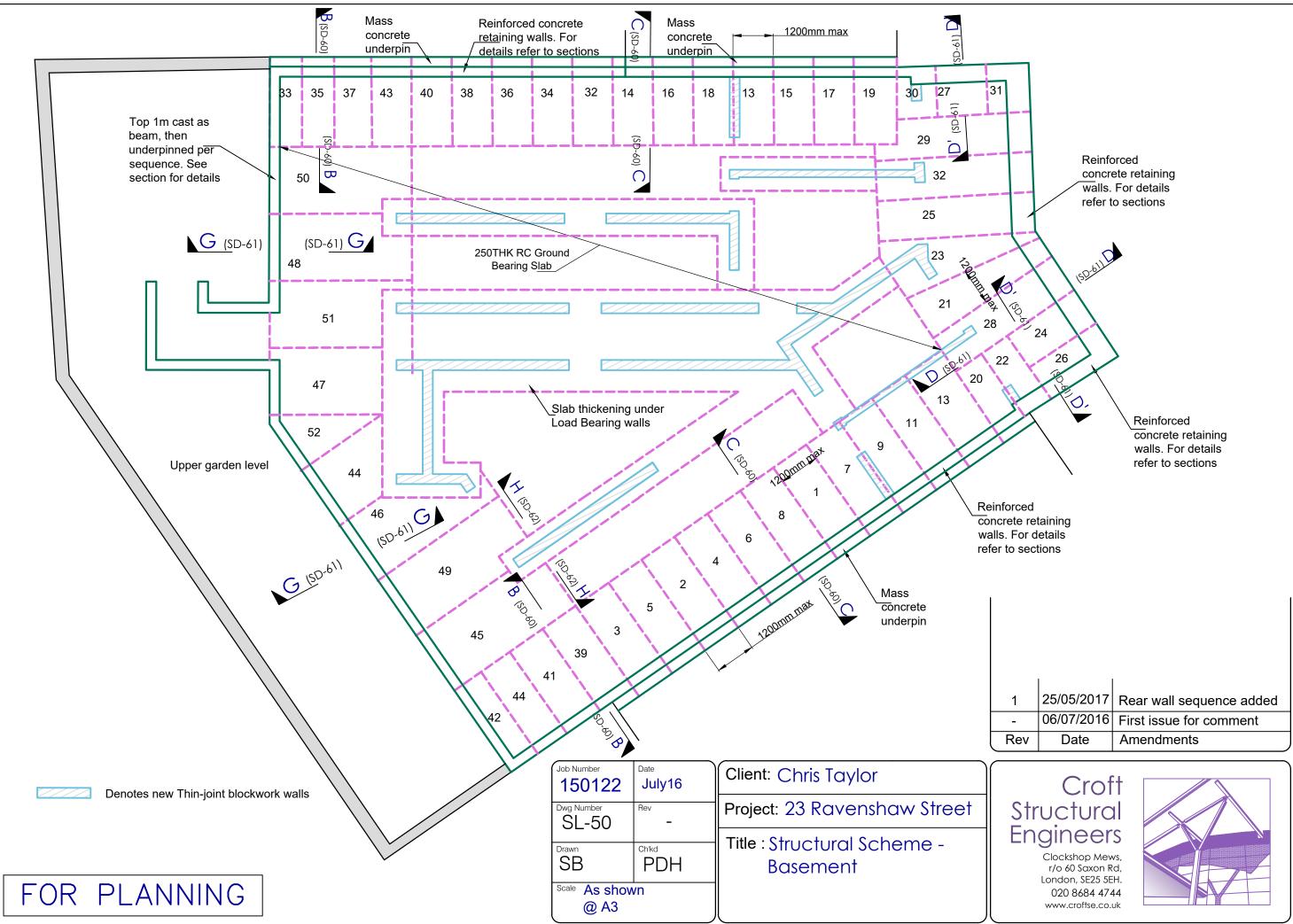
Job Number: 150122 6th July 2016

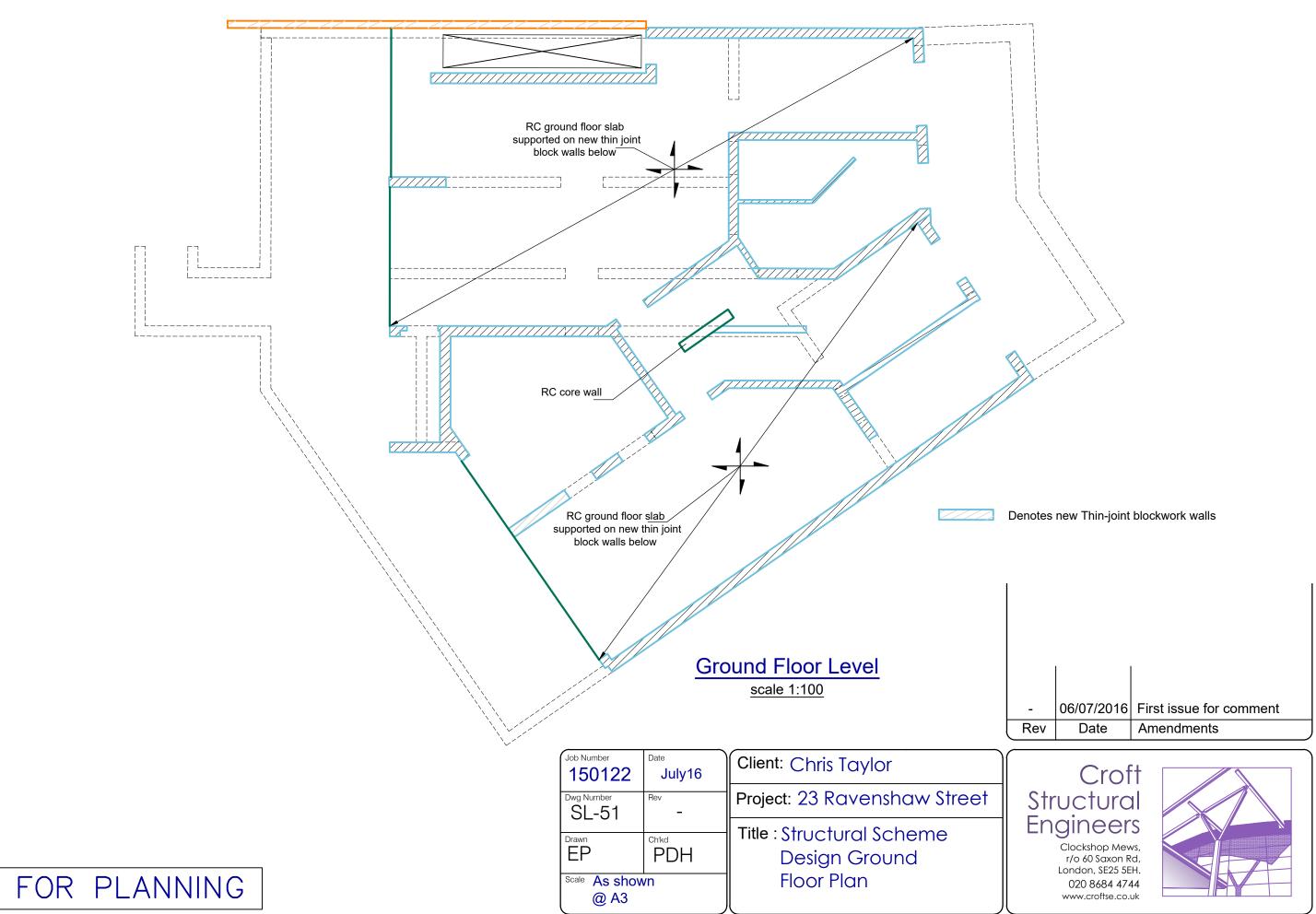
Scheme Structural Calculations for Planning

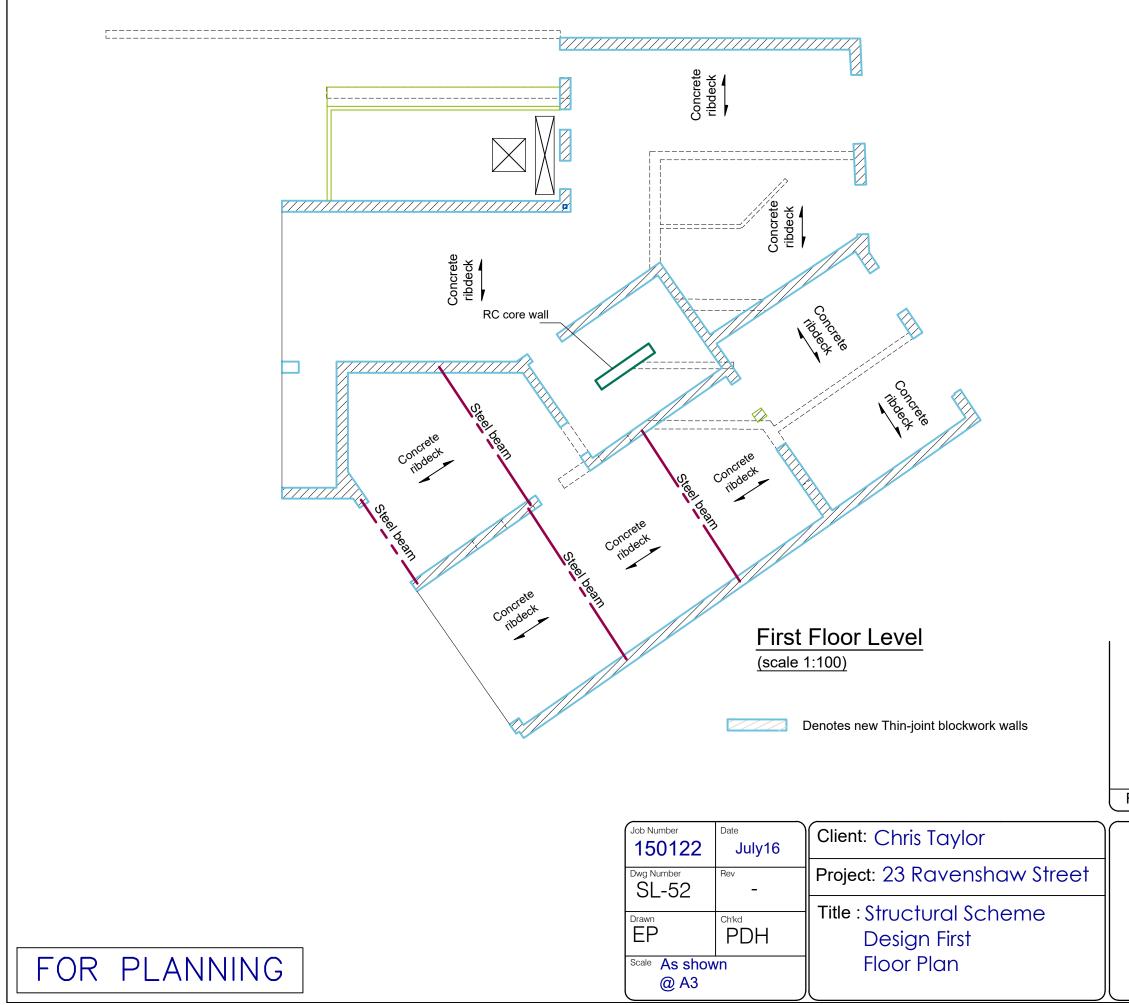
Site: 23A Ravenshaw Street London NW6 1NP

Client: Chris Taylor

Structural Design Reviewed by	Above Ground Drainage Reviewed by
Chris Tomlin	Phil Henry
MEng CEng MIStructE	BEng MEng MICE

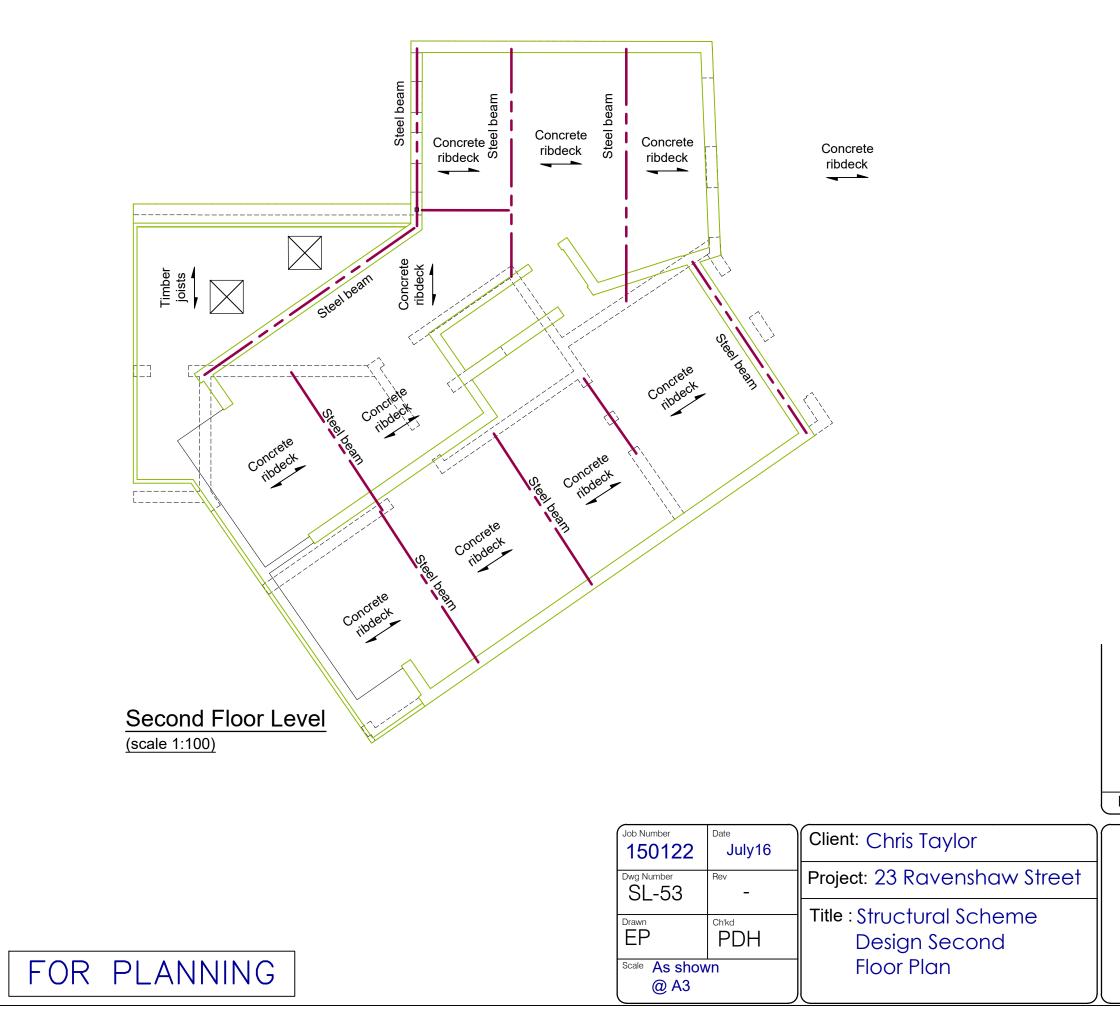

Revision	Date	Comment
-	06/07/2016	First issue for comment
1	11/07/16	Sketches updated
2	23/05/17	Movement calcs updated





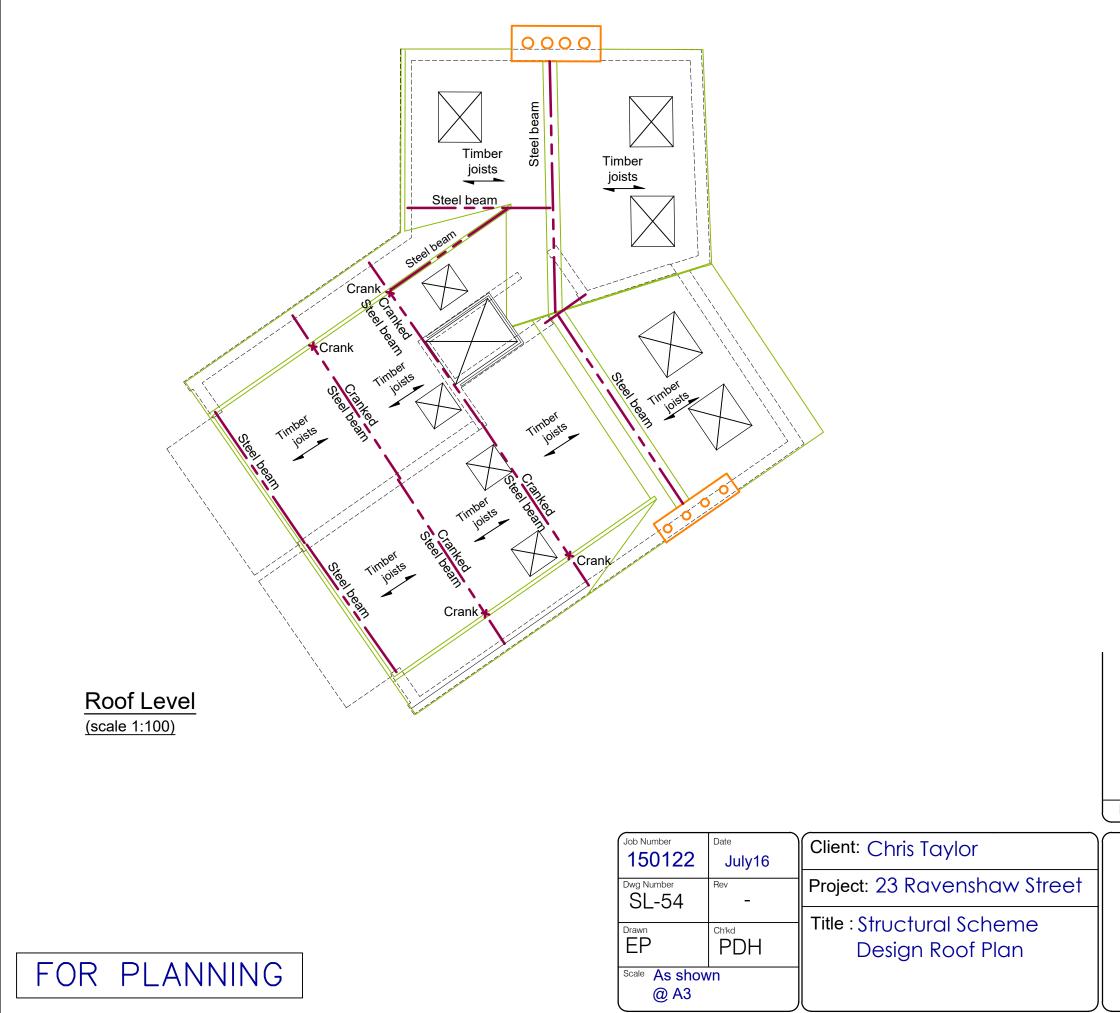
Croft Structural Engineers Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH

