Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT FORMER MARIA FIDELIS SCHOOL SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT FORMER MARIA FIDELIS SCHOOL SITE FLOOD RISK ASSESSMENT

August 2021

1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 - C01

Revision Key:

P = Preliminary Documents/Drawings - P01, P02, P03

C = Contractual Documents/Drawings – C01, C02, C03

X = As Built Mark-Up Drawings – X01, X02, X03

Z = As Built Record Drawings – Z01, Z02, Z03

Revision	Author	Checked By	Approved By	Date Approved **/**/****	Reason for Revision	
C01	JAF	AP	SB	03/08/2021	Revised following comments	
					Revised following comments	

DISCLAIMER: This report takes into account the particular instructions and requirements of our client. It is not intended for and shall not be relied upon by any third party. SDSC shall have no responsibility or liability to any third party.

1 Introduction

1.1 Purpose

- 1.1.1 This report has been produced by the Mace Dragados Joint Venture (MDjv) on behalf of High Speed 2 Ltd (HS2 Ltd), to support a full planning application for a Construction Skills Centre and Site Accommodation at the former Maria Fidelis School site (the 'Proposed Development').
- 1.1.2 The Proposed Development would provide:
 - a Construction Skills Centre (CSC) on behalf of London Borough of Camden (LBC), for which a similar scheme was previously granted planning permission under LBC application reference 2019/3091/P; and
 - a Site Accommodation facility to accommodate approximately 2,500 site operatives and management staff, including office space, ancillary rooms, WCs, showers and changing rooms, and on-site catering. This is required as part of the High Speed Two (HS2) railway project and will facilitate the construction of HS2 Euston Station.
- 1.1.3 The Proposed Development is required for a temporary period of 10 years and will be removed following the construction of HS2 Euston.
- 1.1.4 A summary of the application and how this report fits into the suite of documents can be found in the Planning Statement.
- 1.1.5 Although the Proposed Development does not fall under the HS2 Act it is proposed to undertake a Flood Risk Assessment (FRA) in accordance with all relevant national and local policies.
- 1.1.6 Relevant FRAs have been undertaken in connection with:
 - HS2 Euston station proposals.
 - UK Power Networks (UKPN) proposals to construct a new substation at the rear of Exmouth Arms (located at the NW boundary to the Proposed Development site (the 'UKPN substation near Exmouth Arms').
 - A recent proposal to develop the whole of the Maria Fidelis site which was granted Planning Permission (LBC ref: 2019/3091/P) in 2019 (the 'Maria Fidelis Lower School Development'). The Proposed Development only occupies the northern part of the whole Maria Fidelis site.
- 1.1.7 Associated findings from relevant FRAs will be used to inform the requisite FRA for the Proposed Development.

1.1.8 This report provides the requisite FRA for the Proposed Development.

1.2 Location and Description of the Proposed Development

- 1.2.1 The site is located in the northern part of the former Maria Fidelis Catholic School in the London Borough of Camden. The site is currently vacant but had most recently been used as outdoor play space associated with the school and a two-storey ancillary school building, constructed in the 1990s, remains onsite.
- 1.2.2 The land immediately to the south of the site is occupied by the five-storey former school building, which was constructed in the interwar period. Planning consent was granted (subject to completion of s.106 agreement) in October 2020 for the mixed-use redevelopment of the former school building.
- 1.2.3 The surrounding area is a mix of residential and commercial uses, with Euston Station located to the north east. To the north of the site is the HS2 Euston Station construction site, which was formerly St. James's Gardens'.
- 1.2.4 The site is accessed via North Gower Street to the west and via Cobourg Street to the east. Starcross Street is located to the south of the wider Maria Fidelis site and connects North Gower Street and Cobourg Street. Hampstead Road is located beyond North Gower Street to the west of the site. There are no Listed buildings onsite and the application site is not within a Conservation Area. The buildings on the eastern (no's 190-204) and western (no's 211-229) North Gower Street, located approximately 100 metres to the south of the site, are Grade II Listed. 108 Hampstead Road, located 20 metres to the north east of the application site, is Locally Listed.
- 1.2.5 The draft description of the Proposed Development is as follows:
 - Erection of a six-storey combined CSC (Class F1(a) Education) and Site Accommodation (Class E(g)(i) – Offices) to facilitate the construction of HS2 Euston station, as meanwhile uses for a period of up to 10 years from occupation.
 - The Proposed Development would provide 1,378sqm of CSC floorspace and 5,747sqm of Site Accommodation floorspace. The overall site area is 0.24ha. The maximum height of the building would be 22.4m and the building would be 77m wide and 18m deep.
 - The building would utilise modular construction, using modern methods of construction and assembly on-site to the form described above.
 - Vehicular access to the Site Accommodation would be delivered via a combination of the existing HS2 worksite to the north and Cobourg Street. Vehicular access arrangements for the Site Accommodation would change throughout the construction and operational period to accommodate wider HS2 works to the north of the site. Vehicular access for the CSC would remain

as previously approved with infrequent servicing use of North Gower Street (consented under extant permission 2019/3091/P).

- Pedestrian access to the Site Accommodation would only be from Hampstead Road and through the existing HS2 worksite to the north.
- 1.2.6 The location and layout for the Proposed Development is shown in Appendix 1.

1.3 Background Information

1.3.1 This FRA is informed by Flood Risk and/or Drainage Assessment reports undertaken for HS2 proposals at Euston as listed in Table 1-1 below:

Table 1-1 List of HS2 Euston Flood Risk and Drainage Reports informing this Appraisal

Reference Identity	Report Title	Date
Ref 1	Euston Station Flood and Drainage Strategy	Dec 2017
Ref 2	Euston Station Flood Risk Assessment Technical Note	Jul 2019
Ref 3	Euston Station Highways and Drainage Scheme Design Report	Dec 2019
Ref 4	LU Flood Risk Assessment – DN1000 Water Main Burst Study	Oct 2020

1.3.2 In addition to the above FRA reports undertaken for HS2 Euston Station, this FRA is also informed by information provided to the MDjv Maria Fidelis Project team by the HS2 Euston Station team with relevant details concerning the Drainage Strategy for HS2 Euston including:

- Updates to attenuation proposals which now form part of the updated/agreed Drainage Strategy.
- Agreements with TWUL on storm drainage discharge rates to combined sewers and requisite consenting for making such discharges.

1.3.3 This FRA is further informed by Flood Risk and/or Drainage Assessment reports undertaken for other relevant projects in the vicinity as listed in Table 1-2 below:

Table 1-2 List of other related and proximal Flood Risk Assessments and Drainage Reports informing this Appraisal

Reference Identity	Report Title	Date
Ref 5	UKPN Substations Level 2 Flood Risk Assessment	Apr 2021
Ref 6	Maria Fidelis School Flood Risk Assessment and Drainage Strategy	Apr 2019
	Compiled by Conisbee for Camden Council	

```
SECURITY CLASSIFICATION – Official UNCONTROLLED WHEN PRINTED
Mace Dragados | HS2 July 2020
Template Ref: 1CP01-MDS-IM-TEM-SS06-000005
Rev: P02
```


- Could be significantly affected by flood types/sources other than fluvial/tidal.
- Falls in, or affects, an area subject to critical drainage problems.
- Provides a key utility function highly vulnerable to flooding.

1.4 Relevant National and Local Policy

National Planning Policy Framework (NPPF), July 2021

- 1.4.1 The NPPF was revised on 20th July 2021 and sets out the government's planning policies for England and how these are expected to be applied. This revised Framework replaces the previous National Planning Policy Framework published in March 2012, revised in July 2018 and updated in February 2019.
- 1.4.2 One of the overarching objectives of the NPPF is the encouragement of growth and acknowledgement that decision-makers should adopt a presumption in favour of sustainable development. Paragraph 11 of the document states:

"Plans and decisions should apply a presumption in favour of sustainable development...

For decision-taking this means:

- approving development proposals that accord with an up-to-date development plan without delay; or
- where there are no relevant development plan policies, or the policies which are most important for determining the application are out-of-date, granting permission unless:
 - the application of policies in this Framework that protect areas or assets of particular importance provides a clear reason for refusing the development proposed; or
 - any adverse impacts of doing so would significantly and demonstrably outweigh the benefits, when assessed against the policies in this Framework taken as a whole."
- 1.4.3 Paragraph 167 of the NPPF states that:

"When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood-risk assessment. Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

DRAGADO

Working in partnership

- within the site, the most vulnerable development is located in areas of lowest flood risk, unless there are overriding reasons to prefer a different location;
- the development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
- *it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;*
- any residual risk can be safely managed; and
- safe access and escape routes are included where appropriate, as part of an agreed emergency plan."

London Borough of Camden Strategic Flood Risk Assessment (SFRA), July 2014

- 1.4.4 The NPPF and accompanying Technical Guidance emphasise the responsibility of Local Planning Authorities (LPAs) to ensure that flood risk is understood and managed effectively using a risk-based approach throughout all stages of the planning process. As such, LPAs are required to undertake Strategic Flood Risk Assessments (SFRAs) to support the preparation of their Local Plan.
- 1.4.5 The aim of the SFRA is to collate and analyse the most up-to-date flood risk information from all sources, to provide an overview of flood risk across the borough. The resulting report and mapping were intended to be used to inform the preparation of a Local Plan, ensuring flood risk is taken into account when considering development options and in the preparation of strategic land use policies.
- 1.4.6 For the preparation of site specific FRAs key takeaways from the SFRA includes an overview of the key flood risk issues within the borough, guidance on the application of sequential and exception testing, and guidance for preparing site-specific FRAs.

Camden Planning Guidance (CPG) Water and Flooding, March 2019

- 1.4.7 The Council has prepared the CPG on Water and Flooding to support the policies in the Camden Local Plan 2017. This guidance is consistent with the Local Plan and forms a Supplementary Planning Document (SPD) which is an additional material consideration in planning decisions.
- 1.4.8 Relevant information to this FRA within the CPG includes the council's policies relating to climate change mitigation, assessment of flood risk, and drainage system design and modelling requirements.

The London Plan, March 2021

1.4.9 The London Plan is the overall strategic plan for London and sets out an integrated economic, environmental, transport and social framework for the development of London over the next 20-25 years.

1.4.10 Key relevant policies to this FRA within The London Plan include Policy SI 12 'Flood Risk Management' and Policy SI 13 'Sustainable Drainage'. A summary of these policies is provided in the extracts below:

SI 12 Flood Risk Management

- A. "Current and expected flood risk from all sources across London should be managed in a sustainable and cost-effective way in collaboration with the Environment Agency, the Lead Local Flood Authorities, developers and infrastructure providers.
- B. Development Plans should use the Mayor's Regional Flood Risk Appraisal and their Strategic Flood Risk Assessment as well as Local Flood Risk Management Strategies, where necessary, to identify areas where particular and cumulative flood risk issues exist and develop actions and policy approaches aimed at reducing these risks...
- C. Development proposals should ensure that flood risk is minimised and mitigated, and that residual risk is addressed...
 - ...

. . .

- E. Development proposals for utility services should be designed to remain operational under flood conditions and buildings should be designed for quick recovery following a flood.
- G. Natural flood management methods should be employed in development proposals due to their multiple benefits including increasing flood storage and creating recreational areas and habitat."

SI 13 Sustainable Drainage

"...

- B. Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:
 - Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation).
 - Rainwater infiltration to ground at or close to source.
 - Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens).
 - Rainwater discharge direct to a watercourse (unless not appropriate).

DRAGADOS

Working in partnership

- Controlled rainwater discharge to a surface water sewer or drain.
- Controlled rainwater discharge to a combined sewer.
- C. Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.
- D. Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

2 Clarifications ideally required on Key findings from Existing Reports

2.1 Summary of clarifications required

2.1.1 A summary of key clarifications ideally required in relation to the outline review from existing reports given in Appendix 2 is provided in Table 2-1 below.

Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

Working in partnership

Table 2-1 - Summary of key Flood Risk and Drainage matters clarifications

Ref. Id.	Report Title	Key Content	Key Clarifications Required	Key Clarifications Obtained	Comment
Ref 1	Euston Station Flood and Drainage Strategy	Provides overall strategy and considers pluvial flood risk from a Q1000 event for the RIBA2 land-form.	Drainage strategy based on deployment of attenuation tanks – has this been updated? The design event adopted for the strategy was the Q100 + 40% climate change uplift. What prorata inflow rate has been agreed – 27 I/s/ha, 54 I/s/ha or something else? What consenting is required from TWUL for discharges to their combined sewers?	Where possible deployment of underground attenuation tanks has been superseded by proposed use of blue roofs at the station and the MDP/OSD strategy and these alternatives provide more sustainable/alternative solutions. Proposed blue roofs account for 1.13 ha of the total area drained and the area served by proposed by the MDP/OSD strategy is significant but not stated. The design event adopted for the strategy being the Q100 + 40% climate change uplift has been confirmed. A prorata inflow rate of 54 l/s/ha was agreed with TWUL in a meeting on 25 June 2020. Groundwater drainage is not to be conveyed directly to combined sewer – it is now proposed to use this source of water for flush WC usage at the proposed station meaning it will alternatively enter the combined sewers as a foul water component.	The type of attenuation deployment should be spatially confirmed across the whole site.
Ref 2	Euston Station Flood Risk Assessment Technical Note	Provides qualitative update to pluvial flood risk given in Ref 1	Ref 1 indicated an updated version of TWUL hydraulic model for the combined sewer system should be used – remains outstanding. Updated RIBA3 land-form only considered qualitatively against Ref 1 modelled results. What scope for further pluvial flood risk assessment work is planned?	An updated pluvial flood risk assessment has been undertaken, however this has not yet been approved for use. The updated model takes into account: - the RIBA3 land-form - the updated attenuation concepts applied to proposals for Euston Station as outlined with regards to Ref 1 Based upon this the RIBA3 model predicts lower flood levels than the RIBA2 model, thus the RIBA2 data used within this assessment is considered conservative and remains the adopted output until the RIBA3 model outputs are verified and adopted.	Updated RIBA3 pluvial flood risk modelling/ assessment required.

