j. Structural Engineer's report by Mint Structures

6. Appendices

STRUCTURAL ENGINEER'S REPORT AND SUGGESTED BASEMENT CONSTRUCTION METHODOLOGY

PRODUCED AS PART OF A BASEMENT IMPACT ASSESSMENT IN SUPPORT OF AN APPLICATION FOR PLANNING

PROJECT REF:	M 20202/LS
SUBJECT ADDRESS:	30 Ferncroft Avenue London NW3 7PH
Commissioning Client:	Mr Dukagin Lipa
DATE OF WRITING:	March 2021

This document has been checked by;

Luke Smith BSc (Hons). MSc. CEng. MICE

TABLE OF CONTENTS	
TABLE OF CONTENTS	2
1. OVERVIEW	3
2 STRUCTURAL ASSESSMENT - DESK STUDY	6
3. BASEMENT CONSTRUCTION	14
4 SUGGESTED STRUCTURAL MONITORING PLAN	17
5. SUGGESTED METHOD STATEMENTS	19
6 CONCLUSION	23
7 REFERENCES	24
8 APPENDICES	25

	1. OVERVIEW							
	ARCHITECT: 4M GROUP.							
The primary details contained within this document are generated from drawings pr by 4M GROUP.This document is intended for the exclusive usage of the client /s listed above, the re remains the property of MiNT Structures and must not be reproduced in full or in pa used by any third party without prior written consent. This report is not intended as engineering design package and should not be relied on solely for any construction processes and should be read in conjunction with relevant Structural Engineering de designs and Architectural packages. Mint Structures have been instructed by the client to provide advice with regard to the impact of the proposed work from a structural perspective. The following document f guidelines set out within Camden Council's basement planning documentation; Camo Planning Guidance 4, and DP27. Basement and Lightwells. The Basement Impact Assessment has been produced jointly between MINT Structures Geotechnical & Environmental Associates (GEA) to ensure correctly qualified parties p the varied constituent parts. The aim in producing this report is to provide a suggest method of construction for the proposed development that will reduce impact on neighbouring structures and local infrastructure as far as is practicably possible.								
Scope of document	The content of this planning support document should be read in conjunction with suggested temporary works drawings set B1 – B6 and the reports produced by GEA as part of the Basement Impact Assessment, as well as any other relevant drawings/ details by other parties. The purpose of this report is to assess and comment upon the impact of the proposed development on neighbouring structures, and provide an indicative method statement and suggested construction sequence. These are intended to show a safe and practical way that the elements of temporary works could be installed and permanent works activities could be carried out. It should be noted that all temporary works drawings are indicative only and are not intended as detailed construction drawings, therefore all specific construction details should be provided by the structural engineer or other relevant parties at the detailed design stage. Construction arrangements or any dimensions; these should be specified by others and confirmed on site.							
Summary of Proposed Works	 Existing structure: The subject property is located on a site of approximately 0.086 Hectares, a substantial late 19th/ early 20th century four-storey (including existing lower ground floor) detached house, situated on a corner plot at the junction between Ferncroft Avenue and Hollycroft Avenue, in the London Borough of Camden. The house is of traditional construction, and over its life has undergone alterations to the internal layouts carried out by previous occupants. However the main building envelope remains largely unchanged from that of the originally constructed building. Proposed works: Lowering of existing lower ground floor level & extension of the lower ground floor into the front and rear of the site. Mass excavation at the rear of the property to form a single storey basement extension, including the installation of a lower ground level swimming pool. Rebuilding of part of the single storey extension to the rear. Support of superstructure over to allow RC basement wall construction and new basement slab installation. 							

Assumptions made at time of writing	 External walls are solid masonry, supported on either traditional corbelled or mass concrete footings. Internal walls at ground and lower ground floor level are solid masonry. Ground & upper floors are of suspended timber construction (barring existing rear extension). Property currently remains mainly unchanged structurally from its original form with any changes/repairs being in line with a property of its age.
Fundamental Construction Areas / Structural Methodology	 Reinforced concrete (RC) basement walls to be formed in one phase enabling the full required basement depth to be achieved to the majority of the property. Where a swimming pool is to be installed at lower ground floor level this will require phased underpinning formed in two "hits". Formation of basement and ground floor slabs to form a basement box capable of permanently resisting earth, water and surcharging pressures. Rows of horizontal props/shoring will be required to all full height underpins spanning or raking across to suitable propping positions or thrust blocks. Props should remain in place until the basement and any ground floor slabs have been fully constructed and have sufficiently cured providing permanent lateral restraint to the new RC retaining walls. A monitoring regime should be agreed with all relevant parties to ensure any movements are recorded frequently and managed to keep them with acceptable limits. All underpins and retained earth, require temporary works and shuttering during excavation and casting until slabs are cast.
Site Location	Fig.1 - Site map (Image from Google Maps, Copyright 2021).

	• Buildings of the age of the property in question have often reached equilibrium with their surroundings. The superstructure slowly deforms with time during its life to accommodate any minor settlements and therefore some work is likely to have been carried out in the past and additional repairs may be necessary as a result of the proposed works.
General Comments	• Any modifications to the existing property should be investigated with local opening up works to assess their potential impact on the proposed scheme.
	The contractor is responsible for the design and correct installation of all temporary works required to safely install the proposed basement and any other affiliated works. The contractor is to ensure that all excavations, any new structure and any neighbouring structures are adequately supported for the full duration of the works.

2 STRUCTURAL ASSESSMENT - DESK STUDY

UXO Risk

Geological information

•

Following a web based UXO search, there is no record of WW2 bombing in the immediate vicinity; see Figure 4 for results from a Bombsite.org web search. Further to this a bomb risk map was also consulted, which further indicated a low/moderate risk from UXO. From our research of these results it is considered unlikely that any structural implications associated with direct or indirect bomb detonations will be a risk at the subject property, please also see GEA report for further information on their commissioned preliminary UXO assessment.

Fig.4 & 5 - UXO map excerpts (bombsite.org, 2021; zeticauxo.com, 2021).

The 1:50000 Geological Survey of Great Britain (England and Wales) Geolndex covering the area indicates the site is underlain by the Claygate Formation with a deep London Clay layer below and a deposit of Bagshot Formation to the Northeast of the site.

Fig.6 - Taken from BGS.ac.uk (BGS, 2021).

- The location of the site is positioned over Claygate strata and although there is a degree of certainty with soil type, a site investigation was deemed necessary to ascertain the thickness of the Claygate member above the assumed deeper London Clay layer.
- Clayate soil types are generally formed from clays with lenses of sand and silts, having a typical thickness in London of 16m. The location of the site, however, close to the boundary with pure London Clay, suggested the actual thickness would likely be far thinner than this average, as confirmed in the subsequent soil investigation.

• The deeper London Clay formation typically comprises clay, silt and sand with occasional gypsum crystals and claystone at depth. At the site location the London Clay is likely to be approximately 50 to 100+m thick.

Deeper bedrock stratum is beyond the scope of this report.

Following the site investigation the site was confirmed to be underlain by a Claygate member over a deeper London Clay (see the appended Borehole logs). The site investigation included eight trial pits and three boreholes (location plan appended to this report) with ground water being encountered at two levels across the site.

The results from the SI showed the site comprised Made Ground extending to a depth between depths of 0.5m -1.3m in the boreholes; below this a Claygate Member was encountered consisting of firm becoming stiff silty sandy clay with lenses of clayey sand to depths between 6.0m-7.0m; Below the Claygate, London Clay was encountered which consisted of stiff becoming very stiff clays to the full depth for Borehole 1. A slow Groundwater inflow was recorded at a depth of 6.0m within the deepest borehole.

The results of the site investigation are summarized typically below. See Appendix 2 for records of boreholes, and GEA report for further detail.

Strata	Depth to top of strata (mbgl)	Depth to base of strata (mbgl)		
Made Ground	0.00	0.5-1.30		
Claygate Member	0.5-1.30	6.0-7.0		
Clay Member	6.0-7.0	(Continuing)		

It should also be noted that isolated pockets of perched groundwater may be present within material of low permeability found at shallow depths (especially within bands of Made Ground). It is recommended that the water levels in standpipe monitoring points are periodically measured immediately prior to, and during construction. This will help to ensure correct measures are taken if water is likely to be encountered during excavation.

For further information on the soil investigation please see the accompanying reports produced by GEA addressing Geology and Hydrogeology in more detail, as well as their interpretative SI report.

The site slopes Northward from the front to the rear, with the rear garden being 4.0metres above the front of the property. The site is mainly level having been terraced at the front and rear to form a level ground floor/garden area. Also see fig 7 below and GEA reports for greater topographical information.

Fig.7 - Showing location of site inside 0-7° slope areas Figure 16 from Camden Geological, Hydrogeological and Hydrological Study.

Site investigation data

Topography

Flood Risk

According to the EA flood map for planning, the site is situated in Flood Zone 1 meaning it is of low risk from flooding, the extracted EA image below shows the proximity of the site to local areas of likely flooding. The specific risks from flooding are then further analysed in the following pages.

Fig.10 - Showing flood zone according to the Environment Agency (2021).

River or Tidal flooding

The site is located within an area at very low risk of flooding from rivers according to the EA flood warning information service (See below).

Fig.11 - Showing flood risk from local river flooding according to the EA (2021).

Surface water flooding

The site is again located in an area of very low risk of flooding from surface water (see below).

Fig.12 - Showing flood risk from surface water flooding according to the EA (2021).

Very low risk means that each year this area has a chance of flooding of less than 0.1%. This takes into account the effect of any flood defences in the area. These defences reduce but do not completely stop the chance of flooding as they can be overtopped, or fail.

Sub-basement groundwater flow.

An initial web based search indicated that the site is located over a 'Secondary A aquifer' and is at medium risk in terms of ground water vulnerability, as shown in the figures below. The significance of this is further discussed alongside the results from the site investigation below.

Fig.13 (Left) - Showing location of site over the Secondary A aquifer from Figure 8 from Camden Geological, Hydrogeological and Hydrological Study.

Fig.14 (Right) - Showing location of site over a medium risk from groundwater from DEFRA MAGIC - Groundwater Vulnerability Map.

Groundwater flooding occurs when water levels rise above ground level surfaces, and generally poses greatest risk when a site is underlain by permeable strata such as sands and gravels over impermeable bedrocks. Groundwater fluctuates annually and is affected seasonally as variances in moisture rise and fall during wetter and drier seasons with water channelling into and flowing through local water systems.

The site is underlain by a Claygate member, which is classed as Secondary Aquifer by the Environment Agency. The soil type encountered on site is defined as having the ability to allow shallow ground water to flow through it, within lenses of granular material. The site investigation identified that a "very minor" inflow of ground water was encountered at 3.5-4.5m from perched water and at 6.0m where a slow ground water flow was encountered, with limited rise in water level.

The majority of the front section of the proposed basement is either already at lower ground floor level, requiring only a minimal additional excavation, or is above local ground water levels as recorded by the investigations carried out on site. However, the rear of the site will be excavated to a greater degree, closer to the level of recorded ground water levels. This therefore means that there is some chance that water ingress may occur during the excavations in this area. Typical sump dewatering may therefore be required if ground water is encountered during this phase of work, however the limited rise in water levels and slow seepage indicates this will likely be eminently manageable. The position of the swimming pool means that dewatering would likely be remote from neighbouring structures, reducing the likely effect this may have in terms of potential temporary subsidence. Ground water is expected to run following the local topography i.e. in a mainly southerly direction; therefore there is a risk, to a small degree, that the new basement may increase damming to the ground water. This has been considered alongside the composition of the site soil conditions and is considered unlikely to have a significant effect on groundwater flows. This is because the soil type is already predominantly cohesive with flows likely channelled in granular lenses which if encountered may need temporary dewatering. Groundwater movement around this type of proposed structure is also cited in the Geological, Hydrogeological and Hydrological Study which states that large excavations for subterranean structures in London have, to date, not been seen to cause serious problems resulting from damming groundwater. Considering the above, the impact the proposed construction will have on groundwater conditions is considered low, and related structural issues will be manageable with adequate shoring of excavations, local dewatering and design of the basement walls with a full head of water as is standard practice in a basement of this type.

Effect of development on local sewerage/surface water systems

The current sewerage system serving the property in its existing condition is assumed to have sufficient capacity to manage any proposed foul water demands as little flow or volume change is expected. It should be noted that this is a pre-planning report and therefore specific proposed drainage details are not available at the time of writing. It can be safely assumed, however, that because the basement will be below the level of existing site drainage, the new basement will utilize a pumped drainage arrangement, incorporating fail-safe systems to minimize risks of flooding. To minimize the storage capacity and pumping requirements for basement drainage systems, it is suggested that the upper levels of the property above ground level are served by a gravity drainage system. It would also be best practice to maintain separation between the new surface water and foul drainage systems throughout the site, only converging at the final manhole before discharging into the assumed combined public sewer.

Fig.15 - Showing location of site in relation to the Hampstead Heath Pond Chain from Figure 14 from Camden Geological, Hydrogeological and Hydrological Study.

As shown above, the subject property is not within the catchment of the Hampstead Heath Pond Chain the boundary of which is approximately 300-400m from the site.

The proposed site surface area will remain largely unchanged with proposed areas of hardstanding remaining similar to those in the existing condition, therefore existing surface water discharge rates are not expected to increase.

The soil investigation indicated cohesive Claygate/London Clay members below the site and is therefore likely to have a medium/high susceptibility to shrinkage/swelling. The proposed Effect of nearby formation level for the basement however will extend significantly deeper than the level at which tree & vegetative growth would affect soil moisture content. Therefore, the potential effects of nearby trees are not considered in any further detail in this report.

trees

The Camden Geological, Hydrogeological and Hydrological Study confirms that an area of significant landslide potential is located at the boundary between the Claygate and London Clay soil types. This boundary however, is remote from the subject property and therefore the proposed works have been judged to pose no risk in terms of landslide potential. Furthermore, following a site walk over, no obvious evidence could be seen to indicate any issues with previous slope instability, or within the surrounding areas, as far as could be seen at the time of our visit. The proposed excavations will not extend below either of the public highways

Land Stability bounding the property, and are quite far removed from them. Therefore it is very unlikely the construction activities will have any effect on the nearby roads. With the above taken into account, a full slope stability assessment was not deemed a requirement for this site.

3. BASEMENT CONSTRUCTION

<u>General</u>

The structural proposals for the proposed basement deepening and lightwell construction are included in the Appendices 3 and 4. The deepening and extensions of the existing basement will be carried out in non-sequential underpinning. The majority of the underpinning required to the front will be low-level and formed in reinforced concrete with short stem heights, to the rear full height RC underpinning will be installed, with a short section of wall cast in two phases enabling a swimming pool to be formed. The Basement 'box' will be completed with the casting of RC base and ground floor slabs.

The proposed basement will require a Grade 3 rated basement (BS8102) providing a watertight construction and it is assumed that an internal cavity drained system will be installed to achieve this. The design of all waterproofing is beyond the remit of MiNT Structures and must be confirmed by an appropriate waterproofing specialist. The design and construction of the proposed scheme must be carried out to comply with current statutory guidelines, British Standards, CDM and H&S requirements.

Basement walls

Basement walls (low-level and full-height) are to be formed in reinforced concrete following the underpinning sequence shown (see fig 17). In the permanent case the concrete walls will support any load applied from the structure over as well as resisting and retaining soil, surcharging & any water present behind them. The proposed construction of the basement walls in this way is supported by Table A3 within the Camden Geological, Hydrogeological and Hydrological study. The study shows that bearing capacity of a footing founded within a cohesive soil is unlikely to be substantially affected by loss of overburden associated excavations near a footing (unless the existing loading case is close to ultimate capacity, which is not the case at the subject property, as shown in the appended estimated existing line loading drawing.)

Fig. 17 - Typical underpinning sequence.

Heave protection

The removal of excavated soil to form the basement will significantly reduce the loading on the Claygate and deep London Clay layer present below the property creating the conditions for heave to occur. As stated in GEA's report an uplift of either 40% of maximum unloading pressure (48kN/m²) should be taken, or implement measures to account for a potential maximum predicted heave movement of 22mm. The suggested layout can accommodate either solution and an example uplift calculation is presented within the appendices 3 of this report, resulting in a requirement of B1131 mesh in the top face of the slab (this assumes the slab spans side-to-side with a centralised RC beam strip to provide stiffness thus splitting the overall span). Alternatively heave protection could be used to negate the effect of heave, taking a high shrinkage soil type and specifying a suitable compressible void former, typically 160-220mm in thickness for basement slabs (slab designs should account for a residual failure uplift load). The selection of the final site specific heave precautions will be driven by the requirements of the final detailed design, taking account of the stability of the basement box as a whole structural system.

	Concrete used in underpinr	ing/slabs									
	(Details below to be confirmed by appointed structural design engineer)										
	Mix designation: <i>RC</i> 40 Aggregate size: 20mm Cube strength: 40N/mm ²										
Materials	Notes: 1. Unless otherwise instructed a 50mm thick blinding layer should be provided beneath all reinforced concrete to provide a clean level surface and avoid pouring directly on to ground/hard core. 2. High Alumina Cement (HAC) should not be used under any circumstances. Concrete cover All cover should adhere to minimum values specified by the Eurocodes (BS EN 1992-1-1:2004). It is recommended that: Concrete internal cover = 35mm Concrete external cover = 50mm										
		Direct contact with	ground	= 75mm							
Waterproofing	A specialist designed waterpr protection against the ingress measures of this type, howev waterproofing specialist is co minimum, the final waterproof for protection of below groun	oofing system will be requ s of groundwater, the deta er, are beyond the remit o ntacted early on in the de ofing system complies wit d structures against wate	uired to give the c ailed design and s of this report. It is sign process and h BS8102:2009 - r from the ground	orrect level of pecification of advised that a that, as a <i>Code of practice</i> f.							
Ground Bearing pressure	Allowable GBP @ Basement fo Allowable GBP @ Pool format	ormation level = 140kN/r ion level = 200kN/r	m ² (from GEA repo m2 (from GEA rep	ort) ort)							
Damage Classification	A full ground movement anal proposed works on the subject produced by GEA provides gree out to categorise the predicte with this report. The excerpt by GEA. "The analysis has concluded to from the construction of the 'Very Slight' and therefore to limits." This statement refers system used to classify dama this Category 0 related to a 'N	ysis was carried out by GE t property and the neighb ater detail with regard to d damage category, and t below is taken from the re that the predicted damage e underpins and excaval he damage that would occ to damage in relation to ge which is detailed in Ta Negligible' damage and Ca	A to assess the in pouring buildings. the assessment a this should be read esulting damage of to the neighbour tions would be cur would fall wit the Burland scale the Burland scale the G.4 of CIRIA m ategory 1 to 'very	mpact of the The report and analysis carried d in conjunction category conclusion ring properties 'Negligible' to hin the acceptable , the accepted eport C760, within slight'.							

Differing site/ neighbouring foundation depths.	Mass excavations associated with the construction of basements increase the potential that a development will cause ground movement in the local area if the construction processes are not managed correctly. The proposed basement detailed will significantly increase the difference between the subject and neighbouring propertys' foundation depths. However, these movements can be mitigated with experienced and proper design processes adhering to the relevant Codes of Practice. The design of both the temporary works and permanent works must be carried out by a suitably qualified, and crucially, experienced team of engineers, architects, designers and other specialists working closely to ensure that as far as is practically possible the proposed scheme has any possible weaknesses, where movements may occur, designed out. The Party Wall Etc. Act (1996) applies to the proposed works and the Party Wall legislation must be adhered to throughout the construction period. A ground movement assessment (GMA) has been carried out by GEA to accompany the BIA and this report. The GMA concluded that the proposed development was unlikely to cause
	significant damage provided good workmanship and logical construction sequences are followed; including but not limited to enabling works, temporary support and correct management of water ingress.
	Following the GMA it was predicted that neighbouring structures are predicted to be within the CIRIA C580 Damage Category 1 (Very Slight).
	A monitoring plan should be set out at the design stage, however an indicative suggested plan is included in the next section (this is <u>not</u> for any on-site purposes and all monitoring must be carried out by a specialist company to their own method statements).
	The resistance of the existing and surrounding buildings is defined in BS 4866:2010 in
	Annex B and the subject and neighbouring buildings fall into Group 1 in clause B.4.1 (traditionally built) - "Generally, this group is of heavy unframed construction and has a very high damping coefficient due, for example, to soft lime mortar or plaster". The foundations for the subject and neighbouring buildings are assumed to fall into Class C in clause B.5.3 (Strip footing/corbelled footings). The soil type from drift maps and boreholes is a Claygate member, therefore according to
Differing site/ neighbouring foundation depths. Resistance to vibration Noise	clause B6 the soil is classified as type e - <i>"soft cohesive soils (clays)".</i> According to table B.1 the subject and neighbouring buildings can be classed as Category
	5/6 which indicates a medium to high resistance to vibration.
	indicates a medium to high level resistance to vibration which requires minor protective
	measures against vibration. The method of construction detailed with the construction
	and Vibration mitigation will protect the neighbouring buildings from the effects of
	vibration during construction.
	The selected contractor should carry out all site activities trying wherever practically nossible to reduce dust noise and vibrations. This is especially of concern when working
	close to neighbouring buildings and public highways, to try to protect neighbours and
Noise	members of the public. Underpinning should be carried out by hand digging only, the use
	or excavators should be prohibited. The methods of construction suggested in this report should help to ensure that
	construction noise and vibration will be minimised as far as is possible if proper and safe
	design processes and construction practices are followed.
Darhy Walls	The proposed works are subject to the Party Wall etc. Act 1996 and it is therefore advised
raity walls	necessary Party Wall awards are in place before work commences.