T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> W: <u>www.croftse.co.uk</u>



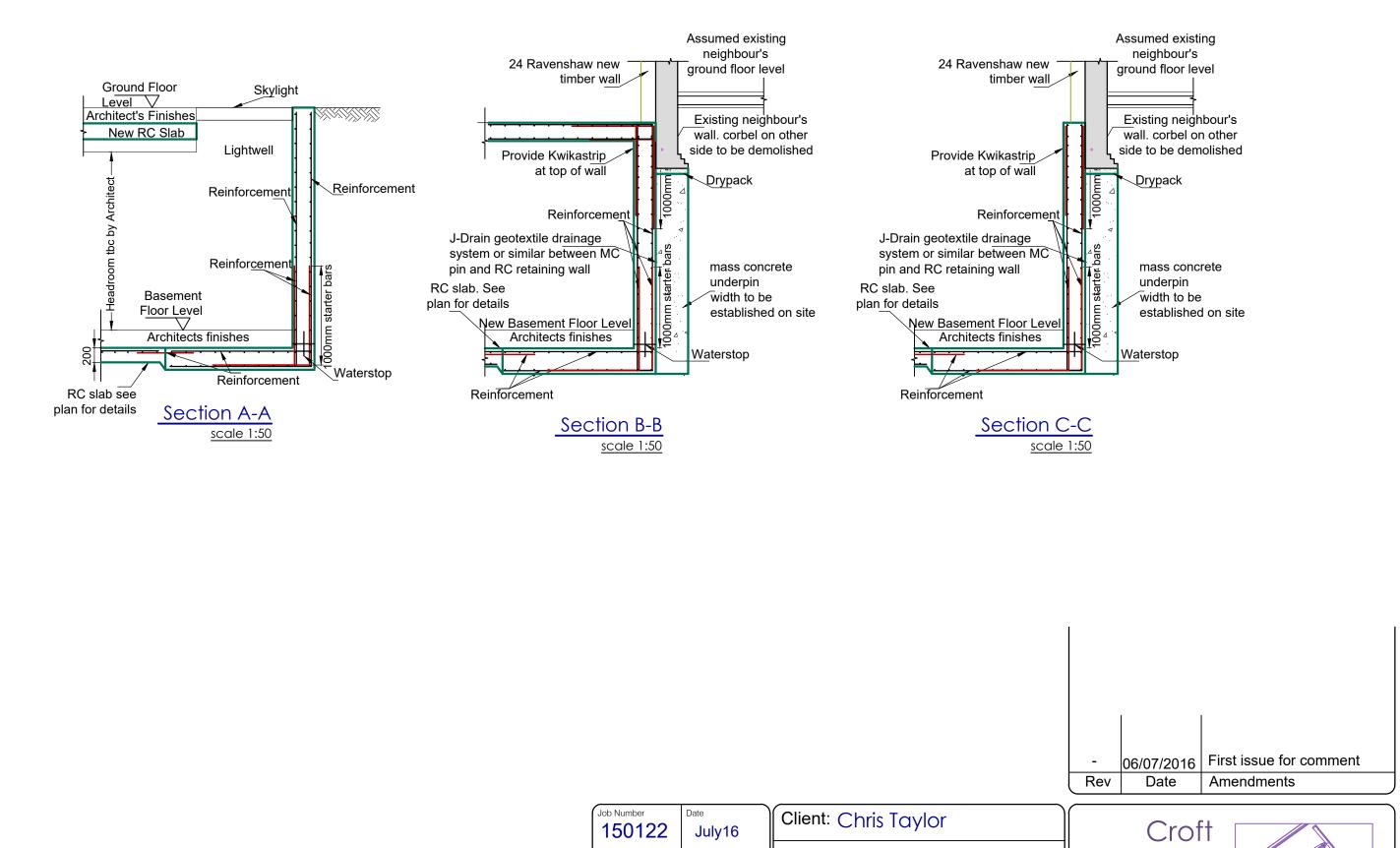
-	06/07/2016	First issue for comment	
Rev	Date	Amendments	
			_

Croft Structural Engineers Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH.



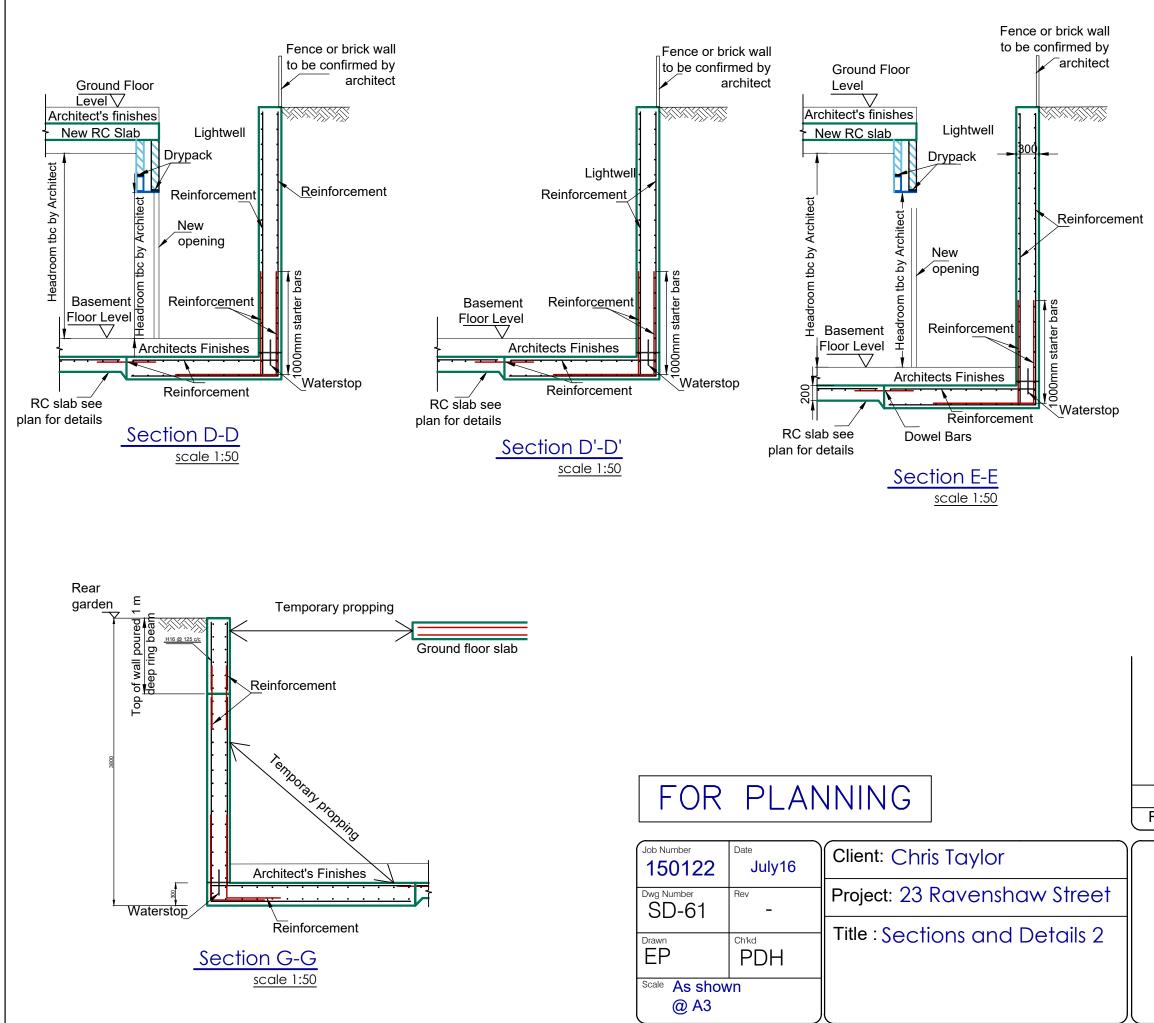
- 06/07/2016 First issue for comment	
Rev Date Amendments	
	\leq

Croft Structural Engineers Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH.



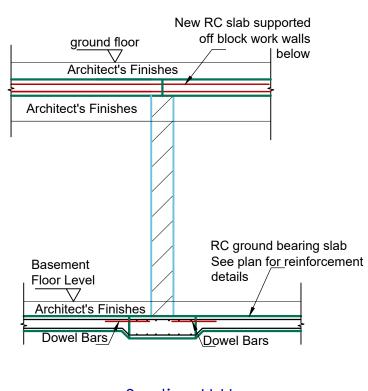
-	06/07/2016	First issue for comment	
Rev	Date	Amendments	
			\leq

Croft Structural Engineers Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH.


Job Number 150122	Date July16	Client: Chris Taylor
Dwg Number	Rev _	Project: 23 Ravenshaw Street
Drawn EP	^{Ch'kd} PDH	Title : Sections and Details 1
Scale As show @ A3	vn	

Croft Structural Engineers

Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk



1	25/05/2017	Section G-G added
-	06/07/2016	First issue for comment
Rev	Date	Amendments

Croft Structural Engineers

Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

Section H-H scale 1:50

Job Number 150122	Date July16	Client: Chris Taylor
Dwg Number	Rev _	Project: 23 Ravenshaw Street
	^{Ch'kd} PDH	Title : Sections and Details 3
Scale As show @ A3	vn	

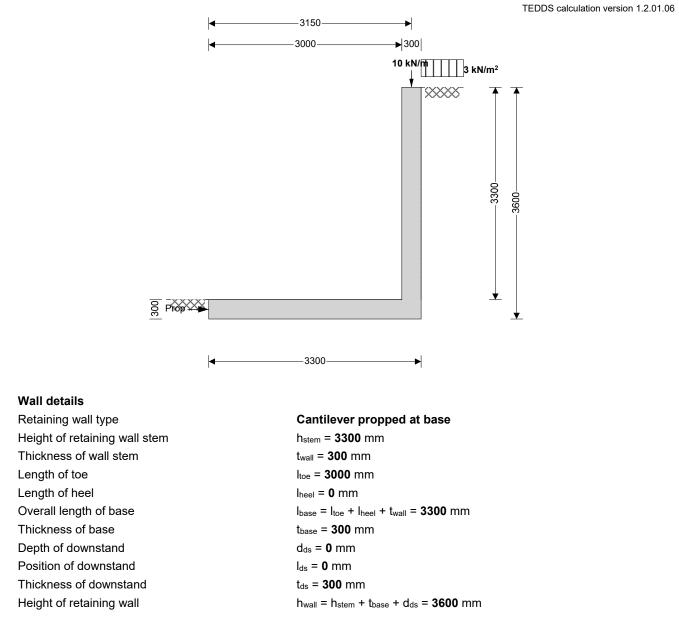
-	06/07/2016	First issue for comment	
Rev	Date	Amendments	
			=

Croft Structural Engineers Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH.

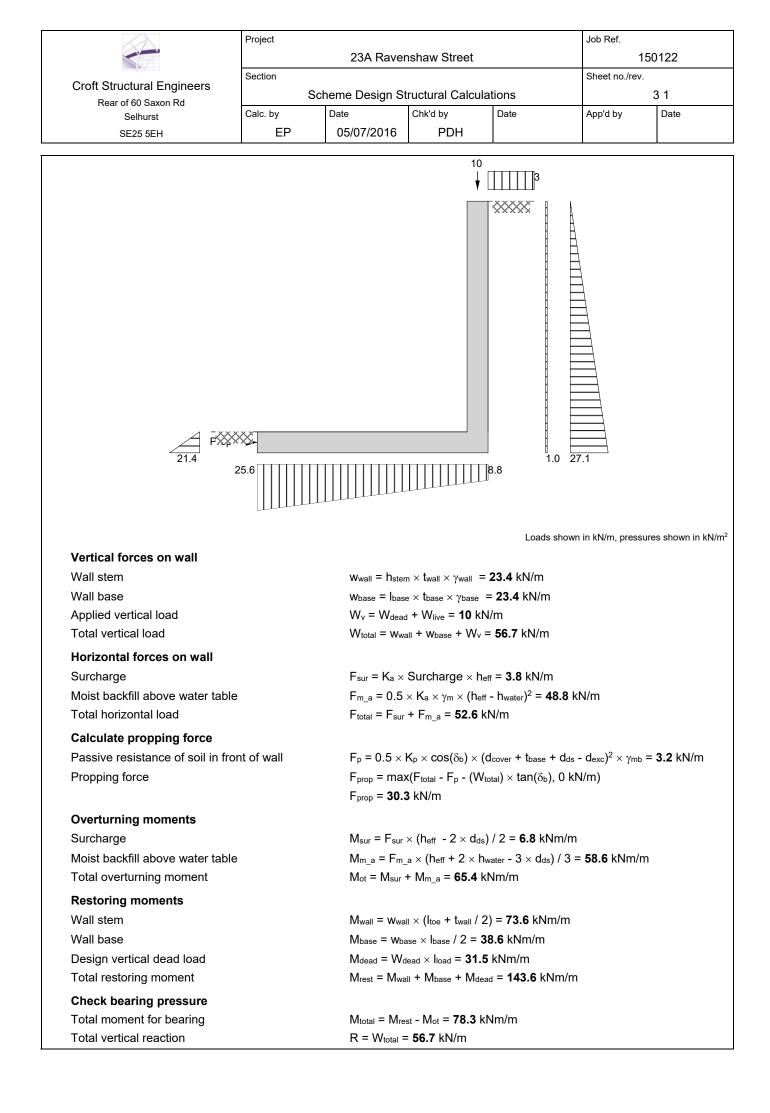
Engineering Information Sheet/ Loadings

CROFT		Project:	23A Ravens	haw	Poad	Section	Sheet	00
STRUCT	URAL	Data				L		00
ENGINE	ERS	Date	Feb-15	Rev	Date	Description		
		Ву	EP	1	Jul-16	New scheme		
el 0208 684 4744		Chekeo	d PDH					
		Job Nu		Status			Rev	1
enquiries@croftse.co.uk			150122					1
Genera	I Act	ions c	on Building Struc	cture				
Sloped Roof			Cavity Walls	5		Timber Partition	s	
Slate =	0.60		100 Facing Brick =			Height		m
Battens =	0.02		100 Block (16kN/m ³)=			50x100 Studs @ 400 =		
50x150@400c/c =	0.02		Plaster & Skim =			Insulation =		
Felt =	0.02		Perm., g _k =		kN/m ²	Plaster & Skim =		
				3.70		Perm., g _k =		
Insulation =	0.02	_				renn., g _k -	= 0.52	kN/m
	0.76							
Roof Angle =	35	deg	Internal Walls			Existing Brick Walls		
Plan perm., g _k =	0.93	kN/m ²	140 Block (12kN/m3)=	= 1.68		225 Facing Brick =		
Plan Var., q _k =	0.60	kN/m ²	Plaster & Skim =	0.36	_	External Render =	= 0.35	
			Perm., g _k =	2.04	kN/m ²	Plaster & Lathe =	= 0.15	
Flat Roof						Perm., g _k =	= 5.00	kN/m²
20mm Asphalt =	0.46		Timber Floors	<u>i</u>				
Felt underlay =	0.02		Sound insulation	n 0.15	Ē	PC Ground FloorsFloors	<u>s</u>	
insulation =	0.04		18mm Ply	0.10		Beam & Block =	= 3.10	
Ply Sheeting =	0.10		Joists 50x225@400 =	0.15		Screed =	= 1.40	
Firring =	0.10		100 Insulation =	0.05		Insulation =	= 0.07	
of joists 50x200@400 =	0.13		Plaster & Skim =			Finishes =		
Plaster & Skim =	0.18		Perm., g _k =		kN/m ²	Perm., g _k =		kN/m ²
Plan perm., $g_k =$	1.03		Var., q _k =		kN/m ²	Var., q _k =		kN/m⁴
Plan Var., $q_k =$	0.75	kN/m ²		1.50			1.50	
	0.75		Terrace Floor			Standing Coom		
Mansard Roof			Promonade Tiles =			<u>Standing Seam</u> Roof Sheet =		
	0.40							
Slate Tiles =	0.40		20mm Asphalt =			Insulation =		
Battens =	0.02		Felt underlay =			Decking =		
Ply Sheeting =	0.10		insulation =			Steelwork =		
Rafters =	0.12		Ply Sheeting =			Perm., g _k =		kN/m²
100 Insulation =	0.06		Firring =	0.10		Var., q _k =	= 0.60	kN/m²
plaster & Skim =	0.18		Roof joists 50x200@400 =	0.13				
Felt =	0.02		Plaster & Skim =	0.18		Filler joist Floo	<u>r</u>	
-	0.90		Perm., g _k =	1.43	kN/m ²	Finishes =	= 1.20	
Roof Angle =	75	deg	Var., q _k =	1.50	kN/m ²	Filler Joist Floor =	= 2.50	
Plan perm., g _k =	3.48	kN/m ²				Ceiling =	= 0.18	
Plan Var., q _k =	0.00	kN/m²	Ceiling			Steel =	= 0.30	
			50x100 Joists = 0.07			Perm., g _k =	= 4.18	kN/m²
			100 Insulation = 0.06			Var., q _k =		kN/m²
			Plaster & Skim = 0.18			- / I K		
			Perm., $g_k = 0.31$	kN/m²				
C Ground FloorsFloors			Var., $q_k = 0.31$	kN/m ²		Moveable Partitions	- Addition	al du
	E 00		• ···· · · · · · · · · · · · · · · · ·		abtuciet /-			kN/m ²
300thk slab =	5.00					screens, etc) ,1 kN/m =		kN/m ²
Screed =	1.88			IIM		stud walls , 1<2 kN/m =		
Insulation =	0.07			T		d paritions, 2<3 kN/m =	= 1.2	
Finishes =	0.05	-			ive Load Re	_		
Perm., g _k =	7.00	kN/m ²		Area	a C	0% Floor	S	1 0%
Var., q _k =	1.50	kN/m ²			50	0 5%		2 10%
vai., q _k =					100	1.00/		3 20%
val., q _k –					100	0 10%		5 2070
vai., q _k –) 15%		4 30%

