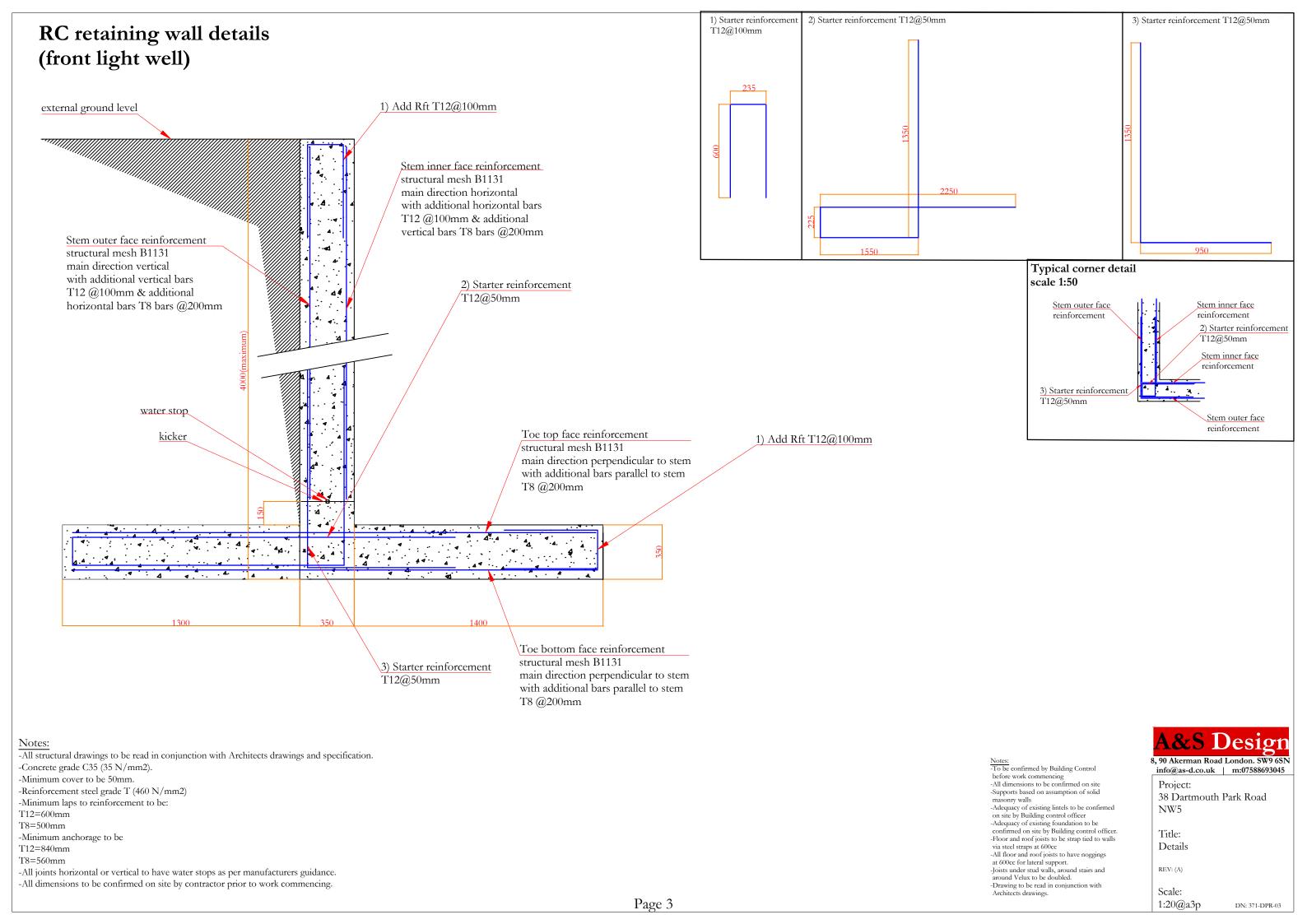

Page 1

Notes: -To be confirmed by Building Control

- -All dimensions to be confirmed on site
- -Supports based on assumption of solid masonry walls
- masonry walls -Adequacy of existing lintels to be confirmed on site by Building control officer -Adequacy of existing foundation to be confirmed on site by Building control officer.
- -Floor and roof joists to be strap tied to walls via steel straps at 600cc
- -All floor and roof joists to have noggings
- at 600cc for lateral support. -Joists under stud walls, around stairs and around Velux to be doubled.
- -Drawing to be read in conjunction with Architects drawings.

Columns (C1): RHS 150x100x8 steel grade S355 to be anchored to walls via M12 chemical anchor bolts @450cc staggered gap between columns and brick walls to be dry packed Supports: concrete foundations 1000x1000mm x1100mm deep (depth to be confirmed by Building Control Officer)


8, 90 Akerman Road London. SW9 6SN info@as-d.co.uk | m:07588693045

Project: 38 Dartmouth Park Road NW5

Title: Details

REV: (A)

Scale: 1:20@a3p

project: 38 L	Dartmouth Park Road			
Trimmers (T1):	max span= 305	cm		assume 3no. C24 50x200
<u>i- LOADS</u>				
	a) Uniform loads			
	1- ground floor (dead+live)		2 kn/m2	
		Х	1.63 m	
		=	3.25 kn/m	
	2- stud wall		0.35 kn/m2	
		Х	2.60 m	
		=	0.91 kn/m	
	TOTAL U.L=	<u>4.</u>	<u>16</u> Kn/m	
<u>ii- FORCES</u>				
II- FURCES				
	Ra=	6.52 Kn		Rb= 6.52 Kn
	MAX BENDING MOMENT (M)=	4.97 kn.m		
	MAX SHEAR FORCE (Q)=	6.52 kn		
	MAX DEFLECTION(d)=	6.27 mm		
<u>iii- CHECK</u>		4.4		

refer to attached sheet for detailed design check according to BS 5268-2 use 3no. C24 50x200

project: 38 D	artmouth Park Road				
Trimmers (T2):	max span= 325	cm		assume 3no. C2	24 50x200
<u>i- LOADS</u>	a) Uniform loads 1- ground floor (dead+live)	x =	2 kn/m2 0.40 m 0.80 kn/m		
	TOTAL U.L=	<u>0.</u>	<u>80</u> Kn/m		
	b) reaction of T1	6	52 Kn @ 2.2	25m	
<u>ii- FORCES</u>	D. –	2 50 17.		DI	(00 K.
	Ra=	3.50 Kn		Rb=	6.00 Kn
	MAX BENDING MOMENT (M)=	5.55 kn.m			
	MAX SHEAR FORCE (Q)=	6.00 kn			
	MAX DEFLECTION(d)=	6.69 mm			
<u>iii- CHECK</u>					

refer to attached sheet for detailed design check according to BS 5268-2 use 3no. C24 50x200

project: 38 Dartmouth Park Road Beam (B1):

<u>i- LOADS</u>

span=	400 cm		assume UC 203x203x46 grade S275
a) Uniform Loads			
1- own weight		0.46 kn/m	
2- 1st floor (dead+live)		2 kn/m2	
	X	3.25 m	
	=	6.50 kn/m	
3- wall above		4.5 kn/m2	
	X	3.70 m	
	=	16.65 kn/m	
4- roof (dead+live)		1.85 kn/m2	
	X	3.25 m	
	=	6.01 kn/m	
TOTAL U.L=		<u>29.62</u> Kn/m	x1.5 ultimate load factor

ii- forces

R ₁ =	9.40 kn	R ₂ =	77.60 kn
$\mathbf{M}_{\mathrm{ult}}$ =	26.30 kn.m	R3=	30.00 kn
Q _{max} =	66.00 kn		
deflection $d_{act} =$	0.90 mm		

<u>iii- check</u>

assuming unrestrained compression flange

Refer to attached table for detailed desing check according to BS 5950 2000 Design check ok

use UC 203x203x46 grade S275

iv- supports

a) assume support width = 10 cm f_{all} = 0.55 N/mm2 L_{req} = 17.09 cm

use concrete pad stone 25x15x10cm

columns C1, refer to connection details

project: 38 Dartmouth Park Road

Columns (C1):

		height= 300	cn	n	assume RHS 150x100x8 grade S355
<u>i- LOADS</u>					
	a) LOADS:				
	1- Own weight			0.28 kn/m	
			х	3.00 m	
			=	0.84 kn	
	2-load from (B1)			77.60 kn	
		TOTAL=		78.440 Kn	
		factor	Х	1.5	
	Total Ultimate load "F"	100001	<u>=</u>	<u>117.66</u> <u>Kn</u>	
	Total Olumate load T		=	<u>117.00</u> <u>MI</u>	
	b) ultimate bending mom-	ent "Mx"	Ξ	<u>5.82 Kn.m</u>	(due to eccentricity)
<u>ii- stresses</u>					
		Pa=	32.02 N	/mm2	

<u>iii- check</u>

assuming pinned at both ends			
Le=	300.00 cm		
$\lambda =$	75.38		
From Blue Book			
Pz=	1310.00 Kn		
F/Pz=	0.09		
Mry=	47.20 Kn.m	>Mx	
			OK
Pcy=	916.00 Kn	>F	
Mb=	61.80 Kn.m	>M	
			OK
Ratio $(F/Pz+M/Mb)=$	0.22	<1	
			OK

use RHS 150x100x8 grade S355

<u>iv- supports</u>

new concrete foundations 1000x1000mm x 1100mm deep

project: 38 Dartmouth Park Road Beam (B2):

	sŗ	an= 635	cm			assume 2no. UC 203x203x71 grade S355
<u>i- LOADS</u>						
	a) Uniform Loads					
	1- own weight			1.	42 kn/m	
	2- ground (dead+live)			0	2 kn/m2	
			x		85 m	
			=	1.	70 kn/m	
	3- wall above			2	2.5 kn/m2	(between 0.0 & 2.70m)
			х	6.	70 m	
			=	16.	75 kn/m	
	4- upper floors (dead	+live)			2 kn/m2	(between 0.0 & 2.70m)
	·)	х	4.	15 m	
			х		00 floors	
			=		20 kn/m	
	5- stud wall				35 kn/m2	(between 0.0 & 2.70m)
			Х		15 m	
			=	2.	15 kn/m	
	6- roof (dead+live)			1.	85 kn/m2	(between 0.0 & 2.70m)
			х	4.	15 m	· · ·
			=	7.	68 kn/m	
		r		(2.00		
	<u>TOTAL U.</u>	<u>L=</u>		<u>62.90</u>	Kn/m	x1.5 ultimate load factor
	Load per beam			31.45	Kn/m	x1.5 ultimate load factor

<u>ii- forces</u>

 $R_{1} = 68.50 \text{ kn}$ $M_{ult} = 111.90 \text{ kn.m}$ $Q_{max} = 102.70 \text{ kn}$ deflection d_{act} = 17.70 mm

