

ENERGY & SUSTAINABILITY STATEMENT

(To Accompany Planning Application)

Site LAND BETWEEN SOUTH MANSIONS AND GONDAR HOUSE, WEST HAMPSTEAD, LONDON NW6 1QF

> Proposal CONSTRUCTION OF FOUR DWELLINGS

> > Client
> > AN:X DEVELOPMENTS

20th MAY 2021 Ref. E1099-ESS-01

15 North Road, Brampton, Huntingdon, Cambridgeshire PE28 4FN Tel: 01480 451569 Company Registration No. 6146290

CONTENTS

1.0	INTRODUCTION	4
2.0	POLICY CONTEXT	6
3.0	SUSTAINABLE DESIGN AND CONSTRUCTION ASSESSMENT	.11
3.1	Management	
3.2	Ventilation	
3.3	Heating System	
3.4	Lighting (Natural / Artificial)	
3.5	Hot Water Systems	
3.6 3.7	Cold Water Systems Sustainable methods of construction	
3.7	Passive Solar Design	
3.9	Building Envelope	
3.10	Enhanced Construction Details	
3.11	Surface Water Drainage	
3.12	Rainwater Harvesting	
3.13	Sustainable Material Choices	
3.14	Recycling Facilities	
4.0	ENERGY ASSESSMENT	.20
4.1	Introduction	. 20
4.1 4.2	Introduction Baseline Carbon Dioxide Emissions	
	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions	. 20 . 22
4.2 4.3 4.4	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN	. 20 . 22 . 25
4.2 4.3 4.4 4.5	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network	. 20 . 22 . 25 . 25
4.2 4.3 4.4 4.5 4.6	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power	. 20 . 22 . 25 . 25 . 25 . 25
4.2 4.3 4.4 4.5 4.6 4.7	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN	. 20 . 22 . 25 . 25 . 25 . 25 . 27
4.2 4.3 4.4 4.5 4.6 4.7 4.8	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment	. 20 . 22 . 25 . 25 . 25 . 27 . 28
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics	. 20 . 22 . 25 . 25 . 25 . 25 . 27 . 28 . 31
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction	. 20 . 22 . 25 . 25 . 25 . 27 . 28 . 31 . 34
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction Energy Hierarchy Carbon Dioxide Emissions Summary	. 20 . 22 . 25 . 25 . 25 . 27 . 28 . 31 . 34 . 36
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction	. 20 . 22 . 25 . 25 . 25 . 27 . 28 . 31 . 34 . 36
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction Energy Hierarchy Carbon Dioxide Emissions Summary	. 20 . 22 . 25 . 25 . 27 . 28 . 31 . 34 . 36 . 38
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 5.0	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction Energy Hierarchy Carbon Dioxide Emissions Summary. OVERHEATING	. 20 . 22 . 25 . 25 . 25 . 27 . 28 . 31 . 34 . 36 . 38 . 38
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 5.0 6.0 7.0	Baseline Carbon Dioxide Emissions Improved Baseline Carbon Dioxide Emissions Supplying Energy Efficiently – BE CLEAN District Heat Network Combined Heat and Power Renewable Technologies Considered – BE GREEN Renewables Toolkit Assessment Solar Photovoltaics Annual Carbon Dioxide Emission Reduction Energy Hierarchy Carbon Dioxide Emissions Summary. OVERHEATING WATER CALCULATIONS	. 20 . 22 . 25 . 25 . 25 . 27 . 28 . 31 . 34 . 36 . 38 . 38 . 40 . 42

List of Tables

Table 1 – Baseline Carbon Dioxide Emissions	21
Table 2 – Actual Carbon Dioxide Emissions	24
Table 3 – Renewable Technology Feasibility Assessment	30
Table 4 – Photovoltaic Carbon Dioxide Emissions	32
Table 5 – Summary of Reduction in Carbon Dioxide Emissions	34
Table 6 – Carbon Dioxide Emissions after each stage of the Energy Hierarchy	36
Table 7 – Regulated carbon dioxide savings from each stage of the Energy Hierarchy	37

1.0 INTRODUCTION

- a) Doherty Energy Limited have been instructed by AN:X Developments to prepare an Energy and Sustainability Statement to support the submission of the planning application for the development at Land between Gondar House and South Mansions, West Hampstead, London NW6 1QF. This report must be read in conjunction with the application forms, certificates, detailed plans and other supporting documents submitted to the Local Authority as part of the application.
- b) The Application is for the construction of four dwellings, consisting of two houses and two flats, in a single block.
- c) The objectives of this Energy and Sustainability Statement are to outline the possible measures that can be incorporated into the development during detailed design, to make an appraisal of the carbon dioxide emissions of the proposed development, assess the potential fabric and building services efficiencies to reduce the carbon dioxide emission and to suggest the most appropriate means by which the development can contribute towards the aspiration of policy relating to reducing carbon dioxide emissions and energy consumption. It also investigates the water usage of the development with a view to reducing the water consumption of the dwellings.
- d) The Assessment shall be carried out following the principles set out in the "Energy Hierarchy". These principles can be summarised as follows:
 - Be Lean –use less energy
 - Be Clean supply energy efficiently
 - Be Green use renewable energy
- e) At this stage in the design of the development, the detailed Building Regulations construction information has not been prepared and therefore following detailed construction design, the energy calculations will be revisited to ensure the energy requirements and carbon dioxide emissions are up to date.

- f) In order to demonstrate the carbon dioxide emissions, it is proposed to use the Standard Assessment Procedure (SAP) for the calculations to obtain initial baseline carbon dioxide emissions figures for the dwellings.
- g) Further calculations will be used to demonstrate the potential carbon dioxide emission savings from the initial calculations by enhancements to the building fabric, plant and controls – BE LEAN. The suitability of supplying energy, both heat and power, through the use of a combined heat and power system shall be assessed – BE CLEAN. Finally, the carbon dioxide emission saving by the use of renewable energy shall be assessed through the outputs from the SAP calculation – BE GREEN.

2.0 POLICY CONTEXT

- a) The London Borough of Camden and the Greater London Authority aim to tackle the causes of climate change in the borough and London as a whole by ensuring developments use less energy and assess the feasibility of decentralised energy and renewable energy technologies.
- b) As any new development has the potential to increase carbon dioxide emissions and if local and national carbon dioxide reduction targets are to be met, it is crucial that planning policy limits carbon dioxide emissions from new development wherever possible.
- c) The Camden Local Plan has policies with regard to sustainability and climate change, including Policy CC1 – Climate change mitigation and Policy CC2 – Adapting to climate change
- d) Under Policy CC1 Climate change mitigation, the Local Authority require all developments to help minimise their effects on climate change by encouraging them to meet the highest feasible environmental standards that are financially viable during the construction and occupation of the development.
- e) The Policy CC1 states that Camden will:

a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;

b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;

c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;

d. support and encourage sensitive energy efficiency improvements to existing buildings;

e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by: g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;

h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and

i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

- f) The London Borough of Camden's Sustainability Plan 'Green Action for Change' commits the Local Authority to seek low and where possible zero carbon buildings. New developments in Camden will be expected to be designed to minimise energy use and carbon dioxide emissions in operation through the application of the energy hierarchy. This is in line with the requirements of the London Plan.
- g) The Great London Authority, through the London Plan, March 2021, will require developments to contribute towards London's ambitious target to become zero-carbon by 2050 by increasing energy efficiency, including through the use of smart technologies, and utilising low carbon energy sources.
- h) The London Plan, March 2021, Policy SI 2 Minimising greenhouse gas emissions, expects development proposals to be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the energy hierarchy:
 - Be Lean use less energy and manage demand during operation
 - Be Clean exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly

- Be Green maximise opportunities for renewable energy by producing, storing and using renewable energy on-site
- Be Seen monitor, verify and report on energy performance
- i) The Policy SI 2 sets a minimum on-site reduction of at least 35 per cent beyond Building Regulations for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures.
- j) must be ring-fenced to implement project that deliver carbon reductions.
- k) The Energy and Sustainability Statement follows the principles set out in the Energy Hierarchy and is broken down to provide the following details:
 - Estimated site-wide regulated carbon dioxide emissions and reductions (broken down for the domestic and non-domestic elements), expressed in tonnes per annum, after each stage of the energy hierarchy
 - A clear commitment to regulated carbon dioxide emissions savings compared to a Part L 2013 of the Building Regulations compliant development through energy demand reduction measures alone
 - 3. Clear evidence that the risk of overheating has been mitigated through passive design
 - 4. Evidence of investigation into existing or planned district heating networks that the development could be connected to, including relevant correspondence with local heat network operators
 - Commitment to a site heat network served by a single energy centre linking all apartments and non-domestic building uses, if appropriate for the development
 - Where applicable, investigations of the feasibility of installing CHP in the proposed development (if connection can't be made to an area wide network) before considering renewables
 - 7. An initial feasibility test for renewable energy technologies and, where appropriate, commitment to further reduce carbon dioxide emissions through the use of onsite renewable energy generation

- Developments are expected to achieve carbon reductions beyond Approved Document L from energy efficiency measures alone to reduce energy demand as far as possible. Residential development should achieve 10 per cent and non-residential development should achieve 15 per cent over Approved Document L.
- m) The aim of the Energy and Sustainability Statement is to meet the carbon dioxide reduction targets on-site. Where it is clearly demonstrated that the specific targets cannot be fully achieved on-site, as per the requirements of The London Plan, any shortfall may be provided off-site or through a "cash in lieu" contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.
- n) Under The London Plan Policy SI 3 Energy Infrastructure, the Mayor expects developments to investigate the use of heat networks, particularly for large scale developments. Major development proposals within Heat Network Priority Areas should have a communal low-temperature heating systems. Where no heat network is not in existence yet, the development should be designed to allow for the cost effective connection at a later date. The heat network should achieve good practice design and specification standards.
- o) Policy SI 4 Managing Heat Risk, requires developments to minimise adverse impacts of the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure. Developments should demonstrate the potential for internal overheating and reliance on air conditioning systems can be minimised in accordance with the following cooling hierarchy:
 - reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure
 - 2. minimise internal heat generation through energy efficient design
 - 3. manage the heat within the building through exposed internal thermal mass and high ceilings
 - 4. provide passive ventilation

- 5. provide mechanical ventilation
- 6. provide active cooling systems
- p) The Policy SI 5 Water Infrastructure, seeks to minimise the use of potable water supplies and promote improvements in the water supply infrastructure. Developments should minimise the use of mains potable water in line with the Optional Requirements of the Approved Document G of the Building Regulations by achieving water consumption of less than 105 litres per person per day, excluding an allowance of 5 litres for external water consumption.

3.0 SUSTAINABLE DESIGN AND CONSTRUCTION ASSESSMENT

- a) The building fabric, the building services and the management of the building broadly determines its energy usage. The detailed design of a building is an iterative process, often requiring the involvement of different professional disciplines to establish the fundamental objectives of the design. An overall design philosophy in this respect has been established at an early stage.
- b) As a result of central Government objectives, followed through at local level the general design philosophy for this site has a strong emphasis on sustainable design. This is not only in terms of the location and suitability of the site but also in relation to the way in which the building is constructed and will be used by its future occupants.
- c) The first step in developing an integrated design is to establish the function of the buildings envelope and how it interacts with the usage patterns of the building and the technology used to condition the individual spaces.
- d) Good fabric design can minimize the need for services. Where appropriate, designs should avoid simply excluding the environment, but should respond to factors like weather and occupancy and make good use of natural light, ventilation, solar gains and shading, where they are beneficial.
- e) This section of the report will look at the ways in which energy is used within the proposed building and how the design can encourage efficient levels of energy consumption.

3.1 Management

a) Although improvements can be made to the fabric and services of a building, often the biggest impact on the day-to-day energy consumption is influenced by the way in which the building is managed. It is common to find well-designed buildings operating badly due to poor management. Conversely, poorly designed buildings can be optimised to their maximum efficiency through good management practices.

- b) It is recommended that due consideration is given to the management strategy of the building. It is understood that the dwelling will be within private ownership. However, there is still an opportunity to provide for the most efficient management system and to encourage the future occupants to manage their homes efficiently.
- c) This may include the use of movement sensor switched lighting systems, the installation of energy efficient electrical appliances, efficient lighting and fittings that do not permit the use of non-efficient lamps, tightly controlled heating and ventilation specific to the location within the dwelling, installation of efficient hot water systems and the provision of recycling facilities.
- d) The EU energy efficiency labelling scheme rates products from A (the most efficient) to G (the least efficient). For refrigeration, the scale now extends to A++. The occupants of the dwelling shall be provided with information on the EU Energy Efficiency Labelling Scheme so that they are informed of the benefits of the scheme.

3.2 Ventilation

- a) Natural ventilation is the most energy efficient form of ventilating any space. The proposed use and traditional architectural design of this building enables it to make best use of natural ventilation via openable windows.
- b) Horizontal pivoted windows produce the most effective ventilation because of their inherent characteristic to develop large openings, where air will tend to enter at the lower level and exit via the top. They are easily adjustable to provide control and reduce the amount of energy required to run and maintain artificial ventilation systems. Normal casement windows can provide a degree of natural ventilation and with the layout of the dwelling; it is possible to obtain good cross ventilation.
- c) Given the historical records for the British Isles, the weather permits a possible energy saving with the use of windows to provide cooling and ventilation. When the outside temperature ranges between 14 °C through to

24 °C, people are able to moderate the heat build-up in the space with the use of an openable window systems.

- d) In addition to allowing direct and flexible control of heat through the use of openable windows they, also provide for the natural provision of fresh air to the occupants eliminating the need for artificially produced fresh air supply.
- e) At other times of the year, mechanical ventilation with heat recovery can conserve energy in dwelling by recovering heat from the warm moist extracted air and transferring it to the incoming fresh air. This works both ways so if the outside temperature is higher than inside the exchanger helps to maintain a comfortable internal environment. The mechanical ventilation with heat recovery system ensures high air quality whilst maintaining a balance between extraction and supply.

3.3 Heating System

- a) The method of heating for the dwelling is not yet finalised, however, it proposed method of heating for the dwelling will use of a highly efficient heat source, with weather compensation. It shall be appropriately designed to provide suitable conditions for the occupants and to offset the heat losses through the fabric of the dwelling.
- b) The heating systems will be provided with time and temperature zone control to control the heating in the spaces.
- c) Weather compensation will be used to help control the heating system. It uses an outdoor temperature sensor to adjust the system controls to compensate for changes in outdoor temperature automatically. As the weather gets colder the system works harder and produces more heat to the space. However, the weather warms up the system reduces the temperature of the heating system thereby reducing the energy consumption and carbon dioxide emissions.
- d) Due to the high level of insulation standards required under the current building regulations and the associated heat gains of the building, the level of

artificially produced heat required to the internal spaces is envisaged to be low.

3.4 Lighting (Natural / Artificial)

- a) The proposed design makes best use of natural daylight to reduce the amount of electrical energy used to provide the minimum luminance for the required conditions. It is envisaged that all the habitable rooms within the dwelling are to be provided with natural light via windows. The number of windows proposed and the use of dimming controls on the lighting scheme where appropriate may assist in achieving the maximum reduction of electrical consumption.
- b) The dwellings are orientated so that the large windows do not face south or are shaded, thus avoiding excessive solar gains during the summer.
- c) When selecting luminaries, consideration should be given to their inherent local power consumption and luminance levels. This together with the use of energy saving lamps will reduce the consumption of energy through lighting to a minimum. It is suggested that a development of this kind could reduce the energy usage further by installing luminaries that only allow the use of energy saving lamps.
- d) Any lighting in the external areas shall be fitted with automatic control systems, like passive infrared sensors, time switches or "dawn to dusk" day light sensors. These luminaires shall be fitted with low energy lamps.

3.5 Hot Water Systems

- a) The hot water demand for the dwelling shall be generated using the efficient heating source and very well insulated hot water storage cylinders are to be provided.
- b) The hot water system shall be designed to appropriate standards required by the current building regulations. This will ensure the minimum amount of heat loss from hot water pipe work by applying a high standard of thermal insulation and ensuring the correct circulation throughout the system.

- c) Waste Water Heat Recovery Systems can be attached to the showers and are a proven and cost effective way to achieve energy savings and carbon emission reductions. They are either fitted around the waste pipe from a shower or bath, or in the shower tray itself, and recover heat from the drain water as it leaves the shower or bath. This recovered heat is used to preheat the cold water feed to the boiler and therefore reduces the amount of energy used by the boiler.
- d) It is possible, with the ever-increasing demand on the limited supply of the natural resource of water, to suitably restrict the flow of water outlets. Flow restrictors can be installed on outlets where a reduced flow is acceptable, for example on showers and basins. This system allows for a uniform maximum flow to be provided regardless of natural water pressures throughout the dwelling.

3.6 Cold Water Systems

- a) Cold water consumption can be kept to a minimum by the installation of a numbers of facilities.
- b) Modern water efficient dual flush WC cisterns should be fitted as standard and as with the hot water system flow restrictors can be fitted to provide a uniform maximum flow rate throughout the dwelling.
- c) Simple water butts can be provided in appropriate locations, allowing for the collection of rain water for the direct use on external landscaped areas. Water butts are the cheapest and easiest way of reducing the use of drinking water for this purpose. There are many products on the market ranging in price and size and some local authorities offer their own option at a subsidised price to the consumer.
- d) It is not possible to estimate the total water saving from the installation and use of such a device as this is very much dependant on the landscaping design for the dwelling, the annual rain fall and the required usage of this water within the domestic setting. However, an average storage device can produce up to 5000 litres of usable rainwater per year.

3.7 Sustainable methods of construction

- a) Sustainable methods of construction can range from the simplest of solutions, such as construction in locations with access to sustainable modes of transport to the more complex solutions including passive solar design and rainwater harvesting.
- b) The following paragraphs will briefly discuss some of the additional options available for incorporation into the scheme at this early stage or later during the detailed design process.

3.8 Passive Solar Design

- a) Passive solar gain can be experienced in both a positive and negative manner. South facing facades can often benefit from solar passive gain during the winter months but this is counteracted by the increased requirement for cooling during the summer.
- b) In a scheme like that proposed, it is important to recognise where solar passive gains will be experienced and to design the scheme to enhance the effect during the winter and protect from it during the summer.

3.9 Building Envelope

- a) All facades of the dwelling shall be designed to ensure that the minimum standards required by the Approved Document L of the Building Regulations are exceeded and that care shall be exercised to ensure flexibility and good shading systems are installed where necessary.
- b) Any insulation that is used in this development shall have global warming potential of less than 5. This shall include not only the thermal insulation, but any acoustic insulation.

3.10 Enhanced Construction Details

a) The dwellings envelope shall be designed using the Enhanced Construction Details to limit recurring thermal bridging. This exceeds the requirement of

the Building Regulations and helps lower the carbon emissions of the dwelling by reducing the heat losses by cold bridging.

3.11 Surface Water Drainage

- a) Surface water drainage at the site will follow the Sustainable Drainage Systems (SuDS) management train.
- b) The surface water will drain into the existing watercourse on site, with the permeable surfacing acting as an attenuation device for slowing and holding the surface water run-off.

3.12 Rainwater Harvesting

- a) The harvesting and recycling of rainwater can considerably reduce mains water consumption for toilets and other uses that do not need a sanitized water supply.
- b) However, the plant space requirement for treatment and storage is often difficult to incorporate into a scheme. It also requires additional public health and water system risers to be installed to serve the facilities able to utilise such a water supply. If this system were to be considered then early design allowances would be required.
- c) An alternative option would be to install a water butt system as discussed above, that allows the collection of rainwater from the roof to be used in the amenity space provided.

3.13 Sustainable Material Choices

- a) A high percentage of carbon dioxide emissions are generated by unsustainable modes of transport. This is not only made up of the use of the private car but is substantially increased by the use of road as the popular way of transporting materials and goods needed during the construction purposes.
- b) Many opportunities are now available to Architects wishing to make more sustainable choices when specifying building materials. The consideration

can include where the materials come from, its' travel distance, mode of transport, and the nature in which the material resource is manufactured and managed.

- c) Throughout the design process consideration will be given to not only the quality of materials to be specified, but also to the quantities. Additional consideration will be given to building material selection that maximises the life expectancy of the building by selecting materials build-ups from the Green Guide to Specification published by the Building Research Establishment (BRE).
- d) The proposed development will be constructed of materials with a low environmental impact, achieving a Green Guide rating of between A+ and D for all five elements of construction, as follows:
 - Roof.
 - External walls.
 - Internal walls.
 - Upper and ground floors.
 - Windows.
- e) Consideration will also be given to the use of materials and products manufactured in the UK and Europe. Once a contractor is appointed, the opportunities for the use of local suppliers for their supply chain will also be explored.
- f) All timber, including that used in the construction processes, will be required to be legally sourced. The definition of legally sourced timber follows the UK Government's definition of legally sourced timber, according to the CPET 2nd Edition report on UK Government timber procurement policy.

3.14 Recycling Facilities

 a) In order to encourage the homeowners to recycle household waste, the dwelling can be provided with recycling bins, both within the dwelling and in the external waste storage area.

- b) The recycling bins could be in the form of three internal in a dedicated non obstructive location in the kitchen. The bins shall be in a variety of sizes and a total capacity of 30 litres and no individual bins shall have a capacity of less than 7 litres.
- c) External bins shall be provided for the Local Authority collection scheme.
 These shall be located in a dedicated location.

4.0 ENERGY ASSESSMENT

4.1 Introduction

- a) This section of the Energy and Sustainability Statement shall make an appraisal of the carbon dioxide emissions of the proposed development, assess the implications of fabric and building services enhancements, the various methods of generating and using renewable energy at source, and to suggest the most appropriate means by which the development can contribute towards the aspiration of policy relating to reducing energy consumption and renewable energy provision.
- b) In order to assess the impact of the improved building envelope and the fixed building services, the initial Standard Assessment Procedure 2012 (SAP) Assessments have been carried out on the proposed dwellings as if they were constructed simply to comply with the requirements of the current Building Regulations. Further SAP calculations have been undertaken to demonstrate an improvement in the carbon emissions by incorporating better fabric constructions, better windows and doors, improved ventilation systems and efficient building services.
- c) The energy assessment shall follow the principles set out in the London Plan, March 2021, Policy SI 2, which expects development proposals to make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:
 - Be Lean –use less energy
 - Be Clean supply energy efficiently
 - Be Green use renewable energy
 - Be Seen modify, monitor and report

4.2 Baseline Carbon Dioxide Emissions

 a) In order to assess the carbon dioxide emissions of the development, the delivered energy demand needs to be estimated. At this stage in the design of the dwellings, the detailed construction drawings have not been prepared

and therefore detailed carbon emission calculations cannot be undertaken to produce the carbon dioxide emissions.

- b) However, the carbon dioxide emission estimates can be based on initial stage SAP calculations.
- c) Based on the current design and using construction information, the proposed dwelling complies with the current Building Regulations.
- d) The building services information is based on standard building services to meet the requirements of the building regulations.
- e) Table 1 below summarises the results from the SAP Worksheets that can be found in Appendix A.