Engineering Information Sheet/ Load Run Down


CROFT		Project: 23A Ravenshaw Road					Section	I	Sheet	02
			Date Feb-15 Rev			Date	Descriptio	n		02
	EEK2	Ву	EP		1	Jul-16	New sch			
Tel 0208 684 4744		Cheked	PDH							
		Job Numbe			Status				Rev	
enquiries@croftse.co.uk			15012	2						1
Reference		-								
Location		Area		Туре	L	Action		Actions,	kN or kN/r	n
	L	W	m ²	512 -		kN/m ²	Perm., g _k		Var., q _k	Total
retaining wall A/A'									· IX	
brick wall/fence	2	1	2	g _k		5.00	10.0			
			-	31		0.00	10.0	kN/m	0.0	kN/m
2.5kN/m2 surcharg	le						10.0		0.0	
retaining wall B/B'										
brick wall/fence	2	1	2	<u></u>		5.00	10.0			
	2		2	g _k		5.00	10.0	kN/m	0.0	kN/m
2.5kN/m2 surcharg							10.0	KIN/III	0.0	KIN/III
	e									
retaining wall C										
ground floor slab	4.5	0.5	2.25	g _k		7.00	15.7			
ground noor stab	1.0	0.0	2.20	q _k		1.50	10.7		3.4	
1st and 2nd	4.5	0.5	2.25	9ĸ g _k	2	4.18	18.8		5.4	
	т.5	0.0	2.20	g _k	2	1.50	10.0		6.8	
timber roof	4.5	0.5	2.25			1.03	2.3		0.0	
	4.5	0.5	2.25	g _k		0.75	2.3		1.7	
timber wall	3	1	3	q _k		0.73	1.6		1.7	
block walls	9	1	9	g _k	2	4.08	36.7			
DIUCK Walls	9	I	9	g _k	2	4.08		kN/m	11.0	kN/m
natalala a mall D (D)							75.1	KIN/TTI	11.8	KIN/III
retaining wall D/D'	0.5	1	0.5			F 00				
brick wall/fence	0.5	1	0.5	g _k		5.00	2.5		0.0	L N L /
10.0kN/m2.curchar	~~~						2.5	kN/m	0.0	kN/m
10.0kN/m2 surchar	ge									
Internal walls										
ground floor slab	3	1	3	g _k		7.00	21.0		_	
9.0010 1001 300	5			9ĸ Q _k		1.50	21.0		4.5	
basement slab	1	1	1	9k gk		7.00	7.0		1.0	
				q _k		1.50			1.5	
1st and 2nd	3	1	3	9k gk	2	4.18	25.1			
	-		-	q _k		1.50			9.0	
timber roof	5.5	1	5.5	g _k		1.03	5.7			
_				q _k		0.75			4.1	
timber wall	3	1	3	g _k		0.52	1.6			
block walls	9	1	9	g _k		4.08	36.7			
				C.N.			97.0	kN/m	19.1	kN/m

	Project				Job Ref.	
		23A Raven	150122			
Croft Structural Engineera	Section		Sheet no./rev.			
Croft Structural Engineers Rear of 60 Saxon Rd	Scl	neme Design St	ructural Calculat	tions		1 1
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			


RETAINING WALL A/A'/B/B' DESIGN

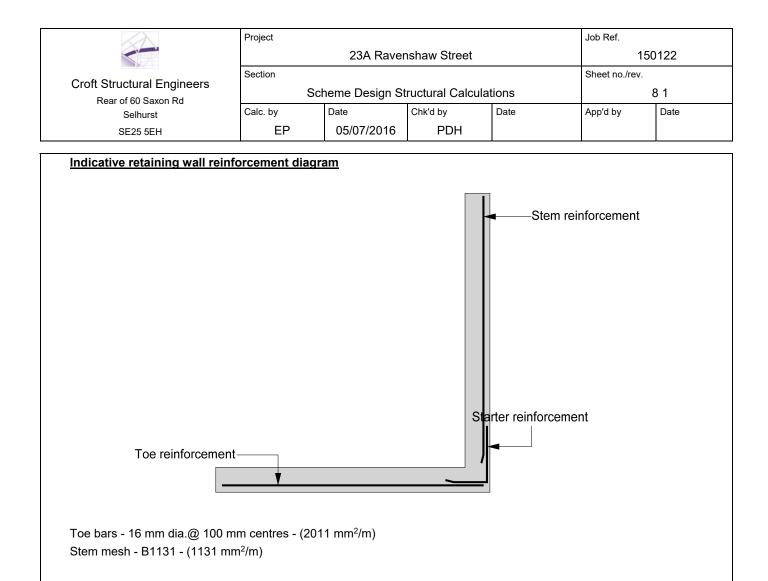
2	1	2	<u>g</u> k	5.00	10.0			
					10.0	kN/m	0.0	kN/m
rge								
ſ						2 1 2 gk 3.00 10.0 10.0	2 1 2 g _k 3.00 10.0 kN/m	2 1 2 9 ^k 3.00 10.0 kN/m 0.0

RETAINING WALL ANALYSIS (BS 8002:1994)

	Project	23A Raver	shaw Street		Job Ref. 1	50122
	Section				Sheet no./rev	
Croft Structural Engineers Rear of 60 Saxon Rd	Se	cheme Design St	ructural Calcul	ations		2 1
	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
Depth of cover in front of wall		d _{cover} = 0 m	ım			
Depth of unplanned excavation		d _{exc} = 0 mr	n			
Height of ground water behind w	all	h _{water} = 0 m	ım			
Height of saturated fill above bas	e	h _{sat} = max(h _{water} - t _{base} - do	_{is} , 0 mm) = 0 n	nm	
Density of wall construction		γ _{wall} = 23.6	kN/m ³			
Density of base construction		γ _{base} = 23.6	kN/m³			
Angle of rear face of wall		α = 90.0 de	eq			
Angle of soil surface behind wall		β = 0.0 deg				
Effective height at virtual back of			· I _{heel} × tan(β) =	3600 mm		
C C			noor A torr(p) -			
Retained material details						
Mobilisation factor		M = 1.5				
Moist density of retained materia		γm = 18.0 k				
Saturated density of retained ma	terial	γ _s = 21.0 k				
Design shear strength		φ' = 24.2 d	eg			
Angle of wall friction		δ = 0.0 deg	1			
Base material details						
Moist density		γmb = 18.0	kN/m³			
Design shear strength		φ' _b = 24.2 α	leg			
Design base friction		δ _b = 18.6 d	eg			
Allowable bearing pressure		P _{bearing} = 1	•			
Using Coulomb theory						
Active pressure coefficient for re	tained materia	I				
$K_a = sin(\alpha + i)$	+ φ')² / (sin(α)²	$\times \sin(\alpha - \delta) \times [1 + \delta]$	+ √(sin(φ' + δ) ×	sin(φ' - β) / (si	$n(\alpha - \delta) \times sin(\alpha)$	+ β)))] ²) = 0
Passive pressure coefficient for I		· / -	,		. , .	
	K _p = sin(90 - φ' _b)² / (sin(90) - δ₀) × [1 - √(s	$in(\phi'_b + \delta_b) \times si$	in(փ'ɒ) / (sin(90 -	+ δ _b)))]²) = 4
At-rest pressure						
At-rest pressure for retained mat	erial	K ₀ = 1 – si	n(φ') = 0.590			
Loading details						
Surcharge load on plan		Surcharge	= 2.5 kN/m ²			
Applied vertical dead load on wa	II	W _{dead} = 10	. 0 kN/m			
Applied vertical live load on wall		W _{live} = 0.0	kN/m			
Position of applied vertical load of	on wall	l _{load} = 3150	mm			
Applied horizontal dead load on	wall	F _{dead} = 0.0	kN/m			
Applied horizontal live load on wa	all	F _{live} = 0.0 k	:N/m			
Height of applied horizontal load	on wall	h _{load} = 0 m	m			

	Project				Job Ref.	
		23A Raver	150122			
Croft Structural Engineera	Section		Sheet no./rev.			
Croft Structural Engineers Rear of 60 Saxon Rd	Scheme Design Structural Calculations				4 1	
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
		•	•	•	•	•

x _{bar} = M _{total} / R = 1380 mm
e = abs((I _{base} / 2) - x _{bar}) = 270 mm
Reaction acts within middle third of base
p _{toe} = (R / I _{base}) + (6 × R × e / I _{base} ²) = 25.6 kN/m ²
$p_{heel} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 8.8 \text{ kN/m}^2$
PASS - Maximum bearing pressure is less than allowable bearing pressure

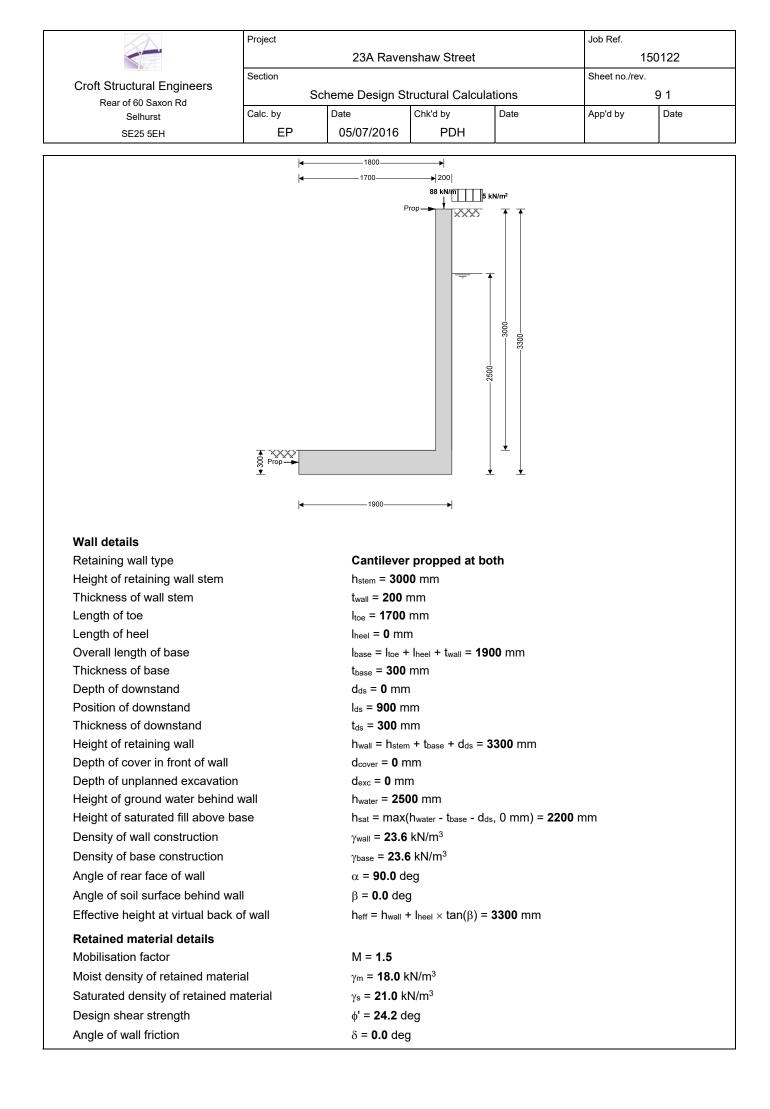

	Project	23A Rave	nshaw Street		Job Ref. 1	50122
	Section				Sheet no./rev.	
Croft Structural Engineers Rear of 60 Saxon Rd		Scheme Design S	tructural Calcu	llations		5 1
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
RETAINING WALL DESIGN (BS 8002:1994	1			TEDDS calculati	an version 1.0
Ultimate limit state load facto	ors				i EDDS calculati	on version 1.2
Dead load factor		$\gamma_{f_d} = 1.4$				
Live load factor		γ _{f_l} = 1.6				
Earth and water pressure facto	or	γ _{f_e} = 1.4				
Factored vertical forces on v	vall					
Wall stem		$W_{wall_f} = \gamma_{f_i}$	$_{ m d} imes {\sf h}_{ m stem} imes {\sf t}_{ m wall}$	× γ _{wall} = 32.7	kN/m	
Wall base	Vall base			$\times \gamma_{\text{base}} = 32.$		
Applied vertical load		× W _{dead} + γ_{f_l} ×				
Total vertical load			wall_f + Wbase_f +			
Factored horizontal at-rest for	orces on wall					
Surcharge		F _{sur} f = γf ι	× K₀ × Surchaı	rge × h _{eff} = 8.	5 kN/m	
Moist backfill above water table	е			•	_{ater}) ² = 96.4 kN/m	
Total horizontal load			ur_f + Fm_a_f = 1			
Calculate propping force						
Passive resistance of soil in fro	ont of wall	$F_{p f} = \gamma_{f e}$	$< 0.5 \times K_{\rm p} \times cos$	$s(\delta_b) \times (d_{cover})$	+ t _{base} + d _{ds} - d _{exc})	$^{2} \times \gamma_{mb} = 4.$
kN/m		F 1	F F	() (,	
Propping force		F _{prop_f} = m F _{prop_f} = 73	• - · -	- (W _{total_f}) × ta	an(ծ₅), 0 kN/m)	
Factored overturning moment	nts					
Surcharge		M _{sur_f} = F _{st}	$_{\rm ur_f} \times (h_{\rm eff} - 2 \times$	d _{ds}) / 2 = 15 .	3 kNm/m	
Moist backfill above water table	е	$M_{m_a_f} = F_r$	n_a_f × (h _{eff} + 2	imes h _{water} - 3 $ imes$	d _{ds}) / 3 = 115.6 kN	lm/m
Total overturning moment		M _{ot_f} = M _{su}	r_f + M _{m_a_f} = 1	30.9 kNm/m		
Restoring moments						
Wall stem		$M_{wall_f} = w_w$	$_{vall_f} \times (I_{toe} + t_{wa})$	all / 2) = 103 k	Nm/m	
Wall base		$M_{base f} = w$	/base f × Ibase / 2	= 54 kNm/m		
Design vertical load		_	- • × I _{load} = 44.1			
Total restoring moment			wall_f + Mbase_f +		kNm/m	
Factored bearing pressure						
Total moment for bearing		$M_{total_f} = M$	rest_f - Mot_f = 7	0.2 kNm/m		
Total vertical reaction		$R_f = W_{total}$	_f = 79.4 kN/m			
Distance to reaction		$x_{bar_f} = M_{to}$	_{tal_f} / R _f = 884 r	mm		
Eccentricity of reaction		e _f = abs((It	_{base} / 2) - x _{bar_f})	= 766 mm		
					cts outside midd	le third of l
Bearing pressure at toe			$(1.5 \times x_{bar_f}) =$			
Bearing pressure at heel			(N/m ² = 0 kN/n			
Rate of change of base reaction			$_{f} / (3 \times x_{bar_{f}}) =$			
Bearing pressure at stem / toe				-	$(N/m^2) = 0 kN/m^2$	-
		Dstem mid f	= max(ptoe f - (r	$ate \times (I_{toe} + t_{v})$	_{vall} / 2)), 0 kN/m ²) =	= 0 kN/m ²
Bearing pressure at mid stem Bearing pressure at stem / hee					_{wall})), 0 kN/m ²) = 0	

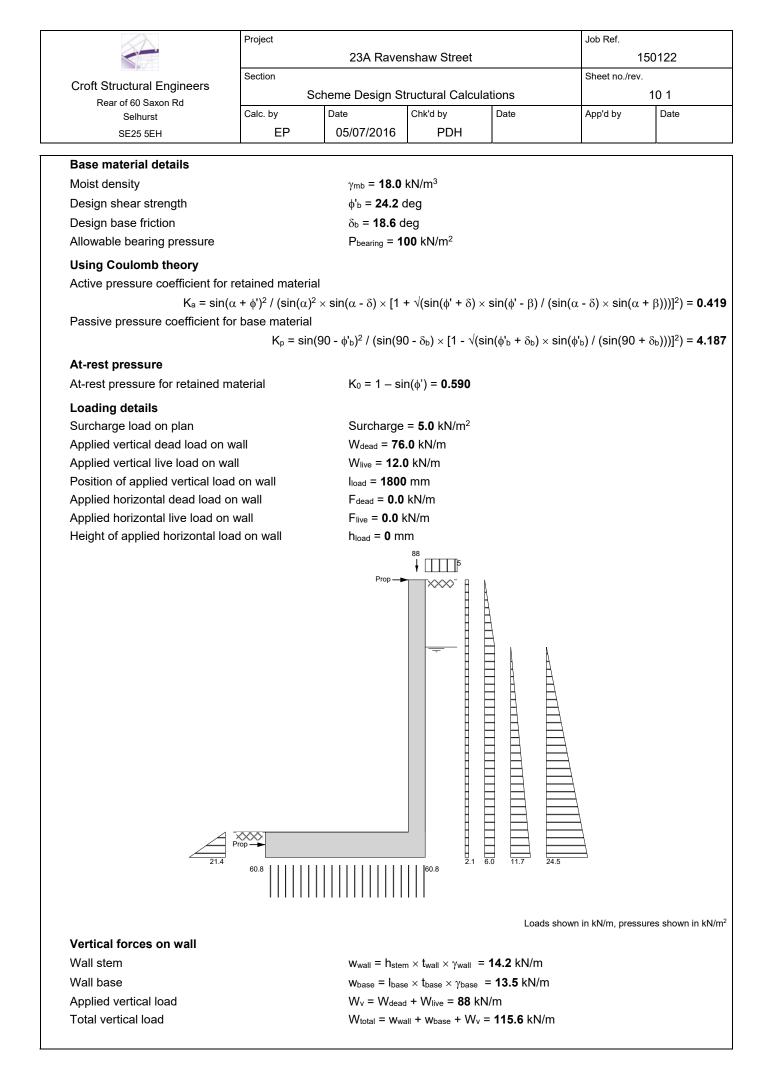
Material properties Characteristic strength of concrete

