

43a Redington Road, London, NW3 7RA

Geotechnical Interpretative Report

Report/Project No: 2021-028-SYM-RED

Date: 27/08/2021

Geofirma Ltd The Old Bank 153 The Parade High Street Watford WD17 1NA

020 3432 3695 geofirmaconsultants.co.uk

DOCUMENT CONTROL SHEET

Project	43a Redington Road, London, NW3 7RA
Document	Geotechnical Interpretative Report
Project/Report No	2021-028-SYM-RED/Rep.002
Client	Joelle and Josef Fuss

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Client Issue	Client Issue		
Date	16/08/2021	27/08/2021		
Prepared by	Immanuel Yartel-Kubin	Immanuel Yartel- Kubin		
Signature				
Checked by	Ebenezer Adenmosun	Ebenezer Adenmosun		
Signature				
Authorised by	Ebenezer Adenmosun	Ebenezer Adenmosun		
Signature				
Method of issue	Email			

PREAMBLE

The work undertaken to provide the basis of this report comprised a study of the available documented information from a variety of sources, together with (where appropriate) meetings and discussions with relevant authorities and other interested parties. The information reviewed should not be considered exhaustive and has been accepted in good faith by Geofirma Ltd as providing a true description of site conditions. However, no liability can be accepted for the detailed accuracy or otherwise of any of the reports or documents prepared by others for the Client or for third parties, or for any associated errors or omissions.

The investigation of the site has been carried out to provide information concerning the ground conditions to allow a reasonable site assessment to be made.

The exploratory holes undertaken during the fieldwork only represent a small volume of the ground in relation to the size of the site and can therefore only provide a general indication of the site conditions. The number of sampling points and the methods of sampling and testing do not preclude the existence of localised variations in the ground condition or 'hot spots' of contamination where elevated levels of contaminants may be significantly higher than those encountered. It should be noted that this ground investigation comprises 2No window sample boreholes and 2No hand dug trial pits. A desk study was undertaken to assess historical risks, however, no liability for unforeseen geotechnical or contamination hazards can be accepted by Geofirma Ltd.

The comments and recommendations given in this report are based on the ground conditions apparent at the borehole and inspection pit locations. It is likely ground conditions elsewhere on the site have not been disclosed by this investigation and have therefore not been included in this report.

The comments made on groundwater conditions are based on observations made at the time that site works were undertaken. It should be noted that groundwater levels can vary owing to seasonal or other effects, and additional groundwater measurements should be conducted immediately prior and during the construction works.

In relation to asbestos, we are unable to accept the associated liability as indemnity covering asbestos related matters is restricted from our policy. This is typically the industry norm. If we do find or suspect the presence of asbestos, we will state in the exploratory logs and notify the client, and it will be their responsibility to engage a specialist contractor to investigate the issue further.

The scope of the investigation was decided in consultation with the Client and the limitations of which were made clear. This report is produced solely for the use of the Client and his/her agent and should not be relied upon in any way by any third party.

TABLE OF CONTENTS

1.	INTRODUCTION	
1.1	APPOINTMENT AND BRIEF SITE SUMMARY	
1.2	REPORT CONTEXT	
1.3	OBJECTIVES AND METHODOLOGY	. 5
2.	SITE DETAILS	
2.1	SITE LOCATION AND DESCRIPTION	
2.2	GEOLOGY	. 6
3.	GROUND INVESTIGATION	
3.1	FIELDWORK	
3.2	LABORATORY TESTING	
3.3	GROUNDWATER MONITORING	. 8
4.	GROUND CONDITIONS	
4.1	INTRODUCTION	
4.2	MADE GROUND	
4.3	CLAYGATE MEMBER	
4.4	LONDON CLAY FORMATION (WEATHERED)	
4.4	SUMMARY OF GEOTECHNICAL PARAMETERS	13
5.	ENGINEERING CONSIDERATIONS	
5.1	FOUNDATION DESIGN ISSUES	
5.2	PROPOSED BASEMENT EXTENSION	16
5.3	BASEMENT CONSTRUCTION	
5.4	EXCAVATIONS	
5.5	FLOOR SLABS	
5.6	PAVEMENT DESIGN	
5.7	CONCRETE SULPHATE RESISTANCE	
5.8	CONTAMINATION ASSESSMENT	
6.	REFERENCES	25
FIGUE	RES	
Fiaure	1: Site Location	24
Figure	2: Aerial Photograph of site	25
Figure	3: Undrained Shear Strength vs Depth for Claygate Member	6
APPEI	NDICES	
APPEN	DIX A - EXPLORATORY HOLE RECORDS	27
APPEN	DIX B - EXPLORATORY HOLE LOCATION PLAN	28
APPEN	DIX C - GEOTECHNICAL LABORATORY TEST RESULTS	29
APPEN	DIX D - GROUNDWATER LEVELS	30
APPEN	DIX E - LOAD TAKEDOWN SKETCHES	31
		_

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

1. INTRODUCTION

1.1 APPOINTMENT AND BRIEF SITE SUMMARY

Geofirma Ltd has been appointed by Symmetrys Ltd, on behalf of Joelle and Josef Fuss to carry out a ground investigation at 43a Redington Road, London, NW3 7RA to provide geotechnical information for the construction of the proposed basement extension and internal alterations to a 4-storey building.

The Site is located in the London Borough of Camden, some 575 m to the west of Hampstead town centre and underground station and at its nearest point is approximately 400 m from Hampstead Heath. The Site is generally rectangular in shape with its long axis generally orientated northeast / southwest and occupies an area of approximately 0.11ha.

The site is located on a grid reference TQ257858.

1.2 REPORT CONTEXT

The current proposal for the redevelopment is understood to comprise refurbishment of the existing 4-storey building, with the extension and deepening of the one-storey basement to the rear and side and internal alterations.

The purpose of this report is to present the findings of the ground investigation and geotechnical advice to aid with the assessment of the suitability of the existing foundations and determine the ground and groundwater conditions to assist in the design and construction of the basement.

1.3 OBJECTIVES AND METHODOLOGY

The objectives of this report are to provide information on the following areas:

- Geology of the site;
- To record details of the ground investigation works undertaken;
- To discuss site groundwater and ground conditions established from the intrusive works:
- To derive geotechnical parameters to inform the design of a suitable foundations to the proposed basement; and
- Present geotechnical advice on other ground related issues.

2. SITE DETAILS

2.1 SITE LOCATION AND DESCRIPTION

The site summary is in Table 1 below:

Table 1: Site Summary

Location	The Site is located in Hampstead, some 575 m to the west of Hampstead town centre and underground station and at its nearest point is approximately 400 m from Hampstead Heath.
Full Address	43a Redington Road, London NW3 7RA.
Grid Reference	TQ257858.
Area & Shape	The Site is generally rectangular in shape with its long axis generally orientated northeast / southwest and occupies an area of approximately 0.11ha.
Development Proposals	The development shall comprise a basement extension and internal alterations to a 4-storey building.

2.2 GEOLOGY

The published geology based on the British Geological Survey (BGS) map 1:50,000 geological map series, solid and drift Ref. 1, indicates the site is underlain directly by the Claygate Member of the London Clay Formation. This geological sequence is also confirmed by the BGS boreholes included in the desk study report titled "Phase 1 Desk Study and Preliminary Risk Assessment Report No: 2021/028/SYM/RED/Rep.001". The geological sequence is summarised in **Table 2** below.

Table 2: Summary of Published Geology

Geological Unit	Description	Composition	BGS Lexicon Description
Superficial	None	-	-
Bedrock	Claygate Member of the London Clay Formation	Clay, silt and sand	Comprises dark grey clays with sand laminae, passing up into thin alternations of clays, silts and finegrained sand, with beds of bioturbated silt. Ferruginous concretions and septarian nodules occur in places.

3. GROUND INVESTIGATION

3.1 FIELDWORK

The investigation was carried out between 1st and 2nd July 2021 by Geofirma Ltd and comprised the following:

- The drilling of two (2No.) window sample boreholes (numbered BH1 and BH2) on the site to depths varying between 6.45 m and 7.45 m below ground level (bgl). These were sunk to confirm the ground and groundwater conditions and permit in-situ geotechnical testing and sampling of the strata encountered;
- Hand dug inspection pit preceded all the drilling works. The trial hole TP1 and TP2 were dug to expose the existing foundation solution and to inform the party wall sections of the redevelopment;
- Installation of monitoring standpipes within all window sample boreholes to monitor groundwater; and
- Standard Penetration Tests (SPTs) were performed in all the window sample boreholes together with sampling at varying intervals to provide an indication of soil density/strength.

The fieldwork was supervised on a full-time basis by an Engineer from Geofirma Ltd with due regard to existing standards and guidelines including BS EN 1997-2 (2005), BS 5930 (2015), BS EN ISO 22476-3 (2011) and TRL PR/INT/277 (2004). All soil description and sample logging were carried out in accordance with BS 5930:2015 and BS EN ISO 14688-1:2002+A1:2013 and BS EN ISO 14689-1:2003. The exploratory hole records are included in Appendix A prepared by Geofirma Ltd.

The locations of the exploratory holes are shown in Appendix B.

Disturbed samples were recovered from the exploratory holes as necessary to facilitate sample description and for subsequent laboratory testing.

Observations of groundwater encountered during the fieldwork are included on the relevant exploratory hole logs.

3.2 LABORATORY TESTING

Routine geotechnical laboratory testing comprising Moisture Content (MC), Atterberg Limits, Particle Size Distribution Determination (PSD), Quick Undrained Triaxial Testing and BRE sulphate testing was carried out on representative samples of all materials recovered from the exploratory holes. The laboratory results are presented in Appendix C.

Chemical and WAC testing were also performed on selected samples of Made Ground obtained during the ground investigations.

3.3 GROUNDWATER MONITORING

Following the completion of ground investigation works, a groundwater monitoring visit was carried out on a single occasion in all the drilled boreholes. The groundwater monitoring visit was undertaken on the 10 August 2021 which recorded water levels at 4.04 m and 1.01 m bgl within BH1 and BH2 respectively. Based on the ground levels estimated from the topographical survey it would appear the groundwater level relative to the site datum are the same at approximate 8.8 m (to the relative site datum).

4. GROUND CONDITIONS

4.1 INTRODUCTION

Full details of the ground conditions encountered are presented on the exploratory hole records included in Appendix A.

Table 3: Proven Ground Conditions

Strata	Depth to Top (m bgl)	Thickness (m)	Exploratory Holes
Made Ground	0.00	0.60 – 1.40	AII
Claygate Member	0.60 to 1.40	0.40 - 5.70	AII
London Clay Formation (possible)	5.50 to 6.30	0.95 – 1.15 (Full thickness unproven)	All exploratory holes except TP1 and TP2

4.2 MADE GROUND

Made Ground was encountered in all the exploratory holes excavated on site and was highly variable. Typically, the shallow Made Ground encountered comprised concrete/paving slab over dark brown clayey slightly gravelly Sand. The gravel consists of angular to subangular flint, brick, concrete and tile.

Based on the description of the material and inference from BS8002, a unit weight of 18 kN/m^3 is assumed suitable for this material. Based on the descriptions of the material being predominantly granular an angle of friction of 28° is deemed acceptable for design purposes.

Three samples were recovered from BH1 at depths of between 0.50 to 1.20 m bgl within the Made Ground, to determine its moisture contents. The results ranged between 22% to 62% indicative of a general trend of gradual increase in moisture content within the Made Ground with depth. The high moisture content of 62% measured at 1.20 m bgl is considered anomalous and possibly associated with the seepage recorded at 2.30 m within this same borehole.

Atterberg limit test was also performed on a selected sample within BH1 at 1.20 m bgl. The result of the test recorded liquid limit of 32%, plastic limit of 19% with plasticity index of 13, indicative of clay of low plasticity. The modified plasticity index is 13 which suggests a low soil material.

Based on the material description the Youngs Modulus of the Made Ground has been assumed to be 5 MPa for the purposes of the settlement assessment.

4.3 CLAYGATE MEMBER

4.3.1 General Classification

Beneath the Made Ground, a stratum interpreted as Claygate Member was encountered in all the exploratory boreholes. It generally comprised soft (becoming firm at 2.00 m bgl) orange, brown mottled grey clayey sandy slightly gravelly SILT or silty slightly sandy CLAY. Rare bands of brown silty sand were noted in BH1 and BH2. At shallow depth where gravel was encountered in BH2 and TP1, it was described as comprising medium to coarse, rounded flint.

4.3.2 Moisture Contents

17No. natural moisture contents were measured on samples taken from depths ranging between 0.70 m and 4.60 m bgl with values ranging between 23% and 37%.

4.3.3 Particle Size Distribution (PSD)

Particle Size Distribution (PSD) test was carried out on three bulk samples of the Claygate Member recovered from BH1 and BH2.

Table 4: Laboratory Testing for PSD

Exploratory Hole	Sample Type	Depth (m bgl)	Geology
BH1	Bulk	3.60	Claygate Member
BH2	Bulk	1.80	Claygate Member
BH2	Bulk	5.00	Claygate Member

The results indicate the recovered samples are either clayey very silty SAND with rare fine gravel or very sandy CLAY/SILT with rare fine gravel. The grading envelope is included within Appendix D. Table 5 below summarises the PSD result.

