c_u (E_u = 425c_u)$

 Table 7-A:
 Geotechnical parameters – London Clay

7.1.3 Head was encountered at the site and will be retained by the basement walls. The following parameters will be adopted:

Parameter / Property	Value	Derivation
Characteristic unit weight, γ (kN/m³)	19	BS8004
Characteristic constant volume angle of shearing resistance, ϕ (°)	21	Correlation with plasticity index

 Table 7-B:
 Geotechnical parameters – Head

7.1.4 Made Ground associated with the general development of the site is anticipated to be encountered at shallow depth and would therefore be also retained by the basement walls. It was encountered as Clay material and is conjectured to be derived from the Head and London Clay. Therefore the following parameters will be adopted for design of the retaining wall:

Parameter / Property	Value	Derivation
Characteristic unit weight, γ (kN/m ³)	19	BS8004
Characteristic constant volume angle of shearing resistance, ϕ (°)	21	Assumed from to be derived from the Head / London Clay.

 Table 7-C:
 Geotechnical parameters – Made Ground

7.2 Outline temporary and permanent works proposals

7.2.1 The proposed development comprises demolition of the existing garage unit followed by the construction of a two storey building including single storey basement.

- 7.2.2 The proposed construction will adopt an underpinning technique to construct reinforced concrete L shaped retaining walls around the perimeter of the basement. A reinforced concrete slab will then be constructed between and tied to the toes of the L shaped retaining wall sections.
- 7.2.3 The L shaped retaining walls will be founded on London Clay. Ultimate limit state analyses (bearing capacity) have been undertaken in accordance with BS EN 1997-1 (Eurocode 7) to derive the following values:
 - Combination 1 390 kN/m²
 - Combination 2 280 kN/m²
- 7.2.4 Demolition of the existing garage building and excavation of the basement will cause an unloading of stress on the soil and consequently heave is likely to occur towards the centre of the basement and diminish towards the perimeter walls. Ignoring boundary effects and therefore adopting a worst case scenario it is estimated that total heave will be less than 40mm, which comprises immediate heave of circa 10mm and long-term heave of up to 30mm. Accordingly, the structural design of the slab will account for this heave.

7.3 Ground movement and damage impact assessment

- 7.3.1 Camden Planning Guidance Basements, require that basement construction does not cause structural damage to neighbouring buildings. The risk of structural damage should be assessed using the Burland Scale and the classification must be no higher than Category 1 very slight.
- 7.3.2 Ground movement analyses have been undertaken with the aid of computer software package XDisp Version 20.1 developed by OASYS. The software estimates the ground movements induced by basement excavation using the movement profile curves presented within CIRIA Report C760 or user specified movement profiles. The building damage is then assessed within the software against the damage criteria presented by Burland.
- 7.3.3 Construction of the basement will induce ground movements within the soil that have the potential to cause damage to neighbouring properties. Ground movement will occur due to the following activities:
 - Construction of the underpins
 - Excavation of the basement leading to inward yield
 - Long term settlement of the soil due to the loads acting on the underpins
- 7.3.4 There is very limited published information on ground movements due to construction of underpins. However, assuming good construction practice and workmanship it is estimated that ground movement will be limited to 5mm of vertical movement and 5mm of horizontal movement per lift. It is further assumed that this will affect a zone extending 45° from the base of the underpin layer.

environmental - geotechnical - building fabric

- 7.3.5 The underpins will be founded on the London Clay at a depth of circa 5.00m BGL. It is assumed that the existing foundations for Nos. 8 and 10 Hampstead Hill Gardens are at 1.00m BGL. On this basis the 'effective' depth of the excavation that has the potential to induce ground movement is 4.00m.
- 7.3.6 Benefits due to corner stiffening effects have been ignored in the analyses; accordingly, full plane strain conditions have been assumed at the corners as well.
- 7.3.7 Following discussion with Campbell Reith on previous projects, ground movement due to excavation of the basement has been estimated with the aid of computer software package PDisp Version 20.0 developed by OASYS. Pre-defined ground movement curves within XDisp have not been used as this would then result in double counting the effects of the excavation.
- 7.3.8 Settlement of the soil due to the loads on the underpins has also been estimated with the aid of PDisp. Settlement beneath the neighbouring properties (Nos. 8 and 10 Hampstead Hill Gardens) has been assessed. These calculated displacements have been imported into XDisp and combined with the estimated ground movements due to underpin construction to determine a worst-case assessment. The results of the assessment are presented below:

Figure 7-A: Extract from XDisp modelling with Burland categories shown

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

soiltechnics

environmental - geotechnical - building fabric

7.3.9 The analysis indicates that the damage will generally be limited to Burland Category 1 or better. However, there are three panels shown to be at Category 2, which indicates unacceptable levels of damage. However, these results are not considered to be an accurate representation. The software assumes that each panel acts independently as stand-alone panels. In reality the buildings comprise a series of interlocking panels that will offer some restraint to this rotational movement towards the excavation. The underpin excavations will be not more than 1m in length with the next bay not being excavated until the adjacent pin has gained full strength. Furthermore, the proposed basement will be propped during construction which will limit inward yield and therefore reduce movement beneath the masonry panels. Given these factors it is considered that the Damage Category can be limited to Category 1. Nevertheless the neighbouring properties will be monitored with appropriate trigger levels and control measures agreed prior to commencement of works.

7.4 **Construction works controls**

7.4.1 A detailed construction methodology, including appropriate control measures, has been developed by the structural engineer and is presented separately.

soiltechnics environmental • geotechnical • building fabric

8 Basement Impact Assessment

8.1 Ground stability

- 8.1.1 The basement will be founded on London Clay Formation.
- 8.1.2 Ground movement analyses have been undertaken in accordance with CIRIA Report C760 with the aid of computer software packages PDisp and XDisp. Damage to surrounding structures has been assessed using the Burland scale and concluded that, with appropriate controls, the damage will be within Burland Category 1.
- 8.1.3 The site is locally flat but is part of a wider hillside setting with ground levels falling from west to east. The existing garage unit currently acts as a retaining wall at the west of the site. The proposed building will also serve as a retaining structure.

8.2 Hydrogeology and groundwater flooding

- 8.2.1 The proposed development will have negligible impact to the wider hydrogeological environment.
- 8.2.2 Groundwater monitoring indicates that perched groundwater is present within the depth of the basement at about 2.7m below ground level. It is anticipated that groundwater flow rates will be relatively minimal given the clayey nature of materials encountered. Accordingly, groundwater flows encountered during construction, if any, will be collected via a sump and suitably discharged

8.3 Hydrology, surface water flooding and sewer flooding

- 8.3.1 The proposed development will have negligible impact to the wider hydrological environment.
- 8.3.2 The proposed development will not increase the likelihood of surface water or sewer flooding.

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Drawings

Town extract from Ordnance Survey map

Neighbourhood extract from Ordnance Survey map

Detail extract from Ordnance Survey map

Title Site location plan

Revision: A

Drawing number

Not to scale

01

Created: 27/05/21

🛃 ТР	Hand excavated trial pit
🕒 вн	Cable percussive borehole
	Site boundary
P	Photographic record

Notes

- 1. Base drawing provided by Client
- 2. Exploratory locations are approximate

A	First issue		KD	JB	KD	10.06.2021
REV	DESCRIPTION		PRODUCED	CHECKED	REVIEWED	DATE
	soi	ltech	n	i	С	S
		sintai • geoteci init	al•uu	iiuii	iy ic	
PR	OJECI					
84	Hampstead	l Hill Gardens				
тіт	LE					
т	LE isting site la	yout with explorat	ory loc	atio	ns	
тіт Ех	LE isting site la	yout with explorat	ory loc	atio	ns	

STT5321

SCALE AT A3 Not to scale DRAWING NO

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Curriculam Vitae Angus Wilson CEng MICE UK RoGEP – Professional

soiltechnics

environmental - geotechnical - building fabric

Qualifications	
	 Chartered Civil Engineer – Member of the Institution of Civil Engineers (2014) UK Registered Ground Engineering Professional (2014) National Grid G17 Civil Systems Approver – Geotechnics (2015)
Career History	
Soiltechnics (2018 – Present)	 Position of Associate Technical Director with the following primary responsibilities: Provide technical direction to engineers throughout the life cycle of a project. Oversee engineers in the design and execution of ground investigations including scheduling of laboratory testing and subsequent derivation of ground model with geotechnical parameters. Supervise engineers undertaking calculations for a range of geotechnical problems including earth retaining structures, ground movement analyses and foundation assessments. Design and prepare specifications for earthworks control. Providing the role of Designer's Geotechnical Advisor in accordance with CD 622 Managing Geotechnical Risk. Preparing tenders for a range of Clients. Write and review Basement Impact Assessments for submission as part of planning applications.
Jacobs (2009 – 2018)	 Position of graduate geotechnical engineer through to Principal Geotechnical Engineer held at Jacobs, Birmingham (UK). Attained competence and experience in the following areas: Deriving complex ground models combining topographical mapping, geological mapping and ground investigation data. Undertaking concept engineering through to detailed design for a number of geotechnical problems including slope stability, earthworks, foundation design, earth retaining structures and seepage related analyses. Designing and supervising ground investigations, scheduling laboratory testing and deriving geotechnical design parameters. Writing desk study reports, geotechnical interpretative and geotechnical design reports in accordance with Eurocode 7 and HD22/08 – Managing Geotechnical Risk. Contract management including tender submissions, producing fee estimates, programme of works, managing budgets and raising early warnings and compensation events. Acting as Client's representative to validate earthworks and other construction elements. Producing and maintaining geotechnical risk registers. Discharging the duties of a Designer in accordance with CDM (2015) Regulations.
Publications	
	Wilson, A. K. & Ashton, J., 2012. An engineering geological model of the Conwy Valley, east of Dolgarrog, In, Nichol, D. & Bassett, M.G. (Eds), Urban Geology in Wales: 4. National Museum of Wales Geological Series No. 27, Cardiff, 2015

soiltechnics

Curriculam Vitae Angus Wilson CEng MICE UK RoGEP – Professional

soiltechnics

environmental - geotechnical - building fabric

Project Experience (Key Roles)				
A47 Highway Improvements	This project comprised the dualling of the A47 highway immediately west of Norwich and the realignment of a roundabout south west of Wisbech. As the GI Contractor's project manager Angus was responsible for the delivery of the ground investigation. Drawing upon his experiences as a designer Angus was able to advise the Client and designer the best ways of obtaining the GI data required for the design balancing cost, safety and geotechnical risk.			
M42 / A45 Trenchless Crossings	Angus is the Designer's Geotechnical Advisor responsible for managing the geotechnical risks throughout the project and liaising with the Overseeing Organisation's Geotechnical Advisor and wider project team. He worked collaboratively with the Client and surveyor to develop a monitoring regime that minimised traffic disruption but ensure early warning in the event of adverse events. Through automation he provided an innovative way of ensuring seamless, real time data transfer between field and office			
HS2 Gas Pipeline Diversions	Angus was the geotechnical project manager and, leading a team of engineers across three offices, he was responsible for the delivery of geotechnical design elements for each of the 23 diversions. The project faced a variety of ground conditions, environmental constraints and engineering challenges including trenchless crossing beneath watercourses, railways and highways. Angus provided technical consistency across the project incorporating lessons learned from other diversions where possible. Angus led the project from Desk Study phase through to ground investigation, interpretation and preparation of geotechnical design reports in accordance with National Grid Specification CE/2. He advised the Client throughout the commission with respect to geotechnical issues and frequently offered cost effective ways of optimising the design to improve buildability and safety.			
Jackfield Stabilisation	Angus was the lead Geotechnical Engineer for the stabilisation of a 1 million m ³ shallow translational landslide within a UNESCO World Heritage Site. He was responsible for reviewing geotechnical data, determining the failure mechanism, optioneering at outline design and supervising a team of graduate engineers during detailed design. Furthermore, he provided site supervision and validation of the design throughout the construction stage and reviewing Contractor's remediation proposals to address defects. Angus led a collaborative work effort with the Contractor's temporary works designer to ensure sufficient knowledge transfer between geotechnical specialists and ensuring safe working methods were proposed within an active landslide environment.			
Netherton Tunnel Remediation	This scheme involved the remediation of a 3km masonry lined canal tunnel. He was the Project Engineer responsible for reviewing of 150 years' worth of data before forensically engineering the tunnel to determine the failure mechanism. He led a survey team to establish construction joints within the tunnel and undertook outline design of remediation measures.			
	Wilson, A. K. & Ashton, J., 2012. An engineering geological model of the Conwy Valley, east of Dolgarrog, In, Nichol, D. & Bassett, M.G. (Eds), Urban Geology in Wales: 4. National Museum of Wales Geological Series No. 27, Cardiff, 2015			

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Appendix B Letter of Approval from Chartered Geologist

Chord Environmental Ltd

Angus Wilson Soiltechnics Ltd Cedar Barn White Lodge Walgrave Northampton NN6 9PY

Your Ref: Our Ref: 8A Hampstead Hill Gardens 1127/LJE080621

For the attention of: Angus Wilson

8th June 2021

Proposed Basement at 8A Hampstead Hill Gardens, London, NW3 2PL: BIA Review

Dear Angus,

Further to your instruction to proceed on behalf your client (Price and Myers on behalf of Mr Daniel Jaffe) I have undertaken a review of the Basement Impact Assessment (BIA) prepared by Soiltechnics Ltd for the proposed basement development at 8A Hampstead Hill Gardens, London NW3 2PL.