f_{cu} = **40** N/mm²

	Project	23A Raver	nshaw Street	23A Ravenshaw Street			
	Section				Sheet no./rev.	50122	
Croft Structural Engineers Rear of 60 Saxon Rd	s	Scheme Design St	tructural Calcul	ations		6 1	
Rear of 60 Saxon Rd Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SE25 5EH	EP	05/07/2016	PDH				
Characteristic strength of reinfo	orcement	f _y = 500 N/	mm ²				
Base details		.,					
Minimum area of reinforcement	t	k = 0.13 %					
Cover to reinforcement in toe		c _{toe} = 75 m	ım				
Calculate shear for toe desig	n						
Shear from bearing pressure		V _{toe_bear} = 3	$3 \times p_{toe_f} \times x_{bar_f}$	f / 2 = 79.4 kN/	'n		
Shear from weight of base			= $\gamma_{f_d} \times \gamma_{base} \times I$				
Total shear for toe design		$V_{toe} = V_{toe}$	bear - Vtoe_wt_base	∍ = 49.7 kN/m			
Calculate moment for toe des	sign						
Moment from bearing pressure	-	M _{toe, bear} = :	$3 \times p_{toe_f} \times x_{bar}$	f×(ltoe - Xbarf +	⊦t _{wall} / 2) / 2 = 18	80 kNm/m	
Moment from weight of base					, vall / 2) ² / 2) = 49 .		
otal moment for toe design			_bear - Mtoe_wt_ba				
300	• •	•••	• • •	• •	• •		
<u>↓</u>							
	€-100-▶						
Check toe in bending Width of toe	∢ -100- >	b = 1000 m	nm/m				
Check toe in bending	 - -100- ->		nm/m – Ctoe – (φtoe / 2)) = 217.0 mm			
Check toe in bending Width of toe	€-100-▶	d _{toe} = t _{base} -					
Check toe in bending Width of toe Depth of reinforcement	 - -100- ->	d _{toe} = t _{base} -	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}	a) = 0.069	reinforcement	is not requ	
Check toe in bending Width of toe Depth of reinforcement	€-100-▶	d _{toe} = t _{base} - K _{toe} = M _{toe}	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) = 0.069 Compression	reinforcement 5) / 0.9)),0.95) ×	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm		$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = min(C_{z_{toe}} = 199 r_{toe})$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu} 0.5 + $\sqrt{0.25}$ - (mmm) = 0.069 <i>Compression</i> min(K _{toe} , 0.225	5) / 0.9)),0.95) ×	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r	equired	d _{toe} = t _{base} · K _{toe} = M _{toe} z _{toe} = min((z _{toe} = 199 r A _{s_toe_des} =	$-c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mmm)}$ $M_{toe} / (0.87 \times f_{cu})$	n) = 0.069 <i>Compression</i> min(K _{toe} , 0.225 y × z _{toe}) = 1513	5) / 0.9)),0.95) ×	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfor	equired rcement	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 199 r$ $A_{s_toe_des} =$ $A_{s_toe_min} =$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (mmm)$ $M_{toe} / (0.87 \times f_{base} = 3)$	n) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 3 90 mm ² /m	5) / 0.9)),0.95) × 3 mm²/m	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r	equired rcement	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} =$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (mm)$ $M_{toe} / (0.87 \times f_{base} = 3)$ $M_{x} (A_{s_toe_des}, -1)$	h) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15	5) / 0.9)),0.95) × 3 mm²/m	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 199 r$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ $16 mm dia$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^{2} \times f_{cu})$ $0.5 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	h) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15	5) / 0.9)),0.95) × 3 mm²/m	-	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	n) = 0.069 <i>Compression</i> min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m	d _{toe}	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	n) = 0.069 <i>Compression</i> min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres	5) / 0.9)),0.95) × 3 mm²/m	d _{toe}	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = 16 \text{ mm dia}$ $A_{s_toe_prov} = PASS - Rein$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{cu})$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, a.bars @ 100 m)$ $= 2011 mm^2/m$ $n forcement procession (mathematical structure)$	n) = 0.069 <i>Compression</i> min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres ovided at the	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m	d _{toe}	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = 16 \text{ mm dia}$ $A_{s_toe_prov} = PASS - Reir$ $v_{toe} = V_{toe} / V_{toe} = V_{toe} / V_{toe} = V_{toe} / V_{toe}$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	a) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres covided at the 229 N/mm ²	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i>	d _{toe}	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / v_{adm} = min(t_{toe})$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe} / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) = 0.2 / (b \times d_{toe}) = 0.2 / (0.8 \times \sqrt{(f_{cu} / 1.100)}) / (b \times d_{toe}) / (b \times d_{toe})$	n) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres covided at the 229 N/mm ² N/mm ²), 5) × 1	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i> N/mm² = 5.000	d _{toe} toe is adeq N/mm ²	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress Allowable shear stress	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / v_{adm} = min(t_{toe})$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe} / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) = 0.2 / (b \times d_{toe}) = 0.2 / (0.8 \times \sqrt{(f_{cu} / 1.100)}) / (b \times d_{toe}) / (b \times d_{toe})$	n) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres covided at the 229 N/mm ² N/mm ²), 5) × 1	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i>	d _{toe} toe is adeq N/mm ²	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress Allowable shear stress From BS8110:Part 1:1997 – T	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} /$ $v_{adm} = min$ $PASS - Reir$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^{2} \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmm))}$ $M_{toe} / (0.87 \times f_{cu})$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, a_{tbars} @ 100 m c_{tbars})$ $a_{tbars} @ 100 m c_{tbars}$	n) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres covided at the 229 N/mm ² N/mm ²), 5) × 1	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i> N/mm² = 5.000	d _{toe} toe is adeq N/mm ²	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress Allowable shear stress	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / V_{adm} = min($	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe} / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (0.87 \times f_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) / (b \times d_{toe}) = 0.2 / (0.8 \times \sqrt{(f_{cu} / 1 N_{toe})} / (b \times d_{toe}) / $	a) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres ovided at the 229 N/mm ² N/mm ²), 5) × 1 r stress is les	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i> N/mm² = 5.000	d _{toe} toe is adeq N/mm² m shear st	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress Allowable shear stress From BS8110:Part 1:1997 – T Design concrete shear stress	equired rcement equired e	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} /$ $v_{adm} = min($ $PASS +$ $v_{c_toe} = 0.8$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe} / (0.87 \times f_{toe}) / ($	a) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres ovided at the 229 N/mm ² N/mm ²), 5) × 1 r stress is les	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i> N/mm² = 5.000 s than maximu	d _{toe} toe is adeq N/mm² m shear st	
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement r Minimum area of tension reinfo Area of tension reinforcement r Reinforcement provided Area of reinforcement provided Check shear resistance at too Design shear stress Allowable shear stress From BS8110:Part 1:1997 – T	equired rcement equired e	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 199 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ 16 mm dia $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} /$ $v_{adm} = min($ $PASS +$ $v_{c_toe} = 0.8$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe} / (0.87 \times f_{toe}) / ($	a) = 0.069 Compression min(K _{toe} , 0.225 y × z _{toe}) = 1513 390 mm ² /m A _{s_toe_min}) = 15 nm centres ovided at the 229 N/mm ² N/mm ²), 5) × 1 r stress is les	5) / 0.9)),0.95) × 3 mm²/m 513 mm²/m <i>retaining wall t</i> N/mm² = 5.000 s than maximu	d _{toe} toe is adeq N/mm² m shear st	

	Project	23A Rave	nshaw Street			150122		
Croft Structural Engineers	Section				Sheet no./rev			
Rear of 60 Saxon Rd		Scheme Design Si	1	1		71		
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SE25 5EH	EP	05/07/2016	PDH					
Characteristic strength of reinf	forcement	f _y = 500 N/	/mm ²					
Wall details								
Minimum area of reinforcemen	nt	k = 0.13 %)					
Cover to reinforcement in sten	n	C _{stem} = 30 I	mm					
Cover to reinforcement in wall		c _{wall} = 30 n	nm					
Factored horizontal at-rest f	orces on stem	l.						
Surcharge			_	•	t _{base} - d _{ds}) = 7.8 k			
Moist backfill above water tabl	le	F _{s_m_a_f} = ($0.5 imes \gamma_{f_e} imes K_0 imes$	$x \gamma_{m} \times (h_{eff} - t_{b})$	_{base} - d _{ds} - h _{sat}) ² = 5	81 kN/m		
Calculate shear for stem des	sign							
Shear at base of stem		V _{stem} = F _{s_}	_{sur_f} + F _{s_m_a_f} -	F _{prop_f} = 15. 1	1 kN/m			
Calculate moment for stem	design							
Surcharge		$M_{s_{sur}} = F_{s_{sur}}$	_sur_f × (hstem +	t _{base}) / 2 = 14	kNm/m			
Moist backfill above water tabl	le	Ms_m_a = F	$s_m_a_f \times (2 \times h_s)$	_{sat} + h _{eff} - d _{ds}	+ t _{base} / 2) / 3 = 1 0	01.2 kNm/m		
Total moment for stem design		M _{stem} = M _s	_ _{sur} + M _{s_m_a} =	115.2 kNm/n	n			
264	• •		•	• •	• •			
	 • • 	•••	• • •	• •	• •			
	● 100- →	• • •	• •	• •	• •			
Check wall stem in bending Width of wall stem	• •	• • •	• •	•••	• •			
Check wall stem in bending	• •		nm/m – Cstem – (¢stem	• • • • • • • • • • • • • • • • • • •	• •			
Check wall stem in bending Width of wall stem	• •	d _{stem} = t _{wall}						
Check wall stem in bending Width of wall stem Depth of reinforcement	• • ← 100- →	d _{stem} = t _{wall}	— C _{stem} — (φ _{stem} _{em} / (b × d _{stem} ²	× f _{cu}) = 0.04 1		t is not req		
Check wall stem in bending Width of wall stem Depth of reinforcement	• •	d _{stem} = t _{wall} K _{stem} = M _{st}	- C _{stem} - (ϕ_{stem} em / (b × d _{stem} ² n(0.5 + $\sqrt{(0.25 - 1)}$	× f _{cu}) = 0.041 Compressio	I	-		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant		d _{stem} = t _{wall} K _{stem} = M _{st} z _{stem} = min z _{stem} = 251	- C _{stem} - (ϕ_{stem} em / (b × d _{stem} ² n(0.5 + $\sqrt{(0.25 - 1)}$	× f _{cu}) = 0.04 1 <i>Compressic</i> (min(K _{stem} , 0	l on reinforcement).225) / 0.9)),0.95	-		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm	required	d _{stem} = t _{wall} K _{stem} = M _{st} Z _{stem} = min Z _{stem} = 251 A _{s_stem_des}	- C _{stem} - (φ _{stem} _{em} / (b × d _{stem} ² h(0.5 + √(0.25 - h mm	$x f_{cu}$) = 0.041 Compression (min(K _{stem} , C $x f_y \times z_{stem}$) =	l on reinforcement).225) / 0.9)),0.95	-		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement	required	d _{stem} = t _{wall} K _{stem} = Mst Z _{stem} = min Z _{stem} = 251 A _{s_stem_des}	- Cstem - (ϕ stem em / (b × dstem ² (0.5 + √(0.25 -) mm = Mstem / (0.87 = k × b × t _{wall} =	× f _{cu}) = 0.041 <i>Compressic</i> (min(K _{stem} , 0 × f _y × Z _{stem}) = 390 mm ² /m	l on reinforcement).225) / 0.9)),0.95	-		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided	required orcement required	d _{stem} = t _{wall} K _{stem} = Mst Z _{stem} = min Z _{stem} = 251 A _{s_stem_des} A _{s_stem_req} = B1131 me	− C _{stem} − (ϕ _{stem} em / (b × d _{stem} ² (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87 = k × b × t _{wall} = = Max(As_stem_d sh	$x f_{cu}$) = 0.041 Compressio (min(K _{stem} , 0 $x f_y \times z_{stem}$) = 390 mm ² /m les, As_stem_min	l on reinforcement 0.225) / 0.9)),0.95 = 1056 mm²/m	-		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	required orcement required	d _{stem} = t _{wall} K _{stem} = M _{st} Z _{stem} = 251 A _{s_stem_des} A _{s_stem_min} A _{s_stem_req} = B1131 me A _{s_stem_prov}	- Cstem - (ϕ stem em / (b × dstem ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = Mstem / (0.87 = k × b × twall = = Max(As_stem_d sh = 1131 mm ² /m	$x f_{cu}$) = 0.041 Compressio (min(K _{stem} , 0 $x f_y \times Z_{stem}$) = 390 mm ² /m les, As_stem_min	l on reinforcement 0.225) / 0.9)),0.95 = 1056 mm²/m n) = 1056 mm²/m) × d _{stem}		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided Area of reinforcement provided	required orcement required d	d _{stem} = t _{wall} K _{stem} = M _{st} Z _{stem} = 251 A _{s_stem_des} A _{s_stem_min} A _{s_stem_req} = B1131 me A _{s_stem_prov}	- Cstem - (ϕ stem em / (b × dstem ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = Mstem / (0.87 = k × b × twall = = Max(As_stem_d sh = 1131 mm ² /m	$x f_{cu}$) = 0.041 Compressio (min(K _{stem} , 0 $x f_y \times Z_{stem}$) = 390 mm ² /m les, As_stem_min	l on reinforcement 0.225) / 0.9)),0.95 = 1056 mm²/m) × d _{stem}		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided Area of reinforcement provided Check shear resistance at w	required orcement required d	dstem = twall Kstem = Mst Zstem = min Zstem = 251 As_stem_des As_stem_min As_stem_req B1131 me As_stem_prov PASS - Reinfo	- Cstem - (ϕ stem em / (b × dstem ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = Mstem / (0.87 = k × b × twall = = Max(As_stem_d sh = 1131 mm ² /m forcement pro	$x f_{cu}$) = 0.041 Compressio (min(K _{stem} , 0 $x f_y \times z_{stem}$) = 390 mm ² /m tes, As_stem_min vided at the	n reinforcement ().225) / 0.9)),0.95 = 1056 mm²/m () = 1056 mm²/m () retaining wall st) × d _{stem}		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided Area of reinforcement provided Check shear resistance at w Design shear stress	required orcement required d	dstem = twall Kstem = Mst Zstem = min Zstem = 251 As_stem_tes As_stem_req = B1131 me As_stem_prov PASS - Reinfor Vstem = Vste	- Cstem - (ϕ stem em / (b × dstem ² (0.5 + $\sqrt{(0.25 - 1)}$ mm = Mstem / (0.87 = k × b × twall = = Max(As_stem_of sh = 1131 mm ² /m forcement pro	× f _{cu}) = 0.041 <i>Compressio</i> (min(K _{stem} , 0 × f _y × z _{stem}) = 390 mm ² /m les, As_stem_min vided at the = 0.057 N/mm	n <i>reinforcemen</i> 0.225) / 0.9)),0.95 = 1056 mm ² /m a) = 1056 mm ² /m <i>retaining wall s</i> a n ²) × d _{stem}		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided Area of reinforcement provided Check shear resistance at w	required orcement required d	dstem = twall Kstem = Mst Zstem = Mst Zstem = 251 As_stem_des As_stem_req = B1131 me As_stem_prov PASS - Reinfi Vstem = Vste Vadm = min	- C _{stem} - (ϕ stem em / (b × d _{stem} ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87 = k × b × t _{wall} = = Max(A _{s_stem_d}) = 1131 mm ² /m forcement pro	× f _{cu}) = 0.04 1 <i>Compressic</i> (min(K _{stem} , 0 × f _y × Z _{stem}) = 390 mm ² /m tes, As_stem_min <i>vided at the</i> = 0.057 N/mm N/mm ²), 5) ×	l on reinforcement 0.225) / 0.9)),0.95 = 1056 mm ² /m) = 1056 mm ² /m <i>retaining wall s</i> t n ² 1 N/mm ² = 5.000) × d _{stem} tem is adeo) N/mm²		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinfor Area of tension reinforcement Reinforcement provided Area of reinforcement provided Ana of reinforcement provided	required orcement required d vall stem	dstem = twall Kstem = Mst Zstem = Mst Zstem = 251 As_stem_des As_stem_req = B1131 me As_stem_prov PASS - Reinfi Vstem = Vste Vadm = min	- C _{stem} - (ϕ stem em / (b × d _{stem} ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87 = k × b × t _{wall} = = Max(A _{s_stem_d}) = 1131 mm ² /m forcement pro	× f _{cu}) = 0.04 1 <i>Compressic</i> (min(K _{stem} , 0 × f _y × Z _{stem}) = 390 mm ² /m tes, As_stem_min <i>vided at the</i> = 0.057 N/mm N/mm ²), 5) ×	n <i>reinforcemen</i> 0.225) / 0.9)),0.95 = 1056 mm ² /m a) = 1056 mm ² /m <i>retaining wall s</i> a n ²) × d _{stem} tem is adeo) N/mm²		
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Reinforcement provided Area of reinforcement provided Check shear resistance at w Design shear stress	required orcement required d vall stem	dstem = twall Kstem = Mst Zstem = Mst Zstem = 251 As_stem_req = B1131 me As_stem_prov PASS - Reinfo Vstem = Vste Vadm = min PASS	- C _{stem} - (ϕ stem em / (b × d _{stem} ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87 = k × b × t _{wall} = = Max(A _{s_stem_d}) = 1131 mm ² /m forcement pro	× f _{cu}) = 0.04 1 <i>Compressic</i> (min(K _{stem} , 0 × f _y × Z _{stem}) = 390 mm ² /m tes, As_stem_min <i>vided at the</i> = 0.057 N/mm N/mm ²), 5) ×	l on reinforcement 0.225) / 0.9)),0.95 = 1056 mm ² /m) = 1056 mm ² /m <i>retaining wall s</i> t n ² 1 N/mm ² = 5.000) × d _{stem} tem is adeo) N/mm²		