<u>iii- check</u>

assuming unrestrained compression flange

Refer to attached table for detailed desing check according to BS 5950 2000

Design check ok

use 2no. UC 203x203x71 grade \$355

iv- supports

a) assume support width = 20 cm f_{all} = 0.55 N/mm2 L_{req} = 124.55 cm

use UC 203x203x46 S355 with minimum bearing length of 125cm

 $\mathbf{R}_2 =$

22.10 kn

assume support width = 10 cm

 f_{all} = 0.55 N/mm2

 L_{req} = 80.36 cm

use mild steel plate 850x100x40mm

project: 38 Dartmouth Park Road Beam (B3):

	span= 255	cm			assume UC 203x203x71 grade S355
<u>i- LOADS</u>					
	a) Uniform Loads				
	1- own weight		0.7	71 kn/m	
	2- ground (dead+live)			2 kn/m2	
		х		00 m	
		=	4.(00 kn/m	
	3- wall above		4	.5 kn/m2	
		X	13.1	10 m	
		=	58.9	95 kn/m	
	4- upper floors (dead+live)			2 kn/m2	
		х	2.0	00 m	
		х	4.(00 floors	
		=	16.0	00 kn/m	
	5- roof (dead+live)		1.8	35 kn/m2	
		X	2.0	00 m	
		=	3.7	70 kn/m	
	TOTAL U.L=		<u>83.36</u>	Kn/m	x1.5 ultimate load factor

ii- forces

 $R_1 =$ 106.30 kn $M_{ult} =$ 101.60 kn.m **Q**_{max}= 159.40 kn deflection d_{act} = 2.90 mm

<u>iii- check</u>

assuming unrestrained compression flange

Refer to attached table for detailed desing check according to BS 5950 2000

Design check ok

use 2no. UC 203x203x71 grade \$355

 $\mathbf{R}_2 =$

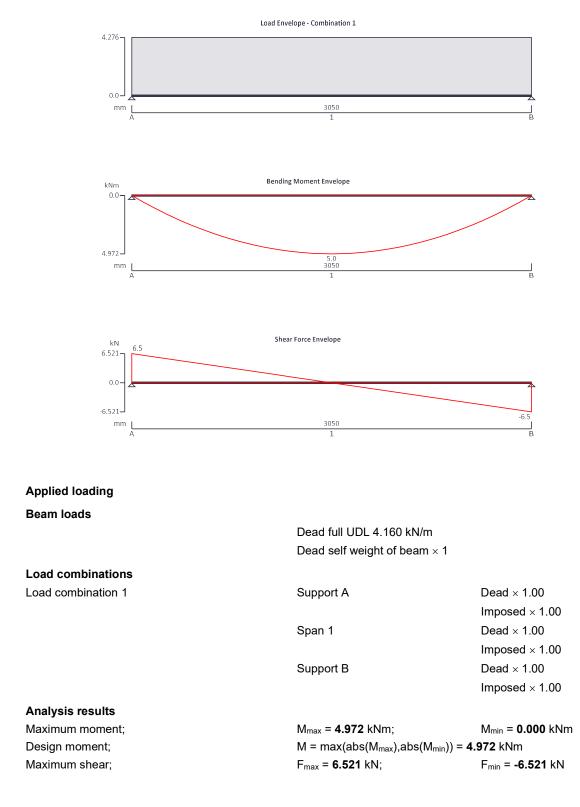
106.30 kn

iv- supports

assume support width = 30 cmf_{all}=

0.55 N/mm2

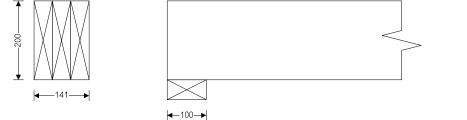
L_{req}=


64.42 cm

use minimum bearing of 65cm either side

TRIMMER (T1):

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002


TEDDS calculation version 1.7.01

Design shear; Total load on beam; Reactions at support A; Unfactored dead load reaction at support A; Reactions at support B; Unfactored dead load reaction at support B; $F = max(abs(F_{max}),abs(F_{min})) = 6.521 \text{ kN}$ W_{tot} = **13.042** kN R_{A_max} = 6.521 kN; RA_Dead = 6.521 kN R_{B_max} = 6.521 kN; R_{B_Dead} = **6.521** kN

RA_min = 6.521 kN

R_{B_min} = 6.521 kN

Timber section details	
Breadth of sections;	b = 47 mm
Depth of sections;	h = 200 mm
Number of sections in member;	N = 3
Overall breadth of member;	b _b = N × b = 141 mm
Timber strength class;	C24
Member details	
Service class of timber;	1
Load duration;	Long term
Length of span;	L _{s1} = 3050 mm
Length of bearing;	L _b = 100 mm
Section properties	
Cross sectional area of member;	A = N × b × h = 28200 mm ²
Section modulus;	Z_x = N × b × h ² / 6 = 940000 mm ³
	$Z_y = h \times (N \times b)^2 / 6 = 662700 \text{ mm}^3$
Second moment of area;	$I_x = N \times b \times h^3 / 12 = 94000000 \text{ mm}^4$
	$I_y = h \times (N \times b)^3 / 12 = 46720350 \text{ mm}^4$
Radius of gyration;	i _x = √(I _x / A) = 57.7 mm
	i _y = √(I _y / A) = 40.7 mm
Modification factors	
Duration of loading - Table 17;	K ₃ = 1.00
Bearing stress - Table 18;	K ₄ = 1.00
Total depth of member - cl.2.10.6;	K ₇ = (300 mm / h) ^{0.11} = 1.05
Load sharing - cl.2.10.11;	K ₈ = 1.10
Minimum modulus of elasticity - Table 20;	K ₉ = 1.21
Lateral support - cl.2.10.8	

Ends held in position Permissible depth-to-breadth ratio - Table 19; Actual depth-to-breadth ratio;

3.00 h / (N × b) = 1.42

PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane);	σ_{c_adm} = $\sigma_{cp1} \times K_3 \times K_4 \times K_8$ = 2.640 N/mm ²
Applied bearing stress;	σ_{c_a} = R _{A_max} / (N × b × L _b) = 0.462 N/mm ²
	σ _{c_a} / σ _{c_adm} = 0.175

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

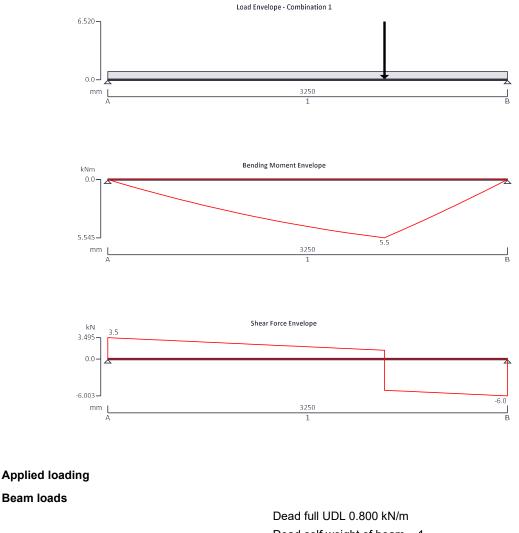
Permissible bending stress; Applied bending stress;
$$\begin{split} \sigma_{m_adm} &= \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{8.626} \ \text{N/mm}^2 \\ \sigma_{m_a} &= M \ / \ Z_x = \textbf{5.290} \ \text{N/mm}^2 \\ \sigma_{m_a} \ / \ \sigma_{m_adm} = \textbf{0.613} \end{split}$$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress; Applied shear stress;
$$\begin{split} \tau_{adm} &= \tau \times K_3 \times K_8 = \textbf{0.781} \ N/mm^2 \\ \tau_a &= 3 \times F \ / \ (2 \times A) = \textbf{0.347} \ N/mm^2 \\ \tau_a \ / \ \tau_{adm} = \textbf{0.444} \end{split}$$

PASS - Applied shear stress is less than permissible shear stress


Deflection

Modulus of elasticity for deflection; Permissible deflection; Bending deflection; Shear deflection; Total deflection;
$$\begin{split} &\mathsf{E} = \mathsf{E}_{min} \times \mathsf{K}_9 = \textbf{8712} \; \mathsf{N/mm^2} \\ & \delta_{adm} = min(0.551 \; in, \; 0.003 \times \mathsf{L}_{s1}) = \textbf{9.150} \; mm \\ & \delta_{b_s1} = \textbf{5.884} \; mm \\ & \delta_{v_s1} = \textbf{0.389} \; mm \\ & \delta_a = \delta_{b_s1} + \delta_{v_s1} = \textbf{6.272} \; mm \\ & \delta_a \; / \; \delta_{adm} = \textbf{0.685} \\ & \textbf{PASS - Total deflection is less than permissible deflection} \end{split}$$

TRIMMER (T2):

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.01

Load combinations

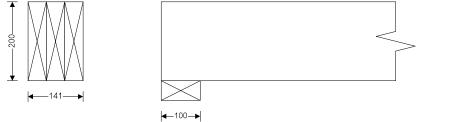
Load combination 1

Analysis results Maximum moment;

Design moment;

Dead full UDL 0.800 kN/m Dead self weight of beam \times 1 Dead point load 6.520 kN at 2250 mm

Support A


Span 1

Support B

Imposed \times 1.00 Dead \times 1.00 Imposed \times 1.00 Dead \times 1.00 Imposed \times 1.00

 $\text{Dead}\times 1.00$

F_{max} = **3.495** kN; F_{min} = **-6.003** kN Maximum shear; Design shear; $F = max(abs(F_{max}), abs(F_{min})) = \textbf{6.003} \text{ kN}$ W_{tot} = **9.497** kN Total load on beam; Reactions at support A; R_{A_max} = **3.495** kN; RA_min = 3.495 kN RA_Dead = 3.495 kN Unfactored dead load reaction at support A; R_{B_max} = 6.003 kN; R_{B_min} = **6.003** kN Reactions at support B; Unfactored dead load reaction at support B; R_{B_Dead} = 6.003 kN

Timber section details	
Breadth of sections:	

Breadth of sections;	b = 47 mm
Depth of sections;	h = 200 mm
Number of sections in member;	N = 3
Overall breadth of member;	b _b = N × b = 141 mm
Timber strength class;	C24
Member details	
Service class of timber;	1
Load duration;	Long term
Length of span;	L _{s1} = 3250 mm
Length of bearing;	L _b = 100 mm
Section properties	
Cross sectional area of member;	A = N × b × h = 28200 mm ²
Section modulus;	Z_x = N × b × h ² / 6 = 940000 mm ³
	$Z_y = h \times (N \times b)^2 / 6 = 662700 \text{ mm}^3$
Second moment of area;	$I_x = N \times b \times h^3 / 12 = 94000000 \text{ mm}^4$
	$I_y = h \times (N \times b)^3 / 12 = 46720350 \text{ mm}^4$
Radius of gyration;	i _x = √(I _x / A) = 57.7 mm
	i _y = √(I _y / A) = 40.7 mm
Modification factors	
Duration of loading - Table 17;	K ₃ = 1.00
Bearing stress - Table 18;	K ₄ = 1.00
Total depth of member - cl.2.10.6;	K ₇ = (300 mm / h) ^{0.11} = 1.05
Load sharing - cl.2.10.11;	K ₈ = 1.10
Minimum modulus of elasticity - Table 20;	K ₉ = 1.21
Lateral support - cl.2.10.8	
Ends held in position	
Permissible depth-to-breadth ratio - Table 19;	3.00
Actual depth-to-breadth ratio;	h / (N × b) = 1.42

Compression perpendicular to grain

Permissible bearing stress (no wane); Applied bearing stress;
$$\begin{split} &\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = \textbf{2.640} \ \text{N/mm}^2 \\ &\sigma_{c_a} = R_{B_max} / (\text{N} \times \text{b} \times \text{L}_{\text{b}}) = \textbf{0.426} \ \text{N/mm}^2 \\ &\sigma_{c_a} / \sigma_{c_adm} = \textbf{0.161} \end{split}$$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress; Applied bending stress;
$$\begin{split} \sigma_{m_adm} &= \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{8.626} \ \text{N/mm}^2 \\ \sigma_{m_a} &= M \ / \ Z_x = \textbf{5.898} \ \text{N/mm}^2 \\ \sigma_{m_a} \ / \ \sigma_{m_adm} = \textbf{0.684} \end{split}$$