	4 SUGGESTED STRUCTURAL MONITORING PLAN
Preliminaries	The following suggested monitoring method statement is intended as a purely indicative guidance document to establish a recommended 'base' monitoring level. All details contained within the following pages must be confirmed by a specialist monitoring contractor and are based on what MiNT Structures, as structural engineers, consider to be advisable procedures to minimise damage caused as a result of the proposed construction activities. The monitoring specialist/principal contractor may choose to produce an alternative method of monitoring for specific activities; specifications by the contractor/specialist will supersede/overrule the indicative content of this document.
	This statement should not be taken as the final monitoring specification and MiNT Structures can accept no liability for any damage caused as a result of deficiencies in monitoring specifications/methods undertaken.
scope of works	It is proposed to install a retrofit basement at the above address, using non-sequential underpinning to form perimeter basement walls linked at basement founding level with an in-situ cast RC base slab. These works have the potential to cause damage through ground movement or construction related vibrations therefore monitoring is required to attenuate this risk.
REQUIRED LEVEL OF	 Monitoring should be carried out during construction to aid in ensuring that any movement caused by the proposed construction is not excessive and also to act as a warning indicator to help mitigate damage. It is advised that the final monitoring plan includes the following: Production of schedules of condition at the neighbouring properties at the beginning (prior to commencement) and at the end of the works, carried out by a relevant Party Wall representative.
MONITORING	 Exposure of perimeter existing footings through the digging of trial pits to confirm foundation condition and that any bearing width assumptions made at design stage are appropriate. Regular visual inspections of walls being underpinned. Vertical monitoring measurements. Lateral monitoring measurements.
Methods of Monitoring	 GENERAL VISUAL MONITORING OF THE PARTY WALLS CRACKING TO PARTY WALL MASONRY - ATTACH DEMEC PINS/TELL-TAILS TO RECORD SIGNIFICANT CRACKING. SETTLEMENT MONITORING - AUTOMATIC LEVELLING EQUIPMENT AND TARGETS. LATERAL MONITORING - MEASURING OF DISTANCES BETWEEN EXTERNAL WALLS VIA TARGETS/LASER MEASURING TO RECORD ANY RELATIVE DIFFERENCES BETWEEN WALL FACES. General notes: The number of and positioning of levelling equipment will likely be required to change during construction, this should be agreed between the contractor and monitoring specialist as work progresses. It should be ensured that throughout construction all required monitoring can be accomplished with ease. Levelling equipment and targets should be protected against damage and clearly marked on site. Any monitoring equipment damaged during site works should be reported to the monitoring specialist and replaced immediately. All readings should be regularly distributed to the design team and should be presented in a neat and easily comprehensible manner. A summary of readings should be distributed

PRINCIPAL Contractor Responsibilities	 The contractor must take responsibility for ensuring that all site working practices are planned to minimise settlement as far as practically possible, this should also involve ongoing reviews of working methods to mitigate progressive damage if settlement is recorded. The contractor must also take responsibility for the execution of immediate reparation works if required following settlement readings over specified trigger levels (see trigger values below). The contractor should review all monitoring readings with the monitoring specialist prior to distribution to the design team and check all readings are accurate. 						
TRIGGER VALUES	A 'traffic light' system should be adopted with the use of Green, Amber and Red trigger levels as follows (values based on GEA predicted movements); GREEN (0-6mm) - Activities OK to proceed. AMBER (6-12mm) - Increase the monitoring frequency (minimum twice weekly), review of structural scheme and start implementing contingency measures if trends indicate the Red trigger may shortly be reached. [Showing recorded values are close to maximum projected settlement (say max. 80% of predicted settlement)] RED (>12mm) - Implement measures to secure site, cease movements and stop all construction works. [Showing recorded values are at, or above tolerable levels, exceeding serviceability limit states.]						
	Where maximum movements are recorded exceeding Amber/Red trigger values these should immediately be reported to the design team along with a description of all recent on- site activities. A review of the results should be undertaken and readings re-checked to confirm their accuracy, the design team should not assess the movement focussing solely on the affected areas but also review the site as a whole, checking for non-proximate contributory factors. Appropriate repair specifications and reviews of working practices should be specified and implemented to minimise risk of progressive settlement. NOTE: The trigger levels suggested within this document are indicative only. Final movement levels must adhere to Local Authority guidelines and specialist guidance, with these being obtained before confirmation of final trigger values.						
TARGET LOCATIONS	Precise locations for levelling targets should be prescribed by the monitoring specialist, however, the following guideline is suggested; As stated in the BRE digest $386 - Monitoring$ building and ground movement by precise levelling - a minimum of 8-12 target locations should be installed around the whole site to provide Northing, Eastings and Level measurements to an accuracy of ± 0.3 mm (It is recommended that targets are installed at each storey height). Consideration should also be given to the provision of monitoring locations on neighbouring structures (provisions of this type TBC by monitoring specialist and relevant Party Wall representative).						
Monitoring Frequency	 PRIOR TO COMMENCEMENT OF CONSTRUCTION, MONITORING READINGS SHOULD BE CARRIED OUT ONCE TO ESTABLISH A SET OF CONTROL VALUES. AS SOON AS BASEMENT CONSTRUCTION COMMENCES MONITORING SHOULD BE CARRIED OUT, READINGS SHOULD BE TAKEN FOLLOWING THE CURING OF EACH OF THE FIRST FIVE PINS POURED. IF LEVELS OF OBSERVED SETTLEMENT ARE WITHIN ACCEPTABLE LIMITS FOLLOWING THE FIRST FIVE PINS, MONITORING FREQUENCY CAN BE REDUCED TO TAKING READINGS FOLLOWING CASTING OF EVERY OTHER PIN. POST-CONSTRUCTION- FOLLOWING COMPLETION OF ALL WORKS MONITORING SHOULD BE TAKEN TWICE MORE AS A MINIMUM. Note: Final monitoring intervals and levels of pre- & post-construction readings must be 						

5. SUGGESTED METHOD STATEMENTS

SUGGESTED OVERALL SEQUENCE OF WORKS

The site position is advantageous for the proposed works due to access being available from both the front and side of the property. Deliveries can be taken easily to the rear of the site where there will be little construction activity being carried out.

The brief sequence of works laid out below is suggested <u>only</u> and should be confirmed and superseded by the appointed contractor following delivery of the full construction design package.

Set-Up: Hoard the full open perimeter of the site. Services running through the site should be identified accurately and safely isolated and any measures to protect trees or vegetation should be implemented as agreed with relevant parties.

Preparatory Works: An agreed monitoring regime should be set up to keep a watching brief on any movement caused by excavation to ensure they are within acceptable limits. Non-structural strip out can be carried out to remove any internal elements that will enable easier access for underpinning including any suspended timber floors or ground bearing slabs. Confirm the working methods for transfer and removal of spoil from the site; it is assumed, at this stage, soil will be removed using a typical conveyor to deposit soil into skips to be removed by skip or grab lorries.

Superstructure temporary support: Where required for access, temporary beams and needles should be installed to allow works to progress, installed as specified in the Temporary Works package.

Non-consecutive underpinning: Dig initial underpins in a few locations across the site ready for inspection of quality of the soil condition, to confirm suitability of proposed underpinning method. Once confirmation of soil condition has been carried out the underpinning of the main house can continue in a contractor agreed sequence, installing the RC sections in widths as specified in the construction drawings / method statements, installing specified heavy duty horizontal/raking propping to resist lateral movement.

Mass Excavation: Following completion of the permanent underpinning, the central retained earth bund can be reduced, installing horizontal propping across the site in accordance with the Temporary Works specifications. These must remain in place until the full basement construction process is complete and cured to provide full support.

Forming the RC box: Following mass excavation the basement slab can be cast with lateral propping remaining in place. Permanent support to the superstructure should be installed next, allowing the casting of the ground floor slab, thus completing the basement box (barring the formation of the swimming pool).

Swimming Pool Excavation: To the rear of the basement, a swimming pool is to be installed, resulting in the retaining wall needing to be cast in two sections. The first phase of underpinning will initially be taken down to the main basement level allowing the formation of a temporary boot/RC lateral support beam. Following mass excavation and full propping, the swimming pool formation level can excavated in an underpinning sequence forming the pool at sub-basement level, with an RC box homogenously linked to the basement slab (see suggested sequencing on drawings B1 – B5). Following curing of the swimming pool box and basement area as a whole, all shoring and temporary propping can be removed and other construction activities can continue above and within the basement.

1. <u>TYPICAL BASEMENT UNDERPINNING SEQUENCE</u>

- 1.1. Remove existing timber floor (if required for access).
- 1.2. Hand excavate pins in sections not exceeding 1.0m following numbered sequence provided in Temporary Works drawing package. (Typical number sequence shall be 1, 3, 5, 2, 4) under no circumstances are adjacent pins to be opened during construction.
- 1.3. During excavations ensure vertical faces are shored at all times using 18mm ply, timber wailing pieces and horizontal strutting. The exposed face of the excavation should be lined with 'Hardie Backer 500' cement board trench sheeting or similar permanent sacrificial shuttering with de-bonding membrane installed to the inside face of trench sheets prior to concreting.
- 1.4. Reinforcement should be placed in position in preparation for casting the underpinning base, starter bars should be provided to enable a connection between the base and the vertical stem to be formed.
- 1.5. Local authority building control officer or appointed inspector to inspect and pass reinforcement prior to concreting base section.
- 1.6. Pour concrete base and kicker sections to structural engineer's details. Use vibrating pokers to ensure full compaction of concrete and removal of trapped air pockets within forms.
- 1.7. Once base has sufficiently cured (min 24 hours) place reinforcement to vertical stem including horizontal dowel link bars to neighbouring pins (horizontal dowels to structural engineer's specification).
- 1.8. Formwork to be secured with heavy timbers and "Leada Acrow" or similar trench props supported off of the central earth mass to retain the concrete during pouring. Leave 75mm clearance between top of concrete pour and underside of existing foundation.
- 1.9. Pour concrete stem section to structural engineer's details, use vibrating pokers to ensure full compaction of concrete within forms.
- 1.10. Allow 48 hours curing time between concrete pour and installation of dry pack. Clean underside of existing foundation using wire brush or similar in preparation for installation of dry pack.
- 1.11. Use 1:3 dry pack well rammed into position between head of pin and underside of existing foundation (Dry pack to be installed after each individual pin has been cured see point 2.1 regarding corbel removal.)
- 1.12. Strike formwork following lapsing of sufficient curing period (normally approximately 7 days)
- 1.13. Underpinning is to continue according to sequence specified in Temporary Works drawing package following previously described method.
- 1.14. Central earth mass is to be retained to enable local shoring of pins and trenches as underpinning progresses.

- 1.15. Following completion of all underpinning the central soil mass can be excavated in stages to allow installation of high level lateral "Mabey Mass 50" or similar engineer approved props in accordance with propping plan (Drwg TW1).
- 1.16. The remaining central soil mass can now be removed and a second row of lateral props can be installed to restrain the lower 3rd of the pins.
- 1.17. Excavate for reinforced concrete basement slab ensuring lateral propping remains in place at all times.
- 1.18. Compact base of slab excavation and place reinforcing bars to structural engineer's specification.
- 1.19. Cast basement slab to structural engineer's details using vibrating pokers to ensure full coverage of concrete and removal of trapped air pockets.
- 1.20. Once basement slab has sufficiently cured (min 14 days) the remaining propping can be removed.

2. <u>REMOVAL OF MC OVERHANG</u>

Upon completion of underpinning and sufficient curing of dry packing has been allowed, the existing MC foundation projection can be removed using hand tools to leave the wall over, flush with the face of the RC underpinning. Care should be taken when removing the corbel to avoid causing undue damage. Where brickwork is in poor condition it should be carefully made good in small increments.

3. INSTALLATION OF STEEL BEAMS/FRAMES

The method described below is a typical generic steel beam/frame installation; full requirements for shoring of superstructure should be assessed on site at the start of the project through opening up and inspection of existing structure

Prior to any underpinning or steel work installation the contractor may also carry out the following works:

- Carry out a verticality survey to check walls are plumb.
- Provide bracing to openings including doors and windows with timber constructed frames.

Where frames are to be installed and supported at basement level, pin sections supporting columns/beams should be excavated and cast first prior to any steel installation being carried out.

Connection details, splices and base plates to be installed in accordance with structural engineer's specification.

Installation Method

- 6.1. First install securely diagonally braced "Leada Acrow" propping placed either side of the wall requiring support, props should be sited on paving slabs bearing on well consolidated ground throughout.
- 6.2. Install UC needle beams at high level spanning between the Acrow dead shoring to provide support to the brickwork over and enable removal of masonry panel below.

- 6.3. Once needling/propping is positioned, tightened brickwork below can be carefully removed by hand.
- 6.4. Where permanent steel framework is specified members needed to transfer loads on to RC pins should be installed in accordance with structural engineer's details to provide a bearing for the high level beam.
- 6.5. Where bearings are specified, cut slots into walls to accept padstone or bearing plates as specified by structural engineer (allowing 48 hours to cure where padstones are cast).
- 6.6. Insert permanent steel beams either fixed to columns or seated 100mm into walls at each end on bearings.
- 6.7. Dry packing should be placed between the top flange and the underside of the wall over, allowing 48 hours to cure. (Where beam is seated on bearings dry pack should also be placed 75mm above and below the beam well rammed into position and any defective brickwork around beam ends should be removed and made good using class B engineering bricks and 1:3 mortar once dry pack has cured.)
- 6.8. Following the provision of full support to the wall above, (and bracing has been securely fitted if frame installation is being carried out) any temporary works in relation to its support can be removed.
- 6.9. Any voids in the brickwork where needles had been positioned should now be repaired by bricking up.
- 6.10. Once adequate support has been provided by the permanent works structure underpinning can proceed as specified in fig.3.

4. DEWATERING DURING CONSTRUCTION

- 7.1. If during any excavation work significant ground water ingress is found, a local 1m³ sump should be provided formed at a level below the base of the excavation being worked on.
- 7.2. The vertical faces of the sump chamber should be supported with a pre-made shutter positioned in the area excavated for the sump. The sump shutter should be constructed from 18mm thick plywood sheets with drilled vertical faces to provide a porous surface allowing ground water to flow through.
- 7.3. Ground water will now flow into the excavated sump to be extracted using a suitable Semi Trash dewatering pump and appropriate diameter discharge hose.
- 7.4. Discharge from the sump should be directed to the nearest manhole and a drain filter should be fitted to avoid any large debris being deposited into the sewer.
- 7.5. After completion of the excavation and preparation for the concrete pour has been carried out ensure the sump area is fully dewatered before removing pump and pouring concrete.
- 7.6. The process above should then be repeated for each excavation where ground water is found.

	6 CONCLUSION
	The result of this preliminary pre-planning report indicates that the proposed basement can be completed successfully without causing undue impact on neighbouring buildings, or its local surroundings, provided the works are undertaken by suitably qualified and experienced contractor/s.
	The suggested use of standard and well proven construction methods/materials mean the inherent risks often associated with largescale mass excavations will be largely mitigated in this case, provided careful design and onsite practices are adhered to. In making this conclusion, it is assumed the suggested recommendations and sequence of works above will be largely similar to those used in the final design.
CONCLUSION	The works must be constructed in adherence with all relevant statutory guidelines, designed by a suitably experienced and qualified design team. Detailed and well-designed method statements and calculations for all enabling and temporary works must be prepared well in advance of the commencement of site activities. These must also be distributed for comment from all relevant parties.
	It is imperative that professional monitoring is carried out to record the movement of the subject and neighbouring properties over the full course of works, to be agreed and included as a part of Awards produced under the Party Wall Etc. Act 1996. Relevant parties such as Party Wall surveyors, Design engineers and site management members will be required to ensure that adequate supervision and monitoring are carried out, paying particular attention during critical stages such as excavation and demolition.
	The proposed development is unlikely to significantly increase flood risk at the site and its surrounding area.
	It should be noted that the above conclusion is based on the information available at the time of writing and should also be read alongside recommendations and conclusions made in the site specific geotechnical analysis.

7 REFERENCES

1) <u>Codes / Regulations</u>

- I) Eurocode : Basis of structural design (BS EN 1990:2002)
- II) UK National Annex for Eurocode : Basis of structural design (NS BS EN 1990:2002)
- III) Eurocode 1 : Actions on structures (BS EN 1991:2005)
- IV) UK National Annex for Eurocode 1 : Actions on structures (NA BS EN 1991:2005)
- V) Eurocode 2 : Design of concrete structures (BS EN 1992-1-1:2004)
- VI) UK National Annex for Eurocode 2 : Design of concrete structures (NA BS EN 1991-1-1:2004)
- VII) Eurocode 3 : Design of steel structures (BS EN 1993-1-1:2005)
- VIII) UK National Annex for Eurocode 3 : Design of steel structures (NA BS EN 1993-1-1:2005)
- IX) The Building Regulations 2000 : part A Structure
- X) Camden geological, hydrogeological and hydrological study

2) Books / Manuals

- Concrete Basements: Guidance on the design and construction of in-situ concrete basement structures R. S. Narayanan & C. H. Goodchild.
- II) How to Design Concrete Structures using Eurocode 2 A. J. Bond et al.
- III) Manual for the design of steelwork building structures to Eurocode 3 (October 2010) IStructE.
- IV) Reynolds's Reinforced Concrete Designer's Handbook 11th Edition C. E. Reynolds et al.
- V) Standard Method of Detailing Structural Concrete 3rd Edition (June 2006) IStructE.

8 APPENDICES

Appendix 1 - Males. J. 1997 - Regional Climates of the British Isles

Appendix 2 -Borehole logs / location plan.

Appendix 3 - Preliminary structural calculations.

Appendix 4 - Preliminary structural drawings.

B1 & B5

Appendix 5 - Architectural Ground floor & Basement Plans

Appendix 1 - Males. J. 1997 - Regional Climates of the British Isles, p74 Average Precipitation for the period 1961-1990 (SJP-610mm).

74 JULIAN MAYES

more a function of exposure and relief. For example, the driest parts of the south coast are found to the low of the Isle of Wight, where Southsea averages 685 mm, and the low-lying Dungeness Point has a similar toral.

The significance of exposure to the south-west and relief were confirmed by Stone (1983), whose studies revealed that the mean daily rainfall receipt from cyclonic SW ainstreams increased from 2 mm around the Thames estuary to over 7 mm around the New Forest. Cyclonic W and S airstreams also gave twice as much rain over the Weald of East Sussex as around the Thames estuary. By contrast, in cyclonic northerity and north-easterly situations the driest ateas were south Hampshire and around Dungeness.

The greater the prevalence of south-west winds, the more conspicuous the wetness of the worthern coastal counties. A blocked situation, with abundant northerlies or easterlies, gives a more uniform distribution to rainfall across the region. It follows that the seasonal variation in the frequency of westerly winds belos to determine the seasonal variation in rainfall. Frontal rainfall, for example, is more frequent, heavier and more likely to approach from the south-west in autumn and winter. This seasonal intensification of the westerly circulation leads to a subtle backing of the surface wind towards the south-west, increasing the exposure of the south coast. As Table 3.4 shows, this leads to a peak in monthly rainfall in sucuron and winter for southern coasta) locations. Summer rainfall, more dependent on the cuntribution from convectional sources, however, shows a slightly different pattern, and tends to

decrease southwards despite an increase in annual totals.