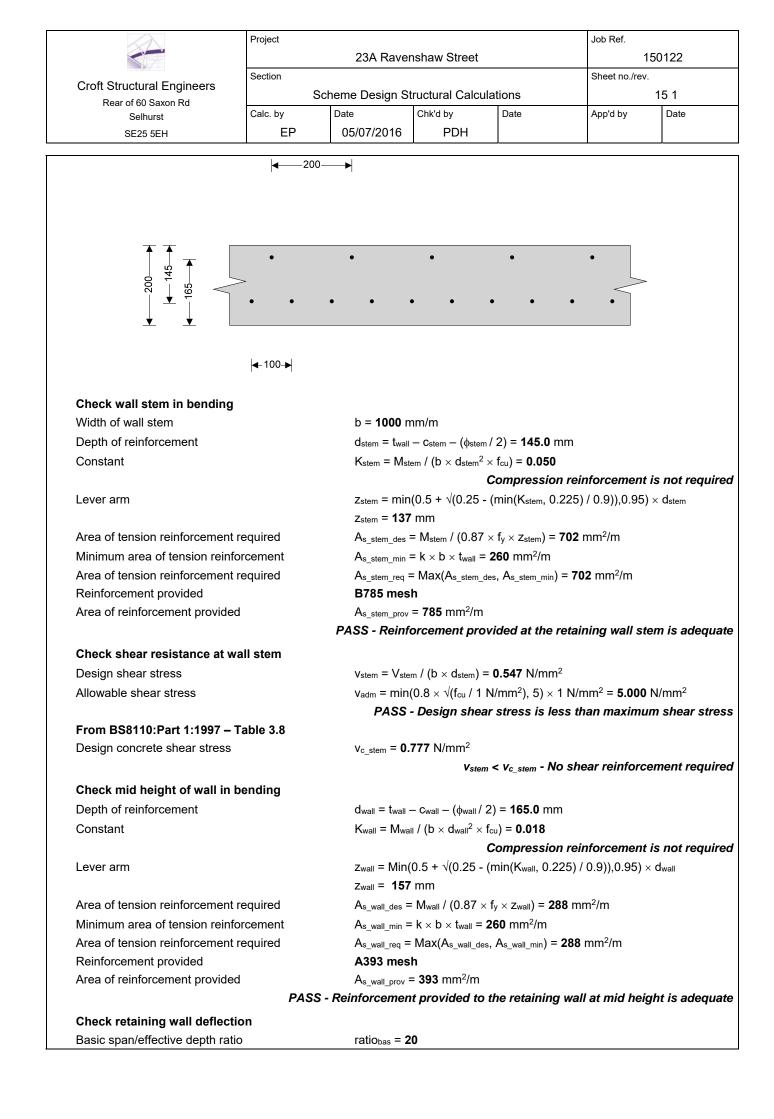



RETAINING WALL C DESIGN

Loading	_	_				_				
retaining wall C										
ground floor slab	4.5	0.5	2.25	Яĸ		7.00	15.7			
				Qk		1.50			3.4	
1st and 2nd	4.5	0.5	2.25	Яĸ	2	4.18	18.8			
				q _k		1.50			6.8	
timber roof	4.5	0.5	2.25			1.03	2.3			
				Qĸ		0.75			1.7	
timber wall	3	1	3	Яĸ		0.52	1.6			
block walls	9	1	9	gk	2	4.08	36.7			
							75.1	kN/m	11.8	kN/m

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

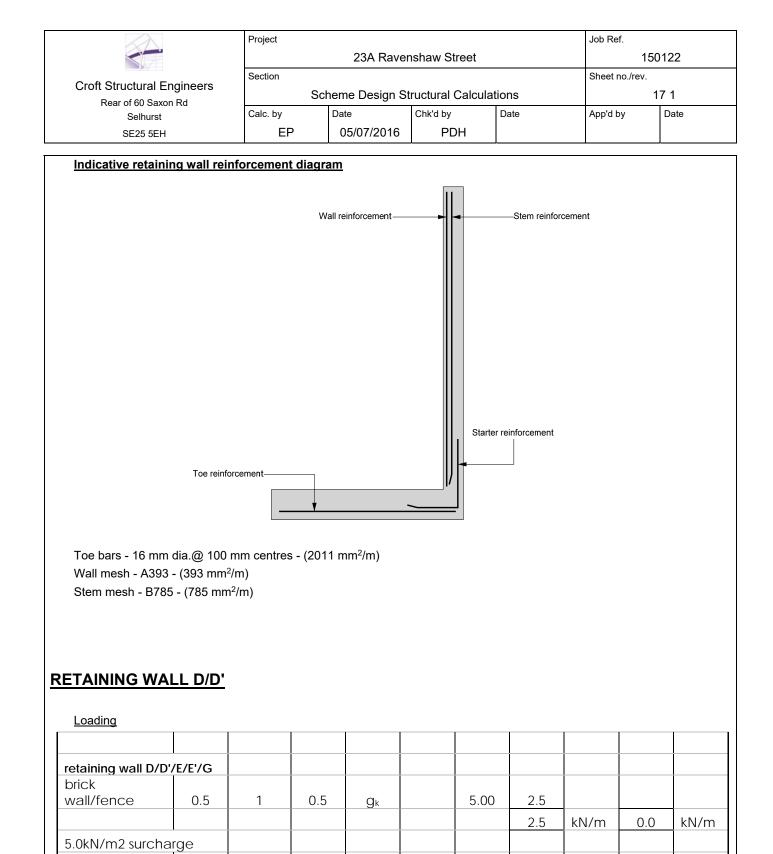


	Project		ahaw Otra t		Job Ref.	450400			
		23A Raver	nshaw Street			150122			
Croft Structural Engineers	Section				Sheet no./rev				
Rear of 60 Saxon Rd		cheme Design Si				11 1			
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date			
SE25 5EH	EP	05/07/2016	PDH						
Horizontal forces on wall									
Surcharge		F_{sur} = $K_a imes$	Surcharge ×	h _{eff} = 6.9 kN/m					
Moist backfill above water table		$F_{m_a} = 0.5$	$\times \mathbf{K}_{a} \times \gamma_{m} \times \mathbf{(h)}$	_{eff} - h _{water}) ² = 2 .	. 4 kN/m				
Moist backfill below water table		F _{m_b} = K _a >	$x \gamma_m \times (h_{eff} - h_w)$	_{vater}) × h _{water} = 1	I5.1 kN/m				
Saturated backfill		F_s = 0.5 \times	Ka × (γs- γwater)) \times h _{water} ² = 14 .	6 kN/m				
Water	F _{water} = 0.5	$ imes$ h _{water} ² $ imes$ γ _{wa}	ater = 30.7 kN/r	n					
Total horizontal load	F _{total} = F _{sur}	+ F _{m_a} + F _{m_b}	+ F _s + F _{water} =	69.7 kN/m					
Calculate total propping force)								
Passive resistance of soil in from	$F_p = 0.5 \times$	$K_p \times \cos(\delta_b) \times$	(d _{cover} + t _{base} +	- d _{ds} - d _{exc}) ² × γ m	_b = 3.2 kN/m				
Propping force	$F_{prop} = max$	(F _{total} - F _p - (V	V _{total} - W _{live}) × t	$an(\delta_b), 0 \text{ kN/m})$					
	F _{prop} = 31.	F _{prop} = 31.6 kN/m							
Overturning moments									
Surcharge		$M_{sur} = F_{sur}$	× (h _{eff} - 2 × d	_{ds}) / 2 = 11.4 kl	Nm/m				
Moist backfill above water table		M _{m a} = F _m	M_{m_a} = $F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 6.7 \text{ kNm/m}$						
Moist backfill below water table				× d _{ds}) / 2 = 18. 8					
Saturated backfill		$M_s = F_s \times ($	M_s = $F_s \times (h_{water} - 3 \times d_{ds}) / 3$ = 12.2 kNm/m						
Water		M _{water} = F _w	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 25.5 \text{ kNm/m}$						
Total overturning moment		Mot = Msur	$M_{ot} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} = 74.6 \text{ kNm/m}$						
Restoring moments									
Wall stem		M _{wall} = w _{wa}	$II \times (I_{toe} + t_{wall})$	2) = 25.5 kNm	ı/m				
Wall base		M _{base} = w _{ba}	$M_{\text{base}} = w_{\text{base}} \times I_{\text{base}} / 2 = 12.8 \text{ kNm/m}$						
Design vertical dead load		M _{dead} = W _c	M _{dead} = W _{dead} × I _{load} = 136.8 kNm/m						
Total restoring moment		M _{rest} = M _{wa}	II + M _{base} + Mo	_{dead} = 175.1 kN	m/m				
Check bearing pressure									
Total vertical reaction		R = W _{total} =	115.6 kN/m						
Distance to reaction		x _{bar} = I _{base} /	$x_{bar} = I_{base} / 2 = 950 \text{ mm}$						
Eccentricity of reaction		e = abs((l _b	_{ase} / 2) - x _{bar}) =	= 0 mm					
				Reaction a	cts within mide	dle third of ba			
Bearing pressure at toe		p _{toe} = (R / I	$_{base})$ - (6 $ imes$ R $>$	< e / I _{base} ²) = 60).8 kN/m²				
Bearing pressure at heel			, ,	$\times e / I_{base}^2) = 6$					
	PA	SS - Maximum	bearing pres	sure is less th	an allowable b	earing press			
Calculate propping forces to	top and base o	of wall							
Propping force to top of wall									
	F _{prop} _	_{_top} = (M _{ot} - M _{rest} +	= (M _{ot} - M _{rest} + R × I _{base} / 2 - F _{prop} × t _{base} / 2) / (h _{stem} + t _{base} / 2) = 1.481 kN/r						
Propping force to base of wall		F _{prop_base} =	Fprop - Fprop_to	p = 30.110 kN/	m				

		23A Rave	nshaw Street		15	0122		
Croft Structural Engineers	Section				Sheet no./rev.			
Rear of 60 Saxon Rd		Scheme Design S	1	ations		12 1		
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SE25 5EH	EP	05/07/2016	PDH					
RETAINING WALL DESIGN (BS 8002:1994)	<u> </u>						
					TEDDS calculation	n version 1.2.0		
Ultimate limit state load fact	ors							
Dead load factor		$\gamma_{f_d} = 1.4$						
Live load factor		γ _{f_l} = 1.6						
Earth and water pressure facto	or	γ _{f_e} = 1.4						
Factored vertical forces on v	vall							
Wall stem				<γ _{wall} = 19.8 kN				
Wall base			-	×γ _{base} = 18.8 k				
Applied vertical load			. –	W _{live} = 125.6 kl				
Total vertical load		W _{total_f} = w	wall_f + Wbase_f +	W _{v_f} = 164.3 kl	N/m			
Factored horizontal at-rest fe	orces on wall							
Surcharge				ge × h _{eff} = 15.6				
Moist backfill above water tabl	e		•	$_{\sf m} imes$ (h _{eff} - h _{water})				
Moist backfill below water table	e			,	_{iter} = 29.7 kN/m			
Saturated backfill				γ_{water} × h_{water}^2				
Water		$F_{water_f} = \gamma_{f_e} \times 0.5 \times h_{water}^2 \times \gamma_{water} = 42.9 \text{ kN/m}$ $F_{total_f} = F_{sur_f} + F_{m_a_f} + F_{m_b_f} + F_{s_f} + F_{water_f} = 121.9 \text{ kN/m}$						
Total horizontal load		$F_{total_f} = F_{st}$	$_{\text{ur}_{f}} + F_{\text{m}_{a}_{f}} + F_{\text{r}}$	$m_{b_f} + F_{s_f} + F_{w}$	_{ater_f} = 121.9 kN/i	n		
Calculate total propping for								
Passive resistance of soil in fro	ont of wall	$F_{p_f} = \gamma_{f_e}$	$0.5 imes K_p imes costs$	$\mathbf{s}(\delta_{b}) imes (d_{cover} + 1)$	t _{base} + d _{ds} - d _{exc}) ²	× γ _{mb} = 4.5		
kN/m		_						
Propping force				- (W _{total_f} - γ _{f_l} ×	W_{live}) × tan(δ_b), C) kN/m)		
		F _{prop_f} = 68	.o kin/m					
Factored overturning mome	nts	–			NI (
Surcharge	_	-		d _{ds}) / 2 = 25.7 k		1		
Moist backfill above water tabl					s) / 3 = 13.2 kNm	/m		
Moist backfill below water table	÷	$M_{m_bf} = F_{m_bf} \times (h_{water} - 2 \times d_{ds}) / 2 = 37.2 \text{ kNm/m}$						
Saturated backfill			$M_{s_f} = F_{s_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 24.1 \text{ kNm/m}$					
Water Total overturning moment			M _{water_f} = F _{water_f} × (h _{water} - 3 × d _{ds}) / 3 = 35.8 kNm/m M _{ot f} = M _{sur f} + M _{m a f} + M _{m b f} + M _{s f} + M _{water f} = 135.9 kNm/m					
5		iviot_t — ivisu	i_i · ivim_a_t + IVI	יינ <u>ט</u> ווי ועוג <u>ד</u> וע				
Restoring moments		NA		()) - 95 7 LNI	m/m			
Wall stem Wall base			vall_f × (Itoe + Twai base_f × Ibase / 2	ı / 2) = 35.7 kNı − 17 9 kNm/m	11/11			
Design vertical load			base_f × Ibase / 2 × $I_{load} = 226.1$					
Total restoring moment				M _{v_f} = 279.7 kM	Nm/m			
-			i ivibase_i '	<u> </u>				
Factored bearing pressure Total vertical reaction		$R_f = M_{hart}$	f = 164.3 kN/m					
Distance to reaction		_	/ 2 = 950 mm					
Eccentricity of reaction		-	_{ase} / 2) - X _{bar_f})	= 0 mm				
-		((-	,,		ts within middle	e third of b		
Bearing pressure at toe		$p_{toe_f} = (R_f)$	/ I _{base}) - (6 $ imes$ R _f	\times ef / I _{base} ²) = 8	6.5 kN/m ²			
Bearing pressure at heel		$p_{\text{heel}_{-1}} = (\text{R}_{f} / \text{I}_{\text{base}}) + (6 \times \text{R}_{f} \times \text{e}_{f} / \text{I}_{\text{base}}^{2}) = 86.5 \text{ kN/m}^{2}$						
Rate of change of base reaction	n	rate = $(p_{toe_f} - p_{heel_f}) / I_{base} = 0.00 \text{ kN/m}^2/\text{m}$						
Bearing pressure at stem / toe		$p_{stem_toe_f} = max(p_{toe_f} - (rate \times I_{toe}), 0 \text{ kN/m}^2) = 86.5 \text{ kN/m}^2$						
Bearing pressure at mid stem		$p_{\text{stem_mid}_f} = \max(p_{\text{toe}_f} - (\text{rate} \times (l_{\text{toe}} + t_{\text{wall}} / 2)), 0 \text{ kN/m}^2) = 86.5 \text{ kN/m}^2$						