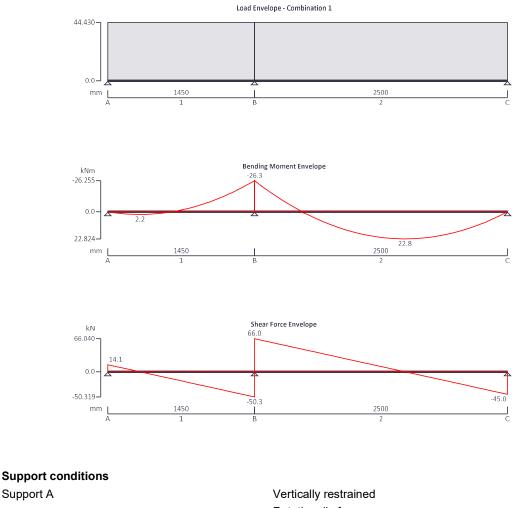
PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress; Applied shear stress;
$$\begin{split} \tau_{adm} &= \tau \times K_3 \times K_8 = \textbf{0.781} \ \text{N/mm}^2 \\ \tau_a &= 3 \times \text{F} \ \text{/} \ (2 \times \text{A}) = \textbf{0.319} \ \text{N/mm}^2 \\ \tau_a \ \text{/} \ \tau_{adm} = \textbf{0.409} \end{split}$$

PASS - Applied shear stress is less than permissible shear stress

Deflection


Modulus of elasticity for deflection; Permissible deflection; Bending deflection; Shear deflection; Total deflection;
$$\begin{split} &\mathsf{E} = \mathsf{E}_{min} \times \mathsf{K}_9 = \textbf{8712 N/mm}^2 \\ & \delta_{adm} = min(0.551 \text{ in}, \ 0.003 \times \mathsf{L}_{s1}) = \textbf{9.750 mm} \\ & \delta_{b_s1} = \textbf{6.258 mm} \\ & \delta_{v_s1} = \textbf{0.433 mm} \\ & \delta_a = \delta_{b_s1} + \delta_{v_s1} = \textbf{6.691 mm} \\ & \delta_a / \delta_{adm} = \textbf{0.686} \\ & \textbf{PASS - Total deflection is less than permissible deflection} \end{split}$$

BEAM (B1):

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support A

Support C

Applied loading Beam loads

Load combinations Load combination 1

Rotationally free Vertically restrained Rotationally free Vertically restrained Rotationally free

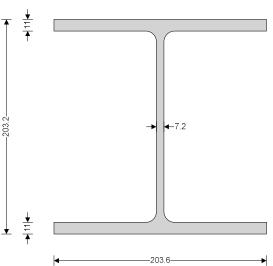
Dead full UDL 29.62 kN/m

Support A

 $\text{Dead} \times 1.50$ Imposed \times 1.50 $\text{Dead}\times 1.50$ Imposed \times 1.50

		D 4 50
	Support B	$Dead \times 1.50$
		Imposed \times 1.50
		$Dead \times 1.50$
		Imposed \times 1.50
	Support C	$\text{Dead}\times 1.50$
		Imposed \times 1.50
Analysis results		
Maximum moment;	M _{max} = 22.8 kNm;	M _{min} = -26.3 kNm
Maximum moment span 1;	M _{s1_max} = 2.2 kNm;	Ms1_min = -26.3 kNm
Maximum moment span 2;	M _{s2_max} = 22.8 kNm;	M _{s2_min} = -26.3 kNm
Maximum shear;	V _{max} = 66 kN;	V _{min} = -50.3 kN
Maximum shear span 1;	V _{s1_max} = 14.1 kN;	Vs1_min = -50.3 kN
Maximum shear span 2;	V _{s2_max} = 66 kN;	V _{s2_min} = -45 kN
Deflection;	δ_{max} = 0.9 mm;	δ _{min} = 0.1 mm
Deflection span 1;	$\delta_{s1_max} = 0 mm;$	δ _{s1_min} = 0.1 mm
Deflection span 2;	δ_{s2_max} = 0.9 mm;	$\delta_{s2_{min}} = 0 \text{ mm}$
Maximum reaction at support A;	R _{A_max} = 14.1 kN;	R _{A_min} = 14.1 kN
Unfactored dead load reaction at support A;	R _{A_Dead} = 9.4 kN	
Maximum reaction at support B;	R _{B_max} = 116.4 kN;	R _{B_min} = 116.4 kN
Unfactored dead load reaction at support B;	R _{B_Dead} = 77.6 kN	
Maximum reaction at support C;	Rc_max = 45 kN;	Rc_min = 45 kN
Unfactored dead load reaction at support C;	Rc_Dead = 30 kN	

Section details


Section type; Steel grade;

From table 9: Design strength p_y

Thickness of element; Design strength; Modulus of elasticity;

UKC 203x203x46 (Tata Steel Advance) S275

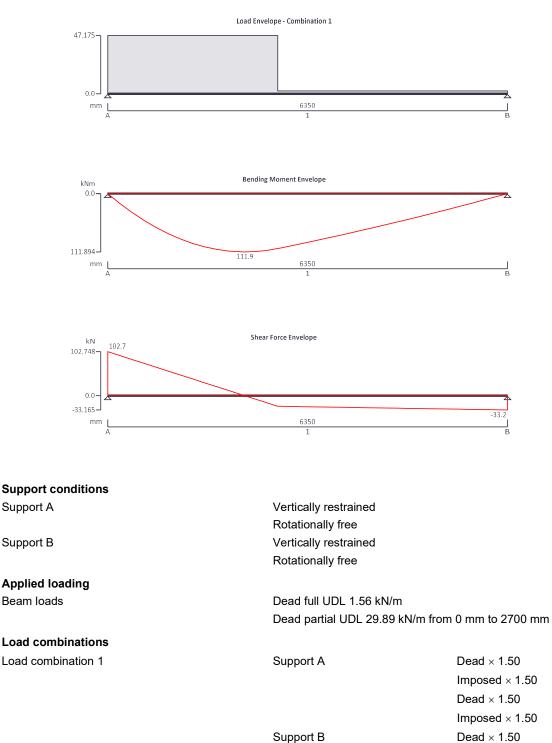
max(T, t) = **11.0** mm p_y = **275** N/mm² E = **205000** N/mm²

Lateral restraint

	Span 1 has lateral restraint at supports only	
	Span 2 has lateral restraint at supports only	
Effective length factors		
Effective length factor in major axis;	K _x = 1.00	
Effective length factor in minor axis;	K _y = 1.00	
Effective length factor for lateral-torsional buckling;	K _{LT.A} = 1.20 ; + 2 × D	
	K _{LT.B} = 1.20 ; + 2 × D	
	K _{LT.C} = 1.00 ;	
Classification of cross sections - Section 3.5		
Classification of cross sections - Section 3.5	- 1075 Numeral (= 1 - 1 00	
	ε = √[275 N/mm² / p _y] = 1.00	
Internal compression parts - Table 11		
Depth of section;	d = 160.8 mm	
	d / t = 22.3 $\times \epsilon$ <= 80 $\times \epsilon$;	Class 1 plastic
Outstand flanges - Table 11		
Width of section;	b = B / 2 = 101.8 mm	
	b / T = 9.3 × ε <= 10 × ε;	Class 2 compact
		Section is class 2 compact
Shear capacity - Section 4.2.3		
Design shear force;	F _v = max(abs(V _{max}), abs(V _{min}))	- 66 KN
Design shear lorce,	$d/t < 70 \times \varepsilon$	
		abaakad far abaar buakling
Chaor area		checked for shear buckling
Shear area;	$A_v = t \times D = 1463 \text{ mm}^2$	
Design shear resistance;	$P_v = 0.6 \times p_y \times A_v = 241.4 \text{ kN}$	
P4	ASS - Design shear resistance	exceeds design snear force
Moment capacity at span 2 - Section 4.2.5		
Design bending moment;	$M = max(abs(M_{s2_max}), abs(M_{s2_min})) = 26.3 \text{ kNm}$	
Moment capacity low shear - cl.4.2.5.2;	$M_{c} = min(p_{y} \times S_{xx}, \ 1.5 \times p_{y} \times Z_{xx}) = \textbf{136.8} \text{ kNm}$	
Effective length for lateral-torsional buckling - S	Section 4.3.5	
Effective length for lateral torsional buckling;	$L_E = ((1.2 + 1.0) \times L_{s2} + 2 \times D) / 2 = 2953 \text{ mm}$	
Slenderness ratio;	$\lambda = L_E / r_{yy} = 57.519$	
Equivalent slenderness - Section 4.3.6.7		
Buckling parameter;	u = 0.847	
Torsional index;	x = 17.713	
Slenderness factor;	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} =$	0 900
Ratio - cl.4.3.6.9;	βw = 1.000	0.000
Equivalent slenderness - cl.4.3.6.7;	•	
Limiting slenderness - Annex B.2.2;	$\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta_W]} = 43.799$ $\lambda_{L0} = 0.4 \times (\pi^2 \times \mathbf{E} / \mathbf{p}_V)^{0.5} = 34.310$	
	- Allowance should be made f	or lateral-torsional buckling
Bending strength - Section 4.3.6.5		
Robertson constant;	α _{LT} = 7.0	
Perry factor;	$\eta_{LT} = max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.066$	
Euler stress;	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} = 1054.7 \text{ N/m}$	m ²

	ϕ_{LT} = (p _y + (η_{LT} + 1) × p _E) / 2 = 699.9 N/mm ²
Bending strength - Annex B.2.1;	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 252.9 \text{ N/mm}^2$
Equivalent uniform moment factor - Section 4.3	.6.6
Moment at quarter point of segment;	M ₂ = 6.3 kNm
Moment at centre-line of segment;	M ₃ = 21.6 kNm
Moment at three quarter point of segment;	M4 = 19.5 kNm
Maximum moment in segment;	M _{abs} = 26.3 kNm
Maximum moment governing buckling resistance;	M _{LT} = M _{abs} = 26.3 kNm
Equivalent uniform moment factor for lateral-torsion	nal buckling;
m _{LT} = mai	$x(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.15 \times M_4) / M_{abs}, 0.44) = 0.758$
Buckling resistance moment - Section 4.3.6.4	
Buckling resistance moment;	M _b = p _b × S _{xx} = 125.8 kNm
	M _b / m _{LT} = 165.9 kNm
	PASS - Moment capacity exceeds design bending moment
Check vertical deflection - Section 2.5.2	
Consider deflection due to dead and imposed load	s
Limiting deflection;	$\delta_{\text{lim}} = L_{s2} / 250 = 10 \text{ mm}$
Maximum deflection span 2;	δ = max(abs(δ_{max}), abs(δ_{min})) = 0.891 mm

PASS - Maximum deflection does not exceed deflection limit


Page 23

BEAM (B2):

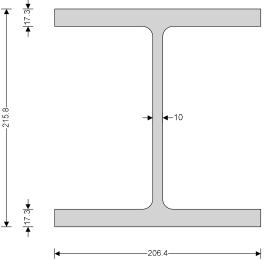
STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support B