Dwelling	Floor Area (m2)	Heating (kg/yr)	Water Heating (kg/yr)	Pumps & Fans (kg/yr)	Electricity for Lighting (kg/yr)	Total Emissions (kg/yr)	Dwelling CO2 Emission Rate
F1	65.3	775.6	488.2	38.9	152.1	1,454.8	22.29
F2	86.6	1,014.2	529.4	38.9	190.2	1,772.7	20.46
H1	149.5	1,519.4	560.7	38.9	261.5	2,380.4	15.92
H2	134.2	1,240.0	560.0	38.9	247.4	2,086.3	15.54
Dwelling TER (kg/m²/yr)			Are	a (m²)	Emission	s (kg/yr)	
F1		22.2	29	6	55.3	1,45	4.8
F2		20.46		86.3		1,772.2	
H1		15.92		149.5		2,380.4	
H2 15.54			134.2		2,085.8		
Development Carbon Dioxide Emissions (kg/yr)						7,693.5	
Baseli	Baseline Carbon Dioxide Emissions (kg/yr)					7,694	

 Table 1 – Baseline Carbon Dioxide Emissions

4.3 Improved Baseline Carbon Dioxide Emissions

- a) Following the principles set out above, the design has been improved to use less energy and to lower the carbon dioxide emissions.
- b) This has been achieved by improving the thermal performance of the various constructions, like the walls, roof, floors, windows, doors etc and incorporating mechanical ventilation heat recovery and improving the air tightness of the dwelling.
- c) The floor U Values can be improved by incorporating insulation under the screed, or by using insulation blocks instead of concrete blocks between the beams. For the purposes of these calculations, the U Values of the current floor constructions have been calculated as 0.11-12 W/m²K.
- d) The wall U Values can be improved by improving the thermal performance of the insulation, either by increased thickness or lower thermal conductivity. For the purposes of these calculations, the U Values of the current wall constructions have been calculated as between 0.14 and 0.16 W/m²K.
- e) The roof areas offer excellent opportunity to enhance the insulation levels and for the purposes of these calculations, the U Value of 0.09-0.15 W/m²K has been used.
- f) The thermal performance of the windows can be improved by adding coatings to the panes or adding an inert gas to the cavities. For the purposes of these calculations, a U Value for the windows of 1.1 W/m²K has been used, which uses double glazed planitherm glass, argon gas and warm edge spacer bars.
- g) A composite front door can be used instead of a timber door. Modern composite doors have good thermal, fire, acoustic and security properties. These types of door can have U Values as low as 0.55 W/m²K.
- h) The air leakage rate for the dwelling can be improved. The maximum allowed under the current Building Regulations Approved Document

L1A:2013 is 10 m³/hr/m² at 50 Pascal's. With carful detailing, this can be easily improved to $1.5 \text{ m}^3/\text{hr/m}^2$ at 50 Pascal's.

- i) The use of manufacturers Construction Details in the development means that the thermal bridging coefficient can be greatly improved thus a lower γ Value can be used.
- j) With regard to the heating, a highly efficient gas fired condensing boiler shall be provided in the dwelling to provide the heating and hot water. This provides excellent control for the dwelling occupants.
- k) More efficient controls can be installed to control the heating, which can include weather compensation on the heating control and the use of time and temperature zone control will improve the efficiency of the heating system.
- Instead of simply installing 75% of the light fittings as low energy efficient light fittings, as required by the current Building Regulations, 100% of the light fitting could be low energy fittings.
- m) The use of natural lighting has been considered and although its use is not measured in the SAP calculations, it can help lower the energy use and therefore carbon dioxide emissions. This is carefully assessed against any unwanted solar overheating. Whilst a degree of solar gain can be beneficial for the occupants and helps lower the carbon dioxide emissions, it must be controlled to minimise the risk of solar overheating. The calculations show that there is only a slight to medium risk of overheating.
- n) The development shall be designed to ensure that the Dwelling Emission Rates are better than the Target Emission Rates and the Fabric Energy Efficiency is better than the Target Fabric Energy Efficiency. These are the requirements from Criterion 1 of the current Building Regulations Approved Document L (2013).
- By incorporating items like those stated above, the SAP calculations have been updated to demonstrate the effect of these improvements and the results are listed in Table 2 below.

p) Full details of the SAP calculations can be found in the Full SAP Calculations

welling get CO2 nission Rate 18.51 16.78 12.86	
12.83	
ı/yr)	
1,208.4	

Printout in Appendix A.

q) As demonstrated in Table 2 above, it can be seen that the improvements in the thermal performance and fixed building services, a reduction of 18.0% can be achieved in the carbon dioxide emissions of the development.

 r) This exceeds the requirements of the London Plan to achieve a 10% improvement over Building Regulations for residential developments by fabric and energy efficiency measures.

4.4 Supplying Energy Efficiently – BE CLEAN

 Following the principles set out in the Energy Hierarchy, which is implemented in the London Plan, the next step is to reduce the carbon dioxide emissions by supplying energy efficiently - BE CLEAN.

4.5 District Heat Network

- a) The London Heat Map is an online tool that can help identify opportunities for the use of decentralised energy networks and systems for use in projects.
- b) Using the Heat Map, there appears to be no district heating systems available or even proposed in the area within the next five years, so it would not be feasible to install plant for future connection to such a network at this time.
- c) In line with the Greater London Authority's "Sustainable Design and Construction SPG" in published in April 2014, it is considered that no potential heat networks available in the foreseeable future.

4.6 Combined Heat and Power

- a) Combined Heat and Power typically generates electricity on site as a byproduct of generating heat. It uses fuel efficient energy technology that, unlike traditional forms of power generation, uses the by-product of the heat generation required for the development. Normally during power generation, the heat is discharged or wasted to atmosphere.
- b) A typical CHP plant can increase the overall efficiency of the fuel use to more than 75%, compared to the traditional power supplies of 40%, which uses inefficient power stations and takes into account transmission and distribution losses.
- c) The use of this development is residential and it will be built to exceed the current Building Regulations. The aim of these regulations is to minimise the base heating load and electrical loads. The site base heating and electrical loads is key to the sizing and operation of any CHP system.

d) Due to the high levels of insulation and energy efficiency measures that will be incorporated into this development, there is no year round heat load for the CHP plant and therefore, a CHP system would be considered not viable on this development. As such, if a CHP system were to be incorporated, it would not operate efficiently and therefore NOT BE CLEAN.

4.7 Renewable Technologies Considered – BE GREEN

- Taking into account the requirements of planning policy set out by the London Borough of Camden and the London Plan, the final step in the "Energy Hierarchy" is to reduce the carbon dioxide emissions by the use of renewable technologies - BE GREEN.
- b) The following renewable energy resources have been assessed for availability and appropriateness in relation to the site location, building occupancy and design.
 - Combined Heat and Power
 - Biomass Heating
 - Biomass CHP
 - Heat Pumps
 - Solar Photovoltaics
 - Domestic Solar Hot Water Systems
 - Wind Power
- c) A preliminary assessment has been carried out for each renewable energy technology and for those appearing viable a further detailed appraisal has been undertaken.
- d) The preliminary study considered the site location and the type of building in the development and surroundings and produced a shortlist of renewable energy technologies that will be the subject of a further feasibility study.
- e) Table 3 below provides a summary of the assessment.

4.8 Renewables Toolkit Assessment

Energy System	Description	Comment
SystemCombined Heat and Power (CHP)Combined 		As CHP systems produce roughly twice as much heat as they generate electricity, they are usually sized according to the base load heat demand of a building, to minimise heat that is wasted during part-load operations. Therefore, to be viable economically they require a large and constant demand for heat, which make their use in new energy efficient housing, with high insulation, not really suitable. The efficiency of small scale CHP is relatively low and is unlikely to result in CO ₂ emission savings. Economic viability relies on 4000 hours running time, which is unlikely to be achieved in this scheme.
Combined H	leat and Power	Feasible – NO
Biomass Heating	Solid, liquid or gaseous fuels derived from plant material can provide boiler heat for space and water heating. Biomass can be burnt directly to provide heat in buildings. Wood from forests, urban tree pruning, farmed coppices or farm and factory waste, is the most common fuel and is used commercially in the form of wood chips or pellets, although traditional logs are also used. Other forms of Biomass can be used, e.g. bio-diesel.	Wood pellet or wood chip fired or dual bio- diesel/gas-fired boilers could be considered. As this development consists of a new building, it offers the opportunity to accommodate such a system. The flues would have to be discharged to atmosphere above roof level and concerns raised by Environmental Health regarding the pollutants and particles, which would have to be addressed. Care need to be taken with the design of the flue to ensure particle discharge is not a concern to residents. The fuel storage silo/tank would have to be located external to the building, which is not available on this site. A suitable local fuel supplier is required to supply the site.
Biomass He	ating	Feasible – NO

٢

Energy	Description	Comment	
System	Description	Comment	
Biomass CHP	CHP as above, but with biomass as the fuel.	Whilst the Biomass CHP system may overcome the issue of the reduction in carbon dioxide emissions via true renewable sources, however the lack of a year round base load is still a problem and therefore Biomass CHP is no feasible for this development.	
Biomass CHP		Feasible - NO	
Ground/Air Source Heat Pumps (GSHP / ASHP) - heating	The ground collector can be installed, either as a loop of pipe, in the piles or using a borehole and a compressor offer efficient heating of a space in winter, as the temperature of the ground (below approx 2m) remains almost constant all year. For air source, the external condensing unit can be located adjacent to the dwelling in a discreet location.	Ground and air source heat pumps are most efficient when supplying heat continuously and in areas where a mains gas supply is not available. In dwellings, GSHP and ASHP are capable of supplying the majority of the total space heating and pre heat for the hot water demand. This site does not appear to have external areas of sufficient size for the installation of ground loops for the collection of heat. Air source heat pumps are not considered feasible as there is no suitable location of the installation of the outdoor units that would not compromise the use of the dwelling amenity space, by either by generating noise, or cold draughts, or simply loss	
Ground/Air So	ource Heat Pumps	of space for quiet enjoyment. Feasible – NO	
	•		
Solar Photovoltaics (PV)	Building Integrated Photovoltaics (BIPV) or Roof mounted collectors provide noiseless, low maintenance, carbon free electricity.	There appears to be areas of roof that could be utilitised to install PV panels onto the scheme. These could be integrated into the roof finishes or mounted on frames on the roof and ideally orientated towards the south for optimal performance. Careful consideration must be given to the chosen roof finish to ensure compatibility.	
Solar PhotoVo	oltaics	Feasible – YES	
Solar Thermal Hot Water	Solar collectors for low temperature hot water systems require direct isolation, so the chosen location, orientation and tilt are critical.	This solution could be utilised to generate hot water using the energy from the sun. Due to the height of the building, it is considered that the losses in the system would reduce the efficiency and this type of system would not produce the required reduction in carbon emissions, especially when compared to other solutions.	

Land between Gondar House and South Mansions, West Hampstead Energy and Sustainability Statement

Energy System	Description	Comment
Wind Power	Most small (1-25kW) wind turbines can be mounted on buildings, but larger machines require foundations at ground level and suitable site location	It could be viable to install some form of wind turbines on this site, however due to surrounding buildings and the visual impact it is not considered to be the most sensitive system of providing energy via renewable resources in this location.
Wind Power		Feasible – NO

Table 3 – Renewable Technology Feasibility Assessment

- a) From the above it has been established that there is only one potential way of providing energy via renewable sources appropriate for inclusion in this scheme, that being the use of solar photovoltaics.
- b) Due to distribution loses and the efficiency of the system, solar thermal hot water is not being considered further at this stage as the reduction in carbon emissions would be less than a photovoltaic system.
- c) CHP and Micro CHP are considered not feasible as the economic viability relies on at least 4,000 hours runtime which is unlikely to be achieved in this development.
- d) Biomass systems have been considered unfeasible for this site due to particle discharge in a built up area, fuel handling and storage on a site with limited open space, required plant areas and the on going maintenance of the system.
- e) Wind has been considered not viable for this site as there are a lot of the buildings and trees in the surrounding area which are likely to cause disruption to air flows.

4.9 Solar Photovoltaics

- a) Photovoltaics (PV) is a technology that allows the production of electricity directly from sunlight. The term originates from "Photo" referring to light and "voltaic" referring to voltage. This type of technology has been developed for incorporation within building design to produce electricity for either direct consumption or re-sale to the National Grid.
- b) PV panels come in modular panels which can be fitted on the top of roofs or incorporated in the finishes like slates or shingles to form integral part of the roof covering. PV cells can be incorporated into glass for atria walls and roofs or used in the cladding or rain screen on a building wall.
- c) When planning to install PV panels, it is important to consider the inherent cost of installation in comparison to possible alternatives. The aesthetic impact of the PV panels also requires careful consideration.
- d) Roof mounted PV panels should ideally face south-east to south-west at an elevation of about 30-40°. However, in the UK even if installed flat on a roof, they receive 90% of the energy of an optimum system.
- e) PV installations are expressed in terms of the electrical output of the system, i.e. kilowatt peak (kWp). The Department of Trade and Industry estimate that an installation of 1kWp, could produce approximately 700-850 kWh/yr, which would require an area of between 8-20m², depending on the efficiencies and type of PV panel used.
- f) It is also estimated that a gas heated, well insulated typical dwelling would use approximately 1,500kWh/year electricity for the lights and appliances, therefore the 1kWp system could save approximately 45% of a single dwellings electrical energy requirements.
- g) Although often not unattractive, and possible to integrate into the building or roof cladding, PV systems are still considered likely to have visual implications, therefore careful sighting of the panels is required.

- As this installation will be contained on the roof of the proposed dwellings, it involves no additional land use. With regard to noise and vibration, a PV system is completely silent in operation.
- i) Care must be taken with the design and installation of PV systems as they need to meet standards for electrical safety.
- j) Space has been identified on the south facing roofs of the dwellings that can be used for the installation of photovoltaic systems. The identified space could be used to install 15-No. panels. If 405Wp panels were installed on the roof finishes, a total output of 6.075kWp could be achieved.
- k) In an attempt to maximise the carbon dioxide emissions reduction, additional space has been identified on the north facing roofs between the roof lights. As photovoltaic panels work with light, the north facing element will still generate electricity and reduce carbon dioxide emissions. However, the output will be reduced and this has been taken into account on the calculations.

Development incorporating Efficiency Measures	Total Carbon Dioxide Emissions (kgCO ₂ /yr)	Percentage Reduction (%)	
No Renewables		6,306	-
Reduction by including 15-No south facing 405Wp panels 2,756.6			
Reduction by including 9-No north facing 405Wp panels 1,102.4			
Total Reduction by the PV S	3,859	61.2%	
Total Reduction over Building F	5,246	68.2%	

Table 4 – Photovoltaic Carbon Dioxide Emissions

I) As can be seen from Table 4 above, the incorporation of a photovoltaic system as described above, the development could reduce the carbon dioxide emissions by a further 61.2% and when combined with the fabric energy efficiency measures from in Table 2 above, a potential total reduction of 68.2% could be achieved.

- m) From the above calculations, based on 405 watt panels, orientated towards the south and mounted on the roof finishes at a 10 degree pitch, it is calculated that 6-No. panels are required on the proposed dwellings roof.
- n) These panels could be connected to the individual electric supply for each dwelling to be used in the dwelling or connected to ta landlords supply. Any surplus electricity can be exported to the National Grid.
- It is estimated that this size of system, the development could generate 8,498 kWh of electricity in a year.
- p) Further detailed calculations for the carbon dioxide emissions and the final system size and layout shall be carried out during detailed design.

4.10 Annual Carbon Dioxide Emission Reduction

- a) Based on the initial SAP calculations for the dwellings, it has been calculated that the baseline carbon dioxide emissions figure is 7,693.5 kgCO₂/year.
- b) In accordance with the Planning Policies set out by London Borough of Camden and the London Plan, this report has demonstrated a 18.0% improvement in carbon dioxide emissions by fabric and energy efficiencies.
- c) A number of options have been considered and the potential carbon dioxide reductions calculated using the SAP calculations and a summary of the results is provided in Table 5 below.

	Total Carbon Dioxide Emissions	Reduction in Carbon Dioxide Emissions	
	(kgCO ₂ /yr)	(%)	
Building Regulations Compliant Development	7,694	-	
Development incorporating Energy Efficiency Measures	6,306	18.0%	
Further Reduction in Carbon Dioxide Emissions by incorporating a Renewable Technology			
PV	3,859	61.2%	
Percentage Improvement inco fabric and energy efficiencies an the PV systems	68.2 %		

Table 5 – Summary of Reduction in Carbon Dioxide Emissions

- It has been demonstrated that it is possible to achieve a total of 68.2% reduction in carbon dioxide emissions over and above the 2013 Building Regulations by improving the energy efficiency of the development, its building services efficiencies and by including the solar photovoltaic systems. This could be further improved during detailed design.
- e) CHP and Biomass CHP have been analysed but are considered not feasible for this development as the heating and electrical load profiles would not provide a good clean efficient system for the development.

- f) Biomass heating has been analysed but is considered not feasible for this development due to particle discharge in the built up area, space requirements and the cost and the reliability of a biomass fuel source.
- g) Wind power is considered not feasible for this development due to the visual impact in the area and the turbulence caused by the surrounding buildings and trees etc.
- h) Due to distribution loses and the efficiency of the system, solar thermal hot water is not being considered further at this stage as the reduction in carbon emissions would be less than a photovoltaic system.
- i) There is insufficient space for the installation of ground loops for ground source heat pumps. No suitable location been identified for the installation of the air source heat pump outdoor units without compromising the amenity space.
- j) The use of the photovoltaic systems, by themselves, could provide a reduction of 61.2% in carbon dioxide emissions. When combined with the fabric and energy efficiencies identified in Section 3.0, the use of the photovoltaic systems, the total carbon emissions reduction could be in excess of 68.2%.
- k) Detailed calculations of the total carbon dioxide emissions compared to the estimated carbon dioxide reduction for the development can be undertaken once the detailed design has progressed to construction drawing stage.
- I) For the purpose of planning and based on the figures provided by initial SAP calculations, this report has demonstrated that it is feasible, with the improvement of the building fabric, the introduction of energy efficient heating systems and controls and the use of solar photovoltaics, a reduction of 68.2% over the 2013 Building Regulations for the developments carbon dioxide emissions could be achieved. This complies with the requirement to provide a minimum reduction in carbon dioxide emissions of 35% set out by the London Borough of Camden policies.

4.11 Energy Hierarchy Carbon Dioxide Emissions Summary

- a) The concept of applying the energy hierarchy in relation to Approved Document L of the Building Regulations 2013, the Energy Planning, Greater London Authority Guidance on Preparing Energy Assessments (March 2016) document provides further guidance on how the carbon dioxide emission figures can be presented.
- b) The regulated carbon dioxide emissions reduction target for the development would be to achieve a 35% reduction in carbon dioxide emissions as assessed under the Approved Document L 2013 of the Building Regulations.
- c) These figures are based on the current design information and are subject to change when the detailed construction information is produced.
- Table 6 provides Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic buildings.

		Tonnes CO ₂ /yr
Baseline: Part L 2013 of the Building Regulations Compliant Development	а	7.7
After energy demand reduction	b	6.3
After heat network / CHP	с	6.3
After renewable energy	d	2.4

 Table 6 – Carbon Dioxide Emissions after each stage of the Energy

 Hierarchy

e) Table 7 provides Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings

		Tonnes CO ₂ /yr		%
Savings from energy demand reduction	a-b	1.4	(a-b)/a*100	18.0
Savings from heat network / CHP	b-c	0.0	(b-c)/a*100	0.0
Savings from renewable energy	c-d	3.9	(c-d)/a*100	50.2
Cumulative on site savings	a-d=e	5.2	(a-d)/a*100	68.2

Table 7 – Regulated carbon dioxide savings from each stage of the Energy Hierarchy

f) The calculations contained within this Energy Statement are based on the current design information and are subject to change when the detailed design is undertaken and the construction information is produced.

5.0 OVERHEATING

- a) It is important to consider the internal comfort conditions for the occupants of the dwelling. At design stage, this can be met through the use of the "cooling hierarchy".
- b) The cooling hierarchy seeks to reduce any potential overheating and also the need to cool a building through active cooling measures. Air conditioning systems are a very resource intensive form of active cooling, increasing carbon dioxide emissions, and also emitting large amounts of heat into the surrounding area. By incorporating the cooling hierarchy into the design process buildings will be better equipped to manage their cooling needs and to adapt to the changing climate they will experience over their lifetime.
- c) The development shall reduce the potential for overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:
 - a) minimise internal heat generation through energy efficient design
 - reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls
 - c) manage the heat within the building through exposed internal thermal mass and high ceilings
 - d) passive ventilation
 - e) mechanical ventilation
 - f) active cooling systems (ensuring they are the lowest carbon options).
- d) During the initial design, the initial SAP Assessment was carried out for the dwelling to help assess the energy demand and carbon emissions of the development. The SAP Assessment includes an overheating assessment in line with the requirements of the Building Regulations.

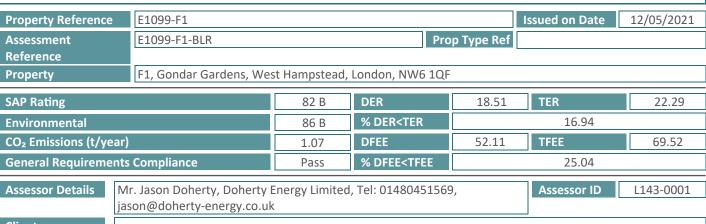
- e) Based on this SAP Assessment, the dwelling has a medium risk of solar overheating. This is acceptable under the requirements of the Building Regulations.
- f) The internal heat generation has been minimised through energy efficient design. All of the luminaires shall be low energy which will also remove an internal heat generating load.
- g) The heat entering the building in summer is reduced through the optimisation of glazing area, the use of shading via building form and other protruding edges, together with the inclusion of very high performance façade materials and improved air tightness. The use of a solar control glazing, which has a coating applied to lower the G Value of the glass, can be applied. This acts in the same way that the low e coating lowers the U Value which helps reduce heat losses through the windows.
- h) The dwellings could have a mechanical ventilation system installed, which provides filtered fresh air to the dwelling. This is tempered by the crossover heat exchanger, which recovers waste heat from the extract air from the dwelling. The ventilation systems shall be controlled locally by the occupants.
- Low energy lamps shall be used in the luminaires to reduce heat gain. These lamps do not emit heat like traditional GLS lamps.

6.0 WATER CALCULATIONS

- a) The London Borough of Camden recognises that London and the South East is classified as 'seriously' water stressed, meaning that more water is taken from the environment than the environment can sustain in the long term. London is relatively resilient to drought and it takes two consecutive drier than normal winters to create water supply issues.
- b) The London Plan Policy SI 5 Water Infrastructure requires all new dwellings should limit domestic water consumption to 105 litres per person per day (l/p/d), plus 5 l/p/d for external use, in line with the Government's higher 'optional requirements' for water efficiency set out in Part G of the Building Regulations as amended.
- c) Low water usage fitting, or flow restrictors can be fitted in the dwelling. Efficient white goods that are not only energy efficient but also water efficient can also be installed.
- d) At this stage in the design, the final selection of the water fittings and appliance has not been made, but this calculations shows the design intent for these fittings and appliances.
- e) Dual flush toilets can be installed to reduce the water consumption of the dwelling. A full flush capacity of 4.5 litres and a part flush capacity of 3 litres has been selected.
- f) Flow restrictors shall be installed to limit the flow rates of the taps to 3 litres / minute. Flow restrictors shall also be installed in the kitchen taps and the showers to restrict their flow. The kitchens shall be restricted to 10 litres / minute and the showers shall be restricted to 8 litres / minute.
- g) The capacity of the baths to the over flow shall be 149 litres.

- h) No appliances have been selected at this time, so the default Best Practise values have been used. The washing machine shall have a water consumption of 8.17 litres / kg of dry load. The dishwasher shall have a water consumption of 1.25 litres / place setting.
- i) No water softeners are being installed.
- J) Using the Building Regulations Approved Document G Calculator, the water consumption has been calculated as between 103.88 and 104.7 litres / person / day, including the 5 l/p/d for external use.
- k) The calculated water consumption for the dwelling complies with the requirements of the Local Plan and the Building Regulations Approved Document G.
- I) Details of the calculations can be found in Appendix B.

7.0 <u>CONCLUSION</u>


- a) The London Borough of Camden requires all residential developments to achieve at least a 35% reduction in regulated carbon dioxide emissions on site over the 2013 Building Regulations.
- b) The Application is for the construction of four dwellings, consisting of two houses and two flats, in a single block.
- c) It is proposed that in order to meet the requirements of policy this development will adopt a high standard of design with regard to energy efficiency principles. It has been estimated that the proposed development will achieve a reduction of at least 18.0% in the carbon dioxide emissions through fabric and services efficiencies, then a further reduction by the use of solar photovoltaic systems, resulting in a total reduction over 2013 Building Regulations of 68.2%.
- d) At planning stage it is not possible to produce the final reports on the energy demand, carbon dioxide emissions, based on the initial construction information. It is envisaged that during detailed design, the reduction in carbon dioxide emissions can be improved.
- e) This report has assessed the risk of overheating and the development has been identified as having a slight risk, which can be reduced by incorporating low G value glazing, internal shading by light coloured curtains or cross ventilation by opening the windows fifty percent of the time.
- f) The water usage has been assessed and although the actual water fittings have not been selected yet, the calculations show that it is possible for this development to achieve the requirements of the planning policy, thus minimising the impact of the development on the local water resources.

g) This Energy and Sustainability Statement demonstrates that the proposed development follows the principles of the planning policy requirements with regards to carbon dioxide reduction and the incorporation of low and zero carbon technologies. The Statement demonstrates that the development can exceed the requirement of a 35% reduction in carbon emissions as set out in planning policy. The development also meets the required of planning policy with regards to water consumption and minimises over heating. It is for these reasons it is considered that this application should be viewed favorably by the London Borough of Camden.