Table 5: Results of the Grading Analysis

Exploratory	Depth		Uniformity				
Hole	(m bgl)	Clay Silt		Sand	Gravel	Cobbles	Coefficient
BH1	3.60	10.9	27.7	60.5	0.9	0.0	52
BH2	1.80	53.0		45.5	1.5	0.0	Not calculated
BH2	5.00	7.9	21.7	70.4	0.0	0.0	53

The curvature coefficients for the above grading analysis were determined as 1.3, 0 and 9.8 respectively. Given the uniformity coefficients determined from the grading curve, the

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

granular soil sample recovered from the Site is classified as multi-graded material in accordance with BS EN ISO 14688-2:2004.

Atterberg limit tests were also performed on selected samples within the boreholes at depths of between 1.10 and 6.00 m bgl. The result of the test recorded liquid limits of 32% to 49%, plastic limits of 21% to 23% with plasticity indices of 11 and 27, indicative of clay of low to intermediate plasticity. All samples passed through the 425µm sieve and therefore, there is no requirement to modify plasticity indices.

4.3.4 Strength Characteristics

Standard Penetration Testing was carried out and the uncorrected SPT 'N' Values were recorded on the exploratory hole records. The data indicates a general trend of increasing N-value with depth.

Undrained triaxial tests have been undertaken on representative sample of the Claygate Member recovered. The undrained shear strength of 130 kPa recorded in the laboratory for a sample retrieved in BH1 at 3.60 m bgl is considered anomalous and is likely to be due to gravel content within material.

Shear strengths were also derived from SPT 'N' using the empirical formula Cu = 5*N (Stroud and Butler (1975) and CIRIA 143 Ref. [2]).

Based on the data the following undrained shear strength vs depth relationship has been adopted as shown in Figure 3:

 $C_u = 35 + 6.7z$ (z = depth below the surface of the Claygate Member)

4.3.5 Frictional Angle

A significant amount of geotechnical data relating to the Claygate Member is available from historical archives. Furthermore, four Atterberg limit test results have been obtained for samples retrieved within the Claygate Member to determine the index properties of the soil, and hence derive the characteristic critical state effective angles of friction using guidelines from BS8002 (2015). The critical state angles of friction derived based on the plasticity indices yielded values of between 24° and 29° . However, angle of friction of 27° is considered representative for this material. The worst case characteristic critical state effective cohesion c' is assumed to be zero.

4.3.6 Young Modulus/Compressibility

The value of undrained Young's Modulus, E_{u_i} of more competent Claygate Member can be determined by using SPT 'N' values and CIRIA recommendations as Ref. [3] states for design purposes of shallow foundations, the relationship of $E_u = 600C_u$ is a reasonable estimation of the small strain range of stiffnesses used for the calculation of lateral movements associated with retaining wall movements. Since the movements associated with foundations are due

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

to larger strains and the stiffness of soil is strain dependant a reduced Eu = 300 Cu should be adopted for calculation of foundation settlements.

Therefore for retaining wall analysis and the GMA assessment an $E_u = 21 + 4z$ in MPa (with z measured from from the surface of the is recommended for shallow foundation design purposes. Assuming a Poisson's ratio (ν ') of 0.15, an E' (drained Young modulus) of 0.75* E_u should be adopted. The relationship E' = 15.75 + 3*z in MPa is therefore recommended.

For foundation settlements computation an $E_u = 11.5 + 2z$ in MPa (with z measured from from the surface of the is recommended for shallow foundation design purposes. Assuming a Poisson's ratio (ν ') of 0.15, an E' (drained Young modulus) of 0.75* E_u should be adopted. The relationship E' = 7.9 + 1.5*z in MPa is therefore recommended.

The coefficient of compressibility (m_v) has been estimated for the underlying Claygate Member based on the expressions:

$$m_V = 1/f_2 Nm^2/MN$$

Based on the above correlation a m_{ν} value of 0.3 m²/MN has calculated. This value seems fairly conservative bearing in mind the existing building on the site has been on the site for over 100 years and no signs of settlement distress were noted. Hence taking experience into account experience an m_{ν} value of 0.15 m²/MN is deemed realistic for the estimation of settlement under loadings.

4.3.7 General Groundwater Regime

Groundwater was encountered in boreholes BH1 and BH2 during drilling at 4.41 m and 4.00 m bgl respectively. It is suspected that the groundwater encountered during the drilling works may have led to the low SPT values recorded within the boreholes drilled across site.

Groundwater monitoring installations were placed in boreholes BH1 and BH2 with water levels of 4.04 m bgl and 1.01 m bgl measured respectively on the 10 August 2021.

Groundwater levels are susceptible to seasonal fluctuations and may be higher during wetter periods than dryer periods.

4.4 LONDON CLAY FORMATION (WEATHERED)

4.4.1 General Classification

Beneath the Claygate Member, a stratum interpreted as weathered London Clay Formation was encountered in the BH1 and BH2 at depths of between 5.50 m bgl and 6.30 m bgl. The full thickness of the material was unproven up to the maximum drilled depth of 7.45 m bgl at which depth the boreholes were terminated. The probable weathered portion of the stratum was described as generally comprising firm grey mottled brown silty CLAY with rare partings of silt and sand. However, the SPT results indicate that the cohesive stratum encountered were at least stiff.

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

Based on the description on the laboratory test results carried out within this material at 6.60 m bgl, a bulk unit weight of 19 kN/m³ was recorded. Based on the descriptions of the material being predominantly cohesive and well documented data about London Clay Formation, an effective critical state angle of friction of 24° is deemed acceptable for design purposes.

At 6.60 m bgl, natural moisture content was measured on the same sample to determine its moisture contents. A result of 29% was recorded.

An undrained triaxial test carried on representative sample of the weathered London Clay Formation recorded 60 kPa, indicative of medium strength clay.

Based on the strength data the Undrained and drained Young's Moduli are assumed to be 36 MPa and 27MPa at the surface of the clay, respectively. An m_{ν} value 0.1 m/MN has been assumed for the purposes of the settlement assessment.

4.5 SUMMARY OF GEOTECHNICAL PARAMETERS

Based on the ground investigation and laboratory testing, the following design parameters have been derived and presented in Table 6 below. These may be relied upon in the design of geotechnical structures.

Table 6: Summary of Geotechnical Parameters

Stratum	Typical thicknes s Range (m)	Bulk Density (kN/m³)	C _u (kN/m²)	Φ' _{cv} (°)	m _V (m²/MN)	E _{u wall} (MN/m²)	E _{u settlemsnt} (MN/m²)	E' _{wall} (MN/m²)	E' settlemsnt (MN/m²)
Made Ground	0.60 – 1.40	18	-	28	-	-	-	5	10
Claygate Member	0.40 - 5.70	19	35+6.7z	27	0.15	21+4z	11.5+2z	15.75+3z ¹	7.9+1.5z
London Clay Formation (Properties at surface)	0.95 – 1.15 (Full thickness unproven)	19	60	24	0.1	36	18	27	13.5

(1) z is measured from the top of the Claygate Member

5. ENGINEERING CONSIDERATIONS

5.1 FOUNDATION DESIGN ISSUES

5.1.1 Introduction

The existing foundations are located within the shallow Claygate Member; however, it is important to note that there has been construction and demolition works on the site since early 1915 (based on the historical maps) and hence the shallow Claygate Member has likely undergone consolidation and strengthened under the building foundations loads in that time.

A conservative undrained shear strength (C_u) of 35 kPa at the surface of the clay has therefore been assumed in the assessment of the allowable bearing capacity at the site. The expression used to determine the allowable bearing capacity of foundations in clay is:

 $q_{all} = N_c d_c S_c Cu / FOS + q$

 N_c = Bearing capacity factor corrected for depth/breadth ratio and shape factor (see fig.1)

Cu = Undrained shear strength

FOS = Factor of safety = 3

q = Overburden above foundation formation level

Fig.1 Bearing Capacity Factor after Skempton

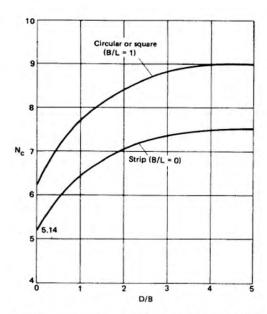


Figure 8.5 Skempton's values of N_c for $\phi_u=0$. (Reproduced from A.W. Skempton (1951) Proceedings of the Building Research Congress, Division 1, p. 181, by permission of the Building Research Establishment, © Crown copyright.)

Table 7: Summary of Assessment of Allowable Bearing Capacity

Depth below ground level (base of footing)	1.0 m	1.5 m	2.0 m
Foundation Width (m)	0.6	0.6	0.6
Undrained Shear Strength Cu (kN/m²)	35	40	45
Overburden Pressure (kN/m²)	19.0	28	38.0
Allowable Bearing Capacity (kN/m²) (assuming foundations are a 0.6 m strip and FOS = 3)	95	125	145

As part of this redevelopment new foundations may be required and existing foundations may have to be underpinned to form the basement boundary walls. Based on the available load takedown sketches provided by Symmetrys (21141-SK02-Rev P3 dated 20/08/2021 in appendix E). The sketch indicates most of the existing walls shall be left in place with only small increases in the current loads (5kN/m or 10 kN/m). In the redeveloped building there are approximately 4 new walls with the most heavily loaded wall exerting a maximum load of 105 kN/m at formation level. It is important to note this load is considerable less than the loads currently acting on the current foundations as the maximum estimated load is approximately 165 kN/m. This implies that bearing capacity is unlikely to be an issue. This observation also indicates the undrained shear strengths assumed from the ground investigation of the Claygate Beds is conservative because even if the estimated loads were

half the estimated 165 kN/m, with an assumed factor of safety of 3, the undrained shear strength is still nearly double that assumed in Table 7.

Based on the assumption above concerning the allowable bearing capacity, the differential settlements relative to the new and old walls are probably of more importance on this scheme. Using reasonable parameters, the anticipated settlement under the new load is not anticipated to exceed 10-15 mm. Of this up to 50% of the settlements are expected to be instantaneous, and the remaining likely to take place over the design life of the structure. This should be with within the tolerance of the existing structure, because the structural integrity of the building appears to be sound.

5.2 PROPOSED BASEMENT EXTENSION

For the proposed basement extension, the foundations are likely to be in the Claygate Member of the underlying London Clay Formation.

To ensure the foundations for structures founded in the Claygate Member are economical, the depth to suitable founding material must be confirmed on site by a suitably experienced Geotechnical Engineer or Engineering Geologist.

5.3 BASEMENT CONSTRUCTION

Current information indicates the basement depth will be increased by a maximum of 2.7 m. Based on the ground investigation data available, the base of the structure is anticipated to be in the Claygate Member. Groundwater monitoring undertaken at the site has indicated groundwater was present at a datum level of 8.8 m which is approximately 1 m below the anticipated dig level. It is assumed perched or trapped water maybe present within granular lenses of the Claygate Bed and hence groundwater inflows may occur into the excavation. If flows of groundwater are encountered during the excavation of the basement, ingress should be controllable by sump pumping. It is however recommended additional groundwater monitoring visits are performed, especially following periods of heavy rainfall to assess the likely highest water levels likely to occur during the construction of the basement.

Suitable geotechnical parameters to use in the design of the basement walls can be obtained from Table 6.

The basement is to be constructed adjacent to neighbouring building foundations of 41 and 45 Redington Road. In order to negate the impact of excavation induced ground movements temporary propping or the use of excavation supports maybe necessary. If the basement is to be constructed using underpinning methods it is imperative that the works are undertaken by an experience contractor with experience of using the technique in similar ground conditions.

5.4 EXCAVATIONS

Excavation of the materials encountered during the ground investigation should be easily achieved using conventional digging techniques.

Care should be taken to limit the exposure of any excavation surface before the actual placement of the concrete as groundwater or rainwater could result in deterioration of the formation surface. Foundation excavations should be inspected by qualified personnel and any soft or loose materials that are encountered should be removed and replaced with a blinding layer as quickly as possible.

Based on the findings of this investigation, groundwater seepages may occur locally in shallow temporary excavations. Any localised ingress should be controllable by sump pumping, if required.

5.5 FLOOR SLABS

The ground bearing floor slabs may be suitable on site. Due to the anticipated levels of the basement slab, it is anticipated the slab will be founded in the Claygate Beds. Based on the Atterberg Limits the soil is classified as low to medium volumetric potential using the NHBC guidelines, however, the basement slab will be placed at depth and there are no trees close to the proposed foundations. It should be highlighted that the existing building has been in place for around 100 years and no signs of desiccation damage was observed.

5.6 PAVEMENT DESIGN

In the absence of CBR test results, site observations suggest that where encountered, natural granular materials are likely to have minimum CBR values of 2%. If less conservative CBR values are required for road and pavement design in situ CBR tests should be performed.

5.7 CONCRETE SULPHATE RESISTANCE

Soil samples were tested for sulphates from two of the exploratory holes at depth of between 0.70 m bgl and 1.20 m bgl with the water-soluble sulphate values varying between 70 mg/l and 110 mg/l. Hence in accordance with BRE Guidance Special Digest 1:2005, and assuming mobile groundwater and brownfield location, a Design Sulphate Class of DS-1 and an Aggressive Chemical Environment for Concrete (ACEC) classification of AC-1 should be used for the design of buried concrete structures at the site.

The pH values of the retrieved soils indicate near neutral to alkaline conditions on site. The result has been included in Appendix C of this report.