I have reviewed the design of the proposed basement development, together with the information presented within the above documents, against the requirements of the Camden BIA guidance set out within Policy A5 (Basements) of the Camden Local Plan (2017), Camden Planning Guidance on basements (adopted March 2018) and the Camden geological, hydrogeological and hydrological study report 'Guidance for subterranean development ', produced by Arup (2011) on behalf of the London Borough of Camden.

Chord Environmental Ltd specialise in the provision of hydrogeological services with extensive experience in the UK supporting both private and public sector clients. I am a geologist and hydrogeologist and have a BSc. in geology from the University of Bristol, a MSc. in hydrogeology from the University of East Anglia and am also a Chartered Geologist and fellow of the Geological Society. I am Managing Director at Chord Environmental and was previously a Technical Director with Paulex Environmental Consulting and managed Hyder Consulting (UK) Ltd's (now Arcadis) groundwater team.

I have been a hydrogeologist for over 20 years. During that time, I have advised on over 150 basement developments. Much of my career has been spent assessing the impact of development on the quality and quantity of groundwater resources. I have worked for both promoters and regulators of schemes and have acted as an expert witness for the Highways Agency and on BIA schemes.

47 Clifford Street, Chudleigh, Newton Abbot, Devon. TQ13 0LE Tel: +44 (0) 7595 023149 E-mail: info@chordenvironmental.co.uk

Development proposal

The site comprises the existing residential property (No. 8A) which is part of a four-storey building. The site also includes a garage unit to the rear of the existing property and associated hardstanding and is located on the side of a hill at an elevation of 72 m above Ordnance Datum (OD) with the ground falling away to the east at a gradient of 1:15.

The surrounding area is dominated by residential properties of masonry construction, many of which have a basement or lower ground floor. There is a gap in the houses along both sides of Hampstead Hill Gardens c.20m to the south of the site which coincides with the alignment of a London Overground railway tunnel at a depth of c.14m.

The proposed project comprises the demolition of the existing garage unit followed by construction of a two-storey building including a single level basement. The footprint of the existing garage unit will remain essentially similar.

Environmental Site Setting

The BIA screening assessment has identified 8A Hampstead Hill Gardens to be underlain by the Eocene London Clay as shown on the British Geological Survey 1:50,000 scale map (Sheet 256 – North London) to a depth of c.80m. The London Clay is classified as Unproductive Strata by the Environment Agency, defined as strata with low permeability that have negligible significance for water supply or base flow to rivers. The very low permeability of the London Clay results in very low rates of rainfall infiltration and correspondingly, very high rates of rainfall runoff. The London Clay, together with the clays of the Eocene Lambeth Group, acts as an effectively impermeable confining layer over the Chalk which lies at a depth of over 100m beneath the site.

The closest surface water feature, based on the Ordnance Survey 1:25,000 scale map, is the southernmost Hampstead Pond which lies approximately 350m to the north east of the site. Figure 11 of the "Camden Geological, Hydrogeological and Hydrological Study", shows 8A Hampstead Hill Gardens to lie between the former headwaters of the rivers Fleet and Tyburn which ran over 300m to the north east and 450m south west of the proposed development respectively. The Tyburn and Fleet are now culverted and discharge to the Thames.

The proposed 8A Hampstead Hill Gardens development does not lie within an area of fluvial or tidal flood risk as designated by the Environment Agency and was not identified as being on one of the roads affected by the surface water flooding events of the area which occurred during 1975 and 2002 (Figure 15 of the Arup report 2010).

Screening assessments have been undertaken to satisfy Stage 1 of Camden Planning Guidance – Basements

Subterranean (Groundwater) Flow Screening Assessment

I have commented on the answer to each question below.

• Question 1a: Is the site located directly above an aquifer?

As the Site is mapped as being underlain by a significant thickness of London Clay, designated as Unproductive Strata by the Environment Agency, I agree it is not located above an aquifer and the hydrogeology of the area is well understood.

• Question 1b: Will the proposed basement extend beneath the water table surface?

No. The hydraulic properties of the very low permeability and cohesive London Clay do not allow it to support a water table and transmit groundwater in any significant quantities under normal hydraulic gradients.

• Question 2: Is the site within 100m of a watercourse, well (used/disused) or potential spring line?

No mapped surface water features are present within 100m of the site and the London Clay is not capable of providing groundwater baseflow to watercourses. The proposed basement would therefore not act to prevent groundwater flow to any watercourses, wells or spring lines.

• Question 3: Is the site within the catchment of the pond chains on Hampstead Heath?

The Site is located more than 300m south west, and down topographic gradient, of the Hampstead Heath ponds and therefore lies outside their hydrological catchment area (refer to Figure 14 of the Camden Geological, Hydrogeological and Hydrological Study).

• Question 4: Will the proposed development result in a change in the proportion of hard surfaced / paved area?

No. The basement would lie beneath the existing garage footprint and existing paved areas.

 Question 5: As part of the site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to ground (e.g. via soakaways and/or SUDS)?

No. There will be negligible change to the existing drainage arrangement.

 Question 6: Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond (not just the pond chains on Hampstead Heath) or spring line?

No - there are no mapped local groundwater dependent ponds or spring lines present within 100m of the Site. This is consistent with the geology and hydrogeology of the area.

Slope Stability Assessment

The BIA screening, scoping and risk assessments have followed the Camden Planning Guidance -Basements criteria and screening questions. The potential ground movement issues raised by the screening and scoping exercises have been appropriately addressed by Angus Wilson (C.Eng) of Soiltechnics Ltd within the BIA report and no areas of concern relating to the proposed development were identified.

Surface Flow and Flooding Assessment

The BIA screening, scoping and risk assessments have followed the Camden Planning Guidance -Basements criteria and screening questions. No potential surface flow or flooding issues were raised by the screening and scoping exercise and no areas of concern relating to the proposed development were identified.

Conclusions

The BIA report has appropriately characterised 8A Hampstead Hill Gardens with respect to its geological and groundwater site setting. As the site is underlain by low permeability London Clay, the geological and hydrogeological setting of 8A Hampstead Hill Gardens is not sensitive with respect to groundwater resources or flow. Isolated pockets of groundwater may be encountered during excavation and some form of groundwater control may be required (e.g., sump pumping) however significant inflows of groundwater are not anticipated.

The purpose of the Basement Impact subterranean or groundwater flow assessment is to identify the potential for the proposed basement development to cause groundwater impacts and subsequently identify areas which require further investigation. The proposed development would be constructed within a significant thickness of London Clay and no potential adverse groundwater impacts have been established by these assessments.

Yours sincerely,

John Foran .

John Evans BSc MSc CGeol. Director

Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Appendix C Project Proposals

Check all dimensions on site. Do not scale off drawings without prior consultation. Any discrepancies to be reported to architects before execution of relevant works. This drawing has been produced for Daniel Jaffe for the works at 8A Hampstead Hill Gardens and for that application alone and is not intended for use by any other person or for any other purpose. Drawings remain copyright of Hayhurst and Co. and may not be reproduced without written consent or licence.

Date t Ret	Vt		
cts ndon, E1 6QE		Project:	Refurbisment and Extension
uk		Address:	8A Hampstead Hill Gardens
ık		Date:	28.10.2021
d - Basement Floor Plan -		Scale:	1:100
-SK330 -		Original size	: A3

Check all dimensions on site. Do not scale off drawings without prior consultation. Any discrepancies to be reported to architects before execution of relevant works. This drawing has been produced for Daniel Jaffe for the works at 8A Hampstead Hill Gardens and for that application alone and is not intended for use by any other person or for any other purpose. Drawings remain copyright of Hayhurst and Co. and may not be reproduced without written consent or licence.

Date †	Rev↑		
cts ndon, E1 6QE		Project:	Refurbisment and Extension
uk		Address:	8A Hampstead Hill Gardens
ık		Date:	28.10.2021
d - Lower ground fl vels	oor	Scale:	1:100
-SK331 -		Original size	e: A3

Check all dimensions on site. Do not scale off drawings without prior consultation. Any discrepancies to be reported to architects before execution of relevant works. This drawing has been produced for Daniel Jaffe for the works at 8A Hampstead Hill Gardens and for that application alone and is not intended for use by any other person or for any other purpose. Drawings remain copyright of Hayhurst and Co. and may not be reproduced without written consent or licence.

	Date₁	Rev↑		
cts 1don, E1 6G	ε		Project:	Refurbisment and Extension
uk			Address:	8A Hampstead Hill Gardens
k			Date:	28.10.2021
d - Ground	Floor Plan		Scale:	1:100
-A102	-		Original size	e: A3
Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Appendix D Statutory Undertakers Responses

Asset location search

Soiltechnics Limited Cedar Barn White Lodge WALGRAVE NN6 9PY

Search address supplied

8a Hampstead Hill Gardens London NW3 2PL

Your reference

STT5321

Our reference

ALS/ALS Standard/2021_4392297

Search date

31 March 2021

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 8a, Hampstead Hill Gardens, London, NW3 2PL

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

ased on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u> NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
1501	68.17	64.89
961C	n/a	n/a
9501	75.45	n/a
0501	n/a	n/a
0603	69.49	65.26
0602	69.01	65.28
1602	68.74	65.26
9401	78.9	74.93
9402	n/a	n/a
941A	n/a	n/a
041C	n/a	n/a
041A	n/a	n/a
041B	n/a	n/a
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not		

shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Sewer Fittings

Undefined End

Inlet

不

Other Symbols

Symbols used on maps which do not fall under other general categories Public/Private Pumping Station A/ A Change of characteristic indicator (C.O.C.I.) 61 Invert Level <1 Summit Areas Lines denoting areas of underground surveys, etc. Agreement Operational Site Chamber -----11 Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes

1) All levels associated with the plans are to Ordnance Datum Newlyn

2) All measurements on the plans are metric.

- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded
- 5) 'na' or '0' on a manhole level indicates that data is unavailable
- 6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres Text next to a manhole indicates the manhole. reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

The width of the displayed area is 200 m and the centre of the map is located at OS coordinates 527017, 185539. The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STRE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND	
Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Valves

- ——o Customer Supply
- Fire Supply

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

This plan shows those pipes owned by Cadent Gas Ltd in their role as a

Licensed Gas Transporter (GT). Gas pipes owned by other GTs, or otherwise privately owned, may be present in this area. Information with regard to such pipes should be obtained from the relevant owners. The information shown on this plan is given without warranty, the accuracy thereof cannot be guaranteed. Service pipes, valves, syphons, stub connections, etc. are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Cadent Gas Ltd or their agents, servants or contractors for any error or

omission. Safe digging practices, in accordance with HS(G)47, must be used to verify and establish the actual position of mains, pipes, services and other apparatus on site before any mechanical plant is used. It is your responsibility to ensure that this information is provided to all persons (either direct labour or contractors) working for you on or near gas apparatus. The information included on this plan should not be referred to beyond a period of 28 days from the date of issue. Further information on all DR4s can be determined by calling the DR4 hotline on 01455 892426 (9am-5pm) A DR4 is where a potential error has been identified within the asset record and a process is currently underway to investigate and resolve the error as appropriate.