Appendix A – Full SAP Calculations Printout

Client

Doherty Energy

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

		ed Document L1A, 2013 Edition, England	
DWELLING AS DESIGNED			
Mid-Terrace Maisonette,	, total floor are	≥a 65 m²	
This report covers iter It is not a complete re	eport of regulat:		
la TER and DER Fuel for main heating: Fuel factor:1.00 (mains Target Carbon Dioxide H Dwelling Carbon Dioxide Do TFEE and DFEE	Mains gas s gas) Emission Rate (TH e Emission Rate	SR) 22.29 kgCO□/m² (DER) 18.51 kgCO□/m²OK	
Target Fabric Energy Es Dwelling Fabric Energy	Efficiency (DFE	E)52.1 kWh/m²/yrOK	
2 Fabric U-values			
Element Average External wall 0.16 (r	nax. 0.30)	Highest 0.16 (max. 0.70) OK	
Party wall 0.00 (r	nax. 0.20) nax. 0.25)	- OK 0.10 (max. 0.70) OK	
Floor 0.10 (r Roof 0.09 (r Openings 1.04 (r	nax. 0.20)	0.09 (max. 0.35) OK	
Openings 1.04 (r	nax. 2.00)	1.10 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calcul	lated using user-	-specified y-value of 0.025	
3 Air permeability			
Air permeability at 50 Maximum		1.50 (design value) 10.0	OK
4 Heating efficiency Main heating system: Data from database Ideal LOGIC+ HEAT H12		Boiler system with radiators or underfloor - Mai	ins gas
Efficiency: 89.4% SEDBU Minimum: 88.0%	JK2009	OK	
Secondary heating syste	em:	None	
5 Cylinder insulation			
Hot water storage		Measured cylinder loss: 1.30 kWh/day	
Permitted by DBSCG 2.10 Primary pipework insula	ated:	OK Yes	ОК
6 Controls Space heating controls:		Time and temperature zone control	OK
Hot water controls:		Cylinderstat Independent timer for DHW	OK OK
Boiler interlock		Yes	OK
7 Low energy lights			
Percentage of fixed lig			OK
8 Mechanical ventilatio	on		
Continuous supply and e Specific fan power:	extract system	0.68	
Maximum		1.5	OK
MVHR efficiency: Minimum:		88% 70%	OK
9 Summertime temperatur Overheating risk (Thame Based on:		Slight	OK
Overshading:		Average 13.75 m², No overhang	
Windows facing Fact.		1.08 m², No overhang	
	est:		
Windows facing South We Windows facing North We	est:	1.08 m ² , No overhang	
Windows facing South We Windows facing North We Air change rate: Blinds/curtains:	est: est:	4.00 ach Light-coloured curtain or roller blind, closed 1	
Windows facing South We Windows facing North We Air change rate: Blinds/curtains:	est: est:	4.00 ach	
Windows facing South We Windows facing North We Air change rate: Blinds/curtains: 	est: est:	<pre>4.00 ach Light-coloured curtain or roller blind, closed 1 </pre>	
Windows facing South Wk Windows facing North Wk Air change rate: Blinds/curtains: 	est: est:	4.00 ach Light-coloured curtain or roller blind, closed 1 0.14 W/m ² K 0.00 W/m ² K	
Windows facing North We Air change rate: Blinds/curtains: 	est: est:	<pre>4.00 ach Light-coloured curtain or roller blind, closed 1 </pre>	
Windows facing South Wk Windows facing North Wk Air change rate: Blinds/curtains: 	est: est:	4.00 ach Light-coloured curtain or roller blind, closed 1 0.14 W/m ² K 0.00 W/m ² K 0.09 W/m ² K 0.10 W/m ² K 0.10 W/m ² K	
Windows facing South Wk Windows facing North Wk Air change rate: Blinds/curtains: 	est: est:	4.00 ach Light-coloured curtain or roller blind, closed 1 	
Windows facing South Wk Windows facing North Wk Air change rate: Blinds/curtains: 	est: est:	4.00 ach Light-coloured curtain or roller blind, closed 1 0.14 W/m ² K 0.00 W/m ² K 0.09 W/m ² K 0.10 W/m ² K 0.10 W/m ² K	

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
Basement floor Ground floor		Area (m2) 24.3400 (1a) 40.9400 (1b)	Store x x	ey height (m) 2.6000 (2a) 3.2300 (2b)	=	Volume (m3) 63.2840 (1a) - (3a) 132.2362 (1b) - (3b)
Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	65.2800			+(3d)+(3e)(3n		(4) 195.5202 (5)

2. Ventilation	rate												
					main heating		secondary heating		other	tot	al	m3 per hour	
Number of chimne	eys				õ	+	õ	+	0 =		0 * 40 =	0.0000	(6a)
Number of open :	flues				0	+	0	+	0 =		0 * 20 =	0.0000	(6b)
Number of inter	mittent far	ıs									0 * 10 =	0.0000	(7a)
Number of passiv											0 * 10 =	0.0000	
Number of fluele	ess gas fin	res									0 * 40 =	0.0000	(7c)
											Air chang	es per hour	
Infiltration due	e to chimne	eys, flues a	and fans	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	(8)
Pressure test												Yes	
Measured/design												1.5000	
Infiltration rat	te											0.0750	
Number of sides	sheltered											2	(19)
Shelter factor											(19)] =	0.8500	(20)
Infiltration rat	te adjusted	d to include	e shelter fa	actor					(21) = (18)	x (20) =	0.0638	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000		3.7000	4.0000	4.3000	4.5000		
Wind factor Adj infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
-	0.0813	0.0797	0.0781	0.0701	0.0685	0.0606	5 0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	(22b)
Balanced mechan			h heat reco	very									
If mechanical ve												0.5000	
If balanced with	h heat reco	overy: effi	ciency in %	allowing fo	or in-use fa	actor (fi	rom Table 4h)	=				74.8000	(23c)
Effective ac	0.2073	0.2057	0.2041	0.1961	0.1945	0.1866	5 0.1866	0.1850	0.1898	0.1945	0.1977	0.2009	(25)

Element				Gross	Openings	Net	Area	U-value	A x U	K-	value	АхК	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Door						1.	9100	0.5500	1.0505				(26
Window (Uw = 1	.10)					15.	9100	1.0536	16.7634				(27
Base Floor						24.	3400	0.1000	2.4340				(2)
Grd Floor						18.	6300	0.1000	1.8630				(2)
lasement				13.9100		13.	9100	0.1400	1.9474				(2
lain Wall			1	.81.0200	17.8200	163.	2000	0.1600	26.1120				(2
rd Roof				3.2500		3.	2500	0.0900	0.2925				(30
'otal net area	of externa	l elements	Aum(A, m2)			241.	1500						(3
abric heat lo	ss, W/K = S	Sum (A x U)					(26)(2	30) + (32) =	50.4628				(3)
Party Wall 1						42.	5200	0.0000	0.0000				(32
hermal mass p												100.0000	
hermal bridge		ined value	0.025 * tot	al exposed	area)							6.0288	
otal fabric h	eat loss									(33)	+ (36) =	56.4916	(3)
Ventilation he	at loss cal	culated mor	nthly (38)m	= 0.33 x (2	25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
38) m	13.3741	13.2713	13.1685	12.6543	12.5515	12.0373	12.0373	11.9345	12.2430	12.5515	12.7571	12.9628	(3
eat transfer	coeff												
	69.8657	69.7629	69.6600	69.1459	69.0430	68.5289	68.5289	68.4261	68.7345	69.0430	69.2487	69.4544	(3
.verage = Sum(39)m / 12 =	:										69.1202	(3
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
		1 0 6 0 7	1.0671	1.0592	1.0576	1.0498	1.0498	1.0482	1.0529	1.0576	1.0608	1.0639	(4
LP	1.0702	1.0687	1.06/1	1.0392	1.03/0						1.0000		
LP LP (average)	1.0702	1.068/	1.00/1	1.0392	1.0370	1.0490	1.0190	1.0102	1.0325	1.0070	1.0000	1.0588	
	1.0702	1.0687	1.06/1	1.0392	1.0370	1.0490	110190	1.0102	1.0325	1.0070	1.0000		

4. Water heat:	ing energy	requirement	s (kWh/year))								
Assumed occupa Average daily		use (litres	/day)									2.1263 (42) 84.7003 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daily hot wate	er use											
	93.1704	89.7824	86.3944	83.0063	79.6183	76.2303	76.2303	79.6183	83.0063	86.3944	89.7824	93.1704 (44)
Energy conte	138.1690	120.8435	124.6996	108.7162	104.3158	90.0166	83.4136	95.7183	96.8615	112.8827	123.2203	133.8093 (45)

30

31

31

30

31

30

31 (41)

31

28

31

30

31

Energy content	: (annual)									Total = Su	um (45) m =	1332.6663	(45)
Distribution 1	Loss (46)m	$= 0.15 \times (4)$	45)m										
	20.7253	18.1265	18.7049	16.3074	15.6474	13.5025	12.5120	14.3577	14.5292	16.9324	18.4830	20.0714	(46)
Water storage	loss:												
Store volume												180.0000	(47)
a) If manufac	cturer decla	ared loss fa	actor is kno	own (kWh/da	ay):							1.3000	(48)
Temperature	factor from	n Table 2b										0.5400	(49)
Enter (49) or	(54) in (55	5)										0.7020	(55)
Total storage	loss												
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(56)
If cylinder co	ontains ded:	icated sola:	r storage										
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red	quired for w	water heatin	ng calculate	ed for each	month								
	183.1934	161.5107	169.7240	152.2882	149.3402	133.5886	128.4380	140.7427	140.4335	157.9071	166.7923	178.8337	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								Solar inpu	it (sum of i	months) = Su	1m (63) m =	0.0000	(63)
Output from w/													
	183.1934	161.5107	169.7240	152.2882	149.3402	133.5886	128.4380	140.7427	140.4335	157.9071	166.7923	178.8337	
								Total pe	er year (kWl	h/year) = Sı	1m (64) m =	1862.7923	(64)
Heat gains fro													
	81.9607	72.7142	77.4822	71.0057	70.7045	64.7881	63.7545	67.8459	67.0640	73.5530	75.8284	80.5111	(65)

5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 106.3165 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 16.5857 14.7312 11.9802 9.0698 6.7798 5.7238 6.1848 8.0392 10.7902 13.7006 15.9906 17.0466 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 186.0407 187.9712 183.1064 172.7497 159.6762 147.3890 139.1804 137.2499 142.1147 152.4714 165.5449 177.8321 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 33.6317 33.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 7(0) Losses e.g. evaporation (negative values) (Table 5) -85.0532 -85.05

6. Solar gains

	Access factor Table 6d 0.7700 0.7700 0.7700	
Southwest 1.0800 36.7938 0.7200 0.7000 0.7		

7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (C) Utilisation factor for gains for living area, ni1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov tau 25,9546 25,9928 26.0312 26.2248 26.2638 26.4609 26.4609 26.5006 26.3817 26.2638 26.1858

tau	Jan 25.9546	Feb 25.9928	Mar 26.0312	Apr 26.2248	May 26.2638	Jun 26.4609	Jul 26.4609	Aug 26.5006	Sep 26.3817	Oct 26.2638	Nov 26.1858	Dec 26.1083
alpha	2.7303	2.7329	2.7354	2.7483	2.7509	2.7641	2.7641	2.7667	2.7588	2.7509	2.7457	2.7406
util living a	rea											
	0.9452	0.9115	0.8457	0.7286	0.5825	0.4352	0.3255	0.3683	0.5738	0.8068	0.9184	0.9527 (86)
MIT	19.0014	19.3402	19.8432	20.3801	20.7358	20.9142	20.9715	20.9595	20.8130	20.2897	19.5379	18.9283 (87)
Th 2	20.0252	20.0265	20.0278	20.0343	20.0356	20.0421	20.0421	20.0434	20.0395	20.0356	20.0330	20.0304 (88)
util rest of	house											
	0.9376	0.8999	0.8263	0.6972	0.5383	0.3782	0.2585	0.2975	0.5135	0.7753	0.9056	0.9461 (89)
MIT 2	17.3636	17.8475	18.5563	19.2927	19.7518	19.9669	20.0239	20.0160	19.8615	19.1954	18.1429	17.2619 (90)
Living area f	raction								fLA =	Living area	(4) =	0.3634 (91)
MIT	17.9587	18.3899	19.0239	19.6878	20.1093	20.3111	20.3682	20.3588	20.2072	19.5930	18.6498	17.8674 (92)
Temperature a	djustment											0.0000
adjusted MIT	17.9587	18.3899	19.0239	19.6878	20.1093	20.3111	20.3682	20.3588	20.2072	19.5930	18.6498	17.8674 (93)

8. Space heating requirement

Utilisation Useful gains	Jan 0.9164 442.7596	Feb 0.8755 512.7081	Mar 0.8030 569.3131	Apr 0.6850 580.3344	May 0.5418 510.3070	Jun 0.3946 370.2389	Jul 0.2817 252.2697	Aug 0.3214 262.1841	Sep 0.5246 373.2140	Oct 0.7587 438.9864	Nov 0.8826 427.4508	Dec 0.9262 420.4277	
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	∋ W												
	954.2761	941.0920	872.4173	745.9326	580.6056	391.3746	258.2324	270.8876	419.7762	620.9050	799.8060	949.2616	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	380.5683	287.8740	225.5095	119.2307	52.3021	0.0000	0.0000	0.0000	0.0000	135.3474	268.0958	393.4524	(98)
Space heating Space heating										(98)	/ (4) =	1862.3802 28.5291	

21.0000 (85)

8c. Space cooling requirement
Not applicable

9a. Energy re		Individua	l heating sy	stems, inc	luding micr	o-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fro pace heat fro main space b secondary/se	om seconda: om main sy: heating sy: upplementa:	ry/supplemen stem(s) stem 1 (in ^s	ntary system 8)								0.0000 1.0000 93.4000 0.0000 1993.9830	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	380.5683	287.8740	225.5095		52.3021	0.0000	0.0000	0.0000	0.0000	135.3474	268.0958	393.4524	(98)
Space heating	93.4000	93.4000	93.4000	93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000	(210)
Space heating	407.4607	308.2163	stem) 241.4448	127.6560	55.9980	0.0000	0.0000	0.0000	0.0000	144.9116	287.0404	421.2553	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating	183.1934	161.5107	169.7240	152.2882	149.3402	133.5886	128.4380	140.7427	140.4335	157.9071	166.7923		
Efficiency of (217)m	86.6211	86.2389	85.4723	84.0696	82.2244	79.7000	79.7000	79.7000	79.7000	84.3055	85.9732	79.7000 86.7602	
Fuel for wate Water heating	211.4881 fuel used		198.5719	181.1453	181.6252	167.6143	161.1518	176.5906	176.2026	187.3035	194.0049	206.1242 2229.1053	
Annual totals Space heating Space heating	fuel - main											1993.9830 0.0000	
central he	ng flue fan city for the or lighting	above, kW	h/year d in Append:									202.7544 30.0000 45.0000 277.7544 292.9080 4793.7508	(230c) (230e) (231) (232)
12a. Carbon d	ioxide emiss	ions - Ind	ividual heat	ing system:	s including	micro-CHP							
Space heating Space heating Water heating Space and wat Pumps and fan Energy for li Total CO2, kg Dwelling Carb	- main syste - secondary (other fuel er heating s ghting /year	em 1)						Energy kWh/year 1993.9830 0.0000 2229.1053 277.7544 292.9080		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190		Emissions g CO2/year 430.7003 0.0000 481.4867 912.1871 144.1546 152.0193 1208.3609 18.5100	(261) (263) (264) (265) (267) (268) (272)
16 CO2 EMISSI DER Total Floor A Assumed numbe CO2 emissions CO2 emissions Total CO2 emi Residual CO2 Additional al Resulting CO2 Net CO2 emiss	rea r of occupan factor in Tal from applia: from cookin ssions emissions of lowable elec emissions o	ts ble 12 for nces, equa g, equation fset from 1 tricity gen	electricity tion (L14) n (L16) biofuel CHP neration, KI	y displaced Mh/m²/year	from grid		TY GENERATI	ON TECHNOLO	SIES		TFA N EF	18.5100 65.2800 2.1263 0.5190 16.8878 2.6047 38.0025 0.0000 0.0000 0.0000 38.0025	ZC2 ZC3 ZC4 ZC5 ZC6 ZC7

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
Basement floor Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln)	65.2800	Area (m2) 24.3400 (1a) 40.9400 (1b)	x x	cey height (m) 2.6000 (2a) 3.2300 (2b)	= =	Volume (m3) 63.2840 (la) - (3a) 132.2362 (lb) - (3b) (4)
Dwelling volume		(3a)+(3	o)+(3c)	+(3d)+(3e)(3n) =	195.5202 (5)

					main heating		condary heating	0	other	tota	al	m3 per ho	ur
Number of chimn	eys				õ	+	õ	+	0 =		0 * 40	= 0.00	00 (6a)
Number of open	flues				0	+	0	+	0 =		0 * 20	= 0.00	00 (6b)
Number of inter		ns									2 * 10		00 (7a)
Number of passi											0 * 10		
Number of fluel	ess gas fi:	res									0 * 40	= 0.00	00 (7c)
												anges per ho	
Infiltration du	e to chimne	eys, flues	and fans =	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				20.0000	/ (5)		23 (8)
Pressure test	3.05.0											¥ 5.00	es
Measured/design													
Infiltration ra	+0											0 35	23 (18)
Infiltration ra Number of sides												0.35	23 (18)
Infiltration ra Number of sides												0.35	23 (18) 2 (19)
									(20) = 1 -	[0.075 x	(19)]		
Number of sides	sheltered	d to includ	e shelter fa	actor						[0.075 x 1) = (18) x		= 0.85	2 (19)
Number of sides Shelter factor	sheltered								(2	1) = (18) 3	k (20)	= 0.85 = 0.29	2 (19) 00 (20)
Number of sides Shelter factor Infiltration ra	sheltered te adjusted Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	(2 Sep	1) = (18) 3 Oct	(20) Nov	= 0.85 = 0.29	2 (19) 00 (20) 94 (21)
Number of sides Shelter factor Infiltration ra Wind speed	sheltered te adjusted Jan 5.1000	Feb 5.0000	Mar 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	Aug 3.7000	(2 Sep 4.0000	1) = (18) > Oct 4.3000	(20) Nov 4.5	= 0.85 = 0.29 Dec 000 4.70	2 (19) 00 (20) 94 (21) 00 (22)
Number of sides Shelter factor Infiltration ra Wind speed Wind factor	sheltered te adjusted Jan 5.1000 1.2750	Feb	Mar	Apr				Aug	(2 Sep	1) = (18) 3 Oct	(20) Nov	= 0.85 = 0.29 Dec 000 4.70	2 (19) 00 (20) 94 (21)
Number of sides Shelter factor Infiltration ra Wind speed	sheltered te adjusted Jan 5.1000 1.2750	Feb 5.0000	Mar 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	Aug 3.7000	(2 Sep 4.0000	1) = (18) > Oct 4.3000	(20) Nov 4.5	= 0.85 = 0.29 . Dec .000 4.70 250 1.17	2 (19) 00 (20) 94 (21) 00 (22)

Element				Gross m2	Openings m2	Net	Area m2	U-value W/m2K	A x U W/K		value J/m2K	A x K kJ/K	
TER Opaque doo	r					1	9100	1.0000	1.9100			10,10	(26)
TER Opening Ty		40)					4200	1.3258	19.1174				(27)
Base Floor	1	.,				24.	3400	0.1300	3.1642				(28)
Grd Floor						18.	6300	0.1300	2.4219				(288
Basement				13.9100		13.	9100	0.1800	2.5038				(298
Main Wall			1	81.0200	16.3300	164.	6900	0.1800	29.6442				(298
Grd Roof				3.2500		з.	2500	0.1300	0.4225				(30)
Total net area	of externa	al elements	Aum(A, m2)			241.	1500						(31)
Fabric heat lo	ss, W/K = S	Sum (A x U)					(26)(30) + (32) =	59.1840	I			(33)
Thermal mass p	arameter (1	MP = Cm / 1	?FA) in kJ/m	2K								250.0000	(35)
Thermal bridge	s (Sum(L x	Psi) calcul	ated using	Appendix K)								0.0000	(36)
Total fabric h	eat loss									(33)	+ (36) =	59.1840	(37)
Ventilation he	at loss cal	culated mor	thly (38)m	= 0.33 x (2	25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38) m	36.9634	36.7808	36.6018	35.7611	35.6038	34.8716	34.8716	34.7360	35.1536	35.6038	35.9220	36.2547	(38)
Heat transfer	coeff												
	96.1475	95.9648	95.7859	94.9451	94.7878	94.0556	94.0556	93.9200	94.3376	94.7878	95.1060	95.4387	(39)
Average = Sum(39)m / 12 =	-										94.9444	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.4728	1.4700	1.4673	1.4544	1.4520	1.4408	1.4408	1.4387	1.4451	1.4520	1.4569	1.4620	(40)
HLP (average)												1.4544	(40)
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heat	ing energy	requirement	s (kWh/year)									
Assumed occup Average daily		use (litres	/day)									2.1263 84.7003	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	93.1704	89.7824	86.3944	83.0063	79.6183	76.2303	76.2303	79.6183	83.0063	86.3944	89.7824	93.1704	(44)
Energy conte	138.1690	120.8435	124.6996	108.7162	104.3158	90.0166	83.4136	95.7183	96.8615	112.8827	123.2203	133.8093	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1332.6663	(45)
Distribution	loss (46)m	= 0.15 x (45) m										
	20.7253	18.1265	18.7049	16.3074	15.6474	13.5025	12.5120	14.3577	14.5292	16.9324	18.4830	20.0714	(46)
Water storage	loss:												
Store volume												180.0000	(47)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

a) If manufac	turer decla	ared loss fa	actor is kn	own (kWh/da	ay):							1.5520	(48)
Temperature	factor from	n Table 2b			-							0.5400	(49)
Enter (49) or	(54) in (55	5)										0.8381	(55)
Total storage	loss												
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
If cylinder co	ntains dedi	cated solar	r storage										
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat rec	uired for w	ater heatir	ng calculat	ed for each	month								
	187.4117	165.3207	173.9423	156.3704	153.5584	137.6708	132.6562	144.9610	144.5157	162.1254	170.8745	183.0520	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Si	um (63) m =	0.0000	(63)
Output from w/	'n												
	187.4117	165.3207	173.9423	156.3704	153.5584	137.6708	132.6562	144.9610	144.5157	162.1254	170.8745	183.0520	(64)
								Total pe	er year (kWl	h/year) = Si	um (64) m =	1912.4590	(64)
Heat gains fro													
	85.3353	75.7623	80.8568	74.2715	74.0791	68.0539	67.1292	71.2205	70.3298	76.9276	79.0941	83.8857	(65)

5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts

Metabolic gain	s (Table 5)	, Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165	106.3165 ((66)
Lighting gains	(calculate	d in Append	lix L, equat	tion L9 or 1	L9a), also s	see Table 5							
	16.5894	14.7345	11.9829	9.0718	6.7813	5.7251	6.1861	8.0410	10.7926	13.7037	15.9942	17.0504 ((67)
Appliances gai	ns (calcula	ted in Appe	ndix L, equ	ation L13 d	or L13a), al	lso see Tabl	Le 5						
	186.0407	187.9712	183.1064	172.7497	159.6762	147.3890	139.1804	137.2499	142.1147	152.4714	165.5449	177.8321 ((68)
Cooking gains	(calculated	in Appendi	x L, equati	ion L15 or 1	L15a), also	see Table 5	5						
	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317	33.6317 ((69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 ((70)
Losses e.g. ev	aporation (negative va	lues) (Tabl	Le 5)									
	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532	-85.0532 ((71)
Water heating													
	114.6980	112.7415	108.6785	103.1548	99.5687	94.5193	90.2274	95.7264	97.6803	103.3974	109.8529	112.7496 ((72)
Total internal													
	375.2230	373.3421	361.6627	342.8713	323.9212	305.5283	293.4889	298.9123	308.4825	327.4674	349.2870	365.5271 ((73)