5.8 CONTAMINATION ASSESSMENT

5.8.1 Introduction

A phase 1 desk study including site walkover and preliminary risk assessment was undertaken in July 2021.

The desk study identified a number of potentially significant pollutant linkages classified with very low risk. A suitable scheme of environmental testing was subsequently developed and carried out during the geotechnical investigation.

A tier 1 quantitative risk assessment has been undertaken by screening measured contaminant concentrations against available reference values. Concentrations of contaminants exceeding the relevant reference values are described as 'elevated' and indicate a requirement to for further assessment or mitigation measures.

Historical development on the site and locally has generally been limited to use for residential. Some Made Ground is to be expected across the site given previous demolition and redevelopment which is confirmed by the presence of Made Ground encountered during the ground investigation. However, significant quantities of mobile or leachable contamination are not anticipated and risk to controlled waters is considered to be low.

In view of the proposed development, which includes residential dwellings including basement, private garden and public open space, a "residential with consumption of homegrown produce" end use conceptual model is deemed appropriate for the project site. However, it is likely as part of the proposed development, that the site will be either covered by hardstanding or the proposed construction, hence the main risk to human health will be to construction workers, rather than the end site users.

5.8.2 Human Health Risk Assessment

A Tier 1 (generic) quantitative risk assessment has been undertaken by screening measured contaminant concentrations derived from the exploratory investigation works against reference values for chronic (long term) risk to human health known as generic assessment criteria (GAC).

In line with the conceptual site model, GAC for the residential exposure scenario have been utilised. The GAC are based on 1% soil organic matter (SOM) as established by the testing.

The below contaminants have subsequently been targeted for chemical analysis.

Table 8: Summary of the Contamination Assessment - Soils

	Measured Co	oncentration*	GAC	Number of results above GAC
Determinant	Minimum	Maximum	(SOM 1%)	(No. of samples tested)
Arsenic	-	18	37	0 (2)
Cadmium	-	<0.2	22	0 (2)
Chromium (hexavalent)	-	<1.2	21	0 (2)
Chromium III	-	29	910	0 (2)
Copper	-	73	2400	0 (2)
Total Cyanide	-	<1.0	24	0 (2)
Lead	-	1500	200	1 (2)
Mercury	-	<0.3	40	0 (2)
Nickel	-	24	130	0 (2)
Selenium	-	<1.0	250	0 (2)
Zinc	-	220	3700	0 (2)
Total Phenols	-	<1.0	120	0 (2)
TOC	0.8	1.2	3 ^x	0 (2)
Acenaphthene	-	1.4	210	0 (2)
Acenaphthylene	-	0.24	170	0 (2)
Anthracene	-	2.8	2400	0 (2)
Benzo(a)anthracene	-	10	7.2	1 (2)
Benzo(a)pyrene	-	8.5	5	1 (2)
Benzo(b)fluoranthene	-	8.0	2.6	1 (2)

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

	Measured Co	oncentration*	GAC	Number of results above GAC		
Determinant	Minimum	Maximum	(SOM 1%)	(No. of samples tested)		
Benzo(ghi)perylene	-	4.4	320	0 (2)		
Benzo(k)fluoranthene	-	4.3	77	0 (2)		
Chrysene	-	8.6	15	0 (2)		
Dibenz(a,h)anthracene	-	0.96	0.24	1 (2)		
Fluoranthene	-	19	280	0 (2)		
Fluorene	-	1.1	170	0 (2)		
Indeno(1,2,3-cd)pyrene	-	4.1	27	0 (2)		
Naphthalene	-	<0.05	2.3	0 (2)		
Phenanthrene	-	14	95	0 (2)		
Pyrene	-	16	620	0 (2)		
TPH	All fractions are either below laboratory limit of detection or their respective GAC					
Asbestos	None detected in sample					
*Concentration expressed						

^XBased on Insert Waste Landfill Acceptance Criteria

Direct analysis of all the chemical assessment data indicates that all potential contaminants of concern are below their relevant GAC, with the exception of lead, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, and Dibenz(a,h)anthracene.

The elevated readings (see Table 8 above) recorded in BH1 (at 0.30 m bgl) is potentially associated with the anthropogenic materials (brick, concrete and tile fragments) within the shallow Made Ground. Accordingly, the elevated result poses a potential risk to site workers during construction with less likelihood to significantly impact the residential end users, thus, further assessment is recommended. Further assessment would be required in the vicinity of

BH1 to attempt to delineate the extent of potential contamination from lead, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, and Dibenz(a,h)anthracene.

In addition to the above contaminants, a sample was screened for asbestos due to the potential spread of asbestos from historic on-site development (existing building) and development on adjacent land. No asbestos fibres were detected in the sample scheduled for screening. Accordingly, the risk posed by asbestos within the shallow Made Ground is considered negligible on the basis of current information.

Based on the information, because the site is likely to be covered by the proposed building or hardstanding the risk of harm to human health via ingestion by future site users will be negligible. Based on the chemical test results the risk to construction works will be medium, however, PPE shall be worn to mitigate the risk and necessary COSHH assessment shall be performed in advance of the works.

A copy of the laboratory chemical assessment data is presented in Appendix C of this Report.

5.8.3 Hydrocarbons - Soils

No visual or olfactory indication of petroleum hydrocarbon contamination was noted during the investigation. However, as there is the potential for petroleum hydrocarbons to be present due to the adjacent development (Redington Road), a sample from BH1 (@ 0.30 m bgl) was scheduled for speciated petroleum hydrocarbon testing (TPH CWG) in order to evaluate any potential risks during the investigation.

The direct assessment of the chemical data for the speciated TPH (TPH CWG) indicates that the potential contaminants were either below the laboratory detection limit or significantly below their respective thresholds. This sample is considered to be representative of conditions on the site. Accordingly, no further assessment for petroleum hydrocarbon is considered necessary for the project.

5.8.4 Waste Acceptance Criteria (WAC)

WAC testing was carried out on a sample retrieved from the site BH2 in the Made Ground and all values were under the Inert Waste Landfill limit criteria. A copy of the WAC assessment data is presented in Appendix C of this Report.

However, it is recommended that the Contractor undertakes further testing during construction prior to removal of the spoil off site to classify the site soils to be transported to a suitably licenced landfill facility.

5.8.5 Qualitative Risk Assessment

A qualitative risk assessment has been formulated for the potential source-pathway-receptor linkages identified in the conceptual model. The risk assessment is based on the suggested approach set out in the available guidance Ref. 11. The guidance uses a combination of the likelihood of a pollution event to occur, taking account of the presence of a hazard (or source)

43a Redington Road, London, NW3 7RA

geofirmaconsultants.co.uk

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001

and integrity of a pathway versus the consequence of a pollution occurrence, which is essentially a measure of the severity of a hazard to an identified receptor (such as a principal aquifer or site end-user).

Table 4: Phase II Conceptual Site Model

Source	Pathway	Receptor	Consequence	Likelihood	Classification*	Rationale/Mitigation
Organic and inorganic contaminants potentially present in Made Ground	Dermal contact, ingestion, particulate inhalation	Nearby site occupants & users (from on-site sources)	Low to Medium	Unlikely	Low to moderate	No elevated results, and no asbestos, except elevated lead, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, and Dibenz(a,h)anthracene. Further sampling and speciated testing (TPH CWG) is recommended around BH1.
		Future site occupants & users			Appropriate PPE to be worn by site workers and COSHH assessment to be carried out. Risk is considered low if PPE is worn and general hygiene rules are followed on site	
						On completion of construction works site will be covered by building/hardstanding, hence risk to future site users will be low. Capping layer of clean imported material maybe required subject to future landscaping proposals.
	Diffusion through plastic water supply pipes	Water supply pipes	Low	Unlikely	Very Low	Relates to local deposits of Made Ground / fill associated with construction of foundations and hardstanding. No organics observed during the ground investigation or elevated TPH results so risk to water pipes is negligible.
	Leaching into groundwater; subsurface migration.	Secondary A Aquifer	Low to Medium	Unlikely	Low to moderate	Low permeability London Clay Formation underlying the Claygate Member is classed as unproductive strata and will restrict vertical migration of lead, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, and

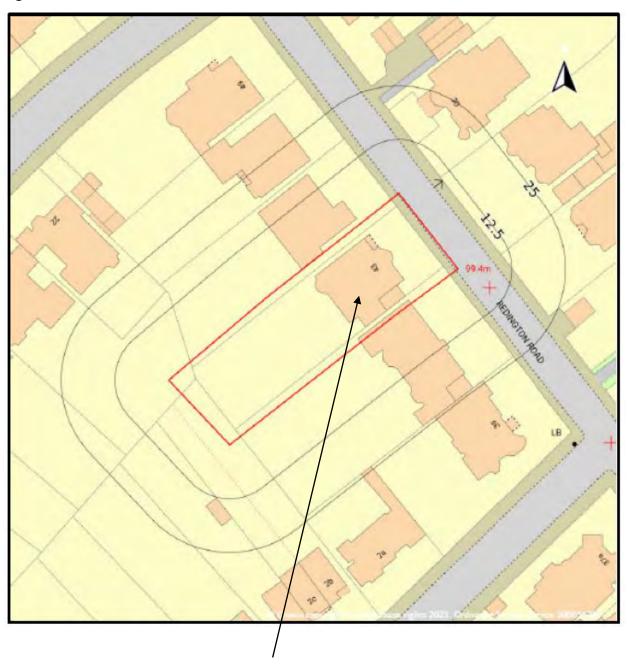
Project/Report/Revision No: 2021-028-SYM-RED/Rep.001 26/08/2021

Joelle and Josef Fuss

Source	Pathway	Receptor	Consequence	Likelihood	Classification*	Rationale/Mitigation
						Dibenz(a,h)anthracene. The cohesive component of the Claygate Member is likely to further restrict lateral migration of contaminants as perched water encountered is unlikely to be in hydraulic continuity. The site is not designated to be within Groundwater Source Protection Zones within 2000m radius of site. Leachate testing recommended to confirm this assessment.
Made Ground: historic Infilled stream on central areas on-site	Accumulation of ground gases then by potential asphyxiation/explosion	residential end users and construction workers	Low to medium	Unlikely	Very Low	No organics or odours detected during the ground investigation.
Potential asbestos containing materials in	Release of asbestos fibres; subsequent inhalation	Site occupants & users	Low	Unlikely	Very Low to negligible	No asbestos encountered during the ground investigation. However, assumes if buildings are to be demolished, or if asbestos is encountered during ground works,
structure	IIIIIaiatiOII	Construction workers				controlled removal by licensed contractor following an asbestos survey, if required.

Project/Report/Revision No: 2021-028-SYM-RED/Rep.001 26/08/2021

Joelle and Josef Fuss


6. REFERENCES

- [1] British Geology Society, BGS Geology of Britain Viewer, BGS: www.bgs.ac.uk, 2018.
- [2] Clayton C, CIRIA Report 143. The Standard Penetration Test (SPT): Method and Use, London: CIRIA, 1995.
- [3] Padfield C.J, and Sharrock M.J CIRIA Special Publication 27. Settlement of structures on clay soils, 1983.
- [4] Building Research Establishment, BRE Special Digest 1- Concrete in Aggressive Ground., London: BRE, 2005.
- [5] British Standard Institution, BS 5930: 2015, Code of Practice for Site Investigation., London: BSI, 2015.
- [6] British Standard Institution, BS EN 1997_2 Geotechnical Design Part 2: Ground Investigation, BSI, 2005.
- [7] British Standard Institution, BS EN ISO 14688-2 2004 Soil test principal of classification, BSI, 2004.
- [8] British Standard Institution, BS EN ISO 22476 Part 3 2005 + A1 2011 Geotechnical Field testing, Standard Penetration Test (SPT), BSI, 2011.
- [9] British Standards Institution, BS10175: 2011+A1: 2013, Investigation of Potentially Contaminated Sites Code of Practice and its Investigation, London: BSI, 2013.
- [10] British Standards Institution, BS8004, Code of practice for foundation design, London: BSI, 2015.
- [11] CIRIA, C552, Contaminated Land Risk Assessment; a Guide to Good Practice., London: CIRIA, 2001.
- [12] British Standards Institution, Methods for tests for soils for civil engineering purposes, BS1377, BS1., London., 1990.
- [13] NHBC, Standards Part 4, Foundations, NHBC, 2020.
- [14] British Standards Institution, BS8002, Code of practice for earth retaining structures, London: BSI, 2015.