MAPS Viewer Version 5.8.0.1

Local Machine

This plan is reproduced from or based on the OS map by Cadent Gas Ltd, with the sanction of the controller of HM Stationery Office. Crown Copyright Reserved.

Network Records NetMAP Symbols Booklet - London

This symbol booklet is intended as a general guide only - some local variations of these symbols may be found.

Version 1.2

Released October 2010

Always check with your local Network Records office or the UK Power Networks server to ensure that you are using the most up to date copy of this booklet.Tel: 08000 565866

Index:-

Page no:

Contents:

Guidance notes 1 The area covered by this guide. 2 3 Scenerv. 4 Scenery (UK Power Networks use only-boxed red) 7 Primary distribution cables (EHV). 8 Secondary distribution cables (LV/HV). 9 Cable terminology. 10 Cable size abbreviations. 11 Cable ducts Other NetMAP symbols. 12 15 Services 17 Symbols used in cross sections. 19 Abbreviations used in cross sections. 20 Typical plan and cross section representations: All areas: NetMAP/vector. All areas: composite raster style 1. Ex-Western area and Holborn: main and wavs. The City of London: single line. Finsbury and Shoreditch: multi-single line style 1. Ex-North Eastern area: HV/LV. Ex-North Eastern area: multi-single line style 2. Ex-North Eastern area: composite raster style 2. Regional NetMAP anomalies - general overview. 23 24 Region 1: ex-Western area. 25 Region 2: ex-Northern area. 27 Region 3: ex-North eastern area. 29 Region 4: ex-South Eastern area. 30 Region 5: ex Southern area.

Guidance notes.

Important notice:

If you do not understand the NetMAP record that you are using, please contact UK Power Networks Network Records for guidance Tel: 08000 565866.

- The position of apparatus shown on NetMAP is believed to be correct, but the original landmarks may have altered since the apparatus was installed.
- It must be assumed that there is at least one service to each property, lamp column, street sign etc. A separate record may be available.
- When excavations are to be carried out near Extra High Voltage (EHV) cables, further details must be obtained before commencement of work.
- Third party cables are not usually shown.
- When two or more maps are supplied for the same area, the maps must be read in conjunction with each other and with this symbol booklet.
- All LV cables are assumed to be 4 core, and all HV cables assumed to be 3 core – unless otherwise stated.
- All Imperial cable sizes are assumed to be copper and all metric cable sizes are assumed to be aluminium – unless otherwise stated.

Plan Provision Team **Fore Hamlet Ipswich** Suffolk IP3 8AA Tel: 08000 565866

The area covered by this guide:

Please see the anomalies map at the end of this safety booklet for greater map area detail, and a breakdown of the more significant anomalies within the London area.

Scenery for UK Power Networks use only - boxed in red		
NetMAP system	Scanned image	Description
Inset Network – Contact xxxx IDNO for further information	Not applicable	Area of inset network - not the asset of UK Power Networks (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Proposed Cross Rail route (only visible to of UK Power Networks and their immediate contractors)
	Not applicable	High pressure pipelines in the general vicinity (only visible to of UK Power Networks and their immediate contractors)
Note: Pipelines are only viewable on NetMAP by UK Power Networks staff and their immediate contractors. Do not carry out any excavation without consent from the relevant agency - legally protected high pressure petroleum products pipeline route in the general vicinity - consult www.linewatch.co.uk for contacts and guidance. Pipeline contact numbers can also be found on the intranet – out of hours, contact our Control Centre.		
	Not applicable	Water - surface water (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Water - Source Protection Zone 1 (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Water - Source Protection Zone 2 (only visible to UK Power Networks and their immediate contractors)
\bigcirc	Not applicable	Water - Source Protection Zone 3 (only visible to UK Power Networks and their immediate contractors)
section continued on next page		

Scenery for UK Power Networks use only - boxed in red		
NetMAP system	Scanned image	Description
	Not applicable	Historical - Scheduled Monuments (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Historical - Parks and Gardens (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Historical - Areas of Archaeological Potential (AAP) (only visible to UK Power Networks and their Immediate contractors)
	Not applicable	Nature - Ramsar Wetlands of International Importance (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Nature - Special Area of Conservation (SAC) (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Nature - Special Protected Area (SPA) (only visible UK Power Networks and their immediate contractors)
	Not applicable	Nature - Site of Special and Scientific Interest (SSSI) (only visible to UK Power Networks and their immediate contractors)

Scenery for UK Power Networks use only - boxed in red		
NetMAP system	Scanned image	Description
	Not applicable	Nature - Local Nature Reserve (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Nature - National Nature Reserve (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Nature - Area of Outstanding Natural Beauty (AONB) (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Nature - National Park (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Fluid filled cables - very high sensitivity (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Fluid filled cables - high sensitivity (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Fluid filled cables - medium sensitivity (only visible to UK Power Networks and their immediate contractors)
	Not applicable	Fluid filled cables - low sensitivity (only visible to UK Power Networks and their immediate contractors)

Primary distribution cables		
NetMAP system Scanned image Description		
EHY GABLE Solid BHY GABLE Gaa BHY GABLE Oil Cable stop G G Shallow	—— EHV Coble Route 259 —— Not applicable —— s—— s—— s — s —	UK Power Networks route (11,000 , 22,000 to 132,000 volts) Oil/gas cable stop Part of UK Power Networks cable route where cover is less than normal
(INNOV		less than normal

Secondary distribution cables		
NetMAP system	Scanned image	Description
(20kV) (11kV) (6.6kV)	3 (AL) % 	HV cable (up to 20kV) 3 phase LV cable (230V or 400/230V) 1 or 2 phase LV cable (230V or 400/230V) Pilot or Telephone cable, often not shown in plan if running with other cables Fibre-optic cable Earth cable HV or LV cable in duct Duct route(s) not containing live cables

Cable terminology		
NetMAP system	Scanned image	Description
PL PLS PLST or PLSW PLSTS PLSWS PLSW PLS PLST or PLSW PLST PLST PLST PLST PLST PLSW AI Cu WV CS PVC EPR XLPE SOL ax cx	PL PLS PLA PLTS PLDT PLWS PLBW LC & H LC & A LC & BA DSTA STA SWA AI Cu WV CS PVC EPR XLPE SOLIDAL TRIPLEX TRIPLEX	Paper Lead Paper Lead Served Paper Lead Served Paper Lead Steel Tape Served Paper Lead Steel Wire Served Paper Lead Steel Wire Served Paper Lead Bright Wire Lead Covered & Hessian Lead Covered & Armoured Lead Covered & Armoured Double steel tape armoured Steel Tape Armoured Steel Wire Armoured Aluminium Copper Waveconal Consac Polyvinyl Chloride Ethylene Propylene Rubber Cross Linked Polyethylene Solid Aluminium Triplex (aluminium) Triplex (copper)

Cable size abbreviations		
NetMAP system	Scanned image	Description
1c c/c t/c 4c 3c CNE	% % Љor T/сс % ∛с (см)	Single core. Concentric cores Triple concentric cores Four cores Three cores and concentric neutral — not of the Waveconal type
2c s/c 3c DC P Pr	% (or Tw) % 禿 DC P Pr	Two cores (or twin) Split concentric cores Three cores Direct current Pilot Number of telephone pairs

Other NetMAP symbols		
NetMAP system	Scanned image	Description
<u>0.3 4c AL PLSWS</u> (Details also in cable attributes and/or section)	3 % (59)	Cable size (and year laid)
4		Cable capped end
.	SE PE	Cable pressure (or pot) end or signal end
	── ₽⁄ ^E ── ₽ ^E	Pressure/pot end & earth cable/electrode
 · {	+ + E	Earth rod (vertical) Earth rod (horizontal) Earth plate Earth plate or end
		Bottle or trouser joint or combined crutch & pressure end - (CPE)
MAIN SERV	ST_JT	Straight joints
<u> </u>		Tee joints
<u> </u>	<u> </u>	Crutch (or spur) joints (CJ) straight & crutch joints combined (S&CJ)
→		Double crutch (or spur) joint
UT (Disconnected universal tee)	_	Sleeve
section continued on next page		

Symbols used in cross sections			
NetMAP system	Scanned image	Description	
•	• •	Cable laid direct	
۲	۵ ۵	Cable laid in duct	
⊗	$\oslash \otimes$	Blocked duct (sometimes used for unidentified cables)	
0	\circ	Single earthenware duct	
◯ 2¥" S	0	Single steel pipe	
		Square cable duct	
00	88	Group of circular ducts	
83	88	Group of circular ducts (Sykes)	
		Group of square ducts (Doulton)	
C	ᄑᅋ ^て ᄆ᠊ᢦ	Cable trough	
\bigtriangledown	000	Bitumen casing (Crompton)	
L	(<u>••</u>)	Bitumen filled iron trough (Trunks)	
\otimes	63	Bitumen casing (Tri-case)	
sect	section continued on next page		

Symbols used in cross sections NetMAP system Scanned image Description Protective slab Tiles. \frown Concrete slabs Steel plate Plastic tile tape — т/т Timber Timber 👝 777

Abbreviations used in cross sections					
NetMAP system	Scanned image	Description			
EW F A P S C WI F PRD Left blank — means NR E.V T/T N/A N/A-destination now only shown in cable attribute	E.W.D(s) or EW. F.P or F or F.D ASB or A P S.P or S C.I or C or C.I.P W.I F or F.D PRD D.N.K or D:NR N.R or (N.R) E.V.P or E.V T/T 3/62 or NOV 79 ABCD etc Please note: Ducts are assumed fi - unless otherwise s	Earthenware ducts Fibre duct Asbestos Plastic or pitch fibre Steel Cast iron Wrought iron pipe Fibre duct Plastic Rigiduct Depth not known No record Everite pipe Tape Tile Date cable laid HV cable destination (See section sheet HV ref) to be 4"/100mm earthenware tated			

Regional NetMAP Anomalies - general overview:

The following pages explain the various major map style anomalies found within the London area. These styles are a legacy from the five individual London Electricity areas which were again formed from seventeen separately organised LEB districts. Areas with significant anomalies are shown in the following pages as cross-hatched areas. Areas with standard composite vector and raster layer information are shown as un-hatched areas.

<u>Cautionary note</u>: - any region or sub-region, either shaded or un-shaded, may contain some local anomalies not mentioned in the following pages – if in doubt, please contact the UK Power Networks Plan Provision team on telephone number 08701 963797.

All regions (1-5) will contain recently created composite vector (NetMAP/AutoCAD) data.

Recent work created using the NetMAP system and previously created using the AutoCAD system (as opposed to raster/scanned data) are recorded in the composite vector style shown on the UK Power Networks London area symbol sheet - see the first example on page 18 of this document. Recent data will be indicated by the existence of multi-coloured cables on the NetMAP system, but this may not be reflected on printed matter produced with a black and white printer. AutoCAD data looks similar to the coloured NetMAP data, but does not hold any cable 'attributes' when selected using the NetMAP system. These cables will be represented individually (multi-line representation). New NetMAP cross sections may be accessed electronically on the NetMAP system and are presented in printed format accompanied by a seven digit NetMAP identification number.

Region 1 ex-Western area

This region includes Westminster, Kensington, Chelsea, Hammersmith and Fulham. The region is covered by two map layer systems – **region 1(a)** mains and ways dual layer raster, and **region 1(b)** composite raster. The following explains this in greater detail.

Region 1(a) (hatched)

Mains and ways representation:

This system consists of two maps layers for the same area.

- i) The mains map shows all cable routes.
- ii) The ways map shows pipe and duct routes with cross sections.

There are some enlargement sheets, cross sections and jointing details. EHV routes are shown on either the mains or the ways map.

It is important that all these maps are read in conjunction with each other.

Caution: - It is also important to note that the kerb line detail on these maps is a dash/dot line, which on the majority of UK Power Networks Central (London) records would refer to an HV cable route. HV cables are shown as a solid line when laid direct and a dashed line when in a duct.

