Christmas at Kenwood

Planning Application 06 Presents -Structural Detail Document Prepared by Cubit Design 3rd August 2021

			ebc.calcshe
		Job ref Sheet	: EBC00904 – Kenwood Hse for Walk the Plank :
ELLIOT BOND CONSULTING		Made By	: : PD
LIOT BOND		Date	: JULY 2021
alculation		Checked	: PD
neet			
Kenwood House –	Giant Christmas Preser	nts Installatio	on – Christmas 2021
	STRUCTURAL CALC	<u>ULATIONS</u>	
	6		
	for		
Stabi	lity of Giant Outdoor C	Christmas Pre	esents
	Date: 26 July 2	2021	
Elliot Bond Consulting Li	mited – 2 nd Floor The Anne:	xe – 13 Hope S	treet – Liverpool - L1 9BQ

		ebc.calcsheet
	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
C C C C C C C C C C C C C C C C C C C	Sheet	:
	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		
(page 02)		

PAGE

CONTENTS

Contents Page	02
Introduction and Description	03
Wind Loads	04
Stability Calculations	04
Method of Holding Down / Counterweights	05

APPENDIX

Appendix A – Tedds Analysis of Wind Loads

		ebc.calcsheet
	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
CRITCHEONICICONSUME	Sheet	:
SULLOT DOND	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		

(page 03)

INTRODUCTION & DESCRIPTION

Walk the Plank are providing a number of Giant Christmas Presents for an outdoor installation at Kenwood House, Hampstead, North London. There are 10 presents in total, and they are constructed as lightweight wooden cubes.

The sizes and quantities are as follows:

2 no x 4.8m x 4.8m x 4.8m 2 no x 3.6m x 3,6m x 3.6m 2 no x 2.4m x 2.4m x 2.4m 2 no x 2m x 2m x 2m 2 no x 1m x 1m x 1m

The timber framing is 75 x 25 softwood on edge, clad with 6mm Q plywood. The SW frames are bolted together. Plywood is glued and stapled to the frames. The lid is made in the same style and bolted all around. Decorative bows on top are made from 3mm flat bar steel formers with 5mm bendy ply riveted to the steel. These are bolted to the roof frame. The roof frame is supported by vertical 75 x 25 timbers to the ground.

The presents will be installed outside Kenwood House (on the front lawn) in November 2021, and will be in-situ for approximately 2 months.

These calculations relate to the stability of the cubes under wind loading

ebc.	cal	cshe	eet

		cbc.calesheet
	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
Contraction Consultants	Sheet	:
	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		

(page 04)

WIND LOADS

Wind loads are calculated using BS6399 using 'Tedds' software. The results of the wind analysis on the largest of the cubes is included in the Appendix to these calculations (refer to pages App-1 to App-6).

Two cases are considered:

1 Wind load at 90 degrees to a vertical surface with an internal pressure coefficient of -0.3, and

2 Wind load at 90 degrees to a vertical surface with an internal pressure coefficient of +0.2.

Due to the limited period of exposure (c. 8 weeks), a probability factor of 0.95 is used.

The worst case for overturning is found to be when there is a positive internal pressure (i.e coefficient = +0.2).

STABILITY CALCULATIONS (CHECK LARGEST 4.8m x 4.8m x 4.8m CUBE FIRST):

Destabilising Forces:

A vertical upward force (suction) on the lid of 6.03kN. This is considered to act above the centre of the lid for simplicity.

A horizontal force on the sides of the cube of 9.90kN. This is considered to act at the mid-point of the side wall of the cube (i.e 2.4m above ground level).

Stabilising Force:

The self weight of the cube, based on 5 sides of 6mm ply and softwood framing, is c. 5 kN; acting downwards at the centre of the cube. The weight of the bows etc on top of the lid are ignored (i.e conservative)

The worst case overturning moment is therefore:

M = 2.4m x (9.90 + (6.03kN - 5.0kN)) = 26.2kNm.

