General Notes

This drawing is to be read in conjunction with all relevant architects & engineers drawings & specifications.

The contractor is to be responsible for all dimensions & for the correct setting out of the works on site.

3. Do not scale from this drawing.

Assumed span direction of existing structure shown with 'E' annotation

Basement requires internal cavity drained wall construction to comprise delta membrane or similar system routed to sump with positevely pumped anti-flood valve system.

Insitu concrete walls and floor slab to comprise 'Puldo' or similar warranted waterproof concrete additive

63

64

Drawing Suitability Version D2 - For Tender Drawing Number Revision WEL-EOC-V1-00-DR-S- 5020 T1

Drawn By

ASM

Issued for Tender

Description

Scale

Date

1:50 [A1]

Jan/2021

Drainage Maintenance Schedule

The below schedule indicates the recommended minimum maintenance requirement to provide a fully functioning drainage system. It is recommended that this schedule is regularly reviewed by the operator and where necessary the actions and frequency are updated to reflect the ongoing operation of the facility.

The property will be under single ownership so there will be no conflict. The homeowner will undertake maintenance where practical and specialist contractors will be used where necessary.

No man entry is permitted into manholes or enclosed spaces unless performed by fully qualified personnel. Main yearly inspection to be undertaken after leaf fall in Autumn.

Approved safety procedures must be followed.

Ref	Maintenance Item	Required Action	Frequency
01	Below Ground Drainage Pipework	All drainage to be fully jetted and inspected for integrity by CCTV survey. Where pipework is damaged or obstructed localised repairs will be needed immediately to ensure operation of drainage systems.	10 yearly As required
02	Manholes	Inspect manholes and for integrity and debris. Remove cover and ensure water is flowing freely and unobstructed. Clean out blockages and repair damage	5 yearly As required
03	Roof Gutters	Visually inspect gutters for leaves and debris. Clearing/jetting of gutters to remove build-up of debris and leaves to prevent carry of material to below ground system. Waste material to be disposed to refuse.	Annually As required
04	External gullies	Inspect surface water gullies and silt traps To be cleaned with vacuum tanker when silt exceeds 50% of catch pit depth	Annually As required
05	Overland flow paths	Inspection of overland flow routes to ensure route not blocked by new structures, furniture, overgrown vegetation, walls or debris. Remove and maintain as necessary	6 Monthly
06	Vortex Flow Control	Remove cover and inspect, ensuring that water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually

Eckersley O'Callaghan

Ref	Maintenance Item	Required Action	Frequency
07	Pumping Station	Supplier/Specialist to be appointed on maintenance contract to service inspect and maintain pumping stations to ensure they are functioning correctly, and that all alarms and controls are operational. Service provider to be enabled with remote connected communications to provide 24 hour monitoring of alarms. Contract to be a minimum level to ensure any emergency call out is undertaken within 24 hours.	6 Monthly

Record Keeping

To ensure the above maintenance regime is followed the operator will draw up a suitable maintenance schedule for completion by the site operatives and to be signed off by the relevant manager. The schedule will be based on the above table and will include:

- Date of maintenance inspection.
- 'Undertaken By' boxes to confirm inspection items carried out and by whom.
- A comments column to record condition of items inspected and what maintenance actions need to be taken or procedures to be instigated to correct any non-compliance with the operation strategy
- A column for confirming maintenance and/or rectification works have been carried out.
- An overall signature space for sign off by a competent member of the company's management team.

Eckersley O'Callaghan

Overland Flood Exceedance Routing Plan

Supplementary Report to Discharge Condition 9

This report has been prepared in response to a request for further information from the Planning Officer, in order to discharge condition 9. The officer requested the following:

Consideration to the London Plan drainage hierarchy is required including justification for the selected drainage strategy features on the proposed development.