Imposed \times 1.50


Analysis results		
Maximum moment;	M _{max} = 111.9 kNm;	M _{min} = 0 kNm
Maximum shear;	V _{max} = 102.7 kN;	V _{min} = -33.2 kN
Deflection;	δ _{max} = 17.7 mm;	δ _{min} = 0 mm
Maximum reaction at support A;	R _{A_max} = 102.7 kN;	R _{A_min} = 102.7 kN
Unfactored dead load reaction at support A;	R _{A_Dead} = 68.5 kN	
Maximum reaction at support B;	R _{B_max} = 33.2 kN;	R _{B_min} = 33.2 kN
Unfactored dead load reaction at support B;	R _{B_Dead} = 22.1 kN	

Section details

Section type; Steel grade; From table 9: Design strength py Thickness of element; Design strength; Modulus of elasticity;

UKC 203x203x71 (Tata Steel Advance) S355

max(T, t) = **17.3** mm p_y = **345** N/mm² E = **205000** N/mm²

Lateral restraint

Span 1 has lateral restraint at supports only

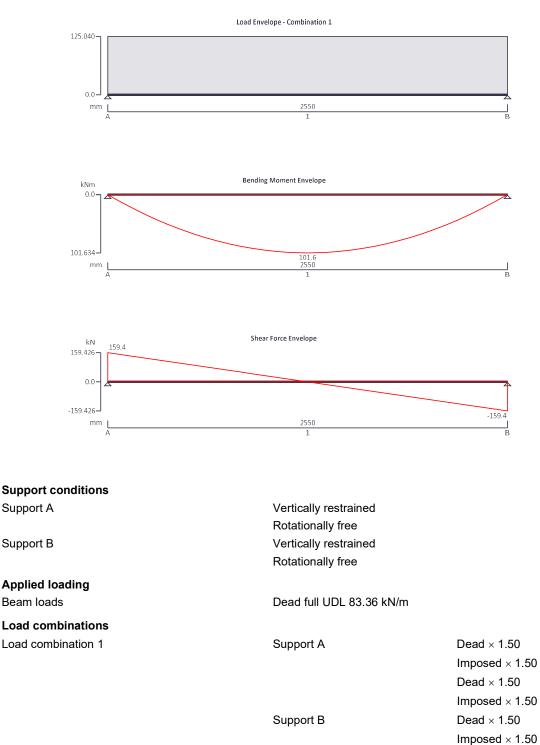
Effective length factors		
Effective length factor in major axis;	K _x = 1.00	
Effective length factor in minor axis;	K _y = 1.00	
Effective length factor for lateral-torsional buckling;	K _{LT.A} = 1.20 ; + 2 × D	
	$K_{LT.B}$ = 1.20; + 2 × D	
Classification of cross sections - Section 3.5		
	$\epsilon = \sqrt{275 \text{ N/mm}^2 / p_y} = 0.89$	
Internal compression parts - Table 11		
Depth of section;	d = 160.8 mm	
	d / t = 18.0 $\times \epsilon$ <= 80 $\times \epsilon$;	Class 1 plastic

Outstand flanges - Table 11		
Width of section;	b = B / 2 = 103.2 mm	
	b / T = $6.7 \times \varepsilon \le 9 \times \varepsilon$;	Class 1 plastic
		Section is class 1 plastic
Shear capacity - Section 4.2.3		
Design shear force;	F _v = max(abs(V _{max}), abs(V _{min})) =	102 7 kN
	d / t < 70 \times ϵ	
	Web does not need to be c	hecked for shear buckling
Shear area;	$A_v = t \times D = 2158 \text{ mm}^2$	
Design shear resistance;	$P_v = 0.6 \times p_y \times A_v = 446.7 \text{ kN}$	
-	ASS - Design shear resistance ex	xceeds design shear force
Moment capacity - Section 4.2.5		
Design bending moment;	M = max(abs(M _{s1_max}), abs(M _{s1_m}	_{nin})) = 111.9 kNm
Moment capacity low shear - cl.4.2.5.2;	$M_{c} = min(p_{y} \times S_{xx}, 1.2 \times p_{y} \times Z_{xx})$	
Effective length for lateral-torsional buckling -	Section 4.3.5	
Effective length for lateral torsional buckling;	$L_E = 1.2 \times L_{s1} + 2 \times D = 8052 \text{ mm}$	n
Slenderness ratio;	λ = L _E / r _{yy} = 152.001	
Equivalent slenderness - Section 4.3.6.7		
Buckling parameter;	u = 0.853	
Torsional index;	x = 11.926	
Slenderness factor;	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.$.575
Ratio - cl.4.3.6.9;	βw = 1.000	
Equivalent slenderness - cl.4.3.6.7;	$λ_{LT}$ = u × v × $λ$ × √[βw] = 74.567	
Limiting slenderness - Annex B.2.2;	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 30.63$	32
-	- Allowance should be made for	
Bending strength - Section 4.3.6.5		
Robertson constant;	αLT = 7.0	
Perry factor;	ηιτ = max(αιτ × (λιτ - λιο) / 1000	(, 0) = 0.308
Euler stress;	$p_{\rm E} = \pi^2 \times E / \lambda_{\rm LT}^2 = 363.9 \text{ N/mm}^2$	
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 41$	10.4 N/mm ²
Bending strength - Annex B.2.1;	$p_{b} = p_{E} \times p_{y} / (\phi_{LT} + (\phi_{LT}^{2} - p_{E} \times p_{y}))$	₍) ^{0.5}) = 203.3 N/mm ²
Equivalent uniform moment factor - Section 4.3	.6.6	
Moment at quarter point of segment;	M ₂ = 103.7 kNm	
Moment at centre-line of segment;	M ₃ = 93.5 kNm	
Moment at three quarter point of segment;	M4 = 49.7 kNm	
Maximum moment in segment;	M _{abs} = 111.9 kNm	
Maximum moment governing buckling resistance;	M _{LT} = M _{abs} = 111.9 kNm	
Equivalent uniform moment factor for lateral-torsion	-	
m _{LT} = ma	$x(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.1))$	$5 \times M_4$) / M _{abs} , 0.44) = 0.823
Buckling resistance moment - Section 4.3.6.4		
Buckling resistance moment;	$M_b = p_b \times S_{xx} = 162.4 \text{ kNm}$	
	M _b / m _{LT} = 197.2 kNm	

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads Limiting deflection; Maximum deflection span 1;


$$\begin{split} \delta_{lim} &= L_{s1} \ / \ 250 = \textbf{25.4} \ mm \\ \delta &= max(abs(\delta_{max}), \ abs(\delta_{min})) = \textbf{17.747} \ mm \\ \textbf{PASS - Maximum deflection does not exceed deflection limit} \end{split}$$

BEAM (B3):

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Analysis results		
Maximum moment;	M _{max} = 101.6 kNm;	M _{min} = 0 kNm
Maximum shear;	V _{max} = 159.4 kN;	V _{min} = -159.4 kN
Deflection;	δ _{max} = 2.9 mm;	δ _{min} = 0 mm
Maximum reaction at support A;	R _{A_max} = 159.4 kN;	R _{A_min} = 159.4 kN
Unfactored dead load reaction at support A;	R _{A_Dead} = 106.3 kN	
Maximum reaction at support B;	R _{B_max} = 159.4 kN;	R _{B_min} = 159.4 kN
Unfactored dead load reaction at support B;	R _{B_Dead} = 106.3 kN	
Section dotails		

Section details

Section type; Steel grade; From table 9: Design strength py Thickness of element; Design strength; Modulus of elasticity; UKC 203x203x71 (Tata Steel Advance) S355

Span 1 has lateral restraint at supports only

max(T, t) = **17.3** mm

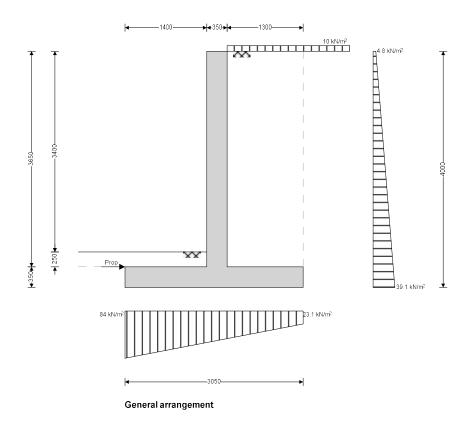
 $p_y = 345 \text{ N/mm}^2$ $E = 205000 \text{ N/mm}^2$

Lateral restraint

Effective length factors		
Effective length factor in major axis;	K _x = 1.00	
Effective length factor in minor axis;	K _y = 1.00	
Effective length factor for lateral-torsional buckling;	K _{LT.A} = 1.20 ; + 2 × D	
	K _{LT.B} = 1.20 ; + 2 × D	
Classification of cross sections - Section 3.5		
	ε = √[275 N/mm² / p _y] = 0.89	
Internal compression parts - Table 11		
Depth of section;	d = 160.8 mm	
	d / t = 18.0 $\times \epsilon$ <= 80 $\times \epsilon$;	Class 1 plastic
Outstand flanges - Table 11		
Width of section;	b = B / 2 = 103.2 mm	

	b / T = 6.7 $\times \epsilon$ <= 9 $\times \epsilon$;	Class 1 plastic
		Section is class 1 plastic
Shear capacity - Section 4.2.3		
Design shear force;	$F_v = max(abs(V_{max}), abs(V_{min}))$	= 159.4 KN
	d / t < 70 × ε	
		checked for shear buckling
Shear area;	$A_v = t \times D = 2158 \text{ mm}^2$	
Design shear resistance;	$P_v = 0.6 \times p_y \times A_v = 446.7 \text{ kN}$	
	ASS - Design shear resistance	exceeds design shear force
Moment capacity - Section 4.2.5		
Design bending moment;	$M = max(abs(M_{s1_max}), abs(M_{s1_max}))$	
Moment capacity low shear - cl.4.2.5.2;	$M_c = min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx})$.) = 275.6 kNm
Effective length for lateral-torsional buckling -	Section 4.3.5	
Effective length for lateral torsional buckling;	L_E = 1.2 × L_{s1} + 2 × D = 3492 m	m
Slenderness ratio;	$\lambda = L_E / r_{yy} = 65.916$	
Equivalent slenderness - Section 4.3.6.7		
Buckling parameter;	u = 0.853	
Torsional index;	x = 11.926	
Slenderness factor;	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0$	0.793
Ratio - cl.4.3.6.9;	βw = 1.000	
Equivalent slenderness - cl.4.3.6.7;	$\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta w]} = 44.570$	
Limiting slenderness - Annex B.2.2;	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 30.6$	32
$\lambda_{LT} > \lambda_{LT}$	o - Allowance should be made for a should be mad	or lateral-torsional buckling
Bending strength - Section 4.3.6.5		
Robertson constant;	α _{LT} = 7.0	
Perry factor;	η _{LT} = max($\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0})$ / 100	0, 0) = 0.098
Euler stress;	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} =$ 1018.5 N/m	m²
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 7$	731.5 N/mm ²
Bending strength - Annex B.2.1;	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_E))$	p _y) ^{0.5}) = 302.9 N/mm ²
Equivalent uniform moment factor - Section 4.3	3.6.6	
Moment at quarter point of segment;	M ₂ = 76.2 kNm	
Moment at centre-line of segment;	M ₃ = 101.6 kNm	
Moment at three quarter point of segment;	M4 = 76.2 kNm	
Maximum moment in segment;	M _{abs} = 101.6 kNm	
Maximum moment governing buckling resistance;	M _{LT} = M _{abs} = 101.6 kNm	
Equivalent uniform moment factor for lateral-torsio	nal buckling;	
m _{LT} = ma	$x(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.5))$	$15 \times M_4$) / M _{abs} , 0.44) = 0.925
Buckling resistance moment - Section 4.3.6.4		
Buckling resistance moment;	M_b = $p_b \times S_{xx}$ = 242 kNm	
	M _b / m _{LT} = 261.6 kNm	
PASS - Buc	kling resistance moment excee	ds design bending moment
Check vertical deflection - Section 2.5.2		

