

# 28 AVENUE ROAD, ST JOHNS WOOD, LONDON NW8

# ENERGY AND SUSTAINABILITY STATEMENT

JB/682: March 2021

 ME7 Ltd, Jorand House, Bebington Close, Billericay, Essex, CM12 0DT,

 Tel: +44(0)1277 353225
 Mb: +44(0)7412 601472

 Web: www.me7.ltd
 Email: info@me7.ltd

M&E Consultants

Energy Consultants

Please consider the environment before printing this document



# 28 AVENUE ROAD, ST JOHNS WOOD, LONDON NW8

# CONTENTS

| Section         | Description                                  | Page |
|-----------------|----------------------------------------------|------|
|                 | Contents                                     | 2    |
|                 | Introduction                                 | 4    |
|                 |                                              |      |
| Section 1.0 - F | Renewable Energy Statement                   | 5    |
| 1.1             | Executive Summary                            | 6    |
| 1.2             | Introduction                                 | 9    |
| 1.3             | Planning Framework                           | 10   |
| 1.4             | Baseline Energy Consumption & CO2 Emissions  | 13   |
| 1.5             | Passive Design Measures/Efficient Services   | 14   |
| 1.6             | Combined Heat And Power                      | 15   |
| 1.7             | On-Site Renewable Energy Options             | 16   |
| Section 2.0 - M | lechanical Services                          | 24   |
| 0000012.0       |                                              |      |
| 2.1             | Incoming Utility Services                    | 25   |
| 2.2             | Design Conditions                            | 25   |
| 2.3             | Building Regulations Part L1A (2013/16)      | 25   |
| 2.4             | Heating                                      | 26   |
| 2.5             | Water Services                               | 26   |
| 2.6             | Recycled Rainwater                           | 27   |
| 2.7             | Natural Ventilation                          | 27   |
| 2.8             | Fresh Air Systems                            | 27   |
| 2.9             | Bathrooms, Cloakroom and Kitchen Ventilation | 27   |
| 2.10            | Comfort Cooling                              | 27   |
| 2.11            | Automatic Controls                           | 28   |
| 2.12            | Above Ground Drainage                        | 28   |
| 2.13            | Rainwater Drainage                           | 28   |
| 2.14            | Underground Drainage                         | 28   |
| Contine 2.0 F   | lastriast Corrians                           | 20   |
| Section 3.0 - E | lectrical Services                           | 29   |
| 3.1             | Incoming Utility Supply                      | 30   |
| 3.2             | Sub – Main Distribution                      | 30   |
| 3.3             | Final Circuit Distribution                   | 30   |
| 3.4             | Small Power Installation                     | 30   |
| 3.5             | Interior Lighting Installations              | 30   |
| 3.6             | Exterior Lighting Installations              | 31   |
| 3.7             | Audio Visual Systems                         | 31   |
| 3.8             | Security System                              | 31   |
| 3.9             | Fire Detection and Alarm System              | 31   |

| Section         | Description                                              | Page |
|-----------------|----------------------------------------------------------|------|
| 3.10            | Earthing and Bonding                                     | 32   |
| 3.11            | Lightning Protection                                     | 32   |
| 3.12            | Electrical Appliances and Mechanical System<br>Equipment | 32   |
| Section 4.0 - N | A&E Sustainability Items                                 | 33   |
| 4.1             | Daylighting                                              | 34   |
| 4.2             | Recyclable Materials                                     | 34   |
| 4.3             | Salvage/Reuse of Existing Materials                      | 34   |
| 4.4             | Life Cycle Costing                                       | 34   |
| 4.5             | Noise and Vibration                                      | 35   |
| 4.6             | Solar Gains                                              | 35   |
| Section 5.0 - D | Disclaimer                                               | 36   |
| Appendices:     |                                                          |      |
| (i)             | SAP L1A 2013/16 Regulations DER Worksheet                | 37   |
| (ii)            | SAP L1A 2013/16 Regulations Compliance Report            | 53   |
| (iii)           | SAP L1A 2013/16 Regulations SAP Worksheet                | 70   |
| (iv)            | PEA – Predicted Energy Assessment (PRE-EPC)              | 74   |
| (v)             | Energy RSU – Renewables & Sustainability Unit            | 76   |

#### INTRODUCTION

Our client is applying for planning permission to construct a new family home and as part of the process; he is taking the opportunity to significantly enhance its sustainability; including the potential for renewable technologies. 28 Avenue Road is proposed is to be constructed as a sustainable low carbon house, finished to a high quality and standard.

This report has been prepared by ME7 Ltd, to demonstrate how the development will achieve a low carbon status and covers the proposed sustainable design measures related to the building fabric and mechanical and electrical services.

The proposed building has been modelled using an accredited calculation methodology (SAP 2012) and by an accredited energy assessor. Through use of appropriate passive and building fabric design as key points/measures below and energy saving measures, it is shown that the building will release lower net annual CO<sub>2</sub> emissions against baseline levels and satisfies the current Building Regulation Part L, The Adopted London Plan requirements and Camden Energy efficiency and adaption policies requirements.

Key points/measures proposed:

- A CO<sub>2</sub> reduction of 53% (Cumulative), for the site over the baseline; confirming that the proposed refurbished dwelling exceeds the requirements of the Camden Energy efficiency and adaption 2019, The Adopted London Plan 2016 and the National Planning Policy Framework.
- 17.094 tonnes of CO2 saving per annum for the site over the baseline.
- Zero NOx emissions for the GSHP system and low NOx emissions from efficient backup heating plant, complying with the Adopted London Plan.
- Reusing/recycling and salvage existing materials where possible.
- Reducing water consumption through rainwater harvesting and flow restrictors.
- Utilisation of natural shading, orientation and planting.
- Fully insulating/ providing double glazed windows to the new elements low U values.
- Air tightness of 4.0m3/m2/hr@50Pa.
- Heat recovery ventilation to the lower ground floor (lower) area 80% efficiency.
- New materials to be responsibly sourced and life cycle reviewed.
- Inclusion of a renewable energy system (GSHP) and a renewable energy system (PV).
- Data logging/internal digital metering/control for efficient management of the building.

Owing to the above improvements over the minimum Part L requirements, the PEA (Predicted Energy Assessment – Outline EPC) for the proposed refurbished building is an energy efficiency rating of Grade B (87) and a CO2 impact rating of Grade B (87).

Included within the report is an appraisal of various renewable technologies, demonstrating their viability and appropriateness to the environment and nature of the development.

It is proposed that a GSHP system (COP 5.08), will be suitable for providing 90% of the yearly heating demand. With gas boilers for providing heating and domestic hot water production top up and backup only. This combination will significantly reduce CO2 emissions and be well matched to the building. Apart from the GSHP and PV systems proposed, other renewable sources are not effective or suitable for the building.

Heat gains have been reduced with passive measures; building orientation, tree shading, concrete slabs/ brick facades, internal blinds, high performance glazing and passive/ MVHR ventilation. Where cooling is proposed, this is only to some parts of the house and only at peak times. This will be provided by a renewable source, a vertical borehole GSHP system based on high efficiency water cooled condensors with a high efficiency EER of 5.84 for cooling.

A detailed description of the proposed electrical and mechanical systems is also included within the report, detailing the energy efficient and sustainable design measures to be incorporated.

Full assessment modelling/calculations/reports demonstrating compliance, including energy statement, SAP L1A and PEA (Pre-EPC); can be found in the main sections and appendices of this report. The M&E proposals outlined in this report are in line with the Adopted London Plan 2016, the National Planning Policy Framework, Camden Energy efficiency and adaption 2019 and Building Regulations.

Section 1.0

## RENEWABLE ENERGY STATEMENT

ME7 LTD Jorand House Bebington Close Billericay Essex, CM12 0DT

#### ASSESSMENT INFORMATION

**Prepared by:** Ondrej Gajdos, ME7 Ltd

**Date:** 08 March 2021

#### DISCLAIMER

The findings, conclusions and recommendations of this report are based on the information supplied. ME7 Ltd disclaims responsibility in respect of incorrect information imparted to them or for the actual performance of any of the building services installations.

This Report is prepared for the construction of a new house at 28 Avenue Road; a duty of care is not owed to other parties.

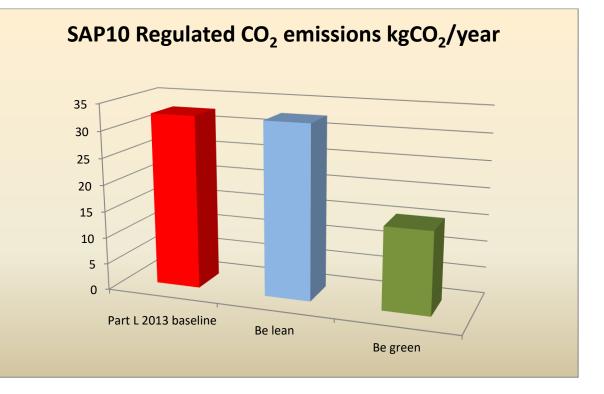
**EXECUTIVE SUMMARY** 

ABOUT THE ENERGY STATEMENT

ME7 Ltd have been appointed to provide an Energy Statement for the proposed development.

This statement covers possible active and passive measures including renewable energy sources to make this development sustainable and environmentally friendly.

Baseline and all estimated energy consumptions have been calculated using full SAP 2012 assessment of the development in accordance with Part L procedures and SAP 10 emission factors in line with the latest GLA planning guidance.


The tables below show a summary of energy requirements for baseline scheme and reduction proposed to be achieved by passive measures, efficient services and on-site renewable energy sources.

#### Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic buildings

|                                | Carbon Dioxide Emissions for domestic buildings<br>(Tonnes CO <sub>2</sub> per annum) |             |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------|-------------|--|--|--|
|                                | Regulated                                                                             | Unregulated |  |  |  |
| Baseline: Part L 2013 of the   |                                                                                       |             |  |  |  |
| Building Regulations Compliant | 32.6                                                                                  | 4.6         |  |  |  |
| Development                    |                                                                                       |             |  |  |  |
| After energy demand reduction  | 32.5                                                                                  | 4.6         |  |  |  |
| After renewable energy         | 15.4                                                                                  | 4.6         |  |  |  |

#### Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic building

|                                      | Regulated domestic carbon dioxide savings |      |  |  |  |  |
|--------------------------------------|-------------------------------------------|------|--|--|--|--|
|                                      | (Tonnes CO <sub>2</sub> per annum)        | (%)  |  |  |  |  |
| Savings from energy demand reduction | 0.040                                     | 0.1% |  |  |  |  |
| Savings from renewable energy        | 17.094                                    | 52%  |  |  |  |  |
| Cumulative on site savings           | 17.140                                    | 53%  |  |  |  |  |



# 8

## Table 3: SAP calculation specification for each stage of the energy hierarchy

| Specification Notional Baseline                                      |                                                                                                                            | Efficient Baseline<br>(Be Lean)                                                     | Proposed Development<br>(Be Green)                                                                                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| External Wall U-value                                                | 0.18                                                                                                                       | 0.18                                                                                | 0.18                                                                                                                                   |
| Ground floor                                                         | 0.13                                                                                                                       | 0.12                                                                                | 0.12                                                                                                                                   |
| Roof U-value                                                         | 0.13                                                                                                                       | 0.12                                                                                | 0.12                                                                                                                                   |
| Windows U-value                                                      | 1.50                                                                                                                       | 1.30                                                                                | 1.30                                                                                                                                   |
| Thermal bridging                                                     | Accredited construction details throughout                                                                                 |                                                                                     | Accredited construction details<br>Sthroughout, lintels with psi-value of 0.05<br>rW/mK (e.g. Keystone Hi Therm lintels or<br>similar) |
| Air Permeability                                                     | 5                                                                                                                          | 4                                                                                   | 4                                                                                                                                      |
| Main Heating System                                                  | Condensing gas boiler, SEDBUK 2009<br>efficiency 88%, underfloor heating,<br>programmer and at least 2 room<br>thermostats | 6                                                                                   | , GSHP with wet underfloor heating,<br>assumed to provide 90% of heat demand<br>tbacked up by gas boiler (10% of demand                |
| Secondary heating                                                    |                                                                                                                            | Gas fires with 80% efficiency                                                       | Gas fires with 80% efficiency                                                                                                          |
| DHW System                                                           | Condensing gas boiler, SEDBUK 2009<br>efficiency 88%,                                                                      | 2No 1,000L Heatrae Sadia Megaflo<br>commercial, fed from the main heating<br>system | 2No 1,000L Heatrae Sadia Megaflo<br>commercial, fed from the main heating<br>system                                                    |
| Cooling system                                                       | -                                                                                                                          | GSHP system with seasonal cooling SEE<br>of 5.0 or higher                           | GSHP system with seasonal cooling SEER<br>of 5.0 or higher                                                                             |
| Ventilation System                                                   | Natural with intermittent mechanical extracts                                                                              | Natural with intermittent mechanical extracts                                       | Natural with intermittent mechanical<br>extracts                                                                                       |
| Energy Efficient Lighting                                            | 75%                                                                                                                        | 100%                                                                                | 100%                                                                                                                                   |
| Renewable energy sources                                             |                                                                                                                            |                                                                                     | PV system with total peak output of<br>4.4kWp, e.g. 11 No PV panels Sunpower<br>Maxeon 400, installed horizontally on<br>the flat roof |
| % Improvement in CO2 over Building<br>regulations compliant baseline | 0.0%                                                                                                                       | 0.1%                                                                                | 53%                                                                                                                                    |

The proposed house will achieve:

- 52% reduction in regulated CO2 emissions by renewable sources (PV system and GSHP)
- 53% reduction in regulated CO2 emissions compared to 2013 Part L1A notional baseline

All CO2 reductions are calculated using SAP10 emission factors  $% \left( {{{\rm{S}}}_{{\rm{A}}}} \right)$ 

## Energy consumption of the proposed house

|                                              |                    |                                  |                                                                                                                     |       |       |      |     |    | SAP10 CO2 P                            | ERFORMANCE                              |
|----------------------------------------------|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|-------|------|-----|----|----------------------------------------|-----------------------------------------|
| DOMESTIC ENERGY CONSUMPTION AND CO2 ANALYSIS |                    |                                  |                                                                                                                     |       |       |      |     |    |                                        |                                         |
| Unit identifier                              | Model total        | REGULATED                        | REGULATED ENERGY CONSUMPTION PER UNIT (kWh p.a.) - 'BE GREEN' SAP DER WORKSHEET REGULATED CO2 EMISSIONS<br>PER UNIT |       |       |      |     |    |                                        |                                         |
| (e.g. plot number,<br>dwelling type etc.)    | floor area<br>(m²) | Space Heating<br>(Heat Source 1) | Heat Source 1) Water (Heat source 2) generated by                                                                   |       |       |      |     |    | SAP10 CO2<br>emissions<br>(kgCO2 p.a.) | Calculated<br>DER SAP10<br>(kgCO2 / m2) |
| 28 Avenue Road                               | 2525.6             | 34679                            | 5142                                                                                                                | 30312 | -3346 | 2871 | 105 | 24 | 15,445                                 | 6.1                                     |

# INTRODUCTION

# BACKGROUND

ME7 Ltd have been appointed to provide an Energy Statement for the proposed development.

This statement covers possible active and passive measures including renewable energy sources to make this development sustainable and environmentally friendly.

# DESCRIPTION OF THE DEVELOPMENT

Construction of a new 11-bedroom house arranged over basement, ground,  $1^{st}\,and\,2^{nd}$  floor.



PLANNING FRAMEWORK

# NATIONAL POLICY

DCLG sets out basis for local policies in section 14 of National Planning Policy Framework. It requires new development to be planned in ways that can help to reduce greenhouse gas emissions, such as through its location, orientation and design. To help increase the use and supply of renewable and low carbon energy and heat, plans are encouraged to:

a) provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);

b) consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and

c) identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for co-locating potential heat customers and suppliers.

# BUILDING REGULATIONS 2013 PART L1A

Part L1A sets out 3 main criteria for energy efficiency in newly constructed dwellings:

- CO2 emissions from the proposed dwellings, i.e. Dwelling Emission Rate (DER) has to be lower than the Target Emission Rate (TER)
- Dwelling Fabric Energy Efficiency has to be lower than the Target Fabric Energy Efficiency
- Risk of overheating has to be assessed using SAP appendix P

# THE ADOPTED LONDON PLAN

The Adopted London Plan is the name given to the Mayor's spatial development strategy. The current version of the Adopted London Plan was published in 2011 with Further Alterations to the Adopted London Plan published in March 2016. The aim is to develop London as an exemplary sustainable world city, based on three interwoven themes.

- 1. Strong, diverse long term economic growth
- 2. Social inclusivity to give all Londoners the opportunity to share in London's future success
- 3. Fundamental improvements in London's environment and use of resources.

Specific requirements on development sustainability are set out in the following policies:

# POLICY 5.2 MINIMISING CO2 EMISSIONS

Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

- 1. Be lean: use less energy
- 2. Be clean: supply energy efficiently
- 3. Be green: use renewable energy

# Policy 5.6 – Decentralised Energy in Development Proposals

Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and where a new CHP system is appropriate also examine opportunities to extend the system beyond the site boundary to adjacent sites. Major development proposals should select energy systems in accordance with the following hierarchy:

- 1. Connection to existing heating or cooling networks
- 2. Site wide CHP network
- 3. Communal heating and cooling

Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.

## POLICY 5.7 – RENEWABLE ENERGY

The Mayor seeks to increase the proportion of energy generated from renewable sources, and expects that the projections for installed renewable energy capacity outlined in the Climate Change Mitigation and Energy Strategy and in supplementary planning guidance will be achieved in London. Within the framework of the energy hierarchy (see Policy 5.2), major development proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible. There is a presumption that all major development proposals will seek to reduce carbon dioxide emissions by at least 20 per cent through the use of on-site renewable energy generation wherever feasible.

## Policy 5.9 – Overheating and Cooling

Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- 1. minimise internal heat generation through energy efficient design
- 2. reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls
- 3. manage the heat within the building through exposed internal thermal mass and high ceilings
- 4. passive ventilation
- 5. mechanical ventilation
- 6. active cooling systems (ensuring they are the lowest carbon options)

#### ZERO CARBON POLICY

As outlined in the Housing SPG, from 1 October 2016 the Mayor applies a zero carbon standard to new residential development. The Housing SPG defines 'Zero carbon' homes as homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site . The remaining regulated carbon dioxide emissions, to 100 per cent, are to be off-set through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere (in line with policy 5.2E). This payment is currently fixed (in most boroughs) at £60/tonne of CO<sub>2</sub> per year for 30 years.

As the proposed development comprises less than 10 newly constructed dwellings, it is not considered a major development in accordance with the Adopted London Plan definitions. The zero carbon policy, policies 5.2, 5.6 and 5.7 are therefore not applicable.

# BASELINE ENERGY CONSUMPTION & CO2 EMISSIONS

Energy assessment using SAP 2012 has been carried out on the actual proposed dwellings using notional baseline specification achieving compliance with 2013 Part L. The specification is set out in Table 3 above.

The notional baseline is based on 2013 Part L1A notional building for calculating Target Emission Rate (TER)

|                                                              |                                | SAP10 CO2 PERFO                                                     | RMANCE                |          |                                  |                                     |                                         |
|--------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|-----------------------|----------|----------------------------------|-------------------------------------|-----------------------------------------|
| DOMESTIC EN                                                  |                                | JMPTION A                                                           | ND CO2 AN             | ALYSIS   |                                  |                                     |                                         |
|                                                              |                                | REGULATED ENERGY CONSUMPTION PER UNIT (kWh<br>p.a.) - TER WORKSHEET |                       |          | REGULATED CO2 EMISSIONS PER UNIT |                                     |                                         |
| Unit identifier<br>(e.g. plot number,<br>dwelling type etc.) | Model total<br>floor area (m²) | Space Heating                                                       | Domestic Hot<br>Water | Lighting | Auxiliary                        | SAP10 CO2 emissions<br>(kgCO2 p.a.) | Calculated<br>TER SAP10<br>(kgCO2 / m2) |
| 28 Avenue Road                                               | 2525.6                         | 146768                                                              | 5129                  | 2871     | 75                               | 32,585                              | 12.9                                    |

# BE LEAN: PASSIVE MEASURES AND EFFICIENT SERVICES

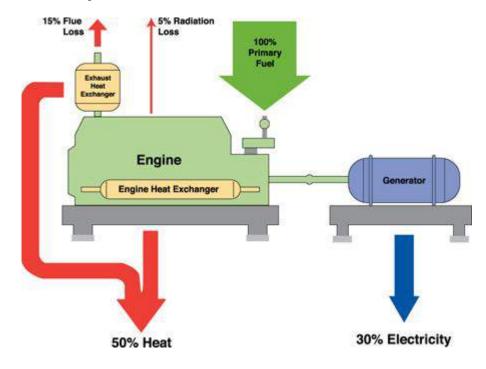
Number of passive design measures and measures improving energy efficiency of building services have been included in the design to help to reduce the CO2 emissions, including:

- Newly constructed elements with U-values going beyond the building regs requirement
- High efficiency condensing boiler
- 100% low energy lights

Full specification of the efficient baseline is described in Table 3.

|                                                 |                                |                                                                                   |                                                                |         |    |                                     | SAP10 CO2 P | ERFORMANCE                              |
|-------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|---------|----|-------------------------------------|-------------|-----------------------------------------|
| DOMESTIC E                                      |                                | UMPTION A                                                                         | ND CO2 AN                                                      | ALYSIS  |    |                                     |             |                                         |
| Unit identifier                                 |                                | REGULATED ENERGY CONSUMPTION PER UNIT (kWh p.a.) - 'BE<br>LEAN' SAP DER WORKSHEET |                                                                |         |    | REGULATED CO2 EMISSIONS<br>PER UNIT |             |                                         |
| (e.g. plot<br>number,<br>dwelling type<br>etc.) | Model total floor<br>area (m²) | Space Heating                                                                     | Space Heating Domestic Hot Lighting Auxiliary Cooling<br>Water |         |    |                                     |             | Calculated<br>DER SAP10<br>(kgCO2 / m2) |
| 28 Avenue Road                                  | 2525.6                         | 146623                                                                            | 5055.05                                                        | 2871.02 | 75 | 24.0                                | 32,544      | 12.9                                    |

**OVERHEATING AND COOLING** 


The house has also been assessed against overheating criteria set out in SAP Appendix P.

The house complies with the criteria using passive measures openable windows. Mechanical cooling is also proposed for the development.

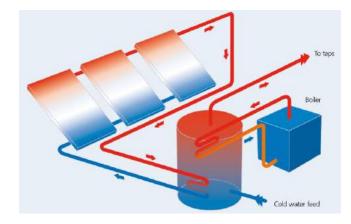
# BE LEAN: COMBINED HEAT AND POWER

# **GENERAL INFORMATION**

Although not using any renewable energy source, gas CHP helps to reduce CO2 emissions by delivering heat and electricity locally and reducing the losses that normally occur by conventional power plants. Produced electricity can be exported to grid if the on-site demand is lower than production.



# RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT


Due to significant de-carbonisation of the grid electricity in the recent years and further decarbonisation expected in near future, gas CHP is no longer beneficial in terms of CO2 reduction. It is therefore not proposed for the development.

# BE GREEN: ON-SITE RENEWABLE ENERGY SOURCE – SOLAR HOT WATER (SHW)

# GENERAL INFORMATION

Solar hot water systems for dwellings use collector which provides a separate heating circuit for hot water cylinder. This is usually backed up by electric immersion heater or other source of heat.

- Two types of collectors are available:
- Flat Plate less expensive, less efficient
- Evacuated Tube more expensive and more efficient





RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT

Solar hot water system has been ruled out due to relatively low hot water demand compared to space heating and lower CO2 reduction potential compared to solar photovoltaic. BE GREEN: ON-SITE RENEWABLE ENERGY SOURCE – AIR SOURCE HEAT PUMP (ASHP)

GENERAL INFORMATION

An air source heat pump extracts heat from the outside air in the same way that a fridge extracts heat from its inside. It can extract heat from the air even when the outside temperature is as low as minus  $15^{\circ}$  C.

On 17 December 2008, the European Parliament adopted the EU Directive on promoting the use of energy from renewable sources. For the first time however, in addition to geothermal energy, aerothermal and hydrothermal energy are also recognised as renewable energy sources.

There are two main types of ASHP:

# AIR-TO-WATER SYSTEM

Air-to-water system uses the heat to warm water. Heat pumps heat water to a lower temperature than a standard boiler system would, so they are more suitable for underfloor heating systems than radiator systems. Although some ASHP systems are capable of heating the water to the higher temperature, the efficiency is higher when using low temperature underfloor heating or low temperature fan convectors.





## AIR-TO-AIR SYSTEM

Air-to-air system uses the heat to warm the indoor air. The air is heated through individual fan-coils or centrally and then distributed to rooms via ductwork.



# RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT

Air source heat pumps have been considered, however have been ruled out due to lower efficiency compared to ground source heat pump, as well as potential problems with noise from the outdoor unit.