6. Solar gains	

[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce: facto Table	or	Gains W	
East Southwest Northwest			12.4 0.9 0.9	300	19.6403 36.7938 11.2829		0.6300 0.6300 0.6300	0	.7000 .7000 .7000	0.77 0.77 0.77	00	74.7889 11.0198 3.3792	(79)
Solar gains Total gains	89.1879 464.4110	171.9523 545.2944	279.0161 640.6788	403.5721 746.4434	493.6520 817.5732	505.3997 810.9280	481.1050 774.5939	413.5366 712.4488	323.1336 631.6162	202.7526 530.2200	110.7041 459.9911	73.6931 439.2202	

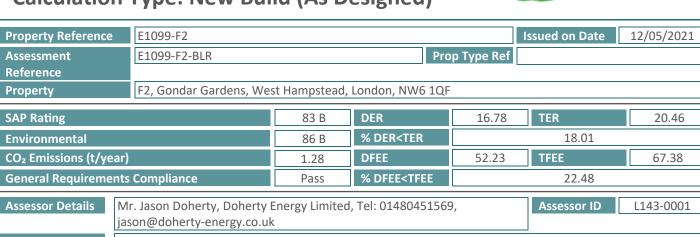
7. Mean internal temperature (heating season)

/. Mean intern												
Temperature du	uring heatin	ıg periods i	n the livin	g area from	1 Table 9, T	'hl (C)						21.0000 (85)
Utilisation fa	actor for ga	ins for liv	ing area, n	il,m (see 1	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	47.1498	47.2395	47.3278	47.7469	47.8261	48.1984	48.1984	48.2680	48.0543	47.8261	47.6661	47.4999
alpha	4.1433	4.1493	4.1552	4.1831	4.1884	4.2132	4.2132	4.2179	4.2036	4.1884	4.1777	4.1667
util living an	rea											
	0.9958	0.9914	0.9780	0.9354	0.8364	0.6732	0.5158	0.5752	0.8198	0.9642	0.9920	0.9967 (86)
MIT	19.4467	19.6345	19.9632	20.3858	20.7304	20.9234	20.9805	20.9696	20.8182	20.3528	19.8206	19.4133 (87)
Th 2	19.7079	19.7100	19.7121	19.7219	19.7237	19.7322	19.7322	19.7338	19.7289	19.7237	19.7200	19.7161 (88)
util rest of h	nouse											
	0.9944	0.9883	0.9699	0.9112	0.7770	0.5662	0.3763	0.4317	0.7321	0.9459	0.9887	0.9955 (89)
MIT 2	17.6787	17.9533	18.4290	19.0284	19.4735	19.6851	19.7259	19.7227	19.5917	18.9981	18.2324	17.6354 (90)
Living area fi	raction								fLA =	Living area	/ (4) =	0.3634 (91)
MIT	18.3211	18.5642	18.9865	19.5216	19.9302	20.1350	20.1818	20.1757	20.0374	19.4903	18.8095	18.2814 (92)
Temperature ad	djustment											0.0000
adjusted MIT	18.3211	18.5642	18.9865	19.5216	19.9302	20.1350	20.1818	20.1757	20.0374	19.4903	18.8095	18.2814 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9920	0.9845	0.9639	0.9065	0.7879	0.6026	0.4275	0.4842	0.7565	0.9415	0.9852	0.9936	(94)
Useful gains	460.7153	536.8462	617.5189	676.6852	644.1487	488.6249	331.1080	344.9736	477.7946	499.1769	453.2053	436.4118	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	1348.0962	1311.2822	1196.0259	1008.4728	780.1202	520.6021	336.8866	354.6173	560.1192	842.6964	1113.6407	1343.9115	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	660.2113	520.4210	430.4092	238.8870	101.1628	0.0000	0.0000	0.0000	0.0000	255.5785	475.5135	675.1798	(98)
Space heating	ſ											3357.3632	(98)
Space heating	per m2									(98) / (4) =	51.4302	(99)

8c. Space cooling requirement


CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Not applicable

Fraction of sp Fraction of sp Efficiency of Efficiency of Space heating	bace heat fr main space secondary/s	com main sy heating sy supplementa	stem(s) stem 1 (in	* - %)	m (Table 11)						0.0000 1.0000 93.5000 0.0000 3590.7628	(202) (206) (208)
Queen hasting	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating Space heating	660.2113	520.4210	430.4092	238.8870	101.1628	0.0000	0.0000	0.0000	0.0000	255.5785	475.5135	675.1798	(98)
	93.5000	93.5000	93.5000	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating	706.1084	556.60́00	stem) 460.3307	255.4942	108.1955	0.0000	0.0000	0.0000	0.0000	273.3460	508.5706	722.1174	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating	187.4117	165.3207	173.9423	156.3704	153.5584	137.6708	132.6562	144.9610	144.5157	162.1254	170.8745	183.0520	
Efficiency of (217)m	87.8942	87.6661	87.1372	85.9411	83.7317	79.8000	79.8000	79.8000	79.8000	86.0231	87.4020	79.8000 87.9838	
Fuel for water Water heating Annual totals	213.2241 fuel used	Wh/month 188.5799	199.6189	181.9505	183.3934	172.5197	166.2359	181.6554	181.0973	188.4673	195.5042	208.0520 2260.2986	
Space heating Space heating	fuel - main											3590.7628 0.0000	
Electricity fo central hea main heatin Total electric Electricity fo Total delivere	ting pump ng flue fan city for the or lighting	above, kW (calculate	d in Append	ix L)								30.0000 45.0000 75.0000 292.9732 6219.0346	(230e) (231) (232)
12a. Carbon d:		ions - Ind	ividual hea	ting system	s including	micro-CHP							
Casas besting								Energy kWh/year		ion factor kg CO2/kWh	1	Emissions g CO2/year	

	DICTAX	DHILDSTON LUCCOL	THUT 0 0 TO 10	
	kWh/year	kg CO2/kWh	kg CO2/year	
Space heating - main system 1	3590.7628	0.2160	775.6048	(261)
Space heating - secondary	0.0000	0.0000	0.0000	(263)
Water heating (other fuel)	2260.2986	0.2160	488.2245	(264)
Space and water heating			1263.8293	(265)
Pumps and fans	75.0000	0.5190	38.9250	(267)
Energy for lighting	292.9732	0.5190	152.0531	(268)
Total CO2, kg/m2/year			1454.8074	(272)
Emissions per m2 for space and water heating			19.3601	(272a)
Fuel factor (mains gas)			1.0000	
Emissions per m2 for lighting			2.3292	(272b)
Emissions per m2 for pumps and fans			0.5963	(272c)
Target Carbon Dioxide Emission Rate (TER) = (19.3601 * 1.00) + 2.3292 + 0.5963, r	counded to 2 d.p.		22.2900	(273)

Client

Doherty Energy

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

	red Document LlA, 2013 Edition, England	
DWELLING AS DESIGNED		
Mid-Terrace Maisonette, total floor ar	rea 87 m²	
This report covers items included with It is not a complete report of regulat	cions compliance.	
la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (I Dwelling Carbon Dioxide Emission Rate	rER) 20.46 kgCO□/m² (DER) 16.78 kgCO□/m²OK	
lb TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFE	67.4 kWh/m²/yr SE)52.2 kWh/m²/yrOK	
2 Fabric U-values	Highest	
Element Average External wall 0.16 (max. 0.30)	0.16 (max. 0.70) OK	
Party wall 0.00 (max. 0.20)	- OK	
Floor 0.10 (max. 0.25)	0.10 (max. 0.70) OK 0.15 (max. 0.35) OK	
Floor 0.10 (max. 0.25) Roof 0.14 (max. 0.20) Openings 1.06 (max. 2.00)	0.15 (max. 0.35) OK 1.10 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calculated using user	r-specified y-value of 0.025	
3 Air permeability Air permeability at 50 pascals: Maximum	10.0	OK
4 Heating efficiency Main heating system: Data from database Ideal LOGIC+ HEAT H12	Boiler system with radiators or underfloor - Ma	ains gas
Efficiency: 89.4% SEDBUK2009 Minimum: 88.0%	OK	
Secondary heating system:	None	
5 Cylinder insulation	Management and index large 1, 20, 1995 (days	
	Measured cylinder loss: 1.30 kWh/day	
Permitted by DBSCG 2.10		
Permitted by DBSCG 2.10 Primary pipework insulated:	OK Yes	OK
Primary pipework insulated:	OK Yes	ok Ok
Primary pipework insulated: 6 Controls	OK Yes	
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW	ok ok ok
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat	ок
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes	ok ok ok
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Yes	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Yes	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Ves 0.57 1.5	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75%	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Vergy fittings:100% 75%	ок ок ок
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75%	OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Ves 0.57 1.5 88% 70% Medium Average	ОК ОК ОК ОК ОК
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes 	ОК ОК ОК ОК ОК
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang	ОК ОК ОК ОК ОК
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes 	ОК ОК ОК ОК ОК
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 9.08 m², No overhang	ОК ОК ОК ОК ОК
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes vergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.08 m², No overhang	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Yes O.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 4.00 ach Light-coloured curtain or roller blind, closed	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes vergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 4.00 ach Light-coloured curtain or roller blind, closed	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.09 m², No overhang 9.00 m², No ove	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Yes Octopy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 4.00 ach Light-coloured curtain or roller blind, closed	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes ergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 0.00 m², No overhang 4.00 ach Light-coloured curtain or roller blind, closed	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes vergy fittings:100% 75% 0.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 9.08 m², No overhang 4.00 ach Light-coloured curtain or roller blind, closed 0.00 W/m²K 0.99 W/m²K 0.95 W/m²K	OK OK OK OK OK OK OK
Primary pipework insulated: 	OK Yes Time and temperature zone control Cylinderstat Independent timer for DHW Yes Ves O.57 1.5 88% 70% Medium Average 0.88 m², No overhang 7.20 m², No overhang 9.08 m², No overhang 9.05 m², No ove	OK OK OK OK OK OK OK

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	ev height		Volume
		(m2)		(m)		(m3)
Ground floor		5.9800 (1b)	х	3.2300 (2b)	=	19.3154 (1b) - (3b
First floor		45.4200 (1c)	х	2.4500 (2c)	=	111.2790 (1c) - (3c
Second floor		35.2200 (1d)	х	3.4200 (2d)	=	120.4524 (1d) - (3d)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	86.6200					(4)
Dwelling volume		(3a)+(3h	b) + (3c)	+(3d)+(3e)(3n) =	251.0468 (5)

2. Ventilation	rate												
					main heating	s	secondary heating		other	tota	.1 m.	3 per hour	
Number of chim	nevs				Ő	+	Ő	+	0 =		0 * 40 =	0.0000	(6a)
Number of open	flues				0	+	0	+	0 =		0 * 20 =	0.0000	(6b)
Number of inte	rmittent fa	ns									0 * 10 =	0.0000	
Number of pass											0 * 10 =	0.0000	
Number of flue	less gas fi	res									0 * 40 =	0.0000	(7c)
											Air change:	s per hour	
Infiltration d	ue to chimn	eys, flues	and fans	= (6a)+(6b)	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	(8)
Pressure test												Yes	
Measured/desig	n AP50											1.5000	
Infiltration r												0.0750	
Number of side	s sheltered											2	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500	(20)
Infiltration r	ate adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.0638	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
Adj infilt rate	e												
	0.0813	0.0797	0.0781	0.0701	0.0685	0.0606	0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	(22b)
Balanced mech			h heat reco	very									
If mechanical												0.5000	
If balanced wi	th heat rec	overy: effi	ciency in %	allowing f	or in-use fa	actor (fro	om Table 4h)	=				74.8000	(23c)
Effective ac	0.2073	0.2057	0.2041	0.1961	0.1945	0.1866	0.1866	0.1850	0.1898	0.1945	0.1977	0.2009	(25)
													. ,

3. Heat losses and heat loss parameter

Element				Gross	Openings	Net	Area	U-value	A x U		value	АхК	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Door							.9100	0.5500	1.0505				(26)
Window (Uw = 1.1	0)						.2400	1.0536	27.6475				(27)
Grd Floor							.4800	0.1000	0.4480				(28a)
Main Wall				77.2000	28.1500		.0500	0.1600	7.8480				(29a)
Main Wall			1	81.0200			.0200	0.1600	28.9632				(29a)
lst Roof				7.7300			.7300	0.0900	0.6957				(30)
2nd Roof				46.4600		46.	4600	0.1500	6.9690				(30)
Total net area o	f external	l elements	Aum(A, m2)			316.	.8900						(31)
Fabric heat loss	, $W/K = Su$	um (A x U)						30) + (32) =	73.6219				(33)
Party Wall 1						104.	.1600	0.0000	0.0000				(32)
Thermal mass par Thermal bridges Total fabric hea	(User defi				area)					(33)	+ (36) =	100.0000 7.9223 81.5442	(36)
Ventilation heat	loss cald	culated mon	thly (38)m	= 0.33 x (2	25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	17.1723	17.0403	16.9082	16.2481	16.1160	15.4559	15.4559	15.3238	15.7199	16.1160	16.3801	16.6442	(38)
Heat transfer co	eff												
	98.7165	98.5844	98.4524	97.7922	97.6602	97.0000	97.0000	96.8680	97.2641	97.6602	97.9243	98.1883	(39)
Average = Sum(39)m / 12 =											97.7592	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.1396	1.1381	1.1366	1.1290	1.1275	1.1198	1.1198	1.1183	1.1229	1.1275	1.1305	1.1336	
HLP (average)												1.1286	(40)
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heat	ing energy	requirements	(kWh/year)									
Assumed occup Average daily		use (litres/	day)									2.5766 (42) 95.3936 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daily hot wat	er use 104.9330	101.1172	97.3015	93.4857	89.6700	85.8542	85.8542	89.6700	93.4857	97.3015	101.1172	104.9330 (44)

Energy conte	155.6126	136.0997	140.4427	122.4414	117.4854	101.3810	93.9444	107.8026	109.0901	127.1340	138.7767	150.7025	(45)
Energy content	(annual)									Total = Si	1m (45) m =	1500.9129	(45)
Distribution lo	oss (46)m	= 0.15 x (45)m										
	23.3419	20.4150	21.0664	18.3662	17.6228	15.2071	14.0917	16.1704	16.3635	19.0701	20.8165	22.6054	(46)
Water storage .	loss:												
Store volume												180.0000	(47)
a) If manufact			actor is kno	own (kWh/da	ay):							1.3000	
Temperature :												0.5400	
Enter (49) or		5)										0.7020	(55)
Total storage :													
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(56)
If cylinder co													
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat requ												105 5060	(
	200.6370	176.7669	185.4671	166.0134	162.5098	144.9530	138.9688	152.8270	152.6621	172.1584	182.3487	195.7269	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Output Enom 11/1	in the second							Solar inp	it (sum of)	months) = Si	1m (63) m =	0.0000	(63)
Output from w/l	n 200.6370	176.7669	185.4671	166.0134	162.5098	144.9530	138.9688	152.8270	152.6621	172.1584	182.3487	105 7000	100
	200.6370	1/0./009	185.46/1	166.0134	102.3098	144.9530	138.9688			1/2.1584 h/year) = Si		195.7269 2031.0389	
Heat gains from		ation hubble /	month					IOLAI P	er year (kw	1/year) - 5	1111 (04)111 -	2031.0309	(04)
neat yains iro	87.7607	77.7869	82.7167	75.5694	75.0834	68.5668	67.2560	71.8639	71.1300	78.2916	81.0008	86.1281	(65)
	57.7007	,,.,009	02./10/	/5.5054	/5.0054	00.0000	57.2300	,1.0055	/1.1300	/0.2910	01.0000	00.1201	(00)

5. Internal gains (see Table 5 and 5a)

 Metabolic gains (Table 5), Watts Jan
 Mat
 Apr
 May
 Jun

 (66)m
 128.8287
 128.8287
 128.8287
 128.8287
 128.8287
 128.8287
 128.8287

 Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5
 20.7472
 18.4275
 14.9862
 11.3455
 8.4809
 7.1599
 Oct 128.8287 Nov 128.8287 Aug 128.8287 Sep 128.8287 Dec 128.8287 (66) 128.8287 7 7366
 20.7472
 18.4275
 14.9862
 11.3455
 8.4809
 7.1599
 7.7366
 10.0563
 13.4975
 17.1382
 20.0028
 21.3238
 (67)

 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
 232.7202
 235.1351
 229.0496
 216.0943
 199.7406
 184.3704
 174.1022
 171.6873
 177.7728
 190.7281
 207.0818
 222.4520
 (68)

 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.8829
 35.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 10 0563 13 4975 17 1382 20 0028 21 3238 (67) Water heating gains (Table 5) 117.9579 115.7544 111.1784 104.9574 100.9186 95.2316 90 3979 96 5912 98 7917 105 2306 112 5012 115.7636 (72) Total internal gains 436.0739 433.9655 419.8628 397.0459 373.7887 351.4106 336.8853 342.9834 354.7106 377.7455 404.2344 424.1879 (73)

6. Solar gains						
[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	0.8800	11.2829	0.7200	0.7000	0.7700	3.4679 (7
Southeast	7.2000	36.7938	0.7200	0.7000	0.7700	92.5276 (7
Southwest	9.0800	36.7938	0.7200	0.7000	0.7700	116.6876 (7
Northwest	9.0800	11.2829	0.7200	0.7000	0.7700	35.7826 (8

Solar gains 248.4657 436.2664 631.5486 840.5641 994.4824 1010.5952 964.6234 846.2306 703.3710 491.5044 299.9789 211.0986 (83) Total gains 684.5396 870.2320 1051.4114 1237.6100 1368.2711 1362.0058 1301.5087 1189.2140 1058.0816 869.2499 704.2133 635.2865 (84)

7.	Mean	internal	temperature	(heating	season)				

_____ Temperature during heating periods in the living area from Table 9, Th1 (C) Utilisation factor for gains for living area, nil,m (see Table 9a) 21.0000 (85) Mar 24.4393 2.6293 Jan 24.3740 Feb Apr 24.6043 May 24.6376 Jun Jul Aug 24.8391 Sep 24.7379 Oct Nov 24.5711 Dec 24.5051 tau 24.4066 24.6376 24.8053 24.8053 2.6249 2.6271 2.6403 2.6425 2.6537 2.6537 2.6559 2.6492 2.6425 2.6381 2.6337 alnha util living area 0.9393 0.8950 0.8241 0.7088 0.5663 0.4231 0.3163 0.3569 0.5486 0.7792 0.9067 0.9486 (86) 18.9185 19.3258 19.8374 20.7227 20.9072 20.8112 20.3642 20.9684 20.9559 20.2967 19.4994 18.8283 (87) MIT Mii Th 2 19.000 util rest of house 0.9308 - 0109 19.9711 19.9772 19.9847 19.9847 19.9859 19.9822 19.9785 19.9760 19.9735 (88) 19.9698 19.9785 0.6754 0.8813 0.8024 0.5203 0.3643 0.2473 0.2841 0.4862 0.7441 0.9413 (89) 0.8921 MTT 2 17.0848 (90) 0.3172 (91) 17.6379 (92) 17.2109 17.7897 18.5064 19.2245 19.6845 19.9050 19,9652 19.9570 19.8064 19.1593 18.0518 Living area fraction MIT 17.7526 fLA = Living (4) area 18.2770 18.9286 19.5861 20.0139 20.2230 20.2834 20.2739 20.1251 19.5201 18.5110 Temperature adjustment adjusted MIT 17.752 0.0000 18.2770 18.9286 20.0139 20.2230 20.2739 20.1251 19.5201 18.5110 17.6379 (93) 17.7526 19.5861 20.2834

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9064	0.8534	0.7769	0.6615	0.5220	0.3785	0.2680	0.3053	0.4954	0.7263	0.8655	0.9186	(94)
Useful gains	620.4958	742.6846	816.8306	818.7150	714.1991	515.5395	348.8283	363.0769	524.2208	631.2946	609.5246	583.5996	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1327.9979	1318.7679	1223.6280	1045.0159	811.9327	545.4263	357.2945	375.2579	586.0286	871.1424	1117.4155	1319.4461	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	526.3816	387.1280	302.6573	162.9367	72.7138	0.0000	0.0000	0.0000	0.0000	178.4468	365.6814	547.4698	(98)

	per m2									(98)	/ (4) =	2543.4154 29.3629	
	ling requireme												
	-												
a. Energy re	quirements - :	Individual	l heating s	stems, inc	luding micr	O-CHP							
raction of s raction of s fficiency of fficiency of	pace heat from pace heat from main space he secondary/sup requirement	m seconda: m main sys eating sys	ry/supplemen stem(s) stem 1 (in s	itary system								0.0000 1.0000 93.4000 0.0000 2723.1428	(202 (206 (208
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
ace heating	requirement 526.3816	387.1280	302.6573	162.9367	72.7138	0.0000	0.0000	0.0000	0.0000	178.4468	365.6814	547.4698	(98
ace heating	efficiency (r 93.4000	main heat: 93.4000	ing system 1 93.4000	.) 93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000	(21
ace heating	fuel (main he 563.5777			174.4504	77.8520	0.0000	0.0000	0.0000	0.0000	191.0565	391.5219	586.1561	(21
ter heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
ter heating ter heating	requirement												
ficiency of	200.6370 X water heater		185.4671	166.0134	162.5098	144.9530	138.9688	152.8270	152.6621	172.1584	182.3487	195.7269 79.7000	
17)m el for wate	87.1703 r heating, kWl	86.7492 h/month	86.0124	84.6637	82.7269	79.7000	79.7000	79.7000	79.7000	84.8091	86.5344	87.3129	(21
ter heating		203.7679	215.6283	196.0858	196.4413	181.8733	174.3649	191.7528	191.5459	202.9950	210.7238	224.1672 2419.5127	
	kWh/year fuel - main s fuel - second											2723.1428 0.0000	
(Balanced mechanical central he main heati	ng flue fan city for the a	ery, Datak fans (SFP above, kWH calculated	= 0.	125)	1.2500, SFP	= 0.7125)						218.2224 30.0000 45.0000 293.2224 366.4016 5802.2795	(23 (23 (23 (23
ectricity f	or lighting (ed energy for	all uses											
ectricity f tal deliver													
ectricity f ptal deliver Ra. Carbon d pace heating pace heating tter heating	ed energy for ioxide emissio - main syster - secondary (other fuel)	ons - Indi	ividual hea	ing system:	s including	micro-CHP				ion factor kg CO2/kWh 0.2160 0.0000 0.2160	k	Emissions cg CO2/year 588.1988 0.0000 522.6147	(26 (26
acc heating acc heating ter heating ter heating ter heating tace and wat mps and fan ergy for li	ed energy for ioxide emissic - main syster - secondary (other fuel) er heating s ghting	nn 1	ividual hea	ing system:	s including	micro-CHP		Energy kWh/year 2723.1428 0.0000		kg CO2/kWh 0.2160 0.0000	k	co2/year 588.1988 0.0000	(26 (26 (26 (26 (26 (26 (27