A feature of the 1961-90 averages is the large area of southern England that has a minimum itt July. Further north, in the Thames valley, the driest month is still February, by a margin of over 10 mm. whilst Goudhurst, on the high ground of the Weald of Kent, is as dry as London in July, despite being 32 per cent wetter over the year as a whole. Beahill is 58 per cent wetter than London in November bar nearly 10 per cent drier in July. Summer rainfall (June to August) contributes over 25 per cent of the annual fall in London and Oxfordshire northwards but as little as 18 per cent on the Isle of Wight, the latter being the lowest proportion in the British Isles. Conversely, the 61 per cent contribution of the winter half-year (October to March) on the Isle of Wight is the largest such value, and exposed coastal sites such as Ryde (Table 3.4) can record annual totals more commonly associated with higher ground in the region. The proximity of high pressure over or to the south of the stea in many summers in the 1970s and 1980s has had a marked effect in decreasing summer rainfall (Mayes 1991). Consequently, the melancholy scene of parched landscapes noted by Southern (1976) has reappeared in many subsequent summers, several of which have accumulated significant water deficits (Woodley 1991).

Notable Rainfall Events

The relative importance of different types of minfall is markedly different from that in north-west

Location	Ah (m ASL)	Jan.	Feb	Mar;	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
St James's Park	8	53	36	48	47	51	50	48	54	53	57	57	57	611
East Malling	33	62	41	49	46	47	50	45	48	60	60	67	65	640
Goudhurst	85	86	57	65	55	54	55	48	58	70	87	88	86	809
Bexhill	4	77	50	56	47	45	48	44	49	64	82	90	77	729
Southsea	2	74	50	57	45	47	42	37	52	60	71	75	75	685
Ryde (loW)	4	86	57	62	48	50	45	40	55	66	82	86	84	760

Table 3.4 Average monthly and annual precipitation (mm) for the period 1961-90.

	Project										BOREHOLE No		
	30	Ferncrof	t Aven	ue, Londo	on N	NW3 7PH					DU1		
	Job No		Dat	Date 03-12-20		Ground Le		Leve	el (m OD)	Co-Ordinates ()			L
	J20268 04-12-20						1	100	.05				
	Client	Client						Eng	ineer			Sheet	
	Mr Duka				N	/lint Stru	ctures	1 of 2		2			
	SA	SAMPLES & TESTS							STRATA				ient fill
	Depth	Type No		Test Result	Wate	Reduce Level	Lege	end	Depth (Thick- ness)	DESCRIPT	ION		lnstrum / Back
	-					99.85	×	<u></u>	0.20	TOPSOIL (dark brown silty slig	htly grave	lly CLAY)	
	0.40	D					×	×,		mottled brown and grey silty	sandy CLA	Y, locally clayey	
	-						×	× -		sandy SILT			
	1.00	D					× ·	<u>_</u>					
	_ 1.20-1.05						X · ·	<u> </u>					P P
	1.70	D					×	×					
	2.00-2.45	SPT	2,	2/3,3,3,4			× · · · · · · · · · · · · · · · · · · ·	$\frac{1}{\sqrt{2}}$					RE
	-			100 - 14			× ·	} 					
	- 2 80	D U D								P P			
	3.00-3.45						× . 	·×	-				
							× .	-^	(6.30)				6 P
	3.50								× · · × ·	×			
	4.00-4.45	SPT	1,	2/3,3,3,4			× . ×.	<u>*</u>	-				KR.
	-			160 = 14			× ×	$\hat{\mathbf{x}}$					
							× ·×						6H
021	5.00-5.45	U					× ····	×	-				
ary 2					₽		× × 	· <u>×</u> 					
Febru	5.50	D			ľ		× ·			5.50 becoming stiff			
e: 25	6.00-6.45	SPT	3,	4/4,5,6,7			×.^	×	-				
Dat	-			160 = 23		93.55	; <u> </u>		6.50				: E
GLB	6.70	D				4	 *	÷.		Stiff high strength dark grey si pale grey fine sand and sandy	ilty CLAY w silt	vith partings of	
RARY.	-				Ĭ		× ×	\sim	-				
EA LIB	-				Ē		×	<u>*</u> }					
ry: GE	7.50-7.95	U					x x	$\overline{\mathbf{x}}$					
Libra	8.00	D					×		-				
								<u></u> }					
NUE.G	-	SPT		3,3/4,4,5,5			×	 					
^T AVE	9.00-9.45		3,				× ×	<u>-</u>					
ROF			Ň	160 = 19				×1	(5.50)				
ERNC	- - -						×	⇒					
- 301	Dent-			1 10/04000		n (n±:-	<u> -x</u>	<u>_</u> *					
20268	Borin	Bate	Time		ing	vatior V	IS Vater			GENEF	≀AL RKS		
ect: J	6 50 0	B-12-20	00.00	Depth 6.00	Dia.	<u>mm [</u> 50	epth	╢╴	Excavating	services insenction nit from (l to 1 20 r	n for 1 hr	
Proj	6.50 0	4-12-20	08.30	6.00	1	50	5.6		Groundwa	ter monitoring standpipe insta	alled to 7.0	10 m.	anth af
NO									3.80 m.	ter monitoring on 14/01/21 re	corded gr	ounuwater at a d	epin of
CUSS									Groundwa 3.71 m.	ter monitoring on 29/01/21 re	ecorded gr	oundwater at a d	epth of
E PER									Groundwa 3.67 m	ter monitoring on 11/02/21 re	ecorded gr	oundwater at a d	epth of
: CABL													
or ID	All dimens	ions in me	etres N	/lethod/		I						Logged By	
Rep	Scal	e 1:62.5	P	Iant Used (Cabl	e percu	ssior	n ri	g			ML	

Project	roject									BOREHOLE No		
30	30 Ferncroft Avenue, London NW3 7PH								DU1			
Job No	No Date 03-12-20 Ground Le					ound Le	vel (m OD)	Co-Ordinates ()				
J2	20268	0268 04-12-20 10					0.05					
Client		E							Sheet			
Mr Duk	kagjin Lipa				-		ictures	2 of	2			
S	AMPLES 8	5					fill					
Depth	Type No	F	Test Result	Wate	Reduceo Level	Legenc	Depth I (Thick- ness)	DESCRIPTION		Instrum / Back		
-						× ×	Ę.	Stiff high strength dark grey silty CLAY with pale grey fine sand and sandy silt (continue)	th partings of			
- - 10 50-								pare grey fine sand and sandy sinteenting				
10.95	Ū			2		×						
11.00	D			Ē		× ×						
-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
				3	88.05	× ×	12.00					
12.00-	SPT	5,5	/6,6,7,7	Ŧ		× ×	7	Stiff becoming very stiff high strength to	very high			
12.45			50 = 28					brownish grey silty CLAY with mica	brown and			
-						× *						
						× ×						
- 13.50- - 13.95	U					× ×						
14.00	D											
-						× ×	<u>x</u>					
-												
ក្ត 15.00-	U					×						
[∼] - 15.45						× × ·						
z 15.50	D					× ×						
521						× ×	*_(8.00)					
Date						×						
 ⊻ ≰- 17.00-	U					× –						
≝[17.45							7 7					
ප්- 17.50 ≍-	D											
n <u>e</u> _ g 18.00-	U					× ·		18.00 occasional shells				
= 18.45						× × -						
u = 18.50 ⊒ 18.60-	D SPT	5,6,	7,7,9,10									
₩ - 19.05		N	50 = 35			× ×	<u>*</u>					
ROFT						× - × -						
FERNC												
g Bori	ing Progre	ss and	Water C	bse	80.05 rvatior		<u>-7 20.00 EIII EII</u> GENERAL					
Depth	Date	Time	Cas Depth	ing Dia.	mm D	/ater epth		REMARKS				
CABLE PERCUSSION Project	04-12-20	20 16.00 8.00 15			50	14	Excavating services insepction pit from GL to 1.20 m for 1 hr. Groundwater monitoring standpipe installed to 7.00 m. Groundwater monitoring on 14/01/21 recorded groundwater at a depth 3.80 m. Groundwater monitoring on 29/01/21 recorded groundwater at a depth 3.71 m. Groundwater monitoring on 11/02/21 recorded groundwater at a depth 3.67 m.					
g All dimer	nsions in me	tres M	ethod/	`ak!				L	ogged By			
Sc.	Scale 1:62.5 Plant Used Cable percussion rig ML											

	Project					BOREHOLE No						
	30 F	erncroft	Avenu	ie, London	N	W3 7PF	1	рцэ				
	Job No		Date	Date 04-12-20 Ground				vel (m OD)	Co-Ordinates ()	ОП2	-	
	J202	J20268 04-12-20					97	.61				
	Client						En	gineer		Sheet		
	Mr Duka	Dukagjin Lipa						Mint Stru	lictures	1 of 1		
	SAMPLES & TESTS				2		1		fill			
	Depth	Type No	F	Test Result	Wate	Reduced Level	Legenc	Depth l (Thick- ness)	DESCRIPTION		Instrun / Bacl	
	0.20	ES				97.31	<u>17 - 77 - 77 - 7</u>	(0.30) 0.30	TOPSOIL (dark brown silty slightly grave	lly CLAY)		
	- - - - -					96.61		(0.70) (0.70) 1.00	Firm orange-brown silty sandy CLAY	ty silty CLAY	0) = } 0	
- 30 FERNCROFT AVENUE.GPJ LIbrary: GEA LIBRARY.GLB Date: 25 February 2021						94.61	x x x x x x x x x x x x x x x x x x x x x x x x x x x x		Orange-brown clayey sandy SILT to sandy silty CLAY			
20268	Boring Progress and Water Observations							GENERAL				
: CABLE PERCUSSION Project: J2	Deptn	νατε	ime	Depth D	<u>iia.</u>	<u>mm Ď</u>	<u>epth</u>	KEIVIAKKS Groundwater not encountered. Groundwater monitoring standpipe installed to 3.00 m. Groundwater monitoring on 14/01/21 recorded the standpipe to be de Groundwater monitoring on 29/01/21 recorded groundwater at a dep 2.58 m. Groundwater monitoring on 11/02/21 recorded groundwater at a dep 2.33 m.				
Report ID	All dimensions in metres Scale 1:31.25 Method/ Plant Used Window sampler									Logged By ML		

	Project										BOREHOLE No		
	30 F	n N	NW3 7PH						вир				
	Job No	Date 04-12-20 Grou					Ground Level (m OD) Co-Ordinates ()						
	J202	J20268 04-12-20					5 9			8.57			
	Client							Eng	ineer			Sheet	
	Mr Duka	gjin Lipa							Aint Stru	ctures		1 of 1	
	SAMPLES & TESTS						_			STRATA			lent fill
	Depth	Type No	F	Test Result	Wate	Reduce Level	d _{Lege}	end	Depth (Thick- ness)	DESCR	RIPTION		Instrum / Back
oject: I20268 - 30 FERNCROFT AVENUE.GPJ Library: GEA LIBRARY.GLB Date: 25 February 2021	Depth 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	ES ES Progres Date	s and īme	Test Result		Reduce Level 98.27 95.57 94.57 94.57	d Lege		Depth (Thick- ness) (0.30) 0.30 (2.70) (2.70) (2.70) (1.00) (1.00) 4.00	DESCR MADE GROUND (greyish b brick and slate fragments) Firm brownish grey mottle orange-brown laminated s Orange-brown clayey sand GEN REN	AIPTION rown clayey s ed pale grey a silty sandy CLA dy SILT to sand	andy silt with	
BLE PERCUSSION Pro								Groundwater monitoring standpipe installed to 4.00 m. Groundwater monitoring on 14/01/21 recorded groundwater a 3.20 m. Groundwater monitoring on 29/01/21 recorded groundwater a 3.18 m. Groundwater monitoring on 11/02/21 recorded groundwater a 3.15 m.					epth of epth of epth of
ort ID: CAE	All dimensi	ons in metr	es M	ethod/								Logged By	
Rep	Scale	1:31.25	Pla	ant Used W	inc	low sai	mple	r				ML	

	^		www.gea-ltd.co.uk	Trial Pit No
GEA	\rightarrow	Herts	6 01727 824666 Notts 01509 674888	6
Site 30 Ferncroft Avenue, Londo	on NW3 7PH			Job Number
				Sheet
Client Mr Dukagjin Lipa				2/2
Engineer Mint Structures				07/12/2020
Excavation Method Manual	Dimensions 800 x 300 x 700	Ground Level (mOD) 97.72	Location Southeastern eleavtion	
			<image/>	
All dimensions in millimetres	5			1:20
Sides of trial pit remained st	able during excavation			Logged by:
Groundwater not encountered	ed			ML

 Job:
 30 Ferncroft Avenue

 Made By:
 LS
 Job No.:
 M20202

 Date:
 Jan 2021
 Main 2021
 Main 2021

Length of Walls -	$L_{w} \coloneqq 22 \ m$;	Span acros	s site -		<i>L_{pw}</i> :=	:11.5	m
(i) Brickwork -			<u>Soil Type</u> (1	.=Solid;	2=Cavity)	W	$_{typ} := 1$	
Wall height - h :=	=2.5 m ; V	Vall width	- t := 225	mm				
Wall loading - w=	$=4.63 \ kN \cdot m^{-2}$							
$i_p := w \cdot h = 11.58$	$kN \cdot m^{-1}$							
<u>Total line load on wa</u>	Ш -							
Permanent line load	d on wall - G							
	G	$G_k = 11.58$	$kN \cdot m^{-1}$					

Vertical Loads: (i) Roof - Permanent Load $i_p := (1.21 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 5.45 \ kN \cdot m^{-1}$ Imposed Load $i_I := (0.75 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 3.38 \ kN \cdot m^{-1}$ (ii) Floor - Permanent Load	<u>No. floors</u> -	
(i) Roof - <u>Permanent Load</u> $i_p := (1.21 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 5.45 \ kN \cdot m^{-1}$ <u>Imposed Load</u> $i_I := (0.75 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 3.38 \ kN \cdot m^{-1}$ (ii) Floor - <u>Permanent Load</u>	<u>No. floors</u> -	
Permanent Load $i_p := (1.21 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 5.45 \ kN \cdot m^{-1}$ Imposed Load $i_I := (0.75 \ kN \cdot m^{-2} \cdot L_{pw}) \cdot 0.5 = 3.38 \ kN \cdot m^{-1}$ (<i>ii</i>) Floor - <u>Permanent Load</u>	<u>No. floors</u> -	
$\overline{\boldsymbol{i_{p}} \coloneqq \left(1.21 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}}\right) \cdot 0.5 = 5.45 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-1}}$ $\underline{\text{Imposed Load}}$ $\boldsymbol{i_{I}} \coloneqq \left(0.75 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}}\right) \cdot 0.5 = 3.38 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-1}$ $(ii) \text{ Floor } - \underline{Permanent Load}$	<u>No. floors</u> -	
$ \begin{array}{l} Imposed \ Load \\ i_I \coloneqq \left(0.75 \ kN \cdot m^{-2} \cdot L_{pw} \right) \cdot 0.5 = 3.38 \ kN \cdot m^{-1} \\ \hline (ii) \ Floor \ - \\ \underline{Permanent \ Load} \end{array} $	<u>No. floors</u> -	
$\overline{i_I} := \left(0.75 \ kN \cdot m^{-2} \cdot L_{pw}\right) \cdot 0.5 = 3.38 \ kN \cdot m^{-1}$ (ii) Floor - <u>Permanent Load</u>	<u>No. floors</u> -	
(ii) Floor - Permanent Load	No. floors -	
Permanent Load		$\boldsymbol{n} \coloneqq 3$
$ii_{p} := \mathbf{n} \cdot (0.52 \ \mathbf{kN} \cdot \mathbf{m}^{-2} \ \mathbf{L}_{pw}) \cdot 0.5 = 7.02 \ \mathbf{kN} \cdot \mathbf{m}^{-1}$		
$= \frac{\mathbf{i} \mathbf{n} \mathbf{p} \mathbf{s} \mathbf{s} \mathbf{u}}{\mathbf{i}_{I}} = \mathbf{n} \cdot \left(1.5 \ \mathbf{k} \mathbf{N} \cdot \mathbf{m}^{-2} \cdot \mathbf{L}_{\mathbf{pw}}\right) \cdot 0.5 = 20.25 \ \mathbf{k} \mathbf{N} \cdot \mathbf{m}^{-1}$		
(iii) Partitions -	No storevs	- n :- २
Permanent Load	<u>NO. SLOICYS</u>	<i>iu</i> ·= 0
Ave Wall height - $h - 3.0 m$		
$iii = -((0.75 \text{ kN}, m^{-2}, h), I = 0.5), I = -1), 0.25$	$5 - 0.16 kN \cdot m^{-1}$	
$uvp = (((0.10 \ u1 \ one \ o$		
330mm back to 215mm (iv) Brickwork upper - Soil Ty	<u>ype</u> (1=Solid ; 2=Cavity) -	- W _{typ} :=
Permanent Load	227	
Wall height - $h \coloneqq 5.5 \ m$; Wall width - $t \coloneqq$	=225 mm	
Wall loading - $\boldsymbol{w} = 4.63 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}^{-2}$		
$iv_p := w \cdot h = 25.47 \ kN \cdot m^{-1}$		
(v) Brickwork lower - Soil Ty	vpe (1=Solid : 2=Cavity) -	- W _{turn} :=
Permanent Load	, <u> </u>	typ
Wall height - $h := 7.0 \ m$; Wall width - $t :=$	= 330 mm	
<u>Wall loading</u> - $\boldsymbol{w} = 6.69 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2}$		
$\boldsymbol{v}_{n} \coloneqq \boldsymbol{w} \cdot \boldsymbol{h} = 46.83 \ \boldsymbol{k} \boldsymbol{N} \cdot \boldsymbol{m}^{-1}$		
<u>Iotal line load on wall</u> -		
Permanent line load on wall - $G_k := i_p + ii_p + iii_p$ $G_k = 84.92 \ kN \cdot n$	$\mathbf{p}^{\mathbf{p}} + i v_{\mathbf{p}} + v_{\mathbf{p}}$	
Imposed line load on wall - $\mathbf{O}_{\mathbf{k}} := \mathbf{i}_{\mathbf{k}} + \mathbf{i}_{\mathbf{k}} - 23$	$63 \mathbf{kN} \cdot \mathbf{m}^{-1}$	
Total line load on wall - $\Sigma_{-} - C_{-} + O_{-} - 10$	$0855 kN \cdot m^{-1}$	

Created with PTC Mathcad Express. See www.mathcad.com for more information.

