

# **Structural Engineer's Supplementary Report Basement Impact Assessment**



49 Willow Road, London, NW3 1TS

### **PK & Partners Limited**

Office 1, Izabella House 24-26 Regent Place Birmingham B1 3NJ Ref: 2136 49 Willow Road - BIA Supplement Date: March 2021 Revision: C

PHILIP KWAN BEng (Hons) CEng MIStructE E: philip.kwan@pk-partners.co.uk

### **Contents**

- SECTION DESCRIPTION
- 1.0 Introduction
- 2.0 Supplementary Information and Response

Appendix A – Construction sequence drawing 2136-101E

Appendix B – Supplementary Calculations Rear Boundary Wall with Garage

#### 1 Introduction

- 1.1 A Structural Engineer's basement impact assessment was prepared by PK & Partners in August 2020 to support the planning application for the proposed lower ground floor extension at 49 Willow Road, London NW3.
- 1.2 It outlined the structural design philosophy and the anticipated construction methodology for the proposed construction. It considers the site, geology, groundwater and hydrology, environmental considerations, sustainability, structural stability, temporary works, construction access and the boundary aspects in relation to the proposed works. This report was prepared in accordance with 'Camden Planning Guidance Basements March 2018' and Camden Local Plan (2017) Policy A5 (Basements)'.
- Planning application was submitted (number is 2020/3681/P) which was registered 23 September 2020).
- 1.4 A Basement Impact Assessment Audit has subsequently been completed by Campbell Reith for Camden Council and this report provides further clarifications and supplementary information in response to this audit.
- 1.5 This report should be read in conjunction with PK & Partners' Structural Engineer's Basement Impact Assessment (ref: 2136 49 Willow Road – BIA revision C all Architect's and Campbell Reith's Basement Impact Assessment Audit (ref: KBemb13398-54-061120-49 Willow Road\_D1.doc)

## PK & Partners Consulting Engineers

#### 2 Supplementary Information & Response

Campbell Reith's Basement Impact Assessment Audit Clause 5.7 'Further clarification of the use of corbelling and a heel in the underpin construction is required, and further details regarding the construction sequence are requested.'

#### Function of heel in underpins

2.1 The heel in the underpinning will be constructed in mass concrete and this would in line with the existing strip or corbelled footing to ensure that the bearing pressure in the short term does not exceed the existing applied pressure. The heel is not essential in the long term and does not form part of the structural design. It is constructed in mass concrete to allow the adjoining owner to remove in the event that basement is constructed in the adjoining site.

#### Construction Sequence adjacent garage

- 2.2 The basement wall at the rear boundary will be constructed in two stages as indicated in PK and Partners basement impact assessment and drawing 101. This drawing has been amended to include specific details in relation the rear boundary with the garage which can be found in appendix A. The general sequence of work is outlined as follow.
- 2.3 The existing perimeter masonry walls will be stabilised in the first instance with perimeter whalers and a diagonal brace (Figure 1 below).



Figure 1 – Install perimeter whalers and brace



Underpinning with

Figure 2: Carry out stage 1 underpinning

2.4 1<sup>st</sup> stage underpinning will then be undertaken in sequence to construction the wall down to approximately 1.1m below street level. Once the three sides are completed, the timber ground floor will be removed followed by the installation another layer of whalers and

## PK & Partners Consulting Engineers

cross brace at this lower level (see figure 3). It is anticipated that the bulk excavation will

be undertaken when stage 2 underpinning is complete.





Figure 3 – Remove ground floor and install props



2.5 Undertake stage 2 underpinning and backfill between each pin to ensure excavation is supported at all times (see figure 4).



Figure 5 – Excavate in increments and install props

Figure 6: Construct slabs and remove props

2.6 Excavate the soil in increments and install props to ensure the excavation is supported at all times, construct lower ground floor and ground floor slabs. Allow reinforced concrete to cure and remove props when curing is complete (see figures 5 & 6).

Reference: 2136 49 Willow Road - BIA Supplement

#### Campbell Reith's Basement Impact Assessment Audit Clause 5.8

Structural calculations for the basement should demonstrate how surcharge loads from the boundary wall, the higher adjacent ground levels, and the garage have been considered in the design. Consideration of the impact of storing soil arisings adjacent to the basement excavation. is required.

#### Loadings and Surcharges at Rear Boundary Wall

2.7 Supplementary calculations are included in appendix B of this report and the design loads

for the surcharges along the rear boundary wall are illustrated below:



Section Showing Loads on Rear Basement wall

Figure 7 – Loadings and surcharges along rear boundary with adjacent garage.

2.8 The calculations did not indicate any significant issues and B12 reinforcement at 150mm centres in both directions and faces will form the basic grid excepting that B16 re-bars at 150mm centres will be provided to the internal wall face.

#### Impact of storage of arisings

- 2.9 Owing to the lack of space which severely limits access, it is anticipated that only two underpins can be constructed at any one time. Each underpin will comprise approximately 2.2m<sup>3</sup> of soil and this represent a total of 4.4m<sup>3</sup> of earth.
- 2.10 The yard is some 10m<sup>2</sup> in area so there is sufficient space to store this quantity of arisings here. This volume represents a depth of 440mm of spoil over the area of the yard and a surcharge of approximately 8kN/m<sup>2</sup>. There adjoining garden is at the same level and the ground is higher in the adjacent garage so the surcharge from the spoil should not cause instability.

- 2.11 This volume will form the limit for the storage of spoil on site which will be removed regularly under a wait and load system.
- 2.12 Where there is an existing basement, temporary prop will be provided to ensure retaining walls are no compromised (see figure 8).



Figure 8 – Temporary propping to existing basement.

#### **De-watering measures**

2.13 It is anticipated that there may be some groundwater seepage during the underpinning process. Water ingress into any excavations will mitigated with a local sump pump as indicated in figure 9 below.



Figure 9 – Propped excavation showing sump to control groundwater.

#### 2.14 Ground movement trigger levels

| Movement                                                                      | Category | Action                                                                                                                               |  |  |  |  |
|-------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0-3mm                                                                         | Green    | No Action required                                                                                                                   |  |  |  |  |
| 3-5mm                                                                         | Amber    | Carry out structural review and implement mitigation and/or remedial measure as required                                             |  |  |  |  |
| >5mm                                                                          | Red      | Cease works with the exception of necessary works for<br>safety and stability. Review monitoring data and revise<br>method of works. |  |  |  |  |
| Tolerances: The measurements shall be accurate to +/- 0.50mm in any direction |          |                                                                                                                                      |  |  |  |  |