# BE GREEN: ON-SITE RENEWABLE ENERGY SOURCE – SOLAR PHOTOVOLTAICS (PV)

# GENERAL INFORMATION

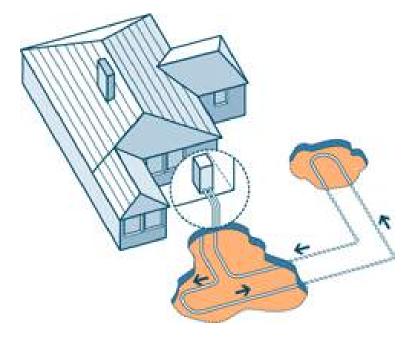
This system uses semi-conductor cells to convert solar energy into electricity. Two main types of PV panels are available: - Monocrystalline – More expensive and more efficient - Polycrystalline – Less expensive and less efficient

- I offer ystannie – Less expensive and less encient

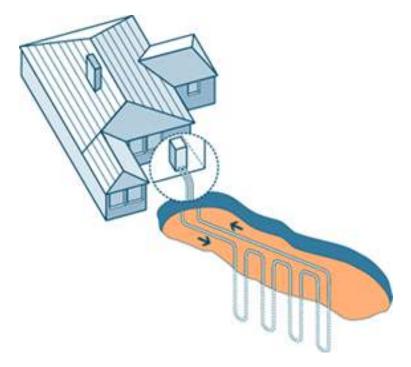
Depending on type, the output of 1 kWp (kilowatt peak) can be achieved by panels with area between 5 and 20 m2.

The use of PV panels generally requires relatively large unshaded roof area where they can be mounted facing south, ideally having between  $15^{\circ}$  and  $35^{\circ}$  inclination.




RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT

It is proposed to install a PV system with a total peak output of 4.4 kWp with horizontally mounted PV panels on the inner roof slopes. An example of this system would be 11 No PV panels Sunpower Maxeon 400. BE GREEN: ON-SITE RENEWABLE ENERGY SOURCE – GROUND SOURCE HEAT PUMP (GSHP)


 $General \ information$ 

Ground source heat pumps use a buried ground loop which transfers heat from the ground into the building through heating distribution system. GSHP technology can be used both for heating and cooling. Two main types of GSHP are available:

- Horizontal loop is suitable for applications where sufficient area is available to accommodate horizontally buried pipes



- Vertical loop system can be used where ground space is limited, but will require boreholes typically 15-150m deep, and is consequently more expensive to install than horizontal systems.



RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT

It is proposed to install a closed loop vertical borehole ground source heat pump system which will serve as the main heating system through wet underfloor heating, as well as a part cooling source. It will be backed up by high efficiency gas fired boilers for the heating systems. BE GREEN: ON-SITE RENEWABLE ENERGY SOURCE – BIOMASS/ BIOFUELS

GENERAL INFORMATION

Producing energy from biomass has both environmental and economic advantages. It is a carbon neutral process as the CO2 released when energy is generated from biomass is balanced by that absorbed during the fuel's production.

There are two main ways of using biomass to heat a domestic property:

- Standalone stoves providing space heating for a room. These can be fuelled by logs or pellets but only pellets are suitable for automatic feed. Generally they are 6-12 kW in output, and some models can be fitted with a back boiler to provide water heating.

- Boilers connected to central heating and hot water systems. These are suitable for pellets, logs or chips, and are generally larger than 15 kW.

RECOMMENDATIONS SPECIFIC TO THIS DEVELOPMENT

Biofuels are ruled out due to negative impact on air quality and environmental issues surrounding liquid biofuels as currently there are no established standards relating to the sustainability of biofuels.

| WATER     |                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Internal Water consumption will be reduced by specification<br>of water efficient fittings. The water consumption will be<br>reduced to 105 litres per person per day or less by specifying<br>water fittings with the following parameters:                                                                                                                    |
|           | WC's: All dual flush capacity 3/6 Litres or less<br>Kitchen taps flow aret: 6 l/min or less<br>Bathroom taps flow rate: 5 l/min or less<br>Bath capacity to overflow: 140 l or less<br>Showers flow rate: 9 l/min or less<br>Dishwasher consumption: 0.5 Litres per place setting or less<br>Washing machine consumption: 5.5 litres per kg dry load or<br>less |
| Materials | Environmental impact of construction materials will be taken<br>into account. Where possible, construction materials will be<br>sourced from local producers and suppliers with<br>environmental impact certification. All timber will be FSC (or<br>equivalent) certified.                                                                                     |
| Energy    | Besides the energy efficiency measures relating to regulated<br>energy, which are described in the energy statement, there<br>will be additional energy saving measures implemented in the<br>development:                                                                                                                                                      |
|           | - Energy efficient white goods will be used                                                                                                                                                                                                                                                                                                                     |
|           | - Low energy external lighting                                                                                                                                                                                                                                                                                                                                  |
| WASTE     | Adequate internal and external storage of recycled and non-<br>recycled waste will be ensured. The external storage will be<br>sized according to the frequency of collection, based on<br>guidance from the recycling scheme operator.                                                                                                                         |
|           | Construction waste will be minimised by implementing a site waste management plan containing procedures to minimise and divert waste from landfill.                                                                                                                                                                                                             |

Section 2.0

# MECHANICAL SERVICES

#### 2.1 INCOMING UTILITY SERVICES

New gas and water utility supplies/meters will be provided to the building. The gas meter will be external to the building in a ventilated space and the water meter externally in an underground pit. (Soil conditions will confirm the water pipe material).

These will be sized to meet the demands of the building.

An additional kW/hr gas sub-meter will be provided with a remote visual display installed to assist in energy monitoring and management as part of the BMS/ audio visual system.

An additional water flow meter (I/s) will be provided with a remote visual display installed to assist in water monitoring and management as part of the BMS/ audio visual system.

#### 2.2 DESIGN CONDITIONS

External temperatures:

| Winter | -8°C saturated      |
|--------|---------------------|
| Summer | 32°C (DB) 20°C (WB) |

Internal Temperatures:

| Living Rooms     | 21°C |
|------------------|------|
| Kitchen/Dining   | 21°C |
| Bedrooms         | 19°C |
| Bathrooms        | 23°C |
| Pool hall        | 30°C |
| Hall/Circulation | 19°C |
| Stores/Plant     | 16°C |

#### 2.3 BUILDING REGULATIONS PART L1A (2013/16)

The current part 'L1A' of the Building Regulations (2013/16), consists of minimum requirements for dwellings, briefly consisting of the following:

- Walls, roofs and ceilings need to have adequate resistance to loss of heat.
- Sufficient control needs to be provided for occupants to vary lighting levels, to avoid unnecessary energy use and maximise natural daylight.
- Adequate user control should be available for heating and cooling to avoid unnecessary energy use and maximise passive measures.

Part 'L1A' of the Building Regulations (April 2013/16), is also concerned with the conservation of fuel and power and its aim is to maximum the possible contribution that can be made to the Government's target for reducing CO<sub>2</sub> production whilst allowing flexibility for designers. This philosophy will be followed in our designs.

The measures to be implemented/ investigated to reduce energy consumption are:

- Specifying an efficient heating system and if gas boilers utilised, these are to be high efficiency condensing boilers with very low NOX levels. This also includes low NOX levels for CHP units.
- Optimising the boiler selection for the building occupancy and reducing energy consumption through controls and management.
- Installing responsive controls and sub-zoning of the building to allow the part load, low energy and economical use of the system. (Adaptive to user occupancy).
- Review of thermal insulation techniques, limits and air tightness.
- Review of renewable energy sources to comply with the limits dictated by The Local Planning Authority and The Adopted London Plan.
- Minimising the effect of solar gain in a passive manner, to provide comfort conditions.

- Limiting fan power usage to noted requirements.
- Reviewing extract fan systems and utilising heat recovery and passive natural ventilation where possible.
- If cooling is utilised, to provide through a very efficient system and utilised only at peak times.

#### 2.4 HEATING

The main space heating system will be led by a high efficiency GSHP vertical borehole system with water source heat pumps (Mitsubishi CRHV), with a COP of 5.08 complete with buffer vessel and thermal check meter. With backup/ top up from condensing boilers with ultra low NOX levels (eg Broag Remeha Quinta ACE). 90% of the heating load will be produced by the GSHP system.

The GSHP/ boilers system will serve LTHW pressurised supplies to the majority of underfloor heating systems in the principal living and bedroom areas (High thermal mass concrete floors). Radiators to secondary areas and towel rails to bathrooms will be served via a separate summer circuit. LTHW supplies will also provide the heat for the HWS system and the pool AHU/ water systems.

All internal pipework to be copper insulated and pex to underfloor systems.

All flues to discharge above main roof level by balanced flues/separate flues. Fresh air and plantroom cooling via louvers at ground floor level.

All heating zones/spaces will be provided with zone valves, re-heaters, thermostat control or TRV's (Thermostatic radiator valves), to ensure efficient energy use.

All heating zones/spaces will also be controlled by user interface controls to programme occupancy, holiday periods and set back times; again to ensure efficient energy use.

Future heating network pipework connections and plate heat exchanger space to be included within the scheme.

#### 2.5 WATER SERVICES

A fully pressurised water system will be provided throughout the property to ensure continuity of supply. If after testing a mains water pressure system is acceptable; this will be adopted. The system is to be installed in copper pipework to the sanitary/kitchen appliances.

The general pressure available throughout the system will be approximately 3 bar at the mixers/taps with flow rates accommodated to the sanitary appliances and shower mixer valves in accordance with the Part 'G' calculator; low flow/restrictors.

The system will operate on a variable speed pump principle to maintain a constant pressure throughout the system and limit energy use. Pressure regulating devices will be required to some areas. All sanitary fittings/plant will be individually and zone valved. All pipework to be copper insulated.

Consideration will be given to a leak detection system to provide early warning of any leaks in the systems, to minimise any water loss.

#### 2.5.1 Domestic Cold Water

Sufficient cold water will be stored and boosted to provide continuity of supply. Filtered mains drinking water will be provided to the main kitchens and the basins within each principle en-suite bathroom.

A water softener will be provided within the main basement plantroom providing softened water to the hot water cylinders, as well as all the baths and shower accommodation. (Softened water will ensure optimum energy performance due to limiting scale build up in plant/pipework).

#### 2.5.2 DOMESTIC HOT WATER

Hot water cylinders located in the basement plantroom will be provided with boosted and conditioned cold water. The hot water cylinders will be complete with a pumped return system. The system will be heated by the boiler system.

Hot water production shall be strictly controlled by weather compensation, timeclock control for occupancy holiday times and maximisation of plant duty. (Conditioned water will ensure optimum performance due to limiting scale build up in plant/pipework).

All basins, baths and sinks will be protected by TMV2/3 valves (Thermostatic mixing valves), above the minimum Part 'G' requirements.

#### 2.6. RECYCLED RAINWATER

The rainwater recycling drainage system will provide recycled rain water for irrigation supplies. This will reduce the reliance on treated mains water.

Filters shall be provided to the system.

#### 2.7 NATURAL VENTILATION

Background habitable room passive ventilation is generally to be provided by trickle vents incorporated into windows or walls to the building above ground level. The LGF will be provided with an MVHR system.

Rapid ventilation to spaces will be provided by openable windows/ continuous ventilation.

Consideration will be given to a PSV (Passive stack ventilation), system to bathrooms (wet areas), with humidity controlled trickle vents to habitable spaces.

#### 2.8 FRESH AIR SYSTEMS

Habitable rooms located within the LGF area with no windows will be provided with fresh air by mechanical ventilation heat recovery units with highly efficient counter flow heat exchangers. Mechanical ventilation system will be fully compliant with Part 'F' of the Building Regulations. Ductwork to be pre-insulated PVC and galvanised steel with insulation or Kool duct.

The swimming pool hall will have an AHU with heat recovery/ humidity control ventilation (By others).

#### 2.9 BATHROOMS, CLOAKROOMS, STORE AND KITCHEN VENTILATION

Mechanical Extract Ventilation (MEV or intermittent) units will be provided for the purposes of sanitary accommodation, kitchen and utility ventilation. These dedicated fan systems shall comprise of isolated (low noise) ducted fan units located either within plant areas and discharge to the main roof areas or via external walls. Ductwork to be pre-insulated PVC and galvanised steel with insulation.

#### 2.10 COMFORT COOLING

Firstly, the building has been designed to limit heat gains by; orientation, thermal mass, ventilation provision, tree shading, semi underground spaces and overhanging slabs/ roofs.

Cooling may also be considered to certain rooms/spaces.

This is proposed to be via a high efficiency GSHP system (5.84 EER), with water heat pumps located in the basement plantroom.

The type of cooling for each room will be provided by fancoils mounted either within joinery or false wall/ceiling details.

Pre-insulated discharge ductwork will be attached to these units to discharge through high induction linear grilles incorporated within joinery and wall finishes at high level. The system will have very low noise levels, which is generally to be targeted at NR25 throughout the building.

A refrigerant gas sensor system will be incorporated to provide safety/protection in accordance with FGAS requirements, to all bedrooms and other rooms/spaces. Internal pipework to be copper insulated, externally PE pipework.

Each room/space will have individual control via a remote room controller to each fan coil, controlled via a discrete room sensor for operation or modification to the set point of the controllers. Cooling and heating will be automatically controlled to ensure no system fighting and undue energy use (interlocked). Overall occupancy and holiday controls to also be provided to ensure efficient energy use and management.

#### 2.11 AUTOMATIC CONTROLS

Automatic control systems will be provided for all of the mechanical services. It is anticipated this will be installed as a complete BMS/ DDC electronic system supervised by a touch screen control/PC positioned within the basement plantroom.

The client will also have the facility for zoned overrun of various systems and time switch control separate to the main plantroom, via a PC interlink situated within the study.

Full remote off site access will also be provided via a modem to this system enabling an ongoing maintenance contract to be provided with the system installers and for the occupiers to efficiently control the systems.

The system will have remote interface modules which will allow the client operation of the heating and cooling, lighting and other systems via the audio visual keypads. Where this is not provided, individual room control will be provided with more basic visual/manual controls.

Controls are to be zoned to provide more efficiency, occupancy control and management.

#### 2.12 ABOVE GROUND DRAINAGE

The above ground drainage system shall be provided to serve all the sanitaryware accommodation.

It is anticipated that in the house cast iron/HDPE silent pipework will be provided, fully insulated for both thermal and acoustic reasons, with individual local run-outs to the sanitary accommodation being in Upvc pipework. Installation of leak detection systems will be considered to detect leaking water hidden in areas such as voids and shower trays etc. This is being considered to protect the building fabric and internal fixtures and fittings.

#### 2.13 RAINWATER DRAINAGE

All rainwater pipes will be routed from roof level to drain points at ground/lower ground floor levels. All roof outlets will be sized to take a rainfall intensity of 108 mm per hour. All pipes shall have access before connecting to underground drains. All external rainwater stacks are to be either aluminium or cast iron and where installed internally, the stacks/drains shall be thermally/ acoustically insulated.

#### 2.14 UNDERGROUND DRAINAGE

By others.

Section 3.0

# ELECTRICAL SERVICES

#### 3.1 INCOMING UTILITY SUPPLY

A new main incoming TP&N supply connection will be provided to serve the property which will be sized to suit the anticipated maximum building load.

The energy usage at the incoming position will be measured and inter-linked to the AV system providing the end-user with accurate power consumption data displayed on a visual display screen. This facility will provide the owner with a user-friendly interface for energy monitoring and management within the house. The PV system electrical load is envisaged to be utilised on site, however G99 export details TBA with UKPN. A PV generation meter and a GSHP thermal meter will be installed.

#### 3.2 SUB-MAIN DISTRIBUTION

Sub-main distribution boards will be installed to serve various areas within the building. This will reduce cable material costs and installation time. Sub metering to Part L will be provided. The local sub-distribution boards will incorporate suitably rated MCBs and RCBOs to suit the circuit

type and loading.

Separate dedicated feeds will be supplied to life safety systems, such as fire alarm equipment in suitable fire rated cabling.

Sub-main distribution cabling will be multi-core armoured with XLPE outer sheath and LSF inner sheath with copper conductors.

Adequate spare capacity will be provided within the distribution network for any future expansion of the system, avoiding the need for any significant re-modification works at a later period.

#### 3.3 FINAL CIRCUIT DISTRIBUTION

Final circuit distribution cabling will be multi-core flat twin & earth XLPE/LSF sheathed copper conductors and will not be of the PVC/PVC type.

The XLPE (cross-linked polyethylene) cable material offers superior electrical performance to PVC and the LSF insulation produces 'low smoke and fumes' when exposed to fire.

RCBOs will be used which combine Residual Current and Overcurrent protection within a single device. Consequently each circuit will be individually RCD protected avoiding any nuisance tripping of unaffected circuits as would be the case if a split load distribution arrangement were adopted whereby many circuits are protected by a single RCD.

#### 3.4 SMALL POWER INSTALLATIONS

Single and twin 13A Switched Socket outlets will be provided at various positions within the property for general purpose use and to serve fixed electrical equipment.

The outlets will be positioned to offer the greatest flexibility for different interior space planning options and will be mounted at a suitable height for ease of access conforming to the Building Regulation Part M requirements.

Where the room/spaces are used as 'home offices' (e.g. where computers, printers etc. are installed causing potential earth leakage currents) then socket outlets will be of the Dual Earth connection type. 13A switched/un-switched fused connection units with neon lamps will be installed to serve various fixed items of electrical equipment.

All small power faceplate outlets will be sourced from a reputable manufacturer such as 'MK Electric' incorporating the required electrical safety standards and allowing ease of installation.

#### 3.5 INTERIOR LIGHTING INSTALLATIONS

The lighting scheme will utilise the latest low energy compact fluorescent and long life LED/CFL lighting technologies in order to achieve a minimum of 100% low energy lighting throughout the property, exceeding the requirement as stipulated in the Building Regulations Part L.

Dimming control will be provided to the majority of the lighting systems in the form of pre-set scene setting controlled from individual wall plates in each room/space and via a wireless/ hardwired visual display screen as part of the AV control system.

Consideration is also being given to allow energy usage from the lighting system to be monitored via the AV system.

In room/spaces with sufficient natural lighting, day-linked control of the artificial lighting is also being evaluated. Computational daylight investigation will be carried to principle living areas to ascertain the benefit of day-linked dimming controls.

Room/spaces which are not lit by natural daylight, in particular escape routes and the LGF/ basement areas will incorporate emergency standby lighting with up to 3hr battery back-up. Consideration for additional emergency lighting to all escape routes will be taken.

Special attention will be made to bathrooms and the pool area lighting scheme, ensuring the correct level of Ingress Protection (IP) rating is provided in accordance with the 'zoning' requirements of the IEE Regulations.

#### 3.6 EXTERIOR LIGHTING INSTALLATIONS

The external lighting installation will comprise of a combination of low energy compact fluorescent and LED lighting. (Light outputs will not exceed Regulations).

Luminaires will be mounted inground and away from the building for night time perimeter security lighting and will be of the wall-wash type to avoid direct light pollution into the neighbouring community.

Ground recessed and low level ground mounted garden amenity lighting will also be provided which will be limited in numbers to avoid excessive lighting and light pollution to the night sky. All external lighting will be daylight-linked via an adjustable external photocell and only switch on during periods of insufficient daylight. Manually adjustable time-clock control will also be provided to allow the occupier to adjust the time period and to switch off the lighting when not required.

#### **3.7 AUDIO VISUAL SYSTEMS**

The Audio Visual installation will generally include the following systems:

- Lighting control and management via user-friendly wireless/hardwired touch screen visual display panels located throughout building to occupiers requirement.
- Building energy monitoring via touch screen panels with scope for split monitoring of various loads e.g. lighting & power.
- Heating, comfort cooling and ventilation control via touch screen panels.
- Terrestrial and Satellite TV installation and control. For signal reception each TV will receive a single CAT 5e/6 cable input allowing multi-service viewing. Conventional coax cabling will not be installed saving on material and installation cost.
- Hardwired broadband and telephone service in CAT 5e/6 cabling.
- CCTV security monitoring around the vicinity of the building in CAT 5e/6 cabling with digital recording facility.
- Security, audio and visual access control systems to main building entrances.

#### **3.8 SECURITY SYSTEM**

A wired intruder alarm system will be provided comprising suitable room/space movement detectors, magnetic contacts to perimeter doors and window/door break glass detection. The system will be linked to a 24hr central monitoring station via a dedicated BT Redcare line and GSM. The design and installation will conform to ACPO policy and DD243 requirements for police response service.

#### 3.9 FIRE DETECTION AND ALARM SYSTEM

The building may come under the requirements of BS5839 Part 6. The final installation design will be agreed with the relevant parties, including the Local Fire Office (Fire Brigade) and Local Council District Surveyor.

To provide the highest degree of life and property protection a 'Type L1' category system may be employed and be appropriately zoned, allowing the local fire brigade to promptly identify the location/source of fire occurrence.

The system will have the appropriate level of standby battery back-up to operate under mains power failure.

All cabling will be fire rated to the appropriate required standard.

Generally smoke detectors, incorporating base sounder units will be installed throughout the premises except within the kitchen area, plant spaces and gallery – these will be heat detectors; to avoid nuisance alarm conditions. The plant room/kitchen areas will also have carbon monoxide (CO) detectors installed.

Consideration will be given to an 'lon' based (Air sampling - Vesda), detection system in some principal areas including for CO detection.

#### 3.10 EARTHING & BONDING

All extraneous conductive parts will be bonded to the main building earth terminal with main equipotential and supplementary earth bonds as required.

Supplementary earth bonding will be provided to areas of increased electric shock risk including bathrooms, shower rooms, swimming pool area and plant rooms.

A separate additional earth electrode system will be provided for earth bonding of the swimming pool areas as required by the IEE Regulations.

#### 3.11 LIGHTNING PROTECTION

A lightning protection system will be installed to prevent damage to the building structure and mitigate; injury to people, physical damage (e.g. fire, explosion) and failure of internal electrical systems. The system will be designed to intercept the lightning strike and safely discharge the high voltage current to earth via a network of lightning rods and metal conductors or the building frame, connected to an earth electrode designed to provide a low resistance path to earth.

To protect sensitive electronic equipment within the property from damage and failure resulting from transient over voltages (surges), caused by lightning strikes; a suitable surge arrester will be installed at the main supply intake and on data/phone lines and for sensitive equipment.

#### 3.12 ELECTRICAL APPLIANCES & MECHANICAL SYSTEM EQUIPMENT

Most 'white goods', including the refrigerator/freezer, cooker, microwave oven, washing machine/dryer and dishwasher will be 'A' rated (or higher) energy efficient items under the EU energy label classification.

Other major electrical plant, including condenser units and water booster pumps sets will be selected where available and or practicable to incorporate energy efficient motors and intelligent energy saving controls.

Section 4.0

# **M&E SUSTAINABILITY ITEMS**

#### **4.1 DAYLIGHTING**

The proposed house has high levels of natural daylighting due to the glazing areas.

All main habitable rooms (Living rooms, kitchen and study), will achieve the minimum daylight factors and view of the sky.

#### **4.2 RECYCLABLE MATERIALS**

Each product/material for the M&E services shall be evaluated against Environmental impacts and life cycle costing. The following is a typical list of proposed M&E materials/products that will be utilised;

- Water pipework
- Copper (Recvclable).

Valves

.

- Brass (Recyclable).

- Phenolic foam – (Recyclable)

- PVC twin & earth (XLPE/LSF) (Recyclable) Electrical cables
- Pipework insulation •
- Rock wool (Recyclable)
- Pipework Insulation •
  - Concrete Portland cement based (Recyclable)
- Light fittings LED's/compact fluorescent (Recyclable)

#### **4.3 SALVAGE/REUSE OF EXISTING MATERIALS**


Each existing material/product will be evaluated for possible salvage/reuse when existing items/materials are removed for the proposed works.

Reuse will have priority over salvage; an economic, viability and safety assessment will be made for each item/material.

#### **4.4 LIFE CYCLE COSTING**

Each product/material proposed shall be evaluated on a life cycle costing basis. Recyclable materials shall be utilised where possible in preference to non-Recyclable.

The particular areas of the life cycle to be addressed for M&E Services are: Building & Installing the system/product, Operation/Maintenance, Energy Usage and finally,



Decommissioning/Recycling.

Below is a graph indicating the lift cycle phases;

Typically the majority of the life of a material/product is spent in the Operation/Maintenance phase. It is in this phase that it creates the value contribution but also absorbs the vast proportion of the costs through maintenance and energy usage.

Products/materials shall be selected on the basis of particularly reducing the impact of this phase, for example, a pump, by selecting long term reliability and low energy usage over initial cost.

The ease and speed of building/installing different products/systems shall also be compared to reduce this phase.

#### **4.5 NOISE & VIBRATION**

Noise and vibration associated with moving mechanical services plant, e.g. Pumps, fans, condensers, pipes/ducts, lifts and boilers shall be limited to acceptable levels as follows;

- Pumps: Inverter drives providing slow low impact start/stop cycles, intelligent controls, anti-vibration couplings/supports, dense block wall constructed plantrooms.
- Fans: Low speed intermittent ventilation fans, flexible duct connections, remote plantroom/cupboard mounting, attenuators and anti-vibration fixings.

Boilers/ GSHP: Low noise units and internally mounted within plant areas.

