

Site Investigation Report

Auger Ref:

Job Information	
Client	Crawford & Co - Allianz (Subsidence)
Client ref	
Visit date	20/02/2020
Report date	13/03/2020

Job Summary

- 2 trial holes undertaken. Read more.
- Requested soil samples taken. Read more.
- ✓ Requested root samples taken. Read more.

Job Information

Overview

Brief

 $Auger were \ commissioned \ by \ Crawford \ \& \ Co-Allianz \ (Subsidence) \ to \ undertake \ a \ site \ investigation \ within the \ area \ of \ concern \ at \ the \ property.$

Trial Hole Findings Trial Hole I could not be completed due to the raised ground level on the customer's property. Additionally, the property had a basement flat that prevented our engineer reaching the desired depth d the trial hole. Due to this we wouldn't be able to encounter the foundations and footing of the property. We therefore, a borehole was dug out in the neighbouring property to collect the necessary soil samples down to 3mtrs.

Photographs

Trial Hole 1

Fig 1.1: Trial Hole 1 Location

Fig 1.2: Trial Hole 1 Footing

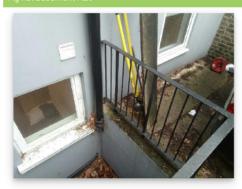
Trial Hole 2

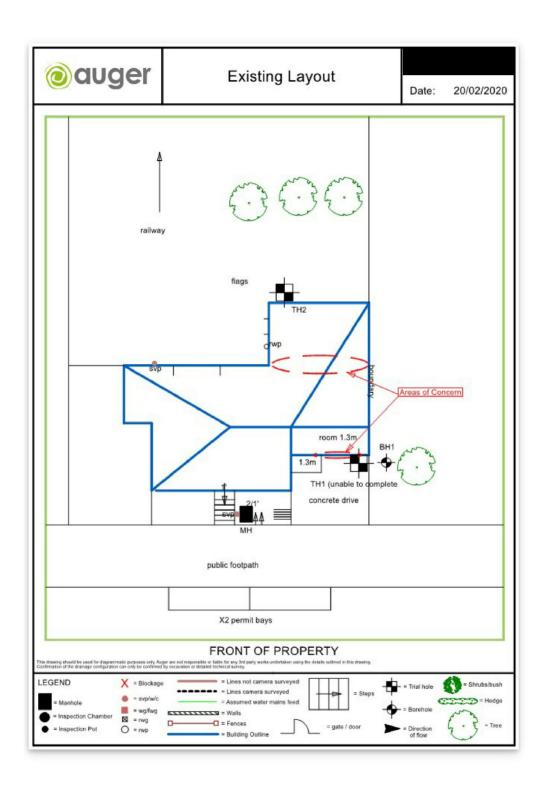
Fig 2.1: Trial Hole 2 Location

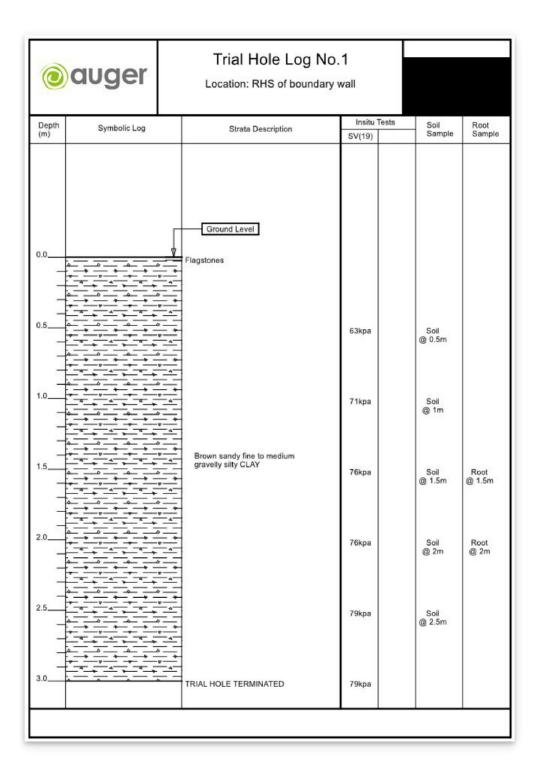
Fig 2.2: Trial Hole 2 Footing

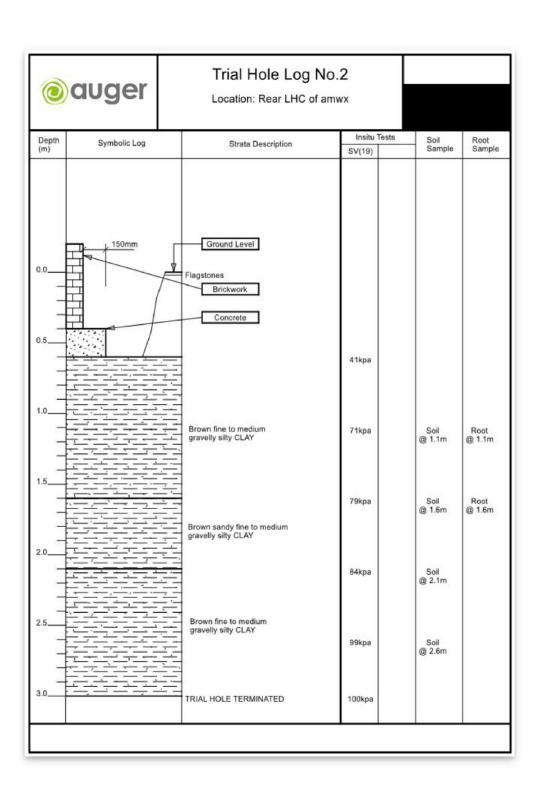
Other Photos

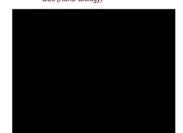
Fig 7.1: Trial Hole 1 Original Location






Fig 7.3: Basement Flat


Fig 7.4: Neighbour's Driveway



Auger Solutions

09/03/2020

Dr Ian B K Richardson BSc, MSc, PhD, MRSB, FLS James Richardson BSc (Hons. Biology)

Dear Sirs

Root ID