#### Author Philip Kwan BEng (Hons) CEng MIStructE

Reference: 2136 49 Willow Road – BIA Supplement



#### **APPENDIX A**

Construction sequence drawing 2136-101E



Reference: 2136 49 Willow Road – BIA Supplement



#### **APPENDIX B**

Supplementary Calculations Rear Boundary Wall with Garage

Project: 49 Willow Road NW3

#### **PK & Partners**

**Consulting Engineers** 



Section Showing Loads on Rear Basement wall

| Loadings                             | Unit load<br>kN/m <sup>2</sup> |        | DL<br>kN/m | LL<br>kN/m |
|--------------------------------------|--------------------------------|--------|------------|------------|
| Garage foundation load               |                                |        |            |            |
| Roof                                 |                                |        |            |            |
| Single ply membrane, roof joists and |                                |        |            |            |
| plasterboard ceiling                 | 0.80 kN/m <sup>2</sup>         |        | 1.8        |            |
| Imposed load                         | 0.75 kN/m <sup>2</sup>         |        |            | 1.7        |
| Loading width                        | 2.25 m                         |        |            |            |
| 9" (230mm) masonry boundary wall     | 5.06 kN/m <sup>2</sup>         |        |            |            |
| Wall height =                        | 4.85 m                         |        | 24.5       |            |
| C C                                  |                                | Total: | 26.3       | 1.7        |
| 2) Rear wall load                    |                                |        |            |            |
| Roof                                 |                                |        |            |            |
| Single ply membrane, roof joists and |                                |        |            |            |
| plasterboard ceiling                 | 0.80 kN/m <sup>2</sup>         |        | 1.2        |            |
| Imposed load                         | 0.75 kN/m <sup>2</sup>         |        |            | 1.1        |
| Loading width                        | 1.50 m                         |        |            |            |
| 9" (230mm) masonry boundary wall     | 5.06 kN/m <sup>2</sup>         |        |            |            |
| Wall height =                        | 4.00 m                         |        | 20.2       |            |
| C C                                  |                                | Total: | 21.4       | 1.1        |

#### 1) Rear Basement Wall adjacent Garage



| Project       | 49 Willow Road REINFORCED PK & Partners Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                       |                           |                             |                         | d                              |         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|---------------------------|-----------------------------|-------------------------|--------------------------------|---------|
| Client        | Dylan McNe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eil                                 |                       |                           | COUNCIL                     | Made by                 | Date                           | Page    |
| Location      | Rear Basen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nent Wall                           |                       |                           |                             | PK                      | 12-Feb-2021                    | C2-03A  |
|               | Basement wal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I design to BS                      | 8110:1997, B          | S8002:1994                | . BS 8004:198               | Checked                 | Revision                       | Job No  |
|               | Originated from 'I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCC61 Basement                      | t Wall.xls' v2.1      | © 1999-                   | 20002 BCA for R             | PK                      | А                              | 2136    |
| EXTERNA       | L STABILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΤY                                  |                       |                           |                             | •                       | STABILITY CHECK                | : OK    |
| ANALYSIS -    | - Assumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is & Notes                          |                       |                           |                             |                         |                                |         |
| UNFACTO       | <ol> <li>Wall idealised as a propped cantilever ( i.e. pinned at top and fixed at base )</li> <li>Wall is braced.</li> <li>Maximum slenderness of wall is limited to 15, i.e [ 0.9*(He-Tb/2)/Tw &lt; 15 ]</li> <li>Maximum Ultimate axial load on wall is limited to 0.1fcu times the wall cross-sectional area</li> <li>Design Span (Effective wall height) = He - (Tb/2)</li> <li>-ve moment is hogging ( i.e. tension at external face of wall )         +ve moment is sagging ( i.e. tension at internal face of wall )</li> <li>Wall MT. " is maximum +ve moment on the wall.</li> <li>Estimated lateral deflections are used for checking theP∆ effect .</li> </ol> |                                     |                       |                           |                             |                         |                                |         |
|               | Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l ever arm                          | Reco MT               |                           | Reaction at                 | Reaction at             | Estimated Electio              | 1       |
| Latoral Force | (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to base (m)                         | Base MIT.             | (kNm)                     | Reso (kNI)                  |                         | Deflection A (mm)              |         |
|               | (NN)<br>05.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 60                                | (KINIII)<br>34.08     | (KINIII)<br>21.40         | 50.63                       | 35.63                   |                                | -       |
| PS(GK) =      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.28                                | -0.01                 | 0.00                      | 0.01                        | 0.02                    | 1.0                            |         |
| PS(OK) =      | 26.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20                                | -5.77                 | 2.73                      | 9.91                        | 16.36                   | 0.0                            |         |
| P(CK) =       | 20.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20                                | -5.77                 | 2.75                      | 6.69                        | 21.87                   | 0.1                            |         |
| PL(OK) =      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.30                                | 0.09                  | -21.05                    | -0.00                       | 1 /1                    | 0.0                            |         |
| P(M) =        | 63.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 18                                | -27 35                | 12 56                     | -0. <del>-</del> 0<br>/8 70 | 14 31                   | 0.0                            |         |
| Total         | 200.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10                                | -60 77                | 13.46                     | 111 14                      | 89.60                   | 2.4                            | -       |
| GROUND E      | BEARING FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALURE                               | centre of ba          | ase (anticl               | LOA<br>ockwise "+"          | AD CASE:                | Wall Load MIN<br>Surcharge MIN |         |
|               | Vertical FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RCES (kN) I                         | Lever arm (m          | Mome                      | ent (kNm)                   | ]                       | BEARING PRESSU                 | RE      |
|               | Wall load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.4                                | 0.75                  | 16.04                     | 999979                      |                         | (kN/m²)                        |         |
|               | Wall (sw) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.68                               | 0.75                  | 17                        | 7.01                        |                         | <b>1.80</b>                    | 0.00    |
|               | Base =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.96                               | 0.00                  | 0                         | .00                         |                         |                                |         |
|               | Earth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                | 0.90                  | 0                         | .00                         |                         |                                |         |
|               | Water =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                | 0.90                  | 0                         | .00                         |                         |                                |         |
|               | Surcharge =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                | 0.90                  | 0                         | .00                         |                         | 50 +                           |         |
|               | Line load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.30                               | 0.00                  | 0                         | .00                         |                         |                                |         |
|               | $\Sigma \lor =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.34                               |                       | Σ Mv =                    | 33.06                       |                         |                                |         |
|               | MOMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | due to LATE                         | ERAL FORC             | CES,Mo =                  | -55.45                      | kNm 1                   | 00                             | ·       |
|               | RESUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANT MOM                            | ENT, M = 1            | Mv + Mo =                 | -22.39                      | kNm                     |                                |         |
| ECO           | CENTRICITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FROM BA                             | SE CENTRI             | E, M / V =                | -0.27                       | m                       |                                |         |
|               | MAXIMUM G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GROSS BEA                           | ARING PRE             | SSURE =                   | 87.77                       | kN/m <sup>2</sup>       | < 120                          | OK      |
| SLIDING A     | T BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (using over                         | all factor of         | safety ins                | tead of part                | ial safety fa           | F.O.S = <u>1.50</u>            |         |
| ВА            | SE FRICTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUM of LAT<br>DN, <b>F</b> ь  = - ( | ERAL FOR<br>V TANØb + | CES, <b>P</b> =<br>B.Cb)= | 111.14<br>-55.11            | kN<br>kN                |                                |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                       | Fac                       | tor of Safet                | y, F <sub>b</sub> / P = | 0.50 < 1.50                    | FAIL bu |
|               | therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , LATERAL                           | RESISTAN              | CE to be j                | provided by                 | BASEMEN                 | T SLAB = 111.61 kl             | N       |