SECURITY CLASSIFICATION – Official UNCONTROLLED WHEN PRINTED Mace Dragados | HS2 July 2020 Template Ref: 1CP01-MDS-IM-TEM-SS06-000005 Rev: P02 Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007

Revision: C01

Working in partnership

Ref 3	Euston Station Highways and Drainage Scheme Design Report	Provides qualitative update to drainage strategy given in Ref 1	No mention is given here on varying the form of attenuation suggested in Ref 1. Confirms the design basis remains the Q100 + 40% climate change uplift. Suggests a prorata inflow rate to combined sewer of 54 I/s/ha is being discussed with TWUL.	As for Ref 2 ensuring all aspects of Drainage Strategy are set out /confirmed.	As for Ref 2.
Ref 4	LU Flood Risk Assessment – DN1000 Water Main Burst Study	Very conservatively models burst water main flood risk for RIBA3 land- form	Has TWUL endorsed this flood risk assessment? HS2 has not yet approved this assessment. LU is yet to decide if it will act on this assessment. Have flood risk mitigation measures required to protect for pluvial flood risk and burst water main flood risk been fully harmonised where relevant?		Seek TWUL endorsement / comment on assessment undertaken if not already done. Ensure harmonisation with pluvial flood risk mitigation measures where relevant.
Ref 5	UKPN Substations Level 2 Flood Risk Assessment	Provides details of flood risk to UKPN Substation and mitigation measures	Groundwater levels to be confirmed Confirm suitability of burst water main flooding assessment undertaken for substation against levels on-site	Groundwater levels at the UKPN substation found to be slightly deeper than previously indicated at 3.0mBGL (approx. 21.00mAOD). Burst water main review deemed acceptable however is being considered as very conservative.	Tank depth and appropriate lining to be considered in relation to groundwater levels.

SECURITY CLASSIFICATION – Official UNCONTROLLED WHEN PRINTED Mace Dragados | HS2 July 2020 Template Ref: 1CP01-MDS-IM-TEM-SS06-000005 Rev: P02 Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

Working in partnership

Ref 6	Maria Fidelis School - Flood Risk Assessment and Drainage Strategy	Provides overview of flood risk to wider Maria Fidelis School site along with outline drainage strategy details and considerations	100yr +30%CC used in attenuation calculation – this likely should be 40% and will need checking against LLFA guidance Discharge rates reduced to 1.0 l/s – is this still considered an acceptable approach by TWUL and the LLFA? Which existing sewers are being discharged to?	London Borough of Camden LLFA have stated within their Water and Flooding Planning Guidance (March 2019) that surface water discharge from the site should be managed to greenfield rates where possible, and attenuation should be provided for up to the 1 in 100yr +20%CC storm with a sensitivity check for +40%CC. Thames Water have also indicated that a reduction in surface water discharge to greenfield rates should be achieved where possible. Multiple sewers were used as outfalls including the existing combined sewer passing through the site, as well as the combined sewer within Starcross Street to the south.	Rates to be reduced to QBAR greenfield where feasible to appease both the LLFA and Thames Water.
-------	---	--	--	---	--

Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT FORMER MARIA FIDELIS SCHOOL SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

2.2 Summary of residual clarifications ideally required

- 2.2.1 The pluvial flood risk assessment has been updated to accommodate;
 - Amendments to the Drainage Strategy; and
 - The RIBA3 land-form.
- 2.2.2 However, this updated model is not yet approved for use but is considered to produce less conservative flood level predictions than the RIBA2 model. Predicted flood levels from the updated model should be considered once approved for use.
- 2.2.3 The updated pluvial flood risk assessment should be harmonised with mitigation requirements to address flood risk issues associated with both pluvial and burst water main risks where appropriate to do so.

3 Summary of Flood Risks to the Proposed Development

3.1 Sources of Flooding

- 3.1.1 The following sources of flooding have been assessed as part of this FRA:
 - Fluvial and Tidal
 - Surface Water
 - Sewers
 - Groundwater
 - Artificial Sources (water main breach, canals, reservoir breach)

3.2 Fluvial and Tidal Flooding

- 3.2.1 The EA Flood Map for Planning indicates that the entire site falls within Flood Zone 1 (FZ1) which means that the site is at a lower than 1 in 1,000 annual probability of river or sea flooding.
- 3.2.2 No tidal watercourses are located near the site with the nearest tidal watercourse (River Thames) being located approximately 2.5km south of the site. The Thames is protected by defences for combined tidal and fluvial flooding up to the 1 in 1,000 year event. Based on the EA Flood Map for Planning the site is located outside of the residual flood extent resulting from a potential breach of the defences.
- 3.2.3 It should also be noted that the site is situated at an approximate average level of 25mAOD which is significantly higher than any potential tidal flood level.
- 3.2.4 Based on the available information the site is considered to be at a low risk of fluvial and tidal flooding.

3.3 Surface Water Flooding

- 3.3.1 The EA Long Term Flood Risk Maps indicates that the site falls entirely within an area considered to be at a very low risk of surface water flooding (less than a 1 in 1,000 annual probability). An extract of this mapping for the site location is presented within figure 4.1 below.
- 3.3.2 The RIBA2 pluvial model has been reviewed as part of the UKPN Substation Level 2 FRA (Ref 5) which has indicated a flood level for a Q1000-60min event at the Exmouth Arms Pub southeast of the site of 24.68mAOD. This level is lower than the existing levels within the site with the exception of some smaller areas along the northern boundary. The proposed FFL of the new on-site building of 25.08m is 0.4m above this level.

- 3.3.3 It should be noted that the RIBA2 pluvial model is using a coarse ground model and does not take into account any storm drainage attenuation proposed as part of HS2 Euston Station. The new RIBA3 model has been produced but is not yet approved for use. This new model uses a much finer ground model and now accounts for proposed HS2 Euston Station attenuation and drainage. As a result, the RIBA2 model is considered to predict conservative/higher flood levels compared to those predicted by the RIBA3 model which appear to be lower (subject to verification/approval).
- 3.3.4 It is likely that any proposed new development and associated drainage infrastructure would further reduce the surface water flood risk on-site.
- 3.3.5 Based on the available information the site is considered to be at a very low risk of surface water flooding.

Figure 4.1 - EA Flood Risk from Surface Water 'Extent of Flooding'

3.4 Sewer Flooding

- 3.4.1 The London Borough of Camden SFRA (2014) indicates that no internal or external sewer flooding events have been recorded within the site boundary or surrounding areas, with the nearest recorded incidents having been identified at least 1.3km north of the site.
- 3.4.2 As stated within the 2019 Maria Fidelis FRA and Drainage Strategy (Ref 6 see section 2.2.7 for further details) the majority of the sewer networks within and

DRAGADOS

Working in partnership

around the site are built to outdated standards, hence they are likely to be overwhelmed by storms of significantly lower intensity than those which modern systems are now designed for (i.e. 1 in 100 year plus climate change events).

3.4.3 Based on the available information the site is considered to be at a low risk of sewer flooding, with the proposed site drainage strategy providing a net betterment over the existing situation.

3.5 Groundwater Flooding

- 3.5.1 The London Borough of Camden SFRA (2014) indicates that the site falls partially within an area considered to be at an increased susceptibility to elevated groundwater (potential for groundwater to rise to within 2m of the surface following periods of higher than average recharge). Three EA groundwater incidents are also noted as having occurred within a 1km radius of the site, the nearest being approximately 800m southeast.
- 3.5.2 No basements are proposed within the development; however, a high groundwater level may impact upon subsurface structures such as any potential cellular storage tanks used for surface water attenuation. Ideally 1.0m minimum standoff is maintained between the invert of tanks and the peak groundwater level, however in instances where this is not possible, tanks may need to be lined and/or weighted to avoid groundwater ingress and/or floatation.
- 3.5.3 Interpreted ground model data (Appendix 3) has indicated a groundwater level of approximately 21.0mAOD which is approximately 4.0mBGL within the site.
- 3.5.4 Based on the available information the site is considered to be at a low risk of groundwater flooding occurring at the surface, however there is a moderate risk that groundwater could affect subsurface structures such as attenuation tanks without suitable mitigation.

3.6 Artificial Sources of Flooding

Burst Water Main

3.6.1 A burst water main assessment was undertaken for the main HS2 Euston Station as described in Ref 4 within Section 2 of this report. The nearest point at which a modelled flood level was taken (HS2 Drummond St Entrance) indicates a flood level of 24.70mAOD. Based upon levels as indicated within the topographical survey found within the 2019 Maria Fidelis FRA (Ref 6), this flood level is generally 0.0-0.3m lower than the existing site levels, with the exception of smaller areas around the northern boundary of the site which fall to around 24.50mAOD. The proposed new building also has an FFL indicated as 25.08mAOD which is 0.38m above the modelled burst water main flood level.

3.6.3 Based on the available information, the site is considered to be at a low risk of flooding as a result of a burst water main.

Canals

3.6.4 The nearest canal is the Regents Canal which is located 1.05km east of the site at its nearest point. As stated within the Euston Station RIBA 2 Flood and Drainage Strategy report (Ref 1), the volume of water escaping from the canal in the event of a major breach could be significant, however, the water levels within the canal are actively controlled by the Canal and River Trust. Given the significant distance between the site and the canal and that the water levels are actively managed, the Regents Canal is considered to pose a minimal risk of flooding to the site.

Reservoirs

3.6.5 The Environment Agency Flood Risk from Reservoirs Map shows that the site is located 1.1km away from the nearest area identified as being at a residual risk of flooding from a reservoir breach. The site is therefore not considered to be at risk of flooding resulting from a reservoir breach.

DRAGADOS

Working in partnership

4 Drainage Strategy and Flood Protection for the Proposed Development

4.1 Existing Drainage Regime

- 4.1.1 The existing site is predominantly made up of hardstanding areas which are drained by an existing sewer network.
- 4.1.2 As indicated within Section 3.7 of the 2019 Maria Fidelis FRA (Ref 6), a topographic survey and CCTV survey of the existing drainage systems was carried out for the wider site (including the site area covered by this report) in 2018. These surveys indicated that the surface and foul water drainage from the site is collected by a private combined sewer network. The wider site discharges at three locations including south to Starcross Street, west to North Gower Street, and the sewer passing through the site east to west.
- 4.1.3 The existing 1168x787mm combined sewer within the site occurs at a depth of approximately 4.0m (20.5mAOD). Consultations have previously been held with Thames Water as part of the 2019 FRA whereby Thames Water has stated that a class 3 Build Over is required for the CSC as the sewer is over 375mm in diameter.

4.2 Design Criteria for the Requisite Drainage Strategy

Drainage Hierarchy

- 4.2.1 Planning guidance requires surface water discharge methods to be considered in line with the following hierarchy:
 - 1 Re-use of surface water at source (most preferred)
 - 2 Infiltration into underlying geology
 - 3 Discharge to a watercourse
 - 4 Discharge to a surface water sewer
 - 5 Discharge to a combined sewer (least preferred)
- 4.2.2 In the case of the proposed site the demand for the harvesting of rainwater is limited, the underlying geology has been identified as not being suitable for infiltration (as stated within section 8.1.9 of Ref 1 which identifies the abundance of London Clay based upon the findings within Euston Station RIBA 2 Geotechnical Design Development Report), and no watercourses or surface water sewers are located nearby. A combined sewer is known to be located within the site boundary therefore this has been identified as the most preferential available surface water discharge option for the proposed site.

Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT FORMER MARIA FIDELIS SCHOOL SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

Discharge Rates

4.2.3 On-site attenuation volumes are directly impacted by the peak rate at which water is discharged off-site. Allowable discharge rates are mandated by key stakeholders including the local sewerage undertaker and LLFA, which in the case of the proposed Maria Fidelis CSC and Site Accommodation is Thames Water and Camden London Borough Council respectively. Details of each of their requirements for the discharge of surface water is set out below.

London Borough of Camden LLFA

4.2.4 The Water and Flooding chapter of the Camden Planning Guidance (March 2019) states that:

"The Council will expect developments to achieve a greenfield surface water runoff rate where feasible once SuDS have been installed."

4.2.5 To meet this requirement, it is likely that discharge of surface water is restricted to a peak of the QBAR greenfield runoff rate. Based on a site impermeable area of 0.232 ha a peak discharge rate for all events up to the critical 1 in 100yr plus 40% climate change event of 1.0 l/s would be considered acceptable by the LLFA (QBAR, calculated using IH124 methodology).

Thames Water

- 4.2.6 As outlined within the November 2018 pre-development enquiry contained within the 2019 Maria Fidelis School FRA (Ref 6), Thames Water have indicated that ideally flows would be restricted to greenfield rates. Where this is not considered practicable and the site is less than 1.0ha in size (which the current site is), restricting discharge to 95% of existing flows is also considered acceptable.
- 4.2.7 Restricting flows to 1.0 l/s is considered to satisfy the requirements of both the LLFA and Thames Water.
- 4.2.8 As the existing site is predominantly impermeable and flows are not currently restricted, the reduction in discharge from the site to a peak rate of 1.0 l/s presents a significant betterment over the existing scenario.
- 4.2.9 Table 4-1 below sets out the estimated existing peak runoff rates from the site, greenfield rates, the proposed runoff rates, and the percentage reduction of the proposed rates compared to existing.

Return Period	Existing Peak Runoff Rate (I/s) ¹	Greenfield Runoff Rate (l/s) ²	Proposed Discharge Rate (I/s)	Percentage Betterment (%) ³
1 in 1yr	13.0	0.82	1.0	92.3%
1 in 30yr	31.9	2.22	1.0	96.9%
1 in 100yr	41.8	3.08	1.0	97.6%
1 in 100yr (+40% CC)	58.4	n/a	1.0	98.3%

Table 4-1 – Summary of existing, greenfield, and proposed surface water discharge rates

 1 Determined by the Modified Rational Method with a storm duration of 30 minutes; volumetric runoff coefficient of 1 for impermeable areas and 0 for permeable.

² Calculated based on IH124 methodology – see Appendix 4.

³ Percentage difference between existing peak runoff rate and proposed discharge rate.