Assuming the centre of the ballast (used to hold down the cube) corresponds to the centre of the cube, then the ballast force required is 26.2kN / 2.4m = c. 11kN (i.e circa 1122 kg). A factor of safety of 1.5 is required, hence ballast weight will be 16.5kN / 1682 kg. There are two alternative methods that can be used to stabilise the cube: Either ballast, or ground anchors (subject to client approval):

		ebc.calcsheet
	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
E	Sheet	:
SULLAT ROMP	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		

(page 05)

Option 1: HOLDING-DOWN USING GROUND ANCHORS:

The 4.8m cubes can be held down using screw-in ground anchors rather than ballast:

i.e Leach's BIG BEN Heavy Duty Hurricane Ground Anchor - 500mm

Extract from manufacturers Technical info:

'The BIG BEN Hurricane is manufactured in three different lengths, 500mm, 650mm and 900mm, offering a range of holding capabilities, from 5.60kn to 12.60kn.

The internal measurement of the metal loop at the top of the anchor is 60mm wide x 75mm high.

For exact holding power, it is strongly recommended that anchors are proof tested after installation to determine the anchor capacity, to ensure holding power and correct number of anchors can be specified.

The Hurricane 500mm length tested to 560kg/5.60kN. The Hurricane 650mm length tested to 960kg/9.60kN. The Hurricane 900mm length tested to 1,260kg/12.60kN.

The Hurricane ground anchor is perfect for scaffolding, marquees, tents and other light free standing buildings'.

Hence 4 no 500mm anchors would be required at each corner of the 4.8m cubes. i.e 4 x 5.60kN = 22.4 kN resistance against uplift giving a Factor of Safety of 2 (i.e 100% spare capacity).

		ebc.calcsheet
	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
	Sheet	:
	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		

(page 06)

Option 2: HOLDING-DOWN USING BALLAST:

As before, the total holding load required, for a F.o.S. of 1.5, is 16.5kN / 1682 kg. This means 4.13kN / 420kg is required in each corner. If sealed containers full of water are used, each of these four containers would need to contain a minimum of 420 litres (1 litre = 1 kg). If dense 100mm x 215mm x 440mm concrete blocks are used, each of these blocks weighs c. 18.5kg, so 23 blocks would be required in each corner (i.e a total of 92 concrete blocks).

SUMMARY OF HOLDING DOWN REQUIREMENTS FOR ALL PRESENTS:

4.8m PRESENTS:

4 no 500mm ground anchors (1 in each corner), or 420kg ballast in each corner (420litres of water, or 23 dense concrete building blocks, in each corner)

3.6m PRESENTS:

4 no 500mm ground anchors (1 in each corner), or 240kg ballast in each corner (240litres of water, or 13 dense concrete building blocks, in each corner)

2.4m PRESENTS:

105kg ballast in each corner (105 litres of water, or 6 dense concrete building blocks, in each corner)

2m PRESENTS:

73kg ballast in each corner (73 litres of water, or 4 dense concrete building blocks, in each corner)

1m PRESENTS:

73kg ballast in the centre of each cube (73 litres of water, or 4 dense concrete building blocks, total)

		ebc.calcsheet
aha	Job ref	: EBC00904 – Kenwood Hse for Walk the Plank
end for the second seco	Sheet	:
	Made By	: PD
ELLIOT BOND	Date	: JULY 2021
Calculation	Checked	: PD
Sheet		

(page 07)

Appendix A – Tedds Analysis / Design Output (Wind Analysis)

(see overleaf)

Tekla Tedds Elliot Bond Consulting Ltd	Project	Job no. Kenwood House				b no. EBC00904	
Elliot Bond Consulting Ltd 2nd Floor - The Annexe 13 Hope Street	Calcs for	Wind Loads on	Xmas Present	S	Start page no./R ap	evision p- 1	
Liverpool L1 9BQ	Calcs by PD	Calcs date 26/07/2021	Checked by PD	Checked date 26/07/2021	Approved by PD	Approved date 26/07/2021	