London Plan Drainage Hierarchy -

N	2b. Drainage Hierarchy		
gem en t		Feasible (Y/N)	Proposed (Y/N)
rang	1 store rainwater for later use	N	N
arge Ar	2 use infiltration techniques, such as porous surfaces in non-clay areas	N	N
Discha	3 attenuate rainwater in ponds or open water features for gradual release	N	N
oposed	4 attenuate rainwater by storing in tanks or sealed water features for gradual release	N	N
Pro-	5 discharge rainwater direct to a watercourse	N	N
2	6 discharge rainwater to a surface water sewer/drain	N	N
	7 discharge rainwater to the combined sewer.	Y	Y

1. Store rainwater for later use.

Conventional roofwater recycling utilises roofwater only as this is a relatively clean, uncontaminated source of water. The proposal does not have a roof as such and is a landscaped area of external paving above the proposed basement. This is has a potential high level of contamination and is and is therefore unsuitable for reuse.

We suggest the client could install a water butt to provide some additional benefit and watering of the lower terrace.

2. Use infiltration techniques, such as porous surfaces in non-clay areas.

Site investigation by Soiltechnics identified competent clay material of the Claygate Member throughout the site, therefore infiltration is not a viable means of stormwater management for the site. See Appendix A for extract from the site investigation.

- Attenuate rainwater in ponds or open water features for gradual release. There is a relatively small formal garden area around the existing terrace. The terrace is to be removed and replaced and there is not deemed to be sufficient space to replace the small formal garden with surface attenuation features.
- Attenuate rainwater by storing in tanks or sealed water features for gradual release.
 An attenuation manhole with a maximum discharge rate of 2l/s has been utilised, see Appendix B.
 Calculations are as 'SUDS Discharge report_iss1' under planning reference 2021/1003/P.
- Discharge direct to a watercourse.
 N/A there are no nearby watercourses.
- Discharge rainwater to a surface water sewer/drain.
 N/A there are no nearby surface water sewers.
- Discharge rainwater to the combined sewer. Utilised within design, along with attenuation to flow as 4.

Appendix A – Site Investigation Extract

Proposed redevelopment 19 Well Road, Hampstead

6

Ground conditions encountered

6.1	Soils
6.2	Groundwater
6.3	Evidence of contamination
6.4	Obstructions and instability
6.5	Existing foundation arrangements

6.1 Soils

- 6.1.1 Each exploratory excavation encountered a similar profile of soils considered to be Made Ground overlying Claygate Member.
- 6.1.2 Brick paving and reinforced concrete and were present at surface in DTS01 and HDTS02/TP02, respectively. Beneath the hardstanding and from surface in the remaining excavations, Made Ground was encountered to depths in the range of 0.4m to 0.7m and locally to 1.9m in TP01. Made Ground comprised dark brown, brown and orange brown slightly clayey to clayey slightly gravelly to gravelly sand. Gravels consisted of brick, sandstone, concrete, gabbro and timber.
- 6.1.3 The Claygate Member was encountered in the borehole excavations to depths in excess of 4.0m and generally comprised firm orange brown very sandy clay and medium dense very clayey sand.

6.2 Geotechnical parameters

6.2.1 The following table summarises test data in the Made Ground and Claygate Member:

Table summa	arising soil te	esting and de	rived ge	otechnical para	ameters	
Geotechnical	Geological	Method	Value	Characteristic	Comments	Notes
parameter	unit		range	value		
Bulk density	Made	Laboratory	1.9	1.9	-	1
	Ground	testing				
Dry density	Made	Laboratory	1.5	1.5	-	1
	Ground	testing				
Weight density (above water table)	Claygate Member	Soil descriptions – Medium strength Clay	16 to 20	16	Derived from BS 8004 figure 1. Most onerous value to be used in structural design	-
Weight density (below water table)	Claygate Member	Soil descriptions – Medium strength Clay	16 to 20	16	Derived from BS 8004 figure 2. Most onerous value to be used in structural design	-