4.3 The Proposed Drainage Strategy

Proposed Drainage

- 4.3.1 In accordance with the NPPF, London Plan, Camden Planning Guidance, and Camden Local Plan, the Proposed Development is to incorporate SuDS features where possible in order to provide source control, attenuation, and treatment of surface water onsite.
- 4.3.2 The SuDS strategy for the Proposed Development has been derived using the principles outlined within the CIRIA C753 SuDS Design Manual along with BS 8582:2013 Code of Practice for Surface Water management for Development Sites.
- 4.3.3 The Proposed Development drainage arrangement for the site will look to hold water at the surface where viable through the use of SuDS such as permeable paving, with the primary means of surface water attenuation being provided in the form of a cellular storage tank beneath the ground.
- 4.3.4 The site will be drained via a new drainage network designed to modern standards, with all surface water ultimately directed into the proposed cellular storage tank. Surface water will be discharged from the site at 1.0 l/s (Qbar greenfield runoff rate) into the Thames Water combined sewer within the site.
- 4.3.5 Surface water attenuation is to be provided on-site with capacity for up to the 1 in 100 year storm event plus a 40% allowance for climate change (considered to be a worst-case scenario in line with LLFA guidance). MicroDrainage modelling (see Appendix 5) has indicated that 198m³ of attenuation will be required on-site. This volume is to be provided in the form of a cellular storage tank (10.2m long, 3.5m wide, 2.0m deep, 0.95 porosity) providing 67.8m³ of storage, which is supplemented by permeable paving (725m², 0.5m deep type 3 granular sub base with 0.3 porosity)

4.3.6 Figure 5.1 below provides details of the cellular storage and permeable paving including their proposed locations.

Figure 5.1 – Proposed surface water attenuation strategy

4.3.7 To ensure the effectiveness of the proposed drainage network a robust maintenance regime in accordance with CIRIA 753 'The SuDS Manual' Part D should be put in place which will be implemented to ensure future performance of all SuDS and drainage components. This will include regular cleaning of SuDS devices located on communal areas and is likely to be procured through a private management company. The management of health and safety risks related to SuDS design is subject to CDM.

Design and Modelling Criteria and Assumptions

- 4.3.8 FSR rainfall has been used in line with the consented 2019 Maria Fidelis School FRA (Ref 6) with the following parameters:
 - M5_60min = 20
 - Ratio R = 0.4
- 4.3.9 The site has a total impermeable area of 0.232ha which has been used for the purpose of calculating attenuation requirements. Overall catchment factors (Cv) of 1 have been used for both winter and summer storms.
- 4.3.10 Attenuation calculations have been run for up to the 1 in 100 year storm event plus a 40% allowance for climate change (considered a worst-case scenario in line with LLFA guidance) with storm durations varying from 15 minutes up to 7 days.

DRAGADOS

Working in partnership

4.3.11 An allowance has been made for the inclusion of upstream permeable paving and storage within the proposed pipe network and manholes. No allowance has been made for any rainwater harvesting.

Water Quality

- 4.3.12 The majority of the site is made up of non-trafficked areas including pedestrian walkways and the building roof, with only a small area in the west of the site likely to be infrequently trafficked for deliveries.
- 4.3.13 Non-trafficked areas within the site, such as pedestrian walkways and the building roof, will require minimal levels of surface water pre-treatment prior to discharge. This will be provided in the form of catchpit manholes and SuDS including permeable paving. These will provide an additional element of surface water pre-treatment to the water that passes through them. The use of permeable paving within the lightly trafficked area in the west is considered to provide sufficient levels of surface water pre-treatment as per Chapter 26 of BRE Digest 365 'The SuDS Manual' 2015.

Foul Water Drainage

- 4.3.14 The proposed foul water drainage strategy for the Proposed Development will be to convey flows to the existing combined sewer that passes beneath the site.
- 4.3.15 Based on the development proposals of 7,125m² of floor space (assumed as office space for the purpose of calculation), a peak foul water discharge rate of 4.1 l/s is anticipated.
- 4.3.16 As stated within section 4.10 of the 2019 Maria Fidelis FRA, Thames Water has previously confirmed there is sufficient capacity within the existing 1168x787mm combined sewer which passes through the middle of the site to support the uplift in foul flows generated by the Proposed Development.
- 4.3.17 While foul flows will be increasing relative to the existing situation, the integrated discharge from the site to the combined sewer will be significantly reduced as a result of surface water being attenuated on-site to 1.0 l/s.

4.4 Flood Protection Requirements

- 4.4.1 Based upon the flood risk review undertaken for this site it is anticipated that minimal flood protection will be required.
- 4.4.2 The site falls entirely within EA Flood Zone 1, and as indicated within the UKPN Substations Level 2 FRA (Ref 5) the HS2 Euston Station RIBA2 peak pluvial flood level is not expected to impact the proposed site. The updated, but not yet approved, RIBA 3 flood model predictions suggest RIBA2 predictions are conservative.

DRAGADOS

Working in partnership

- 4.4.3 The burst water main assessment for HS2 Euston (Ref 4) does indicate a peak flood level close to the existing and proposed site levels, however as previously discussed, this modelling is considered to be very conservative with the actual peak flood level likely being lower than what is currently suggested, thus no flood protection requirements are proposed to mitigate this risk.
- 4.4.4 Based on the available groundwater information (Appendix 3) the invert of any tanks should be set at a minimum of 22.0mAOD in order to avoid the need for lining. This is due to a minimum of 1.0m needing to be provided between the tank invert and peak groundwater level in order to minimise the risk of groundwater ingress as well as minimising the risk of uplift/floatation of the tank.

Document Title: CONSTRUCTION SKILLS CENTRE & SITE ACCOMMODATION AT FORMER MARIA FIDELIS SCHOOL SITE - FLOOD RISK ASSESSMENT Document no.: 1CP01-MDS_ARP-EV-REP-SS08_SL23-990007 Revision: C01

5 Conclusions and Recommendations

5.1 Conclusions

- 5.1.1 Based upon the information provided within this report, it is concluded that:
 - The development site is located entirely within EA Flood Zone 1;
 - The site is at negligible or low risk of flooding from all identified sources with the exception of groundwater which may impact upon subsurface structures such as attenuation tanks without suitable mitigation;
 - The Proposed Development drainage arrangement will comprise of SuDS to provide source control and water quality treatment prior to discharge to an existing Thames Water combined sewer via a cellular storage tank;
 - Surface water runoff will be attenuated on-site for up to the 1 in 100yr +40%CC rainfall event (considered to be a worst-case scenario) in line with LLFA guidance and Thames Water requirements;
 - Attenuation is proposed to be primarily provided within an on-site cellular storage tank and permeable paving. The requisite total attenuation volume to be provided on site is 198m³;
 - Foul water from the site is to be discharged to the existing combined sewer within the site for which Thames Water has confirmed receptor capacity;
 - The combined surface and foul water discharge from the site is predicted to significantly decrease compared to the existing situation as a result of surface water being attenuated to greenfield rates.
 - This report has been reviewed against LLFA requirements as set out in the proforma found in Appendix 6.

5.2 **Recommendations**

- 5.2.1 Based upon the findings of this assessment, the following is recommended:
 - The HS2 Euston RIBA3 pluvial flood model predictions should be reviewed with respect to the proposed site once approved for use.
 - Discussions should be held with Thames Water regarding a class 3 Build Over for the CSC and Site Accommodation building with respect to the existing combined sewer within the site boundary.

APPENDIX 1

Site Location Plan and Proposed Site Plan

t/Contract		Creator/Originator		Sub-Originator		
1CP01		MDS		FBM		
	Work Package Description		I.	System Description		
S08	SL23	AR		DSP		
ng Title		Drawn by	Checked by	Approved by	Date	
	Site Location Plan - Existing	GR	JSN	APB	15	07/2021
		Scale	Size	Stage	Suita	oility
		1:1250	A3	2		Ρ
		Drawing No.				Rev.
		1CP01-MDS_FBM-AR-DSP-SS08_SL23_GF-000002			P1.2	

Rev

ct/Contract	ct/Contract roposed Maria Fidelis CSC & Site Accommodation, London. NW1 2HR		Creator/Originator		Sub-Originator		
1CP01		M	DS	FBM			
	Work Package Description	Discipline/Function		System Description	ı		
SS08	SL23	AR		DSP			
ing Title		Drawn by	Checked by	Approved by	Date		
	Proposed Site Plan	GR	JSN	APB	29/	07/2021	
		Scale	Size	Stage	Suitat	oility	
		1:500	A3	3	с		
Drawing No.				Rev.			
	1CP01-MDS_FBM-AR-DSP-SS08_SL23_GF-000004			C1.2			

APPENDIX 2

Key Findings from Existing Reports

1 Key Findings from Existing Flood Risk Assessment and Drainage Strategy Reports

- 1.1.1 The key findings from the existing reports used to inform Flood Risk/Drainage related matters associated with HS2 Euston proposals are summarised in Table 1-1 and other relevant/proximal proposals listed in Table 1-2.
- 1.2 Ref 1 Euston Station RIBA2 Flood and Drainage Strategy
- 1.2.1 This report (Ref 1) includes strategically assessed flood risks for Camden which may be pertinent to Euston Station. These were extracted from the North London Strategic Flood Risk Assessment (August 2008) and are summarised in Table 1-1 below.

Flood Source	Flood pathway	Receptor	Potential risk / consequence in Camden
Fluvial R. Lee & tributaries	Inundation of floodplains/overtopping or breaching of flood defences	Properties and infrastructure in flood plain or along/proximal to pathway	n/a
Fluvial R. Brent tributaries	Inundation of floodplains/overtopping or breaching of flood defences	Properties and infrastructure in flood plain or along/proximal to pathway	n/a
Tidal R. Lee	Overtopping or breaching of flood defences Wave action Ponding of surface water behind defences	Properties and infrastructure in flood plain or along/proximal to pathway	n/a
Surface water/combined sewer Flooding/overland flow	Exceedance of Sewer Capacity Blockage of sewer networks Tide-locking of outfalls	Properties and infrastructure along/proximal to pathway	Medium
Groundwater flooding	Rising groundwater	Developments in low lying areas or with basements. Underground infrastructure/tube stations	Very small

Table 1 -1 Summary of Flood Risk Sources-Pathways-Receptors pertinent to Camden and possibly to Euston

Water infrastructure failure - Reservoirs - Canals (incl. New River) - Blocked sewers - Burst water mains	Overtopping or breach/failure of water infrastructure	Watercourse, property and infrastructure downstream of overtopped/breached/faile d water infrastructure item	Medium
---	---	--	--------

- 1.2.2 This reveals there is no significant fluvial or tidal flood risk associated with Camden or indeed Euston.
- 1.2.3 Ref 1 goes on to consider potential flood risk to Euston in more detail from other sources summarised in Table 2-1 and the outcome is summarised in Table 2-2 below.

Flood Source	Flood Source		Further Action
Туре	Origin		
Fluvial	R. Lee & tributaries All assessed as		None
	R. Brent tributaries	in Flood Zone 1 Risk is < 1 in	Flood Zone 1
Tidal	R. Lee	1000 years	
Surface water/combined sewer	Exceedance of Sewer Capacity from extreme pluvial events (proximal to station)	Possible	Further investigate
Groundwater flooding	Failure of basement waterproofing Low lying land relative to perched groundwater	Possible	Further consider
Water infrastructure failure	Reservoirs Highgate/Hampstead pond reservoirs	Negligible	None
	Canals (Regents Canal)	Negligible	
	Blocked sewers	Negligible*	
	Burst water mains (proximal to station)	Possible	Further investigate

Table 1-2 - Summary of Flood Risks to Euston Station

* Although this risk is assessed as negligible (see Table 4 in Ref 1) there is no explanation as to how this assessment/conclusion is arrived at

- 1.2.4 Drainage from proposed developments at Euston station will enter combined sewers operated by Thames Water Utilities Ltd (TWUL). It is proposed to attenuate surface water runoff rates, but direct foul drainage unattenuated from Euston station into the combined sewer network.
- 1.2.5 The peak foul flow discharge rate to the combined sewer network is predicted to rise from 75.12 I/s (the existing Euston station) to 182.0 I/s (the proposed Euston station) giving an increase of 106.88 I/s.
- 1.2.6 It was assumed the main attenuation of surface water runoff from Euston station will be achieved by means of deploying storage tanks in the drainage networks. Possible use of green/blue roofs as a means of attenuation was discounted at this stage though such concepts were earmarked to be reviewed again at RIBA3 (see Section 3.1.2 and Table 3-2). Requisite attenuation will be effective up to the Q100 with a 40% uplift to allow for Climate Change. The permissible prorata discharge rate for surface water runoff into the combined sewer network was calculated as 27 l/s/ha using the Rational method which for RIBA2 was taken as 50% of the peak rate calculated for the entire HS2 Euston station works area (including station and tracks) resulting from a Q30 storm event of 120 minutes duration. This was the value used for the AP03 Hybrid Bill. However, subsequent assessments alternatively use a permissible discharge rate of 54 l/s/ha taken as the actual peak rate calculated for a Q30 storm event of 120 minutes
- 1.2.7 A summary of the surface water runoff attenuation volumes required for proposed developments at Euston station in accordance with the above design constraints are summarised in Table 2-3 below.

Proposed		Catchmen t Area	Attenuation Volume (m ³)	Attenuation Volume (m ³)	TWUL Combined	
Development	Location	(ha)	– at 27 I/s/ha	– at 54 I/s/ha	Sewer Discharge Receptor	
HS2 station box & Level Deck Slab	Station Basement	2.91	1,810	1,500	Coburg St. P	
	Station Basement	2.84	1,770	1,460	Coburg St. ^P	
Over Site	Station Basement	1.29	810	670	Coburg St. ^P	
(OSD)	Station Basement	0.16	100	85	Coburg St. P	
Wolfson House	Basement	0.04	32	28	Coburg St. ^P	
Taxi Rank	Below taxi rank	0.145	95	80	Coburg St. ^P	
Coburg St	HS2 Plaza#	0.802	75	56	Coburg St. ^P	
Euston Sq. Gardens	Below Gardens	1.073*	300	220	Euston Rd. ^P	
Total	n/a	9.26	4,992	4,089	n/a	

Table 1 -3 - Summary of surface water attenuation requirements for proposed Euston station developments

^P drainage systems requiring pumping (all systems proposed)

* of which 0.55 ha is impermeable

located between Stage A station & Royal College of General Practitioners

- 1.2.8 Regarding consenting for the proposed surface water discharges to TWUL combined sewers referred to Table 2-3 Ref 1 indicates Regulatory Consent is required from TWUL under Sections 104 and 106 of the Water Industry Act 1991.
- 1.2.9 Pluvial flood risk modelling was undertaken using TWUL 2013 hydraulic model for the Q1000 storm event against the proposed and attenuated drainage system previously outlined. Sensitivity analyses revealed a 60 minute storm duration as being most critical in terms of flood risk. Simulation of the Q1000-60 minute storm event indicates that the main station concourse, LU assets (the Gordon St. entrances) and Wolfsen House require flood mitigation with the area around the Triangle Basement being at the greatest risk. Predicted flood depths are given in Figure 5 of Ref 1 though higher resolution plots of predicted flood depths and details on predicted flood elevations are given within Appendix D of the same document. The mitigation proposed entails self-raising flood barriers for at risk areas and these should provide 300mm free board above predicted Q1000 flood levels.
- 1.2.10 The HS2 tracks are to be protected from possible overland flow originating from the NR tracks. The latter is constructed to a higher elevation but lower drainage standard. A retaining wall is proposed between both systems to keep respective drainage systems separate.