WIND LOADING (BS6399)					
In accordance with BS6399	Tedds calculation version 3.0.18				
4800-	4 800				
4 8					
↓					
4800	┥ 4800 →				
Plan	Elevation				
-					
Building data Type of roof	Flat				
Length of building	L = 4800 mm				
Width of building	W = 4800 mm				
Height to eaves	H = 4800 mm				
Eaves type	Sharp				
Reference height	H _r = 4800 mm				
Dynamic classification					
Building type factor (Table 1)	K _b = 2.0				
Dynamic augmentation factor (1.6.1)	$C_{r} = [K_{b} \times (H_{r} / (0.1 \text{ m}))^{0.75}] / (800 \times \log(H_{r} / (0.1 \text{ m}))) = 0.03$				
Site wind speed					
Location	London				
Basic wind speed (Figure 6 BS6399:Pt 2)	V _b = 20.7 m/s				
Site altitude	$\Delta_{\rm S} = 20 \text{ m}$				
Upwind distance from sea to site Direction factor	d _{sea} = 66 km S _d = 1.00				
Seasonal factor	$S_a = 1.00$ $S_s = 0.75$				
Probability factor	$S_{p} = 0.95$				
Critical gap between buildings	g = 30000 mm				
Topography					
Type of feature	Hills and ridges				
Actual length of upwind slope in wind direction	L _u = 50000 mm				
Actual length downwind slope in wind direction	L _d = 50000 mm				
Effective height of feature	Z = 2500 mm				
Upwind slope in upwind direction	$\psi_{U} = Z / L_{u} = 0.05$				
Effective slope of topographic feature Effective length of upwind slope (cl 2.2.2.2.4)	ψ _e = ψ _U = 0.05 L _e = L _u = 50000 mm				
Horiz distance of the site from the top of the crest	$L_e = L_u = 30000 \text{ mm}$ x = 0 mm				

Tekla Tedds		Kenwo	od House		EBO	200904
Elliot Bond Consulting Ltd 2nd Floor - The Annexe 13 Hope Street	alcs for	Wind Loads o	n Xmas Preser	nts	Start page no./	Revision pp- 2
	alcs by PD	Calcs date 26/07/2021	Checked by PD	Checked date 26/07/2021	Approved by PD	Approved of 26/07/2
Altitude of upwind base of topogra	phic feature	∆⊤ = 17.50	0 m			
Site altitude		$\Delta_{\rm S} = 20.00$	10 m			
Topographic location factor (Figure	e 9a)	s = 0.84				
Topographic increment (Table 25)	·	$S_h = 2 \times \psi$	∪×s = 0.08			
Altitude factor		$S_a = max($	$1 + 0.001 \times \Delta_{s}$	1m, 1 + 0.001 $\times \Delta$	י× 1.2×י,	$\psi_{e} \times s) = 1.0$
Site wind speed			$S_a \times S_d \times S_s \times S_s$. ,
Terrain category		Country				
Displacement height (sheltering ef	fect excluded	l) H _d = 0mm				
The velocity pressure for the wi	ndward face	of the building	g with a 0 deg	ree wind is to be	considered	as 1 part a
the height h is less than b (cl.2.2	2.3.2)					
The velocity pressure for the wi	ndward face	of the building	g with a 90 deg	gree wind is to b	e considered	l as 1 part
the height h is less than b (cl.2.2	2.3.2)					
Dynamic pressure - windward w	vall - Wind 0	deg and roof				
Reference height (at which q is so	ught)	H _{ref} = 4800) mm			
Effective height		H _e = max($H_{ref} - H_d, 0.4 \times$	H _{ref}) = 4800 mm		
Fetch factor (Table 22)		Sc = 0.893				
Turbulence factor (Table 22)		St = 0.194				
Gust peak factor		gt = 3.44				
Terrain and building factor			$1 + (g_t \times S_t) + S_t$	Sh) = 1.56		
Effective wind speed			S _b = 24.6 m/s			
Dynamic pressure		•	$kg/m^3 \times V_e^2 = 0$	0.372 kN/m²		
Dynamic pressure - windward w		-				
Reference height (at which q is so	ught)	H _{ref} = 4800				
Effective height				H _{ref}) = 4800 mm		
Fetch factor (Table 22)		$S_c = 0.893$				
Turbulence factor (Table 22) Gust peak factor		$S_t = 0.194$ $g_t = 3.44$				
Terrain and building factor		-	$1 + (g_t \times S_t) + S_t$	S.) - 1 56		
Effective wind speed			$S_{b} = 24.6 \text{ m/s}$	$S_{h} = 1.50$		
Dynamic pressure			$kg/m^3 \times V_e^2 = 0$	0 372 kNl/m ²		
		q s = 0.010		0.072 NW/III		
Size effect factors Diagonal dimension for gablewall		a _{eg} = 6.8 n	0			
External size effect factor gablewar		C _{aeg} = 0.0				
Diagonal dimension for side wall		a _{es} = 6.8 n				
External size effect factor side wal	I	C _{aes} = 0.9				
Diagonal dimension for roof		a _{er} = 6.8 m				
External size effect factor roof		Caer = 0.97				
Room/storey volume for internal si	ize effect fact	or V _i = 110.6	00 m³			
Diagonal dimension for internal siz	ze effect facto	ors $a_i = 10 \times ($	Vi) ^{1/3} = 48.001	m		
Internal size effect factor		Cai = 0.82	Ð			
Pressures and forces						
Pressures and forces Net pressure		$p = q_s \times c_p$	$_{e} imes C_{ae} - q_{s} imes c_{p}$	$_{ii} imes C_{ai}$		