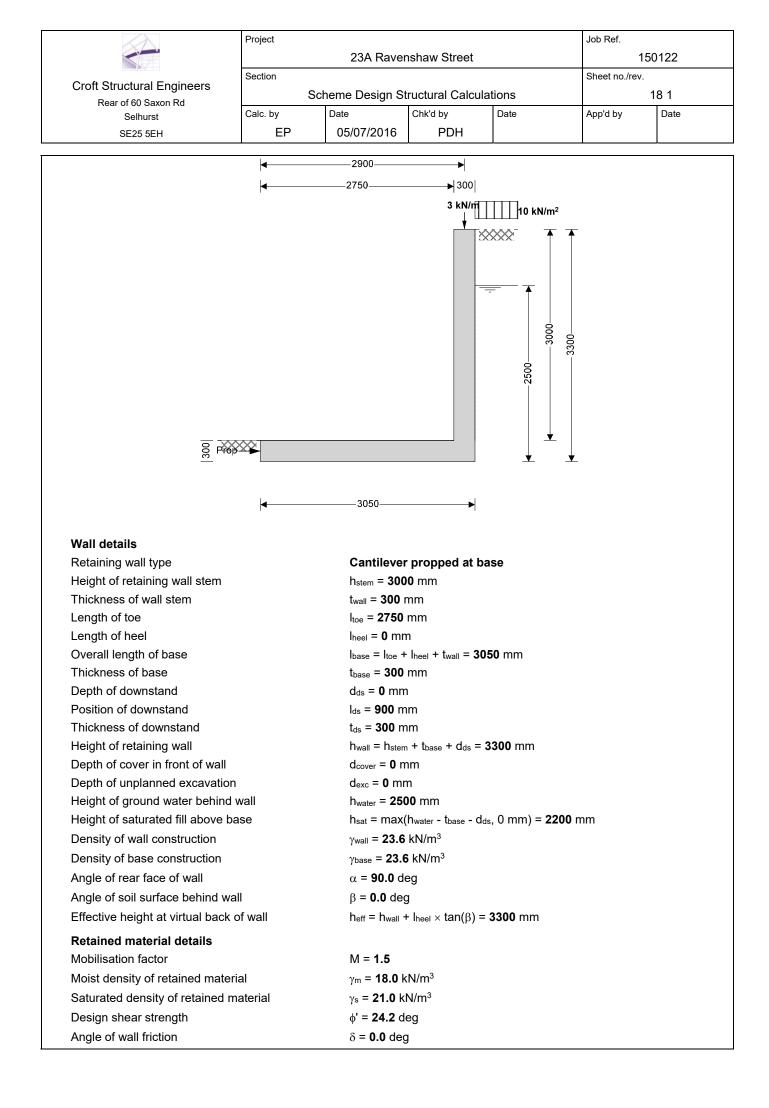
	Project	23A Raver	nshaw Street		Job Ref. 1	50122			
Croft Structural Engineers	Section				Sheet no./rev.				
Rear of 60 Saxon Rd	S	cheme Design St	ructural Calcula	ations		13 1			
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date			
SE25 5EH	EP	05/07/2016	PDH						
Bearing pressure at stem / hee	el	Pstem_heel_f	= max(p _{toe_f} - (ra	$te \times (t_{toe} + t_{wall})), ($) kN/m²) = 8	6.5 kN/m ²			
Calculate propping forces to	top and base	of wall							
Propping force to top of wall									
	Fprop top f =	= (Mot f - Mrest f + F	R _f × I _{base} / 2 - F _p		stem + t _{base} / 2	2) = 0.631 k			
Propping force to base of wall		Fprop_base_f	= F _{prop_f} - F _{prop_t}	_{op_f} = 67.936 kN/m	า				
Design of reinforced concret	te retaining wa	II toe (BS 8002:1	<u>994)</u>						
Material properties	-								
Characteristic strength of conc	rete	f _{cu} = 40 N/r	mm²						
Characteristic strength of reinfo		f _y = 500 N/	mm ²						
Base details		5							
Minimum area of reinforcemen	ht	k = 0.13 %							
Cover to reinforcement in toe	c _{toe} = 75 m								
-									
Calculate shear for toe desig	JII	\/ _ /	n) y /) = 447	NI/m				
Shear from bearing pressure				f_{f} × I_{toe} / 2 = 147					
Shear from weight of base				be × tbase = 16.9 kN - 130 1 kN/m	n/m				
Total shear for toe design		$V_{toe} = V_{toe}$	bear - Vtoe_wt_base	= 130.1 KIN/M					
Calculate moment for toe de	-								
Moment from bearing pressure	9			$n_{mid_f} \times (I_{toe} + t_{wal})$					
Moment from weight of base				$t_{base} \times (I_{toe} + t_{wall} / $	$(2)^2 / 2) = 16$. 1 kNm/m			
Total moment for toe design		$M_{toe} = M_{toe}$	_bear - Mtoe_wt_bas	_e = 124 kNm/m					
↑ ↑									
300-21-21-	>				5				
30					\leq				
<u> </u>	• •	• • •	• •	• •	•				
•									
	← 100 →								
Check toe in bending			,						
Width of toe		b = 1000 m		047.0					
Depth of reinforcement			$-c_{toe} - (\phi_{toe}/2)$						
-	Constant			$K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.066$					
Constant						is not roau			
Constant			Ċ	compression rei		=			
-		z _{toe} = min((0 .5 + √(0.25 - (r	compression rein nin(K _{toe} , 0.225) / 0		=			
Constant Lever arm		z _{toe} = min((z _{toe} = 200 r	(0.25 - (r nm	nin(K _{toe} , 0.225) / ().9)),0.95) ×	=			
Constant Lever arm Area of tension reinforcement	-	z _{toe} = min((z _{toe} = 200 r A _{s_toe_des} =	C).5 + √(0.25 - (r nm Mtoe / (0.87 × fy	nin(K _{toe} , 0.225) / (× z _{toe}) = 1427 mr).9)),0.95) ×	=			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinfor	prcement	z _{toe} = min((z _{toe} = 200 r A _{s_toe_des} = A _{s_toe_min} =	C).5 + √(0.25 - (r nm M _{toe} / (0.87 × fy k × b × t _{base} = 3	nin(K _{toe} , 0.225) / (× z _{toe}) = 1427 mr 90 mm²/m).9)),0.95) × n²/m	-			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinfo Area of tension reinforcement	prcement	z _{toe} = min((z _{toe} = 200 m As_toe_des = As_toe_min = As_toe_req =	C.5 + √(0.25 - (r nm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(A _{s_toe_des} , 4	nin(K _{toe} , 0.225) / (× z _{toe}) = 1427 mr 90 mm²/m A _{s_toe_min}) = 1427 n).9)),0.95) × n²/m	-			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Area of tension reinforcement Reinforcement provided	prcement required	z _{toe} = min((z _{toe} = 200 m As_toe_des = As_toe_min = As_toe_req = 16 mm dia	C D.5 + √(0.25 - (r mm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(A _{s_toe_des} , a h.bars @ 100 m	nin(K _{toe} , 0.225) / (× z _{toe}) = 1427 mr 90 mm²/m A _{s_toe_min}) = 1427 n).9)),0.95) × n²/m	=			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinfo Area of tension reinforcement	prcement required	z _{toe} = min((z _{toe} = 200 m As_toe_des = As_toe_min = As_toe_req = 16 mm dia As_toe_prov =	C D.5 + √(0.25 - (r mm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(A _{s_toe_des} , A bars @ 100 m 2011 mm ² /m	$min(K_{toe}, 0.225) / 0$ × $z_{toe}) = 1427 mr$ 90 mm ² /m $A_{s_toe_min}) = 1427 r$ m centres).9)),0.95) × n²/m mm²/m	d _{toe}			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinfor Area of tension reinforcement Reinforcement provided Area of reinforcement provided	prcement required	z _{toe} = min((z _{toe} = 200 m As_toe_des = As_toe_min = As_toe_req = 16 mm dia As_toe_prov =	C D.5 + √(0.25 - (r mm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(A _{s_toe_des} , A bars @ 100 m 2011 mm ² /m	nin(K _{toe} , 0.225) / (× z _{toe}) = 1427 mr 90 mm²/m A _{s_toe_min}) = 1427 n).9)),0.95) × n²/m mm²/m	d _{toe}			
Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Area of tension reinforcement Reinforcement provided	prcement required	$z_{toe} = min(t)$ $z_{toe} = 200 m$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ $16 mm dia$ $A_{s_toe_prov} =$ $PASS - Rein$	C D.5 + √(0.25 - (r mm M _{toe} / (0.87 × fy k × b × t _{base} = 3 Max(A _{s_toe_des} , A bars @ 100 m 2011 mm ² /m	$min(K_{toe}, 0.225) / 0$ $\times z_{toe}) = 1427 mr$ 90 mm ² /m As_toe_min) = 1427 m m centres by ided at the retain).9)),0.95) × n²/m mm²/m	d _{toe}			

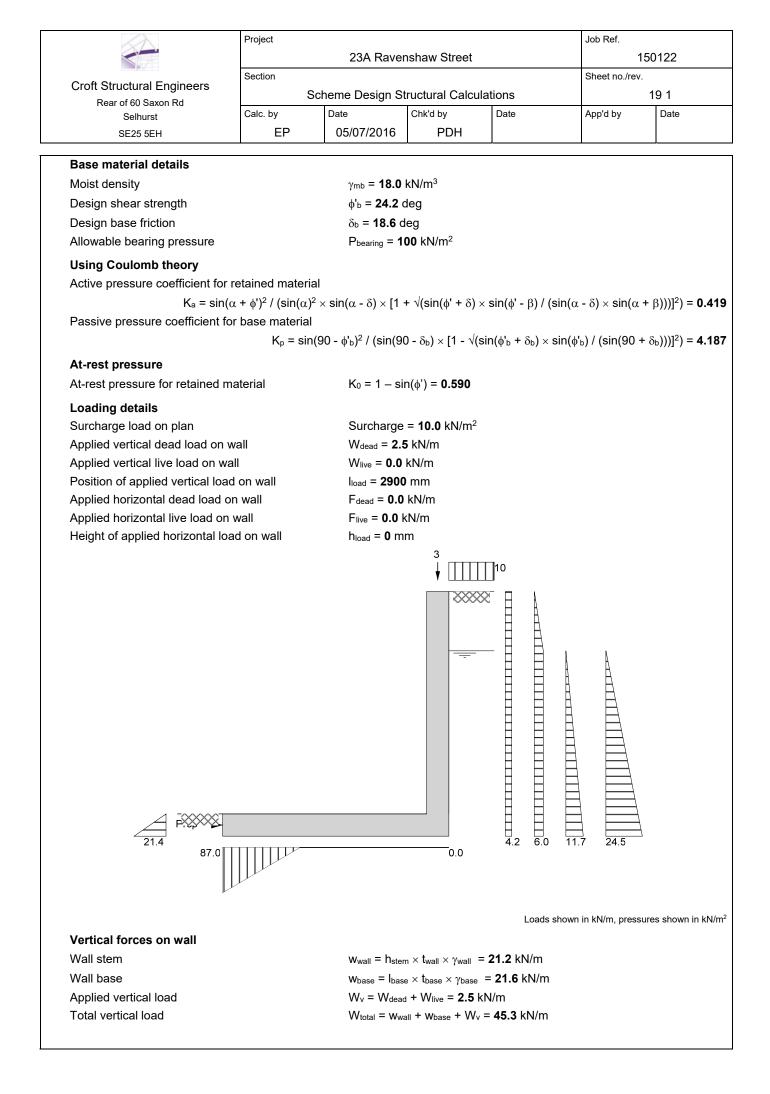
	Project	23A Rave	nshaw Street		Job Ref.	50122		
	Section				Sheet no./rev			
Croft Structural Engineers Rear of 60 Saxon Rd	5	Scheme Design S	tructural Calcu	lations		14 1		
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SE25 5EH	EP	05/07/2016	PDH					
Allowable shear stress		v _{adm} = min	(0.8 × √(f _{cu} / 1	N/mm²), 5) >	< 1 N/mm ² = 5.000	N/mm ²		
		PASS	- Design shea	r stress is l	less than maximu	m shear str		
From BS8110:Part 1:1997 -	Table 3.8							
Design concrete shear stress		v _{c_toe} = 0.8						
			Vt	oe < Vc_toe - I	No shear reinforc	ement requ		
Design of reinforced concre	te retaining wa	ull stem (BS 8002	::1994 <u>)</u>					
Material properties								
Characteristic strength of cond	crete	f _{cu} = 40 N/	mm ²					
Characteristic strength of reint	forcement	f _y = 500 N/	mm ²					
Wall details								
Minimum area of reinforcement	nt	k = 0.13 %	1					
Cover to reinforcement in ster	Cover to reinforcement in stem							
Cover to reinforcement in wall		c _{wall} = 30 n	nm					
Factored horizontal at-rest f	orces on stem							
Surcharge		F _{s_sur_f} = γ _f	$_{\rm I} \times {\rm K}_0 \times {\rm Surch}$	arge × (h _{eff} -	t _{base} - d _{ds}) = 14.2 k	xN/m		
Moist backfill above water tab	e		$F_{s_ma_f} = 0.5 \times \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat})^2 = 4.8 \text{ kN/m}$					
Moist backfill below water tabl	e		. –		d _{ds} - h _{sat}) × h _{sat} = 2			
Saturated backfill			-		_{sat} ² = 22.4 kN/m			
Water		F _{s_water_f} =	$0.5 \times \gamma_{f_e} \times \gamma_{wat}$	$h_{er} \times h_{sat}^2 = 3$	3.2 kN/m			
Calculate shear for stem de	sian							
Surcharge	9	Vs sur f=5	\times F _{s_sur_f} / 8 =	8.9 kN/m				
Moist backfill above water tab	e				/ (5 × L ³) = 1.2 kN	/m		
Moist backfill below water tabl	e			, , ,	/ 8 = 20.2 kN/m			
Saturated backfill					/ (20 × L ³))) = 19.7	ˈkN/m		
Water		V _{s_water_f} =	Fs_water_f × (1 -	$(a_1^2 \times ((5 \times L$	_) - a _l) / (20 × L ³)))	= 29.3 kN/m		
Total shear for stem design		V _{stem} = V _s _	 surf + V_s_m_a_f -	+ V _{s_m_b_f} + \	$V_{s_s_f} + V_{s_water_f} = 7$	'9.3 kN/m		
Calculate moment for stem	desian							
Surcharge		M _{s sur} = F _s	$_{sur f} \times L / 8 = 5$	5.6 kNm/m				
Moist backfill above water tab	e				b_1^2)) / (15 × L ²) = 1	.2 kNm/m		
Moist backfill below water tabl	e		$\begin{split} M_{s_m_a} &= F_{s_m_a_f} \times b_{I} \times ((5 \times L^2) - (3 \times b_{I}^2)) \ / \ (15 \times L^2) = \textbf{1.2 kNm/m} \\ M_{s_m_b} &= F_{s_m_b_f} \times a_{I} \times (2 - n)^2 \ / \ \textbf{8} = \textbf{12.1 kNm/m} \end{split}$					
Saturated backfill			$M_{s_s} = F_{s_s f} \times a_i \times ((3 \times a^2) - (15 \times a_i \times L) + (20 \times L^2))/(60 \times L^2) = 9.2 kNm/m$					
Water			,		×L)+(20×L²))/(60×L			
kNm/m				-				
Total moment for stem design		M _{stem} = M _s	_ _{sur} + M _{s_m_a} +	Ms_m_b + Ms_	_s + Ms_water = 41.7	kNm/m		
Calculate moment for wall d	esign							
Surcharge		M _{w_sur} = 9	$\times F_{s_sur_f} \times L / 1$	128 = 3.1 kN	lm/m			
Moist backfill above water tab	e	M _{w_m_a} = F	s_m_a_f × 0.577	×bı×[(bı³+5×a	aı×L²)/(5×L³)-0.577	² /3] = 1.4		
kNm/m								
Moist backfill below water tabl	e	$M_{w_m_b} = F$	$s_{m_b_f} \times a_I \times [()$	(8-n²×(4-n))²	/16)-4+n×(4-n)]/8	= 6.3 kNm/n		
Saturated backfill		$M_{w_s} = F_{s_s}$	$M_{w_s} = F_{s_s_f} \times [a_i^2 \times x \times ((5 \times L) - a_i)/(20 \times L^3) - (x - b_i)^3 / (3 \times a_i^2)] = 3.5 \text{ kNm/m}$					
Water		M _{w_water} =	$F_{s_water_f} \times [a]^2 \times$	x×((5×L)-a⊧)/	(20×L ³)-(x-b ₁) ³ /(3×	a⊧²)] = 5.3		
kNm/m								
Total moment for wall design		N4 — N4	т M т	NA NA	s + M _{w_water} = 19.7	• I. • I. • • · • •		



$ \rightarrow $	Project				Job Ref.		
		23A Ravenshaw Street				150122	
	Section				Sheet no./rev	V.	
Croft Structural Engineers Rear of 60 Saxon Rd		Scheme Design S	tructural Calcu	ulations		16 1	
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SE25 5EH	EP	05/07/2016	PDH				
Design service stress		$f_s = 2 \times f_y$	< As_stem_req / (3	3 × As_stem_prov)	= 298.1 N/mm ²		
Modification factor	factor _{tens} = m	in(0.55 + (477 N/r	nm ² - f _s)/(120 :	× (0.9 N/mm ² +	$(M_{stem}/(b \times d_{ster}))$	m ²)))),2) = 1.07	
Maximum span/effective dep	th ratio	ratio _{max} = I	atio _{bas} × facto	r _{tens} = 21.34			

Actual span/effective depth ratio


ratio_{act} = h_{stem} / d_{stem} = **20.69**


PASS - Span to depth ratio is acceptable

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

	Project				Job Ref.		
		23A Raver	nshaw Street			150122	
Croft Structural Engineers	Section				Sheet no./rev		
Rear of 60 Saxon Rd		Scheme Design S	tructural Calcu	llations		20 1	
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SE25 5EH	EP	05/07/2016	PDH				
Horizontal forces on wall							
Surcharge		F_{sur} = $K_a \times$	Surcharge × ł	n _{eff} = 13.8 kN/r	m		
Moist backfill above water tabl	е	$F_{m_a} = 0.5$	\times K _a \times γ _m \times (he	_{eff} - h _{water}) ² = 2	.4 kN/m		
Moist backfill below water table	e	F _{m_b} = Ka⇒	<γ _m × (h _{eff} - h _w	_{rater}) × h _{water} = ′	15.1 kN/m		
Saturated backfill		F_s = 0.5 $ imes$	Ka × (γs- γwater)	\times h _{water} ² = 14.	. 6 kN/m		
Water		F _{water} = 0.5	$5 imes h_{water}^2 imes \gamma_{wa}$	_{ter} = 30.7 kN/r	m		
Total horizontal load		F _{total} = F _{sur}	+ F _{m_a} + F _{m_b}	+ F _s + F _{water} =	76.6 kN/m		
Calculate propping force							
Passive resistance of soil in fro	ont of wall	F_p = 0.5 \times	$K_p imes cos(\delta_b) imes$	(d _{cover} + t _{base} +	⊢ d _{ds} - d _{exc}) ² × γ _{mb}	= 3.2 kN/m	
Propping force		F _{prop} = max	x(F _{total} - F _p - (V	$V_{total}) imes tan(\delta_b)$, 0 kN/m)		
		F _{prop} = 58.	1 kN/m				
Overturning moments							
Surcharge		$M_{sur} = F_{sur}$	\times (h _{eff} - 2 \times d _o	_{is}) / 2 = 22.8 k	Nm/m		
Moist backfill above water tabl	e	$M_{m_a} = F_{m_a}$	$_a \times (h_{eff} + 2 \times$	h_{water} - $3 imes d_{ds}$) / 3 = 6.7 kNm/m	I	
Moist backfill below water table	e	$M_{m_b} = F_{m_b}$	_b × (h _{water} - 2 >	< d _{ds}) / 2 = 18.	8 kNm/m		
Saturated backfill		$M_s = F_s \times ($	h_{water} - $3 imes d_{ds}$) / 3 = 12.2 kN	lm/m		
Water		$M_{water} = F_w$	_{rater} × (h _{water} - 3	8 × d _{ds}) / 3 = 2	5.5 kNm/m		
Total overturning moment		$M_{ot} = M_{sur}$	+ M _{m_a} + M _{m_b}	+ Ms + M _{water}	= 86 kNm/m		
Restoring moments							
Wall stem		$M_{wall} = w_{wall}$	$_{\rm II} imes$ (I _{toe} + t _{wall} /	2) = 61.6 kNn	n/m		
Wall base		M _{base} = w _{ba}	$_{\rm ase} imes {\sf I}_{ m base}$ / 2 =	32.9 kNm/m			
Design vertical dead load		$M_{dead} = W_{d}$	lead × Iload = 7.3	3 kNm/m			
Total restoring moment		M _{rest} = M _{wa}	all + M _{base} + M _d	lead = 101.8 kN	lm/m		
Check bearing pressure							
Total moment for bearing		$M_{total} = M_{re}$	_{st} - M _{ot} = 15.7	kNm/m			
Total vertical reaction		R = W _{total} =	= 45.3 kN/m				
Distance to reaction			/ R = 347 mm				
Eccentricity of reaction		e = abs((l _b	_{ase} / 2) - x _{bar}) =				
					ts outside mida	lle third of ba	
Bearing pressure at toe			$1.5 \times x_{bar}) = 87$				
Bearing pressure at heel		p _{heel} = 0 kN	N/m² = 0 kN/m	2			