FIGURES

Figure 1: Site Location Plan

Site Location

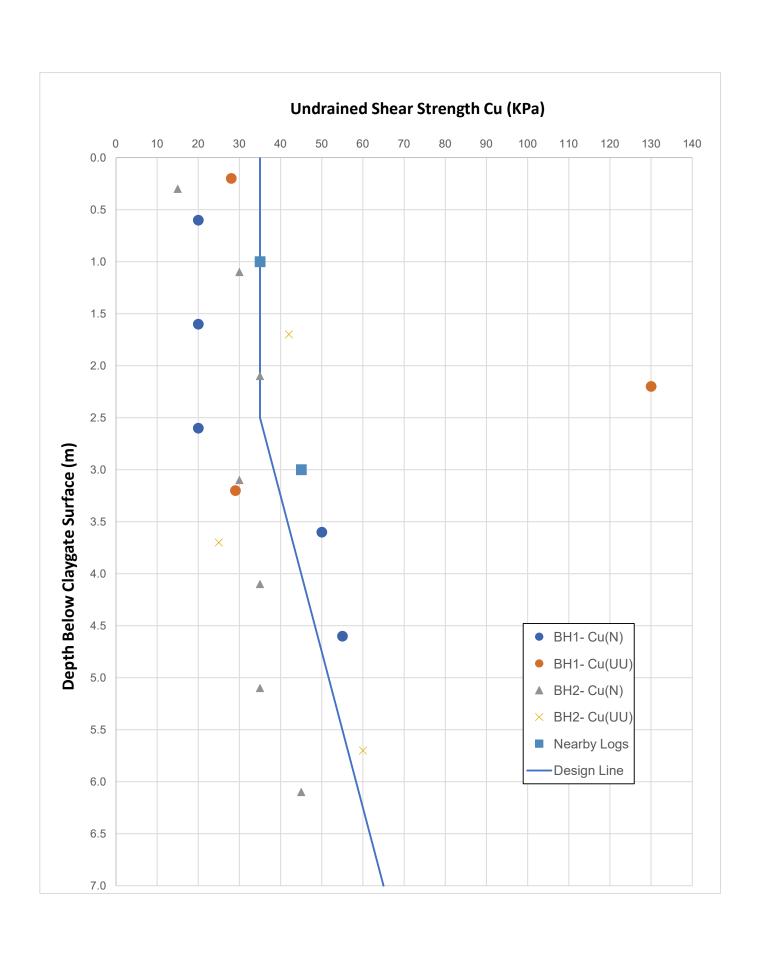

FIGURES

Figure 2 Aerial Photograph of site

Figure 3: Plot of Undrained Shear Strength vs Depth for Claygate Member

APPENDIX A - EXPLORATORY HOLE RECORDS

APPENDIX A - EXPLORATORY HOLE RECORDS

43a Redington Road

NW3 7RA

Window Sample Log BH1

Page 1 of 2

Start Date: 01/07/2021 Eastings: N/A Drilled By: Geofirms Ltd

Fireith Date: 01/07/2021 Northings: N/A Drill Rig/Team: Premier 110 WS Logged By: ES
Termination Depth (mBGL): 6.45 Elevation (mAD): N/A Driller: LC/NS Checked By: EA

Exploratory Hole Progress, Details with Depth and General Remarks

Hole Depth (mBGL)	Hole Diameter (mm)	Casing Depth (mBGL)	Casing Diameter (mm)	Depth to Water (mBGL)	Comments
1.20	Pit	Nil	N/A	Dry	All works undertaken on 01/07/2021
2.00	116	Nil	N/A	Dry	
3.00	101	NII	N/A	NR	
4.00	92	NII	N/A	NR	
5.00	79	Nil	N/A	NR	
6.00	79	Nil	N/A	NR	

Water Strikes

Depth of Strike (mBGL)	Depth of Casing (mBGL)	Date and Time	Post Strike Depth (mBGL)	Minutes After Strike	Sealed at (mBGL)	Remarks
2.30	Nil	01/07/2021	2.30	NR	NA	Seepage at hole depth of 2.3m did not rise
NA	Nil	01/07/2021	4.41	NR	NA	Water at 4.41mbgl at end of hole

Termination: Hole terminated at 6.45mBGL as per. Geofirma's Specification.

Groundwater: Seepage at 2.3mBGL. No rise. Water at 4.41mBGL at E.O.H (6.45mBGL)

Sampling: Sno. D, 3no. ES, 6no. SPTD, 3no. U

Backfill: Hole backfilled with standpipe on completion with flush cover. 2m plain pipe then 3m slotted pipe.

Weather: Sunny

Notes:

43a Redington Road NW3 7RA

Window Sample Log BH₁

Page 2 of 2

Start Date: 01/07/2021

Eastings: N/A

Drilled By: Geofirma Ltd

Logged By: ES

Northings: N/A

Drill Rig/ Team: Premier 110 WS

Finish Date: 01/07/2021 Termination Depth (mBGL): 6.45 Elevation (mAD): N/A Driller: LC/ NS Checked By: EA

,	Depth	Description	Reduced Level	San	noling		Testing		Field Records	> e
pussed	From/To		and Thickness							9 8
5	(m8GL)		(mAD) and (m)	From/To	Type	No.	From/ To	Type/		Backfill/ Installation
	(mess)		(moc) and (m)	(mBGL)			(mBGL)	Result		<u> </u>
						_				$\overline{}$
******	0.00-0.04	Paving Slab.	0.00-0.04						0	
XXXX			Thickness: 0.04	1	l				l .	
88888	0.04-0.35	MADE GROUND: Dark brown SAND with rare pockets of light		0.3	١,	١,				
XXXX	0.35-1.40	brown clay up to 45mm in size slightly sandy slightly gravelly	0.04-0.35	0.3 0.3 0.5 0.5	D ES D ES	2 3 4				12 12
XXXXX		clay. Gravel is angular to subangular brick, concrete and tile.	Thickness: 0.31	0.5	D FS	3				
******			0.35-1.40	0.3	"	"				1 4 4
XXXX		MADE GROUND: Dark brown slightly clayey slightly gravelly	Thickness: 1.05		l				1-	ا ما اما
******		SAND. Gravel is angular to subangular brick, concrete and tile.				١. ا				4 4
XXXX				1.2 1.2 1.2	D ES SPTD	5 6 7	1.20-1.65	SPT	0,0/0,1,1,1	
000000		***		1.2	SPTD	7	110-1.03	N=3	0,0,0,1,1,1	7 7
	1.40-5.50	Soft becoming firm orange brown mottled grey slightly sandy	1.40-5.50		l					
_		silty CLAY with bands of brown silty sand (between 2.3 and 2.4 m and 5.1 and 5.5 m).	Thickness: 4.10	1.60-2.00	U	8				. H E I
		2.4 m and 3.1 and 3.5 mj.			l					11
					l	١.			2=	-
				2	SPTD	9	2.00-2.45	SPT	1,1/1,1,1,1	1 4 4
					l			N=4		11111111
					l					
					l					
					l					1
				2.80-3.00	D	10				
_				3	SPTD	11	3.00-3.45	SPT	1,1/1,1,1,1	18481
				*	3410	1 **	3.00 3.43	N=4	2,2/2,2,2,2	1876
					l			"		
	1				l					1 1 1
				3.60-4.00	U	12				
-				3.00	ľ	1 **				1 + 4
					l				4-	
				4	SPTD	13	4.00-4.45	SPT	1,1/1,1,0,2	1 4 4
					l			N=4		
					l				l '	
_				4.60-5.00	U	14				1
					COTO	١.,			5-	
				5	SPTD	15	5.00-5.45	SPT M=10	1,1/2,2,3,3	J 🟻 🕽
								N=10	I '	1‱≪1
				-						‱∭
	5.50-6.45	Firm grey mottled orange brown silty CLAY with occasional silt	5.50-6.45							XXXX
		and sand bands .	Thickness: 0.95							18888 I
				5.80-6.00	D	16				J 🟻 🕽
_				6	SPTD	17	6.00-6.45	SPT	2,2/2,2,3,4	188881
_					1			N=11		18888 I
										18888

Hand dug inspection pit then hole advanced using Premier 110 window sample rig. Slotted pipe installed on completion. Seepage at 2.3mBGL. No rise noted. Water at 4.41mBGL at end of hole.

43a Redington Road NW3 7RA

Window Sample Log BH2

Page 1 of 2

Start Date: 01/07/2021

Eastings: N/A

Drilled By: Geofirms Ltd

Drill Rig/ Team: Premier 110 WS

Logged By: ES

Finish Date: 01/07/2021
Termination Depth (mBGL): 7.45

Northings: N/A

Elevation (mAD): N/A

Driller: LC/ NS

Checked By: EA

Exploratory Hole Progress, Details with Depth and General Remarks

Hole Depth (mBGL)	Hole Diameter (mm)	Casing Depth (mBGL)	Casing Diameter (mm)	Depth to Water (mBGL)	Comments
1.20	Pit	Nil	N/A	Dry	All works undertaken on 01/07/2021
2.00	116	Nil	N/A	Dry	
3.00	101	NII	N/A	Dry	
4.00	92	NII	N/A	NR	
5.00	92	Nil	N/A	NR	
6.00	79	Nil	N/A	NR	
7.00	79	Nil	N/A	NR	

Water Strikes

Str	Depth of Casing (mBGL)	Date and Time	Post Strike Depth (mBGL)	Minutes After Strike	Sealed at (mBGL)	Remarks
2.30 NA	Nil NII	01/07/2021 01/07/2021	4.00 5.00	NR NR	NA NA	Seepage at hole depth of 4.0m did not rise Water at 5.00mbgl at end of hole

Termination: Hole terminated at 7.45mBGL as per, Geofirma's Specification.

Groundwater: Seepage at 4mBSL, No rise, Water at 5mBSL at E.O.H (7.45mBSL)

Sampling: 6no.D, 2no. ES, 7no. SPTD, 3no. U

Backfill: Hole backfilled with standpipe on completion with flush cover. 2m plain pipe then 4m slotted pipe.

Weather: Sunny

Notes:

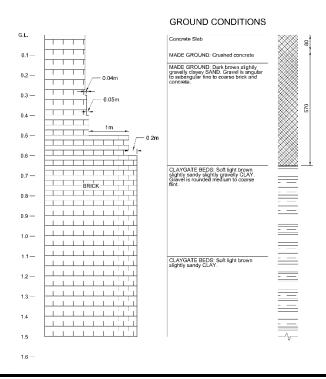
43a Redington Road NW3 7RA

Window Sample Log BH2

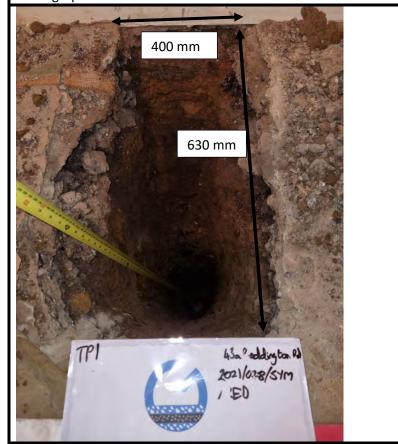
Page 2 of 2

Start Date: 01/07/2021 Eastings: N/A Drilled By: Geofirma Ltd

Finish Date: 01/07/2021 Northings: N/A Drill Rig/ Team: Premier 110 WS Logged By: ES

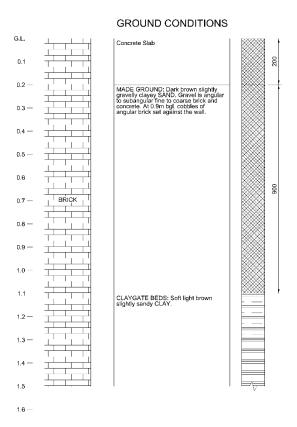

Termination Depth (mBGL): 7.45 Elevation (mAD): N/A Driller: LC/ NS Checked By: EA

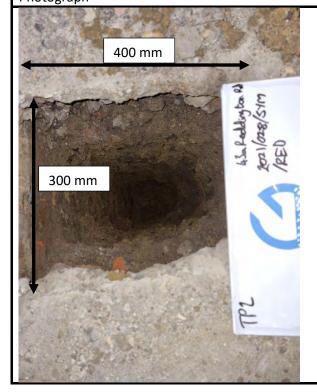
- v	Depth	Description	Reduced Level	Sar	npling		Testin	5	Field Records	> 5
puseal	From/To		and Thickness			1		1		Backfil/ Installation
-	(mBGL)		(mAD) and (m)	From/ To (mBGL)	Туре	No.	From/ To (mBGL)	Type/ Result		a sta
			l			_				
****	0.00-0.05	Paving Slab.	0.00-0.05						0	\exists
*****	0.05-0.15	Building SAND.	Thickness: 0.05	١		١.			1	
*****	0.15-0.60	MADE GROUND: Dark brown SAND with pockets of light	0.05-0.15 Thickness: 0.10	0.3 0.3	D ES	2			-	14 14
	0.60-0.90	brown sandy slightly gravelly clay. Gravel is angular to rounded fine to coarse brick flint and concrete.			_	١,				님님
	0.90-4.65		0.15-0.60 Thickness: 0.45	0.7 0.7	D ES	3				
==	0.30-4.03	Soft grey slightly sandy slightly gravelly SILT with occasional pockets of very soft clay up to 60mm in size. Gravel is rounded	0.60-0.90	١	D	5			_ ^-	
		coarse flint.	Thickness: 0.30	1.1 1.2	SPTD	6	1.20-1.65	SPT	0,0/1,0,1,1	
		Sot to firm light brown mottled light greenish grey slightly	0.90-4.65					N=3	1	14 F
		sandy CLAY.	Thickness: 3.75							4 4
									2-	
==				2	SPTD	8	2.00-2.45	SPT	1,1/2,1,2,1	4 4
								N=6	1 1	
									1	
									-	1
									3-	
				3	SPTD	10	3.00-3.45	SPT N=7	2,2/1,2,2,2	4 4
								N=7]	
									1	
									-	1
-=-									4-	
				4	SPTD	12	4.00-4.45	SPT N=6	1,1/2,1,1,2	# 4
								"		
									1	
>	4.65-6.10	Soft to firm orange mottled grey slightly sandy clayey SILT	4.65-6.10 Thickness: 1.45						1	1
*		with sand and clay bands.	Inickness: 1.45			١			5-	
>				5	SPTD	14	5.00-5.45	SPT N=7	1,1/1,2,2,2	# 4
 *										
]	
17									'	4
*				6	SPTD	16	6.00-6.45	SPT	1,1/1,2,2,2	****
<u> </u>	6.10-6.30	Firm grey very sandy SILT.	6.10-6.30	"	SFID	100	0.00-0.43	N=7	1,1/1,2,2,2	XXX
==	6.30-7.45	Firm grey mottled brown slightly sandy silty CLAY with	Thickness: 0.20	1						XXX
		occasional partings of silt and sand.	6.30-7.45 Thickness: 1.15							XXX
==]	XXX
-				7	SPTD	18	7.00-7.45	SPT	1,1/2,2,2,3	***
=					2.75		325,000	N=9	332326	***
_						1				XXXXX


Hand dug inspection pit then hole advanced using Premier 110 window sample rig. Slotted pipe installed on completion. Water strikke at 4.0mBGL. No rise noted. Water at 5.0mBGL at end of hole.