	n ; Span side to side - $L_{pw} = 6.0$ r
Vertical Loads:	
(i) Roof -	
Permanent Load	
$i_n := (1.21 \ kN \cdot m^{-2} \cdot L_{mn}) \cdot 0.5$	$5 = 3.63 \ kN \cdot m^{-1}$
Imposed Load	
$\boldsymbol{i_I} \coloneqq \left(0.75 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}}\right) \cdot 0.5$	$5=2.25 \ \mathbf{kN} \cdot \mathbf{m}^{-1}$
(ii) Partitions -	<u>No. storeys</u> - n ≔ 1
Permanent Load	
Ave. Wall height - $h := 3.0 \ m$	
$ii_p := (((0.75 \mathbf{kN} \cdot \mathbf{m}^{-2} \cdot \mathbf{h}) \cdot L_1)$	$(m_{w} \cdot 0.5) \cdot L_{w}^{-1} \cdot 0.25 = 0.1 \ kN \cdot m^{-1}$
NOTE: Within this calculation party	wall brickwork is assumed to 'step' at first floor level from
(iii) Brickwork (cavity) -	Soil Type (1=Solid : 2=Cavity) - $W_{4,}$
Permanent Load	<u></u>
Wall height - $h := 3.0 m$: Wall width - t := 300 mm
<u>Wall loading</u> - $w = 2.97 \ kN \cdot r$	m ⁻²
$iii_p := w \cdot h = 8.91 \ kN \cdot m^{-1}$	
<u>Total line load on wall</u> -	
Total line load on wall -	
Total line load on wall - Permanent line load on wall -	$G_k := i_p + ii_p + iii_p$
Total line load on wall - Permanent line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \text{ kN} \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} \coloneqq i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 kN \cdot m^{-1}$ $Q_{k} \coloneqq i_{I} = 2.25 kN \cdot m^{-1}$ $\Sigma_{L} \coloneqq G_{k} + Q_{k} = 14.89 kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} \coloneqq i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} \coloneqq i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} \coloneqq G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} \coloneqq i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} \coloneqq i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} \coloneqq G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} \coloneqq i_{p} + ii_{p} + iii_{p}$ $G_{k} \simeq 12.64 \ kN \cdot m^{-1}$ $Q_{k} \coloneqq i_{I} \simeq 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} \coloneqq G_{k} + Q_{k} \simeq 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall - Total line load on wall -	$G_{k} := i_{p} + ii_{p} + iii_{p}$ $G_{k} = 12.64 \ kN \cdot m^{-1}$ $Q_{k} := i_{I} = 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} := G_{k} + Q_{k} = 14.89 \ kN \cdot m^{-1}$
Total line load on wall - Permanent line load on wall - Imposed line load on wall - Total line load on wall - Total line load on wall -	$G_{k} \coloneqq i_{p} + ii_{p} + iii_{p}$ $G_{k} \simeq 12.64 \ kN \cdot m^{-1}$ $Q_{k} \simeq i_{I} \simeq 2.25 \ kN \cdot m^{-1}$ $\Sigma_{L} \simeq G_{k} + Q_{k} \simeq 14.89 \ kN \cdot m^{-1}$

$Length of Walls - L_w = 22 m$;	Span across	s site -	$L_{pw} := 11.5 \ m$
(i) Brickwork -		Soil Type (1	=Solid ; 2=Cavit	(y) - $\boldsymbol{W_{typ}} \coloneqq 1$
Permanent Load				
Wall height - $h \coloneqq 2.5 m$;	· Wall width ·	- t ≔ 225	mm	
Wall loading - $w = 4.63 \ kN \cdot n$	n ⁻²			
$\boldsymbol{i_p} \coloneqq \boldsymbol{w} \cdot \boldsymbol{h} = 11.58 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-1}$				
(ii) Slab (say 275mm thk O/A) -			<u>Span</u> -	Sp :=5.0 m
Permanent Load)		1	
$ii_p := ((24 \ kN \cdot m^{-3} \cdot 0.275 \ m))$ Imposed Load	$(\cdot Sp) \cdot 0.5 = 1$	6.5 kN • m ⁻	-1	
$ii_I := (3.0 \ kN \cdot m^{-2} \cdot Sp) \cdot 0.5 =$	= 7.5 $kN \cdot m^{-1}$			
<u>iotal line load on wall</u> -				
Permanent line load on wall -	$G_k := i_p + ii_p$	p		
	$G_k = 28.08$	$kN \cdot m^{-1}$		
Imposed line load on wall -	$oldsymbol{Q}_{oldsymbol{k}}\!:=\!oldsymbol{i}oldsymbol{i}_{I}\!=\!7$	$1.5 \ \mathbf{kN} \cdot \mathbf{m}^{-1}$		
Total line load on wall -	$\Sigma_L := G_k + G_k$	Q _k =35.58	k $N \cdot m^{-1}$	

Loweth of Malla	T 10		Crean frank to rear		T 0.0.
Length of Walls -	$L_w \coloneqq 10 m$;	Span from to rear		$L_{pw} \coloneqq 9.0$
<u>Vertical Loads:</u>					
(i) Roof -					
Permanent Load	<u>1</u>				
$\boldsymbol{i_p} \coloneqq (1.21 \ \boldsymbol{kN} \cdot$	$(\boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}}) \cdot 0.5 = 0.5$	5.45 kN•n	n ⁻¹		
Imposed Load					
$i_I := (0.75 \ kN \cdot$	$\boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}} \cdot 0.5 = 3$	3.38 kN•n	v ⁻¹		
(ii) Floor -				No. floors -	n :=2
Permanent I oad	1				
$ii := n \cdot (0.52)$	$\mathbf{k} \mathbf{N} \cdot \mathbf{m}^{-2} \mathbf{L} \rightarrow 0.5$	$5 = 4.68 \ k$	$I \cdot m^{-1}$		
Imposed Load	<i>pw</i> / 0.0	. 1.00 /01			
$ii_{r} = n \cdot (1.5 \mathbf{k})$	$\mathbf{N} \cdot \mathbf{m}^{-2} \cdot \mathbf{I}$	=13 5 k N	• m ⁻¹		
	pw/0.5	- 10.0 MIN			
(<i>iii</i>) Partitions -				<u>No. storeys</u>	- n := 3
Permanent Load	1				
Ave. Wall height	t - h = 3.0 m)	\		
$iii_p := (((0.75))$	$(\mathbf{k} \mathbf{N} \cdot \mathbf{m}^{-2} \cdot \mathbf{h}) \cdot L_{pw}$	$(0.5) \cdot L_w^{-1}$	$) \cdot 0.25 = 0.16 \ kN$	$\cdot m^{-1}$	
330mm back to 21.	5mm				
			Cail Time (1. Calid		117
(<i>iv</i>) Brickwork u	pper -		<u>Soil Type</u> (1=Solid	; 2=Cavity) ·	$- W_{typ} :=$
(iv) Brickwork up Permanent Load	pper -	14/-11	Soil Type (1=Solid	; 2=Cavity) ·	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height -	pper - <u>1</u> h :=5.5 m ;	Wall width	<u>Soil Type</u> (1=Solid - t ≔ 225 mm	; 2=Cavity) ·	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading -	pper - $\frac{1}{h} := 5.5 \ m$; $w = 4.63 \ kN \cdot m^{-2}$	Wall width	<u>Soil Type</u> (1=Solid - t := 225 mm	; 2=Cavity) ·	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$	pper - $\frac{1}{2}$ $h := 5.5 \ m$; $w = 4.63 \ kN \cdot m^{-2}$ $5.47 \ kN \cdot m^{-1}$	Wall width	<u>Soil Type</u> (1=Solid - t := 225 mm	; 2=Cavity) ·	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low	pper - $\frac{1}{h} := 5.5 \ m$; $w = 4.63 \ kN \cdot m^{-2}$ 5.47 $kN \cdot m^{-1}$ wer -	Wall width	<u>Soil Type</u> (1=Solid - t := 225 mm <u>Soil Type</u> (1=Solid	; 2=Cavity) ·	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load	pper - $\frac{1}{2}$ h := 5.5 m; $w = 4.63 \ kN \cdot m^{-2}$ $5.47 \ kN \cdot m^{-1}$ wer - $\frac{1}{2}$	Wall width	<u>Soil Type</u> (1=Solid - t := 225 mm <u>Soil Type</u> (1=Solid	; 2=Cavity) · ; 2=Cavity) ·	- W _{typ} :=
 (iv) Brickwork up <u>Permanent Load</u> Wall height - Wall loading - iv_p:= w ⋅ h = 25 (v) Brickwork low <u>Permanent Load</u> Wall height - 	pper - $\frac{1}{2}$ h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - $\frac{1}{2}$ h := 7.0 m;	Wall width 2 Wall width	<u>Soil Type</u> (1=Solid - t:=225 mm <u>Soil Type</u> (1=Solid - t:=330 mm	; 2=Cavity) · ; 2=Cavity) ·	- W _{typ} := - W _{typ} :=
 (iv) Brickwork up <u>Permanent Load</u> Wall height - Wall loading - iv_p := w ⋅ h = 25 (v) Brickwork low <u>Permanent Load</u> Wall height - <u>Wall loading</u> - 	pper - $\frac{1}{2}$ h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - $\frac{1}{2}$ h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$	Wall width	<u>Soil Type</u> (1=Solid - t := 225 mm <u>Soil Type</u> (1=Solid - t := 330 mm	; 2=Cavity) -	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load Wall height - Wall loading - $v_p := w \cdot h = 46$.	pper - h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$ $83 kN \cdot m^{-1}$	Wall width	<u>Soil Type</u> (1=Solid - t:=225 mm <u>Soil Type</u> (1=Solid - t:=330 mm	; 2=Cavity) -	- W _{typ} :=
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load Wall loading - $v_p := w \cdot h = 46$. (vi) Slab (say 275	pper - h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$ $83 kN \cdot m^{-1}$ mm thk O/A) -	Wall width	<u>Soil Type</u> (1=Solid - t:=225 mm <u>Soil Type</u> (1=Solid - t:=330 mm	; 2=Cavity) - ; 2=Cavity) - <u>Span</u> -	$W_{typ} :=$ $W_{typ} :=$ Sp := 6.0 r
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load Wall height - Wall loading - $v_p := w \cdot h = 46$. (vi) Slab (say 275 Permanent Load	pper - $\frac{1}{2}$ h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - $\frac{1}{2}$ h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$ $83 kN \cdot m^{-1}$ mm thk O/A) - $\frac{1}{2}$	Wall width	<u>Soil Type</u> (1=Solid - <i>t</i> := 225 <i>mm</i> <u>Soil Type</u> (1=Solid - <i>t</i> := 330 <i>mm</i>	; 2=Cavity) - ; 2=Cavity) - <u>Span</u> -	$W_{typ} :=$ $W_{typ} :=$ Sp := 6.0 r
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load Wall loading - $v_p := w \cdot h = 46$. (vi) Slab (say 275 Permanent Load $vi_n := ((24 \text{ kN}))$	pper - $\frac{1}{2}$ h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - $\frac{1}{2}$ h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$ $83 kN \cdot m^{-1}$ mm thk O/A) - $\frac{1}{2}$	Wall width Wall width Wall width $S(\mathbf{p}) \cdot 0.5 = 1$	Soil Type (1=Solid t := 225 mm Soil Type (1=Solid t := 330 mm $19.8 kN \cdot m^{-1}$; 2=Cavity) - ; 2=Cavity) - <u>Span</u> -	- W _{typ} := - W _{typ} := Sp:=6.0 r
(iv) Brickwork up Permanent Load Wall height - Wall loading - $iv_p := w \cdot h = 25$ (v) Brickwork low Permanent Load Wall loading - $v_p := w \cdot h = 46$. (vi) Slab (say 275 Permanent Load $vi_p := ((24 \text{ kN} + 100))$ Demonstrate to ad $vi_p := ((24 \text{ kN} + 100))$	pper - h := 5.5 m; $w = 4.63 kN \cdot m^{-2}$ $5.47 kN \cdot m^{-1}$ wer - h := 7.0 m; $w = 6.69 kN \cdot m^{-2}$ $83 kN \cdot m^{-1}$ mm thk O/A) - $\frac{1}{2}$ $\cdot m^{-3} \cdot 0.275 m) \cdot b$	Wall width $Wall width$ $Sp) \cdot 0.5 = 1$	Soil Type (1=Solid t := 225 mm Soil Type (1=Solid t := 330 mm $19.8 kN \cdot m^{-1}$; 2=Cavity) - ; 2=Cavity) - <u>Span</u> -	- W _{typ} := - W _{typ} := Sp:=6.0 r

P	
77	N A:NT

 Job:
 30 Ferncroft Avenue

 Made By:
 LS
 Job No.:
 M20202

 Date:
 Jan 2021
 Main 2021
 Main 2021

Permanent line load on wall -	$G_k := i_p + ii_p + iii_p + iv_p + v_p + v_i_p$ $G_k = 102.38 \ kN \cdot m^{-1}$
Imposed line load on wall -	$Q_{k} := i_{I} + ii_{I} + vi_{I} = 21.38 \ kN \cdot m^{-1}$ $\Sigma := C_{1} + Q_{2} = 123.76 \ kN \cdot m^{-1}$
T <u>otal IIIe Ioau oli Wali</u> -	$\Sigma_L = \mathbf{G}_k + \mathbf{Q}_k = 123.70 \text{ km} \cdot m$

Length of Walls - $\boldsymbol{L}_{\boldsymbol{w}} \coloneqq 6.0 \; \boldsymbol{m}$; Span side to side - $L_{pw} = 6.0$
Vertical Loads:	
(i) Roof -	
Permanent Load	
$\boldsymbol{i_n} \coloneqq (1.21 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2} \cdot \boldsymbol{L_{mn}}) \cdot 0.5$	$5 = 3.63 \ kN \cdot m^{-1}$
Imposed Load	
$\boldsymbol{i_I} \coloneqq \left(0.75 \ \boldsymbol{kN} \cdot \boldsymbol{m}^{-2} \cdot \boldsymbol{L_{pw}}\right) \cdot 0.5$	$5=2.25 \ \mathbf{kN} \cdot \mathbf{m}^{-1}$
(ii) Partitions -	No. storeys - $\boldsymbol{n} := 1$
Permanent Load	
Ave, Wall height - $h := 3.0 m$	
$ii_n := (((0.75 \ kN \cdot m^{-2} \cdot h) \cdot L_n))$	$m_{v} \cdot 0.5 \cdot L_{v}^{-1} \cdot 0.25 = 0.28 \ kN \cdot m^{-1}$
NOTE: Within this calculation party 330mm back to 215mm	wall brickwork is assumed to 'step' at first floor level from
(iii) Brickwork (cavity) -	Soil Type (1=Solid ; 2=Cavity) - W_{typ} :=
Permanent Load	
Wall height - $h \coloneqq 3.0 \ m$; Wall width - t :=300 mm
Wall loading - $w = 2.97 \ kN \cdot n$	m^{-2}
$iii_p := w \cdot h = 8.91 \ kN \cdot m^{-1}$	
(iv) Slab (say 275mm thk O/A) -	<u>Span</u> - Sp :=6.0 r
Permanent Load	
$iv_{n} := ((24 \ kN \cdot m^{-3} \cdot 0.275 \ m))$	$(n) \cdot Sp) \cdot 0.5 = 19.8 \ kN \cdot m^{-1}$
Imposed Load	
$iv_I \coloneqq (1.5 \ kN \cdot m^{-2} \cdot Sp) \cdot 0.5$	$=4.5 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}^{-1}$
<u>iorai line load on wali</u> -	
Permanent line load on wall -	$G_k := i_n + ii_n + iii_n + iv_n$
	$G_{k} = 32.62 \ kN \cdot m^{-1}$
Imposed line load on wall -	$Q_k := i_I + iv_I = 6.75 \ kN \cdot m^{-1}$
Total line load on wall -	$\Sigma_L := G_k + Q_k = 39.37 \ kN \cdot m^{-1}$

LOAD TAKEDOWN 7	- preliminary a	<u>rea loadin</u>	<u>g</u>		
Length of Walls -	L _w :=6.0 <i>m</i>	;	Span side to side	9 -	L _{pw} :=6.0 m
Vertical Loads:					
(i) Slab (say 275mm Permanent Load	n thk O/A) -			<u>Span</u> -	Sp :=4.0 m
$i_{p} \coloneqq ((24 \ kN \cdot m))$ Imposed Load	$(-3 \cdot 0.275 \ m) \cdot S$	$(5p) \cdot 0.5 = 1$	3.2 $kN \cdot m^{-1}$		
$\boldsymbol{i_I} \coloneqq (3.0 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}^{-1})$	$({}^{-2} \cdot Sp) \cdot 0.5 = 6$	$kN \cdot m^{-1}$			
(ii) Soil (say 300mm Permanent Load	thk O/A) -		-1	<u>Span</u> -	Sp ≔4.0 m
<i>ii</i> p∷= ((18 <i>kN</i> • m	ı °∙ 0.3 m)•Sp	$0) \cdot 0.5 = 10$.8 kN • m ⁻		
<u>Total line load on we</u>	all -				
Permanent line loa	d on wall -	C - i + i			
		$G_k = i_p + i_p$ $G_k = 24 k_1$	$N \cdot m^{-1}$		
Imposed line load Total line load o	on wall - n wall -	$Q_k := i_I = 0$ $\Sigma_I := G_L + 0$	$\mathbf{\hat{b}} \mathbf{kN} \cdot \mathbf{m}^{-1}$ $\mathbf{O}_{\mathbf{h}} = 30 \ \mathbf{kN} \cdot \mathbf{m}^{-1}$	1	
			G _K C C C C C C C C C C		

Tedds	Project	30 Fernco	orft Avenue		Job no. M20	0202
MINT Structures The Shack rear of 34 Ravensdale Avenue	Calcs for	Worst case F	RC wall check		Start page no./Re	vision 1
N12 9HT	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.4.09

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3400 mm
Prop height	h _{prop} = 3400 mm
Stem thickness	t _{stem} = 475 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 1500 mm
Heel length	I _{heel} = 250 mm
Base thickness	t _{base} = 450 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 3400 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	$h_{water} = 0 mm$
Water density	$\gamma_w = 9.8 \text{ kN/m}^3$
Retained soil properties	
Soil type	Organic clay
Moist density	$\gamma_{mr} = 18 \text{ kN/m}^3$
Saturated density	$\gamma_{sr} = 18 \text{ kN/m}^3$
Base soil properties	
Soil type	Organic clay
Moist density	$\gamma_{mb} = 18 \text{ kN/m}^3$
Loading details	
Variable surcharge load	Surcharge _Q = 5 kN/m^2
Vertical line load at 3075 mm	P _{G1} = 100 kN/m

Todds	Project	30 Fornor	orft Avenue		Job no.	0202
MINT Structures		30 1 611100				
The Shack rear of 34 Ravensdale Avenue	Calcs for	Worst case	RC wall check		Start page no./R	3
N12 9HT	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date
				·	•	
Partial factors for soil parame	eters – Table /	A.4 - Combinatio	n 1			
Angle of shearing resistance		$\gamma_{\phi} = 1.00$				
Undrained shear strength		$\gamma_{cu} = 1.00$				
Weight density		$\gamma_{\gamma} = 1.00$				
Soil coefficients						
Coefficient of friction to back of	wall	K _{fr} = 0.325				
Coefficient of friction to front of	wall	K _{fb} = 0.325				
Coefficient of friction beneath b	ase	K _{fbb} = 0.32	5			
Active pressure coefficient		K _A = 0.483				
Passive pressure coefficient		K _P = 2.359				
Bearing pressure check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_G \times$	$A_{stem} \times \gamma_{stem} = 5$	5 4.5 kN/m		
Wall base		$F_{base} = \gamma_G \times$	$A_{base} \times \gamma_{base} = 3$	33.8 kN/m		
Surcharge load		$F_{sur_v} = \gamma_Q >$	\times Surcharge _Q \times	I _{heel} = 1.9 kN/m		
Line loads		$F_{P_v} = \gamma_G \times$	P _{G1} = 135 kN/n	ı		
Moist retained soil		$F_{moist_v} = \gamma_G$	$\times \; A_{\text{moist}} \times \gamma_{\text{mr}} =$	20.7 kN/m		
Total		$F_{total_v} = F_{sterned}$	em + F _{base} + F _{moi}	ist_v + Fwater_v + Fsu	ur_v + FP_v = 24	5.8 kN/m
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	$\times \gamma_{Q} \times Surcharg$	e _Q × h _{eff} = 13.9 k	N/m	
Saturated retained soil		$F_{sat_h} = \gamma_G \times$	$ imes K_A imes (\gamma_{sr} - \gamma_{w}) imes$	$(h_{sat} + h_{base})^2 / 2$	= 0.5 kN/m	
Water		$F_{water_h} = \gamma_G$	$\times \gamma_w \times (h_{water} + $	d _{cover} + h _{base}) ² / 2	= 1.3 kN/m	
Moist retained soil		$F_{moist_h} = \gamma_G$	$ imes$ KA $ imes$ γ_{mr} $ imes$ ((h	leff - h _{sat} - h _{base}) ² /	2 + (h _{eff} - h _{sat} -	$h_{base}) imes (h_{sat})$
		+ h _{base})) = 8	35.8 kN/m			
Total		$F_{total_h} = F_{sa}$	$t_h + F_{moist_h} + F$	water_h + $F_{sur_h} = 1$	01.6 kN/m	
Moments on wall						
Wall stem		$M_{stem} = F_{stem}$	m × X _{stem} = 94.7	kNm/m		
Wall base		$M_{base} = F_{bas}$	$x_{base} = 37.6$	kNm/m		
Surcharge load		$M_{sur} = F_{sur_v}$	$x \times x_{sur_v}$ - F _{sur_h}	× x _{sur_h} = -22.9 k№	Nm/m	
Line loads		$M_P = \gamma_G \times F$	G ₁ × p ₁ = 415.1	kNm/m		
Saturated retained soil		$M_{sat} = -F_{sat}$	h × X _{sat_h} = -0.1	kNm/m		
Water		$M_{water} = -F_{w}$	$_{ater_h \times X_{water_h} =}$	-0.2 kNm/m		
Moist retained soil		$M_{moist} = F_{mo}$	$_{ist_v} imes x_{moist_v} - F$	$moist_h \times X_{moist_h} = -$	68.1 kNm/m	
Total		$M_{total} = M_{ste}$	m + M _{base} + M _{sat}	+ M _{moist} + M _{water} +	$+ M_{sur} + M_{P} = 4$	56.1 kNm/m
Check bearing pressure						
Propping force to stem		F _{prop_stem} = kN/m	$\min((F_{total_{V}} imes I_{ba})$	_{ase} / 2 - M _{total}) / (h _p	_{rop} + t _{base}), F _{tota}	u_h) = -47.4
Propping force to base		F _{prop_base} =	F _{total_h} - F _{prop_ster}	_m = 149.1 kN/m		
Moment from propping force		$M_{prop} = F_{prop}$	$_{\rm p_stem} imes (h_{\rm prop} + t)$	_{base}) = -182.7 kNr	m/m	
Distance to reaction		$\overline{x} = (M_{total} \cdot$	+ M _{prop}) / F _{total_v}	= 1113 mm		
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	_e / 2 = 0 mm			
Loaded length of base		$I_{load} = I_{base} =$	2225 mm			
Bearing pressure at toe		$q_{toe} = F_{total}$	/ I _{base} = 110.5	kN/m²		
Bearing pressure at heel		$q_{heel} = F_{total}$	_v / I _{base} = 110.5	kN/m²		