- 1.2.11 The report indicated TWUL were undertaking further survey work to inform recalibration of their hydraulic model and this should be used in any future RIBA3 assessments.
- 1.2.12 Groundwater was identified a possible flood risk. A perched water system, within made ground and/or River Terrace Deposits, occurs ~2m bgl and groundwater management including sub-surface water proofing is required to prevent groundwater flood risk to the station box. Any sub-surface water proofing should be suitably elevated above baseline groundwater levels though extensive groundworks forming HS2 station development, along with associated drainage, are predicted to provide a local cone of depression to surrounding groundwater levels from Stage A and Stage B1 works.
- 1.2.13 The predicted depression to groundwater levels may be further accentuated on a temporary basis by the groundworks proposed post Stage A and B1.
- 1.2.14 Ref 1 indicates any groundwater discharges from the Proposed Development, whether permanent or temporary (associated with underground construction works), alternatively require Trade Effluent Consents under the same Act to allow their discharge into TWUL combined sewer network. Any groundwater discharge rate is expected to be low owing to the low permeability of strata which may be encountered. However, groundwater may potentially be contaminated and hence the need to seek a Trade Effluent Consent to permit such discharges. When the Ref 1 Flood and Drainage Strategy was formulated three main areas of groundwater drainage were identified:
 - Below the structural raft slab and below the track slab to the north of the basement box.
 - Below the lowest basement slab for the main basement box.
 - Below the structural raft slab and below the track slab to the south of the basement box.
- 1.2.15 Separate/subsequent review of the ground model used to inform this assessment shows it to be relatively low resolution compared to the ground model now being used to inform RIBA3 based assessments and this should be borne in mind.

1.3 Ref 2 - Euston Station Flood Risk Assessment Technical Note

- 1.3.1 This Technical Note provides an update to the flood risk component of Ref 1.
- 1.3.2 The only significant point of note in this update is that road levels were raised around the proposed underground structure meaning:
 - Associated flood inundation levels around the proposed underground structure would be reduced for an extreme Q1000 pluvial event, likely remain within the road cross section and virtually no inundation is predicted.
 - Flood waters would tend to be diverted away from the proposed underground structure.
- 1.3.3 There is no suggestion that this review was informed by:

- The proposed update of the TWUL hydraulic model indicated for Ref 1 (Section 2.1.10).
- Application of the RIBA3 updated landform in any hydraulic modelling.
- 1.3.4 This update indicated a flow rate to sewer of 54 I/s/ha was proposed at RIBA3 in contrast to RIBA2 (Ref 1) but highlights this remains to be agreed with TWUL.

1.4 Ref 3 - Highways and Drainage Scheme Design Report

- 1.4.1 This report considered outcomes concerning highways and external drainage assessments relevant for HS2 Euston station under WP1 and does not cover WP2 concerning the retaining walls.
- 1.4.2 The proposed HS2 Euston station development requires modifications and upgrades adjacent or proximal to the development. Additionally, it is proposed to route some peripheral areas associated with the proposed station to the modified/upgraded drainage system.
- 1.4.3 This report indicated:
 - Attenuation was being designed for the Q100 plus 40% uplift for Climate Change (as previously stated Ref 1).
 - Ongoing discussions concerning a flow rate to sewer of 54 I/s/ha were being held with TWUL (as previously indicated in Ref 2 succeeding earlier assumptions and AP03 Hybrid Bill values referred to in Ref 1).
 - Corresponding attenuation volumes were given in Table 2-3 (from Ref 1) for the higher pro-rata flow rate being proposed.

1.5 Ref 4 - LU Flood Risk Assessment – DN1000 Water Main Burst Study

- 1.5.1 Ref 4 was informed by a preceding scoping document setting out the background and scope for undertaking a flood risk assessment involving a major burst from a water main proximal to the proposed HS2 Euston station.
- 1.5.2 The assessment considers the threat of flood risk from a burst on the 1m diam. (DN 1000) water main diversion/replacement to the proposed HS2 station entrances at Euston. Accordingly, the Stage B1 entrance layout was used for assessment purposes.
- 1.5.3 As a worse-case scenario, in terms of flood risk, the analyses considered inundation effects from a burst of the proposed 1m diam. water main without allowing for any probable, and significant, losses to the road drainage network or possible, though less significant, loss to infiltration.
- 1.5.4 Additionally, Transport for London/London Underground (TfL/LU) were concerned that the same poses a possible threat to the LU station and requested consideration of flood risk at:
 - LU Euston station entrances.

- The proposed 'Sugar cube' LU traction sub-station (on the corner Cobourg St and Stephenson Way).
- 1.5.5 The assessments also considered the possibility of flood pathways to the above via:
 - Vent shafts to the LU station.
 - Disused entrances to the LU station.
 - Possible connectivity to the LU station via entrances to the Network Rail (NR) station concourse.
- 1.5.6 The modelling undertaken assumes:
 - An extreme outflow rate of 707l/s from the burst water main. Taken as the peak flow rate predicted in 2045 and the maximum possible outflow that could be sustained for any significant length of time.
 - A five-hour period to isolate the main and a further one hour of ponding with trickle inflow of 1 l/s.
- 1.5.7 Sensitivity analyses indicated no significant variation to outcomes when different burst locations were assessed.
- 1.5.8 Modelling was undertaken using Micro Drainage with a 2m grid discretisation and a 5 minute time interval.
- 1.5.9 The assumption was made that at any entrance or other potential inflow point temporary barriers would be put in place allowing flood inundation of the modelled area to continue unchecked.
- 1.5.10 The landform used to inform the model assessment is similar to that used to inform Ref 3 (RIBA3).
- 1.5.11 Modelled flood depths and water level elevations for each locational/flow scenario modelled are shown within Ref4 in:
 - Tabular form (in the Model Results Overview section).
 - Figure format (in Appendix B).
- 1.5.12 Maximum flood depths and elevations modelled at each location considered are summarised in Table 2-4 below

Assessed f	feature/loca	tion	Max Flood	Max Flood
Feature	Map Ref	Location	Depth (m)	(m AOD)
HS2 station	H1	HS2 North Entrance	-	-
Entrances	H2	HS2 West Entrance	0.13	24.63
	H3	HS2 Drummond St Entrance	0.20	24.70
	H4	HS2 South Entrance	0.21	24.71
LU station	L1	LU Southern Entrance	0.07	24.57
Lintranioos	L2	LU Gordon St Entrance	-	-
	L3	#170 (top of esc) – within NR station	-	-
	L4	#3009 (top of stairs) – within NR station	-	-
NR station	R1	Euston station East (North)	0.03	21.69
Entrances	R2	Euston station East (South)	0.09	21.95
Disused Entrances	D1	#153 (Door 2)	-	-
Entrances	D2	#154 (Door 3)	-	-
	D3	#155 (Door 4)	-	-
	D4	#26006 (Grill)	-	-
Vent Shaft	S1	#377 (Door 2)	0.19	24.60
Entrances	S2	#378 (Door 1)	0.12	24.66
	S3	#378 (Entrance 1)	-	-
	S3	#380 (Unnamed)	-	-
	S3	#381 (Door 3)	-	-
	S3	#382 (Door 4)	-	-
	S4	#383 (Door 5)	0.44	24.69
	S3	#384 (Unnamed)	-	-
	E1	Sugar Cube (North façade)	0.38	24.68

Table 1-4 - Summary of modelled flood depths and elevations from Water Main burst study

1.5.13 It should be noted that at the time of this report HS2 has not approved Ref 4 and LU are still to decide how they propose to act on Ref 4 findings.

1.6 Ref 5 - UKPN Substations Level 2 Flood Risk Assessment

- 1.6.1 This report (Ref 5) sets out the flood risks associated with the relocation of a UKPN substation to the rear of the Exmouth Arms (alongside the western boundary to the Maria Fidelis School).
- 1.6.2 Flood risk expressed in terms of elevations at the proposed UKPN substation is summarised in Table 2-5 below.

UKPN substation		Predicted Flood Elevations (m AOD)		Substation Elevations (m AOD)			
Location	Component	Pluvial Q1000 – 60 minute	Burst Water Main (location 3)	Surrounding Ground Level	Base Level	Base Trench (min)	
Rear Exmouth Arms	Underground	24.68 ¹	24.63 ² & 24.70 ³	~24.50	20.40	19.90	

Table 1-5 – Predicted Flood Elevations at the proposed UKPN substation

This prediction is at the proposed Exmouth Arms substation.

² This prediction is at H2 (HS2 West Entrance) located NW of the proposed Exmouth Arms substation.

³ This prediction is at H3 (HS2 Drummond St Entrance) located SW of the proposed Exmouth Arms substation.

~ = This is an approx. min. elevation

- 1.6.3 The predicted flood level for the permanent UKPN substation location was found to be marginally higher for the burst water main assessment. All predictions were found to be very similar at the Exmouth Arms, however a conservative approach was taken to adopt the value given for the burst water main event at H3 (the HS2 Drummond Street Entrance) which is marginally higher than for the pluvial event.
- 1.6.4 As and when pluvial flood risk modelling/assessment for HS2 Euston station is updated the above findings have been recommended to be reviewed.
 - A qualitative review of Ref 1 findings was undertaken which suggested no significant changes in terms of predicted flood risk outcomes though the coarseness of the RIBA2 land-form model used should be noted.
 - Ref 5 is ultimately informed by Ref 4 (Flood risk from a Water Main Burst) which gives the highest flood level predictions and any update to the pluvial flood risk assessment is unlikely to change this.
- 1.6.5 Correspondingly, predicted flood depths have been found to equate to:
 - 0.20m at Exmouth Arms.
 - The predicted flood depths for the fluvial event at Exmouth Arms are only marginally (0.02m) less than those for the corresponding burst water main flood.
- 1.6.6 Where a flood risk is predicted, a flood barrier in accordance with UKPN Engineering Design Standard EDS 07-0106 has been stated as being required. Accordingly, flood barrier requirements at the proposed UKPN substation are set out in Table 2-6 below.

1.6.7 For burst water main mediated flood events the following has been noted:

- No Climate Change uplift is applied (it is not considered appropriate).
- No freeboard uplift is applied (the flood predictions are extremely conservative as no allowance is made for loss to the road drainage system etc.).
- 1.6.8 For a pluvial flood event if the predicted flood depth plus Climate Change uplift is less than 0.30m then the freeboard uplift is capped to predicted flood depth plus Climate Change uplift as applies for the proposed underground component at Exmouth Arms.

UKPN substation	Flood Source	Flood Surround- Source ing Ground Level		20% Climate Change	Free-board uplift (m)	Flood Barrier		
Location		(m AOD)	m AOD) uplift		uplift (m)		Cap Elevation (m AOD)	
Rear Exmouth	Water Main	~24.50	0.20	N/A	N/A	0.20	24.70	
Arms	Fluvial		0.18	0.04	0.22	0.44	24.94	

Table 1-6 - Flood Barrier Mitigation at UKPN substation

¹ Arguably no flood barrier mitigation is required here but low-level provision is recommended for consistency and added assurance.

1.6.9 The assessment identifies a flood barrier with a cap elevation of 24.94m AOD around the whole substation is required.

1.7 Ref 6 - Maria Fidelis School - Flood Risk Assessment and Drainage Strategy

- 1.7.1 This report (Ref 6) was produced as part of the recent proposal to develop the whole of the Maria Fidelis site which received resolution to grant, subject to a S106 agreement in October 2020 (the 'Maria Fidelis Lower School Development').
- 1.7.2 Ref 6 was produced by Conisbee and provides a review of flood risk associated with the wider Maria Fidelis Lower School Development along with a proposed development and drainage strategy in line with relevant local and national planning requirements including, but not limited to, the NPPF (2018) and Camden Local Plan (2017).
- 1.7.3 The 2019 FRA indicates that the site is located wholly within Flood Zone 1 (less than a 1 in 1,000 annual probability of river or sea flooding) and that the Proposed Development, considered as commercial use, is classified as 'Less Vulnerable' as per Table 2 of the NPPF Flood Risk and Coastal Change chapter. As a result, the use case of the site is considered acceptable as per Table 3 of the NPPF Flood Risk and Coastal Change chapter, thus the exception test is not required. The site is also not required to pass the sequential test.
- 1.7.4 Flood risk from a range of sources has been considered as part of the 2019 FRA. A summary of each risk is provided in Table 2-7.

Flood Risk Source	Identified Risk
Fluvial	Not at risk
Surface Water	Very low risk
Sewers	Very low risk
Groundwater	Very low risk
Artificial Sources	Not at risk
Tidal	Not at risk

Table 1-7 – Site Flood Risk Summary

- 1.7.5 The drainage strategy as proposed within Ref 6 indicates that a significant portion of the drainage network serving the buildings (particularly school buildings) within the site will be retained from the existing site, with pipes that are deemed to be in poor condition being repaired/replaced and manholes/RWP/SVPs moved where necessary. Drainage which is made redundant by the Proposed Development is proposed to be abandoned and properly decommissioned. No additional attenuation has been proposed for these areas with flows allowed to discharge as per existing.
- 1.7.6 The area largely consisting of the new CSC is proposed to be drained via an entirely new drainage network designed to modern standards. This system is proposed to discharge at a controlled rate to the local combined sewers with attenuation provided in the form of cellular storage and permeable paving.
- 1.7.7 Where controlled, surface water is proposed to discharge at the QBAR greenfield runoff rate, though not lower than 1.0 l/s.
- 1.7.8 Attenuation is indicated as being provided for up to the 1 in 100yr storm +30% climate change event which is stated as complying with the 'Upper Limit' in DEFRA guidance. It has been assumed that the site is 75% impermeable (PIMP) while using an overall catchment factor (Cv) of 1.