Pipes: Anti-vibration/flexible couplings to plant, expansion joints/anchors and smooth bends/straight lines.

Ducts: Inline attenuators, anti-vibration/flexible couplings to plant, and smooth bends/straight lines.

An Acoustic Consultant shall further advise on noise, vibration and acoustic items.

#### 4.6 SOLAR GAINS

In compliance with the new Part 'L' of the Building Regulations (April 2013/16 edition) solar gains shall be reduced by the building being designed to limit heat gains by; orientation, thermal mass, provision of green roofs, tree shading, semi underground spaces, overhanging slabs/roofs and higher performance double glazed windows with solar tinting/low emissivity coating and Argon gas filled cavities to the South, East & West Elevations.

Additionally, internal blinds to the South, East & West Elevations may be provided as part of the development for occupiers to assist in compliance with Solar Gains.

### Section 5.0

#### DISCLAIMER

This non-assignable report has been prepared solely for the client as a pre-planning report for the proposed development. The contents and views expressed in this report remain the copyright and opinion of ME7 Ltd. The client is to check and verify the contents with no admission of liability, duty of care or warranty to any Third Party.

This report is based on the information provided/available at the time of production.

ME7 February 2021

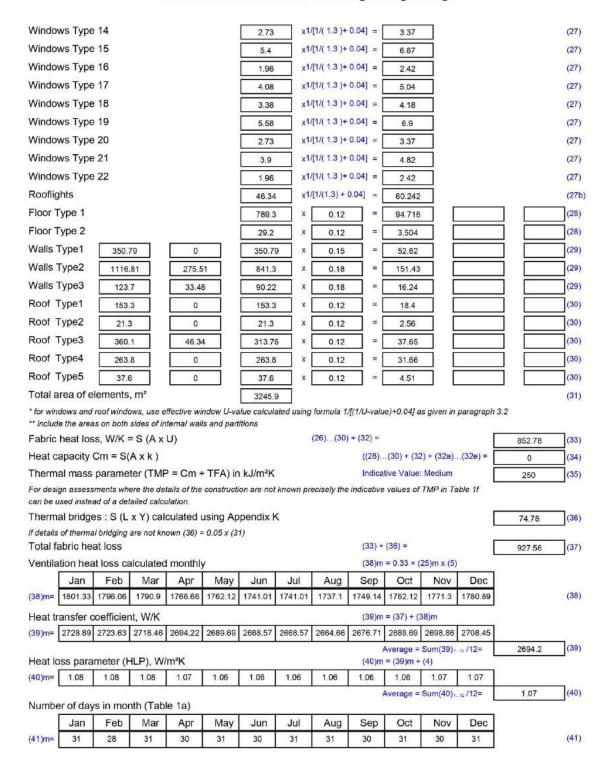
APPENDIX (i)

#### SAP L1A 2013/16 REGULATIONS

(DER Worksheet)

|                                                        |                       |             |                  | User [     | Details:      |             |                 |               |                        |      |
|--------------------------------------------------------|-----------------------|-------------|------------------|------------|---------------|-------------|-----------------|---------------|------------------------|------|
| Assessor Name:                                         | Ondrej Gaj            | dos         |                  |            | Strom         | a Num       | ber:            | STRO          | 0006629                |      |
| Software Name:                                         | Stroma FS             |             | 2                |            | Softwa        | re Ve       | rsion:          | Versi         | on: 1.0.5.7            |      |
|                                                        |                       |             | P                | roperty    | Address:      | 28, Ave     | enue Road       |               |                        |      |
| Address :                                              | 28, Avenue            | Road, L     | ONDON            | I, NW8     | 6BU           |             |                 |               |                        |      |
| 1. Overall dwelling dime                               | ensions:              |             |                  |            |               |             |                 |               |                        |      |
| 2                                                      |                       |             |                  | Are        | a(m²)         |             | Av. Heigl       |               | Volume(m               | _    |
| Basement                                               |                       |             |                  |            | 789.3         | (1a) x      | 3.3             | (2a) =        | 2604.69                | (3a) |
| Ground floor                                           |                       |             |                  |            | 617           | (1b) x      | 5.5             | (2b) =        | 3393.5                 | (3b) |
| First floor                                            |                       |             |                  |            | 570.3         | (1c) x      | 4.2             | (2c) =        | 2395.26                | (3c) |
| Second floor                                           |                       |             |                  |            | 549           | (1d) x      | 3.1             | (2d) =        | 1701.9                 | (3d) |
| Total floor area TFA = (1                              | la)+(1b)+(1c)+(       | (1d)+(1e    | )+(1r            | 1) 2       | 2525.6        | (4)         |                 |               |                        |      |
| Dwelling volume                                        |                       |             |                  | -          |               | (3a)+(3b    | )+(3c)+(3d)+(   | 3e)+(3n) =    | 10095.35               | (5)  |
| 2. Ventilation rate:                                   |                       |             |                  |            | 1114          |             |                 |               | and an                 |      |
|                                                        | main<br>heating       |             | condai<br>eating | У          | other         |             | total           |               | m <sup>3</sup> per hou | ır   |
| Number of chimneys                                     | 0                     | +           | 0                | +          | 0             | ] = [       | 0               | x 40 =        | 0                      | (6a) |
| Number of open flues                                   | 0                     | + [         | 0                | ] + [      | 4             | ] = [       | 4               | x 20 =        | 80                     | (6b) |
| Number of intermittent fa                              | ans                   |             |                  |            |               | Ē           | 16              | x 10 =        | 160                    | (7a) |
| Number of passive vents                                | 5                     |             |                  |            |               | Ē           | 0               | x 10 =        | 0                      | (7b) |
| Number of flueless gas f                               | fires                 |             |                  |            |               | Ē           | 0               | x 40 =        | 0                      | (7c) |
|                                                        |                       |             |                  |            |               | 10          |                 | Airc          | hanges per h           | our  |
| Infiltration due to chimne                             | evs. flues and fr     | ans = (6a   | a)+(6b)+(7       | a)+(7b)+   | (7c) =        | Г           | 240             | + (5) =       | 0.02                   | (8)  |
| If a pressurisation test has l                         |                       |             |                  |            |               | ontinue fr  |                 | sitest        | 0.02                   |      |
| Number of storeys in t                                 | the dwelling (na      | 5)          |                  |            |               |             |                 |               | 0                      | (9)  |
| Additional infiltration                                |                       |             |                  |            |               |             |                 | [(9)-1]x0.1 = | 0                      | (10) |
| Structural infiltration: 0                             | 0.25 for steel or     | timber f    | rame or          | 0.35 fc    | r masonr      | y constr    | uction          |               | 0                      | (11) |
| if both types of wall are p<br>deducting areas of open |                       |             | oonding to       | the grea   | ter wall are  | a (after    |                 |               |                        |      |
| If suspended wooden                                    |                       |             | ed) or 0         | 1 (seal    | ed), else     | enter O     |                 |               | 0                      | (12) |
| If no draught lobby, er                                | nter 0.05, else e     | enter O     |                  |            |               |             |                 |               | 0                      | (13) |
| Percentage of window                                   | s and doors dr        | aught str   | ripped           |            |               |             |                 |               | 0                      | (14) |
| Window infiltration                                    |                       |             |                  |            | 0.25 - [0.2   | x (14) ÷ 1  | 00] =           |               | 0                      | (15) |
| Infiltration rate                                      |                       |             |                  |            | (8) + (10)    | + (11) + (1 | 12) + (13) + (1 | 15) =         | 0                      | (16) |
| Air permeability value,                                | , q50, expresse       | ed in cub   | ic metre         | s per h    | our per se    | quare m     | etre of env     | elope area    | 4                      | (17) |
| If based on air permeabi                               | ility value, then     | (18) = [(17 | 7) + 20]+(       | 8), otherw | vise (18) = ( | 16)         |                 |               | 0.22                   | (18) |
| Air permeability value appli                           | es if a pressurisatio | on test has | been dor         | e or a de  | gree air per  | meability   | is being used   | 1             |                        | 111  |
| Number of sides shelter                                | ed                    |             |                  |            |               |             |                 |               | 0                      | (19) |
| Shelter factor                                         |                       |             |                  |            | (20) = 1 - ]  | 1.1         | [9]] =          |               | 1                      | (20) |
| Infiltration rate incorpora                            | ting shelter fac      | tor         |                  |            | (21) = (18)   | x (20) =    |                 |               | 0.22                   | (21) |
| Infiltration rate modified                             | for monthly win       | d speed     |                  | 10         |               |             |                 |               | -                      |      |
| Jan Feb                                                | Mar Apr               | May         | Jun              | Jul        | Aug           | Sep         | Oct             | Nov Dec       |                        |      |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com


Page 1 of 15

| 22)m=                                                                          | 5.1                                                                                           | 5                                                                                     | 4.9                                                                                                    | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3                                                                                             | 3.8                                                                           | 3.8                                                                       | 3.7                                                                                    | 4                                                                  | 4.3                                 | 4.5                     | 4.7         |       |                      |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------|-------------|-------|----------------------|
|                                                                                |                                                                                               |                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                               |                                                                           |                                                                                        |                                                                    |                                     |                         |             |       |                      |
| Vind F                                                                         | actor (2                                                                                      | 22a)m =                                                                               | (22)m ÷                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                               |                                                                           |                                                                                        |                                                                    |                                     |                         |             |       |                      |
| 22a)m=                                                                         | 1.27                                                                                          | 1.25                                                                                  | 1.23                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.08                                                                                            | 0.95                                                                          | 0.95                                                                      | 0.92                                                                                   | 1                                                                  | 1.08                                | 1.12                    | 1.18        |       |                      |
|                                                                                |                                                                                               |                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                               | · · · · ·                                                                 |                                                                                        |                                                                    |                                     |                         |             |       |                      |
| djuste                                                                         | 1400-00100-00100                                                                              |                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 | nd wind s                                                                     | · · ·                                                                     | · · ·                                                                                  | <u> </u>                                                           |                                     |                         |             |       |                      |
|                                                                                | 0.29                                                                                          | 0.28                                                                                  | 0.27                                                                                                   | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.24                                                                                            | 0.21                                                                          | 0.21                                                                      | 0.21                                                                                   | 0.22                                                               | 0.24                                | 0.25                    | 0.26        |       |                      |
|                                                                                |                                                                                               | al ventila                                                                            |                                                                                                        | rate for i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne appli                                                                                        | cable ca                                                                      | se                                                                        |                                                                                        |                                                                    |                                     |                         | <b></b>     | 0     | (23a                 |
| 109436                                                                         | 64.66.468.68                                                                                  |                                                                                       |                                                                                                        | endix N. (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (23b) = (23a                                                                                    | a) × Fmv (e                                                                   | equation (I                                                               | N5)) othe                                                                              | rwise (23h                                                         | (23a) = (23a)                       |                         |             | 1.5.7 | (23b                 |
|                                                                                |                                                                                               |                                                                                       |                                                                                                        | CONSIGNATION OF THE PARTY OF TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2005 18103                                                                                      | at a constant                                                                 | 12. <b>1</b> . 12. 12. 12. 12. 12. 12. 12. 12. 12. 12                     | 1                                                                                      |                                                                    | ,) (20 <b>u</b> )                   |                         |             | 0     |                      |
|                                                                                |                                                                                               |                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••••••••••••••••                                                                                | for in-use f                                                                  | 1997 T 1997 C 1997 C 1997                                                 |                                                                                        | •                                                                  |                                     |                         |             | 0     | (230                 |
| a) If I                                                                        | balance                                                                                       | ed mech                                                                               | anical ve                                                                                              | entilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with he                                                                                         | at recov                                                                      | ery (MVI                                                                  | HR) (24a                                                                               | a)m = (2                                                           | 2b)m + (                            | 23b) × [                | 1 – (23c) + | 100]  |                      |
| 24a)m=                                                                         | 0                                                                                             | 0                                                                                     | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                               | 0                                                                             | 0                                                                         | 0                                                                                      | 0                                                                  | 0                                   | 0                       | 0           |       | (24a                 |
| 1-3-17-1                                                                       | halance                                                                                       | d moch                                                                                | anical ve                                                                                              | entilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | without                                                                                         | heat red                                                                      | overv (                                                                   | MV) (24)                                                                               | m = (2)                                                            | 2h)m + (                            | 23h)                    |             |       |                      |
| D) IT (                                                                        | Jaiance                                                                                       | su meun                                                                               | annoan ve                                                                                              | anulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | without                                                                                         | nourrou                                                                       | sorery (i                                                                 | VIV / (2-Th                                                                            | //// = \Z                                                          | EDUU . /                            | 200)                    |             |       |                      |
|                                                                                | 0                                                                                             |                                                                                       |                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                               | 0                                                                             | 0                                                                         | 0                                                                                      | 0                                                                  | 0                                   | 0                       | 0           |       | (24b                 |
| 24b)m=                                                                         | 0                                                                                             | 0                                                                                     | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                               | 0                                                                             | 0                                                                         | 0                                                                                      | 0                                                                  | 1                                   | ,                       | 0           |       | (24t                 |
| 24b)m=<br>c) If v                                                              | 0<br>whole h                                                                                  | 0<br>Iouse ex                                                                         | 0<br>tract ver                                                                                         | 0<br>ntilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>or positiv                                                                                 | 0<br>ve input                                                                 | 0<br>ventilatio                                                           | 0<br>on from (                                                                         | o<br>outside                                                       | 1                                   | 0                       | 0           |       | (24b                 |
| 24b)m=<br>c) If v<br>i                                                         | 0<br>whole h                                                                                  | 0<br>Iouse ex                                                                         | 0<br>tract ver                                                                                         | 0<br>ntilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>or positiv                                                                                 | 0<br>ve input                                                                 | 0<br>ventilatio                                                           | 0<br>on from (                                                                         | o<br>outside                                                       | 0                                   | 0                       | 0           |       |                      |
| 24b)m=<br>c) If v<br>i<br>24c)m=                                               | 0<br>whole h<br>f (22b)r<br>0                                                                 | 0<br>nouse ex<br>n < 0.5 ><br>0                                                       | 0<br>tract ver<br>< (23b), t<br>0                                                                      | 0<br>ntilation<br>then (24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>or positiv<br>c) = (231<br>0                                                               | 0<br>ve input<br>b); othen<br>0                                               | o<br>ventilatio<br>wise (24                                               | 0<br>on from (<br>c) = (22)<br>0                                                       | o<br>outside<br>o) m + 0                                           | 0<br>.5 × (23t                      | 0                       |             |       |                      |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v                                   | 0<br>whole h<br>f (22b)r<br>0<br>natural                                                      | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation                                        | 0<br>tract ver<br>(23b), t<br>0<br>on or wh                                                            | 0<br>htilation (<br>hen (24<br>0<br>ole hous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>or positiv<br>c) = (23)<br>0<br>se positi                                                  | ve input                                                                      | ventilatio<br>wise (24                                                    | 0<br>on from (<br>c) = (22)<br>0<br>on from                                            | o<br>outside<br>o) m + 0<br>o<br>loft                              | 0<br>.5 × (23t                      | 0                       |             |       |                      |
| 24b)m=<br>c) If v<br>it<br>24c)m=<br>d) If v<br>it                             | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r                                          | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation                                        | 0<br>tract ver<br>(23b), t<br>0<br>on or wh                                                            | 0<br>htilation (<br>hen (24<br>0<br>ole hous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>or positiv<br>c) = (23)<br>0<br>se positi                                                  | 0<br>ve input<br>b); othen<br>0<br>ve input                                   | ventilatio<br>wise (24                                                    | 0<br>on from (<br>c) = (22)<br>0<br>on from                                            | o<br>outside<br>o) m + 0<br>o<br>loft                              | 0<br>.5 × (23t                      | 0                       |             |       | (24c                 |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v<br>if<br>24d)m=                   | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r<br>0.54                                  | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54                   | 0<br>tract ver<br>(23b), t<br>0<br>on or wh<br>en (24d)<br>0.54                                        | 0<br>htilation (24<br>0<br>ole hous<br>m = (22<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>or positiv<br>c) = (23<br>0<br>se positiv<br>b)m othe<br>0.53                              | 0<br>ve input<br>0); othen<br>0<br>ve input<br>erwise (2<br>0.52              | ventilatio<br>wise (24<br>ventilatio<br>24d)m =<br>0.52                   | 0<br>on from (<br>c) = (22)<br>0<br>on from<br>0.5 + [(2<br>0.52                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>.5 × (23t<br>0<br>0.5]         | 0<br>))<br>0            | 0           |       | (24c                 |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v<br>if<br>24d)m=<br>Effect         | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r<br>0.54                                  | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54<br>change         | 0<br>tract ver<br>(23b), t<br>0<br>on or wh<br>en (24d)<br>0.54<br>rate - er                           | 0<br>ntilation (24<br>0<br>0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0<br>0 0 0<br>0 0<br>0<br>0 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>or positiv<br>c) = (231<br>0<br>se positiv<br>b)m othe<br>0.53<br>a) or (241               | 0<br>ve input<br>0); other<br>0<br>ve input<br>erwise (2<br>0.52<br>b) or (24 | ventilatio<br>wise (24<br>0<br>ventilatio<br>24d)m =<br>0.52<br>c) or (24 | 0<br>on from (<br>c) = (22)<br>0<br>on from<br>0.5 + [(2<br>0.52<br>0.52<br>(d) in box | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>.5 × (23b<br>0<br>0.5]<br>0.53 | 0) 0 0.53               | 0           |       | (24b<br>(24c<br>(24d |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v<br>if<br>24d)m=                   | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r<br>0.54                                  | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54                   | 0<br>tract ver<br>(23b), t<br>0<br>on or wh<br>en (24d)<br>0.54                                        | 0<br>htilation (24<br>0<br>ole hous<br>m = (22<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>or positiv<br>c) = (23<br>0<br>se positiv<br>b)m othe<br>0.53                              | 0<br>ve input<br>0); othen<br>0<br>ve input<br>erwise (2<br>0.52              | ventilatio<br>wise (24<br>ventilatio<br>24d)m =<br>0.52                   | 0<br>on from (<br>c) = (22)<br>0<br>on from<br>0.5 + [(2<br>0.52                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>.5 × (23t<br>0<br>0.5]         | 0<br>))<br>0            | 0           |       | (24c                 |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v<br>if<br>24d)m=<br>Effec<br>25)m= | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r<br>0.54<br>tive air<br>0.54              | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54<br>change<br>0.54 | 0<br>tract ver<br>(23b), t<br>0<br>on or wh<br>en (24d)<br>0.54<br>rate - er                           | 0<br>tilation (24<br>0<br>ole hous<br>m = (22<br>0.53<br>nter (24a<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>or positiv<br>c) = (23<br>0<br>se positi<br>b)m othe<br>0.53<br>a) or (24<br>0.53          | 0<br>ve input<br>0); other<br>0<br>ve input<br>erwise (2<br>0.52<br>b) or (24 | ventilatio<br>wise (24<br>0<br>ventilatio<br>24d)m =<br>0.52<br>c) or (24 | 0<br>on from (<br>c) = (22)<br>0<br>on from<br>0.5 + [(2<br>0.52<br>0.52<br>(d) in box | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>.5 × (23b<br>0<br>0.5]<br>0.53 | 0) 0 0.53               | 0           |       | (24c                 |
| 24b)m=<br>c) If v<br>if<br>24c)m=<br>d) If v<br>if<br>24d)m=<br>Effec<br>25)m= | 0<br>whole h<br>f (22b)r<br>0<br>natural<br>f (22b)r<br>0.54<br>ctive air<br>0.54<br>at losse | 0<br>nouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54<br>change<br>0.54 | 0<br>tract ver<br>(23b), 1<br>0<br>on or wh<br>en (24d)<br>0.54<br>rate - er<br>0.54<br>eat loss<br>ss | 0<br>ntilation (<br>hen (24<br>0<br>ole hous<br>m = (22<br>0.53<br>nter (24a<br>0.53<br>oaramet<br>Openir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>or positiv<br>c) = (231<br>0<br>se positi<br>b)m othe<br>0.53<br>a) or (241<br>0.53<br>er: | 0<br>ve input<br>0); other<br>0<br>ve input<br>erwise (2<br>0.52<br>b) or (24 | 0 ventilatio wise (24 0 ventilatio 24d)m = 0.52 c) or (24 0.52 rea        | 0<br>on from (<br>c) = (22)<br>0<br>on from<br>0.5 + [(2<br>0.52<br>0.52<br>(d) in box | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>.5 × (23b<br>0<br>0.5]<br>0.53 | 0<br>0)<br>0.53<br>0.53 | 0           | 12    | (24c                 |

| Doors $6.28$ x $1.3$ = $8.164$ (26)Windows Type 1 $4.79$ $x1/[1/(1.3) + 0.04]$ $5.92$ (27)Windows Type 2 $13.04$ $x1/[1/(1.3) + 0.04]$ $16.11$ (27)Windows Type 3 $16.83$ $x1/[1/(1.3) + 0.04]$ $20.8$ (27)Windows Type 4 $7.19$ $x1/[1/(1.3) + 0.04]$ $8.88$ (27)Windows Type 5 $3.38$ $x1/[1/(1.3) + 0.04]$ $8.88$ (27)Windows Type 6 $2.73$ $x1/[1/(1.3) + 0.04]$ $3.37$ (27)Windows Type 7 $1.96$ $x1/[1/(1.3) + 0.04]$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3) + 0.04]$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3) + 0.04]$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3) + 0.04]$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3) + 0.04]$ $3.37$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3) + 0.04]$ $2.42$ (27) | ELEMENT      | area (m²) | m² | A ,m <sup>2</sup> | W/m2K                    | (W/K) | kJ/m <sup>2</sup> ·K | kJ/K |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----|-------------------|--------------------------|-------|----------------------|------|
| Windows Type 2 $13.04$ $x1/[1/(1.3)+0.04] =$ $16.11$ (27)Windows Type 3 $16.83$ $x1/[1/(1.3)+0.04] =$ $20.8$ (27)Windows Type 4 $7.19$ $x1/[1/(1.3)+0.04] =$ $8.88$ (27)Windows Type 5 $3.38$ $x1/[1/(1.3)+0.04] =$ $8.88$ (27)Windows Type 6 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 7 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)                                                                                           | Doors        |           |    | 6.28              | x 1.3 =                  | 8.164 |                      | (26) |
| Windows Type 316.83 $x1/[1/(1.3)+0.04] =$ 20.8(27)Windows Type 47.19 $x1/[1/(1.3)+0.04] =$ 8.88(27)Windows Type 53.38 $x1/[1/(1.3)+0.04] =$ 4.18(27)Windows Type 62.73 $x1/[1/(1.3)+0.04] =$ 3.37(27)Windows Type 71.96 $x1/[1/(1.3)+0.04] =$ 2.42(27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ 6.9(27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ 4.18(27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ 3.37(27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ 3.37(27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ 2.42(27)                                                                                                                                                                                                 | Windows Type | 1         |    | 4.79              | x1/[1/(1.3)+0.04] =      | 5.92  |                      | (27) |
| Windows Type 4 $7.19$ $x1/[1/(1.3)+0.04] =$ $8.88$ (27)Windows Type 5 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 6 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 7 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)                                                                                                                                                                                                             | Windows Type | 2         |    | 13.04             | x1/[1/( 1.3 )+ 0.04] =   | 16.11 |                      | (27) |
| Windows Type 5 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 6 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 7 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                  | Windows Type | 3         |    | 16.83             | x1/[1/(1.3)+0.04] =      | 20.8  |                      | (27) |
| Windows Type 6 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 7 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $(27)$                                                                                                                                                                                                                                                                                                                               | Windows Type | 4         |    | 7,19              | x1/[1/( 1.3 )+ 0.04] =   | 8.88  |                      | (27) |
| Windows Type 7 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                | Windows Type | 5         |    | 3.38              | x1/[1/(1.3)+0.04] =      | 4.18  |                      | (27) |
| Windows Type 8 $5.58$ $x1/[1/(1.3)+0.04] =$ $6.9$ (27)Windows Type 9 $3.38$ $x1/[1/(1.3)+0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3)+0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3)+0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3)+0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                                                                       | Windows Type | 6         |    | 2.73              | x1/[1/( 1.3 )+ 0.04] =   | 3.37  |                      | (27) |
| Windows Type 9 $3.38$ $x1/[1/(1.3) + 0.04] =$ $4.18$ (27)Windows Type 10 $2.73$ $x1/[1/(1.3) + 0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3) + 0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3) + 0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Windows Type | 7         |    | 1.96              | x1/[1/( 1.3 )+ 0.04] =   | 2.42  |                      | (27) |
| Windows Type 10 $2.73$ $x1/[1/(1.3) + 0.04] =$ $3.37$ (27)Windows Type 11 $1.96$ $x1/[1/(1.3) + 0.04] =$ $2.42$ (27)Windows Type 12 $11.16$ $x1/[1/(1.3) + 0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Windows Type | 8         |    | 5.58              | x1/[1/( 1.3 )+ 0.04] =   | 6.9   |                      | (27) |
| Windows Type 11 $1.96$ $x1/[1/(1.3) + 0.04] =$ $2.42$ (27)         Windows Type 12 $11.16$ $x1/[1/(1.3) + 0.04] =$ $13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Windows Type | 9         |    | 3.38              | x1/[1/( 1.3 )+ 0.04] =   | 4.18  |                      | (27) |
| Windows Type 12 $11.16$ $x^{1/[1/(1.3)+0.04]} = 13.79$ (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Windows Type | 10        |    | 2.73              | x1/[1/( 1.3 )+ 0.04] =   | 3.37  |                      | (27) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Windows Type | 11        |    | 1.96              | $x^{1/[1/(1.3)+0.04]} =$ | 2.42  |                      | (27) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Windows Type | 12        |    | 11.16             | x1/[1/( 1.3 )+ 0.04] =   | 13.79 |                      | (27) |
| $5.58 \qquad \text{xi}_1/(1.3) + 0.04] = 6.9 \qquad (27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Windows Type | 13        |    | 5.58              | x1/[1/( 1.3 )+ 0.04] =   | 6.9   |                      | (27) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 2 of 15



Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 3 of 15

| 4. Water hea                              | ating ene                                       | rgy requ    | irement:     |             |              |            |              |              |             |                              | kWh/yea     | ir:          |      |
|-------------------------------------------|-------------------------------------------------|-------------|--------------|-------------|--------------|------------|--------------|--------------|-------------|------------------------------|-------------|--------------|------|
| Assumed occ<br>if TFA > 13<br>if TFA £ 13 | .9, N = 1                                       |             | [1 - exp     | (-0.0003    | 349 x (TF    | FA -13.9   | )2)] + 0.(   | 0013 x (     | TFA -13     |                              | 03          |              | (42) |
| Annual avera<br>Reduce the annu           | ial average                                     | hot water   | usage by     | 5% if the a | welling is   | designed t |              |              | se target o |                              | 7.3         |              | (43) |
| ot more that 12                           | o intres per                                    | person per  | r day (all w | ater use, r | not and co   | (a)        |              |              |             |                              |             |              |      |
| Jan                                       | Feb                                             | Mar         | Apr          | May         | Jun          | Jul        | Aug          | Sep          | Oct         | Nov                          | Dec         |              |      |
| lot water usage                           | in litres per                                   | day for ea  | ach month    | Vd,m = fa   | ctor from    | Table 1c x | (43)         |              | _           |                              |             |              |      |
| 14)m= 195.03                              | 187.94                                          | 180.84      | 173.75       | 166.66      | 159.57       | 159.57     | 166.66       | 173.75       | 180.84      | 187.94                       | 195.03      |              |      |
| Energy content o                          | of hot water                                    | used - cal  | culated m    | onthly = 4. | 190 x Vd,r   | n x nm x E | )Tm / 3600   |              |             | m(44)1 - 12 =<br>ables 1b, 1 |             | 2127.58      | (44) |
| 45)m= 289.22                              | 252.96                                          | 261.03      | 227.57       | 218.36      | 188.43       | 174.61     | 200.36       | 202.75       | 236.29      | 257.93                       | 280.1       |              |      |
|                                           |                                                 |             |              |             |              |            |              |              | Total = Su  | m(45)112                     | -           | 2789.6       | (45) |
| f instantaneous                           | water heati                                     | ng at point | of use (no   | hot water   | r storage),  | enter 0 in | boxes (46    | ) to (61)    |             |                              |             |              | _    |
| 46)m= 43.38                               | 37.94                                           | 39.15       | 34.14        | 32.75       | 28.26        | 26.19      | 30.05        | 30.41        | 35.44       | 38.69                        | 42.01       |              | (46) |
| Vater storage                             | e loss:                                         |             |              |             |              |            |              |              |             |                              |             |              |      |
| Storage volur                             | ne (litres                                      | ) includir  | ng any se    | olar or W   | WHRS         | storage    | within sa    | ame ves      | sel         |                              | 2000        |              | (47) |
| f community                               | heating a                                       | and no ta   | nk in dw     | velling, e  | nter 110     | litres in  | (47)         |              |             |                              |             |              |      |
| Otherwise if r                            | no stored                                       | hot wate    | er (this ir  | icludes i   | nstantar     | neous co   | mbi boil     | ers) ente    | er '0' in ( | (47)                         |             |              |      |
| Vater storage                             | e loss:                                         |             |              |             |              |            |              |              |             | -                            |             |              |      |
| a) If manufac                             | cturer's d                                      | eclared I   | oss facto    | or is kno   | wn (kWł      | n/day):    |              |              |             | 6.                           | .67         |              | (48  |
| emperature                                | factor fro                                      | m Table     | 2b           |             |              |            |              |              |             | 0.                           | 54          |              | (49  |
| nergy lost fr                             | om water                                        | storage     | , kWh/ye     | ear         |              |            | (48) x (49   | ) =          |             | 3                            | .6          |              | (50  |
| b) If manufac                             | cturer's d                                      | eclared o   | cylinder     | oss fact    | or is not    | known:     |              |              |             |                              |             |              |      |
| lot water sto                             | 1. 1. A. C. |             |              | e 2 (kW     | h/litre/da   | iy)        |              |              |             |                              | 0           |              | (51  |
| f community                               |                                                 |             | on 4.3       |             |              |            |              |              |             |                              |             |              |      |
| olume factor                              |                                                 |             |              |             |              |            |              |              |             | <u> </u>                     | 0           |              | (52  |
| emperature                                | factor fro                                      | m Table     | 20           |             |              |            |              |              |             |                              | 0           |              | (53) |
| nergy lost fr                             |                                                 |             | , kWh/ye     | ear         |              |            | (47) x (51   | ) x (52) x ( | 53) =       |                              | 0           |              | (54  |
| Enter (50) or                             | (54) in (                                       | 55)         |              |             |              |            |              |              |             | 3                            | .6          |              | (55  |
| Vater storage                             | e loss cal                                      | culated f   | for each     | month       |              |            | ((56)m = (   | 55) × (41)   | m           |                              |             |              |      |
| 56)m= 111.66                              | 100.85                                          | 111.66      | 108.05       | 111.66      | 108.05       | 111.66     | 111.66       | 108.05       | 111.66      | 108.05                       | 111.66      |              | (56) |
| cylinder contain                          | ns dedicate                                     | d solar sto | rage, (57)   | m = (56)m   | x [(50) - (  | H11)] + (5 | 0), else (5  | 7)m = (56)   | m where (   | (H11) is fro                 | m Appendix  | н            |      |
| 57)m= 111.66                              | 100.85                                          | 111.66      | 108.05       | 111.66      | 108.05       | 111.66     | 111.66       | 108.05       | 111.66      | 108.05                       | 111.66      |              | (57) |
|                                           |                                                 |             |              |             |              |            |              |              | 10000       |                              |             |              | /69  |
| Primary circui                            |                                                 |             |              |             | E0)m =       | EQ1 : 20   | E . (44)     | -            |             |                              | 0           |              | (58) |
| rimary circui<br>(modified b              |                                                 |             |              |             |              |            |              |              | r thormo    | (total)                      |             |              |      |
|                                           |                                                 | 02200200    | 1.00000000   | 0502500002  | 0.0000000000 | 02000.0494 | -            |              | 23.26       | 1                            | 22.26       |              | (59  |
| 59)m= 23.26                               | 21.01                                           | 23.26       | 22.51        | 23.26       | 22.51        | 23.26      | 23.26        | 22.51        | 23.20       | 22.51                        | 23.26       |              | (55  |
| Combi loss ca                             | alculated                                       | for each    | month        | (61)m =     | (60) ÷ 36    | 65 × (41   | )m           |              |             |                              |             |              |      |
| 61)m= 0                                   | 0                                               | 0           | 0            | 0           | 0            | 0          | 0            | 0            | 0           | 0                            | 0           |              | (61) |
| otal heat rec                             | quired for                                      | water he    | eating ca    | alculated   | for eac      | h month    | (62)m =      | 0.85 ×       | (45)m +     | (46)m +                      | (57)m + (5  | 59)m + (61)r | n    |
| 62)m= 424.14                              | 374.82                                          | 395.95      | 358.14       | 353.28      | 318.99       | 309.52     | 335.28       | 333.32       | 371.21      | 388.5                        | 415.01      |              | (62  |
| iolar DHW input                           | calculated                                      | using App   | endix G or   | Appendix    | H (negati    | ve quantit | /) (enter '0 | ' if no sola | r contribut | tion to wate                 | er heating) |              |      |
| add additiona                             |                                                 |             |              |             |              |            |              |              |             |                              |             |              |      |
|                                           | 1                                               |             |              |             | r            |            | i .          | ŕ            |             | 1                            |             |              | (63) |
| 63)m= 0                                   | 0                                               | 0           | 0            | 0           | 0            | 0          | 0            | 0            | 0           | 0                            | 0           |              | (05  |

|                                                                                                   | 424.14                                                                                                    | 374.82                                                                      | 395.95                                                  | 358.14                                                            | 353.28                                        | 318.99                                                               | 309.52                                                                    | 335.28                                                                                                                                                                                                                     | 333.32                                                                        | 371.21                                                                | 388.5                                                                             | 415.01                                            |                                                  |                          |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------|
|                                                                                                   |                                                                                                           |                                                                             |                                                         |                                                                   |                                               |                                                                      |                                                                           | Out                                                                                                                                                                                                                        | out from wa                                                                   | ater heate                                                            | r (annual)                                                                        | 9                                                 | 4378.15                                          | (64)                     |
| leat ga                                                                                           | ains froi                                                                                                 | n water                                                                     | heating,                                                | kWh/m                                                             | onth 0.2                                      | 5 ' [0.85                                                            | × (45)m                                                                   | n + (61)n                                                                                                                                                                                                                  | n] + 0.8 x                                                                    | (46)m                                                                 | + (57)m                                                                           | + (59)m ]                                         | ]                                                |                          |
| 65) <b>m=</b>                                                                                     | 204.1                                                                                                     | 181.6                                                                       | 194.73                                                  | 180.12                                                            | 180.54                                        | 167.1                                                                | 165.99                                                                    | 174.55                                                                                                                                                                                                                     | 171.87                                                                        | 186.5                                                                 | 190.21                                                                            | 201.07                                            |                                                  | (65)                     |
| inclu                                                                                             | de (57)                                                                                                   | m in calo                                                                   | culation (                                              | of (65)m                                                          | only if c                                     | ylinder i                                                            | s in the o                                                                | dwelling                                                                                                                                                                                                                   | or hot w                                                                      | ater is fi                                                            | om com                                                                            | munity he                                         | eating                                           |                          |
| 5. Int                                                                                            | ernal ga                                                                                                  | ins (see                                                                    | e Table 5                                               | i and 5a                                                          | ):                                            | 2                                                                    |                                                                           |                                                                                                                                                                                                                            |                                                                               |                                                                       |                                                                                   |                                                   |                                                  |                          |
| /letabo                                                                                           | olic gain                                                                                                 | s (Table                                                                    | e 5), Wat                                               | ts                                                                |                                               |                                                                      |                                                                           |                                                                                                                                                                                                                            |                                                                               |                                                                       |                                                                                   |                                                   |                                                  |                          |
|                                                                                                   | Jan                                                                                                       | Feb                                                                         | Mar                                                     | Apr                                                               | May                                           | Jun                                                                  | Jul                                                                       | Aug                                                                                                                                                                                                                        | Sep                                                                           | Oct                                                                   | Nov                                                                               | Dec                                               |                                                  |                          |
| 66)m=                                                                                             | 301.26                                                                                                    | 301.26                                                                      | 301.26                                                  | 301.26                                                            | 301.26                                        | 301.26                                                               | 301.26                                                                    | 301.26                                                                                                                                                                                                                     | 301.26                                                                        | 301.26                                                                | 301.26                                                                            | 301.26                                            |                                                  | (66                      |
| ighting                                                                                           | g gains                                                                                                   | (calcula                                                                    | ted in Ar                                               | pendix                                                            | L, equat                                      | ion L9 o                                                             | r L9a), a                                                                 | lso see                                                                                                                                                                                                                    | Table 5                                                                       |                                                                       |                                                                                   |                                                   |                                                  |                          |
| 37)m=                                                                                             | 162.57                                                                                                    | 144.39                                                                      | 117.43                                                  | 88.9                                                              | 66.45                                         | 56.1                                                                 | 60.62                                                                     | 78.8                                                                                                                                                                                                                       | 105.76                                                                        | 134.29                                                                | 156.74                                                                            | 167.09                                            |                                                  | (67                      |
| nopliar                                                                                           | nces gai                                                                                                  | ns (calc                                                                    | ulated in                                               | Append                                                            | lix L. ea                                     | uation L                                                             | 13 or L1                                                                  | 3a), also                                                                                                                                                                                                                  | see Tal                                                                       | ole 5                                                                 |                                                                                   |                                                   |                                                  |                          |
|                                                                                                   |                                                                                                           |                                                                             | 1676.19                                                 |                                                                   | •                                             |                                                                      |                                                                           |                                                                                                                                                                                                                            | 1300.95                                                                       | 0.0020.0201                                                           | 1515.43                                                                           | 1627.91                                           |                                                  | (68                      |
| Cookin                                                                                            | L gains                                                                                                   | (calcula                                                                    | ted in A                                                | nnendix                                                           | l equal                                       | ion I 15                                                             | or L15a)                                                                  | ) also si                                                                                                                                                                                                                  | ee Table                                                                      | 5                                                                     |                                                                                   |                                                   |                                                  |                          |
| 59)m=                                                                                             | 53.13                                                                                                     | 53.13                                                                       | 53.13                                                   | 53.13                                                             | 53.13                                         | 53.13                                                                | 53.13                                                                     | 53.13                                                                                                                                                                                                                      | 53.13                                                                         | 53.13                                                                 | 53.13                                                                             | 53.13                                             |                                                  | (69                      |
| L                                                                                                 | 10.040                                                                                                    | Constantion .                                                               | (Table 5                                                | 1.25                                                              | 00005                                         |                                                                      |                                                                           |                                                                                                                                                                                                                            | 100000                                                                        |                                                                       |                                                                                   |                                                   |                                                  |                          |
| 70)m=                                                                                             | 6                                                                                                         | 6<br>6                                                                      | 6                                                       | 6                                                                 | 6                                             | 6                                                                    | 6                                                                         | 6                                                                                                                                                                                                                          | 6                                                                             | 6                                                                     | 6                                                                                 | 6                                                 |                                                  | (70                      |
| - C - L                                                                                           |                                                                                                           | anoratio                                                                    |                                                         |                                                                   |                                               |                                                                      |                                                                           |                                                                                                                                                                                                                            |                                                                               |                                                                       |                                                                                   |                                                   |                                                  | 1.3                      |
| r                                                                                                 | -241.01                                                                                                   | -241.01                                                                     | on (nega<br>-241.01                                     | -241.01                                                           | -241.01                                       | -241.01                                                              | -241.01                                                                   | -241.01                                                                                                                                                                                                                    | -241.01                                                                       | -241.01                                                               | -241.01                                                                           | -241.01                                           |                                                  | (71                      |
|                                                                                                   | Supervised States                                                                                         | ai vai                                                                      | Sector Cont                                             | -241.01                                                           | -241.01                                       | -241.01                                                              | -241.01                                                                   | -241.01                                                                                                                                                                                                                    | -241.01                                                                       | -241.01                                                               | -241.01                                                                           | -241.01                                           |                                                  | N.C.                     |
| 72)m=                                                                                             |                                                                                                           | gains (T<br>270.23                                                          | 261.73                                                  | 250.17                                                            | 242.66                                        | 232.09                                                               | 223.11                                                                    | 234.62                                                                                                                                                                                                                     | 238.71                                                                        | 250.67                                                                | 264.19                                                                            | 270.25                                            |                                                  | (72                      |
| 2 jiii-                                                                                           | 214.55                                                                                                    | 210.23                                                                      | 201.75                                                  | 230.17                                                            | 242.00                                        | 202.09                                                               | 220.11                                                                    | 204.02                                                                                                                                                                                                                     | 230.(1                                                                        |                                                                       | 204.18                                                                            |                                                   |                                                  | 112                      |
|                                                                                                   |                                                                                                           | 1000 B (1000 100                                                            |                                                         |                                                                   |                                               | 100                                                                  |                                                                           | 1 (00)                                                                                                                                                                                                                     | (00)                                                                          | 701- 1/7                                                              | 41- 1 (70)                                                                        |                                                   |                                                  |                          |
| T                                                                                                 | <u> </u>                                                                                                  | gains =                                                                     |                                                         | 0000.00                                                           | 4000.0                                        | history.                                                             | San Carte                                                                 | 55-675                                                                                                                                                                                                                     | Real and the                                                                  |                                                                       | 1)m + (72)                                                                        |                                                   |                                                  | (73)                     |
| 73)m= [                                                                                           | 2259.33                                                                                                   | 2254.73                                                                     |                                                         | 2039.83                                                           | 1890.2                                        | (66<br>1756.8                                                        | )m + (67)m<br>1677.19                                                     | n + (68)m<br>1689.21                                                                                                                                                                                                       | + (69)m + (<br>1764.8                                                         | 70)m + (7<br>1900.1                                                   | 1)m + (72)<br>2055.73                                                             | m<br>2184.63                                      |                                                  | (73                      |
| 73)m=<br>6. Sol                                                                                   | 2259.33<br>Iar gains                                                                                      | 2254.73                                                                     | 2174.73                                                 |                                                                   |                                               | 1756.8                                                               | 1677.19                                                                   | 1689.21                                                                                                                                                                                                                    | 1764.8                                                                        | 1900.1                                                                | 2055.73                                                                           | 2184.63                                           |                                                  | (73                      |
| 73)m=<br>6. Sol<br>Solar ga                                                                       | 2259.33<br>lar gains<br>ains are c                                                                        | 2254.73                                                                     | 2174.73<br>using sola                                   | r flux from                                                       | Table 6a :                                    | 1756.8<br>and assoc                                                  | 1677.19<br>iated equa                                                     | 1689.21                                                                                                                                                                                                                    | 1764.8                                                                        | 1900.1                                                                | 2055.73                                                                           | 2184.63                                           | Gains                                            | (73                      |
| 73)m=<br>6. Sol<br>Solar ga                                                                       | 2259.33<br>ar gains<br>ains are c<br>ation: A                                                             | 2254.73                                                                     | 2174.73<br>using sola<br>actor                          |                                                                   | Table 6a :                                    | 1756.8<br>and assoc<br>Flu                                           | 1677.19<br>iated equa                                                     | 1689.21                                                                                                                                                                                                                    | 1764.8                                                                        | 1900.1<br>e applical                                                  | 2055.73                                                                           | 2184.63                                           | Gains<br>(W)                                     | (73                      |
| 73)m=<br>6. Sol<br>Solar ga<br>Drienta                                                            | 2259.33<br>ar gains<br>ains are c<br>ation: A<br>T                                                        | 2254.73<br>alculated<br>Access F<br>able 6d                                 | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m²                                         | Table 6a :                                    | 1756.8<br>and assoc<br>Flu<br>Ta                                     | 1677.19<br>iated equa<br>IX<br>ble 6a                                     | 1689.21<br>ations to co                                                                                                                                                                                                    | 1764.8<br>onvert to th<br>g_<br>able 6b                                       | 1900.1<br>e applical<br>T                                             | 2055.73<br>ble orientat<br>FF<br>able 6c                                          | 2184.63                                           | (W)                                              | _                        |
| 73)m= [<br>6. Solar ga<br>Solar ga<br>Drienta                                                     | 2259.33<br>lar gains<br>ains are c<br>ation: A<br>T<br>0.9x                                               | 2254.73<br>alculated<br>Access F<br>able 6d                                 | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m <sup>2</sup>                             | Table 6a a                                    | 1756.8<br>and assoc<br>Flu<br>Ta                                     | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63                            | 1689.21<br>ations to co                                                                                                                                                                                                    | 1764.8<br>onvert to th<br>g_<br>able 6b<br>0.63                               | 1900.1<br>e applicat<br>T                                             | 2055.73<br>ble orientat<br>FF<br>able 6c<br>0.7                                   | 2184.63                                           | (W)<br>72.53                                     | (74                      |
| 73)m=<br>6. Sola<br>Solar g<br>Orienta<br>Iorth                                                   | 2259.33<br>ar gains<br>ains are c<br>ation: A<br>0.9x<br>0.9x                                             | 2254.73<br>alculated<br>Access F<br>able 6d<br>0.77<br>0.77                 | 2174.73<br>using sola<br>actor                          | r flux from<br>Area<br>m <sup>2</sup>                             | Table 6a :<br>16                              | 1756.8<br>and assoc<br>Flu<br>Ta<br>x 1<br>x 1                       | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63                            | 1689.21<br>ations to co<br>T<br>X                                                                                                                                                                                          | 1764.8<br>onvert to th<br>g_<br>able 6b<br>0.63<br>0.63                       | 1900.1<br>e applicat<br>T<br>X                                        | 2055.73<br>ble orientat<br>FF<br>able 6c<br>0.7<br>0.7                            | 2184.63<br>ion.                                   | (W)<br>72.53<br>90.67                            | (74                      |
| 73)m=<br>6. Solar gi<br>Solar gi<br>Drienta<br>Iorth<br>Iorth<br>Iorth                            | 2259.33<br>ar gains<br>aains are c<br>ation: <i>A</i><br>0.9x<br>0.9x<br>0.9x                             | 2254.73<br>alculated<br>Access F<br>able 6d<br>0.77<br>0.77<br>0.77         | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m <sup>2</sup><br>111.<br>5.5              | Table 6a a                                    | 1756.8<br>and assoc<br>Flu<br>Ta<br>x 1<br>x 1<br>x                  | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63<br>10.63                   | 1689.21<br>ations to co                                                                                                                                                                                                    | 1764.8<br>onvert to th<br><u>9_</u><br>Table 6b<br>0.63<br>0.63<br>0.63       | 1900.1<br>e applicat<br>X [<br>X [<br>X [<br>X [                      | 2055.73<br>ple orientat<br>FF<br>able 6c<br>0.7<br>0.7<br>0.7                     | 2184.63                                           | (W)<br>72.53<br>90.67<br>53.23                   | (74<br>(74<br>(74        |
| 73)m=<br>6. Solar gi<br>Solar gi<br>Drienta<br>Drienta<br>Iorth<br>Iorth<br>Iorth<br>Iorth        | 2259.33<br>ar gains<br>ation: <i>A</i><br>ation: <i>A</i><br>0.9x<br>0.9x<br>0.9x<br>0.9x                 | 2254.73<br>alculated<br>Access F<br>able 6d<br>0.77<br>0.77<br>0.77         | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m <sup>2</sup><br>11.<br>5.5<br>2.7<br>5.  | Table 6a :<br>16<br>;8<br>'3                  | 1756.8<br>and assoc<br>Flu<br>Ta<br>x 1<br>x 1<br>x 1<br>x 1         | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63<br>10.63<br>10.63          | 1689.21<br>ations to cc<br>X                                                                                                                                                                                               | 1764.8<br>onvert to th<br><u>9</u><br>able 6b<br>0.63<br>0.63<br>0.63<br>0.63 | 1900.1<br>e applicat<br>X [<br>X [<br>X [<br>X [<br>X [               | 2055.73<br>ble orientat<br>FF<br>able 6c<br>0.7<br>0.7<br>0.7<br>0.7              | 2184.63<br>ion.<br>= [<br>] = [<br>] = [          | (W)<br>72.53<br>90.67<br>53.23<br>17.55          | (74<br>(74<br>(74        |
| 73)m=<br>6. Solar g<br>Drienta<br>Iorth<br>Iorth<br>Iorth<br>Iorth                                | 2259.33<br>ar gains<br>ains are c<br>ation: A<br>0.9x [<br>0.9x [<br>0.9x [<br>0.9x ]<br>0.9x [           | 2254.73<br>alculated<br>access F<br>able 6d<br>0.77<br>0.77<br>0.77<br>0.77 | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m <sup>2</sup><br>111.<br>5.5<br>2.7<br>5. | Table 6a :<br>16<br>:8<br>:3<br>4<br>:6       | 1756.8<br>and assoc<br>Flu<br>Ta<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1  | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63<br>10.63<br>10.63<br>10.63 | 1689.21         ations to co         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X | 1764.8<br>onvert to th<br>able 6b<br>0.63<br>0.63<br>0.63<br>0.63<br>0.63     | 1900.1<br>e applicat<br>X [<br>X [<br>X [<br>X [                      | 2055.73<br>De orientat<br>FF<br>able 6c<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | 2184.63<br>ion.<br>= [<br>] = [<br>] = [<br>] = [ | (W)<br>72.53<br>90.67<br>53.23<br>17.55<br>25.48 | (74<br>(74<br>(74<br>(74 |
| 73)m=<br>6. Solar g:<br>Solar g:<br>Drienta<br>Iorth<br>Iorth<br>Iorth<br>Iorth<br>Iorth<br>Iorth | 2259.33<br>ar gains<br>ains are c<br>ation: A<br>0.9x [<br>0.9x [<br>0.9x ]<br>0.9x [<br>0.9x ]<br>0.9x [ | 2254.73<br>alculated<br>Access F<br>able 6d<br>0.77<br>0.77<br>0.77         | 2174.73<br>using sola<br>Factor                         | r flux from<br>Area<br>m <sup>2</sup><br>11.<br>5.5<br>2.7<br>5.  | Table 6a :<br>16<br>:8<br>:3<br>4<br>:6       | 1756.8<br>and assoc<br>Flu<br>Ta<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1  | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63<br>10.63<br>10.63          | 1689.21<br>ations to cc<br>X                                                                                                                                                                                               | 1764.8<br>onvert to th<br><u>9</u><br>able 6b<br>0.63<br>0.63<br>0.63<br>0.63 | 1900.1<br>e applicat<br>X [<br>X [<br>X [<br>X [<br>X [               | 2055.73<br>ble orientat<br>FF<br>able 6c<br>0.7<br>0.7<br>0.7<br>0.7              | 2184.63<br>ion.<br>= [<br>] = [<br>] = [          | (W)<br>72.53<br>90.67<br>53.23<br>17.55          | (74                      |
| 73)m=<br>6. Sol<br>Solar ga                                                                       | 2259.33<br>ar gains<br>ains are c<br>ation: A<br>0.9x [<br>0.9x [<br>0.9x [<br>0.9x ]<br>0.9x [           | 2254.73<br>alculated<br>access F<br>able 6d<br>0.77<br>0.77<br>0.77<br>0.77 | 2174.73<br>using sola<br>actor<br>x<br>x<br>x<br>x<br>x | r flux from<br>Area<br>m <sup>2</sup><br>111.<br>5.5<br>2.7<br>5. | Table 6a :<br>16<br>:8<br>'3<br>4<br>16<br>18 | 1756.8<br>and assoc<br>Flu<br>X 1<br>X 1<br>X 1<br>X 1<br>X 1<br>X 1 | 1677.19<br>iated equa<br>IX<br>ble 6a<br>10.63<br>10.63<br>10.63<br>10.63 | 1689.21           ations to co           X           X           X           X           X           X           X           X           X           X           X           X           X           X                     | 1764.8<br>onvert to th<br>able 6b<br>0.63<br>0.63<br>0.63<br>0.63<br>0.63     | 1900.1<br>e applicat<br>X [<br>X [<br>X [<br>X [<br>X [<br>X [<br>X [ | 2055.73<br>De orientat<br>FF<br>able 6c<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | 2184.63<br>ion.<br>= [<br>] = [<br>] = [<br>] = [ | (W)<br>72.53<br>90.67<br>53.23<br>17.55<br>25.48 | (74<br>(74<br>(74<br>(74 |