_ 🍪	Project			Job no.		
Iedds MINT Structures	30 Ferncorrt Avenue				W20202	
The Shack rear of 34 Ravensdale Avenue	Calcs for	Worst case	RC wall check		Start page no./R	evision 4
London	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
N12 9HT	LS	03/03/2021	chicolog by		, pprovod by	
Factor of safety		$FoS_{bp} = P_b$	earing / max(q _{toe} ,	q _{heel}) = 1.267		
,	PASS - A	Allowable bearin	ng pressure ex	ceeds maximul	m applied bea	ring pressure
Partial factors on actions - Ta	ble A.3 - Com	bination 2				
Permanent unfavourable action		$\gamma_{G} = 1.00$				
Permanent favourable action		$\gamma_{Gf} = 1.00$				
Variable unfavourable action		$\gamma_{\rm Q} = 1.30$				
Variable favourable action		$\gamma_{Qf} = 0.00$				
Partial factors for soil parame	ters – Table A	.4 - Combinatio	n 2			
Angle of shearing resistance		$\gamma_{\Phi'} = 1.25$				
Undrained shear strength		$\gamma_{cu} = 1.40$				
Weight density		$\gamma_{\gamma} = 1.00$				
Soil coefficients						
Coefficient of friction to back of	wall	K _{fr} = 0.325				
Coefficient of friction to front of	wall	$K_{fb} = 0.325$	i			
Coefficient of friction beneath ba	ase	K _{fbb} = 0.32	5			
Active pressure coefficient		K _A = 0.483				
Passive pressure coefficient		K _P = 2.359				
Bearing pressure check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_G \times$	$A_{\text{stem}} \times \gamma_{\text{stem}} = 4$	40.4 kN/m		
Wall base		$F_{base} = \gamma_G \times$	$A_{base} \times \gamma_{base} = 2$	25 kN/m		
Surcharge load		$F_{sur_v} = \gamma_Q$	< Surcharge _Q ×	I _{heel} = 1.6 kN/m		
Line loads		$F_{P_v} = \gamma_G \times$	$P_{G1} = 100 \text{ kN/n}$	n		
Moist retained soil		$F_{\text{moist}_v} = \gamma_G$	$A_{moist} \times \gamma_{mr} =$	15.3 kN/m	_	
Total		$F_{total_v} = F_{st}$	em + F _{base} + F _{mo}	ist_v + F _{water_v} + F	sur_v + FP_v = 18	2.3 kN/m
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	$\times \gamma_{Q} \times Surcharg$	Je _Q × h _{eff} = 12.1 ∣	kN/m	
Saturated retained soil		$F_{sat_h} = \gamma_G$	< ΚΑ × (γsr - γw) >	$< (h_{sat} + h_{base})^2 / 2$	2 = 0.4 kN/m	
Water		$F_{water_h} = \gamma_G$	$\lambda \times \gamma_w \times (h_{water} +$	$d_{cover} + h_{base})^2 / 2$	2 = 1 kN/m	
Moist retained soil		$F_{moist_h} = \gamma_G$	$3 \times K_A \times \gamma_{mr} \times ((r)$	n _{eff} - h _{sat} - h _{base}) ² ,	/ 2 + (h _{eff} - h _{sat} -	$h_{base}) imes (h_{sat})$
Total		$+ \Pi_{\text{base}} = 0$ $F_{\text{total h}} = F_{\text{stable}}$	b3.0 Kiv/III at h + Fmoist h + F	water h + Fsur h = 7	77 kN/m	
Moments on wall						
Wall stem		Mstem = Fste	m × Xstem = 70.2	kNm/m		
Wall base		Mbase = Fba	se \times Xbase = 27.8	kNm/m		
Surcharge load		Msur = Fsur	$x \times X_{sur} \times - F_{sur} h$	× Xsur h = -19.9 k	Nm/m	
Line loads		$M_{\rm P} = \gamma_{\rm G} \times F$	$P_{G1} \times p_1 = 307.5$	i kNm/m		
Saturated retained soil		M _{sat} = -F _{sat}	h × X _{sat h} = -0.1	kNm/m		
Water		$M_{water} = -F_w$	vater_h × Xwater h =	-0.1 kNm/m		
Moist retained soil		M _{moist} = F _{mo}	 pist_v × Xmoist_v - F	 moist_h × Xmoist_h =	-50.4 kNm/m	
Total		$M_{total} = M_{ste}$	m + M _{base} + M _{sat}	t + M _{moist} + M _{water}	$+ M_{sur} + M_P = 3$	35 kNm/m
Check bearing pressure						
Propping force to stem		F _{prop stem} =	$min((F_{total v} \times I_{bal}))$	_{ase} / 2 - M _{total}) / (h	prop + tbase), Ftota	u h) = -34.3
		kN/m			. ,,,	- · ·

Tedds MINT Structures The Shack rear of 34 Ravensdale Avenue London N12 9HT	Project 30 Ferncorft Avenue				Job no. M20202	
	Calcs for	Start page no./Revision 5				
	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date

Propping force to base	Fprop_base = Ftotal_h - Fprop_stem = 111.4 kN/m
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = \textbf{-132.2 kNm/m}$
Distance to reaction	$\overline{x} = (M_{total} + M_{prop}) / F_{total_v} = 1113 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$
Loaded length of base	$I_{\text{load}} = I_{\text{base}} = 2225 \text{ mm}$
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} = 81.9 \text{ kN/m}^2$
Bearing pressure at heel	$q_{heel} = F_{total_v} / I_{base} = 81.9 \text{ kN/m}^2$
Factor of safety	$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 1.708$
PASS - A	llowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.4.09

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

C30/37
f _{ck} = 30 N/mm ²
$f_{ck,cube} = 37 \text{ N/mm}^2$
$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$
$f_{ctm} = 0.3 \; N/mm^2 \times (f_{ck} \; / \; 1 \; N/mm^2)^{2/3} = \textbf{2.9} \; N/mm^2$
$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$
γ _C = 1.50
$\alpha_{cc} = 0.85$
$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = \textbf{17.0} \ N/mm^2$
h _{agg} = 20 mm
f _{yk} = 500 N/mm ²
E _s = 200000 N/mm ²
γs = 1.15
$f_{yd} = f_{yk} / \gamma_S = \textbf{435 N/mm}^2$
c _{sf} = 40 mm
c _{sr} = 50 mm
c _{bt} = 50 mm
c _{bb} = 75 mm
h = 475 mm
M = 16.6 kNm/m
$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 415 mm$
$K = M / (d^2 \times f_{ck}) = 0.003$
K' = 0.207
K' > K - No compression reinforcement is required
$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 394 mm$
$x = 2.5 \times (d - z) = 52 \text{ mm}$

Tedds	Project	30 Ferno	orft Avenue		Job no. M2	0202			
MINT Structures	Calcs for		Start page no./Revision						
The Shack rear of 34 Ravensdale Avenue		Worst case	RC wall check		otart pago no./ t	6			
N12 9HT	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date			
Area of tension reinforcement r	equired	$A_{sfM.req} = M$	/ (f _{yd} × z) = 97	mm²/m					
Tension reinforcement provided	k	16 dia.bars	; @ 200 c/c						
Area of tension reinforcement p	provided	$A_{sfM.prov} = \pi$	$\times \phi_{\text{sfM}^2}$ / (4 $\times s$	sfM) = 1005 mm²/i	m				
Minimum area of reinforcement	: - exp.9.1N	$A_{sfM.min} = m$	$ax(0.26 imes f_{ctm} /$	′ f _{yk} , 0.0013) × d =	= 625 mm²/m				
Maximum area of reinforcemen	t - cl.9.2.1.1(3)	$A_{sfM.max} = 0$.04 × h = 1900	10 mm²/m					
	DAGO A a a a	max(A _{sfM.rec}	q, A _{sfM.min}) / A _{sfM}	1.prov = 0.622					
	PASS - Area o	t reinforcement	t provided is g	greater than are	a of reinforcen	nent required			
Crack control - Section 7.3									
Limiting crack width		$W_{max} = 0.3$	mm						
Variable load factor - EIN 1990 -	- Table AT.T	$\Psi_2 = 0.6$	LeN lues /use						
Serviceability bending moment		$M_{\rm sls} = 11.3$	KINM/M	00 C N/m m ²					
Lead duration		$\sigma_{\rm s} = {\rm IVI}_{\rm sls} / ($	$A_{sfM.prov} \times Z) = $	28.6 N/mm²					
Load duration factor									
Effective area of concrete in ter	nsion	$A_{n off} = 0.4$	(25×(h-d))	(h - x)/3 h/2) -	141042 mm ² /n	n			
Mean value of concrete tensile strength		$f_{\text{st off}} = f_{\text{stm}} = 2.9 \text{ N/mm}^2$							
Reinforcement ratio	enengin	$\rho_{p,eff} = A_{sfM,prov} / A_{c,eff} = 0.007$							
Modular ratio		$\alpha_e = E_s / E_c$	m = 6.091						
Bond property coefficient		k ₁ = 0.8							
Strain distribution coefficient		k ₂ = 0.5							
		k ₃ = 3.4							
		$k_4 = 0.425$							
Maximum crack spacing - exp.	7.11	$s_{r.max} = k_3 \times$	$c_{sf} + k_1 \times k_2 \times$	$k_4 \times \phi_{\text{sfM}} \ / \ \rho_{\text{p.eff}} =$	518 mm				
Maximum crack width - exp.7.8		$W_k = S_{r.max}$	$\times \max(\sigma_s - k_t \times$	$(f_{ct.eff} / \rho_{p.eff}) imes (1)$	+ $\alpha_e \times \rho_{p.eff}$), 0.6	$6 imes \sigma_s$) / E _s			
		$w_k = \boldsymbol{0.044}$	mm						
		$w_k / w_{max} =$	0.148						
		PASS	- Maximum c	rack width is les	ss than limiting	g crack width			
Check stem design at base o	f stem	h 175 mr	~						
		= 473	11						
Design bending moment combi	e - Section 6.1	M – 36 kNr	m/m						
Design behaving moment comb		$d = b = C_{m} =$	الالالال م / 2 – 417 n	m					
Depth to tension reinforcement		$K = M / (d^2)$	$\psi_{sr} / 2 = 417$ m × f _{ak}) = 0.007						
		K' = 0 207	\wedge ICK) = 0.001						
			K' > K -	No compressio	n reinforceme	nt is reauired			
Lever arm		z = min(0.5	5 + 0.5 × (1 – 3	$(5.53 \times K)^{0.5}, 0.95)$	× d = 396 mm				
Depth of neutral axis		$x = 2.5 \times (c$	l – z) = 52 mm	, , , I					
Area of tension reinforcement r	equired	A _{sr.reg} = M /	$(f_{vd} \times z) = 209$	mm²/m					
Tension reinforcement provided	k	16 dia.bars	@ 200 c/c						
Area of tension reinforcement p	provided	$A_{sr,prov} = \pi$	$<\phi_{ m sr}^2$ / (4 \times S _{sr})	= 1005 mm²/m					
Minimum area of reinforcement	: - exp.9.1N	A _{sr.min} = ma	$x(0.26 \times f_{ctm} / f_{ctm})$	f _{yk} , 0.0013) × d =	628 mm²/m				
Maximum area of reinforcemen	t - cl.9.2.1.1(3)	A _{sr.max} = 0.0	04 × h = 19000) mm²/m					
	. ,	max(A _{sr.req} ,	Asr.min) / Asr.prov	v = 0.625					
	PASS - Area o	f reinforcement	t provided is	greater than are	a of reinforcen	nent required			
Crack control - Section 7.3									

Limiting crack width

					1			
Tedds	Project	Job no. M20202						
MINT Structures	Calcs for				Start page no./Revision 7			
The Shack rear of 34 Ravensdale Avenue		Worst case I	RC wall check					
London N12 9HT	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	LS	03/03/2021						
Variable load factor - EN1990	Table A1 1							
Serviceshility bending moment		$\psi_2 = 0.0$ M ₂ - 24.9	kNm/m					
Tensile stress in reinforcement	•	$\sigma_{\rm c} = M_{\rm elc} / ($	$A_{cr, prov} \times 7 = 62$	2.5 N/mm ²				
Load duration		Long term						
Load duration factor		kt = 0.4						
Effective area of concrete in te	nsion	$A_{c,eff} = min($	2.5 × (h - d). (h	(1 - x) / 3, $h / 2) =$	140958 mm ² /r	n		
Mean value of concrete tensile	strenath	$f_{ct eff} = f_{ctm} =$	2.9 N/mm ²	. ,,,,,,,,,_,				
Reinforcement ratio		$\rho_{\rm p, eff} = A_{\rm sr, pr}$	$A_{c,eff} = 0.00$	7				
Modular ratio		$\alpha_{e} = F_{e} / F_{c}$	m = 6.091					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		$k_2 = 0.5$						
		k ₃ = 3.4						
		$k_4 = 0.425$						
Maximum crack spacing - exp.	7.11	$s_{r.max} = k_3 \times$	$c_{sr} + k_1 \times k_2 \times$	$k_4 \times \phi_{sr} / \rho_{p.eff} = 58$	51 mm			
Maximum crack width - exp.7.8	3	$W_{k} = S_{r,max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$						
		$w_k = 0.103$	mm					
		$w_k / w_{max} =$	0.344					
		PASS	- Maximum cı	rack width is les	s than limitin	g crack width		
Rectangular section in shear	- Section 6.2							
Design shear force		V = 62 kN/i	m					
		$C_{\text{Rd,c}} = 0.18$	8 / γ _C = 0.120					
		k = min(1 +	√(200 mm / d)	, 2) = 1.693				
Longitudinal reinforcement rati	$\rho_{I} = min(A_{sf,prov} / d, 0.02) = 0.002$							
		$v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times k^{3/2} \times f_{ck}^{0.5} = 0.422 \text{ N}/\text{mm}^2$						
Design shear resistance - exp.	6.2a & 6.2b	$V_{\text{Rd.c}} = \text{max}(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$						
		V _{Rd.c} = 176 kN/m						
		V / V _{Rd.c} = 0.352						
		PAS	S - Design sh	ear resistance e	xceeds desig	n shear force		
Check stem design at prop								
Depth of section		h = 475 mr	n					
Rectangular section in shear	- Section 6.2							
Design shear force		V = 18.2 kM	√/m					
		$C_{\text{Rd,c}} = 0.18$	8 / γ _C = 0.120					
		k = min(1 +	√(200 mm / d)), 2) = 1.693				
Longitudinal reinforcement rati	0	$\rho_{\rm I} = \min(A_{\rm si})$	1.prov / d, 0.02) :	= 0.001				
		V _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	² × f _{ck} ^{0.5} = 0.422 N	l/mm²			
Design shear resistance - exp.	6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd,c} \times k \times (10))$	$10 \text{ N}^2/\text{mm}^4 \times \rho_1 \times 1$	$(c_{ck})^{1/3}, v_{min}) \times d$			
		V _{Rd.c} = 176	kN/m		- / / /			
		$V / V_{Rd.c} = 0$	0.103					
		PAS	S - Design sh	ear resistance e	xceeds desig	n shear force		
Horizontal reinforcement par	allel to face of s	tem - Section 9	9.6					
Minimum area of reinforcemen	t – cl.9.6.3(1)	A _{sx.req} = ma	$x(0.25 imes A_{ m sr.prov})$, 0.001 \times t _{stem}) =	475 mm²/m			
Maximum spacing of reinforce	ment – cl.9.6.3(2)	S _{sx_max} = 40	0 mm					
Transverse reinforcement prov	ided	12 dia.bars	@ 200 c/c					
Area of transverse reinforceme	ent provided	$A_{sx.prov} = \pi 2$	$\times \phi_{sx^2} / (4 \times s_{sx})$	= 565 mm²/m				
	PASS - Area of	reinforcement	t provided is g	reater than area	of reinforcer	nent required		

edds'	Project	30 Fernce	orft Avenue	Job no. M20202					
MINT Structures	Calcs for				Start page no./Revision				
The Shack rear of 34 Ravensdale Avenue		Worst case	RC wall check			8			
N12 9HT	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date			
Ohaali kaaa daainn at taa									
Depth of section		h = 450 mr	n						
Rectangular section in flexur	e - Section 6 1								
Design bending moment combi	nation 1	M = 107.2	kNm/m						
Depth to tension reinforcement		$d = h - C_{bb}$	• ohh / 2 = 365 r	mm					
		$K = M / (d^2)$	$\times f_{ck}$ = 0.027						
		K' = 0.207							
			K' > K -	No compressio	n reinforceme	ent is required			
Lever arm		z = min(0.5	5 + 0.5 × (1 – 3	$.53 \times \text{K})^{0.5}, 0.95)$	× d = 347 mm	-			
Depth of neutral axis		$x = 2.5 \times (c$	I − z) = 46 mm						
Area of tension reinforcement r	Area of tension reinforcement required		/ (f _{vd} × z) = 711	mm²/m					
Tension reinforcement provided	' t	20 dia.bars	@ 200 c/c						
Area of tension reinforcement p	provided	$A_{bb,prov} = \pi$	$\times \phi_{bb}^2 / (4 \times s_{bb})^2$) = 1571 mm²/m					
Minimum area of reinforcement	Minimum area of reinforcement - exp.9.1N		$A_{bb,min} = max(0.26 \times f_{otm} / f_{tr} = 0.0013) \times d = 550 \text{ mm}^2/\text{m}$						
Maximum area of reinforcemen	t - cl.9.2.1.1(3)	1(3) Abb max = 0.04 × h = 18000 mm ² /m							
	(0)	max(A _{bb req.}	Abb min) / Abb pr	w = 0.453					
	PASS - Area o	f reinforcement	provided is g	reater than area	a of reinforce	ment required			
Crack control - Section 7.3									
Limiting crack width		W _{max} = 0.3	mm						
Variable load factor - EN1990 -	- Table A1.1	$\Psi_2 = 0.6$							
Serviceability bending moment		M _{sls} = 79.3	kNm/m						
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{bb,prov} \times z) = 1$	45.7 N/mm²					
Load duration		Long term							
Load duration factor		$k_t = 0.4$							
Effective area of concrete in ter	nsion	A _{c.eff} = min(2.5 × (h - d), (ł	n – x) / 3, h / 2) =	134792 mm ² /	m			
Mean value of concrete tensile	strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²						
Reinforcement ratio		$\rho_{\text{p.eff}} = A_{\text{bb.p}}$	rov / A _{c.eff} = 0.0 1	12					
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091						
Bond property coefficient		k ₁ = 0.8							
Strain distribution coefficient		k ₂ = 0.5							
		k ₃ = 3.4							
		k ₄ = 0.425							
Maximum crack spacing - exp.7	7.11	$s_{r.max} = k_3 \times$	$c_{bb} + k_1 \times k_2 \times$	$k_4 \times \phi_{bb} / \rho_{p.eff} = k_{bb}$	547 mm				
Maximum crack width - exp.7.8		$W_k = S_{r.max}$	$< \max(\sigma_s - k_t \times$	$(f_{ct.eff} / \rho_{p.eff}) \times (1$	+ $\alpha_e \times \rho_{p.eff}$), 0.	$6 imes \sigma_s) / E_s$			
		w _k = 0.239	mm						
		$W_k / W_{max} =$	U.796 Movimum o	rook width io loo	o than limitin	a orock width			
	0	PA33	- waxiiiiUiii Ci	ach WIULII IS 185	əə undin mininilin	y ciack wiuln			
Rectangular section in shear	- Section 6.2	\/ 4400	(NI/m						
Design shear lorce		v = 142.9							
		$U_{\text{Rd,c}} = U.18$	$p_{1} \gamma_{\rm C} = 0.120$						
		$\kappa = \min(1 + 1)$	· v(∠∪∪ mm / d	(2) = 1.740					
Longitudinal reinforcement ratio)	$\rho_{\rm I} = \min(A_{\rm b})$	b.prov / a, u.u2) :		1/2				
		$V_{min} = 0.035$	$N''^{2}/mm \times k^{3/3}$	$F \times T_{ck}^{0.3} = 0.440$	N/MM ²				
Design shear resistance - exp.6	5.2a & 6.2b	$V_{Rd.c} = max$	$(U_{Rd.c} \times k \times (10))$	JU N ² /mm ⁴ × ρ_1 ×	T_{ck}) ^{1/3} , V_{min}) × d				
		VRd.c = 1/8	.0 KIN/III						

