

ACOUSTICS

## ENVIRONMENTAL ACOUSTIC IMPACT ASSESSMENT

The Royal Free NHS Trust Pond Street Hampstead London NW3 2QG

East 12B Roof

Reference : CS8419-01 Revision : Revision A Status : Planning Issue Issue Date : 21<sup>st</sup> July 2021

**Prepared By:** 

Stuart Metcalle

Stuart Metcalfe MIOA

**CLIENT:** 

Ansell & Bailey Limited 99-101 Farringdon Road London EC1R 3BN

# ANSELL+BAILEY



- 1.0 Introduction
- 2.0 Acoustic Criteria
- 3.0 Plant Location and Measurement Position
- 4.0 Existing Sound Climate
- 5.0 Noise Survey
  - 5.1 Measurements
  - 5.2 Weather during Survey Period
  - 5.3 Instrumentation
  - 5.4 Survey Results
- 6.0 Assessment Methodology: BS4142:2014
- 7.0 Noise Assessment
- 8.0 Recommendations
- 9.0 Conclusion
- 10.0 Results Summary
- 11.0 Results Graph
- 12.0 Appendix

Glossary of Terms Calculations Calibration Certificates



## ACOUSTICS

### **1** Introduction

Conabeare Acoustics Limited have been commissioned by Ansell & Bailey Limited to undertake an Acoustic Survey and BS4142:2014 assessment in relation to noise emissions of proposed plant at The Royal Free London Hospital, Pond Street, Hampstead, London NW3 2QG for planning purposes.

The Survey was undertaken by Stuart Metcalfe MIOA who has been practicing in Building Services Acoustics and Noise Control Engineering for in excess of 30 years, is a Member of the Institute of Acoustics (MIOA) and is a Director at Conabeare Acoustics Ltd.

## 2 Acoustic Criteria

#### BS4142:2014 Methods for rating and assessing industrial and commercial sound.

BS4142:2014 gives a method for rating sound from industrial and commercial sources affecting people inside or outside dwellings or premises used for residential purposes.

An initial estimate of the significance of the sound from the industrial/commercial nature can be assessed by subtracting the measured background noise level from the rating level (this is the specific sound level of the source with any corrections or penalties for distinctive acoustic characteristics).

Typically, the greater the difference, the greater the magnitude of the impact.

The site is located within the London Borough of Camden demise which has adopted the National Planning Policy Guidelines and as such References and evaluations are to be made to the National Planning Policy Framework 2012 (NPPF) and the Noise Policy Statement for England 2010 (NPSE).

There are several key phrases within the NPSE aims and these are discussed below. "Significant adverse" and "adverse"

 $NOEL - No \ Observed \ Effect \ Level$  - This is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

*LOAEL* – *Lowest Observed Adverse Effect Level* - This is the level above which adverse effects on health and quality of life can be detected. Extending these concepts for the purpose of this NPSE leads to the concept of a significant observed adverse effect level.

*SOAEL* – *Significant Observed Adverse Effect Level* - This is the level above which significant adverse effects on health and quality of life occur.



## ACOUSTICS

This Camden requirement for noise exposure are detailed in the Local Plan Appendix 3: Noise thresholds which is reproduced thus;

#### **Industrial and Commercial Noise Sources**

A relevant standard or guidance document should be referenced when determining values for LOAEL and SOAEL for non-anonymous noise. Where appropriate and within the scope of the document it is expected that British Standard 4142:2014 'Methods for rating and assessing industrial and commercial sound' (BS 4142) will be used. For such cases a 'Rating Level' of 10 dB below background (15dB if tonal components are present) should be considered as the design criterion).

| Existing Noise<br>sensitive<br>receptor | Assessment<br>Location                                                                                              | Design<br>Period | LOAEL (Green)                                                                                      | LOAEL to<br>SOAEL (Amber)                                                                                                  | SOAL (Red)                                                                                                       |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Dwellings**                             | Garden used for<br>main amenity<br>(free field) and<br>Outside living<br>or dining or<br>bedroom<br>window (façade) | Day              | 'Rating level'<br>10dB* below<br>background                                                        | 'Rating level'<br>between 9dB<br>below and 5dB<br>above<br>background                                                      | 'Rating level'<br>greater than<br>5dB above<br>background                                                        |
| Dwellings**                             | Outside<br>bedroom<br>window (façade)                                                                               | Night            | 'Rating level'<br>10dB* below<br>background and<br>no events<br>exceeding<br>57dB <sub>LAmax</sub> | 'Rating level'<br>between 9dB<br>below and 5dB<br>above<br>background or<br>noise events<br>between 57dB<br>and 88dB LAmax | 'Rating level'<br>greater than<br>5dB above<br>background<br>and/or events<br>exceeding<br>88dB <sub>LAmax</sub> |

**Table C:** *Noise levels applicable to proposed industrial and commercial developments (including plant and machinery)* 

\*10dB should be increased to 15dB if the noise contains audible tonal elements. (day and night). However, if it can be demonstrated that there is no significant difference in the character of the residual background noise and the specific noise from the proposed development then this reduction may not be required. In addition, a frequency analysis (to include, the use of Noise Rating (NR) curves or other criteria curves) for the assessment of tonal or low frequency noise may be required.

\*\*levels given are for dwellings, however, levels are use specific and different levels will apply dependent on the use of the premises.

The periods in Table C correspond to 0700 hours to 2300 hours for the day and 2300 hours to 0700 hours for the night. The Council will take into account the likely times of occupation for types of development and will be amended according to the times of operation of the establishment under consideration.



ACOUSTICS

# There are certain smaller pieces of equipment on commercial premises, such as extract ventilation, air conditioning units and condensers, where achievement of the rating levels (ordinarily determined by a BS:4142 assessment) may not afford the necessary protection. In these cases, the Council will generally also require a NR curve specification of NR35 or below, dependant on the room (based upon measured or predicted Leq,5mins noise levels in octave bands) 1 metre from the façade of affected premises, where the noise sensitive premise is located in a quiet background area.