Region 2 ex-Northern area

This region includes Islington, Hackney, the City of London and parts of Brent, Camden and Ealing. The region is covered by four map layer systems - **Region 2(a)** - mains and ways dual layer raster (Holborn area), **Region 2(b)** - single line representation (City of London), **Region 2(c)** - multi-single line representation (Finsbury and Shoreditch) and **Region 2(d)** - composite multi-line maps (all other areas). This following explains this in greater detail.

Region 2(a) (hatched)

Covers part of WC1 and WC2 (Holborn).

Mains and ways representation:

This system consists of two maps layers for the same area.

- i) The mains map shows all cable routes.
- ii) The ways map shows pipe and duct routes with cross sections.

Where needed, extra sheets have been added for enlargements, cross sections and jointing details. EHV routes are shown on the mains map layer.

It is important that all these maps are read in conjunction with each other.

Caution: - It is also important to note that the kerb line detail on these maps is a dash/dot line, which on the majority of UK Power Networks Central (London) records would refer to an HV cable route. HV cables are shown as a solid line when laid direct and a dashed line when in a duct.

Region 2(b) (hatched

Covers parts of postal areas EC1, EC2 and all of postal areas EC3 and EC4.

Single line representation maps:

Whenever possible, all the information is on one map layer .One line can represent any number of cables or ducts. It is therefore very important to use cross sections. In some cross sections details may be written and not drawn. In complex and redrawn areas, some detail may be drawn using multi-line representation. There are some enlargement sheets.

Region 2(c) (hatched 1)

Covers parts of postal areas EC1, EC2, N1, E1, E2 and E8.

Multi-single line representation (style 1) maps:

Whenever possible, all the information is on one map layer. When cables lay immediately above/below each other, it is shown as a single line. For example if six cables lay three on three, only three lines would indicate the six cables. If the cables were laid flat, six separate lines would be shown. It is therefore important not to assume that the lines drawn indicate the number of cables, at any point. **Cross sections must be used.**

Region 2(d) (un-hatched)

Covers all other postal areas in this region

Composite single layer (style 1) maps:

Whenever possible, all the information is on one map layer. There are some enlargement sheets.

Region 3 ex-North Eastern area

This region includes Tower Hamlets, Newham, Redbridge, Waltham Forest, Loughton (Epping) and Barking and Dagenham. This region is covered by three mapping systems.

Region 3(a) (hatched

Separate HV and LV representation maps:

This system consists of two maps layers for the same area.

- i) The HV map layer showing HV cables and duct routes.
- ii) The LV map layer showing LV cables and duct routes.

Cross sections for both HV and LV cable routes are shown on a separate sheet. EHV cable routes are shown on the HV map layer.

It is important that all these maps are read in conjunction with each other.

Region 3(b) (hatched

Whenever possible, all the information is on one map layer. There are some enlargement sheets. There is a combination of map styles used in this area. Some areas may be conventional multi-line line representation with many areas of multisingle line representation. In the multi-line areas each (live) cable is shown individually in plan. In the multi-single line map areas, there is a single line for each voltage type, with a single HV line and a single LV line representing more than one cable run of each voltage (when applicable). Therefore a cable run containing three HV cable and four LV cables will be represented by one HV line and one LV line.

Region 3(c) (hatched

A combination of composite single layer (style 2) and multi-single line (style 2):

Whenever possible, all the information is on one map layer. There are some enlargement sheets. In this area (postal code areas E1, E2, E3, E14 and part of E9), the cross sections are listed under each road name. It is therefore extremely important that you have the correct cross sections for the road you are working in.

There is a combination of map styles used in this area. Most areas are composite single layer (style 2) with some areas of multi-single line representation, as described in region 3(b).

Region 4 ex-South Eastern area

This region includes Lewisham, Greenwich, Bromley, Bexley and Dartford. Nearly all maps are drawn in one style – single layer composite raster/vector.

Region 4 (un-hatched)

Composite single layer (style 1) with a small number of mains and ways representation maps :

Mainly composite maps - whenever possible, all the information is on one map layer. There are some enlargement and cross section sheets. Some maps do not show single phase services unless they are long and deviating. There are however some maps drawn using the mains and ways style. These are rare, but please be aware that they exist.

Region 5 ex-Southern area

This region includes Southwark, Lambeth, Wandsworth, Merton, Kingston upon Thames and Richmond upon Thames. All maps are drawn to one style - single layer composite raster/vector.

Region 5 (un-hatched)

Composite single layer (style 1) maps:

Composite maps - whenever possible, all the information is on one map layer. There are some enlargement and cross section sheets. A small number of maps may not show services.

Enquiry Confirmation LSBUD Ref: 21719459

Enquirer			
Name	Miss Alexa Band	Phone	01604 781877
Company	Soiltechnics	Mobile	Not Supplied
Address	Cedar Barn White Lodge		
	Walgrave Northamptonshire NN6 9PY		
Email	Alexa.Band@soiltechnics.net		
	·		

Enquiry Details						
Scheme/Reference	STT5321					
Enquiry type	Initial Enquiry Work		Work category		Development Projects	
Start date	31/03/2021	Work type		Comme	nercial/industrial	
End date	31/03/2021	Site size	Site size		1219 metres square	
Searched location	XY= 527016, 185537	Work type	buffer* 25 metr		tres	
Confirmed location	527006 185529					
Site Contact Name	Not Supplied		Site Ph	one No	Not Supplied	
Description of Works						

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to <u>www.beforeyoudig.nationalgrid.com</u>

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affecte	List of affected LSBUD members			
Asset Owner	Phone/Email	Emergency Only	Status	
UK Power Networks	08000565866	08000565866	Await response	

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
Box Broadband	BP Exploration Operating Company Limited	BPA
Carrington Gas Pipeline	CATS Pipeline c/o Wood Group PSN	Cemex
Centrica Storage Ltd	Chrysaor Production (UK) Limited	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)	E.ON UK CHP Limited
EirGrid	Electricity North West Limited	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESP Utilities Group
ESSAR	Esso Petroleum Company Limited	Exolum Pipeline System
Fulcrum Pipelines Limited	Gamma	Gas Networks Ireland (UK)
Gateshead Energy Company	Gigaclear Ltd	Gtt
Heathrow Airport LTD	Humbly Grove Energy	IGas Energy
INEOS FPS Pipelines	INEOS Manufacturing (Scotland and TSEP)	INOVYN ChlorVinyls Limited
INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd
Mainline Pipelines Limited	Manchester Jetline Limited	Manx Cable Company
Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited	Murphy Utility Assets
National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission	Northumbrian Water Group	NPower CHP Pipelines
NYnet Ltd	Oikos Storage Limited	Ørsted
Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos	Phillips 66
Portsmouth Water	Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA
RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals
Scottish and Southern Electricity Networks	Scottish Power Generation	Seabank Power Ltd
SES Water	SGN	Shell
Shell NOP	SSE Enterprise Telecoms	SSE Generation Ltd
SSE Utility Solutions Limited	Tata Communications (c/o JSM Construction Ltd)	Total (Colnbrook & Colwick Pipelines)
Total Finaline Pipelines	Transmission Capital	Uniper UK Ltd
University of Cambridge Granta Backbone	Vattenfall	Veolia ES SELCHP Limited

Network

Veolia ES Sheffield Ltd

West of Duddon Sands Transmission Ltd

Zayo Group UK Ltd c/o JSM Group Ltd

VPI Power Limited Western Power Distribution Wales and West Utilities Westminster City Council

Enquiry Confirmation LSBUD Ref: 21719459

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)				
Asset Owner	Preferred contact method	Phone	Status	
ВТ	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified	
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified	
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified	
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified	
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified	
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified	
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified	
Last Mile	nlantenguiries@lastmile_uk.com	plantenquiries@last	Not Notified	
	planteriquines@lastimle-uk.com	mile-uk.com		
Mobile Broadband Network Limited	mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified	
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified	
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified	
Teliasonera	check-network@teliacompany.com	0800526015	Not Notified	
Thames Water	http://www.digdat.co.uk	08450709145	Not Notified	
Utility assets Ltd	enquiries@utilityassets.co.uk		Not Notified	
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified	
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified	
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified	

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore, LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect

thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

of © London Power Networks plc or Eastern Power Networks plc or South Eastern Power Networks plc ach being a distribution licence. All rights in such data reserved. Plans generated by DigSAFE Pro* software provided by LinesearchbeforeUdig.

Maps by email Plant Information Reply

openreach

CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbvd

Accidents happen

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY TO BT SYMBOLS		Change Of State	+	Hatchings			
8.2.5	Planned	Live	Split Coupling	×	Built	~	
P	1		Duct Tee	•	Planned		
le	0	0	Building		Inferred	~	
			Kiask	ĸ	Duct	~	
anhole			Other proposed plant is shown using dashed lines. BT Symbols not listed above may be disregarded. Existing BT Plant may not be recorded.				
binet		Û					
_			only valid fi	or 90 days aft	e of preparation ter the date of p	n, Maos are publication	
	Pending Add	in Place	Pending Remove	Not In Use]		
wer Cable	##	NH	11.	##			

BT Ref: VHF05026V Map Reference: (centre) TQ2701685537 Easting/Northing: (centre) 527016,185537 Issued: 30/03/2021 17:02:54

WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk

Pe
Proposed basement development 8A Hampstead Hill Gardens, London Basement Impact Assessment Report

Appendix E Ground Movement Analyses

\bigcirc	SOILTECHNICS		Job No.	5	Sheet No. F	Rev.
Oasys	LIMITED		STT53	321		
8A Hampstead Hill Gardens			Drg. Ref.	ı		4
			Made by	Date	; Chec	ked
Titles Job No.: STT5321 Job Title: 8A Hampstead Hil Sub-title: RAW Calculation Heading: Initials: Initials: AKW Checked: Date Checked: Notes: File Name: Underpins.pdd File Path: \\\\st-dc01\\\sollte History - 8A Hampstead Hil Mistory - 8A Hampstead Hil 15-Jun-2021 13:41 AngusW 17-Jun-2021 14:53 AngusW 17-Jun-2021 14:53 AngusW 17-Jun-2021 16:07 AngusW 17-Jun-2021 17:12 AngusW 17-Jun-2021 17:12 AngusW 17-Jun-2021 17:12 AngusW 17-Jun-2021 17:12 AngusW 17-Jun-2021 11:01 AngusW 17-Jun-2021 11:01 AngusW 10-Nov-2021 10:02 AngusW 02-Nov-2021 10:02 AngusW 02-Nov-2021 17:25 AngusW 02-Nov-2021 17:25 <th>ll Gardens hchnics\ST PROJECTS\Schemes 2021 (T)\S iill Gardens\Geotechnical Notes New Open</th> <th>YTT5321</th> <th>AKW</th> <th></th> <th></th> <th></th>	ll Gardens hchnics\ST PROJECTS\Schemes 2021 (T)\S iill Gardens\Geotechnical Notes New Open	YTT5321	AKW			
Maximum allowable ratio between values of Horizontal rajid boundary level; 90.00 [Displacements at load centroids: Yes GGA piled raft data : No Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement cal Using legacy heave correction factor: Yes Consolidation Consolidation Consolidation : Yes Time Period : 60.000000 years. Time Step : 0.020000 years. Cv or k : Cv Rigid Boundary : Impermeable Water Level : 97.500000 [m]. Unit Weight : 9810.000000 [kN/m²]. Soil ProfileSSoil Profile 1 Layer Name Level at Number of linear ref. top intermediate curve displacement levels	E: 1.5 m OD] Sculations: Weighted average Youngs Youngs Poissons Cons. : Modulus Modulus ratio Method : : Top : Btm.	Cons. : Cons. : Cons. : Co m _v e ₀ C _c	ns. : Cons. : Cons C _r Over P: Cons. Coi Cal. Pr	s. : Cons. : Cons. re OCR OCM ns. ess.	: C _v Bulk C _a 1 unit weight	C _{ae} Non-
[mOD] 1 Head 99.000 2 London Clay 97.000	[kN/m²] [kN/m²] 2 20000. 20000. 0.20000 mv 5 29750. 47600. 0.20000 mv	[m²/kN] 300.00E-6 N/A N/A N/ 180.00E-6 N/A N/A N/	[kN/ A N/A N/A A N/A N/A	/m ²] [kN/m N/A N/A N/A N/A	*] [m²/year] [kN/m³] 10.000 19.000 N/A 10.000 20.000 N/A	100.00E-9 None 100.00E-9 None
Soil Zones Zone Name X min X max Y m [m] [m] [m]	nin Y max Profile a] [m]					
Polygonal Load Data Load Name Position Position : F ref. : Level 1 Foly Load 1 95.00000 (-4.35,1.22) (3.22,-9.38) 2 Foly Load 2 95.00000 (-4.35,1.22) (17.3,-0.38) 3 Foly Load 3 95.00000 (12.4,4.92) (12.4,4.92) (-4.35,1.22) (17.3,-0.38) 3 Foly Load 3 95.00000 (12.4,4.92) (10.8,2.75) (11.5 Foly Load 5 95.00000 (-4.35,1.22) (12.4,4.92) (-4.35,1.22) (13.4,15) (15. (14.6,1.52) (-4.35,1.22) (13.4,15) (15. 7 Foly Load 5 95.00000 (-4.35,1.22) (13.4,15) (15. 7 Foly Load 7 95.00000 (-4.32,1.22) (14.6,1.52) (-4.4,152) (-5.4)	Polygon : Coords. Position No. of : Polygon Rectangle : Rect. tolerance (a) (a) (a) (b) (c) (c) (c) </th <th><pre>by Value : Normal (local z) (bx/m³) 1 90.000 7 90.000 2 90.000 3 90.000 980.000 2 90.000</pre></th> <th></th> <th></th> <th></th> <th></th>	<pre>by Value : Normal (local z) (bx/m³) 1 90.000 7 90.000 2 90.000 3 90.000 980.000 2 90.000</pre>				