2	Project		Job no.			
Tedds MINT Structures	30 Ferncorft Avenue				M20202	
The Shack rear of 34 Ravensdale Avenue	Calcs for	Worst case I	RC wall check		Start page no./R	evision 9
N12 9HT	Calcs by LS	Calcs date 03/03/2021	Checked by	Checked date	Approved by	Approved date
			700	•		-
		V / VRd.c = 0 PAS	S - Design sh	ear resistance of	exceeds desig	n shear force
Rectangular section in shear	- Section 6.2		5		5	
Design shear force		V = 1.6 kN/	'n			
		$C_{\text{Rd,c}} = 0.18$	8 / γ _C = 0.120			
		k = min(1 +	√(200 mm / d), 2) = 1.740		
Longitudinal reinforcement ratio)	$\rho_I = min(A_{bi}$	prov / d, 0.02) =	= 0.003		
		V _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{2} \times f_{ck}^{0.5} = 0.440$	N/mm ²	
Design shear resistance - exp.6	5.2a & 6.2b	$V_{Rd.c} = max$	$(C_{Rd.c} \times k \times (10))$	$00 \text{ N}^2/\text{mm}^4 \times \rho_1 \times$	f_{ck}) ^{1/3} , V_{min}) × d	
		$V_{Rd.c} = 160$.6 kN/m			
		V / VRd.c = C PAS	S - Desian sh	ear resistance (exceeds desig	n shear force
Secondary transverse reinfore	cement to base	- Section 9.3	e zeeigii eii		shoocae acong	
Minimum area of reinforcement	– cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	$\times A_{bb,prov} = 31$	4 mm²/m		
Maximum spacing of reinforcem	nent – cl.9.3.1.1(3	3) S _{bx_max} = 45	0 mm			
Transverse reinforcement provid	ded	12 dia.bars	@ 200 c/c			
Area of transverse reinforcemer	nt provided	$A_{bx.prov} = \pi \Sigma$	$\times \phi_{bx}^2 / (4 \times s_{bx})$) = 565 mm²/m		
	PASS - Area of	reinforcement	provided is g	reater than are	a of reinforcer	nent requirea
	12 dia.bars horizontal rei parallel to fa	a @ 200 c/c ₄ 0→ ← nforcement ace of stem	→ -50			
	12 dia.bars 16 dia.bars	s @ 200 c/c		ars @ 200 c/c hars @ 200 c/c		
] 15 7	16 dia.bars 16 dia.bars 50 20 dia.bars 12 dia.bars @ 200 transverse reinforce in base	s @ 200 c/c @ 200 c/c @ 200 c/c c/c ement	16 dia.b 50 ↓ ↓ ↑ ↑ 75	ars @ 200 c/c		

 Job:
 30 Ferncroft Avenue

 Made By:
 LS
 Job No.:

 Date:
 March 2021
 M20202

RC BASEMENT SLAB UPLIFT CHECK

NOTE: Slab designed as a simply supported one-way spanning panel, in 1m strips. Because the water level is taken at ground level in all other calculations a partial safely factor of 1.2 is applied to Gound water force (from BS8110-1 table 2.1). The slab self weight is taken as the most conservative condition i.e. a partial safety factor of 1.0.

DESIGN DATA [taken from BS8002:1994, BS8110, BS648]:

Typical mate	rial weights.
	na vognis.

Concrete [normal reinforced] - (unit load) :	W_{conc} :=24 $kN \cdot m^{-3}$
Water - (Bulk density) :	$W_{water} \coloneqq 9.81 \ \mathbf{kN} \cdot \mathbf{m}^{-3}$
Concrete and Reinforcement specifications:	
Characteristic tensile strength of reinforcement:	$f_y \coloneqq 500 \; \boldsymbol{N} \boldsymbol{\cdot} \boldsymbol{m} \boldsymbol{m}^{-2}$
Characteristic compressive cube strength of concrete :	f_{cu} := 35 $oldsymbol{N}oldsymbol{\cdot}oldsymbol{m}oldsymbol{m}^{-2}$
Cover to reinforcement:	$c_{cov} \coloneqq 50 \ mm$
Slab/ Wall dimensions:	
Wall height:	<i>H</i> ≔3.6 <i>m</i>
Existing undercroft depth (assumed):	$F_d := 0.0 m$
Slab span (7.0m span assumed to split by mid-span ground beam in detailed design):	<i>l</i> :=3.50 <i>m</i>
Slab strip width:	<i>b</i> := 1.0 <i>m</i>
Assumed data:	
Basic Span/ Effective depth ratio :	r := 20
Initial assumed depth modifaction factor:	m.f := 1.4

Assumed diameter of reinforcing bars (B1131 mesh): $\phi \coloneqq 12 \ mm$

SEE FOLLOWING PAGES FOR ONE WAY SLAB UPLIFT CHECK CACULATIONS.

Created with PTC Mathcad Express. See www.mathcad.com for more information.

P	0	
7/	N A:NIT	
	STRUCTURES	

 Job:
 30 Ferncroft Avenue

 Made By:
 LS
 Job No.:

 Date:
 March 2021
 M20202

SLAB UPLIFT CALCULATION	
Depth of slab and main steel area	YHX S SS
Over all depth of slab . h:	lab thickne
Minimum effective depth -	
$d_{min} \coloneqq \frac{l}{r \cdot m.f} = 125 \ mm$	
Slab thickness = $S_{thk} = 300 \ mm$	deptir, d
Effective depth , d=	Effective
$d \coloneqq S_{thk} - \frac{\phi}{2} - c_{cov} = 244 \ \textbf{mm}$	Fig 1 - Showing reinforcement in the top of the slab.
Loading:	
<u>Dead Loads (gk):</u> Self weight of slab:	$i\!\coloneqq\!W_{conc}\!\cdot\!S_{thk}\!=\!7.2\;\mathbf{kN}\!\cdot\!\mathbf{m}^{-2}$
Finishes (say):	$ii \coloneqq 2.0 \ \mathbf{kN} \cdot \mathbf{m}^{-2}$
Total Dead Load:	$g_k\!\coloneqq\!i\!+\!ii\!=\!9.2 {m k\!N}\!\cdot\!{m m}^{-2}$
<u>Uplift:</u> Height of retained water: $H_w \coloneqq H$ Height of water taken as ground le	$-F_d{=}3.6~{m}$ Factor of safety: $\gamma_w{:=}1.2$ evel minus assumed existing undercroft depth.
Ground Water:	$F_w \coloneqq H_w \cdot W_{water} \cdot \gamma_w = 42.379 \ kN \cdot m$
Heave:	$F_h \coloneqq 48 \ \mathbf{kN} \cdot \mathbf{m}^{-2}$
Net uplift load:	$F_{net} := (F_w + F_h) - g_k = 81.18 \ kN \cdot m^{-1}$
Ultimate load for 1.0m strip, W:	
Total imposed load:	$W \coloneqq F_{net} \cdot b \cdot l = 284.13 \text{ kN}$
Design moment:	$M \coloneqq \frac{W \cdot l}{8} = 124.31 \ \mathbf{kN} \cdot \mathbf{m}$
<u>Ultimate moment:</u>	$M_u \coloneqq 0.156 \cdot f_{cu} \cdot b \cdot d^2 = 325.07 \ kN \cdot d^2$
Check: M	$T_u > M$ RESULT = "SO OK"

STRUCTURES.	Made By: Date:	LS March 2021	Job No.: M20202
<u>Slab uplift continued:</u>			
<u>Main steel design:</u>			
$k \coloneqq \frac{M}{f_{cu} \cdot b \cdot d^2} = 0.06 \qquad ;$	$\mu_z \coloneqq 0.5 + \left(\bigvee_{z \in \mathcal{S}} \right) = 0.5 + \left(\bigvee_{z \in \mathcal{S}} \right)$	$\left(0.25 - \frac{k}{0.9}\right)$	
<u>Check:</u> $\mu_z < 0.95$	RESULT = '	'PASS" ∴	$\mu_z = 0.93$
<u>Lever arm, z</u> :	$z \coloneqq \mu_z \cdot d$	·	z=226.58 mm
So area of steel required is :			
$As_{req} := \frac{M}{0.95 \cdot f_y \cdot (0.95 \cdot d)} = 1128.9$	97 mm ²	(in p	per meter i.e. mm²/m]
Reinforcing bar dia. specified :	$\phi_{vert} \coloneqq 12 m$	m <u>Spacing :</u>	$b_{sv} \coloneqq 100 \ mm$
$As_{actual} = 1131 \ mm^2$			[mm²/m
Check:	$\mathbf{As}_{\mathbf{actual}} {>} As$	req	RESULT = "SO OK
<u>Check minimum steel area, As:</u>			
$As_{min} \coloneqq 13\% \cdot b \cdot S_{thk} = 39000 \ mm^2$	so $\frac{As_n}{10}$	$\frac{nin}{0} = 390 \ mm^2 \ /$	m
Check:	$As_{actual} > As_{r}$	nin F	RESULT ="SO OK"
<u> Transverse reinforcement check :</u>			
Iransverse reinforcement check : $As_{req} \coloneqq 20\% \cdot As_{actual}$	$As_{req} =$	$226.195 \ mm^2$	[mm²/m
Iransverse reinforcement check : $As_{req} \coloneqq 20\% \cdot As_{actual}$ Transverse reinforcement provided	$As_{req} =$: $As_{act} =$	$226.195 mm^2$ $252 mm^2$	[mm²/m [mm²/m
Iransverse reinforcement check : $As_{req} \coloneqq 20\% \cdot As_{actual}$ Transverse reinforcement provided Check :	$As_{req} =$ $: As_{act} :=$ $As_{min} <$	$226.195 mm^2$ $=252 mm^2$ $< As_{actual}$	[mm²/m [mm²/m RESULT = "SO OF
Iransverse reinforcement check : As_{req} := 20% • As_{actual} Transverse reinforcement provided Check : o provide 350mm thick slab with	As _{req} = : As _{act} := As _{min} < B1131 Mesl	226.195 mm ² 252 mm ² <as<sub>actual</as<sub>	[mm²/m [mm²/m RESULT = "SO Ok in the top of the slat

Created with PTC Mathcad Express. See www.mathcad.com for more information.

SUGGESTED BASEMENT PROPPING PLANS SCALE 1:100 @ A1

WAILINGS TO BE "MABEY MASS 50" GRILLAGE BEAMS INSTALLED TO MANUFACTURERS SPECIFICATIONS. 5 1 2 1 5 2 1 4 1 4 **i** 1/**i** 3 **i** NEW BASEMENT RETAINING WALL FORMED IN RC UNDERPINNING \$EQUENCE SHOWN. 3 EXCAVATE ACCESS CHANNEL WITHIN CENTRAL BUND TO ALLOW а 4 4 INSTALLATION OF RAKING PROPS & THRUST BLOCK (LOCALLY SHORED) 4 /RAKING - 14 -1 3 5 2 2 LOW LEVEL UNDERPINNING ASSUMED BOUNDARY BASEMENT LEVEL PLAN [] ASSUMED BOUNDARY LINE

GROUND LEVEL PLAN

UNDERPINNING GENERAL NOTES

- 1. THIS DRAWING SHOULD NOT BE SCALED
- 2. ALL DIMENSIONS AND LEVELS TO BE CONFIRMED BY THE ARCHITECT
- 3. A SOIL INVESTIGATION IS TO BE CARIED OUT INCLUDING TRIAL PITS AND BOREHOLES PRIOR TO CONFIRMATION OF
- ENGINEER'S DETAILS 4. NO CONCRETE IS TO BE POURED UNTIL EXCAVATION BOTTOMS HAVE BEEN CHECKED AND APPROVED BY THE
- LOCAL AUTHORITY 5. THE UNDERSIDE OF EXISTING FOUNDATIONS ARE TO BE THOROUGHLY CLEANED AND ALL LOOSE PARTICLES
- REMOVED TO RECEIVE DRY PACK. 6. CONCRETE PINS TO BE CONSTRUCTED IN THE ORDER AS
- SHOWN ON THE DRAWING. 7. ONLY 20% OF WALL IS TO BE OPENED UP AT ANY ONE
- TIME 8. DRY PACK MIX (1:3) SULPHATE RESISTING CEMENT: SHARP SAND TO DAMP EARTH CONSISTENCY TO BE THOROUGHLY RAMMED INTO POSITION.
- 9. ALLOW 48 HOURS FOR DRY PACK TO MATURE BEFORE EXCAVATING ADJOINING AREAS. 10. ALL SOFT MATERIAL IS TO BE REMOVED TO ENSURE A
- FIRM SOUND FOUNDING MATERIAL TO BE AGREED ON SITE. 11. UNDERPINNING WORKS TO BE IN ACCORDANCE WITH
- EUROCODE 7, PART 1, BS EN 1997-1 12. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF ALL EXCAVATION AND THE BUILDING DURING THE COURSE OF THE WORKS AND THEREFORE SHALL HAVE PLANKING
- AND STRUTTING ON SITE AT ALL TIMES TO COMPLY WITH CURRENT HEALTH AND SAFETY REGULATIONS.
- 13. DRAINS ENCOUNTERED IN EXCAVATIONS AND ACCESS HOLES ARE TO BE WRAPPED IN MINIMUM 50mm THICKNESS POLYSTYRENE PRIOR TO PLACING CONCRETE IN PIN AND BACK FILLING ACCESS HOLES WITH LEAN MIX CONCRETE WHERE THIS IS REQUIRED
- 14. FOR GENERAL NOTES SEE DRAWING M20202/GN01 EXCAVATED VERTICAL FACES TO BE SUPPORTED USING NON-DEGRADEABLE SACRIFICIAL TRENCH SHEETING SECURELY PROPPED OFF OPPOSITE FACE.
- 15. ALL PINS TO BE SUPPORTED AT 3RD HEIGHT FROM BASE OF PIN (FULL HEIGHT TAKEN BETWEEN BTM OF EXCAVATION UP TO GROUND LEVEL). A SECOND ROW OF PROPPING MUST ALSO BE PROVIDED AT THE HEAD OF EACH PIN. ALL PROPS TO EXTEND BACK HORIZONTALLY TO THE CENTRAL EARTH MASS (OR OFF FACE OF OPPOSING PIN/WALL). ALL PROPPING TO BE IN ACCORDANCE WITH CONTRACTORS TEMPORARY WORKS DESIGN & METHOD STATEMENT. (CORNERS TO BE PROPPED AS ABOVE WITH DIAGONALS
- ACROSS ADJACENT PINS) 16. CONTRACTOR IS ENSURE THAT ADEQUATE PROPPING AND SACRIFICIAL SHEETING ARE KEPT ON SITE IN CASE LOOSE
- SOIL IS ENCOUNTERED 17. ALL UNDERPINNING TO BE FORMED WITH GRADE RC35 CONCRETE, WITH SULPHATE RESISTING CEMENT (SRC) TO BS EN 197-1

NOTES: THIS DRAWING IS INTENDED AS AN INDICATIVE SUGGESTED T.W. SPECIFICATION ONLY AND SHOULD BE READ IN CONJUNCTION WITH THE WRITTEN METHOD STATEMENT. IT IS THE RESPONSIBILITY OF THE CONTRACTOR 1 PROVIDE A FULL T.W. PACKAGE INCLUDING PROPPING PLAN & T.W. DESIGN CALCULATIONS. THIS DRAWING AND ANY SUPPORTING SKETCH CALCULATIONS SHOULD NOT BE RELIED ON FOR THE REQUIRED T.W. PROVISIONS. ALL CONSTRUCTION DETAILS SHOULD ADHERE STRUCTURAL ENGINEER'S AND ARCHITECT'S DETAILS. SEE DRAWING TW02 FOR SUGGESTED METHOD OF PROPPING. UNDER NO CIRCUMSTANCES SHOULD DIGGERS BE USED FOR

ANY EXCAVATIONS ALL WORKS TO BE HAND DUG.

ISSUE STAGE. THIS DRAWING SHOULD NOT BE USED FOR ANY CONSTRUCTION PURPOSES. DRAWING NOTES THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT THIRD PARTY ARCHITECTS & OTHER SPECIALISTS' DRAWINGS AND SPECIFICATIONS. . THIS DRAWING SHOULD NOT BE SCALED IN EITHER PAPER OR DIGITAL FORMAT. 3. ALL DIMENSIONS AND LEVELS TO BE CONFIRMED BY THE ARCHITECT. ANY DISCREPANCIES IN DRAWINGS OR DETAILS TO BE IMMEDIATELY REPORTED TO MINT STRUCTURES. THIS DRAWING REMAINS THE PROPERTY OF MINT STRUCTURES AND MUST NOT BE REPRODUCED WITH OUT PRIOR WRITTEN CONSENT. 5. ALL DETAILS ARE SUBJECT TO BUILDING REGULATIONS APPROVAL. . TO ENSURE THIS DRAWING HAS BEEN PRINTED CORRECTLY THE BAR BELOW SHOULD MEASURE 50mm: ALL WORK CARRIED OUT SHOULD ADHERE TO SPECIFIC DRAWING NOTES & GUIDANCE AND COMPLY WITH CURRENT RELEVANT HSE & CDM REGULATIONS TO ENSURE SAFE SITE PRACTICE IS MAINTAINED IN ACCORDANCE WITH DETAILS PRODUCED BY OTHERS. 9. FOR GENERAL NOTES SEE DRAWING: M20202/GN01. 10. ALL DIMENSIONS SHOWN ARE IN mm U.N.O. DRAF DATE REV DETAIL ACCESS CHANNELS ADDED RAKING PROPPING REVISED MiNT STRUCTURES. Hamdan House, 2nd fl., 760 High Road, London, N12 9QH. T: 020 8446 4650 E: advice@mintstructures.co.uk W: www.mintstructures.co.uk PROJECT 30 FERNCROFT AVENUE LONDON NW3 7PH DRAWING TITLE SUGGESTED BASEMENT PROPPING PLANS SCALE DRAWN LS 1:100 @ A1 ENGINEER LS DATE CHECKED JAN 2021 --REVISION DRAWING No.