| Client E                                                                                             | 19 Willow F                                                                               | ₹oad                                                                                                         |                                                                                                    |                                         | REINFORCED<br>CONCRET                                                                                                                           | 2                                                                                                    | PK & Partner                                    | s Limite                                  | d                                          |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|--------------------------------------------|
|                                                                                                      | Dylan McNei                                                                               | l                                                                                                            |                                                                                                    |                                         | COUNCI                                                                                                                                          | Made by                                                                                              | Date                                            |                                           | Page                                       |
| Location F                                                                                           | Rear Basemo                                                                               | ent Wall                                                                                                     |                                                                                                    |                                         |                                                                                                                                                 | PK                                                                                                   | 12-Feb-2                                        | 2021                                      | C2-04A                                     |
| в                                                                                                    | asement wall                                                                              | desian to BS8                                                                                                | 110:1997. B                                                                                        | S8002:1994.                             | BS 8004:19                                                                                                                                      | 8 Checked                                                                                            | Revision                                        |                                           | Job No                                     |
| c                                                                                                    | riginated from 'R                                                                         | CC61 Basement V                                                                                              | Vall.xls' v2.1                                                                                     | © 1999-2                                | 0002 BCA for F                                                                                                                                  | RC PK                                                                                                | А                                               |                                           | 2136                                       |
|                                                                                                      |                                                                                           |                                                                                                              | 4 - )                                                                                              |                                         |                                                                                                                                                 |                                                                                                      |                                                 |                                           |                                            |
| SIRUCIUR                                                                                             | AL DESIG                                                                                  | INS (ultim                                                                                                   | iate)                                                                                              |                                         |                                                                                                                                                 |                                                                                                      | DESIGN CH                                       | HECKS :                                   | OK                                         |
| WALL ( per m                                                                                         | etre length                                                                               | ۱                                                                                                            |                                                                                                    |                                         |                                                                                                                                                 |                                                                                                      |                                                 |                                           | BS8110                                     |
|                                                                                                      | XIAL LOAD                                                                                 | ,<br>CAPACITY                                                                                                | ( Limited 1                                                                                        | o 0.1fcu ) =                            | = 1050.00                                                                                                                                       | kN                                                                                                   | > 31.72                                         | ОК                                        | 3.4.4.1                                    |
|                                                                                                      |                                                                                           |                                                                                                              | (                                                                                                  | ,                                       |                                                                                                                                                 |                                                                                                      | • ··· -                                         |                                           |                                            |
| Г Г                                                                                                  | Force                                                                                     | γ <sub>f</sub>                                                                                               | Ultimate                                                                                           | Ult. Momen                              | Ult. Shea                                                                                                                                       | r Ult. Shear                                                                                         | ]                                               |                                           |                                            |
| Lateral Force                                                                                        | (kN)                                                                                      |                                                                                                              | Force (kN)                                                                                         | it base (kNr                            | at base (kl                                                                                                                                     | N at top (kN)                                                                                        | )                                               |                                           |                                            |
| PE =                                                                                                 | 95.27                                                                                     | 1.40                                                                                                         | 133.37                                                                                             | -48.98                                  | 83.48                                                                                                                                           | 49.89                                                                                                |                                                 |                                           |                                            |
| PS(GK) =                                                                                             | 0.03                                                                                      | 1.40                                                                                                         | 0.04                                                                                               | -0.01                                   | 0.01                                                                                                                                            | 0.02                                                                                                 |                                                 |                                           |                                            |
| PS(QK) =                                                                                             | 26.27                                                                                     | 1.60                                                                                                         | 42.03                                                                                              | -9.23                                   | 15.85                                                                                                                                           | 26.18                                                                                                |                                                 |                                           |                                            |
| PL(GK) =                                                                                             | 15.19                                                                                     | 1.40                                                                                                         | 21.26                                                                                              | 9.64                                    | -9.35                                                                                                                                           | 30.61                                                                                                |                                                 |                                           |                                            |
| PL(QK) =                                                                                             | 0.98                                                                                      | 1.60                                                                                                         | 1.57                                                                                               | 0.71                                    | -0.69                                                                                                                                           | 2.26                                                                                                 |                                                 |                                           |                                            |
| PW =                                                                                                 | 63.01                                                                                     | 1.40                                                                                                         | 88.22                                                                                              | -38.29                                  | 68.19                                                                                                                                           | 20.03                                                                                                |                                                 |                                           |                                            |
| Total                                                                                                | 200.74                                                                                    |                                                                                                              | 286.49                                                                                             | -86.15                                  | 157.49                                                                                                                                          | 129.00                                                                                               |                                                 |                                           |                                            |
|                                                                                                      |                                                                                           |                                                                                                              |                                                                                                    |                                         | -                                                                                                                                               |                                                                                                      |                                                 |                                           |                                            |
| Design Bendin                                                                                        | a Momente                                                                                 |                                                                                                              |                                                                                                    |                                         |                                                                                                                                                 | EXT M                                                                                                | IOMENT (kNm) INT                                |                                           |                                            |
| Design Dendin                                                                                        | g woments                                                                                 |                                                                                                              |                                                                                                    |                                         |                                                                                                                                                 | -100 -5                                                                                              | 0 0                                             | 50                                        |                                            |
| On INTERN                                                                                            | AL face due                                                                               | to lateral for                                                                                               | rces, M <sub>nt</sub> =                                                                            | 38.07                                   | kNm                                                                                                                                             |                                                                                                      |                                                 | 0.00                                      |                                            |
| On EXTERNA                                                                                           | AL face due                                                                               | to lateral for                                                                                               | rces, M <sub>ext</sub> =                                                                           | -86.15                                  | kNm                                                                                                                                             | ^<br>Q                                                                                               |                                                 |                                           |                                            |
|                                                                                                      | Eccer                                                                                     | tricity of Ax                                                                                                | ial Loads =                                                                                        | 100                                     | mm                                                                                                                                              | \$                                                                                                   |                                                 | 0.66                                      |                                            |
|                                                                                                      | LATERAL                                                                                   | DEFLECT                                                                                                      | ON "Δ"=                                                                                            | 2.4                                     | mm                                                                                                                                              | Ê                                                                                                    |                                                 |                                           |                                            |
| Due 1                                                                                                | to eccentricit                                                                            | y of axial lo                                                                                                | ads, M <sub>ecc</sub> =                                                                            | 3.2                                     | kNm                                                                                                                                             | L (L                                                                                                 |                                                 | 1.32                                      |                                            |
|                                                                                                      |                                                                                           | Due to <b>P∆</b> e                                                                                           | effect, M <sub>p</sub> =                                                                           | 0.08                                    | kNm                                                                                                                                             | MAI                                                                                                  |                                                 | 1.09                                      |                                            |