## ACOUSTICS

## 3 Plant Location and Measurement Position

The site is located on Pond Street in the Hampstead District in North West London.

The site is bordered by Pond Street to the North, Fleet Road to the East, Aspern Grove to the South and the A502 Haverstock Hill to the West.

The closest sound sensitive façades are as below;

- 1. The top floor properties in The Panoramic Development at the junction of Fleet Road and Pond Street which are approximately 40 metres from the proposed plant location with screening from the building edge.
- 2. The properties in Anne Bryans House which are approximately 100 metres from the proposed plant location with screening from the building edge.
- 3. The properties to the rear of Aspern Grove which are approximately 130 metres from the proposed plant location with line of sight screening from the building edge.

#### Fig. 1 - View of Property Looking South



**Sound Sensitive Façade 3** 

Sound Sensitive Façade 2



Fig 2 – Measuring Location looking towards Proposed Plant Location



Fig 3 –Sound Sensitive Façade at Panoramic Development



Conabeare Acoustics Limited 11 Chiltern Enterprise Centre, Station Road, Theale, Berkshire. RG7 4AA Telephone 0118 930 3650 Facsimile 0118 930 3912 <u>sales@conabeare.co.uk</u>



Fig 4 –Sound Sensitive Façade at Anne Bryans House



Fig 5- Proposed Plant Location looking towards Measuring Location





## ACOUSTICS

## 4 Existing Noise Climate

The area is generally a mixture of commercial, healthcare and residential premises with plant noise from the area being adjudged to be the dominant background noise source during the survey period.

The survey was located in a position away from other sound sources and is deemed to be representative of the background noise levels in the area despite being fairly consistent in nature.

#### 5 Noise Survey

#### 5.1 Measurements

The Survey commenced at approximately 09:00 hours on Thursday 27<sup>th</sup> May 2021 until approximately 09:30 hours on Friday 28<sup>th</sup> May 2021.

The Analyser was programmed to record 15 minute sampling periods over the survey duration.

The microphone was located on a balustrade at approximately 1.2 metres above a reflecting plane.

The measurements and their interpretation are in accordance with BS 7445: Parts 1 and 2. All readings are Sound Pressure Levels (Lp) in dB (re  $20\mu$ Pa).

#### 5.2 Weather during Survey Period

The weather was warm and mostly dry throughout the measuring period. The weather did not, in our opinion, adversely influence the readings obtained.

#### **5.3 Instrumentation**

The instrumentation used were Type 1 Larson Davis LxT Sound Expert Sound Level Analyser confirming to IEC 651-1979 Type 1, EN60651 Type 1 and IEC 804-1985 Type 1, EN60804 Type 1.

- Larson Davis LxT Sound Level Analyser, Serial Number 0001152.
- Larson Davis PRMLxT1L Preamplifier, Serial Number 0365.
- Larson Davis LxT Sound Level Analyser, Serial Number 0003986.
- Larson Davis PRMLxT1L Preamplifier, Serial Number 036839.

The Sound Analyser and Preamplifier were calibrated on 11<sup>th</sup> March 2020, Certificate Number 34492 and 27<sup>th</sup> August 2020, Certificate Number 34911 respectively.





## ACOUSTICS

The additional following equipment was also used

- Larson Davis type CAL200 Calibrator, Serial Number 17720 calibrated on 19<sup>th</sup> February 2020, Certificate Number 2020002312.
- Extension Cables

Field calibration checks were made using the Calibrator and no significant drift was noted against the Calibration level of 114.0dB  $\pm$  0.2dB at 1000Hz  $\pm$  0.2%.

#### **5.4 Survey Results**

The following is a summary of the underlying Plant Noise Levels (L<sub>Aeq</sub>) levels recorded in Daytime, Evening and Night-time Periods

- $L_{Aeq,15min}$  57.0dB(A) between 07:00 hours to 19:00 hours.
- $L_{Aeq,15min}$  56.5dB(A) between 19:00 hours to 23:00 hours.
- $L_{Aeq,15min}$  56.0dB(A) between 23:00 hours to 07:00 hours.

## 6 Assessment Methodology: BS4142:2014

A revision of British Standard BS 4142 was published at the end of October 2014 and replaces the previous 1997 edition. The main aim of the standard is to provide an assessment and rating method that is proportionate, sufficiently flexible and suitable for use by practitioners to inform professional judgement. The foreword to the standard clearly states that:

"The execution of its provisions will be entrusted to appropriately qualified and experienced people, for whose use it has been produced."

It does this by providing a method for the determination of:

- rating levels for sources of an industrial and/or commercial nature; and
- ambient, background and residual sound levels.

An assessment framework is provided to allow the practitioner to use the rating, ambient, background and residual sound levels determined using the standard for the purposes of:

1) investigating complaints;

2) assessing sound from proposed, new, modified or additional source(s) of sound of an industrial and/or commercial nature; and

3) assessing sound at proposed new dwellings or premises used for residential purposes.



## ACOUSTICS

The scope of the standard has now been widened to rating and assessing:

a) sound from industrial and manufacturing processes;

*b)* sound from fixed installations which comprise mechanical and electrical plant and equipment;

c) sound from the loading and unloading of goods and materials at industrial and/or commercial premises; and

d) sound from mobile plant and vehicles that is an intrinsic part of the overall sound emanating from premises or processes, such as that from forklift trucks, or that from train or ship movements on or around an industrial and/or commercial site."

It can also be seen from above that the standard explicitly states that it can be used to investigate complaints and has been significantly widened to cover not only new, modified or additional sources of sound, but also the assessment of sound affecting new dwellings or premises to be used for residential purposes.

Like the 1997 edition, the standard provides a method for correcting the specific sound levels so as to account for acoustic features that are present at the assessment location.

The approach in the 1997 edition was purely subjective and allowed for a +5 dB correction irrespective of how prominent the feature was or whether there was one feature only or a combination of tones, impulses or other features irregular enough to attract attention. The 2014 edition provides for scaled corrections up to +6 dB for tones and up to +9 dB for impulses, depending upon the prominence of the tones or impulses, as well as +3 dB corrections for:

- other sound characteristics that are neither tonal nor impulsive; and/or
- intermittent features when the sound has identifiable on/off conditions.