APPENDIX 3

Interpreted Ground Model Extract

Ground model

+24.0m OD

→+21.0m OD

▼^{+20.0m OD}

Soft sandy clay

London Clay

APPENDIX 4

Greenfield Runoff Rate Calculation

Calculated by:	James Forsdyke
Site name:	Former Maria Fidelis School Site
Site location:	London Borough of Camden

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	51.52801° N
Longitude:	0.13756° W
Reference:	3223906969
Date:	Aug 03 2021 11:21

Runoff estimation approach		IH124)				
Site characteristics				Notes				
Total site area (ha):		0.232		(1) Is $0_{-1-} < 20$ 1/s/ba?				
Methodology								
Q _{BAR} estimation method:	rom SPR and	SAAR	When Q _{BAR} is < 2.0 I/s/ha then limiting discharge rates are set at 2.0 I/s/ha.					
SPR estimation method:	rom SOIL typ	е						
Soil characteristics	Default	Edited						
SOIL type:	OIL type:		4	(2) Are flow rates < 5.0 l/s?				
HOST class:		N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is				
SPR/SPRHOST:		0.47	0.47	usually set at 5.0 l/s if blockage from vegetation and other				
Hydrological characte	ristics	Default	Edited	the blockage risk is addressed by using appropriate drainage elements.				
SAAR (mm):		616	616					
Hydrological region:		6	6					
Growth curve factor 1 year:		0.85	0.85	Where groundwater levels are low enough the use of soakaways				
Growth curve factor 30 years:		2.3	2.3	to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
Growth curve factor 100 years:		3.19	3.19					
Growth curve factor 200 ye	ars:	3.74	3.74) [

Greenfield runoff rates		
	Default	Edited
Q _{BAR} (I/s):	0.96	0.96
1 in 1 year (l/s):	0.82	0.82
1 in 30 years (I/s):	2.22	2.22
1 in 100 year (I/s):	3.08	3.08
1 in 200 years (I/s):	3.61	3.61

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX 5

Microdrainage Attenuation Calculations

Former Maria Fidelis School Surface Water Network Attenuation Requirements Designed by JAF File Surface Water Network.MDX Checked by AP FS Solutions Network 2019.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wates Return Ford (years) 100 M5-60 (mm) 20.000 Maximum Rainfall (mm/hr) 50 Maximum Rainfall (mm/hr) 50 Network Design Depth for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Kin Slope for Optimisation (11:X) 500 Meximum Time of Concentration (mins) Maximum Rainfall (mm/hr) 50 Meximum Time of Concentration (mins) Movimum Time of Concentration (mins) Maximum Rainfall (mm/hr) 50 Meximum Rainfall (mm/hr) 50 Meximum Time of Concentration (mins) Movimum Time of Concentration (mins) Maximum Rainfall (mm/hr) 50 Meximum Time Area (mins) (ha) 0-4 0.222 Total Pipe Volume (m ²) = 8.360 Network Design Table for Storm 4 - Indicates pipe length does not match coordinates « - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow FN Length Fall Slope I.Area T.E. Base k MYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (m) SECT (ma) Poly State Pipe/Conduit 1.002 21.6009 0.144 150.0 0.000 0.00 0.00 0.00 0.00 0.00 0.00	WSP Group Ltd		Page 1		
Surface Water Network Attenuation Requirements Designed by JAP Checked by JAP Checked by JAP CP Solutions Network 2019.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Designed Design StanDARD Manhole Sizes STANDARD Designed View Provided Stand Standard DESIGN by the Modified Rational Method Designed View Provided Standard DESIGN StanDARD Manhole Sizes STANDARD Designed View Provided Standard DESIGN by the Modified Rational Method DESIGN StanDARD Manhole Sizes STANDARD Manified Rational Method DESIGN 0.000 Maximum Rational Method DESigned View Provided Standard Maximum Rational Method Colspan="2">Designed With Level Soffits Time Area Diagram for Storm A colspan= Table for Storm Indicates pipe Langta deea not match coordinates		Former Maria Fidelis	School		
Attenuation Requirements Differential Date 03/08/2021 Designed by JAP Differential CP Solutions Network 2019.1 Design Criteria for Storm STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm File Surger DESIGN by the Modified Rational Method Design Criteria for Storm File Surger DESIGN by the Modified Rational Method Design Criteria for Storm File Surger DESIGN Mathode Sizes STANDARD File Surger Design Criteria for Storm File Surger Design Criteria for Storm Time Area Diagram for Storm Maximum File of Concentration (min.9) Network Design for Storm Time Area Diagram for Storm Time Area Diagram for Storm Time Area Contributing (ha) = 0.232 Total Pipe Volume (m') = 8.360 Network Design Table for Storm A total pipe conduit (min.0) Network Design Table for Storm A total pipe conduit (min.0) Network Design Table for Storm		Surface Water Network			
Pate 03/08/2021 Designed by JAF Tile Surface Water Network.MDX Checked by AP Checked by AP Checked by AP CP Solutions Network 2019.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 Maximum Rainfall (mm/h) SO Maximum Time of Concentration (mins) 30 Min Besign Depth for Optimisation (m) 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) 0 Actor Mathodes not match coordinates « - Indicates pipe length does not match coordinates « - Indicates pipe length Plow (L/A) (m) SECT (m) Network Results Table Network Resul		Attenuation Requireme	ents Micco		
Pile Surface Water Network.MDX Checked by AP Utility (P Solutions Network 2019.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm File Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 Maximum Backdrop Height (n) 0.000 Maximum Time of Concentration (nin: 20.000 Maximum Time Area Time Area Time Area Marea <td <="" colspan="2" td=""><td>Date 03/08/2021</td><td>Designed by JAF</td><td></td></td>	<td>Date 03/08/2021</td> <td>Designed by JAF</td> <td></td>		Date 03/08/2021	Designed by JAF	
Time Area Control of the state 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 1100 1100 1100 1000 11000 11000 11000 1000 11000 11000 11000 11000 11000 11000 11000 11000 11000 110000 110000 <td< td=""><td>File Surface Water Network.MDX</td><td>Checked by AP</td><td>Dialitatje</td></td<>	File Surface Water Network.MDX	Checked by AP	Dialitatje		
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 PMP (8) 100 Nation R 0.400 Minimum Backdrop Reight (m) 0.000 Maximum Rainfall (m/hr) S0 Maximum Faine of Concentration (mina) 30 Min Besign Depth for Optimisation (m) 1.200 Maximum Faine of Concentration (mina) 30 Min Design Depth for Optimisation (1:X) 500 Maximum Faine of Concentration (mina) 30 Min Design Depth for Optimisation (1:X) 100 Maximum Faine of Concentration (mina) 30 Min Design Peth for Optimisation (1:X) 500 Maximum Faine Area (mina) (ha) 0.00 Min Stope for Optimisation (1:X) OPT Ima Area (mina) (ha) Concentration (mina) 30 Min Besign (has) OPT Ima Area (mina) (ha) Concentration (mina) Min Mathole Sizes OPT Ima Area (mina) Concentration (XP Solutions	Network 2019.1			
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Figs StanDARD Manhole Sizes STANDARD SEEUR PERIODED Manhole Sizes STANDARD Time Area (min.p) (in Min Slope for Optimisation (1:X) 500 Time Area (min.p) (in Area Time Area (min.p) (in Area T					
Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FIR Rainfall Model - England and Wales Return Period (years) 100 Add Flow / Climate Change (%) 0 MS-66 (um) 20.000 Add Flow / Climate Change (%) 0 MS-66 (um) 20.000 Min Maximum Backdrop Height (m) 0.000 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 50 Maximum Rainfall (mm/r) 500 Min Biope for Optimisation (m) 1.200 Time Area (mins) (ha) (mins) (ha) 0 -4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m') = 8.360 Metwork Design Table for Storm Indicates pipe length does not match coordinates * Indicates pipe length does not match coordinates N Length Fall Stope I.Area T.E. Base k M MD DIA Section Type Auto	STORM SEWER DESIGN b	y the Modified Ratior	nal Method		
Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 Add Flow / Climate Change (b) 0 Mation R 0.400 Minimum Backdrop Height (m) 0.000 Maximum Rackdrop Height (m) 0.000 <tr< td=""><td>Design</td><td><u>riteria for Storm</u></td><td></td></tr<>	Design	<u>riteria for Storm</u>			
FSR Rainfall Model - England and Kales PIMP (%) 100 Return Period (years) 100 Mation R 0.400 Matimum Rainfall (mn/hr) 50 Maximum Backdrop Height (m) 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (n) 1.200 Volumetric Runoff Coeff. 0.750 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Time Area (mins) (ha) 0.400 Time Area (mins) (ha) 0.400 Total Prev Volume (m³) = 8.360 Network Design Table for Storm # Indicates pipe length does not match coordinates (monthing) (ha) (ha) (m) (m) (1:2) (ha) (mins) Flow (1/s) (mn) SECT (m) Section Type Auto Design Network Design Table for Storm 1.000 21.6004 0.141 150.0 0.000 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.	Pipe Sizes STA	DARD Manhole Sizes STANDA	RD		
Return Period (years) 100 PIMP (%) 100 MS-50 (mm) 20.00 Add Flow / Climate Change (%) 0 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) 0.010 Time Area (mins) (ha) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * * Indicates pipe length does not match coordinates * - Indicates pipe capacity < flow	FSR Rainfall	Model - England and Wales			
No-60 (mm) 20.000 Add Flow / Climate (s) 0 0 Naximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 500 Foul Sewage (l/s/ha) 0.000 Min Null for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.730 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm 4 - Indicates pipe length does not match coordinates « - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow	Return Period (years)	100	PIMP (%) 100		
Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (L)(s/ha) 0.000 Min Vel for Auto Design only (m) 1.000 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:x) 500 Designed with Level Soffits Time Area Time Area (mins) (ha) 0.010 Time Area (mins) (ha) 0-4 0.222 4-8 0.010 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * - Indicates pipe length does not match coordinates * - Indicates pipe length does not match coordinates * - Indicates pipe capacity < flow	M5-60 (mm) Ratio R	0 400 Add Flow /	Climate Change (%) U		
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Ceeff. 0.750 Main Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.222 4-8 0.010 Total Pripe Volume (m*) = 8.360 Network Design Table for Storm * optimization (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design Main Slope for Optimisation (m) 1.200 Metwork Design Table for Storm * optimization (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Diagram for Storm * Indicates pipe length does not match coordinates	Maximum Rainfall (mm/hr)	50 Maximum B	ackdrop Height (m) 0.000		
Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) (mins) (ba) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m²) = 8.360 Network Design Table for Storm # - Indicates pipe length does not match coordinates	Maximum Time of Concentration (mins)	30 Min Design Depth fo	r Optimisation (m) 1.200		
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) (mins) (ha) (mins) (ha) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m ³) = 8.360 Network Design Table for Storm # - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow	Foul Sewage (l/s/ha)	0.000 Min Vel for Auto	Design only (m/s) 1.00		
Designed with Level Soffits Time Area (mins) (ha) Time Area (mins) (ha) O -4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * - Indicates pipe length does not match coordinates (~ Indicates pipe capacity < flow) N Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 21.600# 0.144 150.0 0.000 5.00 0.00 0.00 0.00 0.200 Pipe/Conduit 1.001 84.000# 0.560 150.0 0.000 0.00 0.00 0.00 0.00 0.200 Pipe/Conduit 1.003 14.100# 0.091 150.0 0.000 0.00 0.00 0.00 0.00 0.200 Pipe/Conduit 1.003 14.100# 0.091 150.0 0.000 0.00 0.00 0.00 0.00 0.00 0	Volumetric Runoff Coeff.	0.750 Min Slope for	Optimisation (1:X) 500		
Time Area Diagram for Storm Time Area (mins) (ha) Time Area (mins) (ha) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * Indicates pipe length does not match coordinates (" - Indicates pipe capacity < flow N Length Fall Slope I.Area T.E. Base k (Indicates pipe Conduit 1.000 # 0.5160 0.000 0.000 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.0	Designe	d with Level Soffits			
Time Area (nins) Autono Jotal Pipe Volume (m³) = 8.360 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm Store Autono Dia Section Type Autono Design 1.000 1.600# 0.144 150.0 0.000 5.00 0.00 0.00 0.00 0.00 Dia Section Type Autono Design 1.000 21.600# 0.144 150.0 0.000 0.00 0.00 0.00 0.00 0.00 Dia Section Type Autono Design 1.001 84.000# 0.091 150.0 0.000 0.00 0.00 0.00 0.00 Dia Section Type Autono Dia Section Type Autono	<u>Time Are</u>	<u>Diagram for Storm</u>			
(mins) (ma) (mins) (ma) 0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm # - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow	Time	Area Time Area			
0-4 0.222 4-8 0.010 Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * - Indicates pipe length does not match coordinates	(mins)	(na) (mins) (na)			
Total Area Contributing (ha) = 0.232 Total Pipe Volume (m³) = 8.360 Network Design Table for Storm # - Indicates pipe length does not match coordinates x - Indicates pipe capacity < flow	0-4	0.222 4-8 0.010			
Total Pipe Volume (m³) = 8.360 Network Design Table for Storm * - Indicates pipe length does not match coordinates	Total Area	ontributing (ha) = 0.232			
Network Design Table for Storm # - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow PN Length (m) Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Indicates pipe capacity < flow (m) (1:x) (ha) (mins) Flow (1/s) (mm) SECT (mm) DIA Section Type Auto 1.000 21.600# 0.144 150.0 0.000 5.00 0.0 0.000 o 200 Pipe/Conduit Image: Colored Co	Total Pi	e Volume (m³) = 8.360			
# - Indicates pipe length does not match coordinates « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto 1.000 21.600# 0.144 150.0 0.000 5.00 0.0 0.600 o 200 Pipe/Conduit Image: Conduct of the conduct	Network De	sign Table for Storm			
w - Indicates pipe capacity < flow PN Length (m) Fall Slope I.Area (1.5) Base (mins) k HYD DIA Section Type Auto Design 1.000 21.600# 0.144 150.0 0.000 5.00 0.0 0.600 o 200 Pipe/Conduit Image: Conduct (1.0) 1.001 84.000# 0.560 150.0 0.000 0.00 0.0 0.600 o 200 Pipe/Conduit Image: Conduct (1.0)	# - Indicates pipe	ength does not match coord	linates		
PN Length (m) Fall (m) Slope (1:X) I.Area (ha) T.E. (mins) Base Flow (1/s) k (mm) HYD SECT DIA (mm) Section Type (mm) Auto Design 1.000 21.600# 0.144 150.0 0.000 5.00 0.0 0.600 0 200 Pipe/Conduit Image: Conduct of the conduction	« - Indica	es pipe capacity < flow			
1.000 21.600# 0.144 150.0 0.000 5.00 0.0 0.600 0 200 Pipe/Conduit 1.001 84.000# 0.560 150.0 0.000 0.00 0.00 0.0 0.600 0 200 Pipe/Conduit 1.002 14.600# 0.097 150.0 0.000 0.00 0.00 0.0 0.600 0 200 Pipe/Conduit 1.003 14.100# 0.094 150.0 0.000 0.00 0.00 0.0 0.600 0 200 Pipe/Conduit 	PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi:	. Base k HYD s) Flow (l/s) (mm) SECT	DIA Section Type Auto (mm) Design		
1.001 84.000# 0.560 150.0 0.000 0.00 0.00 0.00 0.00 0.00 0.0 0.600 o 200 Pipe/Conduit 1.002 14.600# 0.097 150.0 0.000 0.00 0.00 0.600 o 200 Pipe/Conduit 1.003 14.100# 0.094 150.0 0.000 0.00 0.00 0.600 o 200 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 0.0 0.0 0.0 0.0 0.99 31.0 0.0	1.000 21.600# 0.144 150.0 0.000 5	0.0 0.600 0	200 Pipe/Conduit 🔒		
1.002 14.600# 0.097 150.0 0.000 0.00 0.00 0.0 0.600 o 200 Pipe/Conduit 1.003 14.100# 0.094 150.0 0.000 0.00 0.00 0.0 0.600 o 200 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) 1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 (m1982-2019 Innovyze	1.001 84.000# 0.560 150.0 0.000 0	0.0 0.600 0	200 Pipe/Conduit		
1.003 14.100# 0.094 150.0 0.000 0.00 0.0 0.0 0.600 o 200 Pipe/Conduit <u>Network Results Table</u> <u>PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow</u> (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.0 0.99 31.0 0.0 <u>(m1982-2019 Inpovyze</u>	1.002 14.600# 0.097 150.0 0.000 0	0.0 0.600 0	200 Pipe/Conduit 💣		
Network Results Table PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base Flow (1/s) Foul (1/s) Add Flow (1/s) Vel (m/s) Cap (1/s) Flow (1/s) 1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.99 31.0 0.0	1.003 14.100# 0.094 150.0 0.000 0	0.0 0.600 0	200 Pipe/Conduit 💣		
PN Rain (mm/hr) T.C. US/IL (m) Σ I.Area (ha) Σ Base Flow (l/s) Foul (l/s) Add Flow (l/s) Vel (m/s) Cap (l/s) Flow (l/s) 1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.99 31.0 0.0	Netwo	<u>k Results Table</u>			
Internation		ea E Base Foul Add F	low Vel Can Flow		
1.000 50.00 5.36 23.294 0.000 0.0 0.0 0.0 0.99 31.0 0.0 1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.99 31.0 0.0	(mm/hr) (mins) (m) (ha	Flow (1/s) (1/s) (1/s	s) (m/s) (1/s) (1/s)		
1.001 50.00 6.78 23.150 0.000 0.0 0.0 0.99 31.0 0.0 1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.0 0.99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.99 31.0 0.0	1.000 50.00 5.36 23.294 0.0	0.0 0.0	0.0 0.99 31.0 0.0		
1.002 50.00 7.03 22.590 0.000 0.0 0.0 0.0 99 31.0 0.0 1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.0 0.99 31.0 0.0	1.001 50.00 6.78 23.150 0.0	0.0 0.0	0.0 0.99 31.0 0.0		
1.003 50.00 7.27 22.493 0.000 0.0 0.0 0.0 0.99 31.0 0.0	1.002 50.00 7.03 22.590 0.0	0.0 0.0	0.0 0.99 31.0 0.0		
©1982-2019 Innovvze					
	1.003 50.00 7.27 22.493 0.0	0.0 0.0	0.0 0.99 31.0 0.0		