PASS - Maximum bearing pressure is less than allowable bearing pressure

		23A Rave	nshaw Street		1	150122
Croft Structural Engineers	Section				Sheet no./rev	
Rear of 60 Saxon Rd		Scheme Design S	tructural Calcu	lations		21 1
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
RETAINING WALL DESIGN (BS 8002:1994					
		-			TEDDS calculat	ion version 1.2.01
Ultimate limit state load fact	ors					
Dead load factor		γ _{f_d} = 1.4				
Live load factor		γ _{f_l} = 1.6				
Earth and water pressure factor	or	γ _{f_e} = 1.4				
Factored vertical forces on v	vall					
Wall stem		$w_{wall_f} = \gamma_{f_i}$	$_{ m d} imes {\sf h}_{ m stem} imes {\sf t}_{ m wall}$ >	< γ _{wall} = 29.7 Ι	kN/m	
Wall base		$W_{base_f} = \gamma_f$	$\{d} \times I_{\text{base}} \times t_{\text{base}}$	×γ _{base} = 30.2	kN/m	
Applied vertical load			$ imes$ W _{dead} + γ f_l $ imes$			
Total vertical load		$W_{total_f} = w$	wall_f + Wbase_f +	W _{v_f} = 63.5 k	N/m	
Factored horizontal at-rest f	orces on wall					
Surcharge		$F_{sur_f} = \gamma_{f_i}$	\times K ₀ \times Surchar	$ge \times h_{eff} = 31.$. 2 kN/m	
Moist backfill above water tabl	е	$F_{m_a_f} = \gamma_f$	$_{e} imes 0.5 imes K_{0} imes \gamma$	$m \times (h_{eff} - h_{wate})$	_{er})² = 4.8 kN/m	
Moist backfill below water table	e	$F_{m_b_f} = \gamma_f$	$_{e} imes K_{0} imes \gamma_{m} imes$ (h	leff - h_{water} × h_{v}	_{water} = 29.7 kN/m	
Saturated backfill		$F_{s_f} = \gamma_{f_e}$	$\times 0.5 \times K_0 \times (\gamma_{s}$ -	$\gamma_{water}) \times h_{water}$	² = 28.9 kN/m	
Water		$F_{water_f} = \gamma_f$	_e \times 0.5 \times h _{water}	$^2 \times \gamma_{water} = 42$	2. 9 kN/m	
Total horizontal load		$F_{total_f} = F_s$	_{ur_f} + F _{m_a_f} + F	_{m_b_f} + F _{s_f} + F	_{water_f} = 137.5 kN	l/m
Calculate propping force						
Passive resistance of soil in fro	ont of wall	$F_{p_f} = \gamma_{f_e}$	$\times 0.5 \times K_p \times cos$	$\mathbf{S}(\delta_{b}) imes (d_{cover} + \mathbf{d}_{cover})$	+ t _{base} + d _{ds} - d _{exc}) ² × γ _{mb} = 4.5
kN/m						
Propping force			ax(F _{total_f} - F _{p_f}	- (W_{total_f}) × ta	n(δ _Ϸ), 0 kN/m)	
		F _{prop_f} = 1 1	1.6 kN/m			
Factored overturning mome	nts					
Surcharge			$_{\text{tr_f}} \times (h_{\text{eff}} - 2 \times$			
Moist backfill above water tabl	е				l _{ds}) / 3 = 13.2 kNr	m/m
Moist backfill below water table	e		$n_{b_f} \times (h_{water} - 2)$			
Saturated backfill			\times (h _{water} - 3 \times d			
Water			water_f \times (hwater			
Total overturning moment		$M_{ot_f} = M_{su}$	r_f + M _{m_a_f} + N	I _{m_b_f} + M _{s_f} +	M _{water_f} = 161.6 k	(Nm/m
Restoring moments						
Wall stem			$vall_{f} \times (I_{toe} + t_{wal})$			
Wall base			$base_f imes I_{base} / 2$		n	
Design vertical load			× I _{load} = 10.2 k			
Total restoring moment		M _{rest_f} = M	wall_f + Mbase_f +	M _{v_f} = 142.5	kNm/m	
Factored bearing pressure						
Total moment for bearing			rest_f - M _{ot_f} = -1	9.1 kNm/m		
Total vertical reaction			f = 63.5 kN/m			
Distance to reaction			tal_f / R _f = -301			
Eccentricity of reaction		e _f = abs((l	_{base} / 2) - x _{bar_f})		- Povend sec-	o of colouist
Rearing pressure at tea			(15 yr -) -		- Beyond scop	e oi caiculât
Bearing pressure at toe Bearing pressure at heel			(1.5 × x _{bar_f}) = kN/m² = 0 kN/n			
bearing pressure at neer			$f / (3 \times x_{bar}) =$		² /m	
Rate of change of base reaction	n	$raie = r_{e}$		133 / B KIM//		

57		23A Raver	nshaw Street		15	50122
Croft Structural Engineers	Section				Sheet no./rev.	
Rear of 60 Saxon Rd	S	cheme Design St	1	tions		22 1
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
Bearing pressure at mid stem		Pstem_mid_f =	max(p _{toe_f} - (rat	$e \times (I_{toe} + t_{wall} / 2)$)), 0 kN/m²) =	0 kN/m ²
Bearing pressure at stem / heel		Pstem_heel_f =	= max(p _{toe_f} - (rat	$te \times (I_{toe} + t_{wall})), ($	0 kN/m²) = 0 k	kN/m²
Design of reinforced concrete	e retaining wa	II toe (BS 8002:1	<u>994)</u>			
Material properties						
Characteristic strength of concr	ete	f _{cu} = 40 N/r	mm²			
Characteristic strength of reinfo	rcement	f _y = 500 N/	mm²			
Base details						
Minimum area of reinforcement		k = 0.13 %				
Cover to reinforcement in toe		c _{toe} = 75 m	m			
Calculate shear for toe design	า					
Shear from weight of base		V _{toe_wt_base}	= $\gamma_{f_d} \times \gamma_{base} \times I_{to}$	_e × t _{base} = 27.3 ki	N/m	
Total shear for toe design			wt_base = 27.3 kN			
Calculate moment for toe des	ign					
Moment from weight of base	-	Mtoe wt base	= $(\gamma_{f_d} \times \gamma_{base} \times t)$	$_{ m base} imes (I_{ m toe} + t_{ m wall} /$	2) ² / 2) = 41.	7 kNm/m
Total moment for toe design			_wt_base = 41.7 kN		, ,	
221	> • •				•	
300	> • • ←100→	•••	•••	• •	•	
300	> • • • ← 100 →		••	•••	•	
	> • • ← 100 →	• • • • •	• •	• •	•	
Check toe in bending	> • • ← 100 →		• • • nm/m – c _{toe} – (φ _{toe} / 2) :	••••	·	
Check toe in bending Width of toe	> • • ← 100 →	$d_{toe} = t_{base}$	$- c_{toe} - (\phi_{toe} / 2) =$ / (b × d _{toe} ² × f _{cu})	= 0.021	•	
Check toe in bending Width of toe Depth of reinforcement Constant	> • • €100-▶	d _{toe} = t _{base} - K _{toe} = M _{toe}	$- c_{toe} - (\phi_{toe} / 2) =$ / (b × d_{toe} ² × f _{cu})	= 0.021 ompression reil		•
Check toe in bending Width of toe Depth of reinforcement	> • • ←100→	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = min(0)$	$-c_{toe} - (\phi_{toe} / 2) = \frac{1}{2}$ $/ (b \times d_{toe}^2 \times f_{cu})$ C_{toe} C_{toe} C_{toe} C_{toe} C_{toe}	= 0.021		•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm		$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = min(0)$ $Z_{toe} = 210 r$	$-c_{toe} - (\phi_{toe} / 2) = \frac{1}{2}$ $/ (b \times d_{toe}^2 \times f_{cu})$ C_{toe} $0.5 + \sqrt{0.25 - (mmm)}$	= 0.021 ompression reii in(K _{toe} , 0.225) / (0.9)),0.95) × d	•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re	equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = min(0)$ $z_{toe} = 210$ $A_{s_toe_des} = $	$-c_{toe} - (\phi_{toe} / 2) = \frac{1}{2}$ $/ (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 = \frac{1}{2}$ $M_{toe}^2 = \frac{1}{2}$ $M_{toe}^2 = \frac{1}{2}$	= 0.021 ompression reii in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm	0.9)),0.95) × d	•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement ro Minimum area of tension reinfor	equired	$d_{toe} = t_{base}$ $K_{toe} = M_{toe}$ $z_{toe} = min(0$ $z_{toe} = 210 r$ $A_{s_toe_des} =$ $A_{s_toe_min} =$	$-c_{toe} - (\phi_{toe} / 2) =$ $/ (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 = \sqrt{(0.25 - (mmmmmm))}$ $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 38$	= 0.021 ompression reii iin(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 2 0 mm ² /m	0.9)),0.95) × d ²/m	•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinforcement re	equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 m$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} =$	$-c_{toe} - (\phi_{toe} / 2) =$ $/ (b \times d_{toe}^2 \times f_{cu})$ C_{to} $D.5 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	= 0.021 ompression reii in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm	0.9)),0.95) × d ²/m	•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided	equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 210 \text{ r}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = B503 \text{ mes}$	$-c_{toe} - (\phi_{toe} / 2) =$ $/ (b \times d_{toe}^2 \times f_{cu})$ C_{to} $D.5 + (0.25 - (mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	= 0.021 ompression reii iin(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 2 0 mm ² /m	0.9)),0.95) × d ²/m	•
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinforcement re	equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 210 \text{ r}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_min} = B503 \text{ mes}$ $A_{s_toe_prov} = 0$	$- c_{toe} - (\phi_{toe} / 2) = \frac{1}{2} (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 = 0$ $Max(A_{s_toe_t} = 3)$ $Max(A_{s_t} = 3)$ Ma	= 0.021 ompression reii iin(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 20 mm ² /m _{As_toe_min}) = 456 m	0.9)),0.95) × d ² /m nm ² /m	ltoe
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided	equired cement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 210 \text{ r}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_min} = B503 \text{ mes}$ $A_{s_toe_prov} = 0$	$- c_{toe} - (\phi_{toe} / 2) = \frac{1}{2} (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 = 0$ $Max(A_{s_toe_t} = 3)$ $Max(A_{s_t} = 3)$ Ma	= 0.021 ompression reii iin(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 2 0 mm ² /m	0.9)),0.95) × d ² /m nm ² /m	ltoe
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided Check shear resistance at toe	equired cement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ $B503 \text{ mes}$ $A_{s_toe_prov} =$ $PASS - Reir$	$-c_{toe} - (\phi_{toe} / 2) =$ $/ (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 = 0$ $M_{toe} / (0.87 \times f_y + b_{toe}) = 38$	= 0.021 ompression rein in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 90 mm ² /m s _{s_toe_min}) = 456 m vided at the reta	0.9)),0.95) × d ² /m nm ² /m	ltoe
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided	equired cement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_min} = B503 \text{ mes}$ $A_{s_toe_prov} = PASS - Rein$ $v_{toe} = V_{toe} / V_{toe} V_{toe} / V_{toe} / V_{toe} = V_{toe} / V_$	$-c_{toe} - (\phi_{toe} / 2) = -(\phi_{toe} /$	= 0.021 ompression rein in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 00 mm ² /m Ns_toe_min) = 456 m vided at the reta 3 N/mm ²	0.9)),0.95) × d ² /m nm ² /m aining wall to	l _{toe} De is adeq
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress	equired cement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ $B503 \text{ mes}$ $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / v_{adm} = min($	$-c_{toe} - (\phi_{toe} / 2) = -(\phi_{toe} /$	= 0.021 ompression rein in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 90 mm ² /m s _{s_toe_min}) = 456 m vided at the reta	0.9)),0.95) × d ² /m nm²/m aining wall to nm² = 5.000 N	be <i>is adeq</i>
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ $B503 \text{ mes}$ $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / v_{adm} = min($	$-c_{toe} - (\phi_{toe} / 2) = -(\phi_{toe} /$	= 0.021 ompression rein in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 20 mm ² /m ks_toe_min) = 456 m vided at the reta 3 N/mm ² (mm ²), 5) × 1 N/m	0.9)),0.95) × d ² /m nm²/m aining wall to nm² = 5.000 N	be <i>is adeq</i> N/mm²
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress	equired rcement equired	$d_{toe} = t_{base} \cdot K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 210 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_req} =$ $B503 \text{ mes}$ $A_{s_toe_prov} =$ $PASS - Reir$ $v_{toe} = V_{toe} / v_{adm} = min($	$-c_{toe} - (\phi_{toe} / 2) =$ $/ (b \times d_{toe}^2 \times f_{cu})$ $C_{toe}^2 \times f_{cu} =$ $C_{toe}^2 \times f_{cu} =$ $C_{toe}^2 \times f_{cu} =$ $M_{toe} / (0.25 - (mmm)$ $M_{toe} / (0.87 \times f_y)$ $k \times b \times t_{base} = 39$ $Max(A_{s_toe_des}, A_{toe_des}, A_{$	= 0.021 ompression rein in(K _{toe} , 0.225) / (× z _{toe}) = 456 mm 20 mm ² /m ks_toe_min) = 456 m vided at the reta 3 N/mm ² (mm ²), 5) × 1 N/m	0.9)),0.95) × d ² /m nm²/m aining wall to nm² = 5.000 N	be <i>is adeq</i>

	Project	23A Raver	nshaw Street		Job Ref. 1	50122
One ft Obrecht und En eine eine	Section				Sheet no./rev	
Croft Structural Engineers Rear of 60 Saxon Rd	S	Scheme Design St	ructural Calcul	ations		23 1
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			
Design of reinforced concre	ete retaining wa	II stem (BS 8002	:1994)			
Material properties						
Characteristic strength of con	crete	f _{cu} = 40 N/r				
Characteristic strength of rein	forcement	f _y = 500 N/	mm ²			
Wall details						
Minimum area of reinforcement	nt	k = 0.13 %				
Cover to reinforcement in ster	n	c _{stem} = 75 r	nm			
Cover to reinforcement in wall	l	c _{wall} = 30 m	nm			
Factored horizontal at-rest f	orces on stem					
Surcharge		$F_{s_sur_f} = \gamma_{f_f}$	$_{\rm I} \times {\rm K}_0 \times {\rm Surcha}$	$arge \times (h_{eff} - t_{base})$	- d _{ds}) = 28.3 k	κN/m
Moist backfill above water tab	le			$\gamma_{\rm m} \times (h_{\rm eff} - t_{\rm base} -$		
Moist backfill below water tabl	le		. –	(h _{eff} - t _{base} - d _{ds} - h		
Saturated backfill				$\gamma_{s-\gamma_{water}} \times h_{sat}^2 =$		
Water			. =	_{er} × h _{sat} ² = 33.2 k		
Calculate shear for stem de	sian		1.72			
Shear at base of stem	sign			$F_{s_m_b_f} + F_{s_s_f}$	- E	(-33k
		v stem – 1 s_s	sur_t ' i s_m_a_t '	IS_M_D_T ' IS_S_T	• I s_water_t - I p	orop_t - 3.3 r
Calculate moment for stem	design				. ,	
Surcharge			•	t _{base}) / 2 = 46.7 kl		
Moist backfill above water tab				at + h _{eff} - d _{ds} + t _{bas}	_{se} / 2) / 3 = 12	2 .5 kNm/m
Moist backfill below water tabl	e			= 28.8 kNm/m		
Saturated backfill		$M_{s_s} = F_{s_s}$	_f × h _{sat} / 3 = 16	5.4 kNm/m		
Water		$M_{s_water} = F$	$s_{water_f} imes h_{sat} /$	3 = 24.4 kNm/m		
	1	M _{stem} = M _s	_sur + M _{s_m_a} + I	$M_{s_m_b} + M_{s_s} + N$	Is_water = 128.	B kNm/m
Total moment for stem design	•					
Total moment for stem design	> • •	• • •	•	• •	•	
300	► •	• • •	• • •	••	•	
300	►-100- >	• • •	•	••	•	
	►-100- >	• • • •	• •	••	•	
Check wall stem in bending	►-100- >			/ 2) = 217.0 mm	•	
Check wall stem in bending Width of wall stem	►-100- >	d _{stem} = t _{wall}			•	
Check wall stem in bending Width of wall stem Depth of reinforcement	►-100- >	d _{stem} = t _{wall} K _{stem} = M _{ste}	— Cstem — (φstem em / (b × dstem ² :	× f _{cu}) = 0.068 Compression re		-
Check wall stem in bending Width of wall stem Depth of reinforcement	►-100- >	d _{stem} = t _{wall} K _{stem} = M _{ste}	- Cstem - (∮stem em / (b × dstem ² ; (0.5 + √(0.25 -	× f _{cu}) = 0.068		-
Check wall stem in bending Width of wall stem Depth of reinforcement Constant	 ▲ 100 → 	d _{stem} = t _{wall} K _{stem} = M _{st} z _{stem} = min z _{stem} = 199	- C _{stem} - (φ _{stem} em / (b × d _{stem} ²) (0.5 + √(0.25 - mm	× f _{cu}) = 0.068 Compression re	5) / 0.9)),0.95)	-
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm		d _{stem} = t _{wall} K _{stem} = M _{st} z _{stem} = min z _{stem} = 199 A _{s_stem_des} :	- C _{stem} - (φ _{stem} em / (b × d _{stem} ²) (0.5 + √(0.25 - mm	× f _{cu}) = 0.068 <i>Compression re</i> (min(K _{stem} , 0.225 × f _y × z _{stem}) = 148	5) / 0.9)),0.95)	-
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement	• • • • • • •	d _{stem} = t _{wall} K _{stem} = M _{st} z _{stem} = min z _{stem} = 199 A _{s_stem_des} = A _{s_stem_min} =	- C _{stem} - (ϕ stem em / (b × d _{stem} ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87) = k × b × t _{wall} =	× f _{cu}) = 0.068 <i>Compression re</i> (min(K _{stem} , 0.225 × f _y × z _{stem}) = 148	5) / 0.9)),0.95) 8 7 mm²/m	-
Check wall stem in bending Width of wall stem Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	• • • • • • •	d _{stem} = t _{wall} K _{stem} = M _{st} z _{stem} = min z _{stem} = 199 A _{s_stem_des} = A _{s_stem_min} = A _{s_stem_min} =	- C _{stem} - (ϕ stem em / (b × d _{stem} ²) (0.5 + $\sqrt{(0.25 - 1)}$ mm = M _{stem} / (0.87) = k × b × t _{wall} =	× f _{cu}) = 0.068 <i>Compression re</i> (min(K _{stem} , 0.225 × f _y × z _{stem}) = 148 390 mm ² /m _{es} , A _{s_stem_min}) = 1	5) / 0.9)),0.95) 8 7 mm²/m	-

	Project				Job Ref.	
	23A Ravenshaw Street				150122	
Creft Structural Engine and	Section				Sheet no./rev.	
Croft Structural Engineers Rear of 60 Saxon Rd	Scheme Design Structural Calculations				24 1	
Selhurst	Calc. by	Date	Chk'd by	Date	App'd by	Date
SE25 5EH	EP	05/07/2016	PDH			