November 2018 Report section 6

Soiltechnical consultants

		STRATA			>	VATER		SPT TE	STING		OTHER IN SIT	IU TESTING	IN2	MUING	
MEHT	DESCRIPTION		DEPTH RI (m) LV	EDUCED LI	2 GEND	TRIKES DI	TYPE / EPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FBOM (m)	۲ و و	3di
	BRICK PAVING. (MADE GROUND) Brown gravelly SAND. (MADE GROUND)	Gravel consists of fine to medium sub-angular sandstone and gabbro.	0.12	47.62											
	Firm high strength ora (CLAYGATE MEMBER)	nge brown slightly gravelly very sandy CLAY. Gravel consists of fine to medium sub-rounded flint.	0.40	45./4 75./							PP 0.50	PP=100	09:0		0
	_					č	34 1 00	01.147		her	PP 0.80	PP=125	0:00		
						;	C+T-007	07 (t-)		t the	PP 1.20	PP=108			
											PP 1.50	PP=75	1.50		
	Firm high strength ora (CLAYGATE MEMBER)	nge brown very sandy CLAY.	1.60	46.14							PP 1.75	PP=100	1.60		0
	Medium dense orange (CLAYGATE MEMBER)	brown slightly gravely very clayey SAND. Gravel consists of fine to medium sub-rounded flint.	1.90	45.84		C2	.00-2.45	(3) 10		DRY			1.90	8.	8
		CONTINUED ON NEXT SHEET												_	
Key		Notes		Title											
0 Small	I Disturbed Sample Disturbed Sample	Hand tools used to excavate from 0.0m to 0.4m depth. Borehole sides remained upright and stable upon		Driven	tube sam	pler record									
W Water	nonmental Sample Ir Sample	completion.			ecovery o	letails	Meth	P		Logged by		Date	(2)		
UT Undia	sample sturbed Sample			Range	œ Ē	ecovery (%	Driver	n tube samp	ler	NO		18/0	9/2018		
5 Standa C Standa	and Penetration Text and Penetration Text (solid cone)	Groundwater observations No groundwater encountered.		0.00-	2.00	85 100	- Level	(ao m)		Compiled b TH	٨	Sher Sher	et number et 1 of 2		
PP Pocker SV Shear PID Phote	et Penetrometer text < Vane Sent to Ioniumbon Defection text			3.00	4,00	88	-0-0 -	dinates		Checked by KB	_		DTS	10	
Repor	rt ref: STQ4531-G01											-		Revision:	•