|                                                                                                      |                                                                                           |                                                                                                              |                                                                                                    |                                         |                                                                                                                                                 |                                                                                                      |                                                 | 1.96                                      |                                            |
| Fotal Mmt on IN                                                                                      | ITERNAL fa                                                                                | ce (N <sub>int</sub> +0.5                                                                                    | $M_{ecc}+M_{p}) =$                                                                                 | 39.7                                    | kNm                                                                                                                                             | Jase                                                                                                 |                                                 | 2 64                                      |                                            |
| Total Mmt or                                                                                         | I EXTERNA                                                                                 | ∟ face (M <sub>ext</sub> +                                                                                   | -0.5M <sub>ecc</sub> ) =                                                                           | -87.7                                   | kNm                                                                                                                                             | v                                                                                                    |                                                 |                                           |                                            |
|                                                                                                      |                                                                                           |                                                                                                              |                                                                                                    |                                         |                                                                                                                                                 |                                                                                                      |                                                 | 3.30                                      |                                            |
|                                                                                                      |                                                                                           |                                                                                                              |                                                                                                    | FAOF                                    |                                                                                                                                                 |                                                                                                      |                                                 |                                           |                                            |
|                                                                                                      |                                                                                           | Min An-                                                                                                      | EX IERNAL                                                                                          | - FACE                                  | INTERNA                                                                                                                                         | LFACE                                                                                                |                                                 |                                           | <b>T</b> 11 0.05                           |
| WALL REINFOR                                                                                         | RCEMENT :                                                                                 | win. As =                                                                                                    | 390                                                                                                |                                         | 390                                                                                                                                             |                                                                                                      | mm                                              |                                           | l able 3.25                                |
|                                                                                                      |                                                                                           | φ =                                                                                                          | <u>16</u><br>150                                                                                   | 1 400                                   | 12                                                                                                                                              | . 700                                                                                                | mm                                              | OK                                        |                                            |
|                                                                                                      |                                                                                           | centres =                                                                                                    | 150                                                                                                | < 400                                   | <u>150</u><br>754                                                                                                                               | < 762                                                                                                | mm                                              | OK                                        | 3.12.11.2.7(b)                             |
|                                                                                                      |                                                                                           | AS =                                                                                                         | 1340                                                                                               | > 390                                   | 754                                                                                                                                             | > 390                                                                                                |                                                 | UK                                        |                                            |
|                                                                                                      | SISTANCE .                                                                                | u –                                                                                                          | 202                                                                                                |                                         | 204                                                                                                                                             |                                                                                                      | mm                                              |                                           |                                            |
|                                                                                                      |                                                                                           | – ۲<br>– \مد                                                                                                 | 233                                                                                                |                                         | 241                                                                                                                                             |                                                                                                      | mm <sup>2</sup>                                 |                                           | 3.4.4.4                                    |
|                                                                                                      |                                                                                           | M <sub>ros</sub> =                                                                                           | 137.0                                                                                              | > 87.73                                 | 79.7                                                                                                                                            | > 39.73                                                                                              | kNm                                             | ОК                                        | 5.4.4.4                                    |
| 1                                                                                                    |                                                                                           | 163                                                                                                          |                                                                                                    |                                         |                                                                                                                                                 |                                                                                                      |                                                 |                                           |                                            |
|                                                                                                      |                                                                                           |                                                                                                              |                                                                                                    |                                         |                                                                                                                                                 |                                                                                                      |                                                 |                                           |                                            |
|                                                                                                      |                                                                                           |                                                                                                              | BASE of W                                                                                          | ALL                                     | TOP of W                                                                                                                                        | ALL                                                                                                  |                                                 |                                           |                                            |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =                                                                                                         | BASE of W<br>1340                                                                                  | ALL<br>φ=                               | TOP of W<br><u>12</u>                                                                                                                           | ALL<br>@150 mm                                                                                       | n 754 m                                         | m²/m                                      |                                            |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =<br>100As/bd =                                                                                           | BASE of W<br>1340<br>0.53%                                                                         | ALL<br>φ =<br>=                         | TOP of W<br><u>12</u><br>0.30%                                                                                                                  | ALL<br>@150 mm                                                                                       | n 754 m                                         | m²/m                                      |                                            |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =<br>100As/bd =<br>vc =                                                                                   | BASE of W<br>1340<br>0.53%<br>0.64                                                                 | ALL<br>φ =<br>=                         | TOP of W<br><u>12</u><br>0.30%<br>0.53                                                                                                          | ALL<br>@150 mm                                                                                       | n 754 m<br>N/mm²                                | m²/m                                      | Table 3.8                                  |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =                                                             | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0                                                        | ALL<br>φ =<br>=<br>> 157.49             | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2                                                                                                 | ALL<br>@150 mm<br>> 129.00                                                                           | n 754 m<br>N/mm <sup>2</sup><br>kN              | m²/m<br>OK                                | Table 3.8<br>3.5.5.2                       |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =                                                             | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0                                                        | ALL<br>φ =<br>=<br>> 157.49             | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2                                                                                                 | ALL<br>@150 mm<br>> 129.00                                                                           | n 754 m<br>N/mm <sup>2</sup><br>kN              | m²/m<br>OK                                | Table 3.8<br>3.5.5.2                       |
| SHEAR RE                                                                                             | SISTANCE:                                                                                 | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =                                                      | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67                                               | ALL<br>φ =<br>=<br>> 157.49<br>mm       | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em                                                                                           | ALL<br>@150 mm<br>> 129.00<br>= 0.00078                                                              | n 754 m<br>N/mm <sup>2</sup><br>kN              | m <sup>2</sup> /m<br>OK                   | Table 3.8<br>3.5.5.2<br>BS8007             |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage                                                       | SISTANCE:<br>S8100/8007<br>e effects not                                                  | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =                                             | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04                                      | ALL<br>φ =<br>=<br>> 157.49<br>mm<br>mm | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>εm<br><b>W</b> =                                                                             | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14                                                    | n 754 m<br>N/mm <sup>2</sup><br>kN<br>< 0.30 mm | m²/m<br>OK<br>OK                          | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included                                           | SISTANCE:<br>S8100/8007<br>e effects not                                                  | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =                                             | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04                                      | ALL<br>φ =<br>=<br>> 157.49<br>mm<br>mm | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br>W :                                                                                    | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14                                                    | n 754 m<br>N/mm <sup>2</sup><br>kN<br>< 0.30 mm | m²/m<br>OK<br>OK                          | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included                                           | SISTANCE:<br>S8100/8007<br>e effects not                                                  | $As =$ $100As/bd =$ $vc =$ $V_{res} =$ $X =$ $Acr =$                                                         | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04                                      | ALL<br>φ =<br>=<br>> 157.49<br>mm<br>mm | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br><b>W</b> :                                                                             | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14                                                    | n 754 m<br>N/mm <sup>2</sup><br>kN<br>< 0.30 mm | m²/m<br>OK<br>OK                          | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included<br>REINFORCEM                             | SISTANCE:<br>S8100/8007<br>e effects not<br>MENT SUMI                                     | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =<br><u>/ARY for W</u>                        | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04<br>/ALL                              | ALL                                     | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>εm<br>W :                                                                                    | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14                                                    | n 754 m<br>N/mm <sup>2</sup><br>KN<br>< 0.30 mm | m²/m<br>OK<br>OK                          | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included<br>REINFORCEM                             | SISTANCE:<br>S8100/8007<br>e effects not                                                  | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =<br><u>MARY for W</u><br>Type                | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04<br>/ALL<br><b>¢</b>                  | ALL                                     | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br>W<br>:<br>As<br>mm <sup>2</sup>                                                        | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14<br>Min. As<br>mm <sup>2</sup>                      | n 754 m<br>N/mm <sup>2</sup><br>KN<br>< 0.30 mm | m <sup>2</sup> /m<br>OK<br>OK             | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included<br>REINFORCEM                             | SISTANCE:<br>SS8100/8007<br>e effects not<br>MENT SUMM                                    | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =<br><u>MARY for W</u><br>Type                | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04<br>/ALL<br>¢<br>mm<br>12             | ALL                                     | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br>W<br>:<br>As<br><u>mm<sup>2</sup></u><br>754                                           | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14<br>Min. As<br>mm <sup>2</sup><br>300               | n 754 m<br>N/mm <sup>2</sup><br>kN<br>< 0.30 mm | m²/m<br>ОК<br>ОК                          | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE                                                                                             | SISTANCE:<br>S8100/8007<br>e effects not<br>MENT SUMI                                     | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =<br><u>MARY for W</u><br>Type<br>T<br>T      | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04<br>/ALL<br>¢<br>mm<br>12<br>16       | ALL                                     | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br>W<br>*<br>M<br>*<br>M<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14<br>Min. As<br>mm <sup>2</sup><br>390<br>390        | n 754 m<br>N/mm <sup>2</sup><br>kN<br>< 0.30 mm | m <sup>2</sup> /m<br>ОК<br>ОК<br>ОК       | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |
| SHEAR RE<br>ACK WIDTH to B<br>Temp & shrinkage<br>included<br>REINFORCEN<br>INTERN<br>EXTERN<br>TRAN | SISTANCE:<br>SS8100/8007<br>e effects not<br>MENT SUMM<br>NAL FACE<br>NAL FACE<br>NSVERSE | As =<br>100As/bd =<br>vc =<br>V <sub>res</sub> =<br>X =<br>Acr =<br><u>MARY for W</u><br>Type<br>T<br>T<br>T | BASE of W<br>1340<br>0.53%<br>0.64<br>162.0<br>82.67<br>81.04<br>/ALL<br>¢<br>mm<br>12<br>16<br>10 | ALL                                     | TOP of W<br><u>12</u><br>0.30%<br>0.53<br>134.2<br>Em<br>W<br>*<br>M<br>*<br>M<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | ALL<br>@150 mm<br>> 129.00<br>= 0.00078<br>= 0.14<br>Min. As<br>mm <sup>2</sup><br>390<br>390<br>390 | n 754 m<br>N/mm <sup>2</sup><br>KN<br>< 0.30 mm | m <sup>2</sup> /m<br>ОК<br>ОК<br>ОК<br>ОК | Table 3.8<br>3.5.5.2<br>BS8007<br>App. B.2 |