WSP Group Ltd		Page 2
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Mirro
Date 03/08/2021	Designed by JAF	
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	

<u>Network Design Table for Storm</u>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.004	7.400#	0.049	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	ď
1.005	5.900#	0.039	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	- Č
2.000 2.001	13.500# 11.000#	0.090 0.073	150.0 150.0	0.000	5.00 0.00		0.0	0.600 0.600	0	<mark>200</mark> 200	Pipe/Conduit Pipe/Conduit	0
3.000	25.800#	0.172	150.0	0.000	5.00		0.0	0.600	0	200	Pipe/Conduit	a
3.001	25.800#	0.172	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	ř
3.002	14.400#	0.096	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	- Č
3.003	14.500#	0.097	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	- B
3.004	3.500#	0.023	150.0	0.000	0.00		0.0	0.600	0	200	Pipe/Conduit	ð
1.006	10.000#	0.067	149.3	0.232	0.00		0.0	0.600	0	200	Pipe/Conduit	

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.004	50.00	7.39	22.399	0.000	0.0	0.0	0.0	0.99	31.0	0.0
1.005	50.00	/.49	22.349	0.000	0.0	0.0	0.0	0.99	31.0	0.0
2.000	50.00	5.23	23.618	0.000	0.0	0.0	0.0	0.99	31.0	0.0
2.001	50.00	5.41	23.528	0.000	0.0	0.0	0.0	0.99	31.0	0.0
3.000	50.00	5.44	24.150	0.000	0.0	0.0	0.0	0.99	31.0	0.0
3.001	50.00	5.87	23.978	0.000	0.0	0.0	0.0	0.99	31.0	0.0
3.002	50.00	6.11	23.806	0.000	0.0	0.0	0.0	0.99	31.0	0.0
3.003	50.00	6.36	23.710	0.000	0.0	0.0	0.0	0.99	31.0	0.0
3.004	50.00	6.42	23.613	0.000	0.0	0.0	0.0	0.99	31.0	0.0
1.006	50.00	7.66	22.310	0.232	0.0	0.0	0.0	0.99	31.1«	31.4

WSP Group Ltd		Page 3
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Micro
Date 03/08/2021	Designed by JAF	
File Surface Water Network.MDX	Checked by AP	Dialitada
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	25 000	1 706	Open Manhole	1200	1 000	23 294	200				
2	25.000	1.850	Open Manhole	1200	1.001	23.150	200	1.000	23,150	200	
3	25.000	2.410	Open Manhole	1200	1.002	22.590	200	1.001	22.590	200	
4	25.000	2.507	Open Manhole	1200	1.003	22.493	200	1.002	22.493	200	
5	25.000	2.601	Open Manhole	1200	1.004	22.399	200	1.003	22.399	200	
6	25.000	2.651	Open Manhole	1200	1.005	22.349	200	1.004	22.349	200	
7	25.000	1.382	Open Manhole	1200	2.000	23.618	200				
8	25.000	1.472	Open Manhole	1200	2.001	23.528	200	2.000	23.528	200	
9	25.000	0.850	Open Manhole	1200	3.000	24.150	200				
10	25.000	1.022	Open Manhole	1200	3.001	23.978	200	3.000	23.978	200	
10	25.000	1.194	Open Manhole	1200	3.002	23.806	200	3.001	23.806	200	
11	25.000	1.290	Open Manhole	1200	3.003	23.710	200	3.002	23.710	200	
12	25.000	1.387	Open Manhole	1200	3.004	23.613	200	3.003	23.613	200	
7	25.000	2.690	Open Manhole	1200	1.006	22.310	200	1.005	22.310	200	
								2.001	23.455	200	1145
								3.004	23.590	200	1280
	25.000	2.757	Open Manhole	0		OUTFALL		1.006	22.243	200	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
1	344.563	30.078	344.563	30.078	Required	
2	341.375	80.281	341.375	80.281	Required	
3	183.594	81.875	183.594	81.875	Required	• •
4	184.125	52.656	184.125	52.656	Required	
5	206.438	30.344	206.438	30.344	Required	
6	231.406	30.344	231.406	30.344	Required	
			1000 0010 -			

WSP Group 1	Ltd							Page 4
•				Former M	aria Fidel	is Scho	ol	
				Surface	Water Netw	vork		
				Attenuat	ion Requir	ements		Micco
Date 03/08,	/2021	L		Designed	by JAF			
File Surfac	ce Wa	ater Ne	twork.MDX	Checked	by AP			Digiliga
XP Solution	ns			Network	2019.1			
			<u>Manhole</u>	Schedules	s for Stor	<u>m</u>		
	MH Name	Manhole Easting	Manhole In	tersection 1 Fasting	Intersection Northing	Manhole	Layout (North)	
	manie	(m)	(m)	(m)	(m)	1100000	(1102 011)	
	7	275.500	29.016	275.500	29.016	Required		
							•	
	8	246.016	29.016	246.016	29.016	Required	\mathbf{X}	
	9	305.709	73.954	305.709	73.954	Required	-	
	10	263.596	74.356	263.596	74.356	Required		
							_	
	10	221.483	74.758	221.483	74.758	Required		
	ΤT	198.303	/5.102	198.303	/5.102	Required	•	
	12	198 533	48 939	198 533	48 939	Required		
	10	190.000	10.999	190.000	10.909	nequirea		
	7	236.453	47.078	236.453	47.078	Required	/	
		247.609	60.625			No Entry	- 4 X	
							_	
			<u>⊚10</u>	82_2010 -	000000770			
1			@19	UC CUIN II	TTO A À 76			

WSP Group Ltd		Page 5
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Mirro
Date 03/08/2021	Designed by JAF	
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN MH DIAM., L*W Hyd Diam MH C.Level I.Level D.Depth MH Sect (mm) Name (m) (m) (m) Connection (mm) 1.000 1 25.000 23.294 1.506 Open Manhole o 200 1200 2 25.000 23.150 3 25.000 22.590 4 25.000 22.493 1.001 o 200 1.650 Open Manhole 1200 o 200 1.002 2.210 Open Manhole 1200 1200 2.307 Open Manhole 1.003 o 200 o 200 5 25.000 22.399 2.401 Open Manhole 1200 1.004 1.005 o 200 6 25.000 22.349 2.451 Open Manhole 1200 o 200 7 25.000 23.618 1.182 Open Manhole o 200 8 25.000 23.528 1.272 Open Manhole 2.000 1200 2.001 1200 o 200 9 25.000 24.150 0.650 Open Manhole 1200 3.000 10 25.000 23.978 0.822 Open Manhole 3.001 o 200 1200 3.002 o 200 10 25.000 23.806 0.994 Open Manhole 1200 o 200 3.003 11 25.000 23.710 1.090 Open Manhole 1200 o 200 3.004 12 25.000 23.613 1.187 Open Manhole 1200 o 200 7 25.000 22.310 2.490 Open Manhole 1200 1.006

- Indicates pipe length does not match coordinates

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	21.600#	150.0	2	25.000	23.150	1.650	Open Manhole	1200
1.001	84.000#	150.0	3	25.000	22.590	2.210	Open Manhole	1200
1.002	14.600#	150.0	4	25.000	22.493	2.307	Open Manhole	1200
1.003	14.100#	150.0	5	25.000	22.399	2.401	Open Manhole	1200
1.004	7.400#	150.0	6	25.000	22.349	2.451	Open Manhole	1200
1.005	5.900#	150.0	7	25.000	22.310	2.490	Open Manhole	1200
2.000	13.500#	150.0	8	25.000	23.528	1.272	Open Manhole	1200
2.001	11.000#	150.0	7	25.000	23.455	1.345	Open Manhole	1200
3.000	25.800#	150.0	10	25.000	23.978	0.822	Open Manhole	1200
3.001	25.800#	150.0	10	25.000	23.806	0.994	Open Manhole	1200
3.002	14.400#	150.0	11	25.000	23.710	1.090	Open Manhole	1200
3.003	14.500#	150.0	12	25.000	23.613	1.187	Open Manhole	1200
3.004	3.500#	150.0	7	25.000	23.590	1.210	Open Manhole	1200
1.006	10.000#	149.3		25.000	22.243	2.557	Open Manhole	0

WSP Group Ltd		Page 6
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Micro
Date 03/08/2021	Designed by JAF	
File Surface Water Network.MDX	Checked by AP	Dialitage
XP Solutions	Network 2019.1	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	_	_	100	0.000	0.000	0.000
1.001	_	_	100	0.000	0.000	0.000
1.002	-	-	100	0.000	0.000	0.000
1.003	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.000	0.000	0.000
1.005	-	-	100	0.000	0.000	0.000
2.000	-	-	100	0.000	0.000	0.000
2.001	-	-	100	0.000	0.000	0.000
3.000	-	-	100	0.000	0.000	0.000
3.001	-	-	100	0.000	0.000	0.000
3.002	-	-	100	0.000	0.000	0.000
3.003	-	-	100	0.000	0.000	0.000
3.004	-	-	100	0.000	0.000	0.000
1.006	-	-	100	0.232	0.232	0.232
				Total	Total	Total
				0.232	0.232	0.232

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
1.006		25.000	22.243	0.000	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (l/per/day)Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (l/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	l Model		FSR		Prof	ile Type	Summer
Return	Period	(years)		100		Cv	(Summer)	0.750
		Region	England	and Wales		Cv	(Winter)	0.840
	M5-	60 (mm)		20.000	Storm	Duratic	on (mins)	30
		Ratio R		0.400				

WSP Group Ltd							Page 7
•			Former N	Maria Fid	elis Sch	ool	
			Surface	Water Ne	twork		
			Attenuat	cion Requ	irements		Micco
Date 03/08/202	21		Designed	d by JAF			
File Surface W	Vater Netwo	rk.MDX	Checked	by AP			Diamaye
XP Solutions			Network	2019.1			
		<u>Online</u>	Controls	for Stor	<u>rm</u>		
Uudaa Da	ala a cating	um Manha		C/DN. 1 (umo (m ³)	
	akes optim	III Maiiio	1e. /, D	5/FN: 1.(JUO, VOI). 5.0
		Unit	Reference	MD-SHE-003	37-1000-25	90-1000	
		Design	n Head (m)			2.590	
		Design I	Flow (l/s)		G - 1	1.0	
		1	Objective	Minimise	upstream :	storage	
		Ap	oplication		-	Surface	
		Sump	Available			Yes	
		Dian Invert	Level (mm)			37 22.310	
A I I I I I I I I I I I I I I I I I I I	Minimum Outlet	: Pipe Diar	meter (mm)			75	
	Suggested Ma	nhole Diar	meter (mm)			1200	
Control Poi	nts Head	d (m) Flow	(1/s)	Control	Points	Head	(m) Flow (1/s)
Design Point (Cal	culated) (590	1 0		Kick-Fl		334 0.4
Fl	ush-Flo™ ().164	0.5 Mea	an Flow ove	r Head Ran	.00 0	- 0.7
			1				
The hydrologica	al calculation	is have been sified si	en based o	n the Head/ her type of	Discharge	relation:	ship for the
Hydro-Brake Opt	imum® be util	ised then	these sto	rage routin	g calculat	cions will	l be
invalidated							
Depth (m) Flo	ow (l/s) Dept	n (m) Flow	(1/s) Dej	oth (m) Flo	w (l/s) De	epth (m)	Flow (l/s)
0 100	0.5	200	0 7	3 000	1 1	7 000	1 6
0.100	0.5	L.400	0.8	3.500	1.1	7.500	1.6
0.300	0.4	L.600	0.8	4.000	1.2	8.000	1.7
0.400	0.4	L.800	0.8	4.500	1.3	8.500	1.7
0.500	0.5	2.000	0.9	5.500	1.4	9.000	1.8
0.800	0.6	2.400	1.0	6.000	1.5		
1.000	0.7	2.600	1.0	6.500	1.5		
1							
			0.0010 -				