| Orienta | ation: | Access Factor<br>Table 6d |   | Area<br>m² |     | Flux<br>Table 6a |       | g_<br>Table 6b | Т     | FF<br>able 6c |       | Gains<br>(W) |      |
|---------|--------|---------------------------|---|------------|-----|------------------|-------|----------------|-------|---------------|-------|--------------|------|
| North   | 0.9x   | 0.77                      | x | 11.16      | × [ | 10.63            | ] × [ | 0.63           | ] × [ | 0.7           | =     | 72.53        | (74) |
| North   | 0.9x   | 0.77                      | x | 5.58       | x   | 10.63            | ] × [ | 0.63           | ) × [ | 0.7           | ] = [ | 90.67        | (74) |
| North   | 0.9x   | 0.77                      | × | 2.73       | x   | 10.63            | ] × [ | 0.63           | ] × [ | 0.7           | ] = [ | 53.23        | (74) |
| North   | 0.9x   | 0.77                      | × | 5.4        | x   | 10.63            | ) × [ | 0.63           | ) × [ | 0.7           | = [   | 17.55        | (74) |
| North   | 0.9x   | 0.77                      | x | 1.96       | ×   | 10.63            | ] × [ | 0.63           | ] × [ | 0.7           | =     | 25.48        | (74) |
| North   | 0.9x   | 0.77                      | x | 4.08       | ×   | 10.63            | ) × [ | 0.63           | ) × [ | 0.7           | ] = [ | 13.26        | (74) |
| North   | 0.9x   | 0.77                      | x | 11.16      | ×   | 20.32            | ×     | 0.63           | ] × [ | 0.7           | =     | 138.61       | (74) |
| North   | 0.9x   | 0.77                      | x | 5.58       | ×   | 20.32            | ] × [ | 0.63           | ] × [ | 0.7           | ] = [ | 173.27       | (74) |
| North   | 0.9x   | 0.77                      | x | 2.73       | ×   | 20.32            | ] × [ | 0.63           | ] × [ | 0.7           | =     | 101.73       | (74) |
| North   | 0.9x   | 0.77                      | × | 5.4        | X [ | 20.32            | ] × [ | 0.63           | ] × [ | 0.7           | ] = [ | 33.54        | (74) |
| North   | 0.9x   | 0.77                      | × | 1.96       | ×   | 20.32            | ] × [ | 0.63           | ] × [ | 0.7           | =     | 48.69        | (74) |
| North   | 0.9x   | 0.77                      | × | 4.08       | ×   | 20.32            | ] × [ | 0.63           | ) × [ | 0.7           | ] = [ | 25.34        | (74) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

| North | 0.9x | 0.77 | x   | 11.16 | x            | 34.53 | x        | 0.63 | ] × [ | 0.7 | 7 = [        | 235.54 | (74) |
|-------|------|------|-----|-------|--------------|-------|----------|------|-------|-----|--------------|--------|------|
| North | 0.9x | 0.77 | T x | 5.58  | ī × Ē        | 34.53 | ī × Ē    | 0.63 | ī × Ē | 0.7 | <b>ĭ</b> - ┣ | 294.43 | (74) |
| North | 0.9x | 0.77 | ×   | 2.73  | ╡ <u>×</u> ┌ | 34.53 | i × F    | 0.63 | i × F | 0.7 | <b>i</b> = F | 172.86 | (74) |
| North | 0.9x | 0.77 | ×   | 5.4   | x            | 34.53 | ī × [    | 0.63 | ī × [ | 0.7 | <b>i</b> - F | 56.99  | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  |              | 34.53 | ī × [    | 0.63 | ī × Ē | 0.7 | Π - Γ        | 82.73  | (74) |
| North | 0.9x | 0.77 | ×   | 4.08  | T × T        | 34.53 | ī × [    | 0.63 | ī × Ē | 0.7 | <u> </u> = [ | 43.06  | (74) |
| North | 0.9x | 0.77 | ×   | 11.16 | T × T        | 55.46 | ī × Ē    | 0.63 | ī × Ē | 0.7 | <b>-</b>     | 378.34 | (74) |
| North | 0.9x | 0.77 | x   | 5.58  | T × T        | 55.46 | ī × [    | 0.63 | Ī×Ē   | 0.7 | ī - Ē        | 472.92 | (74) |
| North | 0.9x | 0.77 | ×   | 2.73  | X            | 55.46 | ] × [    | 0.63 | ] × [ | 0.7 | <u>]</u> = [ | 277.65 | (74) |
| North | 0.9x | 0.77 | x   | 5.4   | ×            | 55.46 | ] × [    | 0.63 | ] × [ | 0.7 | ] = [        | 91.53  | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  | ×            | 55.46 | <b>×</b> | 0.63 | ] × [ | 0.7 | ] = [        | 132.89 | (74) |
| North | 0.9x | 0.77 | ×   | 4.08  | ×            | 55.46 | ] × [    | 0.63 | ×     | 0.7 | =            | 69.16  | (74) |
| North | 0.9x | 0.77 | x   | 11.16 | x            | 74.72 | ×        | 0.63 | ×     | 0.7 | =            | 509.66 | (74) |
| North | 0.9x | 0.77 | x   | 5.58  | x            | 74.72 | ×        | 0.63 | ×     | 0.7 | =            | 637.07 | (74) |
| North | 0.9x | 0.77 | x   | 2.73  | ×            | 74.72 | ) × [    | 0.63 | ) x [ | 0.7 | =            | 374.02 | (74) |
| North | 0.9x | 0.77 | x   | 5.4   | ×            | 74.72 | <b>×</b> | 0.63 | ×     | 0.7 | ] 🗧 [        | 123.3  | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  | ×            | 74.72 | ) × [    | 0.63 | ] × [ | 0.7 | ] = [        | 179.02 | (74) |
| North | 0.9x | 0.77 | x   | 4.08  | x            | 74.72 | ×        | 0.63 | ×     | 0.7 | ] = [        | 93.16  | (74) |
| North | 0.9x | 0.77 | X   | 11.16 | ×            | 79.99 | ×        | 0.63 | ×     | 0.7 | =            | 545.6  | (74) |
| North | 0.9x | 0.77 | x   | 5.58  | <b>x</b>     | 79.99 | _ × [    | 0.63 | ) × [ | 0.7 | =            | 682    | (74) |
| North | 0.9x | 0.77 | x   | 2.73  | ×            | 79.99 | ×        | 0.63 | ×     | 0.7 | =            | 400.4  | (74) |
| North | 0.9x | 0.77 | ×   | 5.4   | ×            | 79.99 | × [      | 0.63 | ] × [ | 0.7 | ] = [        | 132    | (74) |
| North | 0.9x | 0.77 | x   | 1.96  | x            | 79.99 | ×        | 0.63 | ×     | 0.7 | =            | 191.65 | (74) |
| North | 0.9x | 0.77 | x   | 4.08  | ×            | 79.99 | ×        | 0.63 | ×     | 0.7 | =            | 99.73  | (74) |
| North | 0.9x | 0.77 | x   | 11.16 | x            | 74.68 | ×        | 0.63 | ×     | 0.7 | =            | 509.39 | (74) |
| North | 0.9x | 0.77 | x   | 5.58  | ×            | 74.68 | ×        | 0.63 | ×     | 0.7 | =            | 636.74 | (74) |
| North | 0.9x | 0.77 | x   | 2.73  | ×            | 74.68 | _ × [    | 0.63 | _ × [ | 0.7 | =            | 373.83 | (74) |
| North | 0.9x | 0.77 | x   | 5.4   | x            | 74.68 | ×        | 0.63 | x     | 0.7 | =            | 123.24 | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  | ×            | 74.68 | ×        | 0.63 | ×     | 0.7 | =            | 178.93 | (74) |
| North | 0.9x | 0.77 | x   | 4.08  | ×            | 74.68 | _ × [    | 0.63 | _ × [ | 0.7 | _ = [        | 93.11  | (74) |
| North | 0.9x | 0.77 | x   | 11.16 | ×            | 59.25 | ×        | 0.63 | _ × [ | 0.7 | =            | 404.14 | (74) |
| North | 0.9x | 0.77 | x   | 5.58  | x            | 59.25 | ×        | 0.63 | ×     | 0.7 | =            | 505.17 | (74) |
| North | 0_9x | 0.77 | x   | 2.73  | ×            | 59.25 | ×        | 0.63 | ×     | 0.7 | =            | 296.58 | (74) |
| North | 0.9x | 0.77 | ×   | 5.4   | ×            | 59.25 | ×        | 0.63 | ×     | 0.7 | =            | 97.77  | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  | ×            | 59.25 | ×        | 0.63 | ×     | 0.7 | =            | 141.95 | (74) |
| North | 0.9x | 0.77 | x   | 4.08  | x            | 59.25 | × [      | 0.63 | ×     | 0.7 | =            | 73.87  | (74) |
| North | 0.9x | 0.77 | x   | 11.16 | _ × [        | 41.52 | _ × [    | 0.63 | _ × [ | 0.7 | =            | 283.2  | (74) |
| North | 0.9x | 0.77 | ×   | 5.58  | ×            | 41.52 | × [      | 0.63 | ×     | 0.7 | _ = _        | 354    | (74) |
| North | 0.9x | 0.77 | ×   | 2.73  | ×            | 41.52 | _ × [    | 0.63 | × [   | 0.7 | _ = [        | 207.83 | (74) |
| North | 0.9x | 0.77 | ×   | 5.4   | ×            | 41.52 | _ × [    | 0.63 | _ × [ | 0.7 | _ = _        | 68.52  | (74) |
| North | 0.9x | 0.77 | ×   | 1.96  | x            | 41.52 | ×        | 0.63 | ×     | 0.7 | =            | 99.47  | (74) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 6 of 15

| North | 0.9x | 0.77 | x | 4.08  | x     | 41.52 | x     | 0.63 | ×     | 0.7 | =        | 51.77  | (74) |
|-------|------|------|---|-------|-------|-------|-------|------|-------|-----|----------|--------|------|
| North | 0.9x | 0.77 | × | 11.16 | ī × [ | 24.19 | ī × [ | 0.63 | ٦×٢   | 0.7 | ٦ - F    | 165    | (74) |
| North | 0.9x | 0.77 | X | 5.58  | ī × ī | 24.19 | ī × [ | 0.63 | Ī×Ē   | 0.7 | ] = [    | 206.25 | (74) |
| North | 0.9x | 0.77 | x | 2.73  | x     | 24.19 | Ī x [ | 0.63 | ] × [ | 0.7 | <b>-</b> | 121.09 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 24.19 | ] × [ | 0.63 | X     | 0.7 | ] = [    | 39.92  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 24.19 | ×     | 0.63 | ×     | 0.7 | ] = [    | 57.96  | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 24.19 | ] × [ | 0.63 | ×     | 0.7 | ] = [    | 30.16  | (74) |
| North | 0.9x | 0.77 | x | 11.16 | ×     | 13.12 | x     | 0.63 | ) × [ | 0.7 | ] = [    | 89.48  | (74) |
| North | 0.9x | 0.77 | x | 5.58  | x     | 13.12 | ×     | 0.63 | ×     | 0.7 | = [      | 111.85 | (74) |
| North | 0.9x | 0.77 | x | 2.73  | ×     | 13.12 | ) × [ | 0.63 | _ × [ | 0.7 | ] = [    | 65.67  | (74) |
| North | 0.9x | 0.77 | x | 5.4   | ×     | 13.12 | ×     | 0.63 | ×     | 0.7 | =        | 21.65  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 13.12 | ×     | 0.63 | ×     | 0.7 | =        | 31.43  | (74) |
| North | 0.9x | 0.77 | x | 4.08  | x     | 13.12 | ×     | 0.63 | ×     | 0.7 | =        | 16.36  | (74) |
| North | 0.9x | 0.77 | х | 11.16 | ×     | 8.86  | x     | 0.63 | x     | 0.7 | =        | 60.47  | (74) |
| North | 0.9x | 0.77 | x | 5.58  | ×     | 8.86  | × [   | 0.63 | ×     | 0.7 | =        | 75.58  | (74) |
| North | 0.9x | 0.77 | x | 2.73  | ×     | 8.86  | _ × [ | 0.63 | ×     | 0.7 |          | 44.38  | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 8.86  | × [   | 0.63 | × [   | 0.7 | _ = _    | 14.63  | (74) |
| North | 0.9x | 0.77 | x | 1.96  | x     | 8.86  | x     | 0.63 | ×     | 0.7 | =        | 21.24  | (74) |
| North | 0.9x | 0.77 | x | 4.08  | ×     | 8.86  | × [   | 0.63 | ×     | 0.7 | _ = [    | 11.05  | (74) |
| East  | 0.9x | 0.54 | x | 4.79  | x     | 19.64 | _ × [ | 0.63 | ×     | 0.7 | =        | 20.16  | (76) |
| East  | 0.9x | 0.54 | x | 13.04 | ×     | 19.64 | ×     | 0.63 | ×     | 0.7 | =        | 54.89  | (76) |
| East  | 0.9x | 0.54 | × | 16.83 | ×     | 19.64 | ×     | 0.63 | × [   | 0.7 | _ = [    | 70.84  | (76) |
| East  | 0.9x | 0.54 | x | 7.19  | x     | 19.64 | ×     | 0.63 | ×     | 0.7 |          | 30.27  | (76) |
| East  | 0.9x | 0.77 | x | 3.38  | ×     | 19.64 | ×     | 0.63 | ×     | 0.7 | =        | 20.29  | (76) |
| East  | 0.9x | 0.77 | x | 5.58  | x     | 19.64 | ×     | 0.63 | ×     | 0.7 | =        | 200.96 | (76) |
| East  | 0.9x | 0.77 | x | 2.73  | ×     | 19.64 | ×     | 0.63 | ×     | 0.7 | =        | 81.93  | (76) |
| East  | 0.9x | 0.77 | x | 3.9   | x     | 19.64 | ×     | 0.63 | ×     | 0.7 | =        | 46.82  | (76) |
| East  | 0.9x | 0.77 | x | 1.96  | x     | 19.64 | x     | 0.63 | ×     | 0.7 | =        | 35.29  | (76) |
| East  | 0.9x | 0.54 | × | 4.79  | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 | =        | 39.44  | (76) |
| East  | 0.9x | 0.54 | x | 13.04 | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 |          | 107.38 | (76) |
| East  | 0.9x | 0.54 | x | 16.83 | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 | =        | 138.59 | (76) |
| East  | 0.9x | 0.54 | x | 7.19  | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 | =        | 59.21  | (76) |
| East  | 0.9x | 0.77 | x | 3.38  | x     | 38.42 | ×     | 0.63 | ×     | 0.7 | _ = _    | 39.69  | (76) |
| East  | 0.9x | 0.77 | × | 5.58  | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 |          | 393.12 | (76) |
| East  | 0.9x | 0.77 | × | 2.73  | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 |          | 160.28 | (76) |
| East  | 0.9x | 0.77 | x | 3.9   | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 |          | 91.59  | (76) |
| East  | 0.9x | 0.77 | x | 1.96  | ×     | 38.42 | ×     | 0.63 | ×     | 0.7 | _ = _    | 69.04  | (76) |
| East  | 0.9x | 0.54 | × | 4.79  | ×     | 63.27 | _ × _ | 0.63 | ×     | 0.7 | _ = _    | 64.96  | (76) |
| East  | 0.9x | 0.54 | × | 13.04 | ×     | 63.27 | ×     | 0.63 | ×     | 0.7 | _ = _    | 176.84 | (76) |
| East  | 0.9x | 0.54 | × | 16.83 | ×     | 63.27 | ×     | 0.63 | ×     | 0.7 |          | 228.23 | (76) |
| East  | 0.9x | 0.54 | x | 7.19  | x     | 63.27 | ×     | 0.63 | ×     | 0.7 | =        | 97.5   | (76) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 7 of 15

| East | 0.9x | 0.77 | ×     | 3.38  | X     | 63.27  | ×        | 0.63 | ×     | 0.7 | =            | 65.36   | (76) |
|------|------|------|-------|-------|-------|--------|----------|------|-------|-----|--------------|---------|------|
| East | 0.9x | 0.77 | ] × [ | 5.58  | x     | 63.27  | ×        | 0.63 | ×     | 0.7 | <u>]</u> = [ | 647.41  | (76) |
| East | 0.9x | 0.77 | ] × [ | 2.73  | ] × [ | 63.27  | ] × [    | 0.63 | ] × [ | 0.7 | ] = [        | 263.95  | (76) |
| East | 0.9x | 0.77 | ×     | 3.9   | x     | 63.27  | ×        | 0.63 | ×     | 0.7 | ] = [        | 150.83  | (76) |
| East | 0.9x | 0.77 | ×     | 1.96  | x     | 63.27  | ×        | 0.63 | ×     | 0.7 | ] = [        | 113.7   | (76) |
| East | 0.9x | 0.54 | ×     | 4.79  | ×     | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 94.74   | (76) |
| East | 0.9x | 0.54 | ×     | 13.04 | ×     | 92.28  | ) × [    | 0.63 | _ × [ | 0.7 | =            | 257.91  | (76) |
| East | 0.9x | 0.54 | x     | 16.83 | ×     | 92.28  | x        | 0.63 | X [   | 0.7 | ] = [        | 332.86  | (76) |
| East | 0.9x | 0.54 | ×     | 7.19  | ) x [ | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 142.2   | (76) |
| East | 0.9x | 0.77 | x     | 3.38  | x     | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 95.32   | (76) |
| East | 0.9x | 0.77 | ×     | 5.58  | ×     | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 944.2   | (76) |
| East | 0.9x | 0.77 | ×     | 2.73  | _ × [ | 92.28  | _ × [    | 0.63 | ×     | 0.7 | ] = [        | 384.96  | (76) |
| East | 0.9x | 0.77 | ×     | 3.9   | x     | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 219.98  | (76) |
| East | 0.9x | 0.77 | x     | 1.96  | x     | 92.28  | ×        | 0.63 | ×     | 0.7 | ] = [        | 165.83  | (76) |
| East | 0.9x | 0.54 | x     | 4.79  | ×     | 113.09 | X [      | 0.63 | x     | 0.7 | =            | 116.1   | (76) |
| East | 0.9x | 0.54 | x     | 13.04 | ×     | 113.09 | ) × [    | 0.63 | ×     | 0.7 | ] = [        | 316.07  | (76) |
| East | 0.9x | 0.54 | × [   | 16.83 | × [   | 113.09 | ] × [    | 0.63 | _ × [ | 0.7 | ] = [        | 407.94  | (76) |
| East | 0.9x | 0.54 | x     | 7.19  | x     | 113.09 | x        | 0.63 | ×     | 0.7 | ] = [        | 174.28  | (76) |
| East | 0.9x | 0.77 | x     | 3.38  | ×     | 113.09 | ×        | 0.63 | ×     | 0.7 | =            | 116.82  | (76) |
| East | 0.9x | 0.77 | x     | 5.58  | ×     | 113.09 | _ × [    | 0.63 | ×     | 0.7 | =            | 1157.16 | (76) |
| East | 0.9x | 0.77 | ×     | 2.73  | ×     | 113.09 | <b>x</b> | 0.63 | × [   | 0.7 | ] = [        | 471.78  | (76) |
| East | 0.9x | 0.77 | ×     | 3.9   | ×     | 113.09 | × [      | 0.63 | _ × [ | 0.7 | ] = [        | 269.59  | (76) |
| East | 0.9x | 0.77 | ×     | 1_96  | x     | 113.09 | ×        | 0.63 | ×     | 0.7 | ] = [        | 203.23  | (76) |
| East | 0.9x | 0.54 | ×     | 4.79  | ×     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 118.85  | (76) |
| East | 0.9x | 0.54 | x     | 13.04 | x     | 115.77 | _ × [    | 0.63 | _ × [ | 0.7 | =            | 323.56  | (76) |
| East | 0.9x | 0.54 | x     | 16.83 | ×     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 417.6   | (76) |
| East | 0.9x | 0.54 | ×     | 7.19  | x     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 178.4   | (76) |
| East | 0.9x | 0.77 | x     | 3.38  | x     | 115.77 | x        | 0.63 | x     | 0.7 | =            | 119.59  | (76) |
| East | 0.9x | 0.77 | ×     | 5.58  | ×     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 1184.56 | (76) |
| East | 0.9x | 0.77 | x     | 2.73  | x     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 482.95  | (76) |
| East | 0.9x | 0.77 | x     | 3.9   | ×     | 115.77 | ×        | 0.63 | ×     | 0.7 | =            | 275.97  | (76) |
| East | 0.9x | 0.77 | x     | 1.96  | x     | 115.77 | x        | 0.63 | x     | 0.7 | =            | 208.04  | (76) |
| East | 0.9x | 0.54 | x     | 4.79  | x     | 110.22 | ×        | 0.63 | ×     | 0.7 | ] = [        | 113.15  | (76) |
| East | 0.9x | 0.54 | ×     | 13.04 | _ × [ | 110.22 | × [      | 0.63 | × [   | 0.7 | _ = [        | 308.04  | (76) |
| East | 0.9x | 0.54 | ×     | 16.83 | ×     | 110.22 | ×        | 0.63 | ×     | 0.7 | _ = [        | 397.57  | (76) |
| East | 0.9x | 0.54 | x     | 7.19  | x     | 110.22 | , x.     | 0.63 | ×     | 0.7 | ] = [        | 169.85  | (76) |
| East | 0.9x | 0.77 | x     | 3.38  | ×     | 110.22 | ×        | 0.63 | ×     | 0.7 | =            | 113.85  | (76) |
| East | 0.9x | 0.77 | ×     | 5.58  | x     | 110.22 | ×        | 0.63 | ×     | 0.7 | =            | 1127.74 | (76) |
| East | 0.9x | 0.77 | ×     | 2.73  | ×     | 110.22 | ] × [    | 0.63 | _ × [ | 0.7 | ] = [        | 459.79  | (76) |
| East | 0.9x | 0.77 | ×     | 3.9   | ×     | 110.22 | ×        | 0.63 | ×     | 0.7 | =            | 262.74  | (76) |
| East | 0.9x | 0.77 | x     | 1.96  | x     | 110.22 | ×        | 0.63 | ×     | 0.7 | =            | 198.06  | (76) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