Consider deflection due to dead and imposed loads


Limiting deflection; Maximum deflection span 1;
$$\begin{split} &\delta_{\text{lim}} = L_{\text{s1}} \ / \ 250 = \textbf{10.2} \ \text{mm} \\ &\delta = \max(abs(\delta_{\text{max}}), \ abs(\delta_{\text{min}})) = \textbf{2.939} \ \text{mm} \\ &\textbf{PASS - Maximum deflection does not exceed deflection limit} \end{split}$$

RETAINING WALL ANALYSIS LOAD CASE 1 (NO GROUND WATER PRESENT):

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.07

Retaining wall details	
Stem type;	Cantilever
Stem height;	h _{stem} = 3650 mm
Stem thickness;	t _{stem} = 350 mm
Angle to rear face of stem;	α = 90 deg
Stem density;	γ_{stem} = 25 kN/m ³
Toe length;	I _{toe} = 1400 mm
Heel length;	I _{heel} = 1300 mm
Base thickness;	t _{base} = 350 mm
Base density;	γ_{base} = 25 kN/m ³
Height of retained soil;	h _{ret} = 3400 mm
Angle of soil surface;	$\beta = 0 \deg$
Depth of cover;	d _{cover} = 250 mm
Depth of excavation;	d _{exc} = 250 mm
Retained soil properties	
Soil type;	Firm clay
Moist density;	γ _{mr} = 18 kN/m ³
Saturated density;	γsr = 18 kN/m ³
Characteristic effective shear resistance angle;	φ'r.k = 18 deg
Characteristic wall friction angle;	δ _{r.k} = 9 deg
Base soil properties	
Soil type;	Firm clay
Soil density;	γ _b = 18 kN/m ³
Characteristic effective shear resistance angle;	φ' _{b.k} = 18 deg
Characteristic wall friction angle;	δ _{b.k} = 9 deg
Characteristic base friction angle;	δ _{bb.k} = 12 deg
Presumed bearing capacity;	P _{bearing} = 100 kN/m ²
Loading details	
Variable surcharge load;	Surcharge _Q = 10 kN/m ²

Calculate retaining wall geometry

Base length;	I _{base} = I _{toe} + t _{stem} + I _{heel} = 3050 mm
Moist soil height;	h _{moist} = h _{soil} = 3650 mm
Length of surcharge load;	I _{sur} = I _{heel} = 1300 mm
- Distance to vertical component;	x _{sur_v} = I _{base} - I _{heel} / 2 = 2400 mm
Effective height of wall;	h_{eff} = h_{base} + d_{cover} + h_{ret} = 4000 mm
- Distance to horizontal component;	x _{sur_h} = h _{eff} / 2 = 2000 mm
Area of wall stem;	A _{stem} = h _{stem} × t _{stem} = 1.278 m ²
- Distance to vertical component;	x _{stem} = I _{toe} + t _{stem} / 2 = 1575 mm
Area of wall base;	$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = 1.068 \text{ m}^2$
- Distance to vertical component;	x _{base} = I _{base} / 2 = 1525 mm
Area of moist soil;	$A_{moist} = h_{moist} \times I_{heel} = 4.745 \text{ m}^2$
- Distance to vertical component;	$x_{moist_v} = I_{base} - (h_{moist} \times I_{heel}^2 / 2) / A_{moist} = 2400 \text{ mm}$
- Distance to horizontal component;	x _{moist_h} = h _{eff} / 3 = 1333 mm
Area of base soil;	$A_{pass} = d_{cover} \times I_{toe} = 0.35 \text{ m}^2$
- Distance to vertical component;	$x_{pass_v} = I_{base} - (d_{cover} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{pass} = 700 \text{ mm}$
- Distance to horizontal component;	$x_{pass_h} = (d_{cover} + h_{base}) / 3 = 200 \text{ mm}$

Using Coulomb theory Active pressure coefficient;

Passive pressure coefficient;

Bearing pressure check Vertical forces on wall

Horizontal forces on wall

Base soil;

Wall stem; Wall base; Surcharge load; Moist retained soil;

Base soil; Total;

Propping force; Distance to reaction; Eccentricity of reaction; Loaded length of base; Bearing pressure at toe; Bearing pressure at heel;

Factor of safety;

Total;

Surcharge load;

Moist retained soil;

Moments on wall

 $K_{A} = \sin(\alpha + \phi'_{r.k})^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta_{r.k}) \times [1 + \sqrt{[\sin(\phi'_{r.k} +$ $\delta_{r.k}$ × sin($\phi'_{r.k}$ - β) / (sin(α - $\delta_{r.k}$) × sin(α + β))]]²) = **0.483** $K_{P} = \sin(90 - \phi'_{b.k})^{2} / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k})} \times (1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k})})))$ $sin(\phi'_{b.k}) / (sin(90 + \delta_{b.k}))]]^2) = 2.359$

Wall stem;	F _{stem} = A _{stem} × γ _{stem} = 31.9 kN/m
Wall base;	$F_{base} = A_{base} \times \gamma_{base} = 26.7 \text{ kN/m}$
Surcharge load;	F _{sur_v} = Surcharge _Q × I _{heel} = 13 kN/m
Moist retained soil;	$F_{moist_v} = A_{moist} \times \gamma_{mr} = 85.4 \text{ kN/m}$
Base soil;	$F_{pass_v} = A_{pass} \times \gamma_b = 6.3 \text{ kN/m}$
Total;	$F_{total_v} = F_{stem} + F_{base} + F_{sur_v} + F_{moist_v} + F_{pass_v} = 163.3 \text{ kN/m}$

$F_{sur_h} = K_A \times cos(\delta_{r.k}) \times Surcharge_Q \times h_{eff} = 19.1 \text{ kN/m}$ $F_{moist_h} = K_A \times cos(\delta_{r.k}) \times \gamma_{mr} \times h_{eff}^2 / 2 = 68.7 \text{ kN/m}$ $F_{pass h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -7.5 \text{ kN/m}$ Ftotal_h = Fsur_h + Fmoist_h + Fpass_h = 80.2 kN/m

M _{stem} = F _{stem} × x _{stem} = 50.3 kNm/m
M_{base} = $F_{base} \times x_{base}$ = 40.7 kNm/m
$M_{sur} = F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -7 \text{ kNm/m}$
$M_{moist} = F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = \textbf{113.4 kNm/m}$
M _{pass} = F _{pass_v} × x _{pass_v} = 4.4 kNm/m
$M_{total} = M_{stem} + M_{base} + M_{sur} + M_{moist} + M_{pass} = 201.8 \text{ kNm/m}$

F _{prop_base} = F _{total_h} = 80.2 kN/m
$\overline{x} = M_{total} / F_{total_v} = 1236 \text{ mm}$
e = x - I _{base} / 2 = -289 mm
I _{load} = I _{base} = 3050 mm
$q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 84 \text{ kN/m}^2$
$q_{\text{heel}} = F_{\text{total}_v} / I_{\text{base}} \times (1 + 6 \times e / I_{\text{base}}) = 23.1 \text{ kN/m}^2$
$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 1.19$

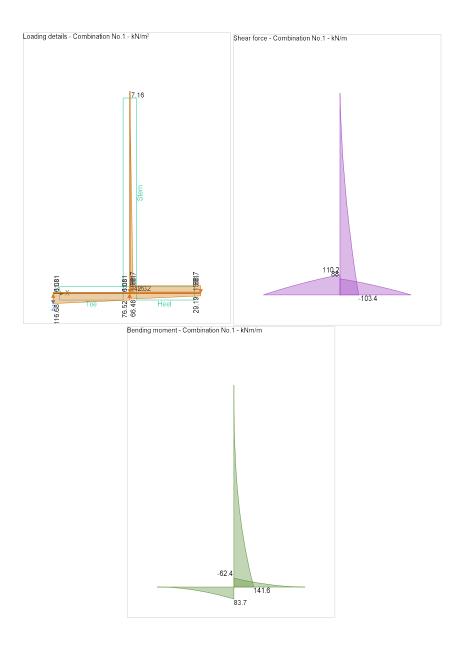
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

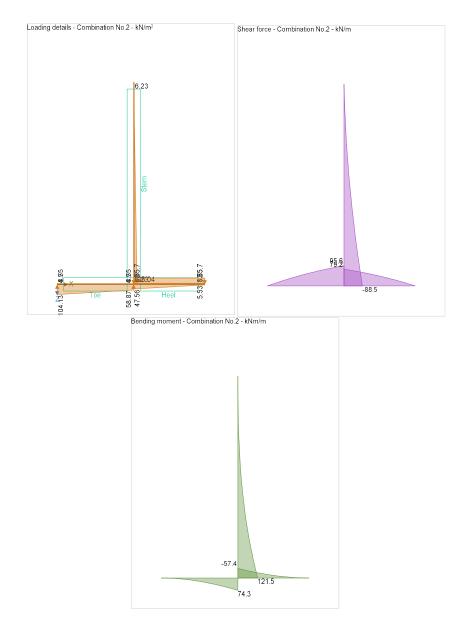
RETAINING WALL DESIGN

Check bearing pressure

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National **Annex incorporating National Amendment No.1**

Tedds calculation version 2.9.07


Concrete details - Table 3.1 - Strength and deformation characteristics for concrete


Concrete strength class;	C35/45
Characteristic compressive cylinder strength;	f _{ck} = 35 N/mm ²
Characteristic compressive cube strength;	f _{ck,cube} = 45 N/mm ²
Mean value of compressive cylinder strength;	f _{cm} = f _{ck} + 8 N/mm ² = 43 N/mm ²

Mean value of axial tensile strength;	f_{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²
5% fractile of axial tensile strength;	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.2 \text{ N/mm}^2$
Secant modulus of elasticity of concrete;	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 34077 N/mm ²
Partial factor for concrete - Table 2.1N;	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1);	$\alpha_{cc} = 0.85$
Design compressive concrete strength - exp.3.15;	f_{cd} = $\alpha_{cc} \times f_{ck}$ / γ_C = 19.8 N/mm ²
Maximum aggregate size;	h _{agg} = 20 mm
Ultimate strain - Table 3.1;	ε _{cu2} = 0.0035
Shortening strain - Table 3.1;	ε _{cu3} = 0.0035
Effective compression zone height factor;	$\lambda = 0.80$
Effective strength factor;	η = 1.00
Bending coefficient k1;	K ₁ = 0.40
Bending coefficient k ₂ ;	$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Bending coefficient k ₃ ;	K ₃ = 0.40
Bending coefficient k4;	$K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Reinforcement details	
Characteristic yield strength of reinforcement;	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement;	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N;	γs = 1.15
Design yield strength of reinforcement;	f _{yd} = f _{yk} / γ _S = 435 N/mm ²
Cover to reinforcement	
Front face of stem;	c _{sf} = 50 mm
Rear face of stem;	c _{sr} = 50 mm
Top face of base;	c _{bt} = 50 mm

c_{bb} = **50** mm

Bottom face of base;