Soiltechnical consultants

	_
	_
	1.0
	U .2
	_
	
	-
	-
	1.
	-
	_
	~~~
	<b>U</b> U
	C 7
	-
	_
	-
	-
	_
	<u> </u>
	c 3
	~
	<b>m</b> 2.
	ч.)
	-
	-
	-
	AL 12
	CD.
	_
	_
	_
-	<b>C</b> 3
	0
	2
	2
	2
	Ĕ
	ano
	anc
	and
	ll and
	al and
	al anc
	al and
	tal anc
	ital and
	ntal and
	ntal and
	ental and
	ental and
	iental and
	nental and
	nental and
	mental and
	mental and
	nmental and
	nmental and
	inmental and
	onmental and
	onmental and
	'onmental and
	ronmental and
	Ironmental and
	//ronmental and
	vironmental and
	wironmental and

SML	TYPE	<u> </u>							_	utelone 0
SAMPL	FROM TO (m) (m)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1	/2018	number	2 of 2	DTS01	
TESTING	RESULT	РР42 РР-75			Date(:	18/09	Sheet	Sheet		
OTHER IN SITU	TYPE / EPTH (m)	PP 3.20								
	WATER LEVEL (m) D	DRY			Logged by	N	Compiled by	H	Checked by KB	
DNU	CASING DEPTH (m)					Ja Ja		+		
SPT TES	RESULT	(2) 6			po	n tube sample	(ao m)		dinates	
	TYPE / DEPTH (m)	C3.00-3.45		brd	Meth	(%) Drive	level		5.	
WATER	STRIKES			ampler reci	ry details	Recovery	58	0 <u>1</u> 29	59	
	D) LEGEND		兽	iven tube s	Recover	ange (m)	00-1.00	00 - 2.00 00 - 3.00	00 - 4.00	
	REDUCED LVL (m OD	44.74	£	ā		2	0.0	22	3.(	
STRATA		Taists of fine to medium sub-rounded filmt.		epth. Borehole sides remained upright and stable upon						
		ange brown slightly gravelly very claver SAND. Gravel com ER) strength orange brown very sandy CLAY. BD/BEACLETERMINUTED # 4.00	Notes	Hand tools used to excavate from 0.0m to 0.4m de	completion.		Groundwater observations	No groundwater encountered.		144 J
	WELL DESCRIPTION	Medium dense ora Medium dense Soft medium to hig (CLAYGATE MEMBE fixen 3.7m depti, las	Key	D Small Disturbed Sample B Bulk Disturbed Sample	ES Environmental Sample W Water Sample	C Core uample UT Undisturbed Sample	5 Standard Penetration Test	C. Standard Penetration Into Loost vormy	PP Poular Penerometer text SV Shear Vane text PID Photo Loniuriton Detector text	



Proposed redevelopment 19 Well Road, Hampstead

# Soiltechnical consultants

		STRATA			3	100	142	TESTING		OTHER IN SIT	U TESTING	SAM	PLING	
WEIT	DESCRIPTION		DEPTH 8 (m) IV	EDUCED II	EGEND SI	RIKES T	PE / RESULT TH (m)	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FBOM (m)	0 (H	
	Dark brown slightly clk (MADE GROUND)	ayey slightly gravelly SAND. Gravel consists of fine to coarse sub-angular brick, concrete and sandstone.										05.0	<u></u>	
	Orange brown slightly (MADE GROUND)	gravelly clayey SAND. Gravel consists of fine to medium sub-angular brick and sandstone.	0,40	4000000000 10 17 17										
	Soft medium to high s (CLAYGATE MEMBER)	trength orange brown very sandy CLAY.	0/-0	48./4								0.80	٩	
										PP 1.10	PP=46	1.10	•	
1			1 40	111						PP 1.30	PP=113			
	Firm to stiff high stren (CLAYGATE MEMBER)	gth orange brown very sandy CLAY.								PP 1.70	PP=125	1.60	٩	
										PP 1.90	PP=121	1.90	•	
										PP 2.10	PP=100			
										PP 2.40	PP=100	2.30	٥	
	Orange brown very cla (CLAYGATE MEMBER)	tyey SAND.	2.60	8 8 22 22 22 22 22 22 22 22 22 22 22 22						PP 2.60	PP=100	2.60	٥	
۲		CONTINUED ON MERT SHEET				_	_					2.90	<u> </u>	
Key 0 Sealth	itiutied Samole	Notes 11 and 1000 and 100 antimates from 0.0 m and 1.0 m danks. Influention antifan mathemated. Developher affect and	in a d	Title	and a start	alar socord								
E Eufk Did ES Environt W Water St	sturbed Sample vraental Sample Vangle	hann toolo used to excavate from 0.0m to 1.0m depth, annut ation testing performed. Borenote subs rem upright and stable upon completion.			becowery d	etails	Method		Logged by		Date	(5)		
C Core use UT Undistus	mple vrbed Sample			Range	æ E	ecovery (%)	Driven tube sar	mpler	ND		18/05	9/2018		
5 Standard C Standard	d Peretration Test I Penetration Test (solid cone)	Groundwater observations No groundwater encountered.		0.00-	1.00	01 01	Level (m OD)		Compiled b TH	2	Sheer Sheer	t number t 1 of 2		
PP Pocket 7 SV Shear VI PID Photo Is	Penetrometer last Ibne test Ioniumbon Detector test			8.8	3.40	001	Co-ordinates		Checked by KB			HDTS	10	
Report	ref: STQ4531-G01											-	tevision:	_



WELL

# soiltechnics

International status         Internati
Multi b         Multi b <t< td=""></t<>
Title         Title <th< td=""></th<>
Status         Status<
TICIA         TICIA           0         mano         man
Image: market problem (market problem (
Status         Status         Math
Dimensional         Alternation
Dimension         STRAA           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <
Dimension         STRACK           0.         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         00071         0
0.     0.     0.       0.     0.     0.0       0.     0.0     0.0       0.     0.0     0.0       0.     0.0     0.0       0.     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0
Istada In very sambir CLAF.  In a control of Television  In very sambir CLAF.  In a control of Television  In very sambir CLAF.  In a control of Television  In very sambir CLAF.  In a control of Television  In a control of Te
Stata
() () () () () () () () () () () () () (



Revision:

HDTS01

Sheet number Sheet 2 of 2 Date(s) 18/09/2018

> Compiled by TH Checked by KB

> > Co-ordinates

0.00 - 1.00 1.00 - 2.00 2.00 - 3.00 3.00 - 3.40 Range (m)

Logged by DN

Driven tube sample Level (m OD)

> Recovery (%) <u>8 8 8 8 8</u>

Method

Recovery details

D Small Disturbed 5 8 Euli: Disturbed 5 65 Environmental 5 10 Water Sample C Core sample

ę,

1

No groundwater encountered. Groundwater observations

Report ref: STQ4531-G01

# Soiltechnics environmental and geotechnical consultants

$\frac{1}{1000} = \frac{1}{1000} = 1$	VG SAMPLING	2 I													1	1	1.5
$\frac{1}{1000} = \frac{1}{1000} = 1$	g														ت ت	TS02	Devic
$\frac{1}{10000000000000000000000000000000000$	9	(m)		0.40	0.80	1.00	1.20	1.50		1.80				09/2018	tet numb	문	
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	U TESTIO	RESULT			PP=50		1/=dd	17=99		PP=54			-	18/	<b>8</b> 3		
$\frac{1}{10000000000000000000000000000000000$	OTHER IN SIT	TYPE / DEPTH (m)			PP 0.80		PP 1.20	PP 1.40		PP 1.80							
$\frac{1}{10000000000000000000000000000000000$		WATER LEVEL (m)												Logged by	Compiled by	Checked by KB	
$\frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$	2	CASING EPTH (m)													$\square$		1
mathematical state and significant of the polynomial state and concrete. Grand contract of the to cooree angular         mathematical state and significant of state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state angular biolity and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete. Grand contract of the to cooree angular         mathematical state and concrete and to concrete. Coore and to concrete and to concrede and to concrete and to concrete and to concrete and		ESULT DE												the sampler	(00	âtes	
Total     Total     Total       CGETE comprised of aggregates of first up to 20mm nominal size. Johnn diameter reinforcement by CGETE comprised of aggregates of first up to 20mm nominal size. Johnn diameter reinforcement by ange brown very sandy CLAR.     0.23     47.19     0.23     47.19       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular nor sandy CLAR.     0.20     45.11     0.23     47.19       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular nor sandy CLAR.     0.20     45.11     0.24     45.11       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular     0.20     45.21     0.24       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular     0.20     45.31     0.24       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular     0.20     45.31     0.25       The properties of sub-angular blick and concrete. Greed concists of fire to coore angular     0.20     45.31     0.25       The properties of sub-angular blick and concretes Greed concists of the coore angular     0.20     45.31     0.25       The properties of sub-angular blick and concretes Greed concists of the coore angular     0.20     25.41     0.25       The properties of sub-angular blick and concerter blick and concerter blick and concerter blick and concerter blick and conconcerter blick and concerter blick and concerter blick and concer		PE/ TH (m)												Driven to	Level (m	Co-ordir	
and contribution     control     control     control       Control     control     control     control     control     control       Control     control     control     control     control     control     control       Control     control     control     control     control     control     control     control       Control     control     control     control     control     control     control     control       Control     control     control     control     control     control     control     control       Control     control     control     control     control     control     control     control       Control     control     control     control     control     control     control       Control     control     control     control     control     control     control       Control     control     control     control     control     control     control       Control     control     control     control     control     control       Control     control     control     control     control       Control     control     control     control     control       Control <t< td=""><td>VER</td><td>TH DEM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ler record</td><td>Internet</td><td>100</td><td></td><td></td></t<>	VER	TH DEM											ler record	Internet	100		