| Client         Dyten McNeil         Made by<br>PK         Date         Page         Page           Location         Reer Basement Wall Segns to 553110:1997, B58002:1994, B58000:1196         Checked<br>Pk         Revision         Job N           OUTER BASE (per metrix length)<br>yr =         1.50         (ASSUMED)         Revision         Job N           UII: Shear =         37.35         KN         (AT d from FACE of WALL)         Iteration         Job N           UII: Shear =         37.35         KN         (AT d from FACE of WALL)         Iteration         Job N           UII: Shear =         37.35         KN         (AT d from FACE of WALL)         Iteration         Job N           UII: Shear =         37.35         KN         (AT d from FACE of WALL)         Iteration         Job N           UII: Shear =         30.00         KN         TENSION - TOP FACE         Table 3.25           BOTTOM REINFORCEMENT :         Min.As =         300         mm         Z = 241         mm         Job N           Meres =         79.71         KNm         0.00         OK         S44.4           As =         0         mm²         7.85         OK         3.52           CHECK CRACK WIDTH IN ACCORDANCE WITH BS9100000 Temp & shrinkage effects not included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project    | 49 Willow          | Road            |                | RE             | INFORCED<br>ONCRETE   |                   | PK & Partners Limited |              |            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-----------------|----------------|----------------|-----------------------|-------------------|-----------------------|--------------|------------|--|
| Location         Rear Basement Wall         PK         12-Feb-2021         C2-05A           Basement Wall         01990-03002 004 n8         PK         Revision         Joi No           Oligined Stm T0C018 Basement Wall v: 21         01990-0302 004 n8         PK         A         2130           CUTER BASE (per metre length) $\gamma_{1} = 1.50$ (ASSUMED)         Basement Wall v: 21         01990-0302 004 n8         PK         A         2130           UITER BASE (per metre length) $\gamma_{1} = 1.50$ (ASSUMED)         Interest         100         No         20 No           UIT. Shear = 37.85         KN         (AT d from FACE of WALL)         Interest         100         No         4         12         mm         centrest         100         No         2         2         12         mm         centrest         130         No         3.4.44           AS = 0         mm <sup>2</sup> 2         241         mm         2.5.50         N/mm <sup>2</sup> Table 3.8         3.6.44           Mese = 79.71         KNm         > 0.00         OK         3.6.44         3.5.52         CHECK CRACK WIDTH IN ACCORDANCE WITH BS010080 Temp & shrinkage effects not included         X = 05.43         mm         0.0         3.6.20           NO ERAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client     | Dylan McNei        | I               |                |                |                       | Made by           | Date                  |              | Page       |  |
| Basement wall design to BSS110:1997, BSS002:1994, BS 8004:198         Checked<br>PK         Revision<br>A         Job No<br>2136           OUTER BASE ( per metre length )<br>Y = 1.50 (ASSUMED)         SS110:1997, BSS100         BSS110         SS110:1997, BSS100         SS110:1997, SS110:1                                                                                                                                                                                                                                                                                                                                                          | Location   | Rear Baseme        | ent Wall        |                |                | COUNCIL               | PK                | 12-Feb                | -2021        | C2-05A     |  |
| Organised from: NOCCE Basement Web 40: 421         0 1980-20002 BOA for M         PK         A         2136           OUTER BASE ( per metre length )<br>Y = 1.20         (ASSUMED)         Bastrino         Indemnoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Basement wall      | design to BS    | 8110:1997,     | BS8002:1994. E | 3S 8004:198           | Checked           | Revision              |              | Job No     |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Originated from 'R | CC61 Basement   | Wall.xls' v2.1 | © 1999-20      | 002 BCA for R         | C PK              | A                     |              | 2136       |  |
| OUTER BASE (per metre length)<br>W = 1.50       (ASSUMED)       Intervence         UIL Shear = 37.85       KN       (AT d from FACE of WALL)       Intervence         UIL MT. =       0.00       KN       Table 3.25         BOTTOM REINFORCEMENT :       Min. As =       390       mm²       Table 3.25         Centres =       150       mm       <762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                    |                 |                |                |                       |                   |                       |              |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OUTER BAS  | SE ( per metre     | e length)       |                |                |                       |                   |                       |              | BS8110     |  |
| UIL Since =         37.85         KN         (A1 a from PACE of WALL)           UIL MT. =         0.00         NM         TENSION-TOP FACE           BOTTOM REINFORCEMENT :         Min. As =         390         mm²         Table 3.25 $\phi =$ 12         mm         <762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | γ <sub>f</sub> –   | <u>1.50</u>     | (ASSUM         |                |                       |                   |                       |              | reference  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | UIL Snear =        | 37.85<br>0.00   | KIN<br>kNm     |                |                       | CE                |                       |              |            |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | OIL. WIT           | 0.00            | KINIII         | TENOION        |                       |                   |                       |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | BOTTOM REI         | INFORCEM        | ENT :          | Min. As =      | 390                   | mm <sup>2</sup>   |                       |              | Table 3.25 |  |