Position Name	TP 1	Date	02/07/2021
Location	In basement store	Project Number	2021-028-SYM-RED
Depth	1.5 m	Client	Joelle and Josef Fuss
Orientation	North West to South East	Project Title	43a Redington Road NW3 7RA

Cross Sectional Sketch and Ground Description

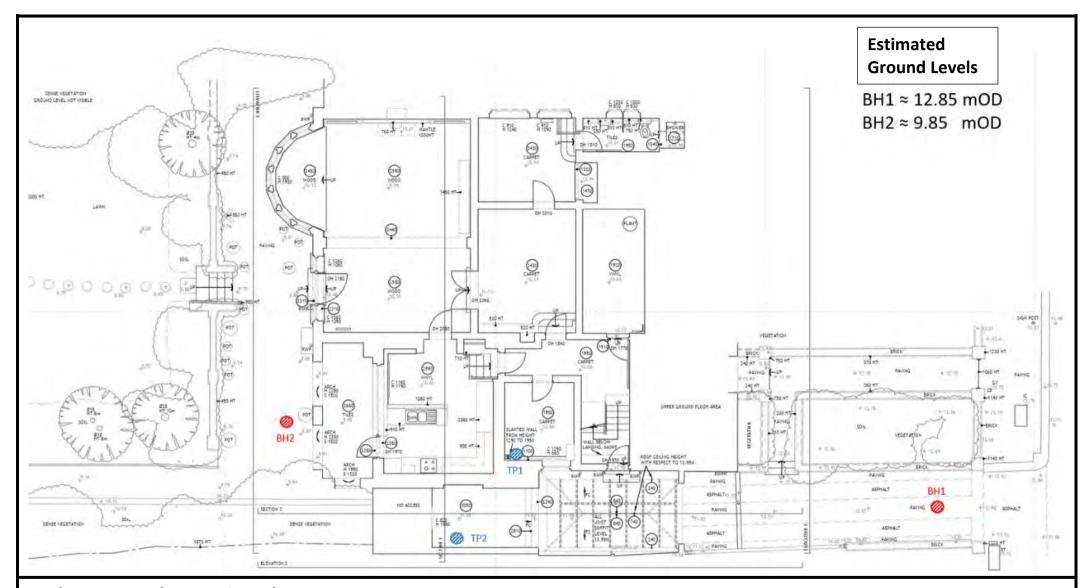

Photograph



Position Name	TP2	Date	02/07/2021
Location	Garage	Project Number	2021-028-SYM-RED
Depth	1.5 m	Client	Joelle and Josef Fuss
Orientation	North West to South East	Project Title	43a Redington Road NW3 7RA

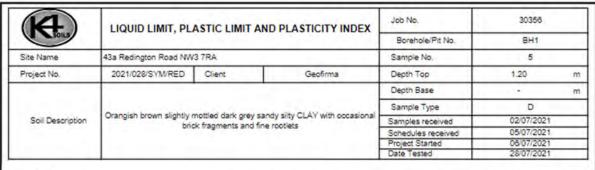
Cross Sectional Sketch and Ground Description

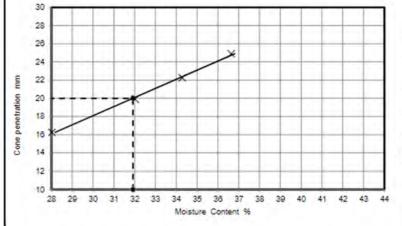
Photograph



APPENDIX B - EXPLORATORY HOLE LOCATION PLAN

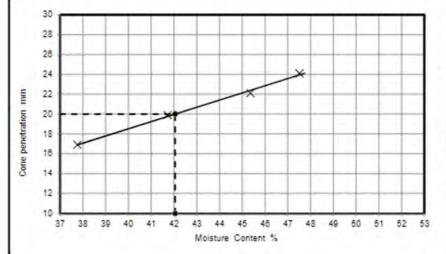
Exploratory Hole Location Plan


Client	Joelle and Josef Fuss
Project Title	43a Redington Road
Project No	2021/028/SYM/RED



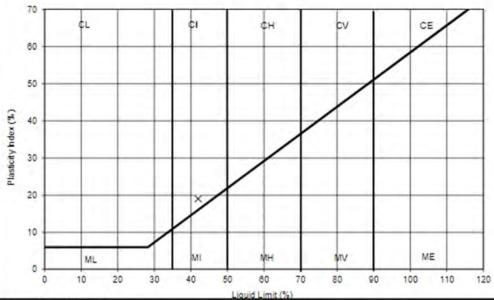
APPENDIX C - GEOTECHNICAL AND CHEMICAL LABORATORY TEST RESULTS

APPENDIX C – GEOTECHNICAL AND CHEMICAL LABORATORY TEST RESULTS

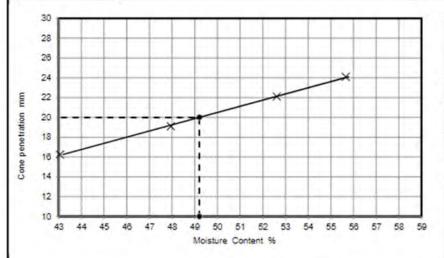

NATURAL MOISTURE CONTENT	22	%
% PASSING 425µm SIEVE	97	%
LIQUID LIMIT	32	%
PLASTIC LIMIT	19	%
PLASTICITY INDEX	13	96

Remarks

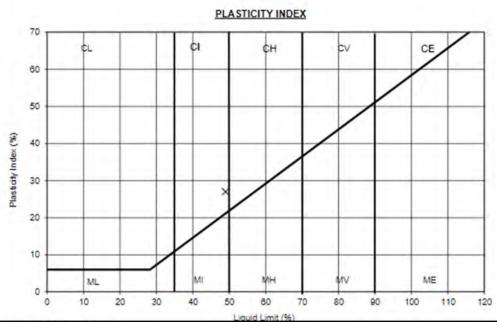
PLASTICITY INDEX CL CI CH CV CE 80 40 20 10 ML MI MH MV ME 0 10 20 30 40 50 60 70 80 90 100 110 120


TEST METHOD BS1377: Part 2: Clause 4.3: 1990 Determination of the liquid limit by the cone penetrometer method	Checked and Approved
BS1377: Part 2 : Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 : Clause 5.2 : 1990: Determination of the moisture content by the oven drying method Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Initials: J.P Date: 29/07/2021
Tel: 01923 711 288 Email: James@k4soils.com	Odie. Zeronzozi
Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-6 R2

14	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	30358			
SOILS	English Emmily, English Emmily and February			Borehole/Pit No.	BH1		
Site Name 43a Redington Road NW3 7RA				Site Name 4	Sample No.	10	
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	2.80	m	
				Depth Base	-	m	
				Sample Type	D		
Soil Description	Brown slight	ly mottled bluish gre	ey sandy silty CLAY	Samples received	02/07/2021		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Schedules received	05/07/2021		
				Project Started	06/07/2021		
				Date Tested	28/07/2021		

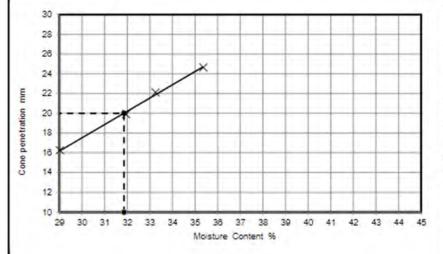

NATURAL MOISTURE CONTENT	28	96
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	42	%
PLASTIC LIMIT	23	96
PLASTICITY INDEX	19	56

PLASTICITY INDEX



(3)(2)	TEST METHOD BS1377: Part 2 : Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	Checked and Approved
-(≯≮)-	BS1377: Part 2: Clause 5.0: 1990: Determination of the plastic limit and plasticity index BS1377: Part 2: Clause 3.2: 1990: Determination of the moisture content by the oven drying method Test Report by: K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Initials: J.P
TIVAE	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Date: 29/07/2021
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

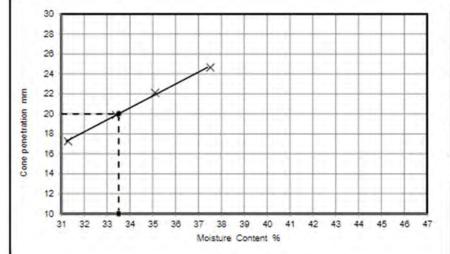
14	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	30358		
SOILS	43a Redington Road NW3 7RA			Borehole/Pit No.	BH2 5	
Site Name				Sample No.		
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	1.10	m
				Depth Base		m
				Sample Type	D	
Soil Description	Orangish brown s	lightly mottled grey	slightly sandy silty CLAY	Samples received	02/07/2021	
			Schedules received	05/07/2021	-	
				Project Started	06/07/2021	
				Date Tested	28/07/2021	- 1



NATURAL MOISTURE CONTENT	35	96
% PASSING 425µm SIEVE	100	96
LIQUID LIMIT	49	%
PLASTIC LIMIT	22	96
PLASTICITY INDEX	27	96

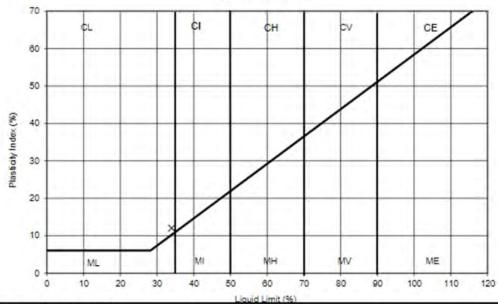
(F)	TEST METHOD BS1377: Part 2: Clause 4.3: 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2: Clause 5.0: 1990: Determination of the plastic limit and plasticity index	Checked and Approved
	BS1377: Part 2: Clause 5.2; 1990: Determination of the prastic limit and plasticity index BS1377: Part 2: Clause 3.2; 1990: Determination of the moisture content by the oven drying method Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Initials: J.P Date: 29/07/2021
UKAS	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

14	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	30356		
SOILS	43a Redington Road NW3 7RA			Borehole/Pit No.	BH2 11	
Site Name				Sample No.		
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	3.80	m
	1			Depth Base		m
				Sample Type	D	
Soil Description	Orangish brow	Orangish brown slightly mottled grey sandy silty CLAY			02/07/2021	
	1000			Schedules received	05/07/2021	
				Project Started	08/07/2021	
				Date Tested	28/07/2021	



NATURAL MOISTURE CONTENT	27	96
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	32	%
PLASTIC LIMIT	21	%
PLASTICITY INDEX	11	96

70	CL	CI	СН	cv	CE
60					
50	-			1	
40					
30					
20		+			
10					
	ML	MI	MH	WV	ME


(FE)	TEST METHOD BS1377: Part 2: Clause 4.3: 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2: Clause 5.0: 1990: Determination of the plastic limit and plasticity index	Approved
F(≯≮)∃	BS1377: Part 2 : Clause 3.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 : Clause 3.2 : 1990: Determination of the moisture content by the oven drying method Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Initials: J.P Date: 29/07/2021
DISTING	Tel: 01923 711 288 Email: James@k4soils.com	Date: 29/07/2021
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

14	LIQUID LIMIT, PL	ASTIC LIMIT AI	ND PLASTICITY INDEX	Job No.	30356		
SOILS				Borehole/Pit No.	BH2		
Site Name	43a Redington Road NW	3 7RA		Sample No.	16		
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	6.00	m	
				Depth Base	*	m	
				Sample Type	D		
Soil Description	Dark bluish gre	y slightly mottled br	own sandy silty CLAY	Samples received	02/07/2021		
	1,000,000			Schedules received	05/07/2021		
				Project Started	06/07/2021		
				Date Tested	28/07/2021		

NATURAL MOISTURE CONTENT	30	96
% PASSING 425µm SIEVE	100	96
LIQUID LIMIT	34	96
PLASTIC LIMIT	22	96
PLASTICITY INDEX	12	96

PLASTICITY INDEX

	ab)
hadi	(\$ d)
E	UKAS =
	TESTING

***	TEST METHOD BS1377: Part 2: Clause 4.3: 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2: Clause 5.0: 1990: Determination of the plastic limit and plasticity index BS1377: Part 2: Clause 3.2: 1990: Determination of the moisture content by the oven drying method Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Approved Initials: J.P Date: 29/07/2021
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