	1_				SO	ILTE	СН	NIC	S			Jo	ob No.		Sheet No.		Rev.
	JA	S	<i>ys</i>		LIN	/ITE	D						STT5	321			
8A H	ampst	ead H	ill Garo	dens								[Drg. Ref.				
												Ma	ade by KW	[Date	Chec	ked
No.	Centre : x	Centre : y	Angle of local x	Width x	Depth y	7											
			from global X														
Load 4 (Edge	: Poly L 2 optimal	oad 4															
1 2 Load 5	8.22004 11.60828 : Poly L	7.79788 3.84667 oad 5	122.33	9.349 0.9520	3 1.01° 9 2.55°	77											
(Edge 1	1 optimal -4.27637	1.29247	30.001	0.2000	0 0.0518	90											
2	-4.12912	1.43741 1.58234	30.001 30.001	0.2000	0 0.155	67 45											
4	-3.83461	1.72728	30.001 30.001	0.2000	0 0.3632	23 01											
6	-3.37141	1.91227	30.001	0.3872	8 1.01	33 72											
8	-2.90215	2.64860	30.001	0.3872	8 1.01	61 50											
10	-2.43289	3.38493	30.001	0.3872	8 1.01	39											
12	-1.96363	4.12126	30.001	0.3872	8 1.01	17											
13	-1.49436	4.48943	30.001	0.3872	8 1.00	94											
15	-1.02510	5.59392	30.001	0.3872	8 1.007	72											
17	-0.79047	5.96209 6.33026	30.001	0.3872	8 1.00 8 1.00	51 50											
19 20	-0.32121 -0.08658	6.69842 7.06659	30.001 30.001	0.3872	8 1.003 8 1.003	39 28											
21	0.14805	7.43475	30.001 30.001	0.3872	8 1.003 8 1.000	16 05											
23 Load 6	3.01700 : Excava	9.53700 tion	30.001	5.909	6 0.9999	98											
(Edge	6 optimal 4.34220) -7.45148	122.33	0.05623	9 3.88	36											
2	7.59461	-5.32644	122.33	0.05623	9 11.6	51											
4	14.96307	1.68897	122.33	0.06000	4 0.2392	22											
6	3.75033	2.00489	122.33	6.257	2 12.6	38											
8	2.94137	7.94002	122.33	1.546	1 7.70	59											
Load 7	: Poly L	8.29299 oad 7	122.33	0.07273	2 3.03.	29											
(Edge	3 optimal 14.90202	1.65643	123.95	0.06630	2 0.5858	81											
∠ Displac	ement Lin	es	123.95	1.924	/ 1.13	2.5											
	Name		X1	¥1	Z1	x2	¥2	Z2	Interval	s Calculate	Detailed						
			[m] [m]	[m]	[m]	[m]	[m]	[No.]		Results						
Displa Displa	cement Li	ne 1 13.	.70000 -4.	10000 99	.00000 1	5.20000 -2 7.00000 3	.80000 9	9.00000	10	3 Yes	Yes						
Displa	cement Li	ne 3 13.	.70000 -4.	10000 99	.00000 14	4.90000 -6	.10000 9	9.00000		3 Yes	Yes						
Displa	cement Li	ne 5 5.	.50000 15.	48000 99	.000000	B.11000 12	.53000 9	9.00000		5 Yes	Yes						
Displa	cement Li cement Li	ne 6 8. ne 7 7.	.11000 12.	65000 99	.00000 !	9.18000 9	.37000 9	9.00000		2 Yes 4 Yes	Yes						
Displa Displa	cement Li cement Li	ne 8 9. ne 9 10.	.18000 9.	37000 99 22000 99	.000000 10	5.60000 2	.90000 9	9.00000	1	2 Yes) Yes	Yes Yes						
Displac	ement Gri	ids	+	V 1	V1	7 1	¥2	¥2	7 0	Tatema	Putanaia	Patanaira	Calculate	Detailed			
	Name	Ext	rection:	XI	Υl	21	x2	12	22	Along Line	Distance	Extrusion Intervals Along	: carculate	Results			
				[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]					
Displa	cement Gr	id 1 Glo	obal X -	15.00000	-15.0000	00 99.0000	0 -	20.00000	99.00000) 35	45.00000	3	0 No	Yes			
1																	

Warnings

(1)Soil Profile 1 : Stratum 2 : The time step should preferbaly be in the range 0.0454 to 0.272 (see Pore Pressures section of the help file) to avoid large discretisation errors and numerical disturbances. Please adjust the timestep and/or no.of intermediate displacement levels for this layer.

SOILTECHNICS LIMITED

Job No.	
STT5224	

Sheet No.

Date

Rev.

Checked

ST15321

Drg. Ref.

Made by AKW

Res Its Total Displacement Data Lines

)asys

8A Hampstead Hill Gardens

Ref.	Name	TimeStep :	TimeStep :	x	У	z	Sett. :	Sett. :	Sett. :	Sett. :
		No	Value [m]	[m]	[m]	[mm]	Immediate [mm]	Primary [mm]	Secondary [mm]	Total
:	1 Displacement Line 1	2000	0.00000	13.70000	-4.10000	.00000	0.2 644	0.00000	0.00000	0.2 644
	1 Dignlagement Line 1	3000	60.00000	13.70000	-4.10000	.00000	0.2 644	0.55612	0.000 2	0. 533
	i bispiacement bine i	2000	40.00000	14.53333	-3.66667	.00000	0.310	0. 1 71	0.00062	1.23031
	1 Displacement Line 1	3000	0.00000	14.533333 15.36667	-3.66667	.00000	0.310	0. 1 71	0.00075	0.3352
		2000	40.00000 60.00000	15.36667	-3.23333	.00000	0.3352	1.363 7	0.00060	1.6 75
1	1 Displacement Line 1	0 2000	0.00000	16.20000	-2. 0000	.00000	0.35 70	0.00000	0.00000	0.35 70 2.1511
	2 Displacement Line 2	3000	60.00000	16.20000	-2. 0000	.00000	0.35 70	1.7 1	0.00072	2.15131
	e propracemente arne r	2000	40.00000	16.20000	-2. 0000	.00000	0.35 70	1.7 1	0.0005	2.1511
	2 Displacement Line 2	3000	0.00000	17.2 000	-2.15000	.00000	0.35 70	0.00000	0.000072	0.36404
		2000	40.00000 60.00000	17.2 000	-2.15000	.00000	0.36404	2.0 41 2.0 41	0.0005	2.46403 2.46416
	2 Displacement Line 2	2000	0.00000	1.36000	-1.50000	.00000	0.26615	0.00000	0.00000	0.26615
	2 Displacement Line 2	3000	60.00000	1 .36000	-1.50000	.00000	0.26615	1.535	0.00071	1. 02 4
	z bispiacement bine z	2000	40.00000	1 .44000	-0. 5000	.00000	0.15134	0.76405	0.0005	0. 15 7
	2 Displacement Line 2	3000	0.00000	20.52000	-0.20000	.00000	0.15134	0.00000	0.000071	0.0 471
		2000 3000	40.00000 60.00000	20.52000 20.52000	-0.20000	.00000	0.0 471 0.0 471	0.31 17 0.31 17	0.0005	0.40346
3	2 Displacement Line 2	0 2000	0.00000 40.00000	21.60000 21.60000	0.45000	.00000	0.05223	0.00000	0.00000	0.05223
	2 Dignlagement Line 2	3000	60.00000	21.60000	0.45000	.00000	0.05223	0.11561	0.00071	0.16 55
	z bispiacement bine z	2000	40.00000	22.6 000	1.10000	.00000	0.03620	0.030 1	0.0005	0.0676
3	2 Displacement Line 2	0000	0.00000	22.6 000	1.75000	.00000	0.03620	0.00000	0.00000	0.067 2
		2000	40.00000 60.00000	23.76000 23.76000	1.75000	.00000	0.02755	-0.00236	0.00054	0.02574
:	2 Displacement Line 2	2000	0.00000	24. 4000 24. 4000	2.40000	.00000	0.0222	0.00000	0.00000	0.0222
	2 Dicplacement Line 2	3000	60.00000	24. 4000	2.40000	.00000	0.0222	-0.013 6	0.00070	0.00 03
	z bispiacement bine z	2000	40.00000	25. 2000	3.05000	.00000	0.01 6	-0.0166	0.00057	0.00257
	2 Displacement Line 2	3000 0	60.00000	25. 2000 27.00000	3.05000 3.70000	.00000	0.01 6	-0.0166 0.00000	0.00070	0.00270
		2000 3000	40.00000 60.00000	27.00000 27.00000	3.70000 3.70000	.00000	0.01601	-0.015 7	0.00057	0.00061
1	3 Displacement Line 3	0	0.00000	13.70000	-4.10000	.00000	0.2 644	0.00000	0.00000	0.2 644
		3000	60.00000	13.70000	-4.10000	.00000	0.2 644	0.55612	0.000 2	0. 533
	3 Displacement Line 3	2000	40.00000	14.10000	-4.76667	.00000	0.1 10	0.04644	0.0015	0.110
:	3 Displacement Line 3	3000	60.00000 0.00000	14.10000 14.50000	-4.76667 -5.43333	.00000	0.1 10 0.123	0.04644	0.00173	0.22 25
		2000	40.00000	14.50000 14.50000	-5.43333 -5.43333	.00000	0.123	-0.13 06	0.00054	-0.01363
:	3 Displacement Line 3	2000	0.00000	14. 0000	-6.10000	.00000	0.0 141	0.00000	0.00000	0.0 141
	4 B/	3000	60.00000	14. 0000	-6.10000	.00000	0.0 141	-0.1 700	0.0006	-0.104 0
	4 Displacement Line 4	2000	40.00000	17.10000	-4. 5000	.00000	0.0 476	0.0 305	0.00060	0.0 476
	4 Displacement Line 4	3000	60.00000	17.10000 16.36667	-4. 5000	.00000	0.0 476	0.0 305	0.00073	0.1 53
		2000	40.00000	16.36667	-5.26667	.00000	0.0 440	0.00123	0.001 4	0.0 747
	4 Displacement Line 4	0	0.00000	15.63333	-5.6 333	.00000	0.0 2 2	0.00000	0.00000	0.0 2 2
		3000	60.00000	15.63333	-5.6 333	.00000	0.0 2 2	-0.0 6	0.0006	-0.00626
	4 Displacement Line 4	2000	40.00000	14. 0000	-6.10000	.00000	0.0 141	-0.1 700	0.00000	-0.10504
1	5 Displacement Line 5	3000	60.00000 0.00000	14. 0000 5.50000	-6.10000 15.4 000	.00000	0.0 141 0.076 0	-0.1 700 0.00000	0.0006	-0.104 0 0.076 0
		2000	40.00000	5.50000	15.4 000	.00000	0.076 0	0.13510	0.0005	0.2124
1	5 Displacement Line 5	2000	0.00000	6.02200	14. 000	.00000	0.1024	0.00000	0.00000	0.1024
		3000	60.00000	6.02200	14. 000	.00000	0.1024	0.2 23	0.00071	0.3 142
	5 Displacement Line 5	2000	40.00000	6.54400	14.30000	.00000	0.13 7	0.517 2	0.0005	0.13 /
1	5 Displacement Line 5	3000	60.00000 0.00000	6.54400 7.06600	14.30000 13.71000	.00000	0.13 7 0.1 421	0.517 2	0.00071	0.65760
		2000 3000	40.00000 60.00000	7.06600	13.71000 13.71000	.00000	0.1 421 0.1 421	0.045	0.0005	0. 74
1	5 Displacement Line 5	2000	0.00000	7.5 00	13.12000	.00000	0.225 6	0.00000	0.00000	0.225 6
	E Dienleement Tine E	3000	60.00000	7.5 00	13.12000	.00000	0.225 6	1.050 3	0.00072	1.27741
	5 Displacement hine 5	2000	40.00000	.11000	12.53000	.00000	0.24570	1.114 1	0.0005	1.3611
	6 Displacement Line 6	3000	0.00000	.11000	12.53000	.00000	0.24570	0.00000	0.00072	0.24570
		2000 3000	40.00000 60.00000	.11000	12.53000 12.53000	.00000	0.24570	1.114 1 1.114 1	0.0005	1.3611 1.36132
	6 Displacement Line 6	2000	0.00000	7.63000	12.0 000 12.0 000	.00000	0.4115	0.00000	0.00000	0.4115
	6 Displacement Ling 6	3000	60.00000	7.63000	12.0 000	.00000	0.4115	2.24371	0.00072	2.65601
	pcoment bine 0	2000	40.00000	7.15000	11.65000	.00000	0.044	4.5 4 6	0.0005	5.3 02
	7 Displacement Line 7	0000	0.00000	7.15000	11.65000	.00000	0.044	0.00000	0.00000	0. 04 4
		2000	40.00000	7.15000	11.65000	.00000	0.044	4.546	0.0005	5.3 02
	7 Displacement Line 7	2000	0.00000 40.00000	7.65750	11.0 000	.00000	0.6 217	0.00000	0.00000	0.6 217 4.46663
	7 Displacement Line 7	3000	60.00000 0.00000	7.65750	11.0 000 10.51000	.00000	0.6 217	3.773 6	0.00073	4.46676
	•••••••	2000	40.00000	.16500	10.51000	.00000	0.55 10	2.71411	0.00060	3.272 0
	7 Displacement Line 7	0	0.00000	. 67250	. 4000	.00000	0.44 2	0.00000	0.00000	0.44 2
		3000	60.00000	. 67250	. 4000	.00000	0.44 2	1. 0004	0.00074	2.24 30
	/ Displacement Line 7	0 2000	0.00000	.1 000	.37000	.00000	0.36 6	0.00000	0.00000	0.36 6
	Displacement Line	3000 0	60.00000 0.00000	.1 000	.37000	.00000	0.36 6	1.1073	0.00075	1.477 0.36 6
		2000	40.00000	.1 000	. 37000	.00000	0.36 6	1.1073	0.00062	1.477 6
	Displacement Line	0	0.00000	. 66000	.7 500	.00000	0.24440	0.00000	0.00000	0.24440
	Disease in the	3000	60.00000	. 66000	.7 500	.00000	0.24440	0.4 2 4	0.00075	0.737
	Displacement Line	0 2000	40.00000	10.14000 10.14000	10.22000	.00000	0.173 4 0.173 4	0.00000	0.00000	0.173 4
	Displacement Line	3000	60.00000 0.00000	10.14000 10.14000	10.22000 10.22000	.00000	0.173 4 0.173 4	0.1 4 1 0.00000	0.00077	0.35 41 0.173 4
		2000	40.00000	10.14000	10.22000	.00000	0.173 4	0.1 4 1	0.00064	0.35 2
	Displacement Line	0	0.00000	10.7 600	.4 00	.00000	0.15611	0.00000	0.00000	0.15611
		3000	60.00000	10.7 600	.4 00	.00000	0.15611	-0.0337	0.00061	0.122 4
	uspiacement Line	0 2000	40.00000	11.43200	.75600	.00000	0.15146	-0.121 4	0.00000	0.15146
	Displacement Line	3000 0	60.00000 0.00000	11.43200 12.07 00	.75600	.00000	0.15146 0.166 0	-0.121 4 0.00000	0.00066	0.0302
		2000	40.00000	12.07 00 12.07 00	.02400	.00000	0.166 0	-0.02552	0.00046	0.141 5
	Displacement Line	2000	0.00000	12.72400	7.2 200	.00000	0.220 2	0.00000	0.00000	0.220 2