The corrections for tones and impulses can be assessed using subjective or reference methods. There is also an objective method for tones, which is based upon the prominence of sound pressure levels in the one-third-octave-band containing a tone in comparison to the sound pressure levels in the adjacent one-third-octave-bands.

The objective method however, does not allow for different corrections to be applied for tones differing in prominence as it only allows for a single correction of +6 dB for clearly prominent tones.

The 1997 edition assessed the likelihood of complaints using the difference between the rating level and the background sound level. A difference of around +10 dB or more indicated complaints are likely, a difference of around +5 dB was of marginal significance and a difference of more than 10 dB below the background was considered to provide a positive indication that complaints were unlikely.



## ACOUSTICS

The 2014 edition no longer assesses the likelihood of complaints. Instead, it can be used to assess adverse impacts.

This change was introduced because the likelihood of complaints is not a particularly appropriate benchmark, especially when it is used in a planning context, and it also aligns the standard more closely with the type of language and benchmarks that are suitable for the assessment of sound at the planning stage for new proposed development.

It continues to use the difference between the rating level and the background sound level, though it also introduces the requirement to consider the context and states that:

a) Typically, the greater this difference, the greater the magnitude of the impact.

b) A difference of around  $+10 \, dB$  or more is likely to be an indication of a significant adverse impact, depending on the context.

c) A difference of around +5 dB is likely to be an indication of an adverse impact, depending on the context.

d) The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context."

The context includes consideration of pertinent factors, such as:

- the absolute level of sound;
- the character and level of the residual sound compared to the character and level of the specific sound;
- the sensitivity of the receptor and whether dwellings or other premises used for residential purposes will already incorporate design measures that secure good internal and/or outdoor acoustic conditions.



## - ACOUSTICS

### 7 Noise Assessment

The objective of any specification limiting new noises should therefore be to ensure that sound emission from the new building services plant and any other new sources, in particular, should not materially add to the existing sound climate.

The background levels measured are representative of those at the nearest sound sensitive façade.

We understand that the operating hours for the plant will be on a 24 hour basis and as such we would recommend setting a target level at the nearest residential sound sensitive façade as below;

 $L_{Aeq,15min}$  46dB(A) – 24 hours.

This level is 10dB(A) below the measured background level and would provide NOEL – No Observed Effect Level - this is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

The proposed plant being assessed is as detailed below;

| • | Air Handling Unit 01 | - 1 number - M&Y Ventilation |
|---|----------------------|------------------------------|
| • | Condensing Unit 01   | - 1 number – M&Y Ventilation |

• Air Handling Unit 02 - 1 number - M&Y Ventilation

We have detailed the noise levels for the above equipment, to the nearest sound sensitive façade, as well as the proposed mitigating measures, within our calculation sheet below.

#### **Acoustic Feature Correction**

We have allowed for a 3dB Acoustic Correction Feature for the sound sensitive façade.

No allowance has been made for tonal or intermittent noise as no items of plant are considered to be tonal or intermittent in nature.

#### **Distance Attenuation**

The distance loss figures are shown on our calculation sheet.

#### **Barrier Attenuation**

There is some screening afforded by the building edge and this is detailed within our calculations.



#### **Un-mitigated Noise Levels**

The combined noise level for all items of plant with no mitigating measures, and with all suitable allowances made, will be as below;

#### Location 1 – The Panoramic Development – 38dB<sub>LAeq</sub>

These combined noise levels are 18dBA <u>below</u> the measured Background Level at the nearest noise sensitive façade and will provide *NOEL – No Observed Effect Level* 

This is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

#### Location 2 – Anne Bryans House – 33dB<sub>LAeq</sub>

These combined noise levels are 23dBA <u>**below**</u> the measured Background Level at the nearest noise sensitive façade and will provide *NOEL – No Observed Effect Level* 

This is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

#### Location 3 – Aspern Grove – 40dB<sub>LAeq</sub>

These combined noise levels are 16dBA <u>below</u> the measured Background Level at the nearest noise sensitive façade and will provide *NOEL – No Observed Effect Level* 

This is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

Our attached calculation sheet details the plant item noise levels to each potential noise sensitive façade and in all cases these are more than 10dBA below the measured background level.

As such the resultant noise level with the mitigating measures installed can be categorised as having NOEL - No Observed Effect Level and is therefore a GREEN rating in line with Camden Council guidelines.

This is the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.



## 8 Recommendations

As the calculated noise level from the Plant at the Sound Sensitive Façades is below the Target Level we would not make any recommendations for mitigating measures at this time.



### 9 Conclusion

A background Noise Survey was carried during a typical day and night-time period at a location representative of the nearest sound sensitive receivers.

An assessment has been carried out.

The assessment would indicate that the plant with no mitigating measures will have a GREEN rating of NOEL - No Observed Effect Level as it is more than 10dBA below the measured background level.

In our opinion, the scheme should be acceptable to the Local Authority.

| CS8419 - 12 East E | , Royal Free | Hospital, Pon | d Street, | London I | NW3 20 | QG |
|--------------------|--------------|---------------|-----------|----------|--------|----|
|--------------------|--------------|---------------|-----------|----------|--------|----|

| <ul> <li>Period result profile -</li> </ul> |                    |
|---------------------------------------------|--------------------|
|                                             |                    |
| Overload occurred                           | No                 |
| Low battery occurred                        | No                 |
| Pause was used                              | No                 |
| Frequency weighting                         | A                  |
| Band                                        | Broadband          |
| Period time                                 | 15 min             |
| Periods too short for LNs                   | No                 |
| First period listed                         | 1 : 97             |
| Measurement Description                     |                    |
| Start                                       | 27/05/2021 9:05:24 |
| Stop                                        | 28/05/2021 9:26:55 |
| Duration                                    | 24:21:31           |
| Run Time                                    | 24:21:31           |
| Pause                                       | 0:00:00.0          |
|                                             |                    |
| Pre Calibration                             | 27/05/2021 8:57:15 |
|                                             |                    |