| $\begin{array}{cccc} \text{centres} = & 150 & \text{mm} & < 762 & \text{OK} \\ \text{As} = & 754 & \text{mm}^2 & > 390 & \text{OK} \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |                 |                | φ =            | <u>12</u>             | mm                |                       |              |            |  |
| $As = 754 \text{ mm}^{2} > 390 \text{ OK}$ $MOMENT of RESISTANCE : d = 254 \text{ mm}$ $Z = 241 \text{ mm}^{2}$ $As = 0 \text{ mm}^{2}$ $Ars = 0 \text{ mm}^{2}$ $Ars = 79.71 \text{ kNm} > 0.00 \text{ OK}$ $SHEAR RESISTANCE : 100As/bd = 0.30\%$ $vc = 0.53 \text{ N/mm}^{2} > 37.85 \text{ OK} 3.5.52$ $CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included}$ $X = 65.43 \text{ mm} \text{ tom} = -0.00097$ $Acr = 81.98 \text{ mm} W = -0.18 \text{ mm} < 0.30 \text{ OK} \text{ App. B.2}$ $NO CRACKING$ INNER BASE (per metre length )<br>UIt. Shear = -56.04 kN (AT d from FACE of WALL)<br>UIt. MT = 91.16 kKm TENSION - BOTTOM FACE<br>BOTTOM REINFORCEMENT : Min. As = 390 mm <sup>2</sup> Table 3.25 mm<br>$centres = 150 \text{ mm} < 449 \text{ OK}$ $As = 1340 \text{ mm}^{2} > 390 \text{ OK}$ $MOMENT of RESISTANCE : d = 252 mm  Z = 233 \text{ mm} As' = 0 \text{ mm}^{2} Vres = 166.95 \text{ kNm} < 91.16 \text{ OK} 3.4.4.4 SHEAR RESISTANCE : 100As/bd = 0.53\% vc = 0.64 \text{ N/mm}^{2} \text{ Table 3.5} Vres = 162.03 \text{ kN} > 56.04 \text{ OK} 3.5.52 CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included} X = 82.67 \text{ mm} \text{ cm} = 0.000776 Acr = 81.04 \text{ mm} W = 0.14 \text{ mm} < 0.30 \text{ OK} App. B.2 REINFORCEMENT SUMMARY for BASE Type \frac{\phi}{mm} \text{ centres} As \frac{Min. As}{mm^{2}} \text{ or } 0.30 \text{ OK} App. B.2 CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included} Acr = 81.04 \text{ mm} W = 0.14 \text{ mm} < 0.30 \text{ OK} App. B.2 REINFORCEMENT SUMMARY for BASE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                    |                 |                | centres =      | <u>150</u>            | mm                | < 762                 | OK           |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | As =           | 754                   | mm²               | > 390                 | OK           |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 | · <b>C</b> ·   | d -            | 254                   | mm                |                       |              |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    | 12010 I AINO    | · <b>L</b> .   | u –<br>7 =     | 204                   | mm                |                       |              | 3111       |  |
| $\label{eq:metric} Mres = 79.71 \ \text{K}\text{K}\text{M} > 0.00 \ \text{OK}$ $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | As' =          | 0                     | mm <sup>2</sup>   |                       |              | 0.4.4.4    |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | Mres =         | 79.71                 | kNm               | > 0.00                | ОК           |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                |                |                       |                   |                       |              |            |  |
| $vc = 0.53 \text{ N/mm}^{2} \text{ Table 3.8} \\ Vres = 134.20 \text{ kN} > 37.85 \text{ OK} 3.5.52 \\ Vres = 134.20 \text{ kN} > 37.85 \text{ OK} 3.5.52 \\ CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included \\ X = 65.43 \text{ mm} & cm = -0.00097 \\ Acr = 81.98 \text{ mm} & W = -0.18 \text{ mm} < 0.30 \text{ OK} \text{ App. B.2} \\ NO CRACKING \\ \text{INNER BASE (per metre length )} \\ \text{UIt. Shear = -56.04 kN} & (AT d from FACE of WALL) \\ \text{UIt. Shear = -56.04 kN} & (AT d from FACE of WALL) \\ \text{UIt. Shear = -56.04 kN} & (AT d from FACE of WALL) \\ \text{UIt. Shear = -56.04 kN} & (AT d from FACE of WALL) \\ \text{UIt. MT. = 91.16 kNm} & TENSION - BOTTOM FACE \\ \text{BOTTOM REINFORCEMENT : Min. As = 390 mm^{2} & Table 3.25 \\ \phi = 16 mm \\ centres = 150 mm < 449 \text{ OK} \\ As = 1340 mm^{2} > 390 \text{ OK} \\ \text{MOMENT of RESISTANCE : } d = 252 mm \\ Z = 233 mm \\ As' = 0 mm^{2} \\ Mres = 136.95 \text{ kNm} < 91.16 \text{ OK} 3.4.4.4 \\ \text{SHEAR RESISTANCE : } 100As/bd = 0.53\% \\ vc = 0.64 \text{ N/mm}^{2} & Table 3.8 \\ Vres = 162.03 \text{ kN} > 56.04 \text{ OK} 3.5.52 \\ \text{CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included X = 82.67 mm cm = 0.000776 \\ Acr = 81.04 mm W = 0.14 mm < 0.30 \text{ OK} \text{ App. B.2} \\ \text{REINFORCEMENT SUMMARY for BASE} \\ \hline T \frac{12}{150} 754 390 \text{ OK} \\ \text{REINFORCEMENT SUMMARY for BASE} \\ \hline T DP \\ T 12 150 754 390 \text{ OK} \\ \hline T RANSVERSE \\ \hline T 12 150 754 390 \text{ OK} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | SHEAR RESI         | STANCE:         |                | 100As/bd =     | 0.30%                 |                   |                       |              |            |  |
| Vres = 134.20  kN > 37.85  OK 33.5.52  CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included X = 65.43 mm & cm = -0.00097 BS8007 Acr = 81.98 mm W = -0.18 mm <0.30 OK App. B.2 NO CRACKING NO CRA                                                                                                                                 |            |                    |                 |                | vc =           | 0.53                  | N/mm <sup>2</sup> |                       |              | Table 3.8  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | Vres =         | 134.20                | kN                | > 37.85               | OK           | 3.5.5.2    |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    | י עדטועע אר     |                |                | R\$2100/9             | Tomp & obri       | nkago offacto i       | aat inaludad |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | X =                | 65.43           | mm             | Em =           | -0.00097              |                   | likaye ellecis i      |              | BS8007     |  |
| NO CRACKING $INNER BASE (per metre length) Ult. Shear = -56.04 kN (AT d from FACE of WALL) Ult. MT. = 91.16 kNm TENSION - BOTTOM FACE BOTTOM REINFORCEMENT: Min. As = 390 mm2 Table 3.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Acr =              | 81.98           | mm             | W =            | -0.18                 | mm                | < 0.30                | ОК           | App. B.2   |  |