14	Unconsolidate Compression				Job	Ref	30358	
SOILS	pore pressure				Bore	hole/Pit No.	BH1	
Site Name	43a Redington Roa	ad NW3 7RA			Sam	ple No.	8	
Project No.	2021/028/SYM/RE	D Client		Seofirma	Dept	th Top	1.60 m	
					Dept	h Base	. n	
	Low strength grey silty CLAY beco				Sam	ple Type	U	
Soil Description	gravelly slightly sa		(grave) is fm		Sample	es received	02/07/2021	
					Sched	ules received	05/07/2021	
Test Method	BS1377 : Part 7 : 1	990, clause 8,	single specim	en	Date	of test	16/07/2021	
emarks		Test Numbe	er			1		
		Length Diameter				200.0	mm mm	
		Bulk Densit	у			2.13	Mg/m3	
		Moisture Co				23	96	
ă m		Dry Density				1.73	Mg/m3	
P os trion within sample		Rate of Stra				2.0	%/min	
5		Cell Pressu				25	kPa	
No.		Axial Strain Deviator Str	ess. (\side 1 - \side 3) If		55	% kPa	
Light Total			Shear Strengtl			28	kPa 35(01 - 03)f	
8		Mode of Failure				Plastic		
	A CONTRACTOR OF THE PARTY OF TH							
	6 8	10 12	14 16 Axial Strain	18 20 n %	22	24 26	28 30 32	
r Circles					Т	П		
40							Deviator stress corrected for area change and membrane effects	
30			-				Mohr circles and their interpretation is not covered by BS1377. This is provided for	
10							information only.	
0		_	_	1	-	110 120		

Email: James@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Date 28/07/2021

MSF-5 R7

14	Unconsolidate Compression T		Triaxial measurement of	Job Ref	30356
SOILS	pore pressure			Borehole/Pit No	BH1
Site Name	43a Redington Road	NW3 7RA		Sample No.	12
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	3.60
				Depth Base	
	High strength dan	k grev fine sandy	silty CLAY with rare fine	Sample Type	Ü
Soil Description		gravel		Samples received	02/07/2021
				Schedules receive	ed 05/07/2021
Test Method	BS1377 : Part 7 : 19	90, clause 8, sing	gle specimen	Date of test	16/07/2021
Remarks		Test Number		1	
		Length Diameter		140.0 70.0	mm
		Bulk Density		2.09	Mg/m3
		Moisture Conter	nt	32	96
š		Dry Density		1.59	Mg/m3
Position within sample		Rate of Strain		2.0	%/min
ig I		Cell Pressure Axial Strain		60 18.8	kPa %
II W		Axial Strain Deviator Stress	(01-03)f	259	₩Pa
all of		Undrained Shea		130	kPa ½(σ1-σ3)f
8		Mode of Failure		Compound	
	4 6 8 1	0 12 14	16 18 20	22 24 26	28 30 32
or Circles			Axial Strain %		Deviator stress corrects
					for area change and membrane effects
00					Mohr circles and their
50					interpretation is not covered by BS1377. This is provided for information only.
50					covered by BS1377. This is provided for
50	100 150 200	250 300 Normal Stresi	350 400 450 ses kPa	500 550 600	covered by BS1377. This is provided for information only.

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Date 28/07/2021

14	Unconsolidat				Job Ref			303	56
SOILS	pore pressure			rement or	Borehole/P	it No.		BH	11
Site Name	43a Redington Ro	ad NW3 7RA			Sample No	kg.		1	4
Project No.	2021/028/SYM/R	ED Client		Geofirma	Depth Top			4.60	n
					Depth Base			-	n
232 334	Low strength da	rk grev slightly r	nottled brow	n fine sandy silty	Sample Ty	pe		t	J
Soil Description	1 2 2 2 2	CLA			Samples reco	eived		02/07	2021
					Schedules re	ceived		05/07	2021
Test Method	BS1377 : Part 7 :	1990, clause 8,	single speci	men	Date of tes			16/07	2021
Remarks		Test Numbe	er		140.0		1		
		Length Diameter			70.0		mm		
		Bulk Density			2.08		Mg/m	3	
		Moisture Co Dry Density			1.58		% Mg/m	2	
uple									
Sag		Rate of Stra Cell Pressur			2.0 75		%/mir kPa	1	
gpi		Axial Strain			21.4		96		
Position within sample			ess, (01-0		59		kPa		6.6
8		100000000000000000000000000000000000000	Shear Streng	th, cu	29	-	kPa	15(01-	σ3)f
ـــــا ۵		Mode of Fai	lure		Compou	ina	1		
30	A PROPERTY OF								
20						+	+	+-	
10	4 6 8	10 12	14 16 Axial Stra		22 24	26	28	30	32
0 0 2	4 6 8	10 12			22 24	26	28	30	32
10 0 2	4 6 8	10 12			22 24	26	Devia	tor stres	ss correcte
o o 2	4 6 8	10 12			22 24	26	Devia for an		ss correcter
o o o o o o o o o o o o o o o o o o o	4 6 8	10 12			22 24	26	Devia for an memb	tor stres ea chan orane ef	ss correcter
o o o o o o o o o o o o o o o o o o o	4 6 8	10 12			22 24	26	Devia for an memb	tor stres ea chan orane ef circles a retation	ss correcte ge and fects and their is not
10 0 2	4 6 8	10 12			22 24	26	Devia for an memb Mohr interp coven	otor stres ea chan orane ef	as corrected ge and fects and their is not S1377.
10 0 2	4 6 8	10 12			22 24	26	Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8:	es correcte ge and fects and their is not S1377. ed for
10 0 2 hr Circles	4 6 8	10 12			22 24	26	Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8: s provid	es correcte ge and fects and their is not S1377. ed for
10 0 2	4 6 8	10 12			22 24	26	Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8: s provid	es correcte ge and fects and their is not S1377. ed for
10 0 2 hr Circles	50 75 100		Axial Stra	ain 96	22 24	26	Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8: s provid	es corrected ge and fects and their is not S1377. ed for
10 0 2 hr Circles 150 150 150 150 150 150 150 150 150 150) 125 15 Normal S	Axial Stra 0 175 tresses kPa	200 225 a	250 275		Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8: s provid	ss corrected ge and fects and their is not \$1377. ed for nly.
10 0 2 hr Circles 150 150 150 150 150 150 150 150 150 150) 125 15 Normal S Test Report	Axial Stra 0 175 tresses kPa	200 225	250 275		Devia for an memb Mohr interp coven This is	tor stres ea chan orane ef circles a retation ed by 8: s provid	es corrected ge and fects and their is not S1377. ed for

Email: James@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

(A)	Unconsolidated Compression T			ment of	Job Ref			30356
	pore pressure -	single spe	cimen		Borehole/Pi	t No.		BH2
Site Name	43a Redington Road	NW3 7RA			Sample No.			9
Project No.	2021/028/SYM/RED	Client	G	eofirma	Depth Top		2.60	
			-		Depth Base			- n
Coll December	Medium strength b	prown mottled o	rangish brow	n slightly fine	Sample Typ	e		U
Soil Description		sandy silty C	CLAY		Samples rece	ived	02	2/07/2021
					Schedules rec	ceived	0.5	5/07/2021
Test Method	BS1377 : Part 7 : 19	90, clause 8, sir	ngle specime	en	Date of test		16	3/05/2021
emarks		Test Number			1 1	_	1	
		Length			160.0		mm	
		Diameter			80.0		mm	
		Bulk Density			1.71		Mg/m3	
1		Moisture Cont Dry Density	erit		38 1.26		% Mg/m3	
		Rate of Strain			2.0		96/min	
		Cell Pressure Axial Strain			45 9.4		kPa 96	
		Deviator Stres	s. (c1-c3)f	85		kPa	
		Undrained She			42		kPa 1/5(σ1 - σ3)f
3		Mode of Failur			Brittle			
Circles	2 3 4 8	5 6 7	8 Axial Strain		11 12	13	Deviator : for area o membran Mohr circi interpreta covered b	les and their tion is not by BS1377. ovided for

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Approved Initials: J.P

Date 28/07/2021

MSF-S RT

	The State of the S	d Undrained		Job Ref	30356
Sous	pore pressure		measurement of imen	Borehole/Pit N	o. BH2
Site Name	43a Redington Roa	d NW3 7RA		Sample No.	13
Project No.	2021/028/SYM/REI	D Client	Geofirma	Depth Top	4.60 r
				Depth Base	
112				Sample Type	U
Soil Description	Low strength	dark grey slightly	fine sandy silty CLAY	Samples receive	d 02/07/2021
				Schedules receiv	ved 05/07/2021
Test Method	BS1377 : Part 7 : 1	990, clause 8, sin	gle specimen	Date of test	19/07/2021
Remarks		Test Number		1	
		Length Diameter		150.0 75.0	mm
		Bulk Density		1.92	Mg/m3
		Moisture Conte	ent	30	96
4		Dry Density		1.48	Mg/m3
Position within sample		Rate of Strain		2.0	%/min
hin		Cell Pressure Axial Strain		75 20.0	kPa %
iwi n		Deviator Stress	s, (σ1 - σ3)f	49	kPa
tion			ar Strength, ou	25	kPa ½(σ1-σ3)f
8		Mode of Failure	•	Compound	
40		40004000 0	a a a a a a a a a a a a		
50 40 30 20			a 20 4 0 0 0 0 0 0 0 0		
50 40 30 20 10 0 0 2	4 6 8	10 12 14	16 18 20 Axial Strain %	22 24 28	28 30 32
50 40 50 20 10 0 0 2 nr Circles	4 6 8			22 24 26	Deviator stress correcte for area change and
50 40 80 10 0 0 2 nr Circles	4 0 8			22 24 26	Deviator stress correcte
50 40 80 80 10 0 0 2 nr Circles	4 6 8			22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their
50 40 30 20 10 0 2 2 hr Circles	4 0 8			22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377.
50 40 30 20 10 0 2 hr Circles	4 6 8			22 24 28	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not
50 40 30 20 10 0 0 2 hr Circles 50 75 50	4 6 8			22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for
50 40 30 20 10 0 0 2 hr Circles 125 100 75	4 6 8			22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for
100 25 10	4 6 8			22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for
50 40 30 20 10 0 0 2 hr Circles 125 100 75	4 6 8	125 150	Axial Strain %	22 24 26	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.
hr Circles 150 125 100 75 50 25		125 150 Normal Stres	Axial Strain %	250 275 30	Deviator stress correcte for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Date 28/07/2021 MSF-5-R7

14	Unconsolidated Compression T			ent of	Job Re		30358	
Sous	pore pressure -			siit oi	Boreho	e/Pit No.	BH2	
Site Name	43a Redington Road	NW3 7RA			Sample	No.	17	
Project No.	2021/028/SYM/RED	Client	Geof	irma	Depth 1	ор	6.60 m	
					Depth B	ase	- n	
Laboration Company	10/15/06/06			Sample Type		U		
Soil Description	Medium strength	dark grey slight	ly fine sandy si	ity CLAY	Samples	received	02/07/2021	
					Schedule	s received	05/07/2021	
Test Method	BS1377 : Part 7 : 199	0, clause 8, sin	gle specimen		Date of	test	19/07/2021	
emarks		Test Number				1]	
	1	Length Diameter				5.0	mm	
	11111	Bulk Density				.95	Mg/m3	
		Moisture Conte	nt:			29	%	
š —		Dry Density			1	.51	Mg/m3	
P os tion within sample	1.7	Rate of Strain				2.0	%/min	
5		Cell Pressure				90	kPa	
200		Axial Strain Deviator Stress	100 000			21	% kPa	
li li li		Undrained She				30	kPa 1/2(01 - 03)f	
8		Mode of Failure				ittle	1	
0		-	a † •	• • •	• • •	• •		
r Circles	2 3 4 5		8 9 Axial Strain %		11 12	13	14 15 16	
25							Deviator stress corrected for area change and membrane effects	
25 00 75 50 25							for area change and	
25 20 25 25	50 75 100	125 150 Normal Stres	175 200 ses kPa	225	250 278	5 300	for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for	

Tel: 01923 711 288 Email: James@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Date 28/07/2021