| Period number | Date       | Time     | LN90.0% F | LN10.0% F | Leq     |
|---------------|------------|----------|-----------|-----------|---------|
|               |            |          | dB, (A)   | dB, (A)   | dB, (A) |
| 1             | 27/05/2021 | 09:05:24 | 57.0      | 60.0      | 58.8    |
| 2             | 27/05/2021 | 09:20:24 | 57.0      | 59.5      | 58.3    |
| 3             | 27/05/2021 | 09:35:24 | 57.0      | 60.0      | 59.4    |
| 4             | 27/05/2021 | 09:50:24 | 57.5      | 58.5      | 58.2    |
| 5             | 27/05/2021 | 10:05:24 | 57.0      | 59.5      | 58.6    |
| 6             | 27/05/2021 | 10:20:24 | 57.0      | 59.0      | 58.3    |
| 7             | 27/05/2021 | 10:35:24 | 57.5      | 60.0      | 59.6    |
| 8             | 27/05/2021 | 10:50:24 | 57.0      | 59.0      | 58.9    |
| 9             | 27/05/2021 | 11:05:24 | 57.0      | 59.0      | 58.5    |
| 10            | 27/05/2021 | 11:20:24 | 57.0      | 60.0      | 59.8    |
| 11            | 27/05/2021 | 11:35:24 | 57.5      | 59.5      | 58.8    |
| 12            | 27/05/2021 | 11:50:24 | 57.0      | 58.5      | 58.2    |
| 13            | 27/05/2021 | 12:05:24 | 57.0      | 58.5      | 58.1    |
| 14            | 27/05/2021 | 12:20:24 | 57.0      | 58.5      | 57.9    |
| 15            | 27/05/2021 | 12:35:24 | 57.0      | 58.0      | 57.6    |
| 16            | 27/05/2021 | 12:50:24 | 57.0      | 58.5      | 57.9    |
| 17            | 27/05/2021 | 13:05:24 | 57.0      | 59.0      | 58.2    |
| 18            | 27/05/2021 | 13:20:24 | 57.5      | 59.5      | 58.8    |
| 19            | 27/05/2021 | 13:35:24 | 57.5      | 59.0      | 58.5    |
| 20            | 27/05/2021 | 13:50:24 | 57.5      | 59.5      | 58.6    |
| 21            | 27/05/2021 | 14:05:24 | 57.5      | 59.0      | 58.6    |
| 22            | 27/05/2021 | 14:20:24 | 57.0      | 60.0      | 58.8    |
| 23            | 27/05/2021 | 14:35:24 | 57.5      | 58.5      | 59.7    |
| 24            | 27/05/2021 | 14:50:24 | 57.0      | 58.5      | 58.1    |
| 25            | 27/05/2021 | 15:05:24 | 57.5      | 58.5      | 58.1    |
| 26            | 27/05/2021 | 15:20:24 | 57.0      | 58.5      | 57.8    |
| 27            | 27/05/2021 | 15:35:24 | 57.0      | 58.5      | 57.8    |
| 28            | 27/05/2021 | 15:50:24 | 57.5      | 59.0      | 58.9    |
| 29            | 27/05/2021 | 16:05:24 | 57.0      | 58.5      | 60.6    |
| 30            | 27/05/2021 | 16:20:24 | 57.0      | 58.5      | 58.3    |
| 31            | 27/05/2021 | 16:35:24 | 57.0      | 58.0      | 57.6    |
| 32            | 27/05/2021 | 16:50:24 | 57.5      | 58.5      | 58.3    |
| 33            | 27/05/2021 | 17:05:24 | 57.0      | 58.0      | 57.8    |
| 34            | 27/05/2021 | 17:20:24 | 57.5      | 59.0      | 59.2    |
| 35            | 27/05/2021 | 17:35:24 | 57.5      | 58.5      | 58.3    |
| 36            | 27/05/2021 | 17:50:24 | 57.5      | 58.5      | 57.9    |
| 37            | 27/05/2021 | 18:05:24 | 57.0      | 58.5      | 57.9    |
| 38            | 27/05/2021 | 18:20:24 | 57.0      | 58.5      | 59.0    |
| 39            | 27/05/2021 | 18:35:24 | 57.5      | 58.5      | 58.3    |
| 40            | 27/05/2021 | 18:50:24 | 57.0      | 59.0      | 59.0    |
| 41            | 27/05/2021 | 19:05:24 | 57.0      | 58.5      | 58.8    |