Check stem design at base of stem

Depth of section;

h = **350** mm

Rectangular section in flexure - Section 6.1
Design bending moment combination 1;
Depth to tension reinforcement;

× K2))

Lever arm; **279** mm
$$\begin{split} M &= \textbf{141.6 kNm/m} \\ d &= h - c_{sr} - \phi_{sr} / 2 = \textbf{294 mm} \\ K &= M / (d^2 \times f_{ck}) = \textbf{0.047} \\ K' &= (2 \times \eta \times \alpha_{cc} / \gamma_C) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2)) \\ \end{split}$$

K' = **0.207**

K' > K - No compression reinforcement is required

z = min(0.5 + 0.5 \times (1 - 2 \times K / ($\eta \times \alpha_{cc}$ / γ_{C}))^{0.5}, 0.95) \times d =

Depth of neutral axis;	x = 2.5 × (d – z) = 37 mm
Area of tension reinforcement required;	$A_{sr.req} = M / (f_{yd} \times z) = 1166 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	12 dia.bars @ 50 c/c
Area of tension reinforcement provided;	$A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 2262 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N;	$A_{sr.min}$ = max(0.26 × f _{ctm} / f _{yk} , 0.0013) × d = 491 mm ² /m
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{sr.max} = 0.04 × h = 14000 mm ² /m
	max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.516

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.006$ Required tension reinforcement ratio; $\rho = A_{sr.req} / d = 0.004$ Required compression reinforcement ratio; $\rho' = A_{sr.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N; K_b = **0.4** Ks = min(500 N/mm² / (f_{yk} × A_{sr.req} / A_{sr.prov}), 1.5) = 1.5 Reinforcement factor - exp.7.17; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + 3.2 × Limiting span to depth ratio - exp.7.16.a; $\sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}], 40 \times K_b) = 16$ h_{stem} / d = **12.4**

Actual span to depth ratio;

PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3

Limiting crack width; Variable load factor - EN1990 - Table A1.1; Serviceability bending moment; Tensile stress in reinforcement; Load duration; Load duration factor; Effective area of concrete in tension;

Mean value of concrete tensile strength; Reinforcement ratio; Modular ratio; Bond property coefficient; Strain distribution coefficient;

Maximum crack spacing - exp.7.11; Maximum crack width - exp.7.8;

w_{max} = 0.3 mm $\psi_2 = 0.6$ Msis = 88.7 kNm/m $\sigma_{s} = M_{sls} / (A_{sr.prov} \times z) = 140.4 \text{ N/mm}^{2}$ Long term kt = **0.4** $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ Ac.eff = 104417 mm²/m $f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$ $\rho_{p.eff} = A_{sr.prov} / A_{c.eff} = 0.022$ $\alpha_{e} = E_{s} / E_{cm} = 5.869$ k1 = **0.8** k₂ = 0.5 k₃ = 3.4 k₄ = **0.425** $s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 264 \text{ mm}$ $w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$ σs) / Es w_k = 0.111 mm $w_k / w_{max} = 0.371$

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2 Design shear force;

V = 103.4 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.825$

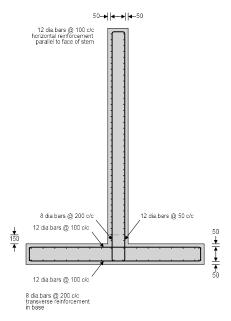
Longitudinal reinforcement ratio;	ρι = min(A _{sr.prov} / d, 0.02) = 0.008
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}{}^{0.5} = \textbf{0.510} \; N / mm^2$
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}$, v_{min}) × d
	V _{Rd.c} = 193 kN/m
	V / V _{Rd.c} = 0.536
PA	ASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of sten	n - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1);	$A_{\text{sx.req}} = \text{max}(0.25 \times A_{\text{sr.prov}}, 0.001 \times t_{\text{stem}}) = \textbf{565} \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.6.3(2);	s _{sx_max} = 400 mm
Transverse reinforcement provided;	12 dia.bars @ 100 c/c
Area of transverse reinforcement provided;	$A_{sx.prov}$ = $\pi \times \phi_{sx}^2$ / (4 \times s _{sx}) = 1131 mm ² /m
PASS - Area of reinforceme	nt provided is greater than area of reinforcement required
Check base design at toe	
Depth of section;	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1;	M = 83.7 kNm/m
Depth to tension reinforcement;	d = h - c _{bb} - φ _{bb} / 2 = 294 mm
	K = M / (d ² × f _{ck}) = 0.028
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$
× K2))	
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d =
279 mm	
Depth of neutral axis;	x = 2.5 × (d−z) = 37 mm
Area of tension reinforcement required;	$A_{bb.req} = M / (f_{yd} \times z) = 689 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	12 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) =$ 1131 mm ² /m
Minimum area of reinforcement - exp.9.1N;	A _{bb.min} = max(0.26 × f _{ctm} / f _{yk} , 0.0013) × d = 491 mm ² /m
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{bb.max} = 0.04 × h = 14000 mm ² /m
	max(Abb.req, Abb.min) / Abb.prov = 0.609
PASS - Area of reinforceme	nt provided is greater than area of reinforcement required
	Library item: Rectangular single output

Library item: Rectangular single output

Crack control - Section 7.3	
Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	ψ2 = 0.6
Serviceability bending moment;	M _{sls} = 60.2 kNm/m
Tensile stress in reinforcement;	σ_s = M _{sls} / (A _{bb.prov} × z) = 190.7 N/mm ²
Load duration;	Long term
Load duration factor;	kt = 0.4
Effective area of concrete in tension;	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$
	A _{c.eff} = 104417 mm²/m
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$
Reinforcement ratio;	$\rho_{p.eff}$ = A _{bb.prov} / A _{c.eff} = 0.011
Modular ratio;	$\alpha_{e} = E_{s} / E_{cm} = 5.869$

Bond property coefficient;	$k_1 = 0.8$
Strain distribution coefficient;	$k_2 = 0.5$
	$k_3 = 3.4$
	k ₄ = 0.425
Maximum crack spacing - exp.7.11;	$\mathbf{s}_{r.max} = \mathbf{k}_3 \times \mathbf{c}_{bb} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_4 \times \phi_{bb} / \rho_{p.eff} = 358 \text{ mm}$
Maximum crack width - exp.7.8;	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$
	$\sigma_s) / E_s$
	w _k = 0.205 mm
	w _k / w _{max} = 0.683
PA	SS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force;	V = 110.2 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.825
Longitudinal reinforcement ratio;	ρι = min(A _{bb.prov} / d, 0.02) = 0.004
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.510 N/mm ²
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}$, $v_{\text{min}}) \times d$
	V _{Rd.c} = 153.2 kN/m
	V / V _{Rd.c} = 0.720
F	ASS - Design shear resistance exceeds design shear force
Check base design at heel	
Depth of section;	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1;	M = 62.4 kNm/m
Depth to tension reinforcement;	d = h - c _{bt} - ϕ_{bt} / 2 = 294 mm
	$K = M / (d^2 \times f_{ck}) = 0.021$
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{c}) \times (1 - \lambda \times (\delta - K_{1})/(2 \times K_{2})) \times (\lambda \times (\delta - K_{1})/(2 \times K_{2}))$
× K2))	
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γc)) ^{0.5} , 0.95) × d =
279 mm	
Depth of neutral axis;	$x = 2.5 \times (d - z) = 37 \text{ mm}$
Area of tension reinforcement required;	$A_{bt.req} = M / (f_{yd} \times z) = 514 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	12 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) =$ 1131 mm ² /m
Minimum area of reinforcement - exp.9.1N;	$A_{bt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 491 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{bt.max} = 0.04 × h = 14000 mm ² /m
	max(A _{bt.req} , A _{bt.min}) / A _{bt.prov} = 0.455
PASS - Area of reinforcem	ent provided is greater than area of reinforcement required Library item: Rectangular single output
Crack control - Section 7.3	
Limiting crack width;	w _{max} = 0.3 mm

Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	ψ2 = 0.6
Serviceability bending moment;	M _{sls} = 41.2 kNm/m

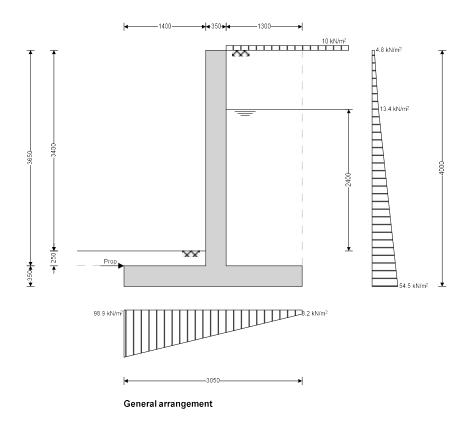

Tensile stress in reinforcement;	σ_s = M _{sls} / (A _{bt,prov} × z) = 130.3 N/mm ²
Load duration;	Long term
Load duration factor;	k _t = 0.4
Effective area of concrete in tension;	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 104417 mm ² /m
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$
Reinforcement ratio;	$\rho_{p.eff} = A_{bt,prov} / A_{c.eff} = 0.011$
Modular ratio;	$\alpha_{e} = E_{s} / E_{cm} = 5.869$
Bond property coefficient;	k1 = 0.8
Strain distribution coefficient;	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11;	$s_{r.max}$ = $k_3 \times c_{bt}$ + $k_1 \times k_2 \times k_4 \times \phi_{bt}$ / $\rho_{p.eff}$ = 358 mm
Maximum crack width - exp.7.8;	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$
	σs) / Es
	w _k = 0.14 mm
	w _k / w _{max} = 0.467
	PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2	
Design shear force;	V = 88 kN/m
	$C_{Rd,c}$ = 0.18 / γ_{C} = 0.120
	k = min(1 + √(200 mm / d), 2) = 1.825
Longitudinal reinforcement ratio;	ρ _l = min(A _{bt.prov} / d, 0.02) = 0.004
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.510} \; N / mm^2$
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max(C _{Rd.c} × k × (100 N ² /mm ⁴ × ρ I × fck) ^{1/3} , Vmin) × d
	V _{Rd.c} = 153.2 kN/m
	V / V _{Rd.c} = 0.574
PA	ASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - S	Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2);	$A_{bx.req} = 0.2 \times A_{bb.prov} = 226 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.3.1.1(3);	s _{bx_max} = 450 mm
Transverse reinforcement provided;	8 dia.bars @ 200 c/c

Area of transverse reinforcement provided;

PASS - Area of reinforcement provided is greater than area of reinforcement required

 $A_{\text{bx,prov}} = \pi \times \phi_{\text{bx}}^2 / (4 \times s_{\text{bx}}) = \textbf{251} \text{ mm}^2/\text{m}$


Reinforcement details

RETAINING WALL ANALYSIS LOAD CASE 2 (GROUND WATER PRESENT):