| East | 0.9x | 0.54 | ×        | 4.79  | x     | 94.68 | ×     | 0.63 | ×        | 0.7 | =     | 97.2   | (76) |
|------|------|------|----------|-------|-------|-------|-------|------|----------|-----|-------|--------|------|
| East | 0.9x | 0.54 | x        | 13.04 | ×     | 94.68 | ×     | 0.63 | ×        | 0.7 | ] = [ | 264.6  | (76) |
| East | 0.9x | 0.54 | x        | 16.83 | ) × [ | 94.68 | ] × [ | 0.63 | ) × [    | 0.7 | =     | 341.51 | (76) |
| East | 0.9x | 0.54 | ×        | 7.19  | x     | 94.68 | ×     | 0.63 | ×        | 0.7 | ] = [ | 145.9  | (76) |
| East | 0.9x | 0.77 | ×        | 3.38  | ×     | 94.68 | ) × [ | 0.63 | ] × [    | 0.7 | ] = [ | 97.8   | (76) |
| East | 0.9x | 0.77 | ×        | 5.58  | x     | 94.68 | x     | 0.63 | ×        | 0.7 | ] = [ | 968.72 | (76) |
| East | 0.9x | 0.77 | ×        | 2.73  | ×     | 94.68 | ) × [ | 0.63 | ×        | 0.7 | ] = [ | 394.95 | (76) |
| East | 0.9x | 0.77 | x        | 3.9   | ×     | 94.68 | x     | 0.63 | ×        | 0.7 | ] = [ | 225.69 | (76) |
| East | 0.9x | 0.77 | ×        | 1.96  | _ x [ | 94.68 | ×     | 0.63 | ×        | 0.7 | ] = [ | 170.13 | (76) |
| East | 0.9x | 0.54 | x        | 4.79  | ×     | 73.59 | ×     | 0.63 | ×        | 0.7 | ] = [ | 75.55  | (76) |
| East | 0.9x | 0.54 | ×        | 13.04 | x     | 73.59 | ×     | 0.63 | ×        | 0.7 | =     | 205.67 | (76) |
| East | 0.9x | 0.54 | x        | 16.83 | ×     | 73.59 | ×     | 0.63 | ×        | 0.7 | =     | 265.44 | (76) |
| East | 0.9x | 0.54 | x        | 7.19  | x     | 73.59 | ×     | 0.63 | ×        | 0.7 | =     | 113.4  | (76) |
| East | 0.9x | 0.77 | x        | 3.38  | x     | 73.59 | ×     | 0.63 | ×        | 0.7 | =     | 76.02  | (76) |
| East | 0.9x | 0.77 | x        | 5.58  | ×     | 73.59 | × [   | 0.63 | _ x [    | 0.7 | =     | 752.96 | (76) |
| East | 0.9x | 0.77 | ×        | 2.73  | x     | 73.59 | ×     | 0.63 | ×        | 0.7 |       | 306.99 | (76) |
| East | 0.9x | 0.77 | ×        | 3.9   | × [   | 73.59 | ) × [ | 0.63 | _ × [    | 0.7 | ] = [ | 175.42 | (76) |
| East | 0.9x | 0.77 | x        | 1.96  | x     | 73.59 | x     | 0.63 | ×        | 0.7 | = [   | 132.24 | (76) |
| East | 0.9x | 0.54 | X        | 4.79  | ×     | 45.59 | ×     | 0.63 | ×        | 0.7 | =     | 46.8   | (76) |
| East | 0.9x | 0.54 | <b>x</b> | 13.04 | _ × [ | 45.59 | ×     | 0.63 | _ × [    | 0.7 | =     | 127.41 | (76) |
| East | 0.9x | 0.54 | ×        | 16.83 | ×     | 45.59 | ) × [ | 0.63 | × [      | 0.7 | ] = [ | 164.45 | (76) |
| East | 0.9x | 0.54 | _ × [    | 7.19  | ×     | 45.59 | × [   | 0.63 | _ × [    | 0.7 | ] = [ | 70.25  | (76) |
| East | 0.9x | 0.77 | x        | 3.38  | x     | 45.59 | ×     | 0.63 | ×        | 0.7 | _ = [ | 47.09  | (76) |
| East | 0.9x | 0.77 | ×        | 5.58  | ×     | 45.59 | ×     | 0.63 | ×        | 0.7 | =     | 466.47 | (76) |
| East | 0.9x | 0.77 | x        | 2.73  | x     | 45.59 | _ × [ | 0.63 | ×        | 0.7 | =     | 190.18 | (76) |
| East | 0.9x | 0.77 | x        | 3.9   | ×     | 45.59 | ×     | 0.63 | ×        | 0.7 | =     | 108.67 | (76) |
| East | 0.9x | 0.77 | x        | 1.96  | x     | 45.59 | ×     | 0.63 | ×        | 0.7 | =     | 81.92  | (76) |
| East | 0.9x | 0.54 | x        | 4.79  | x     | 24.49 | ×     | 0.63 | ×        | 0.7 | = [   | 25.14  | (76) |
| East | 0.9x | 0.54 | ×        | 13.04 | ×     | 24.49 | ×     | 0.63 | ×        | 0.7 | =     | 68.44  | (76) |
| East | 0.9x | 0.54 | x        | 16.83 | x     | 24.49 | ×     | 0.63 | ×        | 0.7 | =     | 88.33  | (76) |
| East | 0.9x | 0.54 | x        | 7.19  | x     | 24.49 | ×     | 0.63 | ×        | 0.7 | =     | 37.74  | (76) |
| East | 0.9x | 0.77 | x        | 3.38  | x     | 24.49 | ×     | 0.63 | x        | 0.7 | =     | 25.3   | (76) |
| East | 0.9x | 0.77 | x        | 5.58  | x     | 24.49 | ×     | 0.63 | x        | 0.7 | =     | 250.57 | (76) |
| East | 0.9x | 0.77 | ×        | 2.73  | ×     | 24.49 | ×     | 0.63 | × [      | 0.7 | =     | 102.16 | (76) |
| East | 0.9x | 0.77 | ×        | 3.9   | ×     | 24.49 | ×     | 0.63 | ×        | 0.7 | =     | 58.38  | (76) |
| East | 0.9x | 0.77 | x        | 1.96  | x     | 24.49 | x     | 0.63 | ×        | 0.7 | ] = [ | 44.01  | (76) |
| East | 0.9x | 0.54 | x        | 4.79  | x     | 16.15 | _ × [ | 0.63 | <b>x</b> | 0.7 | =     | 16.58  | (76) |
| East | 0.9x | 0.54 | x        | 13.04 | x     | 16.15 | x     | 0.63 | ×        | 0.7 | = [   | 45.14  | (76) |
| East | 0.9x | 0.54 | _ × [    | 16.83 | ×     | 16.15 | ] × [ | 0.63 | ] × [    | 0.7 | ] = [ | 58.26  | (76) |
| East | 0.9x | 0.54 | _ × [    | 7.19  | ×     | 16.15 | _ × [ | 0.63 | ×        | 0.7 | ] = [ | 24.89  | (76) |
| East | 0.9x | 0.77 | x        | 3.38  | x     | 16.15 |       | 0.63 | ×        | 0.7 | -     | 16.68  | (76) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

| East  | 0.9x (    | 0.77 | x | 5.58 | x | 16.15  | x            | 0.63 | x | 0.7 | ] = [        | 165.26 | (76) |
|-------|-----------|------|---|------|---|--------|--------------|------|---|-----|--------------|--------|------|
| East  |           | 0.77 | x | 2.73 | x | 16.15  | i x i        | 0.63 | × | 0.7 | i - i        | 67.38  | (76) |
| East  | 0.9x (    | 0.77 | x | 3.9  | x | 16.15  | i × i        | 0.63 | x | 0.7 | i = i        | 38.5   | (76) |
| East  | 0.9x (    | 0.77 | × | 1.96 | x | 16.15  | i x i        | 0.63 | x | 0.7 | i - i        | 29.02  | (76) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 46.75  | ] × [        | 0.63 | × | 0.7 | ī - ī        | 386.35 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 46.75  | ] × [        | 0.63 | x | 0.7 | ī - ī        | 351.06 | (78) |
| South | 0.9x 0    | 0.77 | × | 1.96 | × | 46.75  | ī × i        | 0.63 | × | 0.7 | ī - ī        | 140.02 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 76.57  | x            | 0.63 | × | 0.7 | ] = [        | 632.74 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 76.57  | ×            | 0.63 | × | 0.7 | ] = [        | 574.94 | (78) |
| South | 0.9x (    | 0.77 | x | 1.96 | x | 76.57  | x            | 0.63 | × | 0.7 | ] = [        | 229.32 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 97.53  | ×            | 0.63 | × | 0.7 | ] = [        | 806    | (78) |
| South | 0.9x (    | 0.77 | × | 2.73 | × | 97.53  | ×            | 0.63 | × | 0.7 | =            | 732.37 | (78) |
| South | 0.9x (    | 0.77 | × | 1.96 | x | 97.53  | ×            | 0.63 | × | 0.7 | ] = [        | 292.11 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 110.23 | x            | 0.63 | x | 0.7 | ] = [        | 910.95 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 110.23 | ×            | 0.63 | x | 0.7 | =            | 827.74 | (78) |
| South | 0.9x (    | 0.77 | x | 1.96 | x | 110.23 | ×            | 0.63 | × | 0.7 | ] = [        | 330.15 | (78) |
| South | 0.9x (    | 0.77 | × | 3.38 | × | 114.87 | ×            | 0.63 | × | 0.7 | ] = [        | 949.27 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 114.87 | x            | 0.63 | x | 0.7 | ] = [        | 862.56 | (78) |
| South | 0.9x (    | 0.77 | x | 1.96 | x | 114.87 | ×            | 0.63 | × | 0.7 | ] = [        | 344.04 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 110.55 | ×            | 0.63 | x | 0.7 | =            | 913.54 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 110.55 | ×            | 0.63 | × | 0.7 | =            | 830.09 | (78) |
| South | 0.9x (    | 0.77 | × | 1.96 | × | 110.55 | ( <b>X</b> ) | 0.63 | × | 0.7 | =            | 331.09 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 108.01 | ( <b>x</b> ) | 0.63 | x | 0.7 | =            | 892.59 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | × | 108.01 | ×            | 0.63 | × | 0.7 | =            | 811.05 | (78) |
| South | 0.9x (    | 0.77 | x | 1.96 | x | 108.01 | ×            | 0.63 | x | 0.7 | =            | 323.5  | (78) |
| South | 0.9x (    | 0.77 | х | 3.38 | x | 104.89 | ×            | 0.63 | × | 0.7 | =            | 866.82 | (78) |
| South | 0.9x (    | 0.77 | x | 2.73 | x | 104.89 | ×            | 0.63 | × | 0.7 | =            | 787.64 | (78) |
| South | 0.9x (    | 77.0 | x | 1.96 | х | 104.89 | ×            | 0.63 | x | 0.7 | =            | 314.16 | (78) |
| South | 0.9x (    | 0.77 | × | 3.38 | × | 101.89 | ×            | 0.63 | × | 0.7 | =            | 841.96 | (78) |
| South | 0.9x (    | 0.77 | х | 2.73 | x | 101.89 | ×            | 0.63 | × | 0.7 | _ = _        | 765.05 | (78) |
| South | Contras - | 0.77 | x | 1.96 | x | 101.89 | ×            | 0.63 | × | 0.7 | =            | 305.15 | (78) |
| South | 0.9x (    | 0.77 | x | 3.38 | x | 82.59  | ×            | 0.63 | x | 0.7 | _ ⁼ L        | 682.47 | (78) |
| South |           | 0.77 | x | 2.73 | х | 82.59  | ×            | 0.63 | × | 0.7 | _ = _        | 620.13 | (78) |
| South |           | 0.77 | × | 1.96 | × | 82.59  | ×            | 0.63 | × | 0.7 | <u> </u> = [ | 247.34 | (78) |
| South |           | 0.77 | × | 3.38 | × | 55.42  | ×            | 0.63 | × | 0.7 | ╡╹╽          | 457.95 | (78) |
| South |           | 0.77 | x | 2.73 | x | 55.42  | x            | 0.63 | × | 0.7 | _ = L        | 416.12 | (78) |
| South |           | 0.77 | x | 1.96 | x | 55.42  | ×            | 0.63 | × | 0.7 | _ = _        | 165.97 | (78) |
| South |           | 0.77 | x | 3.38 | x | 40.4   | ×            | 0.63 | × | 0.7 | ╡╹           | 333.84 | (78) |
| South |           | 0.77 | × | 2.73 | × | 40.4   | ×            | 0.63 | × | 0.7 | ╡╹┟          | 303.35 | (78) |
| South | 1000      | 0.77 | x | 1.96 | × | 40.4   | ×            | 0.63 | × | 0.7 | =            | 120.99 | (78) |
| West  | 0.9x (    | 0.77 | x | 5.58 | x | 19.64  | ×            | 0.63 | × | 0.7 | =            | 133.97 | (80) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