<ul> <li></li></ul>	AN C	GEND STR											tube samp		E 00		
Configure     000000000000000000000000000000000000		(m ob) LB		1	5	<u>18888</u> 5 (	<u> ' ' '</u> 5		<u>' ' ' '</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	1	 Title	Driven	2	0.00 - 2		
Another the set of fails and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete. Gravel consists of fine to coarse angular bick and concrete Gravel consists of fine to coarse angular bick and to coarse angular bick and to coarse angular bick in the filtration testing performed. Borehole sides remained unfight and table upper completion.	$\left  \right $	TH BE		7	2	8 9	*				5		_				
	STRATA		.RETE comprised of aggregates of flint up to 20mm nominal size. 10mm diameter reinforcement bar	with frequent cobbles of sub-angular brick and concrete. Gravel consists of fine to coarse angular	nge brown very sandy CLAY.		wn very sandy CLAY.				BIOREHOLE TERMINATED AT 2.00m	lates	tand tools used to excavate from U.Um to U.Bm depth. Inhitration testing performed. Borehole sides ipright and stable upon completion.		sroundwater observations conindwater maasuried as 1.0m.on.comoleition		



# Camden

# GREATER **LONDON** AUTHORITY



	Project / Site Name (including sub- catchment / stage / phase where appropriate)	19 Well Road, London NW3 1LH					
	Address & post code	19 Well Road, London NW3 1LH					
	OS Grid ref (Easting Northing)	E 526694					
		N 186185					
tails	LPA reference (if applicable)	2021/1003/P					
1. Project & Site D	Brief description of proposed work	Extension to existing basement under front garden, including 2x lightwells					
	Total site Area	54.3 m ²					
	Total existing impervious area	54.3 m ²					
	Total proposed impervious area	54.3 m ²					
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No					
	Existing drainage connection type and location	Existing combined sewer					
	Designer Name	Stella Pyrza/Duncan Walters					
	Designer Position	Project Engineer/Associate Director					
	Designer Company	Eckersley O'Callaghan					

	2a. Infiltration Feasibility				
	Superficial geology classification	None recorded			
	Bedrock geology classification Claygate N		1ember - Clay, Silt and Sand		
	Site infiltration rate	0	m/s		
	Depth to groundwater level	1 (perched - see SI) m below ground level			
	Is infiltration feasible?	No			
	2b. Drainage Hierarchy				
^o roposed Discharge Arrangements			Feasible (Y/N)	Proposed (Y/N)	
	1 store rainwater for later use		Ν	Ν	
	2 use infiltration techniques, such as porous surfaces in non-clay areas		Ν	Ν	
	3 attenuate rainwater in ponds or open water features for gradual release		Ν	N	
	4 attenuate rainwater by storing in tanks or sealed water features for gradual release		Ν	Ν	
2.	5 discharge rainwater direct to a watercourse		Ν	Ν	
	6 discharge rainwater to a surface water sewer/drain		Ν	Ν	
	7 discharge rainwater to the combined sewer.		Y	Y	
	2c. Proposed Discharge Details				
	Proposed discharge location	Existing Combined Sewer		Sewer	
	Has the owner/regulator of the discharge location been consulted?	No			

# Camden

# GREATER **LONDON** AUTHORITY



## 3a. Discharge Rates & Required Storage

	0	•	<u> </u>			
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³ )	Proposed discharge rate (I/s)	
	Qbar	0.45	$\ge$	$\ge$	$\ge$	
	1 in 1	0.38			2	
	1 in 30	1.04			2	
	1 in 100	1.44			2	
	1 in 100 + CC		$\geq$		2	
	Climate change allowance used		40%			
rategy	3b. Principal Method of Flow Control		Hydrobrake			
3. Drainage Sti	3c. Proposed SuDS Measures					
			Catchment	Plan area	Storage	
			area (m²)	(m²)	vol. (m ³ )	
	Rainwater harvesting		0	$\geq$	0	
	Infiltration systems		0	$\geq$	0	
	Green roofs		0	0	0	
	Blue roofs		0	0	0	
	Filter strips		0	0	0	
	Filter drains		0	0	0	
	Bioretention / tree pits		0	0	0	
	Pervious pavements		0	0	0	
	Swales		0	0	0	
	Basins/ponds		0	0	0	
	Attenuation tanks	S	54.3	$\geq$	0.5	
	Total		54.3	0	0.5	