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
		Area (m2)	Stor	ey height (m)		Volume (m3)
Ground floor First floor Second floor		5.9800 (1b) 45.4200 (1c) 35.2200 (1d)	x x x	3.2300 (2b) 2.4500 (2c) 3.4200 (2d)	= = =	19.3154 (1b) - (3b) 111.2790 (1c) - (3c) 120.4524 (1d) - (3d)
Total floor area TFA = $(1a) + (1b) + (1c) + (1d) + (1e) \dots (1n)$ Dwelling volume	86.6200	(3a) + (3b	o)+(3c)	+(3d)+(3e)(3n) =	(4) 251.0468 (5)

					main heating		condary heating	c	ther	tota	1 m3	per hour
Number of chimn	evs				0	+	0	+	0 =		0 * 40 =	0.0000
lumber of open					õ	+	õ	+	0 =		0 * 20 =	0.0000
lumber of inter		ns									3 * 10 =	30.0000
umber of passi	ve vents									(0 * 10 =	0.0000
lumber of fluel		res								(0 * 40 =	0.0000
										1	Air changes	per hour
nfiltration du Pressure test Measured/design Infiltration ra	AP50 te	eys, flues	and fans =	= (6a)+(6b)	+(7a)+(7b)+	(7c) =				30.0000 ,	/ (5) =	0.1195 Yes 5.0000 0.3695
lumber of sides	sheltered											2
Number of sides Shelter factor			e shelter fa	actor				([0.075 x 1) = (18) x		2 0.8500 0.3141
Shelter factor			e shelter fa Mar	Actor	Мау	Jun	Jul	Aug				0.8500
helter factor nfiltration ra	te adjuste	d to includ Feb 5.0000			4.3000	Jun 3.8000	Jul 3.8000	Aug 3.7000	(2	1) = (18) x	(20) = Nov 4.5000	0.8500 0.3141 Dec 4.7000
helter factor nfiltration ra 'ind speed 'ind factor	Jan 5.1000 1.2750	d to includ Feb	Mar	Apr				Aug	(2 Sep	1) = (18) x Oct	(20) = Nov	0.8500 0.3141 Dec
Shelter factor	Jan 5.1000 1.2750	d to includ Feb 5.0000	Mar 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	Aug 3.7000	(2 Sep 4.0000	1) = (18) x Oct 4.3000	(20) = Nov 4.5000	0.8500 0.3141 Dec 4.7000

3. Heat losses and heat loss parameter

Element				Gross	Openings	Ne Ne	tArea	U-value	A x	U K	-value	АхК	
				m2	m2		m2	W/m2K	W/	'K	kJ/m2K	kJ/K	
TER Opaque doc	or					1	.9100	1.0000	1.910	0			(26)
TER Opening Ty	ype (Uw = 1)	.40)				19	.7400	1.3258	26.170	5			(27)
Grd Floor						4	.4800	0.1300	0.582	2.4			(28a)
Main Wall				77.2000	21.6500) 55	.5500	0.1800	9.999	90			(29a)
Main Wall				181.0200		181	.0200	0.1800	32.583	36			(29a
1st Roof				7.7300		7	.7300	0.1300	1.004	19			(30)
2nd Roof				46.4600		46	.4600	0.1300	6.039	8			(30)
Total net area	a of externa	al elements	Aum(A, m2)			316	.8900						(31)
Fabric heat lo	oss, $W/K = S$	Sum (A x U)					(26)(30) + (32) :	= 78.290	2			(33)
Thermal mass p					\ \							250.0000	
Thermal bridge Total fabric h	es (Sum(L x neat loss	Psi) calcu	lated using	Appendix K						(33)	+ (36) =	250.0000 0.0000 78.2902	(36)
Thermal bridge	es (Sum(L x neat loss eat loss cal	Psi) calcu	lated using nthly (38)m	Appendix K	25)m x (5)				0 m	()		0.0000 78.2902	(36)
Thermal bridge Total fabric h Ventilation he	es (Sum(L x heat loss eat loss cal Jan	Psi) calcu lculated mon Feb	lated using nthly (38)m Mar	Appendix K = 0.33 x (2 Apr	25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	0.0000 78.2902 Dec	(36) (37)
Thermal bridge Total fabric h Ventilation he (38)m	es (Sum(L x heat loss eat loss cal Jan 48.0651	Psi) calcu	lated using nthly (38)m	Appendix K	25)m x (5)	Jun 45.1104	Jul 45.1104	Aug 44.9189	Sep 45.5088	()		0.0000 78.2902	(36) (37)
Thermal bridge Total fabric h Ventilation he	es (Sum(L x heat loss sat loss cal Jan 48.0651 coeff	Psi) calcu lculated mon Feb 47.8072	lated using nthly (38)m Mar 47.5544	Appendix K = 0.33 x (2 Apr 46.3669	25)m x (5) May 46.1447	45.1104	45.1104	44.9189	45.5088	Oct 46.1447	Nov 46.5941	0.0000 78.2902 Dec 47.0640	(36) (37) (38)
Thermal bridge Total fabric h Ventilation he (38)m Heat transfer	es (Sum(L x heat loss Jan 48.0651 coeff 126.3553	Psi) calcu lculated mon Feb 47.8072 126.0973	lated using nthly (38)m Mar	Appendix K = 0.33 x (2 Apr	25)m x (5) May					Oct	Nov	0.0000 78.2902 Dec 47.0640 125.3542	(36) (37) (38) (39)
Thermal bridge Total fabric h Ventilation he (38)m	es (Sum(L x heat loss Jan 48.0651 coeff 126.3553	Psi) calcu lculated mon Feb 47.8072 126.0973	lated using nthly (38)m Mar 47.5544	Appendix K = 0.33 x (2 Apr 46.3669	25)m x (5) May 46.1447	45.1104	45.1104	44.9189	45.5088	Oct 46.1447	Nov 46.5941	0.0000 78.2902 Dec 47.0640	(36) (37) (38) (39)
Thermal bridge Total fabric h Ventilation he (38)m Heat transfer	es (Sum(L x heat loss Jan 48.0651 coeff 126.3553	Psi) calcu lculated mon Feb 47.8072 126.0973	lated using nthly (38)m Mar 47.5544	Appendix K = 0.33 x (2 Apr 46.3669 124.6570	25)m x (5) May 46.1447 124.4348	45.1104	45.1104	44.9189 123.2090	45.5088 123.7989	Oct 46.1447	Nov 46.5941	0.0000 78.2902 Dec 47.0640 125.3542	(36) (37) (38) (39)
Thermal bridge Total fabric h Ventilation he (38)m Heat transfer	es (Sum(L x heat loss Jan 48.0651 coeff 126.3553 (39)m / 12 =	Psi) calcu lculated mor Feb 47.8072 126.0973	lated using nthly (38)m Mar 47.5544 125.8445	Appendix K = 0.33 x (2 Apr 46.3669	25)m x (5) May 46.1447	45.1104 123.4005	45.1104 123.4005	44.9189	45.5088	Oct 46.1447 124.4348	Nov 46.5941 124.8843	0.0000 78.2902 Dec 47.0640 125.3542 124.6559	(36) (37) (38) (39) (39)
Thermal bridge Total fabric h Ventilation he (38)m Heat transfer Average = Sum(HLP	es (Sum(L x heat loss Jan 48.0651 coeff 126.3553 (39)m / 12 = Jan	Psi) calcu. Iculated mor Feb 47.8072 126.0973 = Feb	lated using nthly (38)m Mar 47.5544 125.8445 Mar	Appendix K = 0.33 x (2 Apr 46.3669 124.6570 Apr	25)m x (5) May 46.1447 124.4348 May	45.1104 123.4005 Jun	45.1104 123.4005 Jul	44.9189 123.2090 Aug	45.5088 123.7989 Sep	Oct 46.1447 124.4348 Oct	Nov 46.5941 124.8843 Nov	0.0000 78.2902 Dec 47.0640 125.3542 124.6559 Dec 1.4472	(36) (37) (38) (39) (39) (40)
Thermal bridge Total fabric h Ventilation he (38)m Heat transfer Average = Sum(es (Sum(L x heat loss Jan 48.0651 coeff 126.3553 (39)m / 12 = Jan	Psi) calcu. Iculated mor Feb 47.8072 126.0973 = Feb	lated using nthly (38)m Mar 47.5544 125.8445 Mar	Appendix K = 0.33 x (2 Apr 46.3669 124.6570 Apr	25)m x (5) May 46.1447 124.4348 May	45.1104 123.4005 Jun	45.1104 123.4005 Jul	44.9189 123.2090 Aug	45.5088 123.7989 Sep	Oct 46.1447 124.4348 Oct	Nov 46.5941 124.8843 Nov	0.0000 78.2902 Dec 47.0640 125.3542 124.6559 Dec	(36) (37) (38) (39) (39) (40)

4. Water heatin	ng energy r	equirements	s (kWh/year))									
Assumed occupan Average daily h		use (litres,	/day)									2.5766 95.3936	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate:	r use												
	104.9330	101.1172	97.3015	93.4857	89.6700	85.8542	85.8542	89.6700	93.4857	97.3015	101.1172	104.9330	(44)
Energy conte	155.6126	136.0997	140.4427	122.4414	117.4854	101.3810	93.9444	107.8026	109.0901	127.1340	138.7767	150.7025	(45)
Energy content	(annual)									Total = St	um (45) m =	1500.9129	(45)
Distribution lo	oss (46)m	$= 0.15 \times (4)$	45)m										
Water storage :	23.3419 loss:	20.4150	21.0664	18.3662	17.6228	15.2071	14.0917	16.1704	16.3635	19.0701	20.8165	22.6054	(46)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Store volume a) If manufac			actor is kno	own (kWh/da	ay):							180.0000	(48)
Temperature Enter (49) or												0.5400 0.8381	
Total storage))										0.0301	(55)
iotai Storage	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
If cylinder co	ontains dedi	icated sola:	r storage										
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red	quired for w	water heatin	ng calculate	ed for each	month								
	204.8552	180.5770	189.6854	170.0956	166.7281	149.0352	143.1871	157.0452	156.7443	176.3766	186.4308	199.9451	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Si	um(63)m =	0.0000	(63)
Output from w.	/h												
	204.8552	180.5770	189.6854	170.0956	166.7281	149.0352	143.1871	157.0452	156.7443	176.3766	186.4308	199.9451	(64)
								Total pe	er year (kWl	h/year) = Si	um(64)m =	2080.7057	(64)
Heat gains fro	om water hea	ating, kWh/m	nonth										
	91.1353	80.8350	86.0913	78.8351	78.4580	71.8325	70.6306	75.2385	74.3958	81.6662	84.2666	89.5027	(65)

5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	128.8287	(66)
Lighting gains	(calculate	ed in Appen	dix L, equa	tion L9 or	L9a), also	see Table 5							
	20.7472	18.4275	14.9862	11.3455	8.4809	7.1599	7.7366	10.0563	13.4975	17.1382	20.0028	21.3238	(67)
Appliances gai	ns (calcula	ated in App	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	232.7202	235.1351	229.0496	216.0943	199.7406	184.3704	174.1022	171.6873	177.7728	190.7281	207.0818	222.4520	(68)
Cooking gains	(calculated	i in Append	ix L, equat	ion L15 or	L15a), also	see Table	5						
	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	35.8829	(69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	(70)
Losses e.g. et	aporation	(negative v	alues) (Tab	le 5)									
	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	-103.0629	(71)
Water heating	gains (Tabl	Le 5)											
	122.4937	120.2901	115.7142	109.4932	105.4544	99.7674	94.9337	101.1270	103.3275	109.7664	117.0369	120.2993	(72)
Total internal	gains												
	440.6097	438.5013	424.3986	401.5817	378.3245	355.9464	341.4210	347.5192	359.2464	382.2812	408.7702	428.7237	(73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	0.6600	11.2829	0.6300	0.7000	0.7700	2.2758 (75)
Southeast	5.4200	36.7938	0.6300	0.7000	0.7700	60.9461 (77)
Southwest	6.8300	36.7938	0.6300	0.7000	0.7700	76.8011 (79)
Northwest	6.8300	11.2829	0.6300	0.7000	0.7700	23.5513 (81)

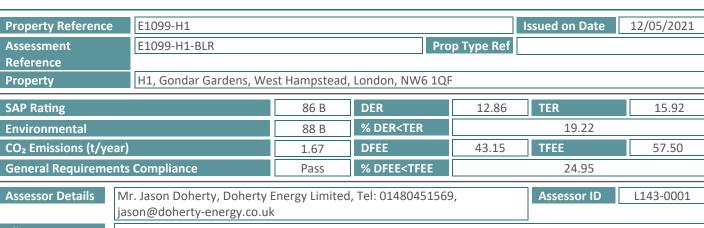
Solar gains	163.5744	287.2064	415.7549	553.3344	654.6422	665.2427	634.9834	557.0589	463.0304	323.5681	197.4867	138.9747 (83)
Total gains	604.1841	725.7077	840.1536	954.9161	1032.9667	1021.1891	976.4045	904.5780	822.2769	705.8494	606.2568	567.6984 (84)

7. Mean internal temperature (heating season)
Temperature during heating periods in the living area from Table 9, Th1 (C)

						()						,	
Utilisation f	Eactor for ga	ains for liv	ving area, r	nil,m (see 1	Table 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	47.6061	47.7034	47.7993	48.2546	48.3408	48.7460	48.7460	48.8217	48.5891	48.3408	48.1668	47.9863	
alpha	4.1737	4.1802	4.1866	4.2170	4.2227	4.2497	4.2497	4.2548	4.2393	4.2227	4.2111	4.1991	
util living a	area												
	0.9961	0.9912	0.9786	0.9412	0.8515	0.6940	0.5347	0.5915	0.8242	0.9633	0.9922	0.9970 (86)	
MIT	19.4517	19.6537	19.9698	20.3721	20.7138	20.9163	20.9785	20.9673	20.8179	20.3671	19.8322	19.4161 (87)	
Th 2	19.7186	19.7208	19.7231	19.7335	19.7354	19.7445	19.7445	19.7462	19.7410	19.7354	19.7315	19.7274 (88)	
util rest of	house												
	0.9948	0.9882	0.9708	0.9188	0.7951	0.5877	0.3926	0.4469	0.7379	0.9447	0.9889	0.9960 (89)	
MIT 2	17.6931	17.9884	18.4462	19.0197	19.4660	19.6920	19.7374	19.7340	19.6026	19.0262	18.2569	17.6469 (90)	
Living area f	Fraction								fLA =	Living area	(4) =	0.3172 (91)	
MIT	18.2510	18.5167	18.9296	19.4488	19.8619	20.0804	20.1312	20.1253	19.9882	19.4516	18.7566	18.2082 (92)	
Temperature a	adjustment											0.0000	
adjusted MIT	18.2510	18.5167	18.9296	19.4488	19.8619	20.0804	20.1312	20.1253	19.9882	19.4516	18.7566	18.2082 (93)	

8. Space heat	ing require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9924	0.9840	0.9643	0.9125	0.8016	0.6184	0.4381	0.4931	0.7575	0.9392	0.9853	0.9941	(94)
Useful gains	599.6164	714.1260	810.1364	871.3328	828.0473	631.4984	427.8074	446.0112	622.8775	662.9262	597.3184	564.3371	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	1762.7883	1717.0294	1564.1953	1314.9786	1015.6194	676.2840	435.7464	458.9860	728.9506	1101.4472	1455.7308	1755.9838	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	865.3999	673.9511	561.0198	319.4250	139.5536	0.0000	0.0000	0.0000	0.0000	326.2596	618.0569	886.5851	(98)
Space heating												4390.2510	(98)
Space heating										(98) / (4) =	50.6840	(99)

21.0000 (85)



CALCULATION OF TARGET EMISSIONS 09 Jan 2014

8c. Space cooling requirement Not applicable

9a. Energy requirements - In	ndividual heating	systems, inc		O-CHP							
Fraction of space heat from Fraction of space heat from Efficiency of main space he. Efficiency of secondary/sup Space heating requirement	secondary/supplem main system(s) ating system 1 (ir	entary syste	m (Table 11							0.0000 1.0000 93.5000 0.0000 4695.4556	(202) (206) (208)
Jan	Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 865.3999 6	73.9511 561.0198	319.4250	139.5536	0.0000	0.0000	0.0000	0.0000	326.2596	618.0569	886.5851	(98)
Space heating efficiency (ma 93.5000	ain heating system 93.5000 93.5000		93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating fuel (main heating 925.5614 7)	ating system) 20.8033 600.0212	341.6310	149.2552	0.0000	0.0000	0.0000	0.0000	348.9408	661.0234	948.2194	(211)
Water heating requirement											
0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement											
204.8552 1	80.5770 189.6854	170.0956	166.7281	149.0352	143.1871	157.0452	156.7443	176.3766	186.4308	199.9451	
	88.0064 87.5343	86.4712	84.3437	79.8000	79.8000	79.8000	79.8000	86.4332	87.7727	79.8000 88.3207	
	/month 05.1863 216.6983	196.7078	197.6770	186.7609	179.4324	196.7985	196.4214	204.0611	212.4019	226.3853	(219)
Water heating fuel used Annual totals kWh/year										2450.6998	(219)
Space heating fuel - main sy Space heating fuel - second										4695.4556 0.0000	
Electricity for pumps and for central heating pump main heating flue fan Total electricity for the al Electricity for lighting (c. Total delivered energy for a	bove, kWh/year alculated in Apper	dix L)								30.0000 45.0000 75.0000 366.4016 7587.5571	(230e) (231) (232)
12a. Carbon dioxide emission											
Space heating - main system Space heating - secondary Water heating (other fuel) Space and water heating	1					Energy kWh/year 4695.4556 0.0000 2450.6998		ion factor kg CO2/kWh 0.2160 0.0000 0.2160	k	Emissions cg CO2/year 1014.2184 0.0000 529.3512 1543.5696	(263) (264) (265)
Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space a Fuel factor (mains gas) Emissions per m2 for lighti Emissions per m2 for pumps a Target Carbon Dioxide Emiss:	ng and fans	17.8200 * 1.	00) + 2.195	4 + 0.4494,	rounded to	75.0000 366.4016 2 d.p.		0.5190 0.5190		38.9250 190.1624 1772.6570 17.8200 1.0000 2.1954 0.4494 20.4600	(268) (272) (272a) (272b) (272c)

Client

Doherty Energy

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

	ed Document L1A, 2013 Edition, England	
DWELLING AS DESIGNED		
Semi-Detached House, total floor area	150 m²	
This report covers items included with It is not a complete report of regulat	ions compliance.	
la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (T Dwelling Carbon Dioxide Emission Rate	ER) 15.92 kgCO□/m² (DER) 12.86 kgCO□/m²OK	
<pre>lb TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFE</pre>	E)43.2 kWh/m²/yrOK	
2 Fabric U-values Element Average External wall 0.16 (max. 0.30) Party wall 0.00 (max. 0.20) Floor 0.12 (max. 0.25) Roof 0.12 (max. 0.20)	Highest 0.16 (max. 0.70) OK - OK 0.12 (max. 0.70) OK 0.15 (max. 0.35) OK 1.10 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calculated using user		
3 Air permeability Air permeability at 50 pascals: Maximum	1.50 (design value) 10.0	ок
4 Heating efficiency	Boiler system with radiators or underfloor - Mai	ns gas
Efficiency: 89.6% SEDBUK2009 Minimum: 88.0%	OK	
Secondary heating system:	None	
5 Cylinder insulation	Measured cylinder loss: 1.30 kWh/day OK Yes	ок
6 Controls Space heating controls:	Time and temperature zone control	ок
Hot water controls:	Cylinderstat Independent timer for DHW	ok ok
Boiler interlock	Yes	OK
7 Low energy lights Percentage of fixed lights with low-en Minimum		ок
Specific fan power: Maximum	0.87 1.5	OK
MVHR efficiency: Minimum:	84% 70%	ок
9 Summertime temperature Overheating risk (Thames Valley): Based on:		OK
Windows facing East: Windows facing South West: Windows facing North West: Air change rate: Blinds/curtains:	Average 4.86 m ² , No overhang 8.08 m ² , No overhang 14.80 m ² , No overhang 8.27 m ² , No overhang 6.07 m ² , No overhang 4.00 ach Light-coloured curtain or roller blind, closed 1	
10 Key features External wall U-value Party wall U-value Roof U-value Roof U-value Floor U-value Floor U-value Door U-value Window U-value Thermal bridging y-value Air permeability	0.14 W/m ² K 0.00 W/m ² K 0.09 W/m ² K 0.09 W/m ² K 0.09 W/m ² K 0.11 W/m ² K 0.12 W/m ² K 0.55 W/m ² K 1.10 W/m ² K 0.025 W/m ² K 1.5 m ³ /m ² h	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	rey height		Volume
		(m2)		(m)		(m3)
Basement floor		39.5800 (1a)	х	2.6000 (2a)	=	102.9080 (1a) - (3a)
Ground floor		46.5400 (1b)	х	3.2300 (2b)	=	150.3242 (1b) - (3b)
First floor		34.2000 (1c)	х	2.7000 (2c)	=	92.3400 (1c) - (3c)
Second floor		29.2000 (1d)	х	3.4200 (2d)	=	99.8640 (1d) - (3d)
Total floor area TFA = (1a) + (1b) + (1c) + (1d) + (1e) (1n)	149.5200					(4)
Dwelling volume		(3a)+(3	b)+(3c)	+(3d)+(3e)(3n) =	445.4362 (5)

					main heating		econdary heating	c	ther	tota	al m3	per hour	
Number of chimn	eys				õ	+	õ	+	0 =		0 * 40 =	0.0000	(6
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
lumber of inter	mittent far	ns									0 * 10 =	0.0000	
umber of passi	ve vents										0 * 10 =	0.0000	
Number of fluel	ess gas fi:	res									0 * 40 =	0.0000	(70
											Air changes	per hour	
nfiltration du	e to chimne	eys, flues	and fans	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	
ressure test												Yes	
easured/design												1.5000	
nfiltration ra												0.0750	
lumber of sides	sheltered											2	(19
helter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500	(2)
nfiltration ra	te adjusted	d to includ	e shelter f	actor					(21	L) = (18) x	(20) =	0.0638	(2
ind speed	Jan 5.1000	Feb 5.0000	Mar 4.9000	Apr 4.4000	May 4.3000	Jun 3.8000	Jul 3.8000	Aug 3.7000	Sep 4.0000	Oct 4.3000	Nov 4.5000	Dec 4.7000	12
ina speea	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	
ind Footom	1.2/30	1.2300	1.2250	1.1000	1.0750	0.9500	0.9500	0.9230	1.0000	1.0750	1.1250	1.1/50	(2
	0.0813	0.0797	0.0781	0.0701	0.0685	0.0606	0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	(2
ij infilt rate	0.0813				0.0685	0.0606	0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	(2
ij infilt rate Balanced mecha	0.0813 nical vent:	ilation wit			0.0685	0.0606	0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	
Wind factor Adj infilt rate Balanced mecha If mechanical v If balanced wit	0.0813 nical vent: entilation	ilation wit	h heat reco	very					0.0638	0.0685	0.0717		00

3. Heat losses and heat loss parameter

Element				Gross	Openings	Ne	tArea	U-value	Ах	U K	-value	АхК	
				m2	m2		m2	W/m2K	W/	K	kJ/m2K	kJ/K	
Door						1	.9100	0.5500	1.050	5			(26)
Window (Uw = 1	.10)					42	.0800	1.0536	44.337	2			(27)
Base Floor						19	.7800	0.1100	2.175	8			(28)
Grd Floor						19	.8000	0.1200	2.376	0			(28a)
Basement				34.5000		34	.5000	0.1400	4.830	0			(29a)
Main Wall				181.0200	43.9900	137	.0300	0.1600	21.924	8			(29a)
Basement roof				12.8300		12	.8300	0.0900	1.154	7			(30)
Grd Roof				12.5400		12	.5400	0.0900	1.128	6			(30)
1st Roof				3.1700		3	.1700	0.0900	0.285	3			(30)
2nd Roof				39.3400		39	.3400	0.1500	5.901	0			(30)
Total net area	of extern	al elements	Aum(A, m2)			322	.9800						(31)
Fabric heat lo	ss, W/K = :	Sum (A x U)					(26)(30) + (32)	= 85.163	9			(33)
Party Wall 1						76	.2600	0.0000	0.000	0			(32)
Thermal mass p												100.0000	(35)
Thermal bridge	s (User de	fined value	0.025 * to	tal exposed	area)							8.0745	(36)
Total fabric h	eat loss									(33)	+ (36) =	93.2384	(37)
Ventilation he	at loss ca	lculated mo	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38) m	32.9680	32.7337	32.4994	31.3281	31.0938	29.9225	29.9225	29.6882	30.3910	31.0938	31.5624	32.0309	(38)
Heat transfer	coeff												
	126.2064	125.9721	125.7378	124.5664	124.3322	123.1608	123.1608	122.9265	123.6294	124.3322	124.8007	125.2693	(39)
Average = Sum(39)m / 12 :	=										124.5079	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	0.8441	0.8425	0.8409	0.8331	0.8315	0.8237	0.8237	0.8221	0.8268	0.8315	0.8347	0.8378	(40)
HLP (average)												0.8327	(40)
Days in month													
<u> </u>	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heating energy requirements (kWh/year)