| Period number | Date       | Time     | LN90.0% F    | LN10.0% F    | Leg          |
|---------------|------------|----------|--------------|--------------|--------------|
|               |            |          | dB, (A)      | dB, (A)      | dB, (A)      |
| 42            | 27/05/2021 | 19:20:24 | 57.5         | 59.5         | 59.3         |
| 43            | 27/05/2021 | 19:35:24 | 57.5         | 59.0         | 58.7         |
| 44            | 27/05/2021 | 19:50:24 | 57.0         | 58.5         | 58.5         |
| 45            | 27/05/2021 | 20:05:24 | 57.5         | 58.5         | 58.4         |
| 46            | 27/05/2021 | 20:20:24 | 57.5         | 58.5         | 58.6         |
| 47            | 27/05/2021 | 20:35:24 | 57.5         | 58.5         | 58.8         |
| 48            | 27/05/2021 | 20:50:24 | 57.5         | 58.5         | 58.3         |
| 49            | 27/05/2021 | 21:05:24 | 57.0         | 58.5         | 58.3         |
| 50            | 27/05/2021 | 21.00.24 | 57.5         | 59.5         | 58.4         |
| 51            | 27/05/2021 | 21:25:24 | 57.5         | 58.5         | 50.4<br>50.6 |
| 52            | 27/05/2021 | 21:50:24 | 57.5         | 58.5         | 58.2         |
| 53            | 27/05/2021 | 22:05:24 | 57.0         | 58.5         | 58.2         |
| 54            | 27/05/2021 | 22:00:24 | 56.5         | 58.0         | 57.6         |
| 55            | 27/05/2021 | 22.20.24 | 56.5         | 58.0         | 57.6         |
| 56            | 27/05/2021 | 22:55.24 | 57.0         | 58.0         | 57.6         |
| 57            | 27/05/2021 | 22:00:24 | 56.5         | 58.0         | 57.0         |
| 59            | 27/05/2021 | 23.03.24 | 57.0         | 58.0         | 57.0         |
| 50            | 27/05/2021 | 23.20.24 | 56.5         | 58.0         | 57.9         |
| 60            | 27/05/2021 | 23.33.24 | 50.5         | 50.0         | 57.2         |
| 61            | 27/05/2021 | 23.30.24 | 50.5         | 50.0         | 57.6         |
| 60<br>60      | 20/00/2021 | 00.00.24 | 50.5         | 50.0         | 57.0         |
| 62            | 28/05/2021 | 00:20:24 | 57.0         | 58.U         | 57.5         |
| 03            | 28/05/2021 | 00.55.24 | 30.3<br>50.5 | 57.5         | 57.5         |
| 04            | 28/05/2021 | 00:30:24 | 50.5         | 58.U         | 57.0         |
| 60            | 28/05/2021 | 01:00:24 | 50.0         | 57.5         | 57.Z         |
| 00            | 28/05/2021 | 01:20:24 | 56.0         | 57.0         | 50.8         |
| 69            | 28/05/2021 | 01:55:24 | 50.0         | 58.U         | 57.1         |
| 68            | 28/05/2021 | 01:50:24 | 57.0         | 58.0         | 57.3         |
| 69            | 28/05/2021 | 02:00:24 | 50.5         | 57.5         | 57.3         |
| 70            | 28/05/2021 | 02:20:24 | 50.U         | 57.5<br>59.0 | 50.9         |
| 71            | 28/05/2021 | 02:35:24 | 50.5         | 58.0         | 57.5         |
| 12            | 28/05/2021 | 02:50:24 | 56.5         | 58.0         | 57.5         |
| 73            | 28/05/2021 | 03:05:24 | 56.5         | 57.5         | 57.2         |
| 74            | 28/05/2021 | 03:20:24 | 56.0         | 58.0         | 57.1         |
| /5            | 28/05/2021 | 03:35:24 | 57.0         | 57.5         | 57.3         |
| /6            | 28/05/2021 | 03:50:24 | 57.0         | 57.5         | 57.3         |
| 11            | 28/05/2021 | 04:05:24 | 56.5         | 58.0         | 57.3         |
| /8            | 28/05/2021 | 04:20:24 | 56.5         | 58.0         | 57.4         |
| 79            | 28/05/2021 | 04:35:24 | 56.5         | 57.5         | 57.3         |
| 80            | 28/05/2021 | 04:50:24 | 57.0         | 58.0         | 57.0         |
| 61            | 28/05/2021 | 05:05:24 | 50.5         | 57.5         | 57.1         |
| 82            | 28/05/2021 | 05:20:24 | 56.0         | 57.0         | 50.8         |
| 83            | 28/05/2021 | 05:35:24 | 56.5         | 58.0         | 57.4         |
| 84            | 28/05/2021 | 05:50:24 | 57.0         | 58.5         | 57.8         |
| 85            | 28/05/2021 | 00:05:24 | 57.0         | 58.0         | 57.7         |
| 00            | 28/05/2021 | 00:20:24 | 57.0         | 08.0<br>50.5 | 57.7         |
| 87            | 28/05/2021 | 00:35:24 | 57.0         | 58.5         | 58.0         |
| 88            | 28/05/2021 | 00:50:24 | 57.5         | 58.5         | 58.1         |
| 89            | 28/05/2021 | 07:05:24 | 57.5         | 59.0         | 58.3         |
| 90            | 28/05/2021 | 07:20:24 | 57.5         | 59.0         | 59.0         |
| 91            | 28/05/2021 | 07:55:24 | 57.0         | 59.0         | 08.0<br>50.4 |
| 92            | 20/05/2021 | 07:50:24 | 57.5         | 30.5         | 00.1         |
| 93            | 28/05/2021 | 08:05:24 | 57.5         | 61.0         | 60.7         |
| 94            | 28/05/2021 | 08:20:24 | 57.5         | 60.0         | 58.6         |
| 95            | 28/05/2021 | 08:35:24 | 57.5         | 59.5         | 58.6         |
| 90            | 28/05/2021 | 08:50:24 | 57.0         | 58.5         | 58.1         |
| 97            | 28/05/2021 | 09:05:24 | 57.0         | 58.5         | 58.0         |
|               |            |          |              |              |              |
|               |            |          |              | ļ            |              |
|               |            |          |              | ļ            |              |
|               |            |          |              | ļ            |              |
|               |            |          |              |              |              |
|               |            |          |              |              |              |



27th May 2021 to 28th May 2021 - Time

Sound Level dB(A)

CONABEARE -



## - ACOUSTICS

## **Glossary of Terms**

| L <sub>A90</sub> | The sound pressure level in dB(A) which is exceeded for 90% of the time and is taken to be the effective lowest background sound level for the period by such methods of sound rating as that recommended in BS4142:2014. It will also be used as a basis for selecting limiting sound levels from new plant by Local Planning Authorities when setting Planning Consent Conditions.                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L <sub>Aeq</sub> | The "equivalent continuous sound level" for the<br>measuring period, defined as the level in dBA which, if<br>held constant over the measuring period, would produce<br>the same amount of sound energy as does the actual<br>varying ambient sound level. It is a measure of the<br>amount of sound energy affecting the site from sources<br>other than new plant or operations.                                                                            |
| L <sub>A10</sub> | The sound level exceeded for 10% of the time over the sample period. Originally used as a measure of subjective reaction to traffic noise in particular, it can also be taken as an indication of the practical maximum sound level that the building envelope will have to protect against.                                                                                                                                                                  |
| dBA              | Describes measured on a sound level meter incorporating<br>a frequency weighting (A weighting) which differentiates<br>between sounds of different frequency (pitch) in a similar<br>way to the human ear. Measurements in dBA broadly<br>agree with people's assessment of loudness. A change of<br>3dBA is the minimum perceptible under normal<br>conditions, and a change of 10dBA corresponds roughly<br>to halving or doubling the loudness of a sound. |