The samples you sent in relation to the above have been examined. Their structures were referable as follows:

TH1, 1.1m		
2 no.	Examined root: TILIA (Lime).	Dead*.
TH1, 1.6m		
2 no.	Examined root: HEDERA (Ivy) - or the related FATSIA (a robust shrub with fig-like leaves).	Alive, recently*.
BH1, 1.5m		
1 no.	Examined root: BETULA (Birch).	Alive, recently*.
1 no.	Examined root: TILIA (Lime).	Dead*.
BH1, 2.0m		
1 no.	Examined root: BETULA (Birch).	Alive, recently*.

Click here for more information: BETULA TILIA

I trust this is of help. Please call us if you have any queries; our Invoice is enclosed.

Yours faithfully

Dr Ian B K Richardson

Based mainly on the lodine test for starch. Starch is present in some cells of a living woody root, but is more or less rapidly broken down by soil micro-organisms on death of the root, sometimes before decay is evident. This result need not reflect the state of the parent tree.

* * Try out our web site on www.botanical.net * *

Geotechnical Testing Analysis Report

environmental +
claims mgmt +
subsidence +
drainage +

Summary Of Claim Details

Policy Holder	Unknown
Risk Address	Unknown
SI Date	20/02/2020
Issue Date	21/02/2020
Report Date	06/03/2020
Auger Reference	
Insurance Company	Allianz
LA Claim Reference	
LA Co. Reference	Crawford & Co

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Checked	06/03/2020	Wayne Honey	
Approved	06/03/2020	Paul Evans	

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	auger	environmental + claims mgmt + subsidence + drainage +
GSTL Contract Number			
Risk Address	Unknown		
Auger Reference			
_			