	4a. Discharge & Drainage Strategy	Page/section of drainage report
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Soiltechnics Well Road Report
	Drainage hierarchy (2b)	
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	
ormatio	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	19 Well Road Discharge report_iss1
4. Supporting Inf	Proposed SuDS measures & specifications (3b)	19 Well Road Discharge report_iss1
	4b. Other Supporting Details	Page/section of drainage report
	Detailed Development Layout	
	Detailed drainage design drawings, including exceedance flow routes	1583-Condition Discharge Report
	Detailed landscaping plans	
	Detailed landscaping plans Maintenance strategy	1583-Condition Discharge Report
	Detailed landscaping plans Maintenance strategy Demonstration of how the proposed SuDS measures improve:	1583-Condition Discharge Report 19 Well Road Discharge report_iss1
	Detailed landscaping plans Maintenance strategy Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff?	1583-Condition Discharge Report 19 Well Road Discharge report_iss1
	Detailed landscaping plans Maintenance strategy Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity?	1583-Condition Discharge Report 19 Well Road Discharge report_iss1

Dear Sofie, Thank you for your email.

Could you please pass the following comments from our drainage consultant back to your sustainability team:

## Water butts (recommended but no details on proposals)

We have identified that a water butt could be provided within the client ownership, and this would be for irrigation purposes. Whilst this is beneficial if used, it has negligible effect when irrigation is not occurring. So it would only have a storm water reduction effect during peak sunny/dry periods.

It's vital that a water butt is provided in a location to suit the client so it has a chance of being utilised. Furthermore if the client does not irrigate, the installation of a water butt system would be unnecessary with the additional drainage, installation, upkeep and would have potentially a negative environmental impact.

We therefore strongly suggest that a Water Butt must be recommended to the client, any installed if it will be utilised.

# - Permeable paving with attenuation under for new terrace area (no evidence of consideration) The hierarchy list 2b states option 2 as consider porous surfaces over non-clay areas. The paving is over a basement roof slab so this is not acceptable.

We are attenuating so designing to option 4. This could be undertaken by storage in a chamber or beneath paving, but either way its attenuation so both are compliant with Option 4.

The reason porous paving attenuation is not suitable is due to the re-use of the paving tiles and the construction buildup.

- 1. The terrace is constructed over the basement roof, so construction depth and hence attenuation depth is not sufficient.
- 2. The existing terrace is partially listed. Consisting of listed encaustic tiles which need to be catalogued, lifted, set aside and re installed to the conservation officers approval. This requires a concrete base, full mortar bed and approved grouting. Therefore this area is not acceptable for a porous paved solution.

I look forward to hearing back from you Kind regards

LLFA 1st comments	Response	LLFA 2nd comments
Water butts (recommended but no details on proposals)	We have identified that a water butt could be provided within the client ownership, and this would be for irrigation purposes. Whilst this is beneficial if used, it has negligible effect when irrigation is not occurring. So it would only have a storm water reduction effect during peak sunny/dry periods. It's vital that a water butt is provided in a location to suit the client so it has a chance of being utilised. Furthermore if the client does not irrigate, the installation of a water butt system would be unnecessary with the additional drainage, installation, upkeep and would have potentially a negative environmental impact.	Client to install 2 no 250 litre water butts for irrigation purposes/ (see drawing no 4)
	We therefore strongly suggest that a Water Butt must be recommended to the client, any installed if it will be utilised.	
- Permeable paving with attenuation under for new terrace area (no evidence of consideration)	The hierarchy list 2b states option 2 as consider porous surfaces over non-clay areas. The paving is over a basement roof slab so this is not acceptable.	The issue is addressed. Resolved

......