Assumed occupancy Average daily hot water use (litres/day)

2.9334 (42) 103.8691 (43)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r17

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	114.2560	110.1013	105.9465	101.7917	97.6370	93.4822	93.4822	97.6370	101.7917	105.9465	110.1013	114.2560	
Energy conte	169.4384	148.1919	152.9208	133.3200	127.9238	110.3885	102.2911	117.3806	118.7825	138.4295	151.1067	164.0920	
Energy content										Total = Su	um (45) m =	1634.2658	(45)
Distribution :													
	25.4158	22.2288	22.9381	19.9980	19.1886	16.5583	15.3437	17.6071	17.8174	20.7644	22.6660	24.6138	(46)
Water storage	loss:												
Store volume												180.0000	
a) If manufa			actor is kno	own (kWh/da	ay):							1.3000	
Temperature												0.5400	
Enter (49) or		5)										0.7020	(55)
Total storage													
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(56)
If cylinder co													
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red													
	214.4628	188.8591	197.9452	176.8920	172.9482	153.9605	147.3155	162.4050	162.3545	183.4539	194.6787	209.1164	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	(1							Solar inpu	it (sum of i	months) = Si	1m(63)m =	0.0000	(63)
Output from w.				176 0000									
	214.4628	188.8591	197.9452	176.8920	172.9482	153.9605	147.3155	162.4050	162.3545	183.4539	194.6787	209.1164	
		e te de se construction de la construcción de la construcción de la construcción de la construcción de la const						Total pe	er year (kW	h/year) = Sı	1m (64)m =	2164.3918	(64)
Heat gains fro								75 0406			05 1000		1651
	92.3578	81.8076	86.8657	79.1865	78.5542	71.5618	70.0313	75.0486	74.3528	82.0473	85.1006	90.5801	(co)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts

 Metabolic gains (Table 5), Watts
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jun
 Aug
 Sep
 Oct
 Nov
 Dec

 661m
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 146.6718
 Total internal gains 542.6667 540.3982 522.3161 492.7222 461.8985 432.7552 414.1657 420.7784 436.2740 466.1051 500.4477 526.9510 (73)

6. Solar gair	18												
[Jan]			A	m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce fact Table	or	Gains W	
North			4.8	600	10.6334		0.7200	0	.7000	0.77	00	18.0498	(74)
Northeast			8.0	800	11.2829		0.7200	0	.7000	0.77	00	31.8418	(75)
East			14.8	000	19.6403		0.7200	0	.7000	0.77	00	101.5250	(76)
Southwest			8.2	700	36.7938		0.7200	0	.7000	0.77	00	106.2782	(79)
Northwest			6.0	700	11.2829		0.7200	0	.7000	0.77	00	23.9207	(81)
Solar gains	281.6155	527.6358	837.8838	1213.9225	1506.6389	1556.7837	1475.7686	1250.4357	968.2624	615.5131	346.3169	235.0269	(83)

824.2822 1068.0340 1360.1999 1706.6447 1968.5374 1989.5390 1889.9342 1671.2141 1404.5365 1081.6182 846.7646 761.9779 (84) Total gains

			n the livin			hl (C)						21.0000	(85
Utilisation fac	Jan	Feb	Mar Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	32.9091	32.9703	33.0317	33.3423	33.4051	33.7228	33.7228	33.7871	33.5950	33.4051	33.2797	33.1552	
alpha	3.1939	3.1980	3.2021	3.2228	3.2270	3.2482	3.2482	3.2525	3.2397	3.2270	3.2186	3.2103	
util living are													
	0.9690	0.9347	0.8596	0.7138	0.5387	0.3841	0.2832	0.3317	0.5534	0.8266	0.9465	0.9752	(86)
MIT	19.2506	19.6227	20.1249	20.6120	20.8713	20.9677	20.9910	20.9850	20.8981	20.4641	19.7481	19.1759	(87)
Th 2	20.2153	20.2166	20.2180	20.2247	20.2261	20.2328	20.2328	20.2342	20.2301	20.2261	20.2234	20.2207	(88)
util rest of ho	use												
	0.9649	0.9265	0.8435	0.6862	0.5021	0.3412	0.2351	0.2787	0.5033	0.8005	0.9384	0.9718	(89)
MIT 2	17.8402	18.3756	19.0860	19.7536	20.0852	20.2034	20.2266	20.2232	20.1296	19.5750	18.5667	17.7356	(90)
Living area fra	ction								fLA =	Living area	/ (4) =	0.2647	(91)
MIT	18.2136	18.7057	19.3610	19.9809	20.2933	20.4057	20.4289	20.4249	20.3330	19.8103	18.8795	18.1169	(92)
Temperature adj	ustment											0.0000	
adjusted MIT	18.2136	18.7057	19.3610	19.9809	20.2933	20.4057	20.4289	20.4249	20.3330	19.8103	18.8795	18.1169	(93)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9505	0.9068	0.8233	0.6769	0.5054	0.3510	0.2475	0.2921	0.5102	0.7847	0.9204	0.9593 (94)	
Useful gains	783.5062	968.5116	1119.8459	1155.2800	994.8785	698.3255	467.6655	488.0820	716.6087	848.7792	779.3750	730.9340 (95)	
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Heat loss rate W												
	1739.1317 1.0000	1617.1193 1.0000	1380.3033 1.0000	1068.4246 1.0000	715.0363 0.0000	471.5717 0.0000	494.7660 0.0000	770.5858 0.0000	1145.1421 1.0000	1470.0847 1.0000	1743.3582 1.0000	
Space heating kWh 723.5213	517.8567	369.9714	162.0168	54.7183	0.0000	0.0000	0.0000	0.0000	220.4940	497.3110	753.2436	(98)
Space heating Space heating per m2) / (4) =	3299.1331 22.0648	(98)
8c. Space cooling requir												
Not applicable												
9a. Energy requirements	- Individua	al heating s	ystems, inc	luding micr	o-CHP							
Fraction of space heat f Fraction of space heat f	rom seconda	ary/suppleme									0.0000	
Efficiency of secondary/	heating sy	vstem 1 (in									93.6000	(206)
Space heating requirement		iry nearring	System, s								3524.7149	
Jan Space heating requiremen	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	517.8567	369.9714 ing system		54.7183	0.0000	0.0000	0.0000	0.0000	220.4940	497.3110	753.2436	(98)
93.6000 Space heating fuel (main	93.6000	93.6000	93.6000	93.6000	0.0000	0.0000	0.0000	0.0000	93.6000	93.6000	93.6000	(210)
	553.2657	395.2685	173.0949	58.4597	0.0000	0.0000	0.0000	0.0000	235.5705	531.3152	804.7475	(211)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requiremen	it											
214.4628 Efficiency of water heat	188.8591 er	197.9452	176.8920	172.9482	153.9605	147.3155	162.4050	162.3545	183.4539	194.6787	209.1164 79.9000	
(217)m 87.9083 Fuel for water heating,	87.4697	86.5597	84.6810	82.2342	79.9000	79.9000	79.9000	79.9000	85.4057	87.3106	88.0381	(217)
Water heating fuel used	215.9138	228.6805	208.8922	210.3117	192.6915	184.3749	203.2603	203.1971	214.8029	222.9726	237.5294 2566.5888	
Annual totals kWh/year Space heating fuel - mai Space heating fuel - sec											3524.7149 0.0000	
Electricity for pumps an											0.0000	(213)
(BalancedWithHeatRec mechanical ventilatic	covery, Data		e factor = 0875)	1.2500, SFP	= 1.0875)						590.9825	(230=)
central heating pump main heating flue fan			0010)								30.0000	(230c)
Total electricity for th Electricity for lighting	ne above, kV		ix L)								665.9825 503.8177	(231)
Total delivered energy f			17 17								7261.1038	
12a. Carbon dioxide emis												
							Energy	Emiss	ion factor		Emissions	
Space heating - main sys	tem 1						kWh/year 3524.7149		kg CO2/kWh 0.2160	k	g CO2/year 761.3384	(261)
Space heating - secondar Water heating (other fue	У						0.0000 2566.5888		0.0000 0.2160		0.0000 554.3832	
Space and water heating Pumps and fans							665.9825		0.5190		1315.7216 345.6449	
Energy for lighting Total CO2, kg/year							503.8177		0.5190		261.4814 1922.8479	
Dwelling Carbon Dioxide	Emission Ra	ite (DER)									12.8600	(273)
16 CO2 EMISSIONS ASSOCIA	TED WITH AF	PLIANCES AN	D COOKING A	ND SITE-WID	E ELECTRICI	TY GENERATI	ION TECHNOLO	GIES				
DER Total Floor Area											12.8600 149.5200	
Assumed number of occupa CO2 emission factor in T	able 12 for		y displaced	l from grid						N EF	2.9334 0.5190	
CO2 emissions from appli CO2 emissions from cooki											12.6823 1.2667	
Total CO2 emissions Residual CO2 emissions c											26.8090 0.0000	ZC5
Additional allowable ele Resulting CO2 emissions				electricity	generation						0.0000 0.0000	ZC7
Net CO2 emissions				-							26.8090	ZC8

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	rey height		Volume
		(m2)		(m)		(m3)
Basement floor		39.5800 (la)	х	2.6000 (2a)	=	102.9080 (1a) - (3a)
Ground floor		46.5400 (1b)	х	3.2300 (2b)	=	150.3242 (1b) - (3b)
First floor		34.2000 (1c)	х	2.7000 (2c)	=	92.3400 (1c) - (3c)
Second floor		29.2000 (1d)	х	3.4200 (2d)	=	99.8640 (1d) - (3d)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	149.5200					(4)
Dwelling volume		(3a)+(3h)+(3c)	+(3d)+(3e)(3r) =	445.4362 (5)

2. Ventilation rate

					main heating		condary heating	0	ther	tota	al	m3 pe	r hour	
Number of chimn	eys				õ	+	õ	+	0 =		0 * 40	=	0.0000	(6a)
lumber of open	flues				0	+	0	+	0 =		0 * 20	=	0.0000	(6b
Jumber of inter	mittent fa	ns									4 * 10	= 4	0.0000	(7a
umber of passi	ve vents										0 * 10	=	0.0000	(7b
Number of fluel	ess gas fi	res									0 * 40	=	0.0000	(7c
											Air ch	anges pe:	r hour	
nfiltration du Pressure test Measured/design		eys, flues	and fans =	= (6a)+(6b)	+(7a)+(7b)+((/c) =				40.0000	/ (5) =		0.0898 Yes 5.0000	(8)
nfiltration ra	te												0.3398	
Infiltration ra Number of sides	te							(20) = 1 -	[0.075 x	(19)1	1	0.3398 2	(19)
nfiltration ra	te sheltered	d to includ	e shelter fa	actor				([0.075 x 1) = (18) x		=	0.3398	(19)
Enfiltration ra Number of sides Shelter factor Enfiltration ra	te sheltered te adjuste Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	(2 Sep	1) = (18) : Oct	к (20) Nov	= 1	0.3398 2 0.8500 0.2888 Dec	(19 (20 (21
nfiltration ra umber of sides helter factor nfiltration ra	te sheltered te adjuste				May 4.3000	Jun 3.8000	Jul 3.8000		(2	1) = (18) :	x (20)	= 1	0.3398 2 0.8500 0.2888	(19 (20 (21
nfiltration ra umber of sides helter factor nfiltration ra ind speed ind factor	te sheltered te adjuster Jan 5.1000 1.2750	Feb	Mar	Apr				Aug	(2 Sep	1) = (18) : Oct	к (20) Nov	= 1	0.3398 2 0.8500 0.2888 Dec	(19 (20 (21
Infiltration ra Number of sides Shelter factor	te sheltered te adjuster Jan 5.1000 1.2750	Feb 5.0000	Mar 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	Aug 3.7000	(2 Sep 4.0000	1) = (18) : Oct 4.3000	x (20) Nov 4.5	= 1 = 1 000 - 250 - 2	0.3398 2 0.8500 0.2888 Dec 4.7000	(1 (2 (2) (2) (2)

3. Heat losses and heat loss parameter

Element				Gross	Openings	Ne	tArea	U-value	Аx	U K	-value	АхК	
				m2	m2		m2	W/m2K	W,	'K	kJ/m2K	kJ/K	
TER Opaque doo	r					1	.9100	1.0000	1.910	00			(26)
TER Opening Ty	pe (Uw = 1	.40)					.4700	1.3258	47.024				(27)
Base Floor							.7800	0.1300	2.571				(28)
Grd Floor							.8000	0.1300	2.574				(28a)
Basement				34.5000			.5000	0.1800	6.210				(29a)
Main Wall				181.0200	37.3800		.6400	0.1800	25.855				(29a)
Basement roof				12.8300			.8300	0.1300	1.667				(30)
Grd Roof				12.5400			.5400	0.1300	1.630				(30)
lst Roof				3.1700			.1700	0.1300	0.412				(30)
2nd Roof				39.3400			.3400	0.1300	5.114	12			(30)
Total net area			Aum(A, m2)			322	.9800						(31)
Fabric heat lo	ss, W/K = 3	Sum (A x U)					(26)(30) + (32)	= 94.969	96			(33)
Thermal mass p	arameter ('	TMP = Cm /	TFA) in kJ/m	n2K								250.0000	(35)
Thermal bridge	s (Sum(L x	Psi) calcu	lated using	Appendix K)							0.0000	(36)
Total fabric h	eat loss									(33)	+ (36) =	94.9696	(37)
Ventilation he	at loss cal	lculated mo:	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	83.4642	83.0771	82.6978	80.9159	80.5825	79.0305	79.0305	78.7431	79.6283	80.5825	81.2569	81.9620	(38)
Heat transfer	coeff												
	178.4338	178.0468	177.6674	175.8855	175.5521	174.0001	174.0001	173.7127	174.5979	175.5521	176.2265	176.9316	(39)
Average = Sum(39)m / 12 =	=										175.8839	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.1934	1.1908	1.1883	1.1763	1.1741	1.1637	1.1637	1.1618	1.1677	1.1741	1.1786	1.1833	(40)
HLP (average)		. =				. =					. =	1.1763	
Days in month													,
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heat	ing energy	requirements	s (kWh/year)									
Assumed occup Average daily		use (litres,	/day)									2.9334 103.8691	· /
Daily hot wat	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte	er use 114.2560 169.4384	110.1013 148.1919	105.9465 152.9208	101.7917 133.3200	97.6370 127.9238	93.4822 110.3885	93.4822 102.2911	97.6370 117.3806	101.7917 118.7825	105.9465 138.4295	110.1013 151.1067	114.2560 164.0920	

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Energy content	t (annual)									Total = Su	um (45) m =	1634.2658	(45)
Distribution .	loss (46)m	= 0.15 x (45)m										
	25.4158	22.2288	22.9381	19.9980	19.1886	16.5583	15.3437	17.6071	17.8174	20.7644	22.6660	24.6138	(46)
Water storage	loss:												
Store volume												180.0000	(47)
a) If manufa	cturer decla	ared loss fa	actor is kno	own (kWh/da	ay):							1.5520	(48)
Temperature	factor from	n Table 2b										0.5400	(49)
Enter (49) or	(54) in (55	5)										0.8381	(55)
Total storage													
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
If cylinder co	ontains ded:	icated sola:	r storage										
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red	quired for w	water heatin	ng calculate	ed for each	month								
	218.6811	192.6692	202.1634	180.9742	177.1664	158.0427	151.5338	166.6233	166.4367	187.6722	198.7609	213.3347	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	it (sum of m	months) = Su	1m (63) m =	0.0000	(63)
Output from w													
	218.6811	192.6692	202.1634	180.9742	177.1664	158.0427	151.5338	166.6233	166.4367	187.6722	198.7609	213.3347	(64)
								Total pe	er year (kWl	h/year) = Su	1m (64) m =	2214.0586	(64)
Heat gains fro													
	95.7324	84.8556	90.2403	82.4523	81.9288	74.8275	73.4059	78.4232	77.6185	85.4220	88.3663	93.9547	(65)

5. Internal gains (see Table 5 and 5a)
Metabolic gains (Table 5), Watts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(66)m 146.6718 140.6718 140.67

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
North	4.1000	10.6334	0.6300	0.7000	0.7700	13.3238 (7
Northeast	6.8100	11.2829	0.6300	0.7000	0.7700	23.4823 (7
East	12.4700	19.6403	0.6300	0.7000	0.7700	74.8489 (7
Southwest	6.9700	36.7938	0.6300	0.7000	0.7700	78.3754 (7
Northwest	5.1200	11.2829	0.6300	0.7000	0.7700	17.6549 (8

Solar gains 207.6853 389.1210 617.9295 895.2702 1111.1670 1148.1580 1088.4042 922.2052 714.0871 453.9302 255.4013 173.3272 (83) Total gains 754.8878 934.0550 1144.7814 1392.5282 1577.6013 1585.4490 1507.1057 1347.5193 1154.8970 924.5711 760.3848 704.8140 (84)

tau	58.1915	58.3180	58.4425	59.0346	59.1467	59.6743	59.6743	59.7730	59.4700	59.1467	58.9204	58.6856	
alpha	4.8794	4.8879	4.8962	4.9356	4.9431	4.9783	4.9783	4.9849	4.9647	4.9431	4.9280	4.9124	
util living are	ea												
	0.9991	0.9972	0.9894	0.9537	0.8457	0.6614	0.4993	0.5743	0.8494	0.9826	0.9978	0.9994 (8)	6)
MIT	19.6130	19.7935	20.0996	20.4998	20.8133	20.9593	20.9918	20.9842	20.8599	20.4264	19.9435	19.5840 (8	7)
Th 2	19.9253	19.9274	19.9294	19.9390	19.9408	19.9491	19.9491	19.9507	19.9459	19.9408	19.9371	19.9334 (8)	8)
util rest of he	ouse												
	0.9988	0.9962	0.9855	0.9363	0.7938	0.5692	0.3846	0.4526	0.7771	0.9734	0.9969	0.9991 (8	9)
MIT 2	18.0686	18.3338	18.7803	19.3551	19.7627	19.9232	19.9462	19.9444	19.8329	19.2632	18.5605	18.0318 (90	0)
Living area fra	action								fLA =	Living area	/ (4) =	0.2647 (93	1)
MIT	18.4774	18.7202	19.1296	19.6581	20.0408	20.1975	20.2230	20.2196	20.1048	19.5711	18.9266	18.4427 (92	2)
Temperature ad	justment											0.0000	
adjusted MIT	18.4774	18.7202	19.1296	19.6581	20.0408	20.1975	20.2230	20.2196	20.1048	19.5711	18.9266	18.4427 (93	3)
-													

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9981	0.9945	0.9815	0.9306	0.7993	0.5922	0.4151	0.4850	0.7897	0.9690	0.9956	0.9986	(94)
Useful gains	753.4367	928.9466	1123.5964	1295.9112	1260.9570	938.8365	625.5893	653.5224	912.0157	895.9197	757.0193	703.8419	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	2529.7354	2460.6414	2243.8603	1892.1919	1464.2477	973.9574	630.4009	663.5208	1048.4238	1574.8937	2084.1593	2519.9803	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1321.5662	1029.2989	833.4763	429.3222	151.2483	0.0000	0.0000	0.0000	0.0000	505.1566	955.5408	1351.2070	(98)

21.0000 (85)

Dec

Oct

Nov

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Space	heating			
Space	heating	per	m2	

				(98	(4) =	6576.8162 43.9862	
cro-CHP						0.0000 1.0000 93.5000	(202) (206)
						7034.0280	
Jun	Jul	Aug	Sep	Oct	Nov	Dec	
3 0.0000	0.0000	0.0000	0.0000	505.1566	955.5408	1351.2070	(98)
0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
9 0.0000	0.0000	0.0000	0.0000	540.2745	1021.9688	1445.1411	(211)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
4 79.8000	151.5338 79.8000 189.8920	166.6233 79.8000 208.8011	166.4367 79.8000 208.5673	187.6722 87.3282 214.9045	198.7609 88.4577 224.6960	213.3347 79.8000 88.8751 240.0389 2595.6587 7034.0280 0.0000	(216) (217) (219) (219) (219)
						30.0000 45.0000 75.0000 503.8177 10208.5044	(230e) (231) (232)
ng micro-CHP							
		Energy kWh/year 7034.0280 0.0000 2595.6587 75.0000 503.8177			1	1519.3501 0.0000 560.6623 2080.0123 38.9250 261.4814 2380.4187 13.9113 1.0000	(261) (263) (264) (265) (267) (268) (272) (272a)
	Jun Jun 33 0.0000 00 0.0000 29 0.0000 29 0.0000 54 158.0427 54 79.8000 13 198.0485	LING micro-CHP	Jun Jul Aug 33 0.0000 0.0000 0.0000 20 0.0000 0.0000 0.0000 29 0.0000 0.0000 0.0000 20 0.0000 0.0000 0.0000 20 0.0000 0.0000 0.0000 20 0.0000 0.0000 0.0000 54 158.0427 151.5338 166.6233 54 79.8000 79.8000 79.8000 13 198.0485 189.8920 208.8011 Ing micro-CHP Energy KMh/year 7034.0280 0.0000 0.0000 0.0000 2595.6587 75.0000 0.0000	Licro-CHP 11) Jun Jul Aug Sep 33 0.0000 0.0000 0.0000 0.0000 29 0.0000 0.0000 0.0000 0.0000 29 0.0000 0.0000 0.0000 0.0000 54 158.0427 151.5338 166.6233 166.4367 54 79.8000 79.8000 79.8000 79.8000 13 198.0485 189.8920 208.8011 208.5673 Hing micro-CHP Energy Emiss KMM/year 7034.0280 0.0000 2595.6587 75.0000	Icro-CHP 11) Jun Jul Aug Sep Oct 33 0.0000 0.0000 0.0000 505.1566 00 0.0000 0.0000 0.0000 93.5000 29 0.0000 0.0000 0.0000 540.2745 00 0.0000 0.0000 0.0000 0.0000 54 158.0427 151.5338 166.6233 166.4367 187.6722 54 79.8000 79.8000 79.8000 87.3282 13 198.0485 189.8920 208.8011 208.5673 214.9045 ing micro-CHP Emergy Emission factor kWh/year kg c02/kWh 0.2160 0.0000 0.0000 0.0010 0.2160 0.2160 0.2160 0.2160	Lero-CHP 11) Jun Jul Aug Sep Oct Nov 33 0.0000 0.0000 0.0000 0.0000 505.1566 955.5408 00 0.0000 0.0000 0.0000 0.0000 93.5000 93.5000 29 0.0000 0.0000 0.0000 0.0000 540.2745 1021.9688 00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 54 158.0427 151.5338 166.6233 166.4367 187.6722 198.7609 54 79.8000 79.8000 79.8000 79.8000 87.3282 88.4577 13 198.0485 189.8920 208.8011 208.5673 214.9045 224.6960 Instruction of the second	(98) / (4) = 43.9862

E1099-H2

E1099-H2-BLR

Property	H2, Gondar Gardens, We	st Hampstead,	, London, NW6 1QF			
SAP Rating		86 B	DER	12.83	TER	15.54
Environmental		88 B	% DER <ter< th=""><th></th><th>17.46</th><th></th></ter<>		17.46	
CO₂ Emissions (t/y	ear)	1.52	DFEE	40.79	TFEE	53.54
General Requirem	ents Compliance	Pass	% DFEE <tfee< th=""><th></th><th>23.82</th><th></th></tfee<>		23.82	
Assessor Details	Mr. Jason Doherty, Doherty E jason@doherty-energy.co.uk	e ,	l, Tel: 01480451569	Э,	Assessor ID	L143-0001
Client						