MSF-5 RT

b No.	356		Project 43a Re		n Road NW3 7RA				Samples	received	02/07/2021
oject No.			Client	-	TO THE POST OF THE PARTY OF THE				Project st		05/07/2021
2021/028	SYM	RED	Geofim	na					Testing S	tarted	28/07/2021
Hole No.		Sa	mple		Soil Description		Passing	LL	PL	PI	Remarks
note ivo.	Ref	Тор	Base	Туре	Soi Description		425µm	8	- %	*	Nemarks
BH1	3	0.50		D	Brownish grey motified grangish brown slightly gravelly sandy silty CLAY (gravel is fin and sub-angular to angular)	34					
BH1	5	1.20		D	Orangish brown slightly mottled dark grey sandy sitty CLAY with occasional brick fragments and fine rootlets	22	97	32	19	13	
BH1	7	1.20		D	Dark grey slightly mottled orangish brown sandy silty CLAY with rare fine gravel	62					
BH1	8	1.60		U	Low strength grey mottled black slightly gravelly slightly sandy slity CLAY becoming at 1.85m grey mottled brown slightly gravelly slightly sandy slity CLAY (gravel is fm and sub- angular to rounded)	23					
BH1	9	2.00		D	Orangish brown slightly mottled bluish grey slightly gravelly slightly sandy silty CLAY (gravel is fm and sub-angular to rounded)	23					
BH1	10	2.80	į.	D	Brown slightly mottled bluish grey sandy sitty CLAY	28	100	42	23	19	
BH1	11	3.00		D	Orangish brown slightly mottled bluish grey slightly gravelly sandy sitty CLAY (gravel is fm and sub-angular to angular)	36					
BH1	12	3.60		υ	High strength dark grey fine sandy silty CLAY with rare fine gravel	32					
BH1	13	4.00		D	Dark grey slightly mottled brown slightly gravelly sandy sitty CLAY (gravel is fm and sub-angular to rounded)	34					
BH1	14	4.60		U	Low strength dark grey slightly mottled brown fine sandy sity CLAY	31					
BH2	3	0.70		D	Light brown slightly mottled grey and orangish brown slightly gravelly sandy silty CLAY (gravel is fm and sub-angular to rounded)	28					
вн2	5	1.10		D	Orangish brown slightly mottled grey slightly sandy sitly CLAY	35	100	49	22	27	
 	Natur	al Moistu	ds: BS13 re Content s: clause	t : clau	se 3.2 Ur	watford	K4 SOILS Close Olds Herts WD	Appro 18 9RU	ach		Checked and Approved Initials J.P

No.			Project	Name						Progra		
30	356		43a Re	dingto	n Road NW3 7RA				Samples Schedule		02/07/2021	
ject No.			Client				Project st		06/07/2021			
2021/028	/SYM/	RED	Geofim	na		T						
lole No.	Sample Soil Description		Soil Description	NMC	Passing 425um	ш	PL	PI	Remarks			
	Ref	Тор	Base	Туре		%	%	5	1/4	%		
BH2	6	1.20	,	D	Orangish brown slightly mottled bluish grey sandy sitty CLAY	32					-	
BH2	8	2.00		0	Orangish brown slightly mottled bluish grey sandy silty CLAY	37		I				
вн2	9	2.60		Ü	Medium strength brown mottled orangish brown slightly fine sandy sity CLAY	36						
вн2	11	3.80	,	D	Orangish brown slightly mottled gray sandy sity CLAY	27	100	32	21	11		
BH2	13	4.60		u	Low strength dark grey slightly fine sandy sity CLAY	30						
BH2	16	6.00		D	Dark bluish grey slightly mottled brown sandy sity CLAY	30	100	34	22	12		
BH2	17	6,60		U	Medium strength dark grey slightly fine sandy sity CLAY	29		N				
		a = 3 71										
		Ш										

Approved Signatories: K. Phaure (Tech.Mgr) J. Phaure (Lab.Mgr)

11	DADTIC	LE CIZE DICT	DIDUTION	Job Ref	30356	
Sous	PARTIC	LE SIZE DISTI	KIBUTION	Borehole/Pit No.	BH2	
Site Name	43a Redington Road NW3	7RA		Sample No.	14	
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	5.00	m
				Depth Base		m
Soil Description	Dark grey slightly mo	ottled orangish brown	clayey very silty SAND	Sample Type	D	
				Samples received	02/07/2021	
				Schedules received	05/07/2021	
Test Method	BS1377:Part 2: 1990, clau	se 9.0		Project started	05/07/2021	
hese results only apply to	the items tested			Date tested	21/07/2021	

CLAY		SLT			SAND			GRAVEL		COBBLES	BOULDERS
	Fire	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		announce of
100		TITLE					1111				
90											
80		-									
70											
60		-		1							
50		-									
40											
30		-									
20											
10											
0.001		0.01		0.1		1	1111	10		100	
					Part	cle Size m	m				

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0807	30
90	100	0.0449	27
75	100	0.0315	24
63	100	0.0222	22
50	100	0.0182	21
37.5	100	0.0114	19
28	100	0.0080	17
20	100	0.0058	15
14	100	0.0040	13
10	100	0.0028	10
6.3	100	0.0016	6
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99	Particle density	(assumed)
0.425	98	2.70	Mg/m3
0.3	97		
0.212	96	1	
0.15	61	1	
0.083	30	1	

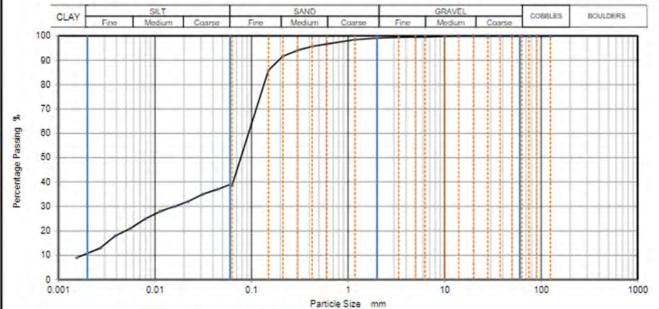
Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.0
Sand	70.4
Silt	21.7
Clay	7.9

Grading Analysis		
D100	mm	
D80	mm	0.148
D30	mm	0.0837
D10	mm	0.00279
Uniformity Coefficient		53
Curvature Coefficient		9.8

Preparation and testing in accordance with 65 t377 unless noted below

NOTE: The report shall not be reproduced except in full without approval of the laboratory

K4 Soils Laboratory



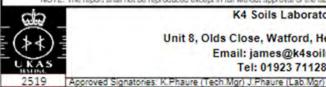
Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288 Checked and Approved Initials: J.P

Date: 28/07/2021

Approved Signatories: K. Phaure (Tech Mgr) J. Phaure (Lab Mgr) MSF-:

11	DADTIC	LE CIZE DICTI	DIDUTION	Job Ref	30358	
SOILS	PARTIC	LE SIZE DISTI	RIBUTION	Borehole/Pit No.	BH1	
Site Name	43a Redington Road NW3	7RA		Sample No.	12	
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	3.60	m
				Depth Base		m
Soil Description	High strength dark gr	ey fine sandy silty Cl	AY with rare fine gravel	Sample Type	U	
			10.00	Samples received	02/07/2021	
				Schedules received	05/07/2021	
Test Method	BS1377:Part 2: 1990, clau	se 9.0		Project started	06/07/2021	
hese results only apply to	the items tested			Date tested	21/07/2021	

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0805	39
90	100	0.0448	37
75	100	0.0315	35
63	100	0.0221	32
50	100	0.0161	30
37,5	100	0,0113	28
28	100	0.0079	25
20	100	0.0055	21
14	100	0.0039	18
10	100	0.0027	13
6.3	100	0.0015	9
5	100		
3.35	100		
- 2	99		
1.18	99		
0.6	97	Particle density	(assumed)
0.425	98	2.70	Mg/m3
0.3	94		
0.212	92	1	
0.15	88	1	
0.083	30	1	


Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.9
Sand	60,5
Silt	27.7
Clay	10.9

Grading Analysis	1	
D100	mm	
D60	mm	0.0933
D30	mm	0.015
D10	mm	0.00179
Uniformity Coefficient		52
Curvature Coefficient		1.3

Preparation and testing in accordance with BS1377 unless noted below

0.083 39

NOTE: The report shall not be reproduced except in full without approval of the laboratory

Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

K4 Soils Laboratory

Tel: 01923 711288

Initiale:

J.P

Date:

28/07/2021

MSF-5-R3

Checked and Approved

11	DADTIC	LE CIZE DICT	DIDUTION	Job Ref	30356	
SOILS	PARTIC	LE SIZE DIST	RIBUTION	Borehole/Pit No.	BH2	
Site Name	43a Redington Road NW3	7RA		Sample No.	7	
Project No.	2021/028/SYM/RED	Client	Geofirma	Depth Top	1.80	m
				Depth Base		m
Soil Description			CLAY with traces of decayed,	Sample Type	D	
	tine	rootlets and rare fine	gravei	Samples received	02/07/2021	
				Schedules received	05/07/2021	
Test Method	BS1377:Part 2: 1990, claus	se 9.0		Project started	06/07/2021	
hese results only apply to	the items tested			Date tested	21/07/2021	

CLAV		SILT			SAND			GRAVEL		COSSLES	BOULDERS
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	LANGLES	BANTUENS
100			1.71								11111
90							-111				
80					/		-11				
70		-					-111				
60											
50											
40							-11				
30							- 11				
20											
10							-11				
0.001		0.01		0.1		1	111	10		100	
					Parti	cle Size m	m				

Particle Size mm	Sievi	ng	Sedim	entation
90 100 0.0454 50 75 100 0.0318 48 63 100 0.0223 43 50 100 0.0182 39 37.5 100 0.0114 36 28 100 0.0080 32 20 100 0.0058 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 5 100 3.35 100 5 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 0.3 93 0.212 88 0.15 75	Particle Size mm	% Passing	Particle Size mm	% Passing
75 100 0.0318 46 63 100 0.0223 43 50 100 0.0162 39 37.5 100 0.0114 36 28 100 0.0080 32 20 100 0.0056 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 5 100 3.35 100 5 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 270 Mg/m3 0.3 93 0.212 88 0.15 75	125	100	0.0615	53
83 100 0.0223 43 50 100 0.0182 39 37.5 100 0.0114 38 28 100 0.0080 32 20 100 0.0056 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 0.0027 22 6.3 100 0.0027 22 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.31 93 0.212 88 0.15 75	90	100	0.0454	50
50 100 0.0162 39 37.5 100 0.0114 38 28 100 0.0080 32 20 100 0.0056 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 0.0027 22 6.3 100 0.0027 22 7 100 0.0027 22 100 0.0027 22 118 98 0.0 0.0027 118 98 0.0 0.0027 0.0027 118 98 0.0 0.0027 0.0027 118 98 0.0 0.0027 0.0027 118 98 0.0 0.0027 0.0027 118 98 0.0 0.0027 0.0027 119 0.0027 0.0027 0.0027 0.0027 1100 0.0027 0.0027 0.0027 0.0027 <td>75</td> <td>100</td> <td>0.0318</td> <td>48</td>	75	100	0.0318	48
37.5 100 0.0114 38 28 100 0.0080 32 20 100 0.0056 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 0.0027 22 6.3 100 2 5 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	63	100	0.0223	43
28 100 0.0080 32 20 100 0.0058 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 5 100 5 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.31 93 0.212 88 0.15 75	50	100	0.0182	39
20 100 0.0058 29 14 100 0.0039 25 10 100 0.0027 22 6.3 100 5	37.5	100	0.0114	38
14 100 0.0039 25 10 100 0.0027 22 8.3 100 5 100 3.35 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	28	100	0.0080	32
10 100 0.0027 22 8.3 100 5 100 3.35 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	20	100	0.0058	29
6.3 100 5 100 3.35 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	14	100	0.0039	25
5 100 3.35 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	10	100	0.0027	22
3.35 100 2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	6.3	100		
2 99 1.18 98 0.6 96 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	5	100		
1.18 98 0.6 98 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75 75	3.35	100		
0.6 98 Particle density (assumed) 0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	2	99		
0.425 95 2.70 Mg/m3 0.3 93 0.212 88 0.15 75	1.18	98		
0.3 93 0.212 88 0.15 75	0.0	96	Particle density	(assumed)
0.212 88 0.15 75	0.425	95	2.70	Mg/m3
0.15 75	0,3	93		
	0.212	88	1	
0.063 53	0.15	75		
	0.063	53	1	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	1,5
Sand	45.5
Fines <0.083mm	53.0

Grading Analysis		
D100	mm	
D60	mm	0.0828
D30	mm	0.00635
D10	mm	
Uniformity Coefficie	nt	
Curvature Coefficie	nt	

Preparation and testing in accordance with BS1377 unless noted below

NOTE: The report shall not be reproduced except in full without approval of the laboratory

	-ska	
	(May)	
	(11)	
1	(74)	
	UKAS -	
	HALLING.	