SOILTECHNICS LIMITED

Job No.	Sheet No.	Rev.
STT5321		
Drg. Ref.		

Checked

Date

8A Hampstead Hill Gardens

Jasys

									N A	lade by KW
Ref.	Name	TimeStep : No	TimeStep : Value	x	У	z	Sett. : Immediate	Sett. : Primary	Sett. : Secondary	Sett. : Total
			[m]	[m]	[m]	[mm]	[mm]	[mm]	[mm]	
		3000	60.00000	12.72400	7.2 200	.00000	0.220 2	0.3 363	0.00074	0.6151
	Displacement Line	0	0.00000	13.37000	6.56000	.00000	0.35057	0.00000	0.00000	0.35057
		2000	40.00000	13.37000	6.56000	.00000	0.35057	1.40063	0.0005	1.751 0
		3000	60.00000	13.37000	6.56000	.00000	0.35057	1.40063	0.00072	1.751 3
	Displacement Line	0	0.00000	14.01600	5. 2 00	.00000	0.56601	0.00000	0.00000	0.56601
		2000	40.00000	14.01600	5. 2 00	.00000	0.56601	2. 175	0.0005	3.4 41
		3000	60.00000	14.01600	5. 2 00	.00000	0.56601	2. 175	0.00072	3.4 432
	Displacement Line	0	0.00000	14.66200	5.0 600	.00000	0.661	0.00000	0.00000	0.661
		2000	40.00000	14.66200	5.0 600	.00000	0.661	3.63 73	0.0005	4.30131
		3000	60.00000	14.66200	5.0 600	.00000	0.661	3.63 73	0.00073	4.30144
	Displacement Line	0	0.00000	15.30 00	4.36400	.00000	0.65144	0.00000	0.00000	0.65144
		2000	40.00000	15.30 00	4.36400	.00000	0.65144	3.64 3	0.0005	4.301 7
		3000	60.00000	15.30 00	4.36400	.00000	0.65144	3.64 3	0.00072	4.30200
	Displacement Line	0	0.00000	15. 5400	3.63200	.00000	0.6334	0.00000	0.00000	0.6334
		2000	40.00000	15. 5400	3.63200	.00000	0.6334	3.64257	0.0005	4.27665
		3000	60.00000	15. 5400	3.63200	.00000	0.6334	3.64257	0.00072	4.2767
	Displacement Line	0	0.00000	16.60000	2. 0000	.00000	0.57750	0.00000	0.00000	0.57750
		2000	40.00000	16.60000	2. 0000	.00000	0.57750	3.43467	0.0005	4.01275
		3000	60.00000	16.60000	2. 0000	.00000	0.57750	3.43467	0.00072	4.012