Property Reference

Assessment

Reference

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE RE							
DWELLING AS DESIGNED							
Semi-Detached House, tota	l floor area 1	.34 m²					
This report covers items It is not a complete repo	rt of regulati	ons c	omplia	nce.			
la TER and DER Fuel for main heating:Mai Fuel factor:1.00 (mains g Target Carbon Dioxide Emi Dwelling Carbon Dioxide E	ns gas as) ssion Rate (TE mission Rate (IR) 15 (DER)	.54 kg 12.83	CO□/m² kgCO□/m	² OK		
lb TFEE and DFEE Target Fabric Energy Effi Dwelling Fabric Energy Ef	ficiency (DFEE	2)40.8		²/yrOK			
2 Fabric U-values							
Element Average External wall 0.16 (max		High 0.16		0.70)		OK	
Party wall 0.00 (max Floor 0.11 (max	. 0.20)	-				OK	
Roof 0.13 (max	. 0.25)			0.70) 0.35)		OK OK	
Openings 1.07 (max	. 2.00)	1.10	(max.	3.30)		OK	
2a Thermal bridging							
Thermal bridging calculat							
3 Air permeability							
Air permeability at 50 pa Maximum	scals:	1.50 10.0	(desi	gn valu	e)		OK
4 Heating efficiency Main heating system: Data from database Ideal LOGIC+ SYSTEM s18		Boil	er sys	tem wit	h radiato	ors or underfloor -	- Mains gas
Efficiency: 89.6% SEDBUK2 Minimum: 88.0%	009			OK			
Secondary heating system:		None					
5 Cylinder insulation Hot water storage		Meas	ured c	vlinder	loss: 1.	30 kWh/day	
Permitted by DBSCG 2.10							
Primary pipework insulate		Yes					OK
6 Controls							
Space heating controls:		Time	and t	emperat	ure zone	control	OK
Hot water controls:		Culi	nderst	a t			OK
not water controis.					for DHW		OK
Boiler interlock		Yes					OK
7 Low energy lights Percentage of fixed light Minimum		75%					OK
8 Mechanical ventilation							
Continuous supply and ext Specific fan power:	ract system	0.87					
Maximum		1.5					OK
MVHR efficiency:		84% 70%					OK
Minimum:							
9 Summertime temperature Overheating risk (Thames Based on:	Valley):	Slig	ht				OK
Overshading:		Aver					
Windows facing East:				No over			
Windows facing South East Windows facing South:				o overh o overh			
Windows facing South West	:	9.94	m², N	o overh	ang		
Windows facing North West Air change rate:	:	4.40 4.00	m², N	o overh	ang		
Blinds/curtains:		Ligh	t-colo	ured cu	rtain or	roller blind, clos	sed 100% of daylight hou
10 Kow footuroo							
10 Key features External wall U-value		0.14	W/m²K				
Party wall U-value		0.00	W/m²K				
Roof U-value			W/m ² K				
Roof U-value Floor U-value			W/m²K W/m²K				
Floor U-value		0.12	W∕m²K				
Door U-value			W/m ² K				
Window U-value Thermal bridging y-value			W/m²K 5 W/m²				
Air permeability			m³/m²h				
AIL PERMEADILITY		1.3	/m*h				

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	rey height		Volume
		(m2)		(m)		(m3)
Basement floor		24.2800 (1a)	х	2.6000 (2a)	=	63.1280 (1a) - (3a)
Ground floor		46.5400 (1b)	х	3.2300 (2b)	=	150.3242 (1b) - (3b)
First floor		34.2000 (1c)	х	2.7000 (2c)	=	92.3400 (1c) - (3c)
Second floor		29.2000 (1d)	х	3.4200 (2d)	=	99.8640 (1d) - (3d)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	134.2200					(4)
Dwelling volume		(3a)+(3	b)+(3c)	+(3d)+(3e)(3n) =	405.6562 (5)

2. Ventilation rate

					main heating		secondary heating		other	tot	al m3	per hour	
Number of chimne	eys				õ	+	ő	+	0 =		0 * 40 =	0.0000	(6a
Number of open :	flues				0	+	0	+	0 =		0 * 20 =	0.0000	(6k
Number of intern	mittent fam	ns									0 * 10 =	0.0000	(7a
lumber of passiv	ve vents										0 * 10 =	0.0000	(71
Number of fluele	ess gas fi:	res									0 * 40 =	0.0000	(7c
											Air changes	per hour	
nfiltration due	e to chimne	eys, flues	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	(8)
ressure test												Yes	
easured/design												1.5000	
nfiltration rat												0.0750	
Number of sides	sheltered											2	(19
helter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500	(20
nfiltration rat	te adjusted	d to includ	e shelter f	actor					(2	1) = (18)	x (20) =	0.0638	(21
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
ind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000		3.7000	4.0000	4.3000	4.5000	4.7000	(22
ind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	
dj infilt rate													(-
	0.0813	0.0797	0.0781	0.0701	0.0685	0.0606	0.0606	0.0590	0.0638	0.0685	0.0717	0.0749	(2
Balanced mechai	nical vent:	ilation wit	h heat reco	very									
f mechanical ve	entilation	:										0.5000	(2
f balanced with	n heat reco	overy: effi	ciency in %	allowing for	or in-use fa	actor (fr	om Table 4h)	=				71.4000	(2
ffective ac	0.2243	0.2227	0.2211	0.2131	0.2115	0.2036	0.2036	0.2020	0.2068	0.2115	0.2147	0.2179	(2
TTECCTVE dC	0.2243	0.2227	0.2211	0.2131	0.2110	0.2030	0.2030	0.2020	0.2000	0.2110	0.214/	0.21/9	(2

3. Heat losses and heat loss parameter

Element				Gross	Openings		Area	U-value	Ax		-value	A x K	
				m2	m2		m2	W/m2K	W/		kJ/m2K	kJ/K	
Door							.9100	0.5500	1.050				(26)
Window (Uw = 1.	10)						.4000	1.0536	41.513				(27)
Base Floor							.2800	0.1100	2.670				(28)
Grd Floor							.1800	0.1200	2.541				(28a)
Basement				29.3000			.3000	0.1400	4.102				(29a)
Main Wall				174.8800	41.3100		.5700	0.1600	21.371				(29a)
Grd Roof				12.5400			.5400	0.0900	1.128				(30)
lst Roof				3.1700			.1700	0.0900	0.285				(30)
2nd Roof				39.3400			.3400	0.1500	5.901	0			(30)
Total net area	of externa	al elements	Aum(A, m2)			304	.6900						(31)
Fabric heat los	s, $W/K = 5$	Sum (A x U)						30) + (32)					(33)
Party Wall 1						76	.2600	0.0000	0.000	0			(32)
Thermal mass pa Thermal bridges Total fabric he	(User def				area)					(33)	+ (36) =	100.0000 7.6173 88.1817	(36)
Ventilation hea				0.22 - ()	25								
ventilation nea	Jan	Feb	Mar Mar			Turn	Jul	7	Com	Oat	Nov	Dec	
(38)m	30.0238	29.8104	29.5971	Apr 28.5303	May 28.3170	Jun 27.2502	27.2502	Aug 27.0369	Sep 27.6769	Oct 28.3170	28.7437	29.1704	(20)
Heat transfer c		29.0104	29.39/1	20.3303	20.3170	27.2302	27.2302	27.0309	21.0709	20.3170	20./43/	29.1704	(30)
	118.2054	117,9921	117.7787	116.7120	116.4986	115.4319	115.4319	115.2185	115.8586	116.4986	116.9253	117.3520	(20)
			11/.//8/	116./120	110.4986	115.4319	115.4319	115.2185	112.8280	116.4986	110.9253		
3												116.6586	(39)
Average = Sum(3)))ni / 12 =												
Average = Sum(3	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Average = Sum(3			Mar 0.8775	Apr 0.8696	May 0.8680	Jun 0.8600	Jul 0.8600	Aug 0.8584	Sep 0.8632	Oct 0.8680	Nov 0.8711	Dec 0.8743	(40)
HLP	Jan	Feb											
HLP	Jan	Feb										0.8743	

Water heating energy requirements (kWh/year)

Assumed occupancy Average daily hot water use (litres/day) 2.9052 (42) 103.1976 (43)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r17

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	113.5174	109.3895	105.2616	101.1337	97.0058	92.8779	92.8779	97.0058	101.1337	105.2616	109.3895	113.5174	(44)
Energy conte	168.3430	147.2339	151.9322	132.4581	127.0967	109.6748	101.6298	116.6217	118.0146	137.5346	150.1298	163.0312	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1623.7004	(45)
Distribution	loss (46)m	= 0.15 x (45) m										
	25.2515	22.0851	22.7898	19.8687	19.0645	16.4512	15.2445	17.4933	17.7022	20.6302	22.5195	24.4547	(46)
Water storage	loss:												
Store volume												180.0000	(47)
a) If manufa	cturer decl	ared loss f	actor is kn	own (kWh/d	ay):							1.3000	(48)
Temperature	factor fro	m Table 2b										0.5400	
Enter (49) or		5)										0.7020	(55)
Total storage	loss												
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(56)
If cylinder c													
	21.7620	19.6560	21.7620	21.0600	21.7620	21.0600	21.7620	21.7620	21.0600	21.7620	21.0600	21.7620	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re													
	213.3674	187.9011	196.9566	176.0301	172.1211	153.2468	146.6542	161.6461	161.5866	182.5590	193.7018	208.0556	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								Solar inp	ut (sum of	months) = S	um(63)m =	0.0000	(63)
Output from w													
	213.3674	187.9011	196.9566	176.0301	172.1211	153.2468	146.6542	161.6461	161.5866	182.5590	193.7018	208.0556	
								Total p	er year (kW	h/year) = S	um(64)m =	2153.8264	(64)
Heat gains fr													
	91.9936	81.4890	86.5370	78.8999	78.2792	71.3245	69.8114	74.7962	74.0974	81.7498	84.7757	90.2274	(65)

5. Internal gains (see Table 5 and 5a)

 Metabolic gains (Table 5), Watts
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jun
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582

6. Solar gains

[Jan]		Are m		Solar flux Table 6a W/m2	Specifi	g c data ble 6b	Specific or Tab		Acce fact Table	or	Gains W	
 East	 	13.200	0	19.6403		0.7200	0	.7000	0.77	00	90.5493	(76
Southeast		8.080	0	36.7938		0.7200	0	.7000	0.77	00	103.8365	(77
South		3.780	0	46.7521		0.7200	0	.7000	0.77	00	61.7243	(78
Southwest		9.940	0	36.7938		0.7200	0	.7000	0.77	00	127.7395	(79
Northwest		4.400	0	11.2829		0.7200	0	.7000	0.77	00	17.3396	(81

Solar gains 401.1892 /07.97/0 1023.7904 1344.1537 1562.4795 1572.9806 1507.6873 1343.6135 1155.6751 798.3129 485.2611 340.1400 (83) Total gains 924.1414 1228.6692 1527.1392 1819.1835 2008.1394 1990.7755 1907.6455 1750.1478 1556.9830 1248.1756 967.9896 848.1108 (84)

7. Mean internal temperature (heating season) _____ Temperature during heating periods in the living area from Table 9, Th1 (C) Utilisation factor for gains for living area, nil,m (see Table 9a) Jan Feb Mar Apr May Jun tau 31.5411 31.5982 31.6554 31.9447 32.0032 32.25 alpha 3.1027 3.1065 3.1104 3.1296 3.1335 3.15 21.0000 (85) Jul Aug 32.3588 3.1573 Sep 32.1800 3.1453 Dec 31.7705 3.1180 Oct Nov 32.2990 3.1533 32.2990 3.1533 32.0032 3.1335 31.8865 3.1258 alpha .. util living area 0.9472 0.8905 0.7972 0.6551 0.5006 0.3607 0.2632 0.2979 0.4807 0.7467 0.9576 (86) 0.9093 19.3870 20.1839 19.8166 20.2793 20.6749 20.8845 20.9693 20.9915 20.9873 20.9246 19.2939 (87) MIT Th 2 20.5875 19.9021 20.1921 Th 2 util rest of house 0.9405 20.1935 20.1853 20.1867 20.1948 20.2016 20.2016 20.2030 20.1989 20.1948 20.1894 (88) 0.9521 (89) 17.8854 (90) 0.1809 (91) 0.8780 0.7768 0.6256 0.4641 0.3184 0.2165 0.2480 0.4324 0.7148 0.8966 MIT 2 18.0156 18.6261 19.2701 19.8047 20.0700 20.1741 20.1958 20.1940 20.1265 19.7073 18.7616 Living area fraction fLA = Living are 19.8665 (4) area MIT 18.2637 18.8414 19.4526 19.9621 20.2174 20.3179 20 3398 20 3375 20 2709 18.9679 18.1402 (92) 0.0000 18.1402 (93) Temperature adjustment 18.2637 18.8414 19.4526 19.9621 20.2174 20.3179 20.3398 20.3375 20.2709 19.8665 18.9679 adjusted MIT

8. Space heating requirement Jan Feb Mar Apr Utilisation 0.9198 0.8536 0.7563 0.6167 Useful gains 850.0243 1048.7901 1155.0014 1121.8697 Jul 0.2247 428.5988 Oct 0.7005 874.4036 May 0.4651 933.9828 Jun 0.3247 646.3149 Aug 0.2565 448.9187 Nov 0.8732 845.2419 Sep 0.4368 Dec 0.9335 (94) 791.6744 (95) 680.1373 Ext temp. Heat loss rate W 4.3000 4.9000 6.5000 8.9000 11.7000 14.6000 16.6000 16.4000 14.1000 10.6000 7.1000 4.2000 (96)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

										-			
Month fracti	1.0000	1644.9783 1.0000	1525.5450 1.0000	1291.0802 1.0000	992.2613 1.0000	660.0310 0.0000	431.6874 0.0000	453.6700 0.0000	714.9528 0.0000	1079.5350 1.0000	1387.6609 1.0000	1635.9122 1.0000	
Space heating	kWh 595.6131	400.6385	275.6845	121.8316	43.3591	0.0000	0.0000	0.0000	0.0000	152.6177	390.5417	628.1129	
Space heating Space heating	per m2									(98) / (4) =	2608.3992 19.4338	
8c. Space coo	ling requir	rement											
Not applicabl													
9a. Energy re													
Fraction of s	pace heat i	from seconda	ary/suppleme									0.0000	
Efficiency of Efficiency of Space heating	main space secondary/	e heating sy /supplementa	ystem 1 (in									93.6000 0.0000 2786.7512	(206) (208)
On the break in a	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	595.6131	400.6385	275.6845		43.3591	0.0000	0.0000	0.0000	0.0000	152.6177	390.5417	628.1129	(98)
Space heating Space heating	93.6000	93.6000	93.6000	93.6000	93.6000	0.0000	0.0000	0.0000	0.0000	93.6000	93.6000	93.6000	(210)
Water heating	636.3388	428.0326	294.5347	130.1619	46.3239	0.0000	0.0000	0.0000	0.0000	163.0531	417.2454	671.0608	(211)
nater neating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating	requiremen												
Efficiency of	water heat			176.0301	172.1211	153.2468	146.6542	161.6461	161.5866	182.5590	193.7018	208.0556 79.9000	(216)
(217)m Fuel for wate			85.8113	83.9556	81.8450	79.9000	79.9000	79.9000	79.9000	84.4409	86.7484	87.6784	
Water heating Annual totals	kWh/year		229.5230	209.6706	210.3013	191.7983	183.5472	202.3106	202.2360	216.1974	223.2914	237.2939 2566.2564	(219)
Space heating Space heating												2786.7512 0.0000	
mechanical	WithHeatRed ventilatio		abase: in-us P = 1.	e factor = 0875)	1.2500, SFP	= 1.0875)						538.2044	
central he main heati	ng flue far											30.0000 45.0000	(230e)
Total electric Electricity for Total deliver	or lighting	g (calculate	ed in Append	ix L)								613.2044 476.6399 6442.8519	(232)
12a. Carbon d	ioxide emis	ssions - Ind		ting system	s including	micro-CHP							
Space heating								Energy kWh/year 2786.7512		ion factor kg CO2/kWh 0.2160	k	Emissions g CO2/year 601.9383	
Space heating Water heating	- seconda:	сy						0.0000		0.0000		0.0000	(263)
Space and wat Pumps and fan								613.2044		0.5190		1156.2496 318.2531	
Energy for lie Total CO2, kg Dwelling Carbo	/year	Emission R	ate (DER)					476.6399		0.5190		247.3761 1721.8788 12.8300	(272)
													(= : 0)
16 CO2 EMISSI DER		ATED WITH AN	PPLIANCES AN	D COOKING A	ND SITE-WID	E ELECTRICI	TY GENERATI	ON TECHNOLO	GIES			12.8300	
Total Floor A Assumed numbe	r of occupa										TFA		
CO2 emission CO2 emissions	from appli	lances, equa	ation (L14)	y displaced	from grid						EF	0.5190 13.3658	ZC2
CO2 emissions Total CO2 emi Residual CO2	ssions											1.4061 27.6019 0.0000	ZC4
Additional al. Resulting CO2	lowable ele	ectricity ge	eneration, k	Wh/m²/year	electricity	generation						0.0000	ZC6
Net CO2 emiss						J						27.6019	

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAF 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	rey height		Volume
		(m2)		(m)		(m3)
Basement floor		24.2800 (la)	х	2.6000 (2a)	=	63.1280 (1a) - (3a)
Ground floor		46.5400 (1b)	х	3.2300 (2b)	=	150.3242 (1b) - (3b)
First floor		34.2000 (1c)	х	2.7000 (2c)	=	92.3400 (1c) - (3c)
Second floor		29.2000 (1d)	х	3.4200 (2d)	=	99.8640 (1d) - (3d)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	134.2200					(4)
Dwelling volume		(3a)+(3h	b) + (3c)	+(3d)+(3e)(3n) =	405.6562 (5)

2. Ventilation rate

					main heating		condary heating	c	ther	total	. m3	per hour
umber of chimne	evs				Ő	+	Ő	+	0 =	C	* 40 =	0.0000 (6a
umber of open f	Elues				0	+	0	+	0 =	C	* 20 =	0.0000 (6h
umber of intern		ns								4	* 10 =	40.0000 (7a
umber of passiv	ve vents									C) * 10 =	0.0000 (71
umber of fluele	ess gas fi	res								C	* 40 =	0.0000 (70
										A	ir changes	per hour
nfiltration due ressure test easured/design		eys, flues	and fans	= (6a)+(6b)	+(7a)+(7b)+	(7c) =				40.0000 /	(5) =	0.0986 (8) Yes 5.0000
filtration rat mber of sides	e											0.3486 (18
nelter factor								(20) = 1 -	[0.075 x ((19)] =	0.8500 (20
filtration rat	te adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.2963 (21
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
ind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000 (22
nd factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22
-,	0.3778	0.3704	0.3630	0.3259	0.3185	0.2815	0.2815	0.2741	0.2963	0.3185	0.3334	0.3482 (2)
ffective ac	0.5714	0.5686	0.5659	0.5531	0.5507	0.5396	0.5396	0.5376	0.5439	0.5507	0.5556	0.5606 (2

3. Heat losses and heat loss parameter

Element				Gross	Openings	s Ne	tArea	U-value	Аx	U K	-value	АхК	
				m2	m2	2	m2	W/m2K	W,	/K	kJ/m2K	kJ/K	
TER Opaque doc	or					1	.9100	1.0000	1.910	00			(26)
TER Opening Ty	y_{pe} (Uw = 1.	.40)				31	.6400	1.3258	41.94	70			(27)
Base Floor						24	.2800	0.1300	3.15	54			(28)
Grd Floor						21	.1800	0.1300	2.753	34			(28a)
Basement				29.3000		29	.3000	0.1800	5.274	40			(29a)
Main Wall				L74.8800	33.5500) 141	.3300	0.1800	25.43	94			(29a)
Grd Roof				12.5400		12	.5400	0.1300	1.630)2			(30)
1st Roof				3.1700		3	.1700	0.1300	0.412	21			(30)
2nd Roof				39.3400		39	.3400	0.1300	5.114	42			(30)
Total net area	a of externa	al elements	Aum(A, m2)			304	.6900						(31)
Fabric heat lo	oss, $W/K = S$	Sum (A x U)					(26)(30) + (32)	= 87.63	57			(33)
Thermal mass p	parameter (1	MP = Cm /	TFA) in k.T/r	n2K								250.0000	(25)
Thermal bridge)					(22)		0.0000	(36)
Thermal bridge Total fabric h)					(33)	+ (36) =		(36)
	neat loss	Psi) calcu	lated using	Appendix K						(33)	+ (36) =	0.0000	(36)
Total fabric h	neat loss	Psi) calcu	lated using	Appendix K		Jun	Jul	Aug	Sep	(33) Oct	+ (36) =	0.0000	(36)
Total fabric h	neat loss eat loss cal	Psi) calcu	lated using nthly (38)m	Appendix K	25)m x (5)	Jun 72.2372	Jul 72.2372	Aug 71.9617	Sep 72.8102	()	,	0.0000 87.6367	(36) (37)
Total fabric h Ventilation he	neat loss eat loss cal Jan 76.4869	Psi) calcu Lculated mo Feb	lated using nthly (38)m Mar	Appendix K = 0.33 x (2 Apr	25)m x (5) May					Oct	Nov	0.0000 87.6367 Dec	(36) (37)
Total fabric h Ventilation he (38)m	neat loss eat loss cal Jan 76.4869	Psi) calcu Lculated mo Feb	lated using nthly (38)m Mar	Appendix K = 0.33 x (2 Apr	25)m x (5) May					Oct	Nov	0.0000 87.6367 Dec	(36) (37) (38)
Total fabric h Ventilation he (38)m	eat loss Jan 76.4869 coeff 164.1236	Psi) calcu Iculated mo Feb 76.1159 163.7526	lated using nthly (38)m Mar 75.7523	Appendix K = 0.33 x (1 Apr 74.0443	25)m x (5) May 73.7248	72.2372	72.2372	71.9617	72.8102	Oct 73.7248	Nov 74.3712	0.0000 87.6367 Dec 75.0471	(36) (37) (38) (39)
Total fabric h Ventilation he (38)m Heat transfer	heat loss at loss cal Jan 76.4869 coeff 164.1236 (39)m / 12 =	Psi) calcu lculated mo Feb 76.1159 163.7526	lated using nthly (38)m Mar 75.7523 163.3890	Appendix K = 0.33 x (: Apr 74.0443 161.6810	25)m x (5) May 73.7248 161.3614	72.2372 159.8739	72.2372 159.8739	71.9617 159.5984	72.8102 160.4468	Oct 73.7248 161.3614	Nov 74.3712 162.0079	0.0000 87.6367 Dec 75.0471 162.6837 161.6795	(36) (37) (38) (39)
Total fabric h Ventilation he (38)m Heat transfer Average = Sum(heat loss cal Jan 76.4869 coeff 164.1236 (39)m / 12 = Jan	Psi) calcu Iculated mo Feb 76.1159 163.7526 = Feb	lated using nthly (38)m Mar 75.7523 163.3890 Mar	Appendix K = 0.33 x (: Apr 74.0443 161.6810 Apr	25)m x (5) May 73.7248 161.3614 May	72.2372 159.8739 Jun	72.2372 159.8739 Jul	71.9617 159.5984 Aug	72.8102 160.4468 Sep	Oct 73.7248 161.3614 Oct	Nov 74.3712 162.0079 Nov	0.0000 87.6367 Dec 75.0471 162.6837 161.6795 Dec	(36) (37) (38) (39) (39)
Total fabric h Ventilation he (38)m Heat transfer Average = Sum(HLP	heat loss at loss cal Jan 76.4869 coeff 164.1236 (39)m / 12 =	Psi) calcu lculated mo Feb 76.1159 163.7526	lated using nthly (38)m Mar 75.7523 163.3890	Appendix K = 0.33 x (: Apr 74.0443 161.6810	25)m x (5) May 73.7248 161.3614	72.2372 159.8739	72.2372 159.8739	71.9617 159.5984	72.8102 160.4468	Oct 73.7248 161.3614	Nov 74.3712 162.0079	0.0000 87.6367 Dec 75.0471 162.6837 161.6795 Dec 1.2121	(36) (37) (38) (39) (39) (40)
Total fabric h Ventilation he (38)m Heat transfer Average = Sum (HLP HLP (average)	heat loss cal Jan 76.4869 coeff 164.1236 (39)m / 12 = Jan	Psi) calcu Iculated mo Feb 76.1159 163.7526 = Feb	lated using nthly (38)m Mar 75.7523 163.3890 Mar	Appendix K = 0.33 x (: Apr 74.0443 161.6810 Apr	25)m x (5) May 73.7248 161.3614 May	72.2372 159.8739 Jun	72.2372 159.8739 Jul	71.9617 159.5984 Aug	72.8102 160.4468 Sep	Oct 73.7248 161.3614 Oct	Nov 74.3712 162.0079 Nov	0.0000 87.6367 Dec 75.0471 162.6837 161.6795 Dec	(36) (37) (38) (39) (39) (40)
Total fabric h Ventilation he (38)m Heat transfer Average = Sum(HLP	heat loss cal Jan 76.4869 coeff 164.1236 (39)m / 12 = Jan	Psi) calcu Iculated mo Feb 76.1159 163.7526 = Feb	lated using nthly (38)m Mar 75.7523 163.3890 Mar	Appendix K = 0.33 x (: Apr 74.0443 161.6810 Apr	25)m x (5) May 73.7248 161.3614 May	72.2372 159.8739 Jun	72.2372 159.8739 Jul	71.9617 159.5984 Aug	72.8102 160.4468 Sep	Oct 73.7248 161.3614 Oct	Nov 74.3712 162.0079 Nov	0.0000 87.6367 Dec 75.0471 162.6837 161.6795 Dec 1.2121 1.2046	(36) (37) (38) (39) (39) (40)