Project: CS8419 - 12 East B, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG Client : Ansell & Bailey Limited Revision: Revision A Date : 17th June 2021

Item

#### Calculation 01 - Noise To Panoramic Development, Pond Street - Proposed Plant - Target Level - 46dBA

| AHU01 - Fresh Air | · Air Handling Unit AHU01 - Fresh Air Intake - Atmospheric Noise |    |   | 63  | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA |
|-------------------|------------------------------------------------------------------|----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                   |                                                                  |    |   |     |     |     | -0  | -0  | -0  |     |     |     |
|                   | Supply Fan Lw - Manufacturers Figures                            |    |   | 76  | 74  | 89  | 79  | 79  | 78  | 76  | 83  | 87  |
|                   | End Reflection                                                   |    |   | -3  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     |
|                   | Distance to Listener                                             | 40 | m | -44 | -44 | -44 | -44 | -44 | -44 | -44 | -44 |     |
|                   | Directivity (135 Degrees)                                        |    |   | 1   | -1  | -2  | -5  | -10 | -15 | -18 | -21 |     |
|                   | Source Location (Plane)                                          |    |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |     |
|                   | Screening - Building Edge                                        |    |   | -8  | -10 | -13 | -15 | -18 | -18 | -18 | -18 |     |
|                   | Façade Effect                                                    |    |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |     |
|                   | Estimated Lp at Listener AHU Fresh Air Intake Only               |    |   | 28  | 25  | 36  | 21  | 13  | 7   | 2   | 6   | 28  |
|                   |                                                                  |    |   |     |     |     |     |     |     |     |     |     |
| AHU02 - Exhaust   | Air Handling Unit AHU02 - Exhaust - Atmospheric Noise            |    |   | 63  | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA |
|                   |                                                                  |    |   |     |     |     |     |     |     |     |     |     |
|                   | Exhaust Fan Lw - Manufacturers Figures                           |    |   | 71  | 83  | 80  | 82  | 81  | 75  | 71  | 67  | 85  |
|                   | End Reflection                                                   |    |   | -3  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     |
|                   | Distance to Listener                                             | 58 | m | -47 | -47 | -47 | -47 | -47 | -47 | -47 | -47 |     |
|                   | Directivity (135 Degrees)                                        |    |   | 1   | -1  | -2  | -5  | -10 | -15 | -18 | -21 |     |
|                   | Source Location (Free Field)                                     |    |   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     |
|                   | Screening - Building Edge                                        |    |   | -8  | -10 | -13 | -15 | -18 | -18 | -18 | -18 |     |
|                   | Facade Effect                                                    |    |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |     |
|                   | Estimated Lp at Listener AHU Exhaust Only                        |    |   | 17  | 28  | 21  | 18  | 9   | -2  | -9  | -16 | 19  |
|                   |                                                                  |    |   |     |     |     |     |     |     |     |     |     |
| CU01              | CU01 - Atmospheric Noise                                         |    |   | 63  | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA |
|                   | Unit I.w Condensing Unit - Manufacturers Data                    |    |   | 96  | 95  | 87  | 86  | 81  | 77  | 71  | 69  | 88  |
|                   | Additional Sources 3 units                                       |    |   | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 00  |
|                   | Distance to Listener                                             | 40 |   | 3   | 44  | 44  | 44  | 3   | 3   | 44  | 44  |     |
|                   | Sereening Duilding Edge                                          | 40 | m | -44 | 10  | 12  | -44 | 10  | 10  | 10  | 10  |     |
|                   | Screening - Bunding Euge                                         |    |   | -0  | -10 | -15 | -15 | -10 | -10 | -10 | -10 |     |
|                   |                                                                  |    |   | 5   | 5   | 20  | 3   | 27  | 22  | 5   | 3   | 25  |
|                   | Estimated Ep at Listener CUUI Uniy                               |    |   | 52  | 49  | 38  | 35  | 21  | 23  | 1/  | 15  | 3/  |
|                   |                                                                  |    |   |     |     |     |     |     |     |     |     |     |
|                   | Cumulative Noise Level - Plant Noise only                        |    |   | 52  | 49  | 40  | 35  | 27  | 23  | 17  | 16  | 38  |