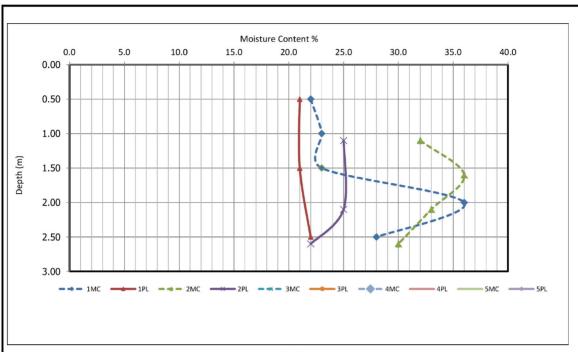
TH Sample Depti	h (m) Sample Description
	50 Brown sandy fine to medium gravelly silty CLAY
TH1 D 1.0	
TH1 D 1.5	50 Brown sandy fine to medium gravelly silty CLAY
TH1 D 2.0	
TH1 D 2.5	50 Brown sandy fine to medium gravelly silty CLAY
TH2 D 1.	10 Brown fine to medium gravelly silty CLAY
TH2 D 1.6	Brown sandy fine to medium gravelly silty CLAY
TH2 D 2.	10 Brown fine to medium gravelly silty CLAY
TH2 D 2.6	Brown fine to medium gravelly silty CLAY
	
	1

Test Operator	Test Operator Checked		Wayne Honey	
Luke Williams	Approved	06/03/2020	Paul Evans	

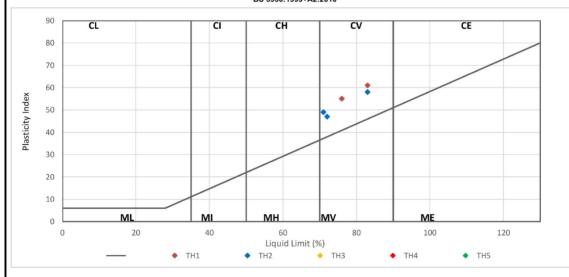
GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	@auger	environmental + claims mgmt + subsidence + drainage +
GSTL Contract Number			
Risk Address	Unknown		
Auger Reference			
Remarks	NP - (Non-Plastic), # - (Liquid Limit and Plastic Limit Wet Sieved)		

TH Trial Hole	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	NHBC Chapter 4.2	Remarks
TH1	D	0.50	22	76	21	55	70	HIGH VCP	CV Very High Plasticity
TH1	D	1.00	23	70	21	- 55	70	THOTTVOI	OV Very riight lasticity
TH1	D	1.50	23	76	21	55	74	HIGH VCP	CV Very High Plasticity
TH1	D	2.00	36	70		- 00		1110111101	OV VOIY HIGHT Idealony
TH1	D	2.50	28	83	22	61	92	HIGH VCP	CV Very High Plasticity
		2.00	20			- 01		1110111101	ov very riight lactionly
TH2	D	1.10	32	72	25	47	89	HIGH VCP	CV Very High Plasticity
TH2	D	1.60	36			100			a transfer including
TH2	D	2.10	33	83	25	58	82	HIGH VCP	CV Very High Plasticity
TH2	D	2.60	30	71	22	49	86	HIGH VCP	CV Very High Plasticity
(0.000)						17.50	0.000		, , , ,
				i					
1	1		1		1		1		

: Non Classified


Modified Plasticity Index (PI) <10 Modified PI = 10 to <20 Modified PI = 20 to <40 Modified PI = 40 or greater

: Low volume change potential (LOW VCP) : Medium volume change potential (Med VCP) : High volume change potential (HIGH VCP)


The Atterberg Limits May also be used to classify the volume change potential of fine soils using the National House building system, as given in the NHBC's Standards Chapter 4.2 (2003) "Building Near Trees"

Test Operator	Checked	06/03/2020	Wayne Honey	
Luke Williams	Approved	06/03/2020	Paul Evans	

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Modified Plasticity Index (PI) <10 Modified PI = 10 to <20

: Non Classified

Modified PI = 20 to <40

: Low volume change potential (LOW VCP)
: Medium volume change potential (Med VCP)

Modified PI = 40 or greater

: High volume change potential (HIGH VCP)

The Atterberg Limits May also be used to classify The Atterberg Limits may also be used to classify the volume change potential of fine soils using the National House building system, as given in the NHBC's Standards Chapter 4.2 (2003) "Building Near Trees"

Test Operator	Checked	06/03/2020	Wayne Honey	
Luke Williams	Approved	06/03/2020	Paul Evans	