Tekla Tedds	Project	roject Kenwood House				Job no. EBC00904	
Elliot Bond Consulting Ltd 2nd Floor - The Annexe 13 Hope Street Liverpool L1 9BQ	Calcs for	Wind Loads on	Xmas Presents		Start page no./Re	evision D- 3	
	Calcs by PD	Calcs date 26/07/2021	Checked by PD	Checked date 26/07/2021	Approved by PD	Approved date 26/07/2021	

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m ²)	Net force F _w (kN)
A (-ve)	-2.00	0.37	0.977	-0.79	1.15	-0.91
B (-ve)	-1.40	0.37	0.977	-0.57	1.15	-0.66
C (-ve)	-0.70	0.37	0.977	-0.32	9.22	-2.91
D (-ve)	-0.20	0.37	0.977	-0.13	11.52	-1.55
Total vertica	l net force		F _{w,v} = -6.03 kN			
Total horizoi	ntal net force		$F_{w,h} = \textbf{0.00} \text{ kN}$			
Walls load						
	case 1 - Wind 0, c _{pi}	0.20, -c _{pe}				
Zone	Ext pressure coefficient, c _{pe}	0.20, -c _{pe} Dynamic pressure, q _s (kN/m ²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force F _w (kN)
	Ext pressure	Dynamic pressure, q₅		Pressure,	,	
Zone	Ext pressure coefficient, c _{pe}	Dynamic pressure, q₅ (kN/m²)	factor, Cae	Pressure, p (kN/m²)	A _{ref} (m ²)	
Zone A	Ext pressure coefficient, c _{pe} -1.30	Dynamic pressure, q₅ (kN/m²) 0.37	factor, C _{ae} 0.977	Pressure, p (kN/m²) -0.53	A _{ref} (m ²) 4.61	F _w (kN) -2.46

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section $F_1 = F_{w,w1} = -5.6 \text{ kN}$ $F_w = F_{w,ww} = 5.7 \text{ kN}$

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = \textbf{9.9 kN}$

Roof load case 2 - Wind 0, cpi -0.3, +cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m ²)	Net force, F _w (kN)
A (+ve)	-2.00	0.37	0.977	-0.63	1.15	-0.73
B (+ve)	-1.40	0.37	0.977	-0.42	1.15	-0.48
C (+ve)	-0.70	0.37	0.977	-0.16	9.22	-1.49
D (+ve)	0.20	0.37	0.977	0.17	11.52	1.90
Total vertical	net force		F _{w,v} = -0.80 kN			

Total horizontal net force

 $F_{w,h} = 0.00 \text{ kN}$

Walls load case 2 - Wind 0, cpi -0.3, +cpe

Zone	Ext pressure coefficient, c _{pe}	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	0.37	0.977	-0.38	4.61	-1.75
В	-0.80	0.37	0.977	-0.20	18.43	-3.65
w	0.85	0.37	0.977	0.40	23.04	9.25
I	-0.50	0.37	0.977	-0.09	23.04	-2.05

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section F_I =F_{w,wl} = **-2.1** kN F_w = F_{w,ww} = **9.3** kN

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = 9.9 \text{ kN}$

Tekla Tedds	Project Kenwood House				Job no. EBC00904	
Elliot Bond Consulting Ltd 2nd Floor - The Annexe 13 Hope Street Liverpool L1 9BQ	Calcs for	Wind Loads on	Xmas Presents		Start page no./Re ap	evision D- 4
	Calcs by PD	Calcs date 26/07/2021	Checked by PD	Checked date 26/07/2021	Approved by PD	Approved date 26/07/2021