WSP Group Lta		Page 8
	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Micro
Date 03/08/2021	Designed by JAF	Dcainago
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	·
<u>Storage</u>	Structures for Storm	
<u>Complex Ma</u> <u>Ce</u> Inve	ellular Storage rt Level (m) 22.310 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	/ ² \
Deptn (m) Area (m ⁻) Inf. Ar	ea (m-) Depin (m) Area (m-) INI. Area ((m-)
0.000 35.7 2.000 35.7	0.0 0.0	0.0
<u>Pc</u>	orous Car Park	
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Pc Invert Lev	(m/hr) 0.00000 Width (m) (mm/hr) 1000 Length (m) n (1/s) 201.4 Slope (1:X) Factor 2.0 Depression Storage (mm) prosity 0.30 Evaporation (mm/day) rel (m) 24.400 Cap Volume Depth (m)	25.0 29.0 100.0 5 3 0.500

WSP Gr	oup L	td								Page 9
•					Former	Maria	a Fidelis	s School		
					Surfac	e Wate	er Networ	ck		
					Attenu	ation	Requirer	nents		Micco
Date 0	3/08/	2021			Design	ed by	JAF			
File S	urfac	e Water N	Jetwork	. MDX	Checke	d bv A	λP			urainage
XP Sol	ution	s		••••	Networ	k 2010	 A 1			
<u></u>		5			INC CWO1	1 2013	· • -			
1 vear	Retu	rn Period	1 Summa	ry of	Critic	al Reg	sults by	Maximum	T.eve	el (Rank 1)
<u>- year</u>	11000	111 101100		<u>ry</u> or	for S	torm	<u>Jures by</u>	<u>110221110111</u>		<u>, , , , , , , , , , , , , , , , , , , </u>
					101 0	001111				
				<u>Sim</u>	ulation	Criteri	La			
		Areal Red	luction F	actor 1	.000	Additior	nal Flow -	% of Total	Flow	1 0.000
		Hot	Start ((mins)	0	MADI) Factor *	10m³/ha St	orage	2.000
M	anhole	HOT STA Headloss (rt Level oeff (Gl	obal) 0	0 500 Fl	w ner I	IN. Person ner	Dav (1/per	clent (dav)	
	Foul	Sewage per	hectare	(1/s) 0	.000	ow per i	erson per	Day (1/pci	, uuy)	0.000
		5 1								
		Number of	f Input 1	Hydrogra	phs 0 N	umber o	f Storage	Structures	1	
		Number	of Onlin	ne Contr	ols 1 N	iumber o	f Time/Are	a Diagrams	0	
		Number (DI UIIII	ne Contr	OIS U N	umber o	I Real Tim	le Controis	0	
				Synthet	cic Rain	fall De	tails			
		Rain	nfall Mo	del		FSR	Ratio	R 0.400		
			Reg	ion Engl	and and	Wales	Cv (Summer) 1.000		
			M5-60 (1	mm)		20.000	Cv (Winter	:) 1.000		
		Margin f	or Flood	Bisk Wa	arning ('mm) 300).0 DV	D Status OF	नन	
		nargin i	01 11000	Analys:	is Times	step Fi	ne Inerti	a Status OH	?F	
					DTS Sta	itus	ON			
			Profile	(s)				Summer and	l Wint	er
		Duratior	n(s) (mir	ns)	15, 30	, 60, 12	20, 180, 2	40, 360, 48	0, 60)0,
				720	, 960, 3	1440, 21	L60, 2880,	4320, 5760	, 720)0,
			, , ,	,				8640	, 100	080
	Ret	Climate	(s) (yea: Change	rs) (원)				1,	30, 1 \ 0	.00
		CIINACC	change	(0)				C C	, ,	-0
			Poturn	Climate	Fire	- (V)	First (V)	First (7)	0	Water
PN	Name	Storm	Period	Change	Surcl	narge	Flood	Overflow	Ac	t. (m)
						2-				/
1.000	1	360 Winter	1	+0%	30/60	Summer				23.294
1.001	2	960 Summer	1	+0%	30/30	Summer				23.205
1 003	4	960 Summer	1	+0%	1/30	Summer				23.205
1.003	5	960 Summer	1	+0%	1/15	Summer				23.205
1.005	6	960 Summer	1	+0%	1/15	Summer				23.205
2.000	7	360 Winter	1	+0%	30/120	Summer				23.618
2.001	8	360 Winter	1	+0%	30/60	Summer				23.528
3.000	9	360 Winter	1	+0%	30/480	Summer				24.150
3.002	10 10	360 Winter	⊥ 1	+U% +N%	30/240	Summer				∠3.978 23.806
3.003	11	360 Winter	1	+0%	30/120	Summer				23.710
3.004	12	360 Winter	1	+0%	30/120	Summer				23.613
1.006	7	960 Summer	1	+0%	1/15	Summer				23.205
				@1 ^ ^ /	0.010	Terre				
				©1982	2-2019	⊥nnov	yze			

WSP Group Ltd		Page 10
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Mirro
Date 03/08/2021	Designed by JAF	Dcainago
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	·

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.200	0.000	0.00		0.0	OK	
1.001	2	-0.145	0.000	0.00		0.0	OK	
1.002	3	0.415	0.000	-0.02		-0.5	SURCHARGED	
1.003	4	0.513	0.000	-0.02		-0.6	SURCHARGED	
1.004	5	0.607	0.000	-0.03		-0.7	SURCHARGED	
1.005	6	0.656	0.000	-0.03		-0.8	SURCHARGED	
2.000	7	-0.200	0.000	0.00		0.0	OK	
2.001	8	-0.200	0.000	0.00		0.0	OK	
3.000	9	-0.200	0.000	0.00		0.0	OK	
3.001	10	-0.200	0.000	0.00		0.0	OK	
3.002	10	-0.200	0.000	0.00		0.0	OK	
3.003	11	-0.200	0.000	0.00		0.0	OK	
3.004	12	-0.200	0.000	0.00		0.0	OK	
1.006	7	0.695	0.000	0.02		0.6	SURCHARGED	

WSP Gr	oup L	td						Pa	ige 11
•					Former Mari	a Fidelis	s School		
					Surface Wat	er Netwo	ck		
					Attenuation	Requirer	nents	N	licco
Date 0	3/08/	2021			Designed by	JAF			
File S	urfac	e Water N	etwork	.MDX	Checked by .	AP			Iamaye
XP Sol	ution	S			 Network 201	9.1			
<u>30 ye</u>	<u>ar Re</u>	<u>turn Peri</u>	od Sum	<u>mary o</u>	<u>f Critical</u>	<u>Results </u>	oy Maximu	um Leve	el (Rank
				<u> </u>) IOT Storm				
				Sim	ulation Criter	ia			
		Areal Red	uction H	Factor 1	.000 Additio	nal Flow -	% of Total	Flow C	.000
		Hot Not Star	Start	(mins)	0 MAD	D Factor *	10m³/ha St	corage 2	.000
м	anhole Foul S	Headloss Co Sewage per 1	beff (Gl hectare	lobal) 0 (1/s) 0	.500 Flow per	Person per	Day (l/per	/day) 0	.000
		Number of Number	Input of Onli	Hydrogra ne Contr	phs 0 Number o ols 1 Number o	of Storage of Time/Are	Structures	1	
		Number c	of Offli	ne Contr	ols 0 Number o	of Real Tim	e Controls	0	
				<u>Synthet</u>	cic Rainfall De	etails			
		Rain	fall Mo	del ion Engl	FSR	Ratio	R 0.400		
			кед M5-60 (ION ENGI mm)	20.000	Cv (Summer Cv (Winter) 1.000		
		Margin fo	or Flood	l Risk Wa	arning (mm) 30	0.0 DVI	D Status OH	FF	
				Allalys.	DTS Status	ON	a status or	2 E	
			Profile	(s)			Summer and	l Winter	
		Duration	(s) (mi	ns)	15, 30, 60, 1	20, 180, 24	40, 360, 48	80, 600,	
				720	, 960, 1440, 2	160, 2880,	4320, 5760), 7200, 10080	
	Ret	urn Period(s) (yea:	rs)			1,	30, 100	
		Climate	Change	(응)			C), 0, 40	
									Watan
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflo	water ow Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	1	720 Winter	30	+0읭	30/60 Summer				24.457
1.001	2	720 Winter	30	+0%	30/30 Summer				24.457
1.002	3	720 Winter	30	+0%	1/60 Summer				24.458
1.003	4	720 Winter	30	+0%	1/30 Summer				24.458
1.004	5	720 Winter	30	+0%	1/15 Summer				24.458
1.005	6	720 Winter	30	+0%	1/15 Summer				24.458
2.000	/	720 Winter	30	+03	30/120 Summer				24.458
2.001	ъ С	720 Winter	06	+U%	30/00 Summer				24.438 27 750
3.000	9 10	720 Winter	20	+0⊰ +∩9	30/240 Summor				21.400
3.002	10	720 Winter	30 30	+0%	30/180 Summer				24.458
3.003	11	720 Winter	30	+0%	30/120 Summer				24.458
3.004	12	720 Winter	30	+0%	30/120 Summer				24.458
1.006	7	720 Winter	30	+0%	1/15 Summer				24.458
				@1021	2-2019 Topor	1170			
				ST 207		/ y 2 C			

WSP Group Ltd		Page 12
•	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Mirro
Date 03/08/2021	Designed by JAF	Dcainago
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	0.963	0.000	-0.01		-0.2	SURCHARGED	
1.001	2	1.107	0.000	-0.02		-0.7	SURCHARGED	
1.002	3	1.668	0.000	-0.03		-0.9	SURCHARGED	
1.003	4	1.765	0.000	-0.04		-1.1	SURCHARGED	
1.004	5	1.859	0.000	-0.05		-1.2	SURCHARGED	
1.005	6	1.909	0.000	-0.06		-1.4	SURCHARGED	
2.000	7	0.640	0.000	-0.01		-0.1	SURCHARGED	
2.001	8	0.730	0.000	-0.02		-0.5	SURCHARGED	
3.000	9	0.108	0.000	0.00		-0.1	SURCHARGED	
3.001	10	0.280	0.000	-0.01		-0.3	SURCHARGED	
3.002	10	0.452	0.000	-0.02		-0.5	SURCHARGED	
3.003	11	0.548	0.000	-0.02		-0.6	SURCHARGED	
3.004	12	0.645	0.000	-0.04		-0.8	SURCHARGED	
1.006	7	1.948	0.000	0.03		0.9	SURCHARGED	

WSP 0	Group 1	Ltd							Page	e 13	
•					I	former Mar	la Fidelis	School			
					5	Surface Wat	e Water Network				
					I	Attenuation	n Requirem	ents	Mic		
Date	03/08/	/2021			I	Designed by	/ JAF				
File	Surfac	ce Wa	ater Ne	etwork	.MDX 0	Checked by	AP		LIC	III Idye	
XP Sc	olution	าร			1	Jetwork 201	9.1				
<u>100</u>	<u>year R</u>	etur	n Peri	od Sun	nmary o	f Critical	Results }	oy Maximu	um Level	(Rank	
					1)	for Stor	<u>n</u>				
					Cimi	lation Crita	ria				
		Are	al Redu	ction F	actor 1.	000 Additi	onal Flow -	% of Total	Flow 0.0	00	
			Hot	Start (mins)	0 MA	DD Factor *	10m³/ha St	orage 2.0	00	
		F	lot Star	t Level	(mm)	0	Inl	et Coeffie	cient 0.8	00	
	Manhole	e Heac	lloss Co	eff (Gl	obal) 0.	500 Flow per	Person per	Day (l/per	/day) 0.0	00	
	FOUL	Seway	le ber n	ectare	(1/5) 0.	000					
		Nu	mber of	Input H	Hydrograp	ohs 0 Number	of Storage S	Structures	1		
			Number (of Onlir	ne Contro	ols 1 Number	of Time/Area	a Diagrams	0		
		N	umber o:	t Offlir	ne Contro	ols 0 Number	of Real Time	e Controls	0		
					Synthet	ic Rainfall I	<u>etails</u>				
			Rain	fall Mod	del	FSF	Ratio H	R 0.400			
				Regi	ion Engla	and and Wales	Cv (Summer)	1.000			
			1	45-60 (r	nm)	20.000	Cv (Winter)	1.000			
		Ma	argin fo	r Flood	Risk Wa	rning (mm) 3	00.0 DVD	Status OF	F		
			2		Analysi	s Timestep	Fine Inertia	Status OF	F		
						DTS Status	ON				
			Ε	Profile((s)			Summer and	Winter		
		Dı	uration	(s) (min	is)	15, 30, 60,	120, 180, 24	0, 360, 48), 600,		
					720,	960, 1440,	2160, 2880,	4320, 5760 8640	, 7200, 10080		
	Re	turn 1	Period(s	s) (year	s)			1,	30, 100		
		C	limate (Change ((응)			0	, 0, 40		
										Water	
	US/MH			Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	S	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
1.00	0 1	1440	Winter	100	+40%	30/60 Summe	er			24.994	
1.00	1 2	1440	Winter	100	+40%	30/30 Summe	er			24.994	
1.00	2 3	1440	Winter	100	+40%	1/60 Summe	er			24.994	
1.00	3 4	1440	Winter	100	+40%	1/30 Summe	er			24.994	
1.00	4 5	1440	Winter	100	+40%	1/15 Summe	er			24.994	
1.00	5 6	1440	Winter	100	+40%	1/15 Summe	er			24.994	
2.00	U 7	1440	Winter	100	+40%	30/120 Summe	er			24.994	
2.00	т 8	1440	winter	100	+40%	30/60 Summe	5 L.			24.994	
3.00	v 9 1 10	1110	Winter	100	+4US	30/240 Summe	:L			24.994	
J.UU		1440	Winter	100	+4U중 +/10의	30/180 Summe	r r			24.994 24 qq1	
3 00	1 10 2 10	1440	WW I I I I I	T 0 0	0.01	20/120 Summe	r-			2 1	
3.00	2 10 3 11	1440 1440	Winter	100	+40%	JU/IZU JUNNE	/ _			24.994	
3.00 3.00 3.00	1 10 2 10 3 11 4 12	1440 1440 1440	Winter Winter	100 100	+40% +40%	30/120 Summe	er			24.994 24.994	
3.00 3.00 3.00 1.00	1 10 2 10 3 11 4 12 6 7	1440 1440 1440 1440	Winter Winter Winter Winter	100 100 100	+40% +40% +40%	30/120 Summe 1/15 Summe	er er			24.994 24.994 24.994	
3.00 3.00 3.00 1.00	1 10 2 10 3 11 4 12 6 7	1440 1440 1440 1440	Winter Winter Winter	100 100 100	+40% +40% +40%	30/120 Summe 30/120 Summe 1/15 Summe	er er			24.994 24.994 24.994	
3.00 3.00 3.00 1.00	1 10 2 10 3 11 4 12 6 7	1440 1440 1440 1440	Winter Winter Winter	100 100 100	+40% +40% +40%	30/120 Summe 1/15 Summe	er er			24.994 24.994 24.994	
3.00 3.00 3.00 1.00	1 10 2 10 3 11 4 12 6 7	1440 1440 1440 1440	Winter Winter Winter	100 100 100	+40% +40% +40%	30/120 Summe 30/120 Summe 1/15 Summe	er er			24.994 24.994 24.994	
3.00 3.00 3.00 1.00	1 10 2 10 3 11 4 12 6 7	1440 1440 1440 1440	Winter Winter Winter	100 100 100	+40% +40% +40%	-2019 Tapa	vvze			24.994 24.994 24.994	