<form></form>	Rev.	F	eet No.	Sh		Job No.				CS	INI	ECI	30ILT			- ~ 4	\frown
				321	T53	ST						ED			<i>ys</i>	lS	U
					ef.	Drg. Re								ens	ill Garde	tead H	A Hamps
	ite	Date	Checked	Date		Made by								smen	nt asses	oveme	frond m
				02-1100-2021													
																	Titles
													ardens	ad Hill G	STT5321 8A Hampstea		Tob No.: Tob Title:
													ssment	ement ass	Ground move AKW	eading:	ub-title: alculation H nitials:
														1	02-Nov-2023		ate Saved: ate Checked: lotes:
									r5321	l (T)∖ST	nes 202: 1	CTS\Scher technica!	.cs\ST PROJE Gardens\Geo	xdd Soiltechn tead Hill	GMA Rev 2.3 \\st-dc01\s - 8A Hampst		'ile Name: 'ile Path:
Note of the second																	listory
													Notes New		By AngusW AngusW	Time 16:21 16:56	ate 7-Jun-2021 7-Jun-2021
															AngusW AngusW AngusW	11:00 14:45 11:53	8-Jun-2021 8-Jun-2021 1-Oct-2021
<pre>proprior the property of the property o</pre>															Angusw		2 NOV 2021
Distribution						Calculate	Interpolate imported	Surface type	Intervals	z2	у2	x2	zl	уl	x1	INES Name	Displacement l
<pre>i private privat</pre>						5	displacement	for tunnels	[No.]	[m]	[m]	m]	[m] [:	[m]	[m]		
<pre> A provide the set of t</pre>						Yes Yes Yes	Yes Yes Yes	Surface Surface Surface	1 3 1	9.00000 99.00000 99.00000	.80000 9	20000 -2 00000 3 90000 -6	9.00000 16. 9.00000 27. 9.00000 14.	-4.10000 -2.80000 -4.10000	1 13.70000 - 2 16.20000 - 3 13.70000 -	ment Line : ment Line : ment Line	Displace Displace Displace
<pre>i i i i i i i i i i i i i i i i i i i</pre>						Yes Yes Yes	Yes Yes Yes	Surface Surface Surface	1	<pre>9.00000 99.00000 99.00000 99.00000</pre>	.10000 9	90000 -6. 11000 12. 15000 11	9.00000 14. 9.00000 8. 9.00000 7.	-4.85000 15.48000 12.53000	4 17.10000 - 5 5.50000 1 6 8.11000 1	ment Line ment Line ment Line	Displace Displace Displace
Appendix Norm Description Descrip						Yes Yes	Yes Yes	Surface Surface	1	9.00000 9.00000 9.00000	.22000	14000 10. 60000 2.	9.00000 10. 9.00000 16.	9.37000	9 10.14000 3	ment Line ment Line	Displace Displace
No.e Structure instructure instr																irids	Displacement (
Interpreter				ce Calculate	Surface type for	Extrusion: Intervals	Extrusion: Distance s	Base line: Interval	Base line end:	Base line end: Y	Base line end:	Base line start:	.e Base line : start: Y	: Base li start:	Extrusion Direction	Name	lef.
A subplement with a built i chowe for the prove of a built i contract of a built i co				IS	tunnels	[No.]	[m]	[No.]	Z(level) [m]	[m]	[m]	Z(level) [m]	[m]	[m]	1 Clabal V	ant Cuid	Displace
<pre>my data provide the state of the state</pre>											-						
Ref. Ref. R. Y I T Y I 1 Underpine - Consolidation 1 13,7000 -1,0000 9,0000 0.00000 0.0000 0.0000					:	splacements	acements: Di	ts: Displ	isplacemen	nates: D:	Coordi	dinates:	.nates: Coor	lt: Coord	Resu:	Set:	et:
1 1				6	3 1.2.6	z [mm] 0.85338	y [mm]	000	x [mm]	I .00000	z [m] 99	y [m] -4.10000	ι] 3.70000	1 1	Ref.	Name	underpin
a 1				6	4 3 1 1,2,6	1.23044 1.69988 2.15131	0.00000	000	0.00	.00000	99 99 99	-3.66667 -3.23333 -2.80000	.53333	2 1 3 1 4 1			
a) 21.0000 0.0000 0.00000 0.00000 0.00000 10 22.0000 1.0000 9.00000 0.00000 0.00000 0.00000 11 22.0000 1.0000 9.00000 0.00000 0.00000 0.00000 11 22.0000 1.0000 9.00000 0.00000 0.00000 0.00000 12 22.0000 1.0000 9.00000 0.00000 0.00000 0.00000 13 22.0000 1.0000 9.00000 0.00000 0.00000 0.00000 14 12.0000 -1.0000 9.00000 0.00000 0.00000 0.00000 0.00000 13 11.0000 -1.0000 9.00000 0.00000 0.00000 0.00000 0.00000 14 11.0000 -1.0000 9.00000 0.00000 0.00000 0.00000 0.00000 0.00000 13 15.0000 1.00000 9.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000					6 4 0	2.46416 1.80284 0.91610 0.40359	0.00000 0.00000 0.00000	000	0.00	.00000	99. 99. 99.	-2.15000 -1.50000 -0.85000 -0.20000	.28000 .36000 .44000	5 1 6 1 7 1 8 2			
12 2.4.8.000 2.40000 9.00000 0.00000 0.00000 0.00000 13 14.10000 -4.7667 99.00000 0.00000 0.00000 0.00000 14 13 14.10000 -4.7667 99.00000 0.00000 0.00000 0.00000 17 14.9000 -6.10000 99.00000 0.00000 -0.00000 1.2.6 17 14.9000 -6.10000 99.00000 0.00000 -0.00000 1.2.6 19 15.6333 -5.6633 99.00000 0.00000 -0.00000 0.00000 20 15.6333 -5.6633 99.00000 0.00000 0.00000 0.00000 21 5.46600 14.3000 99.00000 0.00000 0.00000 0.00000 22 6.54400 14.3000 99.00000 0.00000 0.00000 0.00000 22 7.5800 13.1000 99.00000 0.00000 0.00000 0.00000 23 6.54400 14.3000 99.00000 0.00000 0.00000 0.25570 24 7.5800 11.65000					5 2 7	0.16855 0.06782 0.02583	0.00000	000	0.00	.00000	99. 99. 99	0.45000 1.10000 1.75000	.68000	9 2 10 2 11 2			
15 14,1000 -4,74607 99,00000 0,00000 -2,2250 17 14,2000 -4,8000 99,00000 0,00000 -0,11803 2,26 18 17,10000 -4,8000 99,00000 0,00000 0,00000 -0,11803 2,26 20 15,6333 -5,6433 99,00000 0,00000 0,00000 0,00000 0,00000 21 5,5000 15,4400 99,00000 0,00000 0,00000 0,00000 0,00000 23 6,54400 13,1200 99,00000 0,00000 0,00000 0,65760 24 7,06600 13,7100 99,00000 0,00000 0,00000 1,46532 2,6 25 7,58400 13,7100 99,00000 0,00000 0,00000 1,46532 2,6 26 7,15800 13,1200 99,00000 0,00000 1,46532 2,6 27 7,5800 13,1200 99,00000 0,00000 1,46532 2,6 26 7,15800 11,45000 99,00000 0,00000 1,57392 2,6 38				6	3 1 4 1,2,6	0.00903 0.00270 0.00074	0.00000 0.00000 0.00000	000	0.00 0.00 0.00	.00000 .00000 .00000	99 99 99	2.40000 3.05000 3.70000	.84000 .92000 .00000	12 2 13 2 14 2			
19 15.36637 -5.2667 99.0000 0.0000 0.0000 -0.0026 21 15.3000 15.4800 99.0000 0.0000 0.00026 0.21262 2.6 22 6.02200 14.48000 99.0000 0.0000 0.0000 0.21262 2.6 23 7.06400 13.37100 99.0000 0.0000 0.0000 0.93988 23 7.06400 13.37100 99.0000 0.0000 0.0000 0.99988 24 7.06400 13.37100 99.0000 0.0000 0.0000 1.36132 2.6 25 7.5800 13.2000 99.0000 0.0000 0.0000 1.36132 2.6 26 8.11000 12.5000 99.0000 0.0000 0.0000 2.24970 30 8.16500 99.0000 0.0000 0.0000 2.24970 31 8.77550 9.94000 0.0000 0.0000 0.7379 32 9.66000 9.79500 90.0000 0.00000 0.7379 33 9.66000 9.79500 9.00000 0.00000				6)) 1,2,6 3 2,6	-0.01350 -0.10490 0.18853	0.00000	000	0.00	.00000	99.	-4.76667 -5.43333 -6.10000 -4.85000	.50000	15 1 16 1 17 1 18 1			
22 6.02200 14.89000 99.00000 0.00000 0.00000 0.63760 24 7.06600 13.71000 99.00000 0.00000 0.00000 0.63760 24 7.06600 13.71000 99.00000 0.00000 0.00000 0.63760 24 7.06600 13.71000 99.00000 0.00000 0.00000 0.63760 28 7.15000 11.65000 99.00000 0.00000 0.00000 1.65761 28 7.15000 11.65000 99.00000 0.00000 0.00000 1.6676 29 7.65750 11.65000 99.00000 0.00000 0.00000 1.27293 31 8.67250 9.40000 99.00000 0.00000 0.00000 0.30000 33 10.4000 19.20000 0.00000 0.00000 0.30000 0.30000 34 10.4000 19.20000 0.00000 0.30000 0.30000 0.30000 35 10.78400 99.20000 0.00000 0.30000 0.30000 0.30000 35 10.78500 99.00000 0.0000					1 5 2 2,6	0.09761	0.00000 0.00000 0.00000	000	0.00	.00000 .00000 .00000	99 99 99	-5.26667 -5.68333 15.48000	.36667 .63333 .50000	19 1 20 1 21			
25 1.5800 12.1200 99.0000 0.0000 1.27741 26 8.1000 12.5300 99.0000 0.0000 1.6000 2.6561 23 7.6500 12.9800 99.0000 0.0000 2.6561 2.6 23 7.65750 11.0800 99.0000 0.0000 0.0000 2.6561 30 8.16500 10.5100 99.0000 0.0000 0.0000 2.64676 31 8.67250 9.4400 99.0000 0.00000 0.0000 1.47792 32 9.18000 9.7900 99.00000 0.00000 0.10000 1.47792 33 9.66000 9.79000 99.00000 0.00000 0.35941 2.6 34 10.14000 10.2200 99.00000 0.00000 0.12294 35 10.78600 8.2400 99.00000 0.00000 0.15193 35 10.7800 8.2400 99.00000 0.00000 0.15193 34 14.62200 5.2680 99.00000 0.00000 1.41281 40 14.02200 8.90000					2) 3	0.39142 0.65760 0.98988	0.00000	000	0.00	.00000	99. 99 99	14.89000 14.30000 13.71000	.02200	22 23 24			
29 7.65750 11.08000 99.0000 0.00000 4.4667 30 8.16500 10.51000 99.0000 0.00000 2.27293 31 8.67250 9.94000 99.0000 0.00000 2.24370 32 9.18000 9.93000 0.00000 0.00000 0.73799 33 9.66000 9.93000 0.00000 0.00000 0.73799 34 10.14000 10.22000 99.0000 0.00000 0.00000 0.12294 36 11.43200 8.25800 99.0000 0.00000 0.00000 0.12294 36 11.46200 5.28200 99.0000 0.00000 0.00000 0.44578 39 13.7000 6.5000 99.0000 0.00000 0.00001 0.44578 40 14.01600 5.82800 99.00000 0.00000 1.4578 40 14.05200 5.99500 99.00000 0.00000 4.3014 42 15.94800 99.00000 0.00000 4.30200 4.30200 41 14.65200 2.990000 0.00000 4.					2 2,6	1.36132 2.65601 5.39042	0.00000	000	0.00	.00000	99.	12.53000 12.09000 11.65000	.11000 1.63000 7.15000	25 26 27 28			
32 9.18000 9.79000 99.0000 0.00000 1.47799 2,6 33 9.66000 9.79500 99.0000 0.00000 0.35911 2,6 34 10.14000 10.22000 99.0000 0.00000 0.35911 2,6 35 10.78600 99.0000 0.00000 0.00000 0.3229 36 11.43200 8.75600 99.0000 0.00000 0.40000 38 12.12400 7.22200 99.0000 0.00000 0.40000 39 13.37000 6.56000 99.0000 0.00000 0.40000 39 13.37000 6.56000 99.0000 0.00000 0.40000 40 14.166200 5.2800 99.0000 0.00000 4.00100 41 14.66200 5.9000 99.00000 0.00000 4.00100 42 15.30800 4.36400 99.0000 0.00000 4.00200 43 15.4000 3.63200 99.00000 0.00000 4.00200 2 Data point coincident with displacement calculation point for a specific building. Its displacement has bee					5 3)	4.46676 3.27293 2.24970	0.00000 0.00000 0.00000	000	0.00	.00000 .00000 .00000	99 99 99	11.08000 10.51000 9.94000	.65750 .16500 .67250	29 30 31			
36 11.45200 2.75500 39.0000 0.00000 0.00000 37 12.07500 8.02400 99.00000 0.00000 0.00000 38 12.72400 7.29200 99.00000 0.00000 0.00000 39 13.7000 6.56000 99.00000 0.00000 0.00000 40 14.01600 5.82800 99.00000 0.00000 3.48432 41 14.66200 5.99500 99.00000 0.00000 4.30144 42 15.38800 4.36400 99.00000 0.00000 4.30200 43 15.95400 3.63200 99.00000 0.00000 4.00200 41 16.60000 2.90000 99.00000 0.00000 4.00200 43 15.95400 3.6320 99.00000 0.00000 4.00200 2 Data point coincident with horizontal movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. 6 Data point coincident with vertical movement calculation point for a specific building. Tts displacement has been added before performing building damage calculations. Ref. 1					9 2,6 9 1 2,6	1.47799 0.73799 0.35941	0.00000	000	0.00	.00000	99. 99. 99	9.37000 9.79500 10.22000	.18000 .66000).14000	32 33 34 1			
39 13,37000 6,55000 99,00000 0.00000 1.7513 2,6 40 14,01600 5,82800 99,00000 0.00000 4.8432 41 14,65200 5,09600 99,00000 0.00000 4.30200 42 15,38800 4.36400 99,00000 0.00000 4.30200 43 15,95400 3.63200 99,00000 0.00000 4.27678 44 16,60000 2.90000 99,00000 0.00000 4.00200 2 Data point coincident with horizontal movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. 2 Data point coincident with vertical movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. 6 Data point coincident with vertical movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. Poly onal ca ations Poly onal ca mergins 3urface level [m]: 99.000 Contribution: Positive					9 3 9	0.12294 0.03029 0.14198 0.61519	0.00000	000	0.00	.00000	99. 99. 99.	9.48800 8.75600 8.02400 7.29200	.43200 .07800 .72400	35 1 36 1 37 1 38 1			
42 15.30800 4.36400 99.0000 0.00000 4.30200 43 15.95400 3.63200 99.0000 0.00000 4.27678 1 - Data point coincident with displacement location. Its displacement has been added to those calculated by Xdip. 1 2 2 - Data point coincident with horizontal movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. 6 - Data point coincident with vertical movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. Poly onal ca ations Ref. 1 macryins 99.000 Surface level [m]: 99.000 Positive 95.000					3 2,6 2 4	1.75193 3.48432 4.30144	0.00000	000	0.00	.00000	99. 99 99	6.56000 5.82800 5.09600	.37000 .01600 .66200	39 1 40 1 41 1			
1 - Data point coincident with displacement lass been added to those Calculated by Aisp. 2 - Data point coincident with horizontal movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. 6 - Data point coincident with vertical movement calculation point for a specific building. Its displacement has been added before performing building damage calculations. Poly onal ca ations Ref. 1 Excavation Name: nderpins Surface level [m]: 99.000 Contribution: Positive				6) 3 3 1,2,6	4.30200 4.27678 4.01288	0.00000 0.00000 0.00000	000	0.00 0.00 0.00	.00000	99 99 99	4.36400 3.63200 2.90000	.30800 .95400 .60000	42 1 43 1 44 1	an ainte dias		Data anda
Poly onal ca ations Ref. 1 Excavation Name: nderpins Surface level [m]: 99.000 Contribution: Positive		lations. tions.	ing damage calculat g damage calculatio	before performing build fore performing buildin	added be: ded befo:	t has been a has been add	displacement	ling. Its g. Its d	ific build ic buildin	: a speci i specif:	oint for	lation poir	ement calcula	zontal mo ical move	nt with disp. nt with hori: nt with vert:	t coincide t coincide	- Data poin - Data poin - Data poin
Excavation Name: nderpins Surface level [m]: 99.000 Contribution: Positive														1		ations	Poly onal ca
													i	nderpin 99.000 Positive		ne: [m]:	acavation Na urface level
Corner x y Base Arc Stiffened Prev. Prev. Next Next Next Level Enabled Side: Side: Side: Side: Side: Side: d pl p2 d pl p2									Next Side: p2	Next 1 : Side: 5 pl	7. Next e: Side d	rev. Prev ide: Side p1 p2	ned Prev. P Side: S d	c Stiff led	Base Arc Level Enabl	У	orner x
[m] [m] [m] [m] [k] [k] [k] [k] 1 -4.3500 1.2200 95.000 Yes No									[%]	[%] -	j [m] -	[%] [%]	[m] -	s No	[m] 95.000 Yes	[m]	[m] 1 -4.350
2 U.29UUU 8.42UU 95,0UU Yes No									-	-	-		-	s No s No s No	95.000 Yes 95.000 Yes 95.000 Yes 95.000 Yes	<pre>3 8.4200 0 12.020 0 4.1200 0 5.4200</pre>	2 0.2500 3 6.150 4 11.15 5 13.25
6 16.050 2.3200 95.000 Yes No									-	-	-		-	s No s No	95.000 Yes 95.000 Yes	2.3200	6 16.05 7 15.65