THIS DRAWING FORMS PART OF A INITIAL DRAFT SCHEME PRODUCED PRIOR TO ANY STRUCTURAL CALCULATIONS BEING CARRIED OUT BY MINT STRUCTURES, IT IS THEREFORE FOR INDICATIVE PURPOSES ONLY FOR USE SOLE IN SUPPORT OF A PLANNING APPLICATION. ALL STRUCTURAL ELEMENTS SHOWN ARE PRELIMINARY AND SUBJECT TO CHANGE AT FINAL CONSTRUCTION

M20202/ B1 В

(NUMBERED NOTES BELOW REFERENCE DIRECTLY TO MARKS INDICATED ON PIN SECTIONS A-G) ① NEW R.C UNDERPINNING RETAINING WALL CAST IN MAX 1000mm WIDE SECTIONS IN SEQUENCE SHOWN ON

② CAREFULLY REMOVE EXTG PROJECTIONS USING HAND TOOLS ONLY LEAVING EXTG WALL FLUSH WITH FACE OF RC UNDERPINNING UNDER (REMOVAL TO BE CARRIED OUT AFTER COMPLETION OF RC PIN AND

(3) 75mm 1:3 DRY PACK WELL RAMMED INTO POSITION BETWEEN HEAD OF PIN AND UNDERSIDE OF EXTG FOUNDATION (DRY PACK IS TO BE INSTALLED AFTER EACH INDIVIDUAL PIN HAS CURED SUFFICIENTLY.) 6 NEW HIGH LEVEL RETAINING WALL / UNDERPINNING TO BE HORIZONTALLY PROPPED AS SHOWN.

S PERMANENT SACRIFICIAL SHUTTER POSITIONED AT BACK FACE OF UNDERPINNING FORMED WITH CEMENTITIOUS 'HARDIE BACKER 500' BOARD TO ENSURE NEW UNDERPINNING DOES NOT ENCROACH BEYOND LINE OF EXTG WALL FACE OVER. SHUTTER RELEASE AGENT ("CEMENTONE" MOULD OIL OR SIMILAR) TO BE APPLIED TO CONTACT FACE OF BOARD TO ENSURE DEBONDING AND EASE OF REMOVAL

6 ALL FINISHES, INSULATION, DPM, WATERPROOFING, DRAINAGE ETC. TO ARCHITECT'S DETAILS

(1) SHAPED MASS CONCRETE HEEL TO EXTEND UP TO LINE OF CORBELLED FOUNDATION ABOVE.

LEVELS SHOWN ON RC SECTIONS ARE DERIVED DIRECTLY FROM THE ARCHITECTURAL SCHEME AND MUST BE CONFIRMED WITHIN THE FINAL ARCHITECT'S PACKAGE.

UNDER NO CIRCUMSTANCE SHOULD TWO ADJACENT PINS BE EXCAVATED SIMULTANEOUSLY, TH CONTRACTOR IS TO ENSURE THAT A PIN HAS CURED SUFFICIENTLY BEFORE OPENING A

WHERE RETAINING WALL CORNERS ARE FORMED, DIAGONAL PROPPING ACROSS ADJACENT PINS IS

ALL PROPPING AND TEMPORARY WORKS TO CONTRACTOR'S DESIGN AND METHOD STATEMENT.

THE SECTIONS SHOWN ARE INDICATIVE DRAWINGS ONLY. REINFORCEMENT AND CONSTRUCTION DETAILS AND DRAWINGS TO BE PROVIDED IN FULL AT FINAL CONSTRUCTION DRAWING STAGE TO

ALL DIMENSIONS SHOULD BE OBTAINED & VERIFIED ON SITE BEFORE CONSTRUCTION BEGINS.

ANY VOIDS BEHIND UNDERPINNING TO BE FILLED AND PACKED WITH DRY SAND PRIOR TO CASTING

50mm COVER TO BACK FACE OF UNDERPINNING. 70mm COVER TO BOTTOM OF PINS. 35mm COVER TO

ALL DIMENSIONS SHOULD BE OBTAINED & VERIFIED ON SITE BEFORE CONSTRUCTION BEGINS.

UNDER NO CIRCUMSTANCES SHOULD DIGGERS BE USED FOR ANY EXCAVATIONS ALL WORKS TO BE

THIS DRAWING FORMS PART OF A INITIAL DRAFT SCHEME PRODUCED PRIOR TO ANY STRUCTURAL CALCULATIONS BEING CARRIED OUT BY MINT STRUCTURES, IT IS THEREFORE FOR INDICATIVE PURPOSES ONLY FOR USE SOLE IN SUPPORT OF A PLANNING APPLICATION. ALL STRUCTURAL ELEMENTS SHOWN ARE PRELIMINARY AND SUBJECT TO CHANGE AT FINAL CONSTRUCTION ISSUE STAGE. THIS DRAWING SHOULD NOT BE USED FOR ANY CONSTRUCTION PURPOSES.

DRAWING NOTES

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT THIRD PARTY ARCHITECTS & OTHER SPECIALISTS' DRAWINGS AND SPECIFICATIONS.
- THIS DRAWING SHOULD NOT BE SCALED IN EITHER PAPER OR DIGITAL FORMAT.
- B. ALL DIMENSIONS AND LEVELS TO BE CONFIRMED BY THE ARCHITECT. . ANY DISCREPANCIES IN DRAWINGS OR
- DETAILS TO BE IMMEDIATELY REPORTED TO MINT STRUCTURES. 5. THIS DRAWING REMAINS THE PROPERTY OF MINT STRUCTURES AND MUST NOT BE REPRODUCED WITH OUT PRIOR WRITTEN
- CONSENT . ALL DETAILS ARE SUBJECT TO BUILDING
- REGULATIONS APPROVAL. TO ENSURE THIS DRAWING HAS BEEN PRINTED CORRECTLY THE BAR BELOW SHOULD MEASURE 50mm:
- ALL WORK CARRIED OUT SHOULD ADHERE TO SPECIFIC DRAWING NOTES & GUIDANCE AND COMPLY WITH CURRENT RELEVANT HSE & CDM REGULATIONS TO ENSURE SAFE SITE PRACTICE IS MAINTAINED IN ACCORDANCE WITH DETAILS PRODUCED BY OTHERS. . FOR GENERAL NOTES SEE DRAWING
- M20202/GN01. 10. ALL DIMENSIONS SHOWN ARE IN mm U.N.O.

T: 020 8446 4650 E: advice@mintstructures.co.uk W: www.mintstructures.co.uk PROJECT

> 30 FERNCROFT AVENUE LONDON NW3 7PH

DRAWING TITLE

BASEMENT SECTION AL DETAILS

scale 1:50 @ A1	drawn LS
DATF	engineer LS
JAN 2021	CHECKED
DRAWING No.	REVISION
M20202/ B2	А

BASEMENT CONSTRUCTION SEQUENCE A-A

3. EXCAVATE TO FORMATION LEVEL PROVIDING RETENTION SHORING WHERE NEEDED TO EXPOSED FACES OF ACCESS PIT. CAST RC BASE, STEM & AND DRY PACK BTWN EXTG IN ACCORDANCE WITH WRITTEN METHOD STATEMENT.

5. CAST RC BASE & GROUND FLOOR SLAB.

PRUP NUTE
ALL WAILINGS TO BE "MABEY MASS" GRILLAGE BEAMS
INSTALLED TO MANUFACTURERS SPECIFICATIONS.

THIS C SCHEN CALCU STRUC PURPO A PLA ELEME SUB JE ISSUE USED	DRAN IE P JLAT TUF DSES NNIN NTS CT STA FOR	WING FOR RODUCED TONS BEI ES, IT IS SONLY FO G APPLI SHOWN FO CHANG AGE. THIS ANY CON	MS PAR PRIOR 1 NG CARF THEREF <u>DR USE 5</u> CATION. ARE PRE GE AT FI DRAWIN ISTRUCT	T OF A I TO ANY RIED OUT ORE FOR SOLE IN ALL STI ELIMINAF NAL CON NG SHOU TON PUF	NITIAL STRUCT BY MII NDIC SUPPOI RUCTUF RUCTUF NTUC NSTRUC NDT RPOSES	DRAFT TURAL NT ATIVE RT OF RAL TION BE
DRAW	/ING	NOTES				
1. TH CO PA DR 2. TH EIT 3. AL CO 4. AN MII 5. TH MII RE CO 6. AL RE 7. TO CO ME 8. AL SP CO CO PR	IIS NJUI RTY AWI IIS I NTALL NTS I NTO NSE I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO NTO I STO STO I STO I STO I STO I STO I STO I STO I STO I STO I STO I STO I STO I STO STO STO STO STO STO STO STO STO STO	DRAWINI NCTION N ARCHITI NGS AND DRAWING PAPER C DIMENSIO MED BY DISCREP, S TO BE TRUCTUR RAWING STRUCTUR RAWING STRUCTUR RAWING STRUCTUR RAWING STRUCTUR REAWING STRUCTUR REAWING STRUCTUR NT. NT. NT. NT. NT. NT. NT. NT. NT. NT.	3 IS WITH AI ECTS & SPECIFIC SPECIFIC SPECIFIC SPECIFIC SPECIFIC SPECIFIC SPECIFIC SPECIFIC SPECIFIC NS AN ITH O ANCIES IMMEDI ES. REMAIN RES A WITH O ARE SL PPROVA SDRAWII HE BA 25m RIED OU ING NOT CURREN DNS TO 401015 TO 401015 TO 401015 TO	TO BI LL RELE OTHER CATIONS ONOT E AL FORM D LEVI HITECT. IN DF ATELY I S THE F ND MU UT PRI UT PRI JBJECT IL. NG HAS R BEL T SHOUL ES & G T RELE ENSUR	E REA SVANT SPECIA BESCA AT. ELS T RAWING REPORT PROPER ST NC OR WI TO BL BEEN PI OW S D ADHE UIDANC VANT E SAFI	AD IN THIRD ALISTS' LED IN TO BE S OR TED TO TTY OF OT BE RITTEN JILDING RINTED HOULD Somm ERE TO E AND HSE & E SITE
9. FO M2 10. AL	TH D R 0202 L DII	GENERAL GENERAL 2/GN01. MENSIONS	RODUCE NOTI	NED IN D BY OT ES SEI I ARE IN	ACCOR HERS. E DR. mm U.N	AWING:
WI 9. FO M2 10. AL		ETAILS P GENERAL 2/GN01. MENSIONS		NED IN D BY OT ES SE I ARE IN		AWING: .0.
WI 9. FO M2 10. AL		GETAILS P GENERAL 2/GN01. MENSIONS		NED IN D BY OT ES SE I ARE IN	ACCOR HERS. E DR. mm U.N	AWING: .0.
WI 9. F0 M2 10. AL D JAN 21	TH D R 0202 L DII R R EV A -	GENERAL 2/GN01. MENSIONS	RODUCE NOTI S SHOWN	NED IN D BY OT ES SE I ARE IN I ARE IN I S ALL	ACCOR HERS. E DR. mm U.N	AWING: .0. DRAWN LS
WI 9. F0 M2 10. AL D JAN 21 - -		GET AILS P GENERAL 2/GN01. MENSIONS	RODUCE NOTI	NED IN D BY OT ES SE I ARE IN I ARE IN I S I I S I I S I I S I I I S I I S I I S I I S I I S I I S I I S I S	ACCOR HERS. E DR. mm U.N	AWING: .0. DRAWN LS - -
WI 9. F0 M2 10. AL D JAN 21 - - - -				NED IN D BY OT ES SE I ARE IN I ARE IN I ARE IN I ARE IN I ARE IN	ACCOR HERS. E DR. mm U.N	AWING: .0. DRAWN LS - - - -
WI 9. F0 M2 10. AL JAN 21 - - - - 76.0 E:		A F amount a	BILL ALL RODUCE NOTI SHOWN SHOWN GLF SLAB N GLF SLAB N GLF SLAB N CALL SHOWN CALL SHOWN CALL SHOWN CALL SHOWN CALL SHOWN CALL SHOWN	NED IN D BY OT ES SE ARE IN ARE IN ARE IN AL COMPANIES E RES. C AL C C C C C C C C C C C C C C C C C	ACCOR HERS. E DR. S [S [S 50 res.ccu	AWING: .0. <u>DRAWN</u> 5 5
WI 9. F0 M2 10. AL D JAN 21 760 E: PROJE		A F A A F A	BILL STAR	NED IN D BY OT ES SE ARE IN I ARE IN I ARE IN I ARE IN I ARE IN I ARE IN I A VI I A VI ON PH	ACCOR HERS. E DR. S [S [S 50 res.cc. ENUE	AWING: .0. Image: Drawn Image: Drawn
WI 9. F0 M2 10. AL D JAN 21 		A F A A F A	BILL CHART	NED IN D BY OT ES SE I ARE IN I ARE IN I ARE IN I SE I SE I SE I ARE IN I SE I SE I SE I ARE IN I SE I SE I SE I SE I SE I SE I SE I SE	ACCOR HERS. E DR. S [S [S [S 50 res.cc.u ENUE	AWING: .0. Image: Drawn Image: Dr
WI 9. F0 M2 10. AL D JAN 21 - - - 760 E: PROJE DRAW K		A F A F A F A F A F A F A F A F	RODUCE NOTI S SHOWN S SHOWN S SHOWN S SHOWN C SHOWN	NED IN D BY OT ES SE ARE IN ARE IN I ARE IN I A VI ON I A VI ON I A VI ON I A VI ON I A VI ON I A A VI ON I A A VI ON I A A VI ON I A A VI ON	ACCOR HERS. E DR. S [S [S 50 res.cc. ENUE	0. DRAWNG: 0. DRAWN 15 - - - - - - - - - - - - -
WI 9. FO M2 10. AL D JAN 21 		A F General Z/GN01. MENSIONS A F MENSIONS Amensions A F MENSIONS A MENSIONS M	RODUCE RODUCE NOTI SHOWN SHOWN SHOWN CROF LOND NW3 7 & CO UENC Q A1	NED IN D BY OT ES SE I ARE IN I ARE IN I ARE IN I SE I SE I ARE IN I SE I SE I ARE IN I SE I SE I SE I SE I SE I SE I SE I SE		AWING: .0. <u>DRAWN</u> .0. <u>DRAWN</u> .0. <u>DRAWN</u> .0. .0. <u>DRAWN</u> .0. .0. <u>DRAWN</u> .0. <u>DRAWN</u>
WI 9. FO M2 10. AL D JAN 21 76(E: PROJE DRAW K SCALE		A F GENERAL 2/GN01. MENSIONS A F MENSIONS A	RODUCE NOTI S SHOWN S SHOWN S SHOWN C NOTI S SHOWN C NOTI S SHOWN C NOTI S SHOWN C NOTI C NOT	NED IN D BY OT ES SE ARE IN ARE IN I ARE IN I ARE IN I ARE IN I ARE IN RES. RES. RES. C S C RES. C RES. C S C RES. C RES.		AWING: .0. DRAWN IS

--REVISION

А

DRAWING No.

M20202/ B3

NO	TES:
1.	THIS DRAWING IS INTENDED AS AN INDICATIVE SUGGESTED T.W. SPECIFICATION ONLY.
2.	CONTRACTOR TO CARRY OUT UNDERPINNING ENSURING PIN SECTIONS WIDTHS $\underline{DO NOT}$ EXCEED 1.0m WITH A MAXIMUM OF 20% OF THE WALL BEING OPEN AT ANY TIME.
3.	IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO PROVIDE A FULL T.W. PACKAGE INCLUDING PROPPING PLAN & T.W. DESIGN CALCULATIONS. THIS DRAWING AND ANY SUPPORTING SKETCH CALCULATIONS SHOULD NOT BE RELIED ON FOR THE REQUIRED T.W. PROVISIONS.
4.	ALL CONSTRUCTION DETAILS TO BE AS RELEVANT ENGINEER'S AND ARCHITECTS'S DETAILS.
5.	THIS DRAWING IS TO BE READ IN CONJUNCTION WITH WRITTEN METHOD STATEMENT.
6.	UNDER <u>NO CIRCUMSTANCES</u> SHOULD DIGGERS BE USED FOR ANY EXCAVATIONS ALL WORKS TO BE HAND DUG.

6. INSTALL HIGH LEVEL "MABEY MASS 50" RAKING PROPPING AND WAILINGS.

REMOVE EXTG FLOOR STRUCTURE & EXCAVATE TOPSOIL TO LVL OF EXTG FOOTINGS.

CAST WALL STEM AND DRY PACK BTWN EXTG IN ACCORDANCE WITH WRITTEN METHOD STATEMENT.

8. CAST RC BASE SLAB.

7. INSTALL LOWER LEVEL "MABEY MASS 50" RAKING PROPPING AND WAILINGS AND EXCAVATE REMAINING BUND SURROUND.

3. FOLLOWING INSTALLATION OF TEMP WORKS & DEMOLITIONS. EXCAVATE TO FORMATION LEVEL PROVIDING RETENTION SHORING TO EXPOSED FACES OF ACCESS PIT. CAST RC BASE & KICKER IN

ACCORDANCE WITH WRITTEN METHOD STATEMENT.

<u>N0</u>	TES:
1.	THIS DRAWING IS INTENDED AS AN INDICATIVE SUGGESTED T.W. SPECIFICATION ONLY.
2.	CONTRACTOR TO CARRY OUT UNDERPINNING ENSURING PIN SECTIONS WIDTHS <u>DO NOT</u> EXCEED 1.0m WITH A MAXIMUM OF 20% OF THE WALL BEING OPEN AT ANY TIME.
3.	IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO PROVIDE A FULL T.W. PACKAGE INCLUDING PROPPING PLAN & T.W. DESIGN CALCULATIONS. THIS DRAWING AND ANY SUPPORTING SKETCH CALCULATIONS SHOULD NOT BE RELIED ON FOR THE REQUIRED T.W. PROVISIONS.
4.	ALL CONSTRUCTION DETAILS TO BE AS RELEVANT ENGINEER'S AND ARCHITECTS'S DETAILS.
5.	THIS DRAWING IS TO BE READ IN CONJUNCTION WITH WRITTEN METHOD STATEMENT.
6.	UNDER <u>NO_CIRCUMSTANCES</u> SHOULD DIGGERS BE USED FOR ANY EXCAVATIONS ALL WORKS TO BE HAND DUG.