4. Water heating energy requirements (kWh/year) _____ Assumed occupancy Average daily hot water use (litres/day) 2.9052 (42) 103.1976 (43) Feb Mar Jan Apr May Jun Jul Aug Sep Oct Nov Dec
 Jail
 Feb
 Jaily

 Daily hot water use
 113.5174
 109.3895
 105.2616
 101.1337
 97.0058
 92.8779
 92.8779
 97.0058

 Energy conte
 168.3430
 147.2339
 151.9322
 132.4581
 127.0967
 109.6748
 101.6298
 116.6217
 97.0058 101.1337 116.6217 118.0146 105.2616 109.3895 113.5174 (44) 137.5346 150.1298 163.0312 (45) Total = Sum(45)m = 1623.7004 (45) Energy conte 168.3430 Energy content (annual)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Distribution .	loss (46)m	= 0.15 x (45)m										
	25.2515	22.0851	22.7898	19.8687	19.0645	16.4512	15.2445	17.4933	17.7022	20.6302	22.5195	24.4547	(46)
Water storage	loss:												
Store volume												180.0000	(47)
 a) If manufactor 	cturer decl	ared loss f	actor is kno	own (kWh/da	ay):							1.5520	(48)
Temperature	factor fro	m Table 2b										0.5400	(49)
Enter (49) or	(54) in (5	5)										0.8381	(55)
Total storage	loss												
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
If cylinder co													
	25.9803	23.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat red		water heati											
	217.5857	191.7111	201.1748	180.1123	176.3394	157.3290	150.8725	165.8644	165.6688	186.7773	197.7840	212.2739	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								Solar inpu	ut (sum of m	months) = Su	1m (63) m =	0.0000	(63)
Output from w.													
	217.5857	191.7111	201.1748	180.1123	176.3394	157.3290	150.8725	165.8644	165.6688	186.7773	197.7840	212.2739	
								Total pe	er year (kWl	h/year) = Si	1m (64) m =	2203.4932	(64)
Heat gains fro													
	95.3682	84.5371	89.9116	82.1657	81.6538	74.5902	73.1861	78.1709	77.3632	85.1244	88.0415	93.6020	(65)

_____ 5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts

 Metabolic gains (Table 5), Watts
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2582
 145.2 Losses e.g. evaporation (negative values) (Table 5) -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 -116.2065 (71) Water heating gains (Table 5) 128.1830 125.7992 120.8489 114.1190 109.7497 103.5975 98.3684 105.0684 107.4489 114.4145 122.2799 125.8092 (72) Total internal gains I28.1850 I25.7572 I2572 I25.7572 I25.7572 I25.7572 I25.75

_____ 6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
East	10.6000	19.6403	0.6300	0.7000	0.7700	63.6246 (76)
Southeast	6.4900	36.7938	0.6300	0.7000	0.7700	72.9779 (77)
South	3.0400	46.7521	0.6300	0.7000	0.7700	43.4356 (78)
Southwest	7.9800	36.7938	0.6300	0.7000	0.7700	89.7325 (79)
Northwest	3.5300	11.2829	0.6300	0.7000	0.7700	12.1722 (81)

Solar gains Total gains
 281.9428
 497.5325
 719.4453
 944.5359
 1097.9230
 1105.2897
 1059.4149
 944.1445
 798.0568
 561.0091

 809.4308
 1022.7604
 1227.3299
 1424.1014
 1548.1188
 1527.6203
 1463.9089
 1355.2146
 1223.9005
 1015.4075
 341.0238 828.2881 239.0408 (83) 751.5473 (84)

7. Mean internal temperature (heating season)

Temperature du						'hl (C)						21.0000 ((85)
Utilisation fa	actor for ga	ains for liv	ing area, n	il,m (see 1	'able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	56.7916	56.9202	57.0469	57.6495	57.7637	58.3012	58.3012	58.4018	58.0930	57.7637	57.5332	57.2942	
alpha	4.7861	4.7947	4.8031	4.8433	4.8509	4.8867	4.8867	4.8935	4.8729	4.8509	4.8355	4.8196	
util living an	rea												
	0.9979	0.9934	0.9791	0.9307	0.8159	0.6353	0.4735	0.5290	0.7856	0.9636	0.9950	0.9986 ((86)
MIT	19.6651	19.8805	20.1930	20.5629	20.8354	20.9634	20.9928	20.9880	20.8990	20.5150	20.0112	19.6282 ((87)
Th 2	19.9018	19.9040	19.9062	19.9163	19.9182	19.9271	19.9271	19.9287	19.9237	19.9182	19.9144	19.9104 ((88)
util rest of h	nouse												
	0.9972	0.9912	0.9718	0.9070	0.7593	0.5428	0.3617	0.4122	0.7025	0.9462	0.9929	0.9981 ((89)
MIT 2	18.1283	18.4436	18.8961	19.4196	19.7653	19.9043	19.9246	19,9242	19.8478	19.3672	18.6428	18.0805 ((90)
Living area fi	raction								fLA =	Living area	/ (4) =	0.1809 ((91)
MIT	18.4063	18.7035	19.1307	19.6264	19.9589	20.0959	20.1179	20.1166	20.0380	19.5748	18.8904	18.3605 (
Temperature ad												0.0000	
adjusted MIT	18.4063	18.7035	19.1307	19.6264	19.9589	20.0959	20.1179	20.1166	20.0380	19.5748	18.8904	18.3605 ((93)

8. Space heating requirement

	7				M		73		Q • • •	0 - t		D	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9957	0.9877	0.9649	0.8993	0.7616	0.5581	0.3820	0.4333	0.7124	0.9390	0.9900	0.9969	(94)
Useful gains	805.9798	1010.1341	1184.2243	1280.6762	1179.1225	852.6314	559.1748	587.2692	871.8659	953.4243	819.9728	749.2537	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	2315.1814	2260.3659	2063.7144	1734.2629	1332.6615	878.6514	562.4170	593.1654	952.7304	1448.1921	1910.1322	2303.6755	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1122.8460	840.1557	654.3407	326.5824	114.2330	0.0000	0.0000	0.0000	0.0000	368.1072	784.9148	1156.4898	(98)
Space heating												5367.6696	(98)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Space heating per m2							(98) / (4) =	39.9916	(99)
8c. Space cooling requirement										
Not applicable										
9a. Energy requirements - Individual heating sys	stems, incl	uding micro	O-CHP							
Fraction of space heat from secondary/supplement Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating sy Space heating requirement	tary system)								0.0000 1.0000 93.5000 0.0000 5740.8231	(202) (206) (208)
Jan Feb Mar Space heating requirement	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 1122.8860 840.1557 654.3407 Space heating efficiency (main heating system 1)	326.5824	114.2330	0.0000	0.0000	0.0000	0.0000	368.1072	784.9148	1156.4898	(98)
93.5000 93.5000 93.5000 Space heating fuel (main heating system)	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Water heating requirement	349.2860	122.1743	0.0000	0.0000	0.0000	0.0000	393.6975	839.4810	1236.8875	(211)
0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement 217.5857 191.7111 201.1748 Efficiency of water heater (217)m 88.5722 88.3003 87.7337	180.1123 86.3828	176.3394 83.6900	157.3290 79.8000	150.8725	165.8644 79.8000	165.6688 79.8000	186.7773 86.5918	197.7840 88.1219	212.2739 79.8000 88.6564	(216)
Fuel for water heating, kWh/month 245.6591 217.1127 229.3016	208.5049	210.7056	197.1542	189.0633	207.8501	207.6050	215.6986	224.4437	239.4343	(219)
Water heating fuel used Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary									2592.5330 5740.8231 0.0000	(211)
Electricity for pumps and fans: central heating pump main heating flue fan Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendiz Total delivered energy for all uses	x L)								30.0000 45.0000 75.0000 476.6399 8884.9959	(230e) (231) (232)
 12a. Carbon dioxide emissions - Individual heat:	ing systems	including	micro-CHP							
Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and water heating Fuel factor (mains gas)					Energy kWh/year 5740.8231 0.0000 2592.5330 75.0000 476.6399		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190	k	Emissions cg CO2/year 1240.0178 0.0000 559.9871 1800.0049 38.9250 247.3761 2086.3060 13.4109 1.0000	(263) (264) (265) (267) (268) (272) (272a)
Emissions per m2 for lighting Emissions per m2 for pumps and fans Target Carbon Dioxide Emission Rate (TER) = (13	.4109 * 1.0	0) + 1.8433	1 + 0.2900,	rounded to	2 d.p.				1.8431 0.2900 15.5400	(272c)

Appendix B – Water Calculations

Water Efficiency Calculator for New Dwellings (V1f - Aug 2010)

Flat 1, Gondar Gardens

1

Project Details

Adress/Reference Number of Bedrooms

Appliance/Useage Details Taps (Excluding Kitchen Taps)

Tap Fitting Type	Flow Rate	Quantity	Total per
	Litres/Min	(No.)	Fitting type
Mixer Taps	3.00		2 6.00
			0.00
			0.00
			0.00
			0.00
			0.00
Total No. of Fittings (No	.)		2
Total Flow (I/s)			6.00
Maximum Flow (I/s)			3.00
Average Flow (I/s)			3.00
Weighted Average Flow	(I/s)		2.10
Flow for Calculation (I/s	s)		3.00

Baths

Bath Type	Capacity to Overflow	Quantity (No.)	Total per Fitting type
Bath	149.00	1	149.00
			0.00
			0.00
			0.00
Total No. of Fittings (No	.)	1	
Total Capacity (I)			149.00
Maximum Capacity (I)			149.00
Average Capacity (I)			149.00
Weighted Average Capa	acity (I)		104.30
Capacity for Calculation	n (l)		149.00

Dishwashers

Dishwasher Type	L per Place Setting	Quantity (No.)	Total per Fitting type
			0.00
			0.00
Total No. of Fittings (No).)	0	
Total Consumption (I)			1.25
Maximum Consumption	(I)		1.25
Average Consumption (l/s)		1.25
Weighted Average Cons	sumption (I)		0.88
Consumption for Calcul	ation (I/s)		1.25

Kitchen Taps

Tap Fitting Type	Flow Rate Litres/Min	Quantity (No.)	Total per Fitting type
Kitchen Tap	8.00	1	8.00
			0.00
			0.00
Total No. of Fittings (No.) 1			
Total Flow (I/s)			8.00
Maximum Flow (I/s)			8.00
Average Flow (I/s)			8.00
Weighted Average Flow	(l/s)		5.60
Flow for Calculation (I/s)		8.00

E1099 Case Reference E1099 Occupancy for Calculation Purpose Showers Shower fitting Flow Rate Quantity Total per Litres/Min Fitting type 8.00 Туре (No.) Thermostatic Shower 8.00 0.00 0.00 0.00 0.00 0.00 Total No. of Fittings (No.) Total Flow (I/s) Maximum Flow (I/s) Average Flow (I/s) Weighted Average Flow (I/s) Flow for Calculation (I/s) 8 00 8.00 8.00 5.60 8.00 WCs Part Flush Quantity Full Flush WC Type Dual WC Volume Volume (No) 3.00 4.50 Total number of fittings Average effective flushing volume 3.50 Washing Machines Washing Machine L per Kg Quantity Total per Dry Load (No.) Fitting type 0.00 Туре 0.00 Total No. of Fittings (No.) Total Consumption (I) 8.17 Maximum Consumption (I) Average Consumption (I/s) Weighted Average Consumption (I) Consumption for Calculation (I/s) 8.17 8.17 5.72 8.17 **Other Fittings** Waste Disposal Y/N Ν Water softner Consumption beyond 4% l/p/d Use of grey water and harvested rainwater Total Grey water from WHB taps (I) Total Availble Grey Water Supply (I) Possible Demand (I) 0 102.70 65.25 Grey/Rain Installed Capacity (I) Figure for Calculation lit/person/day 0.00 0.00

Water Use Assessment

Installation Type	Unit	Capacity/	Use Factor	Fixed use	Total Use	1
		Flow Rate		(l/p/day)	(l/p/day)	
WC Single Flush	Volume (I)	0.00	4.42			
WC Dual Flush	Full Flush (I)	0.00	1.46	0.00	0.00	
	Pt Flush (I)	0.00	2.96	0.00	0.00	
WC's (Multiple)	Volume (I)	3.50	4.42	0.00	15.47	
Taps Exc. Kitchen	Flow Rate	3.00			6.32	1
Bath (shower present)	(l/s)	149.00	0.11	0.00	16.39	
Shower (bath present)	(l/s)	8.00		0.00	34.96	
Bath Only	(I)	0.00				4
Shower Only	(l/s)	0.00				
Kitchen Taps	(l/s)	8.00	-			4
Washing Machines	(l/kgdry)	8.17	2.10			<< Note - these may be default values.
Dishwashers	(l/place)	1.25	3.60			<< You can change them by entering
Waste Disposal	(l/s)	0.00	3.08	0.00	0.00	
Water Softner	(l/s)	0.00	1.00	0.00		
Total Calculated Water					108.68	4
Grey/RainWater Reused	(I)				0.00	
Normalisation Factor	(Factor)				0.91	
Total Consumption CS					98.90	4
External Water Use Allow					5.00	
Total Comsumption Pa	rt G (l/p/day)				103.90]
Assesment Result					PASS	

Water Efficiency Calculator for New Dwellings (V1f - Aug 2010)

Flat 2, Gondar Gardens

Project Details

Adress/Reference Number of Bedrooms

Appliance/Useage Details

Taps (Excluding Kitchen Taps)

Tap Fitting Type	Flow Rate	Quantity	Total per	
	Litres/Min	(No.)	Fitting type	
Mixer Taps	3.00	1	3.00	
			0.00	
			0.00	
			0.00	
			0.00	
			0.00	
Total No. of Fittings (No).)	1	Í	
Total Flow (I/s)			3.00	
Maximum Flow (I/s)				
Average Flow (I/s)				
Weighted Average Flow (I/s)				
Flow for Calculation (I/s	;)		3.00	
Patha				

Baths

Bath Type	Capacity to Overflow	Quantity (No.)	Total per Fitting type
Bath	149.00	1	149.00
			0.00
			0.00
			0.00
Total No. of Fittings (No	.)	1	
Total Capacity (I)			149.00
Maximum Capacity (I)			149.00
Average Capacity (I)			149.00
Weighted Average Capacity (I)			104.30
Capacity for Calculation	n (l)		149.00

Dishwashers

Dishwasher Type	L per Place Setting	Quantity (No.)	Total per Fitting type
			0.00
			0.00
Total No. of Fittings (No.)		0	
Total Consumption (I)			1.25
Maximum Consumption (I)			1.25
Average Consumption (l/s)		1.25
Weighted Average Consumption (I)			0.88
Consumption for Calculation (I/s)			1.25

Kitchen Taps

Tap Fitting Type	Flow Rate Litres/Min	Quantity (No.)	Total per Fitting type
Kitchen Tap	8.00	1	8.00
			0.00
			0.00
Total No. of Fittings (No.) 1			
Total Flow (I/s)			8.00
Maximum Flow (I/s)			8.00
Average Flow (I/s)			8.00
Weighted Average Flow	(I/s)		5.60
Flow for Calculation (I/s	a)		8.00

Capacity/ Flow Rate

0.00

4.50

3.00

3.00

8.00

0.00

0.00

8.00

8.17

0.00

0.00

149.00

4.42

1.46

2.96

4.42 1.58

0.11

4.37

0.50

5.60

0.44

2.10 3.60

3.08

1.00

0.00

10.36

0.00

0.00

0.00

0.00

Unit

Volume (I)

Full Flush (I)

Pt Flush (I)

Volume (I)

Flow Rate

(l/s)

(l/s)

(l/s)

(l/s)

(l/s)

(l/s)

(Factor)

Total Calculated Water Use (I/p/day)

Total Consumption CSH (I/p/day)

Total Comsumption Part G (I/p/day)

External Water Use Allowance (I)

Grey/RainWater Reused (I)

(l/kgdry)

(l/place)

(I)

E1099 Case Reference Occupancy for Calculation Purpose Showers Flow Rate Total per Shower fitting Quantity Туре Litres/Min (No.) Fitting type Thermostatic Shower 8.00 8.00 0.00 0.00 0.00 0.00 0.00 Total No. of Fittings (No.) Total Flow (I/s) Maximum Flow (I/s) 8 00 8.00 Average Flow (I/s) 8.00 Weighted Average Flow (I/s) 5.60 Flow for Calculation (I/s) 8.00 WCs Part Flush Quantity Full Flush WC Type Dual WC Volume Volume (No) 4.50 3.00 Total number of fittings Average effective flushing volume N/a Washing Machines Washing Machine L per Kg Quantity Total per Dry Load Fitting type 0.00 Туре (No.) 0.00 Total No. of Fittings (No.) Total Consumption (I) 8.17 Maximum Consumption (I) 8.17 Average Consumption (I/s) Weighted Average Consumption (I) Consumption for Calculation (I/s) 8.17 5.72 8.17 **Other Fittings** Waste Disposal Y/N Ν Water softner Consumption beyond 4% l/p/d Use of grey water and harvested rainwater Total Grey water from WHB taps (I) Total Availble Grey Water Supply (I) 0 154.05 Possible Demand (I) 97.82 Grey/Rain Installed Capacity (I) 0.00 Figure for Calculation lit/person/day 0.00 Use Factor Fixed use Total Use (l/p/day) (l/p/day) 0.00 0.00 0.00 6.57 0.00 8.88 0.00 0.00 1.58 6.32 0.00 16.39 0.00 34.96 0.00 0.00

<< Note - these may be default values. 4.50 << You can change them by entering the actual applicances in the appropriate sections above

0.00

13.88

17.16

0.00

0.00

108.66

0.00

0.91

98.88

5.00

103.88

PASS

Water Use Assessment

Installation Type

WC Single Flush

WC Dual Flush

WC's (Multiple)

Bath Only

Shower Only

Dishwashers

Waste Disposal

Water Softner

Taps Exc. Kitchen

Kitchen Taps Washing Machines

Bath (shower present)

Shower (bath present)

A	Deeult
Assesment	Result

Normalisation Factor

Water Efficiency Calculator for New Dwellings (V1f - Aug 2010)

3

Project	Details
1 10,000	Detunio

Adress/Reference Number of Bedrooms

Appliance/Useage Details Taps (Excluding Kitchen Taps)

Tap Fitting Type	Flow Rate Litres/Min	Quantity (No.)	Total per Fitting type	
Mixer Taps	3.00	3	9.00	
			0.00	
			0.00	
			0.00	
			0.00	
			0.00	
Total No. of Fittings (No	o.)	3	3	
Total Flow (I/s)			9.00	
Maximum Flow (I/s)				
Average Flow (I/s)			3.00	
Weighted Average Flow (I/s)				
Flow for Calculation (I/s	;)		3.00	
Patha				

House 1 & 2

Baths

Bath Type	Capacity to Overflow	Quantity (No.)	Total per Fitting type
Bath	149.00	1	149.00
			0.00
			0.00
			0.00
Total No. of Fittings (No.) 1			
Total Capacity (I)			149.00
Maximum Capacity (I)	149.00		
Average Capacity (I)	149.00		
Weighted Average Capacity (I)			104.30
Capacity for Calculation (I)			149.00

Dishwashers

Dishwasher Type	L per Place Setting	Quantity (No.)	Total per Fitting type
			0.00
			0.00
Total No. of Fittings (No	.)	0	
Total Consumption (I)			1.25
Maximum Consumption (I)			1.25
Average Consumption (l/s)		1.25
Weighted Average Consumption (I)			0.88
Consumption for Calculation (I/s)			1.25

Kitchen Taps

Tap Fitting Type	Flow Rate Litres/Min	Quantity (No.)	Total per Fitting type
Kitchen Tap	10.00	1	10.00
			0.00
			0.00
Total No. of Fittings (No).)	1	
Total Flow (I/s)			10.00
Maximum Flow (I/s)			10.00
Average Flow (I/s)			10.00
Weighted Average Flow	(I/s)		7.00
Flow for Calculation (I/s	;)		10.00

E1099 Case Reference E1099 Occupancy for Calculation Purpose Showers Shower fitting Flow Rate Quantity Total per Litres/Min Fitting type 16.00 Туре (No.) Thermostatic Shower 8.00 0.00 0.00 0.00 0.00 0.00 Total No. of Fittings (No.) Total Flow (I/s) Maximum Flow (I/s) Average Flow (I/s) Weighted Average Flow (I/s) Flow for Calculation (I/s) 16.00 8.00 8.00 5.60 8.00 WCs Part Flush Quantity Full Flush WC Type Dual WC Volume Volume (No) 3.00 4.50 Total number of fittings Average effective flushing volume 3.50 Washing Machines Washing Machine L per Kg Quantity Total per Dry Load (No.) Fitting type 0.00 Туре 0.00 Total No. of Fittings (No.) Total Consumption (I) 8.17 Maximum Consumption (I) Average Consumption (I/s) Weighted Average Consumption (I) Consumption for Calculation (I/s) 8.17 8.17 5.72 8.17 **Other Fittings** Waste Disposal Y/N Ν Water softner Consumption beyond 4% l/p/d Use of grey water and harvested rainwater Total Grey water from WHB taps (I) Total Availble Grey Water Supply (I) Possible Demand (I) 0 205.40 130.51 Grey/Rain Installed Capacity (I) Figure for Calculation lit/person/day 0.00 0.00

Water Use Assessment

Installation Type	Unit	Capacity/	Use Factor	Fixed use	Total Use	
		Flow Rate		(l/p/day)	(l/p/day)	
WC Single Flush	Volume (I)	0.00	4.42	0.00	0.00	
WC Dual Flush	Full Flush (I)		1.46			
	Pt Flush (I)	0.00	2.96			
WC's (Multiple)	Volume (I)	3.50	4.42			
Taps Exc. Kitchen	Flow Rate	3.00	1.58			
Bath (shower present)	(l/s)	149.00	0.11			
Shower (bath present)	(l/s)	8.00	4.37			
Bath Only	(I)	0.00	0.50			
Shower Only	(l/s)	0.00	5.60			
Kitchen Taps	(l/s)	10.00	0.44			
Washing Machines	(l/kgdry)	8.17	2.10			Solution of the second seco
Dishwashers	(l/place)	1.25	3.60			You can change them by entering
Waste Disposal	(l/s)	0.00				
Water Softner	(l/s)	0.00	1.00	0.00		
Total Calculated Water Use (I/p/day)					109.56	
Grey/RainWater Reused (I)				0.00		
Normalisation Factor (Factor)				0.9		
Total Consumption CSH (I/p/day)				99.70		
External Water Use Allowance (I)					5.00	
Total Comsumption Part G (I/p/day)					104.70	
Assesment Result				PASS		