#### Page 10 of 15

| West | 0.9x | 0.77 | ×        | 3.38 | X          | 19.64  | ×     | 0.63 | ] × [ | 0.7 | ] = [        | 40.58  | (80) |
|------|------|------|----------|------|------------|--------|-------|------|-------|-----|--------------|--------|------|
| West | 0.9x | 0.77 | Ξ×Γ      | 2.73 | i × i      | 19.64  | i × i | 0.63 | i × F | 0.7 | ≓ - F        | 98.32  | (80) |
| West | 0.9x | 0.77 | Ξ×Γ      | 1.96 | ╡ <u>,</u> | 19.64  | i × F | 0.63 | i × F | 0.7 | ╡╻┢          | 35.29  | (80) |
| West | 0.9x | 0.77 | ٦×٢      | 5.58 | x          | 38.42  | ī × [ | 0.63 | ٦×٢   | 0.7 | <b>⊣</b> - F | 262.08 | (80) |
| West | 0.9x | 0.77 | Ξ×Γ      | 3.38 | i × F      | 38.42  | ī × Ē | 0.63 | i × r | 0.7 | <b>⊣</b> - F | 79.37  | (80) |
| West | 0.9x | 0.77 | ٦ × Г    | 2.73 | T x T      | 38.42  | ī × Ī | 0.63 | ī × Ē | 0.7 | <u>i - F</u> | 192.33 | (80) |
| West | 0.9x | 0.77 | i × i    | 1.96 | ī × ī      | 38.42  | ī × ī | 0.63 | ī × Ē | 0.7 | <b>≓</b> - F | 69.04  | (80) |
| West | 0.9x | 0.77 | ī × ī    | 5.58 | ī × ī      | 63.27  | ī × ī | 0.63 | ī × Ē | 0.7 | <b>≓</b> - F | 431.6  | (80) |
| West | 0.9x | 0.77 | آ × آ    | 3.38 | ٦ × ٦      | 63.27  | ] × [ | 0.63 | ] × [ | 0.7 | ī = [        | 130.72 | (80) |
| West | 0.9x | 0.77 | x        | 2.73 | ×          | 63.27  | ] × [ | 0.63 | ] × [ | 0.7 | <u> </u> = [ | 316.74 | (80) |
| West | 0.9x | 0.77 | x [      | 1.96 | ×          | 63.27  | ] × [ | 0.63 | ] × [ | 0.7 | ] = [        | 113.7  | (80) |
| West | 0.9x | 0.77 | x        | 5.58 | ×          | 92.28  | ] × [ | 0.63 | ] × [ | 0.7 | =            | 629.47 | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | ×          | 92.28  | ×     | 0.63 | ] × [ | 0.7 | ] = [        | 190.65 | (80) |
| West | 0.9x | 0.77 | x        | 2.73 | x          | 92.28  | ×     | 0.63 | × [   | 0.7 | ] = [        | 461.95 | (80) |
| West | 0.9x | 0.77 | x        | 1.96 | x          | 92.28  | × [   | 0.63 | ) × [ | 0.7 | =            | 165.83 | (80) |
| West | 0.9x | 0.77 | <b>x</b> | 5.58 | x          | 113.09 | ) × [ | 0.63 | ) × [ | 0.7 | ] 🗧 [        | 771.44 | (80) |
| West | 0.9x | 0.77 | ×        | 3.38 | ×          | 113.09 | ] × [ | 0.63 | ) × [ | 0.7 | ] = [        | 233.64 | (80) |
| West | 0.9x | 0.77 | x        | 2.73 | x          | 113.09 | ×     | 0.63 | ×     | 0.7 | ] = [        | 566.14 | (80) |
| West | 0.9x | 0.77 | x        | 1.96 | ×          | 113.09 | ×     | 0.63 | × [   | 0.7 | =            | 203.23 | (80) |
| West | 0.9x | 0.77 | <b>x</b> | 5.58 | _ × [      | 115.77 | ] × [ | 0.63 | ] × [ | 0.7 | =            | 789.7  | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | ×          | 115.77 | ) × [ | 0.63 | ) × [ | 0.7 | ] = [        | 239.18 | (80) |
| West | 0.9x | 0.77 | ×        | 2.73 | ×          | 115.77 | ×     | 0.63 | _ × [ | 0.7 | ] = [        | 579.54 | (80) |
| West | 0.9x | 0.77 | x        | 1_96 | x          | 115.77 | ×     | 0.63 | ) × [ | 0.7 | ] = [        | 208.04 | (80) |
| West | 0.9x | 0.77 | ×        | 5.58 | ×          | 110.22 | ×     | 0.63 | ×     | 0.7 | =            | 751.83 | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | x          | 110.22 | _ × [ | 0.63 | _ × [ | 0.7 | =            | 227.7  | (80) |
| West | 0.9x | 0.77 | x        | 2.73 | x          | 110.22 | ×     | 0.63 | ×     | 0.7 | =            | 551.75 | (80) |
| West | 0.9x | 0.77 | x        | 1.96 | x          | 110.22 | ×     | 0.63 | _ × [ | 0.7 | =            | 198.06 | (80) |
| West | 0.9x | 0.77 | x        | 5.58 | x          | 94.68  | ×     | 0.63 | _ × [ | 0.7 | =            | 645.81 | (80) |
| West | 0.9x | 0.77 | ×        | 3.38 | ×          | 94.68  | ×     | 0.63 | ×     | 0.7 | =            | 195.59 | (80) |
| West | 0.9x | 0.77 | x        | 2.73 | x          | 94.68  | ×     | 0.63 | _ × [ | 0.7 | =            | 473.94 | (80) |
| West | 0.9x | 0.77 | x        | 1.96 | ×          | 94.68  | ×     | 0.63 | ×     | 0.7 | =            | 170.13 | (80) |
| West | 0.9x | 0.77 | x        | 5.58 | x          | 73.59  | ×     | 0.63 | _ × [ | 0.7 | =            | 501.97 | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | x          | 73.59  | ×     | 0.63 | ×     | 0.7 | =            | 152.03 | (80) |
| West | 0.9x | 0.77 | ×        | 2.73 | ×          | 73.59  | ×     | 0.63 | × [   | 0.7 | =            | 368.38 | (80) |
| West | 0.9x | 0.77 | ×        | 1.96 | ×          | 73.59  | ×     | 0.63 | ×     | 0.7 | =            | 132.24 | (80) |
| West | 0.9x | 0.77 | x        | 5.58 | x          | 45.59  | X     | 0.63 | ×     | 0.7 | _ = [        | 310.98 | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | ×          | 45.59  | _ × [ | 0.63 | _ × [ | 0.7 | =            | 94.18  | (80) |
| West | 0.9x | 0.77 | ×        | 2.73 | ×          | 45.59  | _ × [ | 0.63 | _ × [ | 0.7 | =            | 228.22 | (80) |
| West | 0.9x | 0.77 | ×        | 1.96 | ×          | 45.59  | _ × [ | 0.63 | _ × [ | 0.7 | =            | 81.92  | (80) |
| West | 0.9x | 0.77 | x        | 5.58 | ×          | 24.49  | _ × [ | 0.63 | ×     | 0.7 | ] = [        | 167.05 | (80) |
| West | 0.9x | 0.77 | x        | 3.38 | x          | 24.49  | ×     | 0.63 | ×     | 0.7 | =            | 50.59  | (80) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                     | _                                                                              |                                                                   |                                                                    |                  |      |                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------|------|------------------------------------------------------------------------|
| Vest 0.9x                                                                                                                                                                                                                                                                                                                                                                                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                | 3                                                                                                                                                                     | x                                                                                                                                                                               | 24.49                                                                                                                                                         | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 122              | .59  | (80                                                                    |
| /est 0.9x                                                                                                                                                                                                                                                                                                                                                                                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                | 6                                                                                                                                                                     | x                                                                                                                                                                               | 24.49                                                                                                                                                         | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 44.              | 01   | (80                                                                    |
| est 0.9x                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                                                                                                                | 18                                                                                                                                                                    | ×                                                                                                                                                                               | 16.15                                                                                                                                                         | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 110              | .17  | (80                                                                    |
| /est 0.9x                                                                                                                                                                                                                                                                                                                                                                                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3                                                                                                                                                                                | 8                                                                                                                                                                     | x                                                                                                                                                                               | 16.15                                                                                                                                                         | x                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 33.              | 37   | (80                                                                    |
| est 0.9x                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                | 3                                                                                                                                                                     | x                                                                                                                                                                               | 16.15                                                                                                                                                         | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 80.              | 85   | (80                                                                    |
| est 0.9x                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                | 6                                                                                                                                                                     | x                                                                                                                                                                               | 16.15                                                                                                                                                         | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 29               | 02   | (80                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | ×                                                                                                                                                                               | 26                                                                                                                                                            | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 47               | 8.2  | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 54                                                                                                                                                            | x                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 993              | .19  | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 96                                                                                                                                                            | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 176              | 5.67 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 150                                                                                                                                                           | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 275              | 3.85 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 192                                                                                                                                                           | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 353              | 1.33 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | ×                                                                                                                                                                               | 200                                                                                                                                                           | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 367              | 3.47 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 189                                                                                                                                                           | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 347              | 6.15 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 157                                                                                                                                                           | x                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | =                                                                  | 288              | 7.6  | (82                                                                    |
| poflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 115                                                                                                                                                           | × _                                                                                                                                                                      | 0.63                                                                                                                                | x [                                                                            | 0.7                                                               | =                                                                  | 211              | 5.12 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 66                                                                                                                                                            | ) × [                                                                                                                                                                    | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | -                                                                  | 121              | 3.89 | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | ×                                                                                                                                                                               | 33                                                                                                                                                            | ) × [                                                                                                                                                                    | 0.63                                                                                                                                | × [                                                                            | 0.7                                                               | -                                                                  | 606              | .95  | (82                                                                    |
| ooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                               | 34                                                                                                                                                                    | x                                                                                                                                                                               | 21                                                                                                                                                            | ×                                                                                                                                                                        | 0.63                                                                                                                                | ×                                                                              | 0.7                                                               | -                                                                  | 386              | .24  | (82                                                                    |
| an state state and a second                                                                                                                                                                                                                                                                                                                                                                          | nal tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (heating                                                                                                                                                                           | season                                                                                                                                                                | )                                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                          | 10115.16                                                                                                                            | 7302.88                                                                        | 5123.47                                                           | 4271.52                                                            |                  |      | _                                                                      |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                          | nal tempe<br>during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rature (<br>ating pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (heating<br>eriods in                                                                                                                                                              | season<br>the livi                                                                                                                                                    | )<br>ng area                                                                                                                                                                    | from Ta                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                     | 7302.88                                                                        | 5123.47                                                           | 4271.52                                                            | 2                | 1    | _                                                                      |
| Femperature                                                                                                                                                                                                                                                                                                                                                                                          | nal tempe<br>during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rature (<br>ating pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (heating<br>eriods in                                                                                                                                                              | season<br>the livi                                                                                                                                                    | )<br>ng area                                                                                                                                                                    | from Ta                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                     | 7302.88<br>Oct                                                                 | 5123.47                                                           | 4271.52<br>Dec                                                     |                  | 1    | (84                                                                    |
| Temperature<br>Utilisation fac                                                                                                                                                                                                                                                                                                                                                                       | nal tempe<br>during he<br>tor for gai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ating pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (heating<br>eriods in<br>iving are                                                                                                                                                 | season<br>the livii<br>ea, h1,m                                                                                                                                       | )<br>ng area<br>(see Ta                                                                                                                                                         | from Ta<br>able 9a)                                                                                                                                           | ble 9, Th                                                                                                                                                                | n1 (°C)                                                                                                                             |                                                                                |                                                                   |                                                                    |                  | 1    | _                                                                      |
| Femperature<br>Jtilisation fac<br>Jan<br>5)m= 1                                                                                                                                                                                                                                                                                                                                                      | nal tempe<br>during he<br>tor for gai<br>Feb<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eating period<br>ins for li<br>Mar<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (heating<br>eriods in<br>iving are<br>Apr<br>1                                                                                                                                     | season<br>h the livin<br>ea, h1,m<br>May<br>0.98                                                                                                                      | )<br>(see Ta<br>Jun<br>0.9                                                                                                                                                      | from Ta<br>able 9a)<br>Jul<br>0.76                                                                                                                            | ble 9, Th<br>Aug<br>0.84                                                                                                                                                 | n1 (°C)<br>Sep<br>0.98                                                                                                              | Oct                                                                            | Nov                                                               | Dec                                                                |                  | 1    | (8                                                                     |
| Temperature<br>Jtilisation fac<br>Jan<br>5)m= 1<br>Mean internal                                                                                                                                                                                                                                                                                                                                     | nal tempe<br>during he<br>tor for gai<br>Feb<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eating period<br>ins for li<br>Mar<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (heating<br>eriods in<br>iving are<br>Apr<br>1                                                                                                                                     | season<br>h the livin<br>ea, h1,m<br>May<br>0.98                                                                                                                      | )<br>(see Ta<br>Jun<br>0.9                                                                                                                                                      | from Ta<br>able 9a)<br>Jul<br>0.76                                                                                                                            | ble 9, Th<br>Aug<br>0.84                                                                                                                                                 | n1 (°C)<br>Sep<br>0.98                                                                                                              | Oct                                                                            | Nov                                                               | Dec                                                                |                  | 1    | (8)                                                                    |
| Temperature<br>Jtilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8                                                                                                                                                                                                                                                                                                                        | hal tempe<br>during he<br>tor for gai<br>Feb<br>1<br>temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inature (<br>ating pe<br>ins for li<br>Mar<br>1<br>ture in l<br>20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38                                                                                                               | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64                                                                                                  | )<br>(see Ta<br>Jun<br>0.9<br>)llow ste<br>20.84                                                                                                                                | from Tal<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92                                                                                                      | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9                                                                                                                             | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71                                                                                           | Oct<br>1                                                                       | Nov                                                               | Dec<br>1                                                           |                  | ť    | (85                                                                    |
| Temperature<br>Jtilisation fac<br>Jan<br>5)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature                                                                                                                                                                                                                                                                                                         | hal tempe<br>during he<br>tor for gai<br>Feb<br>1<br>temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inature (<br>ating pe<br>ins for li<br>Mar<br>1<br>ture in l<br>20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38                                                                                                               | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64                                                                                                  | )<br>(see Ta<br>Jun<br>0.9<br>)llow ste<br>20.84                                                                                                                                | from Tal<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92                                                                                                      | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9                                                                                                                             | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71                                                                                           | Oct<br>1                                                                       | Nov                                                               | Dec<br>1                                                           |                  | 1    | (85<br>(86<br>(87                                                      |
| Temperature<br>Jtilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature<br>8)m= 20.02                                                                                                                                                                                                                                                                                           | hal temper<br>during he<br>tor for gai<br>Feb<br>1<br>temperat<br>19.9<br>during he<br>20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rature (<br>ating pe<br>ins for li<br>Mar<br>1<br>ture in l<br>20.1<br>ating pe<br>20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03                                                                                         | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64<br>the rest of<br>20.03                                                                          | )<br>(see Ta<br>Jun<br>0.9<br>bllow ste<br>20.84<br>dwelling<br>20.04                                                                                                           | from Tal<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04                                                                                | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04                                                                                                       | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>h2 (°C)                                                                                | Oct<br>1<br>20.36                                                              | Nov<br>1<br>20.03                                                 | Dec<br>1<br>19.78                                                  |                  | 1    | (85<br>(86<br>(87                                                      |
| Temperature<br>Jtilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature<br>8)m= 20.02<br>Jtilisation fac                                                                                                                                                                                                                                                                        | hal temperators for gai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rature (<br>ating pe<br>ins for li<br>Mar<br>1<br>ture in l<br>20.1<br>20.02<br>20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (healing<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv                                                                            | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64<br>the rest of<br>20.03<br>welling,                                                              | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>Nllow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se                                                                                    | from Tal<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table                                                                    | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04<br>20.04                                                                                              | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03                                                                      | Oct<br>1<br>20.36<br>20.03                                                     | Nov<br>1<br>20.03<br>20.03                                        | Dec<br>1<br>19.78<br>20.02                                         |                  | 1    | (8)<br>(8)<br>(8)<br>(8)                                               |
| Cemperature         Jtilisation fac         Jan         6)m=         1         Mean internal         7)m=         19.8         Cemperature         8)m=       20.02         Jtilisation fac         9)m=       1                                                                                                                                                                                     | temperative for for gain for for gain for for gain temperative for for gain for for gain for for gain temperative for for | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>20.02<br>ins for m<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99                                                                    | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (for<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96                                                       | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>billow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84                                                                           | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63                                                            | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04<br>99a)<br>0.73                                                                                       | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>h2 (°C)<br>20.03<br>0.97                                                               | Oct<br>1<br>20.36<br>20.03                                                     | Nov<br>1<br>20.03                                                 | Dec<br>1<br>19.78                                                  |                  | 1    | (88)<br>(88)<br>(87)<br>(88)                                           |
| Temperature<br>Utilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature<br>8)m= 20.02<br>Utilisation fac<br>9)m= 1<br>Mean internal                                                                                                                                                                                                                                             | temperation for gain temperati | inature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>20.02<br>ins for m<br>1<br>ture in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of                                                     | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (for<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96<br>of dwelli                                          | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>llow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f                                                       | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63<br>follow sta                                              | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04<br>9 9a)<br>0.73<br>eps 3 to                                                                          | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl                                                 | Oct<br>1<br>20.36<br>20.03<br>1<br>le 9c)                                      | Nov<br>1<br>20.03<br>20.03                                        | Dec<br>1<br>19.76<br>20.02                                         |                  | 1    | (85)<br>(86)<br>(83)<br>(83)<br>(85)                                   |
| Femperature         Jtilisation fac         Jan         6)m=       1         Mean internal         7)m=       19.8         Femperature         8)m=       20.02         Jtilisation fac         9)m=       1         Mean internal                                                                                                                                                                   | temperative for for gain for for gain for for gain temperative for for gain for for gain for for gain temperative for for | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>20.02<br>ins for m<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99                                                                    | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (for<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96                                                       | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>billow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84                                                                           | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63                                                            | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04<br>99a)<br>0.73                                                                                       | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71                                        | Oct<br>1<br>20.36<br>20.03<br>1<br>e 9c)<br>19.21                              | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72                          | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35                           | ]<br>]<br>]<br>] |      | (85)<br>(86)<br>(83)<br>(83)<br>(83)<br>(83)                           |
| Temperature         Jtilisation fac         Jan         6)m=       1         Mean internal         7)m=       19.8         Temperature         B)m=       20.02         Utilisation fac         9)m=       1         Mean internal                                                                                                                                                                   | temperation for gain temperati | inature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>20.02<br>ins for m<br>1<br>ture in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of                                                     | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (for<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96<br>of dwelli                                          | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>llow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f                                                       | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63<br>follow sta                                              | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.04<br>9 9a)<br>0.73<br>eps 3 to                                                                          | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71                                        | Oct<br>1<br>20.36<br>20.03<br>1<br>e 9c)<br>19.21                              | Nov<br>1<br>20.03<br>20.03                                        | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35                           |                  |      | (85)<br>(86)<br>(83)<br>(83)<br>(83)<br>(83)                           |
| Temperature         Jtilisation fac         Jan         6)m=       1         Mean internal         7)m=       19.8         Temperature         B)m=       20.02         Utilisation fac         9)m=       1         Mean internal         0)m=       18.36                                                                                                                                          | temperat<br>18.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rature (<br>ating poins for li<br>Mar<br>1<br>20.1<br>20.02<br>ms for r<br>1<br>18.81<br>ture in t<br>18.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of du<br>0.99<br>the rest of<br>19.22<br>r the wh                                | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (for<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96<br>of dwelling<br>19.61<br>ole dwe                    | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                            | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95                                     | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.9<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - fl                                         | 11 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>1<br>LA) × T2                       | Oct<br>1<br>20.36<br>20.03<br>1<br>le 9c)<br>19.21<br>fLA = Livir              | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>ng area + (r          | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =                   | ]<br>]<br>]<br>] |      | (80)<br>(80)<br>(83)<br>(80)<br>(90)<br>(90)                           |
| Femperature         Jtilisation fac:         Jan         6)m=       1         Mean internal         7)m=       19.8         Femperature         8)m=       20.02         Jtilisation fac:         9)m=       1         Mean internal         0)m=       18.36         Mean internal         2)m=       18.43                                                                                         | temperat<br>18.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | instor li<br>mating points for li<br>mar<br>1<br>20.1<br>20.02<br>ins for m<br>1<br>18.81<br>ture in t<br>18.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of<br>19.22<br>r the who<br>19.28                      | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96<br>of dwelli<br>19.61<br>ole dwe<br>19.66              | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                            | from Ta<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95                                      | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98                       | 11 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>1<br>LA) × T2<br>19.76              | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>fLA = Livir<br>19.26               | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72                          | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35                           | ]<br>]<br>]<br>] |      | (85                                                                    |
| Temperature<br>Jtilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature<br>8)m= 20.02<br>Jtilisation fac<br>9)m= 1<br>Mean internal<br>0)m= 18.36<br>Mean internal<br>2)m= 18.43<br>Apply adjustm                                                                                                                                                                               | temperat<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>20.02<br>ins for m<br>1<br>18.81<br>ture in t<br>18.88<br>ture (for<br>18.88<br>e mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (healing<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of<br>19.22<br>r the who<br>19.28<br>internal          | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fc<br>20.64<br>the rest of<br>20.03<br>welling,<br>0.96<br>of dwellin<br>19.61<br>ole dwe<br>19.66<br>temper | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>(low ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f<br>19.87<br>lling) = f<br>19.92<br>ature fro          | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.94<br>ee Table<br>0.63<br>follow ste<br>19.95<br>LA × T1<br>20<br>m Table         | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98<br>e 4e, wh           | 11 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>1<br>LA) × T2<br>19.76<br>ere appro | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>fLA = Livir<br>19.26<br>opriate    | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>ng area + (-<br>18.78 | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =<br>18.42          | ]<br>]<br>]<br>] |      | (85<br>(86<br>(87<br>(82<br>(82<br>(92<br>(97)<br>(97)<br>(97)<br>(97) |
| (6)m=         1           Mean internal         19.8           (7)m=         19.8           Temperature         8)m=           (8)m=         20.02           Utilisation fac:         9)m=           (9)m=         1           Mean internal         10)m=           (18.36)         18.36           Mean internal         12,m=           (2)m=         18.43           Apply adjustm         18.43 | all temperative       during he       temperative       1       temperative       20.02       during he       20.02       temperative       1       temperative       1       temperative       1       temperative       18.52       temperative       18.59       nent to the       18.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rature (<br>ating points for line of the second | (heating<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of<br>19.22<br>r the who<br>19.28                      | Season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fo<br>20.64<br>n rest of<br>20.03<br>welling,<br>0.96<br>of dwelli<br>19.61<br>ole dwe<br>19.66              | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                            | from Ta<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Ta<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95                                      | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98                       | 11 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>Th2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>1<br>LA) × T2<br>19.76              | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>fLA = Livir<br>19.26               | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>ng area + (r          | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =                   | ]<br>]<br>]<br>] |      | (80)<br>(80)<br>(83)<br>(80)<br>(90)<br>(90)                           |
| Temperature         Jailisation fac         Jan         6)m=       1         Mean internal         7)m=       19.8         Temperature         8)m=       20.02         Utilisation fac         9)m=       1         Mean internal         0)m=       18.36         Mean internal         0)m=       18.43         Apply adjustm         3)m=       18.43         8. Space heat                      | al tempe       during he       tor for gai       1       temperat       19.9       during he       20.02       tor for gai       1       temperat       18.52       temperat       18.59       tempt to the       18.59       ting required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>ins for re<br>1<br>ture in t<br>18.81<br>ture (for<br>18.88<br>e mean<br>18.88<br>rement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (healing<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of du<br>0.99<br>the rest of<br>19.22<br>r the who<br>19.28<br>internal<br>19.28 | season<br>the livin<br>ea, h1,m<br>May<br>0.98<br>ea T1 (fc<br>20.64<br>trest of<br>20.03<br>welling,<br>0.96<br>of dwelli<br>19.61<br>19.66<br>temper<br>19.66       | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>llow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f<br>19.87<br>lling) = f<br>19.92<br>ature fro<br>19.92 | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Tai<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95<br>tLA × T1<br>20<br>m Table<br>20 | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 9a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98<br>e 4e, wh<br>19.98 | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>h2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>19.76<br>ere appro-                  | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>19.21<br>19.26<br>opriate<br>19.26 | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>18.78<br>18.78        | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =<br>18.42<br>18.42 |                  |      | (8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)            |
| Temperature<br>Jtilisation fac<br>Jan<br>6)m= 1<br>Mean internal<br>7)m= 19.8<br>Temperature<br>8)m= 20.02<br>Jtilisation fac<br>9)m= 1<br>Mean internal<br>0)m= 18.36<br>Mean internal<br>2)m= 18.43<br>Apply adjustro<br>3)m= 18.43<br>B. Space heat<br>Set Ti to the r                                                                                                                            | all temperative       during he       temperative       1       temperative       19.9       during he       20.02       temperative       1       temperative       18.52       temperative       18.52       temperative       18.59       temp to the       18.59       temp require       18.59       temp require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>ins for r<br>1<br>20.02<br>ins for r<br>1<br>18.81<br>ture in t<br>18.88<br>e mean<br>18.88<br>rement<br>rnal ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (healing<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of dv<br>0.99<br>the rest of<br>19.22<br>r the wh<br>19.28<br>internal<br>19.28  | season<br>the livin<br>a, h1,m<br>May<br>0.98<br>a T1 (fc<br>20.64<br>rest of<br>20.03<br>welling,<br>0.96<br>of dwelli<br>19.61<br>temper<br>19.66<br>re obtain      | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>llow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f<br>19.87<br>lling) = f<br>19.92<br>ature fro<br>19.92 | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Tai<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95<br>tLA × T1<br>20<br>m Table<br>20 | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 9a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98<br>e 4e, wh<br>19.98 | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>h2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>19.76<br>ere appro-                  | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>19.21<br>19.26<br>opriate<br>19.26 | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>18.78<br>18.78        | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =<br>18.42<br>18.42 |                  |      | (8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)            |
| Temperature         Jtilisation fac         Jan         6)m=       1         Mean internal         7)m=       19.8         Temperature         8)m=       20.02         Jtilisation fac         9)m=       1         Mean internal         0)m=       18.36         Mean internal         0)m=       18.43         Apply adjustm         3)m=       18.43         8. Space heat                      | all temperative       during he       temperative       1       temperative       19.9       during he       20.02       temperative       1       temperative       1       temperative       18.52       temperative       18.59       temperative       18.59       temperative       18.59       temperative       18.59       temperative       tot to the       18.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rature (<br>ating points for li<br>Mar<br>1<br>20.1<br>20.02<br>ins for r<br>1<br>20.02<br>ins for r<br>1<br>18.81<br>ture in t<br>18.88<br>e mean<br>18.88<br>rement<br>rnal ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (healing<br>eriods in<br>iving are<br>Apr<br>1<br>iving are<br>20.38<br>eriods in<br>20.03<br>est of du<br>0.99<br>the rest of<br>19.22<br>r the who<br>19.28<br>internal<br>19.28 | season<br>the livin<br>a, h1,m<br>May<br>0.98<br>a T1 (fc<br>20.64<br>rest of<br>20.03<br>welling,<br>0.96<br>of dwelli<br>19.61<br>temper<br>19.66<br>re obtain      | )<br>ng area<br>(see Ta<br>Jun<br>0.9<br>)<br>)<br>llow ste<br>20.84<br>dwelling<br>20.04<br>h2,m (se<br>0.84<br>ng T2 (f<br>19.87<br>lling) = f<br>19.92<br>ature fro<br>19.92 | from Tai<br>able 9a)<br>Jul<br>0.76<br>eps 3 to<br>20.92<br>g from Tai<br>20.04<br>ee Table<br>0.63<br>follow ste<br>19.95<br>tLA × T1<br>20<br>m Table<br>20 | ble 9, Th<br>Aug<br>0.84<br>7 in Tab<br>20.9<br>able 9, T<br>20.9<br>able 9, T<br>20.04<br>9 9a)<br>0.73<br>eps 3 to<br>19.93<br>+ (1 - ft<br>19.98<br>e 4e, wh<br>19.98 | n1 (°C)<br>Sep<br>0.98<br>le 9c)<br>20.71<br>h2 (°C)<br>20.03<br>0.97<br>7 in Tabl<br>19.71<br>19.76<br>ere appro-                  | Oct<br>1<br>20.36<br>20.03<br>1<br>19.21<br>19.21<br>19.26<br>opriate<br>19.26 | Nov<br>1<br>20.03<br>20.03<br>1<br>18.72<br>18.78<br>18.78        | Dec<br>1<br>19.78<br>20.02<br>1<br>18.35<br>4) =<br>18.42<br>18.42 |                  |      | (8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)     |

| 94)m=           | 1          | 1          | ains, hm<br>1 | 0.99         | 0.96      | 0.83            | 0.62      | 0.72        | 0.96       | 1                  | 1         | 1            |                 | (94) |
|-----------------|------------|------------|---------------|--------------|-----------|-----------------|-----------|-------------|------------|--------------------|-----------|--------------|-----------------|------|
| Same St         |            |            | . W = (94     |              | 1998-962  | 0.05            | 0.02      | 0.72        | 0.90       |                    | 8         |              |                 | 101  |
| 1910 March 1910 |            |            |               |              | 13863.63  | 12168.2         | 8731.49   | 8854.13     | 9697.66    | 7292.73            | 5123.2    | 4271.49      |                 | (95) |
| 151 808         | 707        |            |               |              | e from Ta | 10 Carl 10 Carl | 0101.40   | 0004.10     | 0001.00    | 1202.10            | 0120.2    | 421 1.40     |                 | 100  |
| 6)m=            | 4.3        | 4.9        | 6.5           | 8.9          | 11.7      | 14.6            | 16.6      | 16.4        | 14.1       | 10.6               | 7.1       | 4.2          |                 | (96) |
| Heat            | loss rate  | e for me   | an intern     | al temp      | erature,  | Lm,W:           | =[(39)m : | x [(93)m    | – (96)m    | 1                  |           |              |                 |      |
| 7)m=            | 38571.4    | 37294.47   | 33649.62      | 27959.38     | 21399.65  | 14192.09        | 9061.79   | 9541.08     | 15137.08   | 23299.7            | 31529.76  | 38515.46     |                 | (97  |
| Space           | e heatin   | g require  | ement fo      | r each n     | nonth, k\ | Nh/mon          | th = 0.02 | 24 x [(97   | )m – (95   | )m] x (4           | 1)m       |              |                 |      |
| 98)m=           | 25157.75   | 20420.72   | 18004.61      | 11284.43     | 5606.8    | 0               | 0         | 0           | 0          | 11909.18           | 19012.72  | 25477.51     |                 |      |
|                 |            |            |               |              |           |                 |           | Tota        | l per year | (kWh/year          | ) = Sum(9 | (8)1.53.12 = | 136873.73       | (98) |
| Space           | e heatin   | a reauire  | ement in      | kWh/m        | /vear     |                 |           |             |            |                    |           | Ī            | 54.19           | (99  |
|                 |            | • •        |               |              |           |                 |           |             |            |                    |           | L            |                 |      |
|                 |            |            | uiremen       |              | See Tat   | ale 10b         |           |             |            |                    |           |              |                 |      |
| Calcu           | Jan        | Feb        | Mar           | Apr          | May       | Jun             | Jul       | Aug         | Sep        | Oct                | Nov       | Dec          |                 |      |
| Heat            |            |            |               |              | <u> </u>  |                 |           |             |            |                    |           | able 10)     |                 |      |
| 00)m=           | 0          | 0          | 0             | 0            | 0         |                 | 19747.45  |             | 0          | 0                  | 0         | 0            |                 | (10  |
| Utilisa         | ation fac  | tor for lo | oss hm        |              |           |                 |           |             |            |                    |           |              |                 |      |
| 01)m=           | 0          | 0          | 0             | 0            | 0         | 0.65            | 0.76      | 0.68        | 0          | 0                  | 0         | 0            |                 | (10  |
| Usefu           | I loss, h  | mLm (V     | vatts) = (    | (100)m >     | (101)m    |                 |           |             |            |                    |           |              |                 |      |
| 02)m=           | 0          | 0          | 0             | 0            | 0         | 16427.14        | 14919.22  | 13710.78    | 0          | 0                  | 0         | 0            |                 | (10  |
| Gains           | s (solar g | gains ca   | lculated      | for appl     | cable we  | eather re       | egion, se | e Table     | 10)        |                    |           |              |                 |      |
| 03)m=           | 0          | D          | 0             | 0            | 0         | 17208.77        | 16388.15  | 14477.1     | 0          | 0                  | 0         | 0            |                 | (10  |
|                 |            |            |               |              |           | lwelling,       | continue  | ous ( kN    | /h) = 0.0  | 24 x [(10          | 03)m – (  | 102)m] x     | (41)m           |      |
|                 |            |            | (104)m <      | 1            | -         |                 |           |             |            |                    |           |              |                 |      |
| 04)m=           | 0          | 0          | 0             | 0            | 0         | 562.77          | 1092.88   | 0           | 0          | 0                  | 0         | 0            |                 | -    |
| oolod           | fraction   |            |               |              |           |                 |           |             |            | = Sum(<br>cooled a |           | -<br>-       | 1655.65         | (10  |
|                 |            |            | able 10b      | 1            |           |                 |           |             | 10-        | cooled             | alea + (4 | +) - L       | 0.59            | (10  |
| 06)m=           | 0          | 0          | 0             | 0            | 0         | 0.25            | 0.25      | 0.25        | 0          | 0                  | 0         | 0            |                 |      |
|                 |            |            | 5.240         |              |           |                 |           |             | Tota       | = Sum(             | 104)      | =            | 0               | (10  |
| pace            | cooling    | requirer   | ment for      | month =      | (104)m    | × (105)         | × (106)r  | m           |            |                    |           | L            | 10 <b>0</b> /10 |      |
| 07)m=           | 0          | 0          | 0             | 0            | 0         | 83.56           | 162.27    | 0           | 0          | 0                  | 0         | 0            |                 |      |
|                 |            |            |               |              |           | 2               |           | 0           | Total      | = Sum(             | 107)      | =            | 245.83          | (10  |
| pace            | cooling    | requirer   | ment in k     | (Wh/m²/      | /ear      |                 |           |             | (107       | ) ÷ (4) =          |           | ľ            | 0.1             | (10  |
|                 | -          |            |               |              | eating sy | /stems i        | ncluding  | micro-C     | (HP)       |                    |           | L            |                 |      |
| 4               | e heatir   |            |               | in addition  | outing o  | Peterner        | norearing | THIOTO C    |            |                    |           |              |                 |      |
|                 |            |            | at from s     | econdar      | y/supple  | mentary         | system    |             |            |                    |           | Г            | 0.1             | (20  |
|                 |            |            | at from m     |              |           |                 |           | (202) = 1   | - (201) =  |                    |           | F            | 0.9             | (20  |
|                 | 5          |            | ing from      | 59           | 0.000     |                 |           |             |            |                    |           | L            | 0.1             | (20  |
|                 |            |            |               |              |           |                 |           | (204) = (2) | 02) × [1 – | (203)1=            |           | Ļ            | 5.1410          | =    |
|                 |            |            | ng from       |              |           |                 |           |             |            |                    |           | Ļ            | 0.81            | (20  |
|                 |            |            | ng from       | ALCONTRACTOR |           |                 |           | (205) = (2  | 02) × (203 | )=                 |           | Ĺ            | 0.09            | (20) |
|                 |            | male and   | ace heat      | ing augt     | h mar     |                 |           |             |            |                    |           |              | 319.7           | (20  |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 13 of 15