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force F _w (kN)
A (-ve)	-2.00	0.37	0.977	-0.79	1.15	-0.91
B (-ve)	-1.40	0.37	0.977	-0.57	1.15	-0.66
C (-ve)	-0.70	0.37	0.977	-0.32	9.22	-2.91
D (-ve)	-0.20	0.37	0.977	-0.13	11.52	-1.55
Total vertica	I net force		F _{w,v} = -6.03 kN		·	
Total horizo	ntal net force		$F_{w,h} = \textbf{0.00} \ kN$			
Walls load	case 3 - Wind 90, c _i	oi 0.20, -c pe				
	E.t.	Dynamic	External size	Net	Area,	Net force
Zone	Ext pressure coefficient, cpe	pressure, q₅ (kN/m²)	factor, Cae	Pressure, p (kN/m²)	A _{ref} (m ²)	F _w (kN)
Zone A						
	coefficient, c _{pe}	(kN/m ²)	factor, Cae	p (kN/m²)	A _{ref} (m ²)	F _w (kN)
A	-1.30	(kN/m²) 0.37	factor, C _{ae}	p (kN/m²) -0.53	A _{ref} (m ²) 4.61	F _w (kN) -2.46

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section $F_{I} = F_{w,wl} = -5.6 \text{ kN}$ $F_{w} = F_{w,ww} = 5.7 \text{ kN}$

 $F_{w,w} = 0.85 \times (1 \, + \, C_r) \times (F_w - F_l + F_{w,h}) = \textbf{9.9} \; kN$

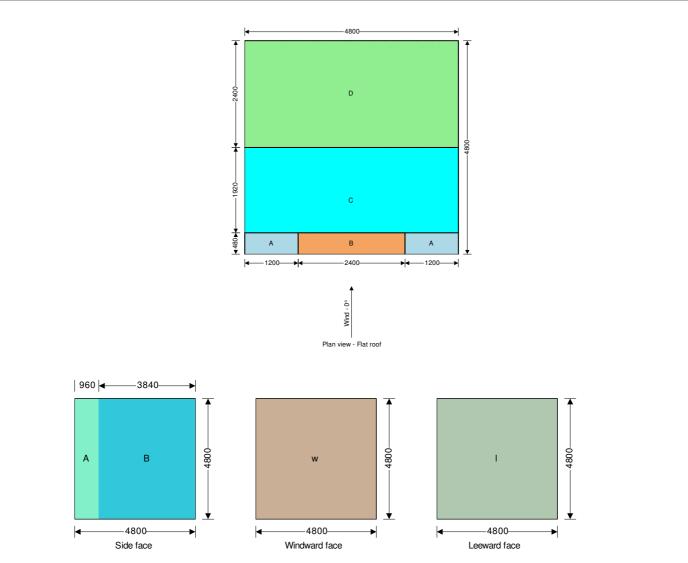
Roof load case 4 - Wind 90, cpi -0.3, +cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A (+ve)	-2.00	0.37	0.977	-0.63	1.15	-0.73
B (+ve)	-1.40	0.37	0.977	-0.42	1.15	-0.48
C (+ve)	-0.70	0.37	0.977	-0.16	9.22	-1.49
D (+ve)	0.20	0.37	0.977	0.17	11.52	1.90
Total vertical	net force		F _{w,v} = -0.80 kN			

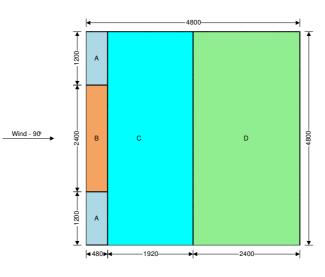
Total horizontal net force

F_{w,h} = **0.00** kN

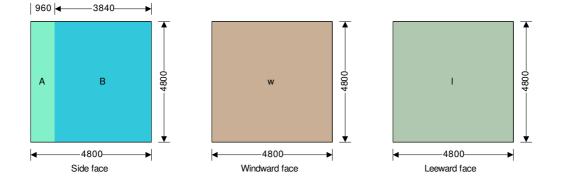
Walls load case 4 - Wind 90, c_{pi} -0.3, + c_{pe}


Zone	Ext pressure coefficient, c _{pe}	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	0.37	0.977	-0.38	4.61	-1.75
В	-0.80	0.37	0.977	-0.20	18.43	-3.65
w	0.85	0.37	0.977	0.40	23.04	9.25
I	-0.50	0.37	0.977	-0.09	23.04	-2.05

Overall loading


Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section F_I = F_{w,wl} = **-2.1** kN F_w = F_{w,ww} = **9.3** kN

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = 9.9 \text{ kN}$



Plan view - Flat roof