THIS I SCHEN CALCU STRUU PURPO <u>A PLA</u> ELEME SUBJE ISSUE USED	DRAV JE PI JLAT CTUR DSES NNIN ENTS ECT 1 STA FOR	WING F RODUC TONS F ES, IT SONLY SHOW TO CHA GE. TH ANY (ORMS ED PR 3EING IS TH <u>FOR</u> <u>PLICA</u> /N AR ANGE HIS DR CONST	PAR CARF IEREF USE S TION. E PRE AT FI RAWIN RUCT	T 0 F0 / RIED SOL SOL ALI ELIM NAL	F A I ANY 0 OUT E FOF E IN _ STI IINAF _ CON SHOU I PUF	NITIA STRU STRU SUPF SUPF RUCT XY AN ISTRI LD <u>N</u> RPOSI	L DE JCTU MIN1 DICA DOR1 URA ND UCTI OT E ES.	RAFT IRAL I TIVE <u>I OF</u> IL ION BE
DRAM 1. TH CO PA	/ING IIS NJUN	NOTES DRAW NCTION	i VING I WIT HITECT	IS H AI 'S &	TO LL OT	BI RELE HER	E R EVAN SPEC	EAD T T CIAL	IN HIRD ISTS'
DR 2. TH EIT	AWII IIS [IIS [IIS]	NGS A DRAWI PAPE	nd Sp Ng Sf R OR I	ECIFIC HOULE DIGIT	CAT DN ALF	IONS OT E ORM	BESI AT. FIS		ED IN
4. AN		MED B DISCR	Y THE	ARC CIES	HITI IN A TE	ECT. DF	REPO	NGS	OR D TO
5. TH MII RE	nt s IIS d Nt Proi	TRUCT RAWIN STRUC DUCED	URES. NG RE TURE WIT	MAIN S A H O	S T .ND UT	HE F MU PRI	PROPI ST OR	ERT NOT WRI	Y OF BE TTEN
6. AL RE 7. TC CO ME	L D GUL ENS RRE(ETAIL ATIONS SURE T CTLY RE 50r	S AR S APP HIS DI THE nm:	E SU ROVA RAWII BA	JB JI NG I .R	ECT HAS BEL	TO BEEN OW	BUIL PRII SHI	.DING NTED OULD
8. AL SP CO PR WI 9. FO M2 10. AL	ECIF MPL MPL MR ACT TH D R 0202	ORK C. IC DR/ Y WIT EGUL/ ICE IS ETAIL GENEF 2/GN01 MENSIO	ARRIE AWING TH CU ATIONS MAI S PRO RAL I. DNS SI	25m D OU NOT RREN 5 TO NTAII DUCE NOTI	T S ES IT I NED D B ES	Houl & G Rele ISUR IN Y OT SE	D AD UIDAI VANT E SA ACC HERS E D mm U	DHER NCE THS AFE ORD DRA DRA	50mm EE TO AND SE & SITE ANCE WING:
D	R	А	F	Τ		S	S		JE
	R	А	F	<u>DE1</u>		S	S		
	REV 	А		<u>DE1</u>	[<u>AIL</u> - -	S	S		DRAWN - -
D DATE - - -	REV - - -	А	F		[AIL - -	S	S		DRAWN - - - -
D DATE - - - - -	REV - - - -	A	F -		- - - -	S	S		DRAWN
D <u>Date</u> - - - - - - - - - - - - -		A Iamd		DET DET UCTU Hous	I I I RES ie, nd	S 2nc on,	S fl., N12	, 90	<mark>ргами</mark>
DATE 		A Iamd igh F T: advic www	STRI an H Road, 020 e@min	DET DET JOUSTU HOUSS JOUSTU HOUSS JOUSTU	I RES ie, nd 46 tru	S 2ncon, 46 ctu	S fl., N12 50 res.co.	, 90 20.10	<mark>рафия</mark> - - - - - - - - - - - - - - - - - - -
DATE 	REEV 	A Iamd igh F T: advic www	STR an H coad, 02C e@mm .min' RNCF	DET DET Houss , Lo) 844 ints tstru ROF NDU /3 7	RES e, , d truuct T ON	2ncon, 46 ctu ures AV	S I fl., N12 50 res.co.	, 9(<u>ражин</u> - - - - - - -
DATE 	REEV 	A Iamd igh F T: advice www	-STR an F Road, 02CC e@m Nin C C NW	DET JETU Houss , Lo) 844 ints tstru ROF DNDU /3 7	RES ie, nd 46 tru J C N V P I	2nc on, 46 ctu ures AV	d fl. N12 50 res.co.	90 00.10 10k	<u>рами</u> - - - - - - - - - - - - - - - - - - -
DATE - - - - - - - - - - - - -	R 	A damd igh F T: advic www	-STR an H Road, 02CC e@min RNCF LC NW	DEI DEI douss Locu douss Locu douss Locu douss NDU A NDU A NDU A NDU A NDU A A A A A A A A A A A A A	T NS E NS E	2nc on, 46 ctu ures AVI 1 TRI B-E	S fl. N12 50 res. S. co. ENU	90 20.11 JE	<u>рами</u> - - - - - - - - - - -
DATE 	REV 	A Iamd igh F T: advic www FEF TITLE SI 1:10(STR an H coad, 020 e@m .min RNCF LC NW	DEI DEI DICTU Houso NO NO NO NO NO NO NO NO NO NO	T NS E NS E	S 2nc on, 46 ctu ures AV	JCT JCT JCT		
DATE 	REV 	A Iamd igh F T: advic www FEF SEME SI 1:100	STR an H cod e@m NM ENT EQU	DEI DEI DICTU Hous Lous Lous NDI NDI /3 7 CON ENC A1 21	T ON PH	S 2nc on, 46 ctu ures AV	J fl., N12 50 res.co. ENU JCT JCT T		ражин

BASEMENT CONSTRUCTION SEQUENCE C-C SCALE 1:100 @ A1

1. EXTG SITE CONDITION.

REMOVE EXTG GARDEN SURFACING & EXCAVATE TOPSOIL TO LVL OF EXTG FOOTINGS PROVIDING SHORING.

6. PROGRESS EXCAVATION TO 1/2 HEIGHT AND INSTALL 2nd ROW OF PROPPING ACROSS SITE. ALL PROPPING AND SHORING TO REMAIN IN PLACE UNTIL ALL REQUIRED UNDERPINNING IS COMPLETE AND BASE SLAB HAS BEEN CONSTRUCTED.

10. COMPLETE INTERNAL POOL WALLS LINKED TO MAIN BASE SLAB.

 EXCAVATE TO UPPER FORMATION LEVEL PROVIDING RETENTION SHORING TO EXPOSED FACES OF ACCESS PIT. CAST RC BASE & LATERAL RC BEAM (BEAM TO ALSO ACT AS 1ST PHASE BOOT IN TEMPORARY CASE) IN ACCORDANCE WITH WRITTEN METHOD STATEMENT.

7. EXCAVATE TO BASE SLAB FORMATION LEVEL.

8. CAST RC BASE SLAB.

CAST GROUND FLOOR SLAB INTO TOP OF RC WALL INSTALLED TO DESIGN ENGINEER'S DETAILS AND SPECIFICATION.

4. CAST WALL STEM AND DRY PACK BTWN EXTG IN ACCORDANCE WITH WRITTEN METHOD STATEMENT.

12. REMOVE TEMPORARY PROPS AND RE-INSTATE GROUND FLOOR STRUCTURE AS NECESSARY.

NOT	<u>'ES:</u>
1.	THIS DRAWING IS INTENDED AS AN INDICATIVE SUGGESTED T.W. SPECIFICATION ONLY.
2.	CONTRACTOR TO CARRY OUT UNDERPINNING ENSURING PIN SECTIONS WIDTHS $\underline{DO NOT}$ EXCEED 1.0m with a maximum of 20% of the wall being open at any time.
3.	IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO PROVIDE A FULL T.W. PACKAGE INCLUDING PROPPING PLAN & T.W. DESIGN CALCULATIONS. THIS DRAWING AND ANY SUPPORTING SKETCH CALCULATIONS SHOULD NOT BE RELIED ON FOR THE REQUIRED T.W. PROVISIONS.
4.	ALL CONSTRUCTION DETAILS TO BE AS RELEVANT ENGINEER'S AND ARCHITECTS'S DETAILS.
5.	THIS DRAWING IS TO BE READ IN CONJUNCTION WITH WRITTEN METHOD STATEMENT.
6.	UNDER <u>NO CIRCUMSTANCES</u> SHOULD DIGGERS BE USED FOR ANY EXCAVATIONS ALL WORKS TO BE HAND DUG.

THIS I SCHEN CALCU STRUE PURPE A PLA ELEME SUBJE ISSUE USED	DRAV 1E PI JLAT CTUF DSES NNIN ENTS ECT T STA FOR	VING F RODUC TONS I RES, IT SONLY SHOV FO CHA GE. TI ANY (ORMS ED PR BEING IS TH FOR U PLICAT IN ARE ANGE A HIS DR CONSTI	PART IOR TO CARRIE EREFO JSE SC ION. A PREL A FINA A WING RUCTIC	of a in Any S D out Re for D <u>LE IN S</u> LL STR IMINAR AL CON: SHOUL DN PURI	IITIAL DRAFT TRUCTURAL BY MINT INDICATIVE UPPORT OF UCTURAL Y AND STRUCTION D <u>NOT</u> BE POSES.
DRAW 1. TH CO PA DR CO PA DR CO CO CO MII RE CO CO CO ME SF CO CO PR WI 9. FO M2 10. AL	VING VING	NOTESS DRAW VCTION ACCI NGS A DRAWI PAPE DIMEN B DISCR S TO TRUCT RAWII S TRUCT RAWII S TRUCT RAWII S TRUCT RAWII CORK C C DRA V C D C D C D C D C D C D C D C D C D C D	ARRIEL ARRIEL AARRIEL	IS T H ALL S & C ECIFICA OULD DIGITAL AND ARCHI IES I MEDIA MEDIA MAINS S ANI H OU E SUB ROVAL CAWING BAR 25mm D OUT NOTES NOTES NOTES	0 BE RELE THER TIONS. NOT B FORM/ LEVE TECT. N DR TELY R THE P D MUS T PRIC JECT SHOULI S & GL RELEV ENSURE D IN BY OTH SEE	READ IN VANT THIRD SPECIALISTS' E SCALED IN AT. LS TO BE AWINGS OR EPORTED TO ROPERTY OF ST NOT BE DR WRITTEN TO BUILDING EEN PRINTED DW SHOULD Somm D ADHERE TO JIDANCE AND ANT HSE & SAFE SITE ACCORDANCE HERS. DRAWING: mm U.N.O.
D	R	Α	F	Γ	S	SUE
DATE	REV			DETAI		DRAWN
-	-			-	<u> </u>	-
-				-	<u> </u>	- - - -
-	- - - - - -			<u>ULIA</u> - - - - - -	<u></u>	Direction -
- - - - 76(E:	- - - - - - - - - - - - - - - - - - -	lamd igh F T: advic	STRL an H Road, 020	JCTURI OUSE LONG 844	, 2nd don, 1 6 465	fl., v12 9QH. 50 es.co.uk
- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Hamddigh F T: advic www	- strel an H coad, 020 ce@m .mint RNCF LO	UCTURI ouse Lond 844 intstr struc ROFT NDO	, 2nd don, 1 6 46 uctur tures AVE	fl., - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	lamd igh F T: advic www	an H coad, 020 ce@mi .mint RNCF LO NW	UCTURI ouse Lond 844 intstr struc ROFT NDO 3 7P	, 2nd don, 1 6 469 cuctur ctures AVE N 2H	fl., - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Iamd igh F T: advic www FEF	an H coad, 020 :e@mi .mint RNCF LO NW	CONSENCE	, 2nd don, 1 6 469 cuctures AVE N 2H	fl.,
- - - - - - - - - - - - - - - - - - -	- -	tamd igh F T: advic www FEF	STRU an H coad, 020 ce@mi .mint RNCF LO NW	CONSENCE	, 2nd don, 1 6 465 cuctures AVE N PH	fl.,
- - - - - - - - - - - - - - - - - - -		Iamd igh F T: advic www FEF TITLE SEME S SEME S 1:10(an H coad, 020 :e@m .mint RNCF LO NW	CONSENCE	AVE N 2H	fl.,
- - - - - - - - - - - - - - - - - - -		Iamd igh F T: advic www FEF TITLE SEME S 1:10(JAN	an H coad, 020 e@m .mint RNCF LO NW	CONSENCE	AVE N PH	fl., fl., 1- - - - - - - - - - - - - -

EXISTING LOADING CONDITION

PROPOSED LOADING CONDITION

<u>KEY</u>
 BASEMENT LEVEL OUTLINE
 GROUND FLOOR LEVEL OUTLINE

THIS E SCHEN CALCL STRUE PURPE A PLA ELEME SUBJE ISSUE USED	DRAN ME P JLAT CTUF DSES NNIN ENTS ECT STA FOR	Wing Form Roduced F Tons Bein Res, It IS <u>Sonly Fo</u> <u>NG Applic</u> Shown A To Change NGE. This I ANY Cons	IS PART PRIOR T G CARR THEREFO R USE S ATION. A RE PRE E AT FIN DRAWING STRUCTI	OF A IN O ANY S IED OUT DRE FOR OLE IN S ALL STR LIMINAR IAL CON G SHOUL ON PURI	NITIAL DRAFT TRUCTURAL BY MINT INDICATIVE <u>SUPPORT OF</u> UCTURAL Y AND STRUCTION LD <u>NOT</u> BE POSES.
DRAW 1. TH DR DR DR 2. TH EIT 3. AL CO 4. AN DE MII S. TH MII RE CO 6. AL RE 7. TO CO CO	VING IIS IIS NJUI ARTY AWI IIS I FHER IIS I INT S IIS I NT S IIS I NT S IIS I NT S IIS I NT S IIS I NT S IIS I S NT S I S NT S NT S I S NT S NT S I S NT S NT S NT S NT S NT S NT S NT S NT	NOTES DRAWING NCTION W ARCHITE NGS AND S DRAWING PAPER OF DIMENSION MED BY TI DISCREPA S TO BE TRUCTURE DRAWING F STRUCTURE DRAWING F STRUCTURE DRAWING F STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE STRUCTURE DISCREPA STRUCTURE DISCREPA STRUCTURE	IS ITH AL CTS & SPECIFIC. SHOULD R DIGITA S AND HE ARCH NCIES IMMEDIA S. REMAINS RES AN ITH OU ARE SUID PROVAI DRAWIN IE BAF	TO BE L RELE OTHER ATIONS. NOT B L FORM/ D LEVE IITECT. IN DR TELY R S THE P ND MUS JT PRIC BJECT L. G HAS E R BELC	READ IN VANT THIRD SPECIALISTS' E SCALED IN AT. LS TO BE AWINGS OR EPORTED TO ROPERTY OF ST NOT BE DR WRITTEN TO BUILDING BEEN PRINTED DW SHOULD
8. AL SP CO PR WI 9. FO M2 10. AL	N PECIF MPL M R ACT TH D R 20202	ORK CARR IC DRAWIN Y WITH C REGULATIO ICE IS M DETAILS PF GENERAL 2/GN01. MENSIONS	25mm IED OUT NG NOTE CURRENT NS TO AINTAIN RODUCED NOTE SHOWN	SHOULI ES & GL RELEV ENSURE ED IN D BY OTH S SEE ARE IN 1	SOMM D ADHERE TO JIDANCE AND (ANT HSE & SAFE SITE ACCORDANCE HERS. DRAWING: nm U.N.O.
	R	AF			SUE
	R <u>r</u>	AF	<u>Det/</u> -	S All	SUE Drawn
DATE - - - -	Rev - - -	AF	<u>DET/</u> - - - -		SUE <u>prawi</u> - - -
DATE - - - - -	REV 	AF			SUE
Date 	R - - - - - - - - - - - - - - - - - - -	AF	DET/ 	S S S S S S S S S S S S S S	SUE
DATE 	Rey 	AF Amagent Ama	DET/ 	e, 2nd don, 1 46 463 ructur ctures	fl., 12 9QH. 50 es.co.uk .co.uk
DATE 	R - - - - - - - - - - - - -	AF Iamdan igh Roa T: 02 advice@ www.mi	T T T T T T T T T T T T T T	Es. Adon, 1 Adon, 1	SUE
DATE 	REV 	AF amdan igh Roa T: 02 advice@ www.mi FERNO D FERNO L N TITLE GESTE OSED I ELIMIN, AN	T T T T T T T T T T T T T T	AVE AVE A A A A A A A A A A A A A	SUE PRAW - - - - - - - - - - - - -
DATE 	REV 	AF Amdan igh Roa T: 02 advice@ www.mi FERNO D FERNO L N TITLE GESTE DOSED I ELIMIN/ AN 1:100 @	T T T T T T T T T T T T T T	AVE AVE A A A A A A A A A A A A A	SUE PRAWN I., N12 9QH. 50 es.co.uk Co.uk SNUE G AND NG FOR MENT DRAWN LS ENGINEER
DATE 	REV 	AF Amount Am	T T T T T T T T T T T T T T	AVE AVE A A A A A A A A A A A A A	SUE PRAWY FI., N12 9QH. 50 res.co.uk co.uk ENUE GAND NGFOR MENT DRAWN LS ENGINEER LS CHECKED
DATE 		AF Amdan igh Roa T: 02 advice@ www.mi FERNO L D FERNO L D FERNO L N TITLE GESTE DOSED I ELIMINA AN 1:100 @ JAN 20 No.	T T T T T T T T T T T T T T	AVE SIS	SUE PRAWN 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTES:		
1.	THIS DRAWING IS INTENDED AS INDICATIVE PRELIMINARY	
	INFORMATION <u>ONLY</u> .	
2.	LINE LOADS GIVEN ARE UNFACTORED LOADS AT GROUND	
	LEVEL I.E. NOT INCLUDING FOUNDATION/BASE SLAB SELF	
	WEIGHT.	
3.	LINE LOADINGS SHOWN ARE BASED ON SIMPLE AREA	
	LOADING AS REQUIRED FOR THE PREPLANNING ANALYSES.	
	ALL DESIGN LOADING CALCULATIONS AT DETAILED DESIGN	
	STAGE WILL SUPERSEDE THE VALUES GIVEN HERE.	
4.	FINAL CONSTRUCTION DETAILS MUST NOT RELY ON VALUE	
	ON THIS DRAWING.	
5.	ALL CONSTRUCTION DETAILS SHOULD ADHERE TO FINAL	
	STRUCTURAL ENGINEER'S AND ARCHITECT'S DETAILS ONLY.	

No. Notes:

- Dimensions to be verified on site. Only figured dimensions to be used and any discrepancies in dimensions are to be reported to the contract administrator. No dimensions are to be called from printed drawings. Any areas indicated on this drawing are for guidance only. No responsibility is taken for their accuracy.
- There is a risk of injury or death in construction if the works are not properly planned and supervised. The contractor must not undertake any element of the work without first having carried out the necessary risk assessments and prepared detailed method statements.

A 0600	
	<u>3 4 5</u> 2
client: Aaaa Bbbb project: 30 Ferncroft Avenue drawing: FIRST FLOOR PLAN	ARCHITECTURE 18 Greek Street London W1D 4DS +44 02070210332 +383 49 597754 info@4mgroup.co.uk www.4mgroup.co.uk
dwg. type: EXISTING dwg. status: PLANNING drawn by: ER approved by: PR date: 2/19/2021	job number drawing number revision 309 0006

No. Notes:

- Dimensions to be verified on site. Only figured dimensions to be used and any discrepancies in dimensions are to be reported to the contract administrator. No dimensions are to be scaled from printed drawings. Any areas indicated on this drawing are for guidance only. No responsibility is taken for their accuracy. 1
- There is a risk of injury or death in construction if the works are not properly planned and supervised. The contractor must not undertake a element of the work without (first having carried out the necessary risk assessments and prepared detailed method statements. 2.

scale: 1:200	@ A3	format:	A3
drawn by: ER	approved by: PR	date: 2/1	9/2021
dwg. status	s: PLANNING		
dwg. type:	EXISTING		
urawing.	SECTION C		
drawing	SECTION C		
project:	30 Ferncroft Ave	nue	
	20 5		
client:	Aaaa Bbbb		

18 Greek Street London W1D 4DS +44 02070210332

job number	drawing number	revision
309	0602	

Notes: No.

- Dimensions to be verified on site. Only figured dimensions to be used and any discrepancies in dimensions are to be reported to the contract. administrator. No dimensions are to be scaled from printed drawings. Any areas indicated on this drawing are for guidance only. No responsibility is taken for their accuracy.
- There is a risk of injury or death in construction if the works are not properly planned and supervised. The contractor must not undertake any element of the work without first having carried out the necessary risk assessments and prepared detailed method statements. 2.

. type.	PROPUSED			job number
status:	PLANNING			200
ıy: ER	approved by: PR	date: 19/	02/2021	309
1:100 @	A3	format:	A3	

drawing number 2004

No. Notes:

- Dimensions to be verified on site. Only figured dimensions to be used and any discrepancies in dimensions are to be reported to the contract administrator. No dimensions are to be scaled form printed drawings. Any areas indicated on this drawing are for guidance only. No responsibility is taken for their accuracy.
- There is a risk of injury or death in construction if the works are not properly planned and supervised. The contractor must not undertake any element of the work without first harving carried out the necessary risk assessments and prepared detailed method statements.

No. Notes:

- Dimensions to be verified on site. Only figured dimensions to be used and any discrepancies in dimensions are to be reported to the contract administrator. No dimensions are to be scaled from printed drawings. Any areas indicated on this drawing are for guidance only. No responsibility is taken for their accuracy. 1.
- There is a risk of injury or death in construction if the works are not properly planned and supervised. The contractor must not undertake any element of the work without first having carried out the necessary risk assessments and prepared detailed method statements. 2.

2 3 4 5 0 1

R	approved by: PR	date: 19	/02/2021
tatus	: PLANNING		
ype:	PLANNING		
ig:	SECTION C		
t:	30 Ferncroft Avenue		
	Aaaa Bbbbb		
	r: g: /pe: tatus	Aaaa Bbbbb t: 30 Ferncroft Ave g: SECTION C /pe: PLANNING tatus: PLANNING	Aaaa Bbbbb t: 30 Ferncroft Avenue g: SECTION C /pe: PLANNING tatus: PLANNING

18 Greek Street London W1D 4DS +44 02070210332

job number	drawing number	revision
309	2602	

Address

Telephone

Web

The Shack Rear of 34 Ravensdale Avenue London N12 9HT Phone: 020 8446 4650

e: advice@mintstructures.co.uk

w: www.mintstructures.co.uk

"Mint Structures" is a trading name of Mint Structures Limited | Director: B. C. Smith, | Registered in England No. 11114076 Registered Offices: Battle House, 1 East Barnet Road, New Barnet, Herts, EN4 8RR