Unit 8, Olds Close, Watford, Herts, WD18 9RU

K4 Soils Laboratory

Email: james@k4soils.com Tel: 01923 711288 Initials: J.P

Date: 28/07/2021

Checked and Approved

MSF-5-R3

2519 Approved Signatories: K.Phaure (Tech Mgr) J.Phaure (Lab.Mgr)

Ebenezer Adenmosun Geofirma Ltd Cash Room The Old Bank 153 The Parade High Street Watford **WD17 1NA**

e: ebenezer.adenmosun@geofirmaconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park Watford. Herts, WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-86121

Project / Site name: 43a Redington Road Samples received on: 02/07/2021 Your job number: 2021 028 SYM RED Samples instructed on/ 12/07/2021 Analysis started on: Your order number: Analysis completed by: 20/07/2021 Report Issue Number: Report issued on: 20/07/2021 Samples Analysed: 2 soil samples

Signed: Replie Heat

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1933453	1933454
Sample Reference				BH1	BH2
Sample Number				None Supplied	None Supplied
Depth (m)				0.30	0.30
Date Sampled				01/07/2021	01/07/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	96	0.1	NONE	< 0.1	< 0.1
Moisture Content	96	0.01	NONE	18	22
Total mass of sample received	kg	0.001	NONE	1.1	1.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	9.0	
Free Cyanide	mg/kg	1	MCERTS	< 1.0	- 1
Total Organic Carbon (TOC)	86	0.1	MCERTS	1.2	0.8
Total Phenols					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	0.24	- :
Acenaphthene	mg/kg	0.05	MCERTS	1,4	
Fluorene	mg/kg	0.05	MCERTS	1.1	-
Phenanthrene	mg/kg	0.05	MCERTS	14	
Anthracene	mg/kg	0.05	MCERTS	2.8	-
Fluoranthene	mg/kg	0.05	MCERTS	19	
Pyrene	mg/kg	0.05	MCERTS	16	
Benzo(a)anthracene	mg/kg	0.05	MCERTS-	10	
Chrysene	mg/kg	0.05	MCERTS	8.6	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	8.0	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	4.3	· ·
Benzo(a)pyrene	mg/kg	0.05	MCERTS	8.5	. 9
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	4.1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.96	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	4.4	
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	103	
Heavy Metals / Metalloids					
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	4.6	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	2
Boron (total)	mg/kg	1	MCERTS	15	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	· · ·
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	- ×
Chromium (III)	mg/kg	1	NONE	29	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	73	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	1500	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.7	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	220	

Analytical Report Number: 21-86121 Project / Site name: 43a Redington Road

Lab Sample Number	1933453	1933454			
Sample Reference	BH1	BH2			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.30	0.30			
Date Sampled		01/07/2021	01/07/2021		
Time Taken		None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	SHUR	Limit of detection	Accreditation Status		
Monoaromatics & Oxygenates					
Benzene	µg/kg	1	MCERTS	< 1.0	7.
Toluene	µg/kg	1	MCERTS	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	
Petroleum Hydrocarbons TPH-CWG - Aliphatic >ECS - EC6	mg/kg	0.001	MCERTS	< 0.001	
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	- 4
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	- JA
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	
TPH-CWG - Aromatic > EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	
	mg/kg mg/kg	0.001	MCERTS	< 0.001 < 0.001	
TPH-CWG - Aromatic >EC7 - EC8			MCERTS MCERTS	< 0.001 < 0.001	- 4
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 1	MCERTS MCERTS MCERTS	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg	0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0	-
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 13 49	•
TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0	

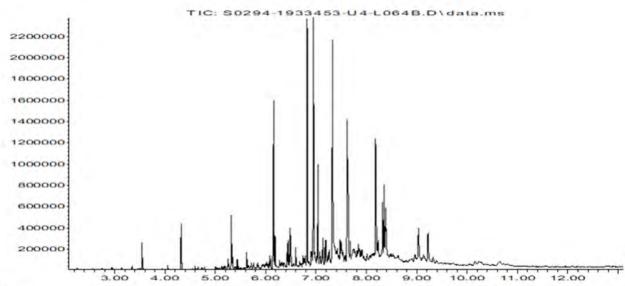
Analytical Report Number: 21-86121 Project / Site name: 43a Redington Road

" These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1933453	BH1	None Supplied	0.3	Brown clay and loam with gravel and brick.
1933454	BH2	None Supplied	0.3	Brown clay and sand.

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	150 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenylcarbacide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free syanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg 8, Eaton (Skalar)	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method,	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA \$270	LO64-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method,	L099-PL	D	MCERTS
Stones content of soil	es content of soil Standard preparation for all samples unless otherwise detailed, Gravimetric determination of stone > 10 mm. % dry weight.		L019-UK/PL	0	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8250	L0736-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	LO64-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS


Sample Deviation Report

Analytical Report Number : 21-86121 Project / Site name: 43a Redington Road

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH1	None Supplied	5	1933453		Free cyanide in soil	L080-PL	

Abundance

Time->

Ebenezer Adenmosun

Geofirma Ltd Cash Room The Old Bank 153 The Parade High Street Watford WD17 1NA i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: ebenezer.adenmosun@geofirmaconsultants.co.uk

Analytical Report Number: 21-86123

Project / Site name: 43a Redington Road Samples received on: 02/07/2021

Your job number: 2021 028 SYM RED Samples instructed on/ 12/07/2021

Analysis started on:

Your order number: Analysis completed by: 20/07/2021

Report Issue Number: 1 Report issued on: 20/07/2021

Samples Analysed: 10:1 WAC sample

Signed: Izabela Wojcik

Izabela Wójcik

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Waste Acceptance Criteria Analytical Report No:		21-86123		-			
				Client:	GEOFIRMA		
Location		43a Redington Re	ad				
		450 Redington Re	,,,,,	Landfill	Waste Acceptance	e Criteria	
Lab Reference (Sample Number)		1933460 / 193346	51		Limits		
Sampling Date		01/07/2021		1	Stable Non-		
Sample ID		BH2		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)				Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.7			396	5%	6%	
Loss on Ignition (%) **	3.2			-	-	10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1	-	*	
Mineral Oil (mg/kg)	< 10		_	500	-	-	
Total PAH (WAC-17) (mg/kg)	30.5		_	100			
oH (units) ^{ex} Acid Neutralisation Capacity (mol / kg)	7.6		_		>6 To be evaluated	To be each one	
	Lil		_	-			
Eluate Analysis	10:1		10:1	Limit valu	es for compliance l	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	N 12457-2 at L/S 10 l/kg (mg/kg)		
procedure)	mg/I		mg/kg				
Arsenic *	< 0.0010		< 0.0100	0.5	2	25	
Barium *	0.0099		0.0771	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0023		0.018	0.5	10	70	
Copper *	0.0078		0.061	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30	
Nickel *	0.0042		0.033	0.4	10	40	
Lead *	0.0028		0.022	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.017		0.13	4	50	200	
Chloride *	1.0		8.1	800	15000	25000	
Fluoride	0.71		5,6	10	150	500	
Sulphate *	11		87	1000	20000	50000	
IDS*	60		470	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1			
ooc	8.91		69.7	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1		7				
Sample Mass (kg)	1.3	1					
Dry Matter (%)	78						
Moisture (%)	22						

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number: 21-86123 Project / Site name: 43a Redington Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1933460	BH2	None Supplied	None Supplied	Brown clay and sand.

Analytical Report Number: 21-86123 Project / Site name: 43a Redington Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace,	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	il (Soil) C10 - C40 Determination of mineral oil fraction extractable In-house method with silica gel split/clean up. hydrocarbons in soil by GC-MS/GC-FID.		L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. In-house method based on USEPA 8270, MCERTS accredited except Coronene.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	w	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.			D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS,	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil***	L039-PL	w	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10;1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode. In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"		L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	S In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil***		W	ISO 17025
Fotal dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

St Leonards on Sea East Sussex TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-35085

Issue: 1

Date of Issue: 02/08/2021

Contact: James Phaure

Customer Details: K4 Soils Laboratory Ltd

Unit 8 Watford

HertfordshireWD18 9RU

Quotation No: Q16-00568

Order No: Not Supplied

Customer Reference: 30356

Date Received: 27/07/2021

Date Approved: 02/08/2021

Details: 43a Redington Road, NW3 7RA

Approved by:

Tim Reeve, Quality Officer

ELAB

Sample Summary

Report No.: 21-35085, issue number 1

Elab No. Client's Ref. 246018 BH1 5 1.20	Client's Ref.	Date Sampled	Deviations		
	27/07/2021	27/07/2021	Silty clayey loam		
246019	BH2 3 0.70	27/07/2021	27/07/2021	Sandy clayey loam	

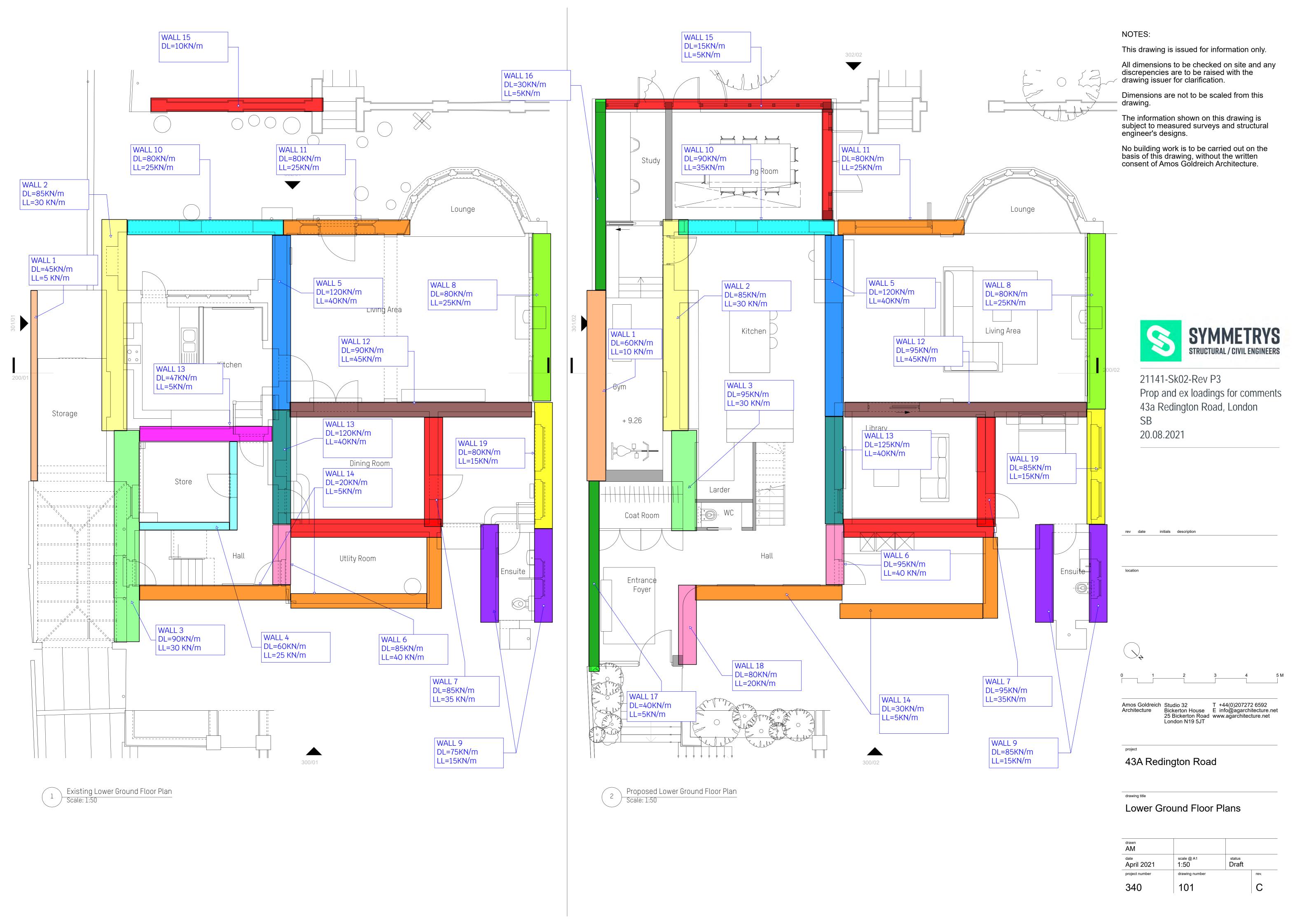
Results Summary

Report No.: 21-35085, issue num	ber 1				
		ELAB Reference			246019
	5	3			
	DISTURBED	DISTURBED			
	Sample Location				BH2
		Sample I	1.20	0.70	
		Samp	oling Date	27/07/2021	27/07/2021
Determinand	Codes	Units	LOD		
Soil sample preparation para	ameters				
Material removed	N	%	0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	none	none
Anions					
Water Soluble Sulphate	M	g/l	0.02	0.07	0.11
Inorganics					
Total Sulphur	N	%	0.01	0.03	0.02
Acid Soluble Sulphate (SO4)	U	%	0.02	0.05	0.04
Miscellaneous					
pH	M	pH units	0.1	8.2	7.9

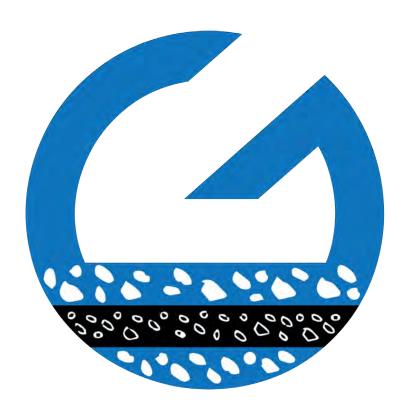
Method Summary Report No.: 21-35085, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
pH	M	Air dried sample	29/07/2021	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	30/07/2021	115	Ion Chromatography
Water soluble anions	M	Air dried sample	29/07/2021	172	Ion Chromatography
Total organic carbon/Total sulphur	N	Air dried sample	30/07/2021	216	IR

Tests marked N are not UKAS accredited


APPENDIX D - GROUNDWATER AND GAS LEVELS

APPENDIX D – GROUNDWATER LEVEL


Client	Geofirma		Project Code	2021-028-SYM-RED
	Project Name	43a Reddington Road NW3 7RA		
Ground Water Level	Log		GEOTECHNICAL	FIRMA & COVIL ENGINEERING SULTANTS
Borehole Reference	GI	WL Depth (metres below)	ground level)	
	10/08/2021			
BH1	4.03			
BH2	1.01			

APPENDIX E - LOAD TAKE DOWN SKETCHES

Geofirma Ltd The Old Bank 153 The Parade High Street Watford WD17 1NA

geofirm a consultants.co.uk