SOILTECHNICS LIMITED

Job No.	Sheet No.	Rev.
STT5321		

Checked

Date

Conset is a series of the se	STT5321 g. Ref. le by Date V 02-N
BA Hampstead Hill Gardens Drg Gro nd movement assessment Mad Corner x y Base Arc Stiffened Prev. Prev. Prev. Next Next Next Level Enabled Side: Side: Side: Side: Side: Side: Side: did: Side: S	g. Ref. de by Date V 02-N
Side x1 y1 x2 y2 .M. Curve: Prev. Prev. Mad Side:	le by Date N 02-N
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
9 2.3500 -9.8800 95.000 Yes No Side x1 y1 x2 y2 .M. Curve: Vertical .M. Curve: Horizontal Index y1 x2 y2 .M. Curve: Vertical .M. Curve: Horizontal 1 -4.3500 1.2200 0.25000 8.4200 0.10derpin excavation Underpin excavation 2 0.25000 8.4200 6.1500 12.020 Underpin excavation Underpin excavation 3 6.1500 12.020 11.150 4.1200 Underpin excavation Underpin excavation 4 11.00 4.1200 12.020 Underpin excavation Underpin excavation 5 13.250 5.4300 15.650 2.3200 Underpin excavation Underpin excavation 6 16.050 2.3200 15.650 2.1200 Underpin excavation Underpin excavation 7 15.650 2.1200 17.250 -0.38000 Underpin excavation Underpin excavation 8 17.250 -0.38000 Underpin excavation Underpin excavation Underpin excavation <	
Sade x1 y1 x2 y2 .M. Curve: Vertical .M. Curve: Horizontal [m] [m] [m] [m] [m] [m] [m] 1 -4.3500 1.2200 0.25000 8.4200 Underpin excavation Underpin excavation 2 0.25000 8.4200 6.1500 12.020 Underpin excavation Underpin excavation 3 6.1500 12.020 Underpin excavation Underpin excavation Underpin excavation 4 11.150 4.1200 14.200 Underpin excavation Underpin excavation 5 13.250 5.4200 16.050 2.3200 Underpin excavation Underpin excavation 6 16.050 2.3200 15.550 2.1200 Underpin excavation Underpin excavation 7 15.550 2.1200 17.250 0.3800 Underpin excavation Underpin excavation 8 17.250 -0.38000 2.3500 -9.8800 Underpin excavation Underpin excavation 9 2.3500	
1 -4.3500 1.2200 0.25000 8.4200 Underpin excavation 2 0.25000 8.4200 10.202 Underpin excavation 3 6.1500 12.020 11.202 Underpin excavation 4 11.150 4.1200 Underpin excavation Underpin excavation 5 13.250 5.4200 16.050 2.3200 Underpin excavation 6 16.050 2.3200 15.650 2.1200 Underpin excavation 7 15.650 2.1200 15.650 2.1200 Underpin excavation 8 17.250 -0.38000 Underpin excavation Underpin excavation 9 2.3500 -9.8800 -4.3500 1.2200 Underpin excavation	
Circ lar ca ations	
ertical Grond Moement Cres	
Curre Name: nderpin excavation Coordinates: [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Settlement / wall depth or max. excavation depth (z) ()]	
[1.000,0.000,0.000][0.000,0.125]	
excavation depth (z) ()] Curve itting Method: Linear Dama e Cate ory Strains Ref. Name 0 (Negligible) 1 (Very Slight) 2 (Slight) 3 (Moderate)	
to to to to 1 (Very Slight) 2 (Slight) 3 (Moderate) 4 (Severe)	
1 Burland Strain Limits 0.0 500.00E-6 750.00E-6 0.0015000	
Speci ic ildin s Geometry	
Ref. Building Sub-Building Displacement Line Distance Distance Vertical Vertical Damage Category Name Name Along Along Offeets from Displacement Strains Line: Line: Line for Start End Vertical Limit Movement Sensitivity Calculations [m] [m] [m]	Poisson s E/ Ratio
1 No. 10 Sub 1 Displacement Line 1 0.00000 2.81700 0.0 0.10000 Burland Strain Limi 2 No. 10 Sub 2 Displacement Line 2 0.00000 12.60500 0.0 0.10000 Burland Strain Limi	its 0.20000 2.6000
3 No. 10 Sub 3 Displacement Line 3 0.00000 2.33200 0.0 0.10000 Burland Strain Lini 4 No. 10 Sub 4 Displacement Line 4 0.00000 2.53000 0.0 0.10000 Burland Strain Lini	ts 0.20000 2.6000 ts 0.20000 2.6000
5 No. 8 Sub 5 Displacement Line 5 0.00000 3,93800 0.0 0.10000 Burland Strain Limi 6 Building 6 Sub 6 Displacement Line 6 0.00000 1,30200 0.0 0.10000 Burland Strain Limi 7 Building 7 Sub 7 Displacement Line 7 0.00000 3,05200 0.0 0.10000 Burland Strain Limi	ts 0.20000 2.6000 its 0.20000 2.6000 its 0.20000 2.6000
8 Building 8 Sub 8 Displacement Line 8 0.00000 1.28200 0.0 0.10000 Burland Strain Lini 9 Building 9 Sub 9 Displacement Line 9 0.00000 9.76200 0.0 0.10000 Burland Strain Lini	ts 0.20000 2.6000 ts 0.20000 2.6000
Speci ic ildin s endin Parameters	
Ref. Building Sub-Building Height Default Hogging: Hogging: Hogging: Sagging: Sagging: Sagging: Sagging: Name	
And Mom. Dist. of Dist. of 2nd Mom. Dist. of Dist. of of Area Bending N.A. from (per unit Strain Edge of (per unit Strain Edge of width) from N.A. Beam in width) from N.A. Beam in Tension	
[m] [m ₃] [m] [m] [m ₃] [m] [m]	
1 No. 10 Sub 1 9.0000 Yes 243.00 9.0000 9.0000 60.750 4.5000 4.5000 2 No. 10 Sub 2 9.0000 Yes 243.00 9.0000 9.0000 60.750 4.5000 4.5000 3 No. 10 Sub 3 9.0000 Yes 243.00 9.0000 9.0000 60.750 4.5000 4.5000	
1 No. 10 Sub 1 9.0000 Yes 243.00 9.0000 60.750 4.5000 4.5000 2 No. 10 Sub 2 9.0000 Yes 243.00 9.0000 60.750 4.5000 4.5000 3 No. 10 Sub 3 9.0000 Yes 243.00 9.0000 60.750 4.5000 4.5000 4 No. 10 Sub 3 9.0000 Yes 243.00 9.0000 60.750 4.5000 4.5000 5 No. 5 Sub 5 13.560 Yes 243.00 9.0000 60.750 4.5000 4.5000 5 No. 5 Sub 5 13.560 Yes 63.111 13.560 207.75 6.7800 6.7800	

$\bigcap a conc$	SOILTECHNICS		Job No.	She	et No.	Rev.		
Uns ys	LIMITED		STT53	321				
8A Hampstead Hill Gardens Grond movement assessm	nent	Drg						
			Made by AKW	Date 02-Nov-2021	Checked	Date		
				RAW	RESULTS			
				Lege	nd			
				ð	Excavation			
				Build E	ing Results ≺ Sensitivity Cat. 0 (Negligible)			
					Cat. 1 (Very Slight) Cat. 2 (Slight)			
				盖	Cat. 3 (Moderate) Cat. 4 (Severe)			
				-	Displacement Grids Displacement Lines Imp. Displacements			
	B5 : No. 8/Sub 5							
	B6 : Building 6/Sub 6							
	B7 : Building 7/Sub 7 B8 : Building 8/Sub 8 B8 : Building 8/Sub 8							
	B9 : Building 9/Sub 9							
			<i>/</i>					
		B2 ; No. 10/Sub	2					
	B1 : No. 10/Sut	01						
	B3 : No. 10/Sub 3							
¥ I								
z ×								
				S 1				

	SOILTECHNICS							
Oasys	LIMITED		STT532	21				
8A Hampstead Hill Gardens	sont		Drg. Ref.	-				
			Made by AKW	Date 02-Nov-2021	Checked	Date		
					-			

Speciic ildin Dama e Res Its Critical alles or Il Sements it in ac Sildin

Stage: Ref.	Stage: Name	Specific Building: Ref.	Specific Building: Name	Sub-building Name	Vertical Offset from Line for Vertical Movement Calculations	Deflection Ratio	Average Horizontal Strain	Max Slope	Max Settlement	Max Tensile Strain	Max radient of Horizontal Displacement Curve	Max radient of Vertical Displacement Curve	Min Radius of Curvature (Hogging)	Min Radius of Curvature (Sagging)	Damage Category
					[m]	[%]	[%]		[mm]	[%]			[m]	[m]	
0	Base Model	1	No. 10	Sub 1	0.0	0.0	967.21E-6	-350.66E-6	5.3060	967.20E-6	-9.6720E-6	-350.66E-6	-	-	0 (Negligible)
		2	No. 10	Sub 2	0.0	0.0	-0.023110	835.43E-6	5.3063	0.0046220	-250.42E-6	835.43E-6	-	-	0 (Negligible)
		3	No. 10	Sub 3	0.0	0.0	0.12491	0.0016583	4.3182	0.12491	-0.0012475	0.0016583	-	-	2 (Slight)
		4	No. 10	Sub 4	0.0	0.0	323.60E-6	52.369E-6	0.57798	323.62E-6	-3.2360E-6	52.369E-6	-	-	0 (Negligible)
		5	No. 8	Sub 5	0.0	0.0	-0.021400	-796.91E-6	3.9495	0.0042799	214.04E-6	-796.91E-6	-	-	0 (Negligible)
		6	Building 6	Sub 6	0.0	0.0	0.12110	-0.0043189	9.5802	0.12110	-0.0012095	-0.0043189	-	-	2 (Slight)
		7	Building 7	Sub 7	0.0	0.0	0.0032994	0.0014846	9.5815	0.0032994	-32.993E-6	0.0014846	-	-	0 (Negligible)
		8	Building 8	Sub 8	0.0	0.0	0.12181	0.0021038	5.0491	0.12181	-0.0012166	0.0021038	-	-	2 (Slight)
		9	Building 9	Sub 9	0.0	0.011762	0.0036977	-818.01E-6	8.0164	0.015196	-413.95E-6	-818.01E-6	-	10275.	0 (Negligible)