| $\begin{array}{rcl} \text{INNER BASE ( per metre length )} \\ & \text{UIt. Shear = } -56.04 & \text{kN} & (AT d from FACE of WALL) \\ & \text{UIt. MT. = } 91.16 & \text{kNm} & \text{TENSION - BOTTOM FACE} \\ \end{array} \\ & \text{BOTTOM REINFORCEMENT : } & \text{Min. As = } 390 & \text{mm}^2 & \text{Table 3.25} \\ & \phi = & 16 & \text{mm} & \\ & centres = & 150 & \text{mm} & < 449 & \text{OK} \\ & \text{As = } 1340 & \text{mm}^2 & > 390 & \text{OK} \\ \end{array} \\ & \text{MOMENT of RESISTANCE : } & d = & 252 & \text{mm} & \\ & Z = & 233 & \text{mm} & \\ & As' = & 0 & \text{mm}^2 & \\ & \text{Mres = } 136.95 & \text{kNm} & < 91.16 & \text{OK} & 3.4.4.4 \\ \end{array} \\ & \text{SHEAR RESISTANCE : } & 100\text{As/bd} = & 0.53\% & \\ & \text{vc = } & 0.64 & \text{N/mm}^2 & \\ & \text{Vres = } 162.03 & \text{kN} & > 56.04 & \text{OK} & 3.5.5.2 \\ \end{array} \\ & \text{CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included} \\ & X = & 82.67 & \text{mm} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                    |                 |                |                | NO CRAC               | CKING             |                       |              |            |  |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |                 |                |                |                       |                   |                       |              |            |  |
| UIL Shear = -35.04 KN       (AT & from FACE of WALL)         UIL MT. = 91.16 KNm       TENSION - BOTTOM FACE         BOTTOM REINFORCEMENT :       Min. As = 390 mm <sup>2</sup> Table 3.25 $\phi = 16$ mm       centres = 150 mm < 449 OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INNER BASI | E (per metre       | length)         | LAI            |                |                       |                   |                       |              |            |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Ult. Shear =       | -56.04<br>01.16 | KIN<br>kNm     |                |                       | VVALL)            |                       |              |            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | OIL IVIT           | 91.10           | NINIII         | LINGION        | - DOTTOR              | IT ACL            |                       |              |            |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | BOTTOM REI         | INFORCEM        | ENT :          | Min. As =      | 390                   | mm <sup>2</sup>   |                       |              | Table 3.25 |  |
| $\begin{array}{ccc} \text{centres} = & 150 & \text{mm} & < 449 & \text{OK} \\ \text{As} = & 1340 & \text{mm}^2 & > 390 & \text{OK} \\ \end{array}$ $\begin{array}{cccc} \text{MOMENT of RESISTANCE} : & d = & 252 & \text{mm} \\ \text{Z} = & 233 & \text{mm} \\ \text{As'} = & 0 & \text{mm}^2 \\ \end{array}$ $\begin{array}{cccccc} \text{Mres} = & 136.95 & \text{KNm} & < 91.16 & \text{OK} & 3.4.44 \\ \end{array}$ $\begin{array}{cccccccc} \text{SHEAR RESISTANCE} : & 100\text{As/bd} = & 0.53\% \\ \text{Vres} = & 136.95 & \text{KNm} & < 91.16 & \text{OK} & 3.4.44 \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | φ =            | <u>16</u>             | mm                |                       |              |            |  |
| $As = 1340 \text{ mm}^2 > 390 \text{ OK}$ $MOMENT of RESISTANCE : d = 252 \text{ mm}$ $Z = 233 \text{ mm}$ $As' = 0 \text{ mm}^2$ $Mres = 136.95 \text{ kNm} < 91.16 \text{ OK} \qquad 3.4.4.4$ $SHEAR RESISTANCE : 100As/bd = 0.53\%$ $vc = 0.64 \text{ N/mm}^2 \text{ Table 3.8}$ $Vres = 162.03 \text{ kN} > 56.04 \text{ OK} \qquad 3.5.5.2$ $CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included}$ $X = 82.67 \text{ mm} \qquad \&m = 0.000776 \text{ BS8007}$ $Acr = 81.04 \text{ mm} \text{ W} = 0.14 \text{ mm} < 0.30 \text{ OK} \qquad App. B.2$ $REINFORCEMENT SUMMARY for BASE$ $Type \qquad \oint \qquad mm \qquad mm^2 \qquad mm^2 \ mm^2 $ |            |                    |                 |                | centres =      | <u>150</u>            | mm                | < 449                 | OK           |            |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | As =           | 1340                  | mm <sup>2</sup>   | > 390                 | OK           |            |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 | · <b>c</b> ·   | d -            | 252                   | mm                |                       |              |            |  |
| $As' = 0 \text{ mm}^2$ $As' = 0 \text{ mm}^2$ $Mres = 136.95 \text{ kNm} < 91.16 \text{ OK} \qquad 34.4.4$ $SHEAR RESISTANCE: 100\text{As/bd} = 0.53\%$ $vc = 0.64 \text{ N/mm}^2 \text{ Table 3.8}$ $Vres = 162.03 \text{ kN} > 56.04 \text{ OK} \qquad 35.5.2$ $CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included}$ $X = 82.67 \text{ mm} \qquad \varepsilonm = 0.000776 \qquad BS8007$ $Acr = 81.04 \text{ mm} \qquad W = 0.14 \text{ mm} < 0.30 \text{ OK} \qquad App. B.2$ $REINFORCEMENT SUMMARY for BASE$ $Top \qquad T \qquad 12 \qquad 150 \qquad 754 \qquad 390 \qquad OK$ $TRANSVERSE \qquad T \qquad 12 \qquad 150 \qquad 754 \qquad 390 \qquad OK$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                    | XESISTANC       | · <b>C</b> .   | u –<br>7 =     | 202                   | mm                |                       |              |            |  |
| $Mres = 136.95 \text{ kNm} < 91.16 \text{ OK} 34.4.4$ $Mres = 136.95 \text{ kNm} < 91.16 \text{ OK} 34.4.4$ $SHEAR RESISTANCE: 100As/bd = 0.53\%$ $vc = 0.64 \text{ N/mm}^2 \text{ Table 3.8}$ $Vres = 162.03 \text{ kN} > 56.04 \text{ OK} 35.5.2$ $CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 \text{ Temp & shrinkage effects not included}$ $X = 82.67 \text{ mm} \qquad \&m = 0.000776 \qquad BS8007$ $Acr = 81.04 \text{ mm} \qquad W = 0.14 \text{ mm} < 0.30 \text{ OK} \text{ App. B.2}$ $REINFORCEMENT SUMMARY for BASE$ $TOP \qquad T \qquad 12 \qquad 150 \qquad 754 \qquad 390 \qquad OK$ $TRANSVERSE \qquad T \qquad 12 \qquad 150 \qquad 754 \qquad 390 \qquad OK$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                    |                 |                | As' =          | 200                   | mm <sup>2</sup>   |                       |              |            |  |
| SHEAR RESISTANCE:       100As/bd = $0.53\%$<br>vc = $0.64$ N/mm <sup>2</sup> Table 3.8         Vres =       162.03       kN       > 56.04       OK $3.5.2$ CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included<br>X = $82.67$ mm $6m = 0.000776$ BS8007         Acr =       81.04       mm       W = $0.14$ mm       < $0.30$ OK         Type $\phi$ centres       As       Min. As         TOP       T       12       150       754       390       OK         BOTTOM       T       16       150       754       390       OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                    |                 |                | Mres =         | 136.95                | kNm               | < 91.16               | ОК           | 3.4.4.4    |  |