PASS - Reinforcement provided at the retaining wall stem is adequate

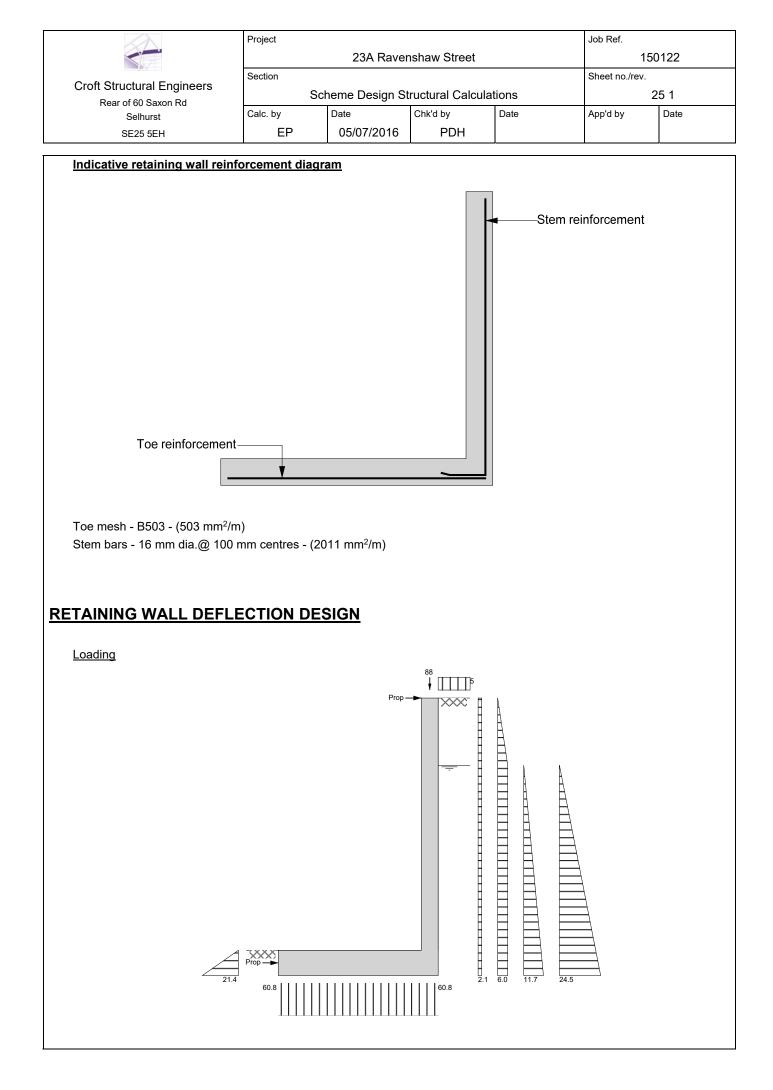
Check shear resistance at wall stem

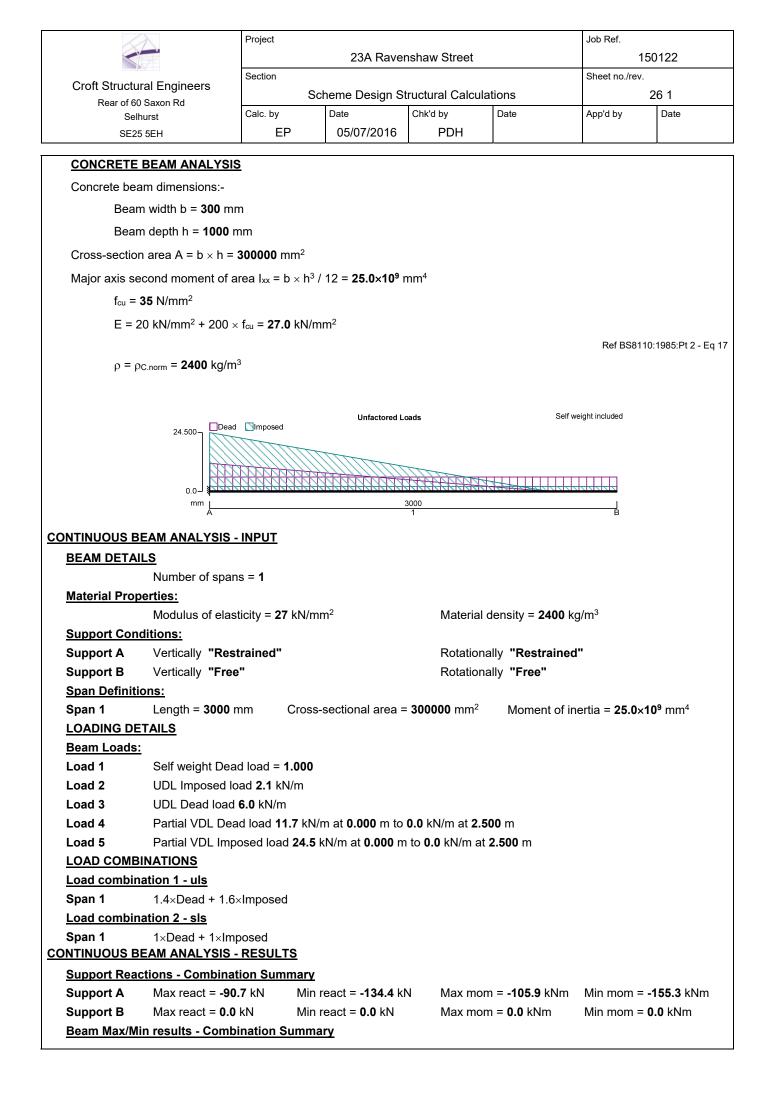
Design shear stress

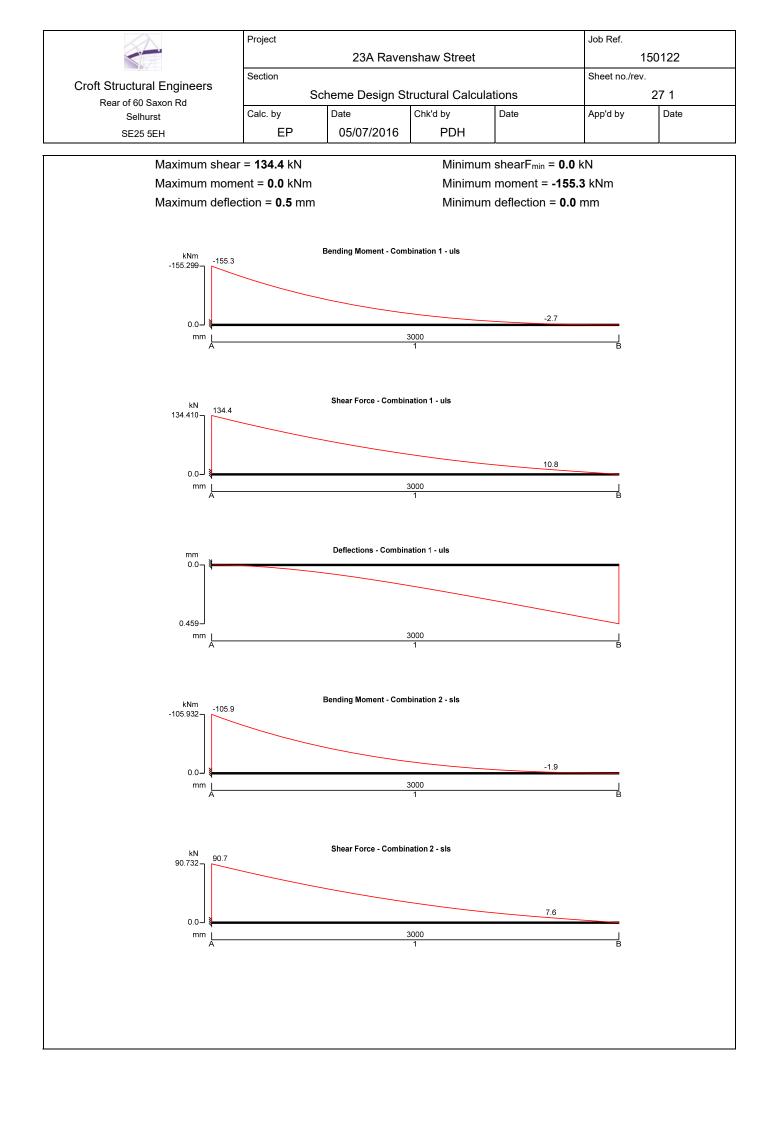
Allowable shear stress

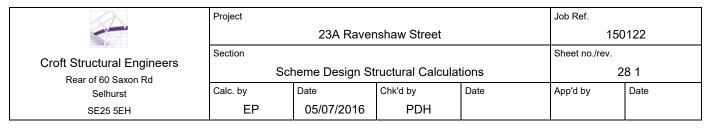
 v_{stem} = V_{stem} / (b × d_{stem}) = 0.015 N/mm²

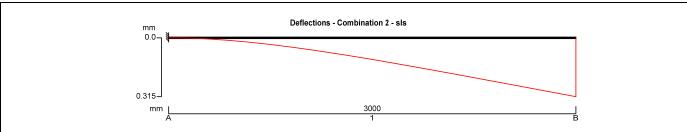
 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5) \times 1 N/mm^2 = 5.000 N/mm^2$


PASS - Design shear stress is less than maximum shear stress


From BS8110:Part 1:1997 – Table 3.8


Design concrete shear stress


vc_stem = 0.840 N/mm²


v_{stem} < v_{c_stem} - No shear reinforcement required

CROFT STRUCTURAL	Project:	23 Ravensl	naw Street		Section	Sheet	GMA - 1
Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH	Date By Checked	Jun-16 pdh	Rev	Date	Description		
T: 020 8684 4744 W: www.croftse.co.uk	Job No	150122	Status			Rev	
Ref Movement of clo	sest neigł	nbouring pro	perty (No. 2	21 Rave	nshaw Street)	_ L	
Neighbouring buildinBuilding width, L =Distance to furthest poHeight H=108	600	0 mm g from excavatio	on & installatior	n, L ₁ =	6000 mm		
L/H = 0.	56				_		
		New	' Basement		Excav'n depth H _b =	= 3.5	m
					analysis depth, D =	3.5	m

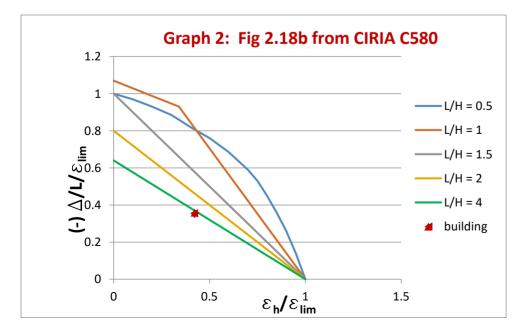
Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves).

Movement Assessment CIRIA C580: Embedded retaining walls - guidance for economic design

Table A			Table B				
distance from		nt due to wall allation	distance from wall		ent due to cavation		
wall in mm (x)	horizontal (δ_h) in mm	vertical (δ _v) in mm	in mm (x)	horizont al (δ _h) in mm	vertical (δ_v) in mm		
0	0.0	0.0	0	-5.3	-1.4		
2000	0.0	0.0	2000	-4.5	-2.7		
4000	0.0	0.0	4000	-3.8	-2.3		
6000	0.0	0.0	6000	-3.0	-1.6		
8000	0.0	0.0	8000	-2.3	-0.9		
10000	0.0	0.0	10000	-1.5	-0.4		
12000	0.0	0.0	12000	-0.8	-0.07		
14000	0.0	0.0	14000	0.0	0.0		
16000	0.0	0.0	16000	0.0	0.0		
18000	0.0	0.0	18000	0.0	0.0		
20000	0.0	0.0	20000	0.0	0.0		
22000	0.0	0.0					
24000	0.0	0.0					
26000	0.0	0.0					
28000	0.0	0.0					
30000	0.0	0.0					
32000	0.0	0.0					

Table C								
Distance from	Total N	lovement	Total Movement					
wall in m (x)	horizont al (δ _h) in mm	vertical (δ_v) in mm	heave (in mm)	combined (in mm)				
0	-5.3	-1.4	6.4	5.0				
2	-4.5	-2.7	3.5	0.8				
4	-3.8	-2.3	1.2	-1.1				
6	-3.0	-1.6	0.6	-1.0				
8	-2.3	-0.9	0.0	-0.9				
10	-1.5	-0.4	0.0	-0.4				
12	-0.8	-0.1	0.0	-0.1				
14	0.0	0.0	0.0	0.0				
16	0.0	0.0	0.0	0.0				
18	0.0	0.0	0.0	0.0				
20	0.0	0.0	0.0	0.0				

Potential mov	vement due to ex	<u>cavati</u>	on of wall			
using parameter	rs from Table 2.4 of CI	RIA C580	0			
(high stiffness: ex	cavation will be prop	pped du	ring construction)			
Horizontal Surfac	e Movement / excav	vation de	epth	=	-0.15%	
max δ _r	-0.15%	х	3500	=	-5.25	mm
Distance behind	I wall to negligible m	ovemer	it (multiple of excav'n d	=	4	
$L_0 =$	3500	х	4	=	14000	mm
Vertical Surface	Movements					
Distance behind	I wall to negligible m	ovemer	nt (multiple of excav'n d	=	3.5	
$L_0 =$	3500	х	3.5	=	12250	mm
Total differential	movement - 21 Rave	nshaw				
(from	Graph 1, Sheet GM	1A - 2)				
Total H	lorizontal Movement			δ _b =	1.9	mm


Total Holizonial Movement	o _h –	1.7	TTITT
Total Vertical Movement	$\Delta =$	1.6	mm

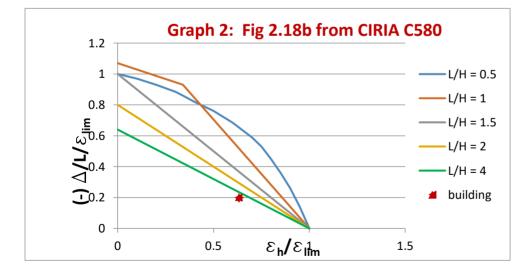
TOTAL STRAIN (EXCAVATION, INSTALLATION AND HEAVE) -

Table 2.5 CIRIA C580				
Category of Damage	Normal Degree	Limiting Tensile	Strai	in %
0	Negligible	0.00%	-	0.05%
1	Very slight	0.05%	-	0.075%
2	Slight	0.075%	-	0.15%
3	Moderate	0.15%	-	0.30%
4 to 5	Severe to Very Sever	re >		0.30%

Max Anticipated Damage may be categorised as 'Very Slight'; Category 1

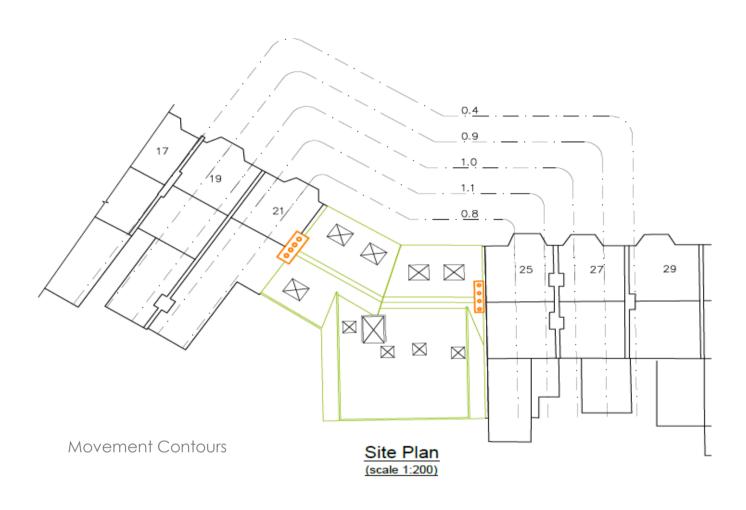
$\epsilon_{\sf lim}$	=	0.075%		
ϵ_{h}	=	0.032%	€ _h /€ _{lim} =	0.42
Δ/L	=	0.027%	$\Delta/L/\epsilon_{lim}$ =	0.36

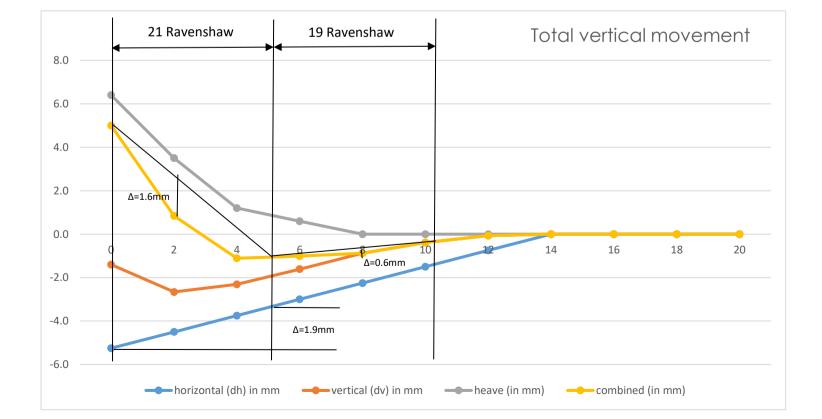
Total differential movement - 19 Ravenshaw


(from Graph 1, Sheet GMA - 2)			
Total Horizontal Movement	δ _h =	1.9	mm
Total Vertical Movement	$\Delta =$	0.6	mm

TOTAL STRAIN (EXCAVATION, INSTALLATION AND HEAVE) -

Table 2.5 CIRIA C580						
Category of Damage	Normal Degree	Limiting Tensile Strai	n %			
0	Negligible	0.00% -	0.05%			
1	Very slight	0.05% -	0.075%			
2	Slight	0.075% -	0.15%			
3	Moderate	0.15% -	0.30%			
4 to 5	Severe to Very Sever	re >	0.30%			


Max Anticipated Damage may be categorised as 'Negligible'; Category 0


ϵ_{lim}	=	0.050%		
ϵ_{h}	=	0.032%	€ _h /€ _{lim} =	0.63
Δ/L	=	0.010%	$\Delta/L/\epsilon_{lim} =$	0.20

By inspection, No. 27 will be similar

CROFT STRUCTURAL	Project:	23 Ravensh	aw Street		Section	Sheet	GMA - 2
Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH	Date By Checked	Jun-16 pdh	Rev	Date	Description	•	
T: 020 8684 4744 W: <u>www.croftse.co.uk</u>	Job No	150122	Status			Rev	
Ref Movement of clos	est neigh	bouring prop	erty (No. 21	Raven	shaw Street)	•	