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.07

Retaining wall details			
Stem type;	Cantilever		
Stem height;	h _{stem} = 3650 mm		
Stem thickness;	t _{stem} = 350 mm		
Angle to rear face of stem;	α = 90 deg		
Stem density;	γ_{stem} = 25 kN/m ³		
Toe length;	I _{toe} = 1400 mm		
Heel length;	I _{heel} = 1300 mm		
Base thickness;	t _{base} = 350 mm		
Base density;	γ _{base} = 25 kN/m ³		
Height of retained soil;	h _{ret} = 3400 mm		
Angle of soil surface;	β = 0 deg		
Depth of cover;	d _{cover} = 250 mm		
Depth of excavation;	d _{exc} = 250 mm		
Height of water;	h _{water} = 2400 mm		
Water density;	γ _w = 9.8 kN/m ³		
Retained soil properties			
Soil type;	Firm clay		
Moist density;	γ _{mr} = 18 kN/m ³		
Saturated density;	γ _{sr} = 18 kN/m ³		
Characteristic effective shear resistance angle;	∲' r.k = 18 deg		
Characteristic wall friction angle;	$\delta_{r.k} = 9 \text{ deg}$		
Base soil properties			
Soil type;	Firm clay		
Soil density;	γь = 18 kN/m ³		
Characteristic effective shear resistance angle;	φ' _{b.k} = 18 deg		
Characteristic wall friction angle;	δ _{b.k} = 9 deg		
Characteristic base friction angle;	δ _{bb.k} = 12 deg		
Presumed bearing capacity;	P _{bearing} = 100 kN/m ²		
Presumed bearing capacity; Loading details	P _{bearing} = 100 kN/m ²		

Calculate retaining wall geometry

Base length; $I_{base} = I_{toe} + t_{stem} + I_{heel} = 3050 \text{ mm}$ Saturated soil height; $h_{sat} = h_{water} + d_{cover} = 2650 \text{ mm}$ Moist soil height; h_{moist} = h_{ret} - h_{water} = **1000** mm Length of surcharge load; I_{sur} = I_{heel} = **1300** mm - Distance to vertical component; $x_{sur_v} = I_{base} - I_{heel} / 2 = 2400 \text{ mm}$ Effective height of wall; $h_{eff} = h_{base} + d_{cover} + h_{ret} = 4000 \text{ mm}$ x_{sur_h} = h_{eff} / 2 = **2000** mm - Distance to horizontal component; Astem = $h_{stem} \times t_{stem}$ = 1.278 m² Area of wall stem; x_{stem} = I_{toe} + t_{stem} / 2 = **1575** mm - Distance to vertical component; $A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = \textbf{1.068} \ m^2$ Area of wall base; - Distance to vertical component; x_{base} = I_{base} / 2 = **1525** mm $A_{sat} = h_{sat} \times I_{heel} = 3.445 \text{ m}^2$ Area of saturated soil; $x_{sat_v} = I_{base} - (h_{sat} \times I_{heel}^2 / 2) / A_{sat} = 2400 \text{ mm}$ - Distance to vertical component; - Distance to horizontal component; x_{sat_h} = (h_{sat} + h_{base}) / 3 = **1000** mm Area of water; A_{water} = $h_{sat} \times I_{heel}$ = 3.445 m² $x_{water_v} = I_{base} - (h_{sat} \times I_{heel}^2 / 2) / A_{sat} = 2400 \text{ mm}$ - Distance to vertical component; - Distance to horizontal component; x_{water_h} = (h_{sat} + h_{base}) / 3 = **1000** mm Area of moist soil; A_{moist} = $h_{moist} \times I_{heel}$ = 1.3 m² $x_{moist_v} = I_{base} - (h_{moist} \times I_{heel}^2 / 2) / A_{moist} = 2400 \text{ mm}$ - Distance to vertical component;

- Distance to horizontal component;

Area of base soil;

- Distance to vertical component;

- Distance to horizontal component;

Using Coulomb theory Active pressure coefficient;

Passive pressure coefficient;

Bearing pressure check

Vertical forces on wall Wall stem; Wall base; Surcharge load; Saturated retained soil; Water; Moist retained soil; Base soil; Total;

Horizontal forces on wall

Surcharge load; Saturated retained soil;

Water; Moist retained soil;

Base soil; Total;

Moments on wall

Wall stem; Wall base; Surcharge load; Saturated retained soil; Water; Moist retained soil; Base soil; Total;

Check bearing pressure Propping force; $\begin{aligned} x_{moist_h} &= (h_{moist} \times (t_{base} + h_{sat} + h_{moist} / 3) / 2 + (h_{sat} + t_{base})^2 / 2) \\ / (h_{sat} + t_{base} + h_{moist} / 2) &= 1762 \text{ mm} \\ A_{pass} &= d_{cover} \times I_{toe} = 0.35 \text{ m}^2 \\ x_{pass_v} &= I_{base} - (d_{cover} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{pass} = 700 \text{ mm} \\ x_{pass_h} &= (d_{cover} + h_{base}) / 3 = 200 \text{ mm} \end{aligned}$

$$\begin{split} & \mathsf{K}_{\mathsf{A}} = \sin(\alpha + \phi'_{r.k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r.k}) \times [1 + \sqrt{[\sin(\phi'_{r.k} + \delta_{r.k}) \times \sin(\phi'_{r.k} - \beta)} / (\sin(\alpha - \delta_{r.k}) \times \sin(\alpha + \beta))]]^2) = \textbf{0.483} \\ & \mathsf{K}_{\mathsf{P}} = \sin(90 - \phi'_{b.k})^2 / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(90 + \delta_{b.k}))]]^2) = \textbf{2.359} \end{split}$$

$$\begin{split} F_{stem} &= A_{stem} \times \gamma_{stem} = \textbf{31.9} \text{ kN/m} \\ F_{base} &= A_{base} \times \gamma_{base} = \textbf{26.7} \text{ kN/m} \\ F_{sur_v} &= Surcharge_Q \times I_{heel} = \textbf{13} \text{ kN/m} \\ F_{sat_v} &= A_{sat} \times (\gamma_{sr} - \gamma_w) = \textbf{28.2} \text{ kN/m} \\ F_{water_v} &= A_{water} \times \gamma_w = \textbf{33.8} \text{ kN/m} \\ F_{moist_v} &= A_{moist} \times \gamma_{mr} = \textbf{23.4} \text{ kN/m} \\ F_{pass_v} &= A_{pass} \times \gamma_b = \textbf{6.3} \text{ kN/m} \\ F_{total_v} &= F_{stem} + F_{base} + F_{sur_v} + F_{sat_v} + F_{water_v} + F_{moist_v} + \\ F_{pass_v} &= \textbf{163.3} \text{ kN/m} \end{split}$$

$$\begin{split} F_{sur_h} &= K_A \times cos(\delta_{r,k}) \times Surcharge_Q \times h_{eff} = \textbf{19.1 kN/m} \\ F_{sat_h} &= K_A \times cos(\delta_{r,k}) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = \textbf{17.6} \\ kN/m \\ F_{water_h} &= \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = \textbf{44.1 kN/m} \\ F_{moist_h} &= K_A \times cos(\delta_{r,k}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})) = \textbf{30.1 kN/m} \\ F_{pass_h} &= -K_P \times cos(\delta_{b,k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = \textbf{-7.5 kN/m} \\ F_{total_h} &= F_{sur_h} + F_{sat_h} + F_{water_h} + F_{moist_h} + F_{pass_h} = \textbf{103.3} \\ kN/m \end{split}$$

$$\begin{split} M_{stem} &= F_{stem} \times x_{stem} = \textbf{50.3 kNm/m} \\ M_{base} &= F_{base} \times x_{base} = \textbf{40.7 kNm/m} \\ M_{sur} &= F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_n} = \textbf{-7 kNm/m} \\ M_{sat} &= F_{sat_v} \times x_{sat_v} - F_{sat_h} \times x_{sat_h} = \textbf{50.1 kNm/m} \\ M_{water} &= F_{water_v} \times x_{water_v} - F_{water_h} \times x_{water_h} = \textbf{37 kNm/m} \\ M_{moist} &= F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = \textbf{3.2 kNm/m} \\ M_{pass} &= F_{pass_v} \times x_{pass_v} = \textbf{4.4 kNm/m} \\ M_{total} &= M_{stem} + M_{base} + M_{sur} + M_{sat} + M_{water} + M_{moist} + M_{pass} = \textbf{178.7 kNm/m} \end{split}$$

Fprop_base = Ftotal_h = 103.3 kN/m

$\overline{x} = M_{total} / F_{total_v} = 1094 \text{ mm}$
e = x̄ - I _{base} / 2 = -431 mm
I _{load} = I _{base} = 3050 mm
$q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 98.9 \text{ kN/m}^2$
q_{heel} = F_{total_v} / I_{base} × (1 + 6 × e / I_{base}) = 8.2 kN/m ²
$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 1.011$

PASS - A	llowable k	pearing p	oressure	exceeds	maximum	applied	bearing	pressure
----------	------------	-----------	----------	---------	---------	---------	---------	----------

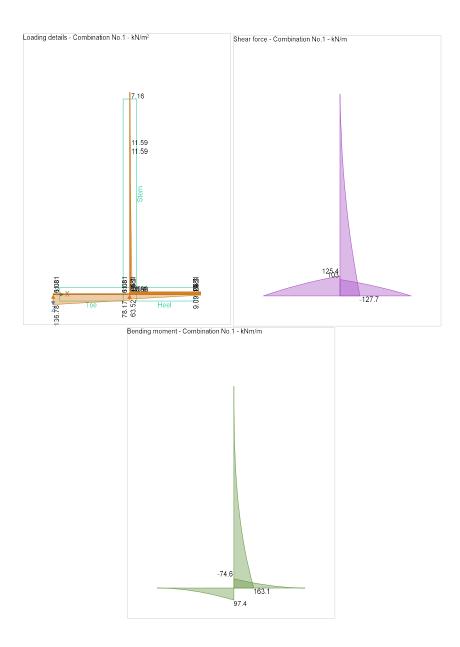
RETAINING WALL DESIGN

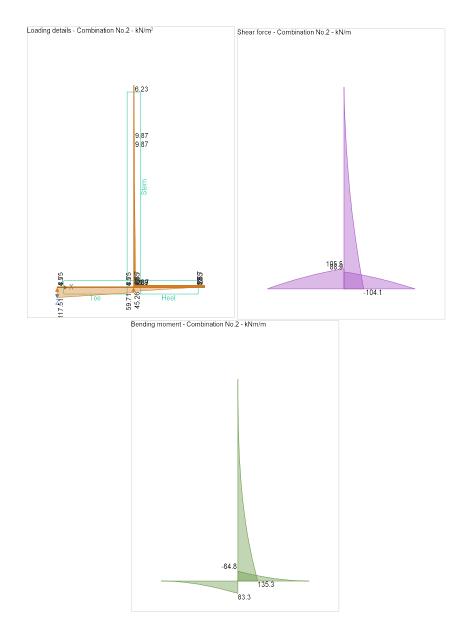
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.07

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete
--

Concrete details - rable 5.1 - Strength and defor	
Concrete strength class;	C35/45
Characteristic compressive cylinder strength;	f _{ck} = 35 N/mm ²
Characteristic compressive cube strength;	f _{ck,cube} = 45 N/mm ²
Mean value of compressive cylinder strength;	f _{cm} = f _{ck} + 8 N/mm ² = 43 N/mm ²
Mean value of axial tensile strength;	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²
5% fractile of axial tensile strength;	$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.2 N/mm ²
Secant modulus of elasticity of concrete;	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 34077 N/mm ²
Partial factor for concrete - Table 2.1N;	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1);	$\alpha_{\rm cc}$ = 0.85
Design compressive concrete strength - exp.3.15;	f_{cd} = $\alpha_{cc} \times f_{ck}$ / γ_C = 19.8 N/mm ²
Maximum aggregate size;	h _{agg} = 20 mm
Ultimate strain - Table 3.1;	ε _{cu2} = 0.0035
Shortening strain - Table 3.1;	ε _{cu3} = 0.0035
Effective compression zone height factor;	$\lambda = 0.80$
Effective strength factor;	η = 1.00
Bending coefficient k1;	K ₁ = 0.40
Bending coefficient k ₂ ;	$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Bending coefficient k ₃ ;	K ₃ =0.40
Bending coefficient k4;	$K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Reinforcement details	
Characteristic yield strength of reinforcement;	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement;	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N;	γs = 1.15