WSP Group Ltd		Page 14
	Former Maria Fidelis School	
	Surface Water Network	
	Attenuation Requirements	Mirro
Date 03/08/2021	Designed by JAF	
File Surface Water Network.MDX	Checked by AP	Diamage
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	1.500	0.000	-0.01		-0.2	FLOOD RISK	
1.001	2	1.644	0.000	-0.01		-0.4	FLOOD RISK	
1.002	3	2.204	0.000	-0.02		-0.6	FLOOD RISK	
1.003	4	2.301	0.000	-0.03		-0.8	FLOOD RISK	
1.004	5	2.395	0.000	-0.04		-1.0	FLOOD RISK	
1.005	6	2.445	0.000	-0.05		-1.2	FLOOD RISK	
2.000	7	1.176	0.000	-0.01		-0.2	FLOOD RISK	
2.001	8	1.266	0.000	-0.01		-0.4	FLOOD RISK	
3.000	9	0.644	0.000	-0.01		-0.2	FLOOD RISK	
3.001	10	0.816	0.000	-0.02		-0.6	FLOOD RISK	
3.002	10	0.988	0.000	-0.03		-0.9	FLOOD RISK	
3.003	11	1.084	0.000	-0.04		-1.1	FLOOD RISK	
3.004	12	1.181	0.000	-0.06		-1.3	FLOOD RISK	
1.006	7	2.484	0.000	0.04		1.0	FLOOD RISK	

APPENDIX 6

Camden LLFA SuDS Proforma

Pro-forma for any schemes in flood risk areas & all major development - Camden LLFA

All yellow boxes must be completed on this and all relevant tabs Complete peach cells with source document and section/page references, required to support/justify responses Do not edit grey cells Please note guidelines / notes in column M Complete all relevant tabs

Introduction: This Proforma is intended to help you understand the Sustainable Drainage and Flood Risk considerations that the Lead Local Flood Authority (LLFA) and Local Planning Authority (LPA) will take into account when considering an application in Camden, as well as helping us to consider the application. This does not replace the need also to provide where required a Drainage Statement, Flood Risk Assessment, and GLA-Camden SuDS Pro-forma, and observe the detailed guidance in 'Camden Planning Guidance (CPG) Water & Flooding'. Any information provided should be referenced to the relevant section of submitted supporting documents. This summary page will help provide key details on the application. Note that certain cells on this and other tabs will be populated automatically from previous answers given.

A. Application details

Planning reference (if known)								
Scheme name	Maria Fidelis Cor	Iaria Fidelis Construction Skills Centre and Site Accomodation						
Scheme address	Maria Fidelis Cor	nvent School, North	Gower Street,	Euston Road, London				
Postcode	NW1 2LY							
Scale of development as registered	Major							
Scale - policy subcategory		Residential parts	Major - other	Non-residential parts				
Type(s) of development	Non-residential	New/re-b	build					
Site area, hectares	0.2446	100%						
Of which total permeable area, to nearest 0.0001 ha	0.0122	5%						
f which total impermeable area, to nearest 0.0001 ha	0.2324	95%						

	Existing		Proposed						
	TOTAL pre- development	For demolition	New-build incl. infills, re-build, extensions	Retained (refurbished or change of use)	TOTAL post- development	Net UPLIFT post- development			
Total floor area of development (GIA)	0	0	7125	0	7125	7125			
of which residential			0	0	0	0			
of which non- residential	0	0	7125	0	7125	7125			
Number of residential units	0	0	0	0	0				
List all use class(es)	D1	B1(a)							

Drainage Statement document deta	ails							
Flood Risk Assessment document details		1CP01-MDS_ARP-EV-REP-SS08_SL23-990007, James Forsdyke, 03/08/2021, C01						
Recommendation (Council to complete)	B. Flood Ris	k and SuDS - Policy & Documents Filter						
	Site area 1 hectare or greater? Major application?		No Yes]				
	In Critical Drainag In or bordering (< Name of LFRZ(s) On Historically FI Name of HFS(s): Area at risk of fi	ge Area? 50m) Local Flood Risk Zone(s)? : ooded Street 1975 or 2002? ooding (surface water)?	Yes No n/a No n/a No					
	Elevated groundw In area with recor In street with histo Area at risk of flo	vater susceptibility or <50m of GW ded sewer flooding incident? orical underground watercourse? ooding (other relevant types)?	ir <mark>Yes</mark> No No Yes					
Approve/Condition/Refuse Approve/Condition/Refuse	Basement propos IF YES, list propo IF YES, are habit IF NO, is other (n Vulnerable deve	ed - new, enlarged or change of us sed basement uses (all spaces): able or vulnerable use(s) included? on-basement) vulnerable developn lopment in flood-prone area?	ne No No CHECK SITE DETAILS					
Approve/Condition/Refuse	Site-specific Floo Site-specific FRA	d Risk Assessment (FRA) required submitted?	? CHECK SITE DETAILS Yes	If Yes, go to Flood Risk Propos	als tab			
Approve/Condition/Refuse	Drainage Stateme DS submitted?	ent (DS) required?	No No	If Yes, go to Flood Risk Propos	als tab			
Approve/Condition/Refuse	Sustainable drain SuDS proposals	age (SuDS) proposals required? submitted?	CHECK SITE DETAILS Yes	If Yes, go to SuDS Proposals ta	b			
Approve/Condition/Refuse	FRA/DS/SuDS su Supporting evider	pporting evidence required? nce submitted?	CHECK SITE DETAILS Yes	If Yes, go to Flood Risk Propos	als &/or SuDS Proposals			

Flood Risk Assessment, Proposals & Evidence

Performandation						
(Council to complete)	Assessments	Required?	Document submitted?	Document title	Page/ section reference	Guidelines / notes
	Site-specific Flood Risk Assessment	CHECK SITE DETAILS	Yes	Maria Fidelis Flood Risk Assessment		Policy CC3 c. consider the impact of development in areas at risk of flooding (including dratange) & dr. incorporate flood resilient measures in areas prone to flooding; Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.
	Drainage Statement SuDS Proposals tab completer	No No	No No			Policy CC3 c. consider the impact of development in areas at risk of flooding (including drainage);
	SuDS Proposals SuDS Proposals tab completer	CHECK SITE DETAILS	7 Yes 7 Yes			Policy CC3 b. avoid harm to the water environment and improve water quality & cutiles quartise burnings gystems (SuDS) in the with the drainage hierarchy to achieve a greenfield run-off rate where feasible
Recommendation (Council to complete)	Policy compliance Assessments address local, regional & national policies include suitable research & quantification of site flood risks address comulative impact of development propose suitable flood fingers internal coping measure propose suitable flood fingers.	Required? CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS	Requirement met? Yes Yes Yes No Yes	Document title Maria Fidelis Flood Risk Assessment Maria Fidelis Flood Risk Assessment Sate set above pack flood Risk Assessment Maria Fidelis Flood Risk Assessment	Page/section reference Sections 2 & 3 & Appendix 2 Section 3 Sections 3 & 4	including Local Plan CC3, QPG, new London Plan, National Planning Policy Framework including Strategic Flood Risk Assessment, Update LFR2 Map & EA Mapping Policy CC3 c. consider the impact of development in areas an trick of todong Policy CC3 d. incorporate flood resilient measures in areas prore to flooding. Policy CC3 d. incorporate flood resilient measures in areas prore to flooding.
	Internal water consumption target 105 l/p/d (residential) External water consumption target 5 l/p/d (residential) BREEAM Excellent water consumption target (non-resi >500m2	No No Yes	n/a n∕a n∕a			Policy CG3 a. Incorportae water efficiency measures Policy CG3 a. Incorportae water efficiency measures Policy CG3 a. Incorportae water efficiency measures
	Will not locate vulnerable development in flood-prone area Scheme does not increase flood risk on & off site Scheme reduces on&off-site flood risk where possible	Yes CHECK SITE DETAILS CHECK SITE DETAILS	No Yes Yes	Maria Fidelis Flood Risk Assessment Maria Fidelis Flood Risk Assessment	Section 4 Section 4	Policy CC3 f. not locate vulnerable development in flood-prone areas. Policy CC3 the Council will seek to ansare that development does not increase flood risk Policy CC3 The Council will seek to ensure that developmentreduces the risk of flooding where possible
Recommendation (Council to complete)	Evidence supporting Assessments & Proposals Drawings showing site-specific flood risk up to 100yr+40% Drawings showing proposed flood miligation measures Drawings showing proposed flood miligation measures Drawings showing proposed basemetrypound floor uses Building flood risk emergency evacuation plan Drawings showing ondio-Risk evaluated exocedance flows	Required? CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS CHECK SITE DETAILS	Evidence submitted? Ves No Ves Ves No No Ves Ves Ves Ves Ves	Document title Maria Fidelis Flood Risk Assessment Bite set above peak flood levels Maria Fidelis Flood Risk Assessment Maria Fidelis Flood Risk Assessment Maria Fidelis Flood Risk Assessment	Page/ section reference Section 3 & 4 Section 4 Appendix 1 Section 4	allowing 300mm freeboard to potential water ingress points
	Internal water calculations & proposals (resi External water calculations & proposals (resi BREEAM water calculations & proposals (non-resi >500m2) <u>No</u>) <u>No</u>) Yes	n/a n/a n/a			Policy CC3 a. incorporte water efficiency massures Policy CC3 a. incorporte water efficiency massures Policy CC3 a. incorporte water efficiency massures

Sustainable Drainage (SuDS) Assessment, Evidence and Proposals

Recommendation (Council to complete)	Assessments	Document submitted?	Document title	Page/ section reference	Guidelines / notes
	Drainage Statement (DS)	No			Policy CC3 c. consider the impact of development in areas at risk of flooding (including drainage);
	GLA-Camden SuDS Pro-forma (fully completed)	Yes	Camden Flood-SuDS Proforma v1_Maria Fidelis FRA		Download from www.london.gov.uk/what-we-do/environment/climate-change/surface-
Recommendation (Council to complete)	Policy compliance	Requirement met?	Document title	Page/ section reference	
	DS must include identification of flood risk	Yes	Maria Fidelis Flood Risk Assessment	Section 3	
	DS must include assessment of existing, greenfield & proposed runoff rates	Yes	Maria Fidelis Flood Risk Assessment	Section 4 Table 4-1	Policy CC3 e. utilise Sustainable Drainage Systems (SUDS) in line with the drainage bioreraby to applying a graphiald run off rate where feasible
	DS must include identification of measures, in line with the drainage hierarchy, to reduce runoff rates	Yes	Maria Fidelis Flood Risk Assessment	Section 4	& Policy CC3 supporting text §8.67
	Achieve greenfield runoff rates wherever feasible, or as close as possible	Yes	Maria Fidelis Flood Risk Assessment	Section 4	Policy CC3 e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage
	Constrain runoff volumes to greenfield for 100yr 6hr event where feasible	Yes	Maria Fidelis Flood Risk Assessment	Section 4	hierarchy to achieve a greenfield run-off rate where feasible
	Backstop target for unaltered buildings: >50% reduction in existing run-off				& Policy CC3 supporting text §8.66
	Developments must include SuDS unless inappropriate	Yes	Maria Fidelis Flood Risk Assessment	Section 4	Policy CC3 e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage
	Development should follow the detailed London Plan drainage hierarchy	Yes	Maria Fidelis Flood Risk Assessment	Section 4	hierarchy to achieve a greenfield run-off rate where feasible
	EA climate change factor applied: 2080s upper rainfall intensity allowance (40%)	Yes	Maria Fidelis Flood Risk Assessment	Section 4	& Policy CC3 supporting text §8.68
Recommendation (Council to complete)	Evidence supporting Assessments & Proposals	Evidence submitted?	Document title	Page/ section reference	
	Drawings detailing SuDS extent & position (incl. outfalls, control points, levels)	Yes	Maria Fidelis Flood Risk Assessment	Section 4 & Figure 4.1	
	Blue-green roof details with area & minimum 150mm substrate for storage	No			
	Results of cross-site infiltration rate or similar tests to show soil (in)compatibility	Yes	Maria Fidelis Flood Risk Assessment	Section 4	
	Professional run-off calculations supporting rates & volumes reported in DS	Yes	Maria Fidelis Flood Risk Assessment	Section 4 & Appendix 4	
	Drawings showing on&ott-site overland exceedance flows	Yes	Maria Fidelis Flood Risk Assessment	Figure 4.1	
	Evidence of site surveys and investigations relating to drainage	Yes	Maria Fidelis Flood Risk Assessment	See Appendix 2 and Section 4	
	Liteume maintenance and adoption arrangements (and maintenance owner) Management of health & safety risks related to SuDS design	Voc	Maria Fidelis Flood Risk Assessment	Section 4	
	Confirmation of discharge capacity (or correspondence) from relevant body or T	MYos	Maria Fidelis Flood Risk Assessment	See Appendix 2 and Section 4	
	commation of discharge capacity (of correspondence) norm relevant body eg m	100	Mana Flucio Fluou Max ASSESSITIETIL	See Appendix 2 and Section 4	