Target Level 46dBA

#### Calculation 02 - Noise To Anne Bryans House - Proposed Plant - Target Level - 46dBA

| AHU01 - Fresh Air | Air Handling Unit AHU01 - Fresh Air Intake - Atmospheric Noise |     |   | 63  | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA  |
|-------------------|----------------------------------------------------------------|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|------|
|                   | Supply Fan Lw - Manufacturers Figures                          |     |   | 76  | 74  | 89  | 79  | 79  | 78  | 76  | 83  | 87   |
|                   | End Reflection                                                 |     |   | -3  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |
|                   | Distance to Listener                                           | 100 | m | -51 | -51 | -51 | -51 | -51 | -51 | -51 | -51 |      |
|                   | Directivity (90 Degrees)                                       |     |   | 2   | 2   | 1   | 0   | -2  | -5  | -10 | -15 |      |
|                   | Source Location (Plane)                                        |     |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Screening - Building Edge                                      |     |   | -8  | -10 | -13 | -15 | -18 | -18 | -18 | -18 |      |
|                   | Facade Effect                                                  |     |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Estimated Lp at Listener AHU Fresh Air Intake Only             |     |   | 22  | 21  | 32  | 19  | 14  | 10  | 3   | 5   | 25   |
|                   |                                                                |     |   |     |     |     |     |     |     |     |     |      |
| AIIII02 Eachanat  | Ale Handling Half ATHIO2 Fabrant Admonthesis Naise             |     |   | 0   | 125 | 250 | 500 | 11. | 21. | 41. | 01. | A DL |
| AHU02 - Exnaust   | Air Handling Unit AHU02 - Exnaust - Atmospheric Noise          |     |   | 63  | 125 | 250 | 500 | IK  | 2K  | 4K  | ðK  | đВА  |
|                   | Exhaust Fan Lw - Manufacturers Figures                         |     |   | 71  | 83  | 80  | 82  | 81  | 75  | 71  | 67  | 85   |
|                   | End Reflection                                                 |     |   | -3  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |
|                   | Distance to Listener                                           | 125 | m | -53 | -53 | -53 | -53 | -53 | -53 | -53 | -53 |      |
|                   | Directivity (90 Degrees)                                       |     |   | 2   | 2   | 1   | 0   | -2  | -5  | -10 | -15 |      |
|                   | Source Location (Free Field)                                   |     |   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |
|                   | Screening - Line of Sight                                      |     |   | -5  | -5  | -5  | -5  | -5  | -5  | -5  | -5  |      |
|                   | Façade Effect                                                  |     |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Estimated Lp at Listener AHU Exhaust Only                      |     |   | 15  | 30  | 26  | 27  | 24  | 15  | 6   | -3  | 28   |
|                   |                                                                |     |   |     |     |     |     |     |     |     |     |      |
| CU01              | CU01 - Atmospheric Noise                                       |     |   | 63  | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA  |
|                   |                                                                |     |   |     |     |     |     |     |     |     |     |      |
|                   | Unit Lw - Condensing Unit - Manufacturers Data                 |     |   | 96  | 95  | 87  | 86  | 81  | 77  | 71  | 69  | 88   |
|                   | Additional Sources - 3 units                                   |     |   | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 5   |      |
|                   | Distance to Listener                                           | 95  | m | -51 | -51 | -51 | -51 | -51 | -51 | -51 | -51 |      |
|                   | Screening - Building Edge                                      |     |   | -8  | -10 | -13 | -15 | -18 | -18 | -18 | -18 |      |
|                   | Façade Effect                                                  |     |   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Estimated Lp at Listener CU01 Only                             |     |   | 45  | 42  | 31  | 28  | 20  | 16  | 10  | 8   | 30   |
|                   |                                                                |     |   |     |     |     |     |     |     |     |     |      |
|                   | Cumulative Noise Level - Plant Noise only                      |     |   | 45  | 42  | 35  | 31  | 26  | 19  | 12  | 10  | 33   |

Target Level 46dBA

Item

| Item              | Calculation 03 - Noise To Aspern Grove - Proposed Plant - Target Level - 46dBA |       |       |     |     |     |     |     |     |     |      |
|-------------------|--------------------------------------------------------------------------------|-------|-------|-----|-----|-----|-----|-----|-----|-----|------|
| AHU01 - Fresh Air | Air Handling Unit AHU01 - Fresh Air Intake - Atmospheric Noise                 |       | 63    | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA  |
|                   | C. L.F. I. M. C. (                                                             |       | 76    | 74  | 00  | 70  | 70  | 70  | 74  | 02  | 07   |
|                   | Supply Fan Lw - Manufacturers Figures                                          |       | /6    | /4  | 89  | /9  | /9  | /8  | /6  | 83  | 8/   |
|                   | End Kellection                                                                 | 120   | -5    | 54  | 54  | 54  | 54  | 54  | 54  | 54  |      |
|                   | Distance to Listener                                                           | 130 m | ı -54 | -54 | -54 | -54 | -54 | -54 | -54 | -54 |      |
|                   | Servers Leasting (Plane)                                                       |       | 4     | 2   | 2   | 2   | 2   | 2   | 2   | 1   |      |
|                   | Source Location (Plane)                                                        |       | 5     | 5   | 5   | 5   | 5   | 5   | 5   | 5   |      |
|                   | Screening - Line of Signt                                                      |       | -5    | -5  | -5  | -5  | -5  | -5  | -5  | -5  |      |
|                   |                                                                                |       | 3     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 26   |
|                   | Estimated Lp at Listener AHU Fresh Air Intake Only                             |       | 24    | 24  | 39  | 29  | 28  | 27  | 25  | 31  | 36   |
|                   |                                                                                |       |       |     |     |     |     |     |     |     |      |
| AIIII02 Enhand    | Ain Handling Hait A HUO2 Fakanat Atmospheric Nain                              |       | 0     | 125 | 250 | 500 | 11. | 21. | 4.  | 01. | JD A |
| AHU02 - Exhaust   | Air Handling Unit AHUUZ - Exnaust - Atmospheric Noise                          |       | 03    | 125 | 250 | 500 | IK  | 2K  | 4K  | δК  | UBA  |
|                   | Exhaust Fan Lw - Manufacturers Figures                                         |       | 71    | 83  | 80  | 82  | 81  | 75  | 71  | 67  | 85   |
|                   | End Reflection                                                                 |       | -3    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |
|                   | Distance to Listener                                                           | 135 m | -54   | -54 | -54 | -54 | -54 | -54 | -54 | -54 |      |
|                   | Directivity (90 Degrees)                                                       |       | 2     | 2   | 1   | 0   | -2  | -5  | -10 | -15 |      |
|                   | Source Location (Free Field)                                                   |       | 0     | 0   | 0   | õ   | 0   | 0   | 0   | 0   |      |
|                   | Screening - None                                                               |       | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |
|                   | Facade Effect                                                                  |       | 3     | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Estimated Lp at Listener AHU Exhaust Only                                      |       | 19    | 34  | 30  | 31  | 28  | 19  | 10  | 1   | 32   |
|                   |                                                                                |       |       |     |     |     |     |     |     | -   |      |
| CU01              | CU01 - Atmospheric Noise                                                       |       | 63    | 125 | 250 | 500 | 1k  | 2k  | 4k  | 8k  | dBA  |
|                   | •                                                                              |       |       |     |     |     |     |     |     |     |      |
|                   | Unit Lw - Condensing Unit - Manufacturers Data                                 |       | 96    | 95  | 87  | 86  | 81  | 77  | 71  | 69  | 88   |
|                   | Additional Sources - 3 units                                                   |       | 5     | 5   | 5   | 5   | 5   | 5   | 5   | 5   |      |
|                   | Distance to Listener                                                           | 130 n | -54   | -54 | -54 | -54 | -54 | -54 | -54 | -54 |      |
|                   | Screening - Line of Sight                                                      |       | -5    | -5  | -5  | -5  | -5  | -5  | -5  | -5  |      |
|                   | Façade Effect                                                                  |       | 3     | 3   | 3   | 3   | 3   | 3   | 3   | 3   |      |
|                   | Estimated Lp at Listener CU01 Only                                             |       | 45    | 44  | 36  | 35  | 30  | 26  | 20  | 18  | 37   |
|                   |                                                                                |       |       |     |     |     |     |     |     |     |      |
|                   | Cumulative Noise Level - Plant Noise only                                      |       | 45    | 44  | 41  | 37  | 34  | 30  | 26  | 31  | 40   |
|                   |                                                                                |       |       |     |     |     |     |     |     |     |      |