γs **= 1.15**


 $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Design yield strength of reinforcement;

Cover to reinforcement

Front face of stem;	c _{sf} = 50 mm
Rear face of stem;	c _{sr} = 50 mm
Top face of base;	c _{bt} = 50 mm
Bottom face of base;	c _{bb} = 50 mm

Check stem design at base of stem

Depth of section;

h = **350** mm

Rectangular section in flexure - Section 6.1	
Design bending moment combination 1;	
Depth to tension reinforcement;	

× K2))

Lever arm; **279** mm
$$\begin{split} M &= \textbf{163.1 kNm/m} \\ d &= h - c_{sr} - \phi_{sr} \ / \ 2 = \textbf{294 mm} \\ K &= M \ / \ (d^2 \times f_{ck}) = \textbf{0.054} \\ K' &= (2 \times \eta \times \alpha_{cc} / \gamma_C) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2)) \end{split}$$

K' = **0.207**

K' > K - No compression reinforcement is required

z = min(0.5 + 0.5 \times (1 - 2 \times K / ($\eta \times \alpha_{cc}$ / γ_{C}))^{0.5}, 0.95) \times d =

Depth of neutral axis;	x = 2.5 × (d – z) = 37 mm
Area of tension reinforcement required;	A _{sr.req} = M / (f _{yd} × z) = 1343 mm ² /m
Tension reinforcement provided;	12 dia.bars @ 50 c/c
Area of tension reinforcement provided;	$A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 2262 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N;	$A_{sr.min}$ = max(0.26 × f _{ctm} / f _{yk} , 0.0013) × d = 491 mm ² /m
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{sr.max} = 0.04 × h = 14000 mm ² /m
	max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.594

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.006$ Required tension reinforcement ratio; $\rho = A_{sr.req} / d = 0.005$ Required compression reinforcement ratio; $\rho' = A_{sr.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N; K_b = **0.4** Ks = min(500 N/mm² / (f_{yk} × A_{sr.req} / A_{sr.prov}), 1.5) = 1.5 Reinforcement factor - exp.7.17; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + 3.2 × Limiting span to depth ratio - exp.7.16.a; $\sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times (\rho_0 / \rho - 1)^{3/2}]}, 40 \times K_b) = 15.3$ h_{stem} / d = **12.4**

Actual span to depth ratio;

PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3

Limiting crack width; Variable load factor - EN1990 - Table A1.1; Serviceability bending moment; Tensile stress in reinforcement; Load duration; Load duration factor; Effective area of concrete in tension;

Mean value of concrete tensile strength; Reinforcement ratio; Modular ratio; Bond property coefficient; Strain distribution coefficient;

Maximum crack spacing - exp.7.11; Maximum crack width - exp.7.8;

w_{max} = 0.3 mm $\psi_2 = 0.6$ Msls = 104.6 kNm/m $\sigma_{s} = M_{sls} / (A_{sr.prov} \times z) = 165.6 \text{ N/mm}^{2}$ Long term kt = **0.4** $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ Ac.eff = 104397 mm²/m $f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$ $\rho_{p.eff} = A_{sr.prov} / A_{c.eff} = 0.022$ $\alpha_{e} = E_{s} / E_{cm} = 5.869$ k1 = **0.8** k₂ = 0.5 k₃ = 3.4 k₄ = **0.425** $s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 264 \text{ mm}$ $w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$ σs) / Es w_k = 0.131 mm $w_k / w_{max} = 0.437$

PASS - Maximum crack width is less than limiting crack width

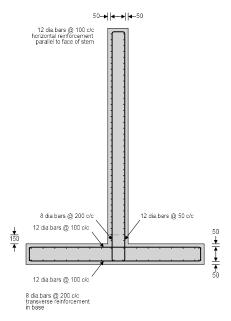
Rectangular section in shear - Section 6.2 Design shear force;

V = **127.7** kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.825$

Longitudinal reinforcement ratio;	ρ _l = min(A _{sr.prov} / d, 0.02) = 0.008
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.510} \; N / mm^2$
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}$, $v_{\text{min}}) \times d$
	V _{Rd.c} = 193 kN/m
	V / V _{Rd.c} = 0.662
PA	ASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of sten	n - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1);	$A_{\text{sx.req}} = \text{max}(0.25 \times A_{\text{sr.prov}}, 0.001 \times t_{\text{stem}}) = \textbf{565} \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.6.3(2);	s _{sx_max} = 400 mm
Transverse reinforcement provided;	12 dia.bars @ 100 c/c
Area of transverse reinforcement provided;	$A_{sx.prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) =$ 1131 mm ² /m
PASS - Area of reinforceme	nt provided is greater than area of reinforcement required
Check base design at toe	
Depth of section;	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1;	M = 97.4 kNm/m
Depth to tension reinforcement;	d = h - c _{bb} - φ _{bb} / 2 = 294 mm
•	$K = M / (d^2 \times f_{ck}) = 0.032$
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_C) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2$
× K2))	
<i></i>	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / (η × α _{cc} / γ _C)) ^{0.5} , 0.95) × d =
279 mm	
Depth of neutral axis;	x = 2.5 × (d − z) = 37 mm
Area of tension reinforcement required;	$A_{bb.reg} = M / (f_{vd} \times z) = 802 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	12 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) =$ 1131 mm ² /m
Minimum area of reinforcement - exp.9.1N;	$A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 491 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3);	$A_{bb.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$
	max(Abb.req, Abb.min) / Abb.prov = 0.709
PASS - Area of reinforcement provided is greater than area of reinforcement required	
	Library item: Rectangular single output

Crack control - Section 7.3 Limiting crack width; w_{max} = **0.3** mm Variable load factor - EN1990 - Table A1.1; ψ2 **= 0.6** Serviceability bending moment; M_{sls} = **70.4** kNm/m Tensile stress in reinforcement; σ_s = M_{sls} / (A_{bb.prov} × z) = 222.7 N/mm² Load duration; Long term Load duration factor; kt = **0.4** Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ A_{c.eff} = **104417** mm²/m Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{\text{p.eff}} = A_{\text{bb.prov}} \ / \ A_{\text{c.eff}} = \textbf{0.011}$ Modular ratio; α_e = E_s / E_{cm} = **5.869**

Bond property coefficient;	k ₁ = 0.8	
Strain distribution coefficient;	$k_2 = 0.5$	
	k ₃ = 3.4	
	k ₄ = 0.425	
Maximum crack spacing - exp.7.11;	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p.eff} = 358 \text{ mm}$	
Maximum crack width - exp.7.8;	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$	
	$\sigma_s) / E_s$	
	w _k = 0.239 mm	
	w _k / w _{max} = 0.798	
PA	SS - Maximum crack width is less than limiting crack width	
Rectangular section in shear - Section 6.2		
Design shear force;	V = 125.4 kN/m	
	C _{Rd,c} = 0.18 / γ _C = 0.120	
	k = min(1 + √(200 mm / d), 2) = 1.825	
Longitudinal reinforcement ratio;	ρ _l = min(A _{bb.prov} / d, 0.02) = 0.004	
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.510 N/mm ²	
Design shear resistance - exp.6.2a & 6.2b;	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}$, v_{min}) × d	
	V _{Rd.c} = 153.2 kN/m	
	V / V _{Rd.c} = 0.819	
P	ASS - Design shear resistance exceeds design shear force	
Check base design at heel		
Depth of section;	h = 350 mm	
Rectangular section in flexure - Section 6.1		
Design bending moment combination 1;	M = 74.6 kNm/m	
Depth to tension reinforcement;	d = h - c _{bt} - φ _{bt} / 2 = 294 mm	
	$K = M / (d^2 \times f_{ck}) = 0.025$	
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_{1})/(2 \times K_{2})) \times (\lambda \times (\delta - K_{1})/(2 \times K_{2}))$	
× K2))		
	K' = 0.207	
	K' > K - No compression reinforcement is required	
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / (η × α _{cc} / γ _c)) ^{0.5} , 0.95) × d =	
279 mm		
Depth of neutral axis;	x = 2.5 × (d − z) = 37 mm	
Area of tension reinforcement required;	$A_{bt,req} = M / (f_{yd} \times z) = 614 \text{ mm}^2/\text{m}$	
Tension reinforcement provided;	12 dia.bars @ 100 c/c	
Area of tension reinforcement provided;	$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 1131 \text{ mm}^2/\text{m}$	
Minimum area of reinforcement - exp.9.1N;	$A_{bt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 491 \text{ mm}^2/\text{m}$	
Maximum area of reinforcement - cl.9.2.1.1(3);	$A_{bt,max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$	
	max(A _{bt.req} , A _{bt.min}) / A _{bt.prov} = 0.543	
PASS - Area of reinforcem	ent provided is greater than area of reinforcement required	
Library item: Rectangular single output		
Crack control - Section 7.3		
Limiting crack width;	w _{max} = 0.3 mm	


Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	ψ2 = 0.6
Serviceability bending moment;	M _{sls} = 50.2 kNm/m

σ_s = M _{sls} / (A _{bt.prov} × z) = 158.8 N/mm ²
Long term
k _t = 0.4
$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$
A _{c.eff} = 104417 mm ² /m
f _{ct.eff} = f _{ctm} = 3.2 N/mm ²
$\rho_{p,eff} = A_{bt,prov} / A_{c,eff} = 0.011$
αe = Es / Ecm = 5.869
k ₁ = 0.8
k ₂ = 0.5
k ₃ = 3.4
k ₄ = 0.425
$s_{r.max}$ = $k_3 \times c_{bt}$ + $k_1 \times k_2 \times k_4 \times \phi_{bt}$ / $\rho_{p.eff}$ = 358 mm
$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$
σ_s) / Es
w _k = 0.171 mm
w _k / w _{max} = 0.569
ASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2		
Design shear force;	V = 103 kN/m	
	$C_{Rd,c}$ = 0.18 / γ_{C} = 0.120	
	k = min(1 + √(200 mm / d), 2) = 1.825	
Longitudinal reinforcement ratio;	ρ _l = min(A _{bt,prov} / d, 0.02) = 0.004	
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.510} \; N / mm^2$	
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max(C _{Rd.c} × k × (100 N ² /mm ⁴ × ρ I × fck) ^{1/3} , Vmin) × d	
	V _{Rd.c} = 153.2 kN/m	
	V / V _{Rd.c} = 0.672	
PASS - Design shear resistance exceeds design shear force		
Secondary transverse reinforcement to base - Section 9.3		
Minimum area of reinforcement – cl.9.3.1.1(2);	$A_{bx,req}$ = 0.2 × $A_{bb,prov}$ = 226 mm ² /m	
Maximum spacing of reinforcement – cl.9.3.1.1(3);	s _{bx_max} = 450 mm	
Transverse reinforcement provided;	8 dia.bars @ 200 c/c	

Area of transverse reinforcement provided;

 $A_{\text{bx,prov}} = \pi \times \phi_{\text{bx}}^2 / (4 \times s_{\text{bx}}) = \textbf{251} \text{ mm}^2/\text{m}$ PASS - Area of reinforcement provided is greater than area of reinforcement required

Reinforcement details