| SHEAR RESISTANCE:       100As/bd =       0.53%<br>vc =       0.64       N/mm <sup>2</sup> Table 3.8         Vres =       162.03       kN       > 56.04       OK       3.5.2         CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included<br>X =       82.67       mm $\epsilon_m = 0.000776$ BS8007         Acr =       81.04       mm       W =       0.14       mm       < 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                    |                 |                |                |                       |                   |                       |              |            |  |
| vc = $0.64$ N/mm <sup>2</sup> Table 3.8         Vres = $162.03$ kN       > $56.04$ OK $3.5.5.2$ CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included         X = $82.67$ mm $&m = 0.000776$ BS8007         Acr = $81.04$ mm       W = $0.14$ mm $< 0.30$ OK         Type $\phi$ centres       As       Min. As         TOP       T $12$ $150$ $754$ $390$ OK         TABLE 3.8         TACR = $12$ $150$ $754$ $390$ OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | SHEAR RESI         | STANCE:         |                | 100As/bd =     | 0.53%                 |                   |                       |              |            |  |
| $Vres = 162.03 \text{ kN} > 56.04 \text{ OK} 3.5.5.2$ $CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not included X = 82.67 mm & & m = 0.000776 BS8007 Acr = 81.04 mm & W = 0.14 mm < 0.30 OK App. B.2 REINFORCEMENT SUMMARY \text{ for BASE} Type  \phi  centres  As  Min. As \\ mm  mm  mm^2  mm^2 \\ TOP  T  112  150  754  390 \\ TRANSVERSE  T  12  150  754  390 \\ T  12  150  754  390 \\ OK$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                    |                 |                | vc =           | 0.64                  | N/mm <sup>2</sup> |                       |              | Table 3.8  |  |
| CHECK CRACK WIDTH IN ACCORDANCE WITH BS8100/80 Temp & shrinkage effects not includedX =82.67mm $&m = 0.000776$ BS8007Acr =81.04mmW =0.14mm<0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                    |                 |                | Vres =         | 162.03                | kN                | > 56.04               | OK           | 3.5.5.2    |  |
| X =       82.67       mm $\varepsilon_m = 0.000776$ BS8007         Acr =       81.04       mm       W =       0.14       mm       < 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                    | ск width i      |                | DANCE WITH     | BS8100/8              | ) Temn & shri     | nkage effects i       | not included |            |  |
| Acr =         81.04         mm         W =         0.14         mm         < 0.30         OK         App. B.2           REINFORCEMENT SUMMARY for BASE           Top         T         12         150         754         390         OK           BOTTOM         T         12         150         754         390         OK           TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | X =                | 82.67           | mm             | Em =           | 0.000776              | i remp a sim      | intage checto i       |              | BS8007     |  |
| REINFORCEMENT SUMMARY for BASE         Type $\phi$ centres       As       Min. As         mm       mm       mm <sup>2</sup> mm <sup>2</sup> TOP       T       12       150       754       390       OK         BOTTOM       T       16       150       754       390       OK         TRANSVERSE       T       12       150       754       390       OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Acr =              | 81.04           | mm             | VV =           | 0.14                  | mm                | < 0.30                | OK           | App. B.2   |  |
| TREINFORCEMENT SUMMARY for BASE         Type       \$\overline\$       As       Min. As         mm       mm       mm <sup>2</sup> mm <sup>2</sup> TOP       T       12       150       754       390       OK         BOTTOM       T       16       150       754       390       OK         TRANSVERSE       T       12       150       754       390       OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                    |                 |                |                |                       |                   |                       |              |            |  |
| REINFORCEMENT SUMMARY for BASE           Type $\phi$ centres         As         Min. As           Mm         mm         mm <sup>2</sup> mm <sup>2</sup> TOP         T         12         150         754         390         OK           BOTTOM         T         16         150         754         390         OK           TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | <b></b>            |                 |                |                |                       |                   |                       |              |            |  |
| TOP         T         12         150         754         390         OK           BOTTOM         T         16         150         754         390         OK           TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | EMENT SUM          | MARY for B      | BASE           | 001-1          | ۸ -                   | Mire Ar           | 1                     |              |            |  |
| TOP         T         12         150         754         390         OK           BOTTOM         T         16         150         754         390         OK           TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    | туре            | φ              | centres        | AS<br>mm <sup>2</sup> | win. As           |                       |              |            |  |
| BOTTOM         T         16         150         754         390         OK           TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | TOP                | т               | 12             | 150            | 754                   | 390               | 1                     | OK           |            |  |
| TRANSVERSE         T         12         150         754         390         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | BOTTOM             | T               | 16             | 150            | 754                   | 390               |                       | OK           |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRA        | ANSVERSE           | Т               | <u>12</u>      | <u>150</u>     | 754                   | 390               |                       | OK           |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | •                  |                 |                |                |                       |                   | -                     |              |            |  |