Target Level 46dBA

Acoustic Calibration Services Limited Unit 6H Diamond Industrial Centre Works Road Letchworth Garden City Hertfordshire SG6 1LW Tel: 01462-610085 Mobile: 0771 886 4944 Email: trevjohnlewis@aol.com or



cal@acousticcalibration.co.uk Web: www.acousticcalibration.co.uk

## **CERTIFICATE OF CALIBRATION**

Model: LD LxT1LC1 Serial Number: 025445

**Organisation:** Conabeare Acoustics Limited, 11 Chilton Enterprise Centre, Station Road, Theale, Berkshire RG7 4AA

**Job Number:** 2806

## Customer Order Reference: 10588

The Sound Level Meter was assessed for conformance with International Standard BS EN 61672-3:2006 as modified by TPS 49 Edition 1. The manufacturer claims Class 1 accuracy conformance and it was against these requirements that all the results were evaluated.

The sound level meter was fitted with a PCB 377B02 Serial No. 304334 measurement microphone, a LD PRMLxT1L preamplifier Serial No. 055664 and an unmarked 12 ft microphone extension cable. The microphone was replaced with a suitable input device in order to apply electrical signals to the preamplifier.

A B&K 4231 Acoustic Calibrator Serial No: 2705996 was utilised in establishing the initial acoustic calibration setting.

The sound level meter passed all tests carried out with no deviations from Class 1 specification, in accordance with the modified BS EN 61672-3:2006.

The sound level meter should be set to read **113.8dB** when used with the associated acoustic calibrator, microphone, preamplifier and 12 ft microphone extension cable, as detailed above at reference atmospheric pressure.

All ACSL's calibration instrumentation is fully traceable to National Standards. The acoustic references are calibrated by laboratories which are UKAS accredited for the purpose.

toffer S

Certificate No: 15766 Date of Issue: 5<sup>th</sup> March 2020 Signature: Print Name:

Trevor Lewis

Registered Office: Robert Lewis Accountants, 4 Capricorn Centre, Cranes Farm Road, Basildon, Essex SS14 3JJ Registered No: 4143457 VAT No: GB 770505441 Directors: Trevor J Lewis, Owen R Clingan MIOA

## Calibration Certificate

Customer: PC Environmental Ltd. Unit 5,Claylands Park Claylands Road Bishops Waltham Southampton,SO32 1QD,United Kingdom

| Model Number        | lel Number CAL200 Procedure Number |                                                                                         | Procedure Number                            | D0001.8386  |          |                 |  |  |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|-------------|----------|-----------------|--|--|
| Serial Number 17720 |                                    |                                                                                         | Technician                                  | mery        |          |                 |  |  |
| Test Results        | sults Pass                         |                                                                                         | Calibration Date                            | 19 Feb 2020 |          |                 |  |  |
|                     | As Mar                             | wfootured                                                                               | Calibration Due                             |             |          |                 |  |  |
| Initial Condition   | As Manuactured                     |                                                                                         | Temperature                                 | 23          | °C       | ± 0.3 °C        |  |  |
| Description         | Larson                             | Davis CAL200 Acoustic Calibrator                                                        | Humidity                                    | 32          | %RH      | ± 3 %RH         |  |  |
|                     |                                    |                                                                                         | Static Pressure                             | 100.9       | kPa      | ±1kPa           |  |  |
| Evaluation Metho    | od                                 | The data is aquired by the insert voltage<br>circuit sensitivity. Data reported in dB r | ge calibration method using th<br>e 20 μPa. | ne refere   | nce mic  | crophone's open |  |  |
| Compliance Stan     | dards                              | Compliant to Manufacturer Specification                                                 | ons per D0001.8190 and the                  | following   | u standa | ards            |  |  |

ANSI S1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

IEC 60942:2017

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

| Standards Used                             |            |            |              |  |  |  |  |
|--------------------------------------------|------------|------------|--------------|--|--|--|--|
| Description                                | Cal Date   | Cal Due    | Cal Standard |  |  |  |  |
| Agilent 34401A DMM                         | 08/15/2019 | 08/15/2020 | 001021       |  |  |  |  |
| Larson Davis Model 2900 Real Time Analyzer | 04/02/2019 | 04/02/2020 | 001051       |  |  |  |  |
| Microphone Calibration System              | 03/04/2019 | 03/04/2020 | 005446       |  |  |  |  |
| 1/2" Preamplifier                          | 09/17/2019 | 09/17/2020 | 006506       |  |  |  |  |
| Larson Davis 1/2" Preamplifier 7-pin LEMO  | 08/06/2019 | 08/06/2020 | 006507       |  |  |  |  |
| 1/2 inch Microphone - RI - 200V            | 05/21/2019 | 05/21/2020 | 006510       |  |  |  |  |
| Pressure Transducer                        | 06/24/2019 | 06/24/2020 | 007310       |  |  |  |  |

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001