| Effic                                                   | iency of    | main spa     | ace heat   | ting syste | em 2    |        |        |        |             |                        |                                        | Γ            | 93.3     | (207)  |
|---------------------------------------------------------|-------------|--------------|------------|------------|---------|--------|--------|--------|-------------|------------------------|----------------------------------------|--------------|----------|--------|
| Efficiency of secondary/supplementary heating system, % |             |              |            |            |         |        |        |        |             |                        | Ī                                      | 80           | (208)    |        |
| Cool                                                    | ling Syst   | em Ener      | gy Effici  | ency Ra    | tio     |        |        |        |             |                        |                                        | Ī            | 6.75     | (209)  |
|                                                         | Jan         | Feb          | Mar        | Apr        | May     | Jun    | Jul    | Aug    | Sep         | Oct                    | Nov                                    | Dec          | kWh/ye   | ear    |
| Spac                                                    |             |              |            | calculate  |         | )      |        |        |             |                        |                                        |              |          |        |
|                                                         | 25157.75    | 20420.72     | 18004.61   | 11284.43   | 5606.8  | 0      | 0      | 0      | 0           | 11909.18               | 19012.72                               | 25477.51     |          |        |
| (211)                                                   | m = {[(98   | 3)m x (20    | 04)] } x * | 100 ÷ (20  | )6)     |        |        |        |             |                        |                                        |              |          | (211)  |
|                                                         | 6374.03     | 5173.85      | 4561.69    | 2859.05    | 1420.55 | 0      | 0      | 0      | 0           | 3017.34                | and the second                         | 6455.05      |          | _      |
|                                                         |             |              |            |            |         |        |        | Tota   | al (kWh/ye  | ar) =Sum(              | 211) <sub>1.510.1</sub>                | <del>,</del> | 34678.67 | (211)  |
|                                                         |             | n x (203)    |            |            |         |        |        |        |             |                        |                                        |              |          |        |
| (213)m                                                  | = 2426.79   | 1969.84      | 1736.78    | 1088.53    | 540.85  | 0      | 0      | 0      | 0           | 1148.8                 | 10000000000000000000000000000000000000 | 2457.64      |          | _      |
|                                                         |             |              |            |            |         |        |        | Tota   | il (kWh/ye  | ar) =Sum()             | 213) <sub>15.101</sub>                 | 7            | 13203.25 | (213)  |
|                                                         |             | Conserve and |            | y), kWh/   | month   |        |        |        |             |                        |                                        |              |          |        |
| 1.000                                                   | -           | 01)]}x1      | 1          | 1          |         |        |        |        |             |                        |                                        |              |          |        |
| (215)m                                                  | = 3144.72   | 2552.59      | 2250.58    | 1410.55    | 700.85  | 0      | 0      | 0      | 0           |                        | 2376.59                                |              |          | -      |
|                                                         |             |              |            |            |         |        |        | lota   | a (kvvn/ye  | ar) =Sum(              | 215) <sub>1.5.101</sub>                | 2            | 17109.22 | (215)  |
|                                                         | r heating   | 10.00        |            |            |         |        |        |        |             |                        |                                        |              |          |        |
| Outpu                                                   | 424.14      | 374.82       | 395.95     | 358.14     | 353.28  | 318.99 | 309.52 | 335.28 | 333.32      | 371.21                 | 388.5                                  | 415.01       |          |        |
| Efficie                                                 |             | vater hea    |            | 555.14     | 000.20  | 510.55 | 000.02 | 000.20 | 000.02      | 57 1.21                | 000.0                                  | 410.01       | 79.6     | (216)  |
| (217)m                                                  | <u> </u>    | 88.29        | 87.98      | 87.24      | 85.56   | 79.6   | 79.6   | 79.6   | 79.6        | 87.28                  | 88.11                                  | 88.48        | 18.0     | (217)  |
| 1. 1.                                                   |             | heating.     |            | 12.0       | 00.00   | 10.0   | 10.0   | 10.0   | 10.0        | 07.20                  | 00.11                                  | 00.40        |          | (2.1.) |
|                                                         |             | )m x 100     |            |            |         |        |        |        |             |                        |                                        |              |          |        |
| (219)m                                                  | 479.66      | 424.53       | 450.05     | 410.51     | 412.88  | 400.74 | 388.85 | 421.21 | 418.74      | 425.3                  | 440.93                                 | 469.06       |          |        |
|                                                         |             |              |            |            |         |        |        | Tota   | l = Sum(2   | (19a), <sub>12</sub> = |                                        |              | 5142.47  | (219)  |
| Spac                                                    | e coolin    | g fuel, k    | Wh/mo      | nth.       |         |        |        |        |             |                        |                                        |              |          | 1      |
|                                                         |             | ')m+ (20     | 1          |            |         |        |        |        |             |                        |                                        |              |          |        |
| (221)m                                                  | =           | 0            | 0          | 0          | 0       | 12.38  | 24.04  | 0      | 0           | 0                      | 0                                      | 0            |          | _      |
|                                                         |             |              |            |            |         |        |        | lota   | al = Sum(2) | (21) <sub>a.n</sub> =  |                                        | L            | 36.42    | (221)  |
|                                                         | al totals   |              |            |            |         |        |        |        |             | k                      | Wh/yea                                 | · -          | kWh/yea  | r_     |
| Space                                                   | e heating   | g fuel use   | ed, main   | system     | 1       |        |        |        |             |                        |                                        | L            | 34678.67 |        |
| Space                                                   | e heating   | g fuel use   | ed, main   | system     | 2       |        |        |        |             |                        |                                        | [            | 13203.25 |        |
| Space                                                   | e heating   | g fuel use   | ed, seco   | ndary      |         |        |        |        |             |                        |                                        | [            | 17109.22 |        |
| Water                                                   | r heating   | fuel use     | d          |            |         |        |        |        |             |                        |                                        | [            | 5142.47  |        |
| Space                                                   | e cooling   | fuel use     | ed         |            |         |        |        |        |             |                        |                                        | [            | 36.42    |        |
| Electr                                                  | icity for p | pumps, f     | ans and    | electric   | keep-ho | t      |        |        |             |                        |                                        |              |          |        |
| cent                                                    | ral heatir  | ng pump      | \$         |            |         |        |        |        |             |                        |                                        | 60           |          | (230c) |
| boile                                                   | r with a    | fan-assis    | sted flue  |            |         |        |        |        |             |                        |                                        | 45           |          | (230e) |
| Total                                                   | electricit  | y for the    | above,     | kWh/yea    | r       |        |        | sum    | of (230a)   | (230g) =               |                                        |              | 105      | (231)  |
| Electr                                                  | icity for I | ighting      |            |            |         |        |        |        |             |                        |                                        | Ī            | 2871.02  | (232)  |
| Electr                                                  | icity gen   | erated b     | y PVs      |            |         |        |        |        |             |                        |                                        | Ī            | -3346.17 | (233)  |
|                                                         |             |              |            |            |         |        |        |        |             |                        |                                        |              |          | _      |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 14 of 15

| 12a. CO2 emissions - Individual heating system    | s includ          | ling micro-CHP            |                           |   |                        |       |
|---------------------------------------------------|-------------------|---------------------------|---------------------------|---|------------------------|-------|
|                                                   | <b>Ene</b><br>kWh | <b>rgy</b><br>i/year      | Emission fa<br>kg CO2/kWh |   | Emissions<br>kg CO2/ye | -     |
| Space heating (main system 1)                     | (211)             | x                         | 0.519                     | = | 17998.23               | (261) |
| Space heating (main system 2)                     | (213)             | x                         | 0.216                     | = | 2851.9                 | (262) |
| Space heating (secondary)                         | (215)             | x                         | 0.216                     | = | 3695.59                | (263) |
| Water heating                                     | (219)             | x                         | 0.216                     | = | 1110.77                | (264) |
| Space and water heating                           | (261)             | + (262) + (263) + (264) = |                           |   | 25656.5                | (265) |
| Space cooling                                     | (221)             | ×                         | 0.519                     | = | 18.9                   | (266) |
| Electricity for pumps, fans and electric keep-hot | (231)             | x                         | 0.519                     | = | 54.5                   | (267) |
| Electricity for lighting                          | (232)             | x                         | 0.519                     | = | 1490.06                | (268) |
| Energy saving/generation technologies<br>Item 1   |                   |                           | 0.519                     | = | -1736.66               | (269) |
| Total CO2, kg/year                                |                   | sum                       | of (265)(271) =           |   | 25483.29               | (272) |
| Dwelling CO2 Emission Rate                        |                   | (272                      | ?) + (4) =                |   | 10.09                  | (273) |
| El rating (section 14)                            |                   |                           |                           |   | 87                     | (274) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

## APPENDIX (ii)

#### SAP L1A 2013/16 REGULATIONS

(SAP Worksheet)

|                                                        |                                                                     | User Details:               |                           |               |                        |          |
|--------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|---------------------------|---------------|------------------------|----------|
| Assessor Name:                                         | Ondrej Gajdos                                                       | Stroma N                    | lumber:                   | STRO          | 006629                 |          |
| Software Name:                                         | Stroma FSAP 2012                                                    | Software                    | Version:                  | Versio        | n: 1.0.5.7             |          |
|                                                        |                                                                     | Property Address: 28        | , Avenue Road             |               |                        |          |
| Address :                                              | 28, Avenue Road, LONDO                                              | N, NW8 6BU                  |                           |               |                        |          |
| 1. Overall dwelling dim                                | ensions:                                                            |                             |                           |               |                        |          |
| Decement                                               |                                                                     | Area(m <sup>2</sup> )       | Av. Height(r              |               | Volume(m <sup>3</sup>  | <u> </u> |
| Basement                                               |                                                                     | 789.3 (1a)                  | × 3.3                     | (2a) =        | 2604.69                | (3a      |
| Ground floor                                           |                                                                     | 617 (1b)                    | × 5.5                     | (2b) =        | 3393.5                 | (3)      |
| First floor                                            |                                                                     | 570.3 (1c)                  | × 4.2                     | (2c) =        | 2395.26                | (30      |
| Second floor                                           |                                                                     | 549 (1d)                    | × 3.1                     | (2d) =        | 1701.9                 | (30      |
| Total floor area TFA = (1                              | la)+(1b)+(1c)+(1d)+(1e)+(1                                          | n) 2525.6 (4)               |                           |               |                        | 20       |
| Dwelling volume                                        |                                                                     | (3a                         | )+(3b)+(3c)+(3d)+(3e)     | +(3n) =       | 10095.35               | (5)      |
| 2. Ventilation rate:                                   | - 53                                                                |                             |                           |               |                        |          |
|                                                        | main seconda<br>heating heating                                     | ry other                    | total                     |               | m <sup>3</sup> per hou | r        |
| Number of chimneys                                     | 0 + 0                                                               | + 0                         | = 0                       | ×40 =         | 0                      | (6       |
| Number of open flues                                   | 0 + 0                                                               | + 4                         | = 4                       | x 20 =        | 80                     | (6       |
| Number of intermittent fa                              | ans                                                                 |                             | 16                        | x 10 =        | 160                    | (7       |
| Number of passive vents                                | 5                                                                   |                             | 0                         | x 10 =        | 0                      | (7       |
| Number of flueless gas t                               | fires                                                               |                             | 0                         | x 40 =        | 0                      | (7       |
|                                                        |                                                                     |                             |                           | Air ch        | anges per ho           | our      |
| Infiltration due to chimne                             | eys, flues and fans = (6a)+(6b)+(                                   | 7a)+(7b)+(7c) =             | 240                       | ÷ (5) =       | 0.02                   | (8)      |
|                                                        | been carried out or is intended, procee                             |                             | nue from (9) to (16)      | -             | 10.0548<br>5<br>-      |          |
| Number of storeys in t                                 | the dwelling (ns)                                                   |                             |                           | [             | 0                      | (9)      |
| Additional infiltration                                |                                                                     |                             |                           | [(9)-1]x0.1 = | 0                      | (1       |
|                                                        | 0.25 for steel or timber frame o                                    |                             |                           | [             | 0                      | (1       |
| if both types of wall are p<br>deducting areas of open | present, use the value corresponding t<br>ings): if equal user 0.35 | o the greater wall area (af | ter                       |               |                        |          |
|                                                        | floor, enter 0.2 (unsealed) or 0                                    | .1 (sealed), else ente      | er O                      | ſ             | 0                      | (1       |
| If no draught lobby, er                                | nter 0.05, else enter 0                                             |                             |                           | Ì             | 0                      | (1       |
| Percentage of window                                   | s and doors draught stripped                                        |                             |                           | Ì             | 0                      | (1       |
| Window infiltration                                    |                                                                     | 0.25 - [0.2 x (1            | 4) + 100] =               | Ì             | 0                      | (1       |
| Infiltration rate                                      |                                                                     | (8) + (10) + (11            | 1) + (12) + (13) + (15) = | • Î           | 0                      | (1       |
| Air permeability value                                 | , q50, expressed in cubic metre                                     | es per hour per squa        | re metre of envelo        | pe area       | 4                      | (1       |
| If based on air permeab                                | ility value, then (18) = [(17) + 20]+                               | (8), otherwise (18) = (16)  |                           | Ì             | 0.22                   | (1       |
| Air permeability value appli                           | es if a pressurisation test has been do                             | ne or a degree air permea   | bility is being used      | 0.8           |                        |          |
| Number of sides shelter                                | ed                                                                  |                             | 5. N. 1.                  | [             | 0                      | (1       |
| Shelter factor                                         |                                                                     | (20) = 1 - [0.07            | eren and the              | [             | 1                      | (2       |
| Infiltration rate incorpora                            | ting shelter factor                                                 | (21) = (18) x (2            | 20) =                     | [             | 0.22                   | (2       |
| Infiltration rate modified                             | for monthly wind speed                                              |                             |                           |               |                        |          |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 1 of 16

| 22)m=                                                                                   | 5.1                                                                      | 5                                                                                 | 4.9                                                                            | 4.4                                                                      | 4.3                                                                                 | 3.8                                                                 | 3.8                                                                                | 3.7                                                                               | 4                                                                                       | 4.3                                         | 4.5                       | 4.7            |      |                |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------|------|----------------|
|                                                                                         |                                                                          |                                                                                   |                                                                                | 1                                                                        |                                                                                     | ÷                                                                   | · · · · ·                                                                          |                                                                                   |                                                                                         |                                             |                           |                |      |                |
| -                                                                                       |                                                                          |                                                                                   | (22)m ÷                                                                        |                                                                          |                                                                                     |                                                                     |                                                                                    |                                                                                   |                                                                                         |                                             |                           | <u> </u>       |      |                |
| 22a)m=                                                                                  | 1.27                                                                     | 1.25                                                                              | 1.23                                                                           | 1.1                                                                      | 1.08                                                                                | 0.95                                                                | 0.95                                                                               | 0.92                                                                              | 1                                                                                       | 1.08                                        | 1.12                      | 1.18           |      |                |
| djusted                                                                                 | d infiltra                                                               | ation rat                                                                         | e (allowi                                                                      | ng for s                                                                 | helter an                                                                           | nd wind s                                                           | speed) =                                                                           | (21a) x                                                                           | (22a)m                                                                                  |                                             |                           |                |      |                |
| and the second second second                                                            | 0.29                                                                     | 0.28                                                                              | 0.27                                                                           | 0.25                                                                     | 0.24                                                                                | 0.21                                                                | 0.21                                                                               | 0.21                                                                              | 0.22                                                                                    | 0.24                                        | 0.25                      | 0.26           |      |                |
|                                                                                         |                                                                          | <i>ctive air</i><br>al ventila                                                    |                                                                                | rate for t                                                               | the appli                                                                           | cable ca                                                            | ise                                                                                |                                                                                   |                                                                                         |                                             |                           | Г              | 0    | (23a)          |
| lf exhau                                                                                | ust air he                                                               | eat pump                                                                          | using App                                                                      | endix N, (2                                                              | 23b) = (23a                                                                         | a) × Fmv (                                                          | equation (                                                                         | N5)), othe                                                                        | rwise (23b                                                                              | ) = (23a)                                   |                           | F              | 0    | (23b)          |
| lf balan                                                                                | ced with                                                                 | heat reco                                                                         | overy: effic                                                                   | iency in %                                                               | allowing                                                                            | for in-use f                                                        | lactor (from                                                                       | n Table 4h                                                                        | ) =                                                                                     |                                             |                           |                | 0    | (23c)          |
|                                                                                         |                                                                          |                                                                                   |                                                                                |                                                                          |                                                                                     |                                                                     |                                                                                    |                                                                                   |                                                                                         |                                             |                           |                |      |                |
| a) If ba                                                                                | alance                                                                   | d mech                                                                            | anical ve                                                                      | entilation                                                               | with he                                                                             | at recov                                                            | ery (MV                                                                            | HR) (24a                                                                          | a)m = (2:                                                                               | 2b)m + (                                    | 23b) × [                  | 1 – (23c) ÷    | 100] |                |
| a) If ba<br>24a)m=                                                                      | alance<br>0                                                              | d mech                                                                            | anical ve<br>0                                                                 | ontilation                                                               | with he                                                                             | at recov                                                            | ery (MV                                                                            | HR) (24a                                                                          | a)m = (2:<br>0                                                                          | 2b)m + (<br>0                               | 23b) × [<br>0             | 1 – (23c) +    | 100] | (24a)          |
| 24a)m=                                                                                  | 0                                                                        | 0                                                                                 | 0                                                                              | 0                                                                        | 0                                                                                   | 0                                                                   | 0                                                                                  | 0                                                                                 | <u>í</u>                                                                                | 0                                           | 0                         | <del>r í</del> | 100] | (24a)          |
| 24a)m=                                                                                  | 0                                                                        | 0                                                                                 | 0                                                                              | 0                                                                        | 0                                                                                   | 0                                                                   | 0                                                                                  | 0                                                                                 | 0                                                                                       | 0                                           | 0                         | <del>r í</del> | 100] |                |
| 24a)m=<br>b) If ba<br>24b)m=<br>c) If w                                                 | 0<br>alance<br>0<br>hole h                                               | 0<br>ed mech<br>0<br>ouse ex                                                      | 0<br>anical ve<br>0<br>tract ver                                               | 0<br>entilation<br>0<br>ntilation (                                      | 0<br>without<br>0<br>or positiv                                                     | 0<br>heat red<br>0<br>ve input                                      | o<br>covery (l<br>o<br>ventilatio                                                  | 0<br>MV) (24t<br>0<br>on from (                                                   | 0<br>0)m = (22<br>0                                                                     | 0<br>2b)m + (<br>0                          | 0<br>23b)<br>0            | 0              | 100] |                |
| 24a)m=<br>b) If ba<br>24b)m=<br>c) If w                                                 | 0<br>alance<br>0<br>hole h                                               | 0<br>ed mech<br>0<br>ouse ex                                                      | 0<br>anical ve<br>0<br>tract ver                                               | 0<br>entilation<br>0<br>ntilation (                                      | 0<br>without<br>0<br>or positiv                                                     | 0<br>heat red<br>0<br>ve input                                      | o<br>covery (l<br>o<br>ventilatio                                                  | 0<br>MV) (24t<br>0<br>on from (                                                   | 0)m = (22<br>0<br>0<br>0<br>0<br>0                                                      | 0<br>2b)m + (<br>0                          | 0<br>23b)<br>0            | 0              | 100] | (24b)          |
| 24a)m=<br>b) If ba<br>24b)m=<br>c) If w<br>if (<br>24c)m=<br>d) If na                   | 0<br>alance<br>0<br>hole h<br>(22b)n<br>0<br>atural 1                    | 0<br>od mech<br>0<br>ouse ex<br>n < 0.5 ><br>0<br>ventilatio                      | 0<br>anical ve<br>tract ver<br>< (23b), 1<br>0<br>on or wh                     | 0<br>entilation<br>0<br>ntilation (<br>hen (24<br>0<br>ole hous          | 0<br>without<br>0<br>or positiv<br>c) = (23t<br>0<br>se positiv                     | 0<br>heat red<br>0<br>ve input<br>b); othen<br>0<br>ve input        | 0<br>covery (I<br>0<br>ventilation<br>wise (24<br>0<br>ventilation                 | 0<br>MV) (24t<br>0<br>on from (<br>c) = (22t<br>0<br>0<br>on from                 | 0)m = (22<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>2b)m + (,<br>0<br>5 × (23t             | 0<br>23b)<br>0            | 0              | 100] | (24b)          |
| 24a)m=<br>b) If ba<br>24b)m=<br>c) If w<br>if (<br>24c)m=<br>d) If na<br>if (           | 0<br>alance<br>0<br>hole h<br>(22b)n<br>0<br>atural 1                    | 0<br>od mech<br>0<br>ouse ex<br>n < 0.5 ><br>0<br>ventilatio                      | 0<br>anical ve<br>tract ver<br>< (23b), 1<br>0<br>on or wh                     | 0<br>entilation<br>0<br>ntilation (<br>hen (24<br>0<br>ole hous          | 0<br>without<br>0<br>or positiv<br>c) = (23t<br>0<br>se positiv                     | 0<br>heat red<br>0<br>ve input<br>b); othen<br>0<br>ve input        | 0<br>covery (I<br>0<br>ventilation<br>wise (24<br>0<br>ventilation                 | 0<br>MV) (24t<br>0<br>on from (<br>c) = (22t<br>0<br>0<br>on from                 | 0)m = (22<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 0<br>2b)m + (,<br>0<br>5 × (23t             | 0<br>23b)<br>0            | 0              | 100] | (24b)<br>(24c) |
| 24a)m=<br>b) If b:<br>24b)m=<br>c) If w<br>if u<br>24c)m=<br>d) If na<br>if u<br>24d)m= | 0<br>alance<br>0<br>thole h<br>(22b)n<br>0<br>atural 1<br>(22b)n<br>0.54 | 0<br>d mech<br>0<br>ouse ex<br>n < 0.5 ><br>0<br>ventilation<br>n = 1, th<br>0.54 | 0<br>anical ve<br>tract ver<br>(23b), 1<br>0<br>0 or or wh<br>en (24d)<br>0.54 | 0<br>entilation<br>o<br>tilation (24<br>0<br>ole hous<br>m = (22<br>0.53 | 0<br>without<br>0<br>or positiv<br>c) = (23t<br>0<br>se positiv<br>b)m othe<br>0.53 | 0<br>heat red<br>ve input<br>0<br>ve input<br>ve input<br>enwise (2 | 0<br>covery (I<br>0<br>ventilatio<br>wise (24<br>0<br>ventilati<br>24d)m =<br>0.52 | 0<br>MV) (24t<br>0<br>on from 0<br>c) = (22t<br>0<br>on from<br>0.5 + [(2<br>0.52 | 0<br>)m = (22<br>0<br>outside<br>b) m + 0.<br>0<br>loft<br>(2b)m <sup>2</sup> x<br>0.53 | 0<br>2b)m + (<br>0<br>5 × (23t<br>0<br>0.5] | 0<br>23b)<br>0<br>))<br>0 | 0              | 100] | (24b)          |

|                 | Gross<br>rea (m²) | Openings<br>m <sup>2</sup> | Net Area<br>A ,m² | U-value<br>W/m2K     | A X U<br>(W/K) | k-value<br>kJ/m²-K | A X k<br>kJ/K |
|-----------------|-------------------|----------------------------|-------------------|----------------------|----------------|--------------------|---------------|
| Doors           |                   |                            | 6.28              | x 1.3                | = 8.164        |                    | (26)          |
| Windows Type 1  |                   |                            | 4.79              | x1/[1/(1.3)+0.04]    | = 5.92         |                    | (27)          |
| Windows Type 2  |                   |                            | 13.04             | x1/[1/(1.3)+0.04]    | = 16.11        |                    | (27)          |
| Windows Type 3  |                   |                            | 16.83             | x1/[1/(1.3)+0.04]    | = 20.8         |                    | (27)          |
| Windows Type 4  |                   |                            | 7.19              | x1/[1/( 1.3 )+ 0.04] | 8.88           |                    | (27)          |
| Windows Type 5  |                   |                            | 3.38              | x1/[1/(1.3)+0.04]    | = 4.18         |                    | (27)          |
| Windows Type 6  |                   |                            | 2.73              | x1/[1/( 1.3 )+ 0.04] | = 3.37         |                    | (27)          |
| Windows Type 7  |                   |                            | 1.96              | x1/[1/(1.3)+0.04]    | = 2.42         |                    | (27)          |
| Windows Type 8  |                   |                            | 5.58              | x1/[1/(1.3)+0.04]    | = 6.9          |                    | (27)          |
| Windows Type 9  |                   |                            | 3.38              | x1/[1/( 1.3 )+ 0.04] | = 4.18         |                    | (27)          |
| Windows Type 10 |                   |                            | 2.73              | x1/[1/(1.3)+0.04]    | = 3.37         |                    | (27)          |
| Windows Type 11 |                   |                            | 1.96              | x1/[1/( 1.3 )+ 0.04] | = 2.42         |                    | (27)          |
| Windows Type 12 |                   |                            | 11.16             | x1/[1/( 1.3 )+ 0.04] | = 13.79        |                    | (27)          |
| Windows Type 13 |                   |                            | 5.58              | x1/[1/( 1.3 )+ 0.04] | = 6.9          |                    | (27)          |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 2 of 16

| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 14                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 2.73                                                                                                       | ×1                                                          | /[1/( 1.3 )+                                         | 0.041 =                                                                                                             | 3.37                                                                                                                                                       |                                                                                                                                   |                                                                                                          |                                                 | (27)                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                | ws Type                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 5.4                                                                                                        |                                                             | /[1/(1.3)+                                           |                                                                                                                     | 6.67                                                                                                                                                       | =                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 16                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 1.96                                                                                                       |                                                             | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 2.42                                                                                                                                                       | Ħ                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 17                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 4.08                                                                                                       | x1                                                          | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 5.04                                                                                                                                                       | Ħ                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 18                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 3.38                                                                                                       |                                                             | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 4.18                                                                                                                                                       | =                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 19                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 5.58                                                                                                       | x1                                                          | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 6.9                                                                                                                                                        | Ħ                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 20                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 2.73                                                                                                       | x1                                                          | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 3.37                                                                                                                                                       | f                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 21                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 3.9                                                                                                        | x1                                                          | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 4.82                                                                                                                                                       | Ħ                                                                                                                                 |                                                                                                          |                                                 | (27)                                                 |
| Window                                                                                                                                                                         | ws Type                                                                                                                                                                                      | 22                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 1.96                                                                                                       | x1                                                          | /[1/( 1.3 )+                                         | 0.04] =                                                                                                             | 2.42                                                                                                                                                       | Ŧ.                                                                                                                                |                                                                                                          |                                                 | (27)                                                 |
| Rooflig                                                                                                                                                                        | hts                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 46.34                                                                                                      | x1                                                          | /[1/(1.3) +                                          | 0.04] =                                                                                                             | 60.242                                                                                                                                                     | 1                                                                                                                                 |                                                                                                          |                                                 | (27b)                                                |
| Floor T                                                                                                                                                                        | ype 1                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 789.3                                                                                                      | x                                                           | 0.12                                                 | =                                                                                                                   | 94.716                                                                                                                                                     | Πr                                                                                                                                |                                                                                                          |                                                 | (28)                                                 |
| Floor T                                                                                                                                                                        | ype 2                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                          |                                                                                              | 29.2                                                                                                       | ×                                                           | 0.12                                                 | = i                                                                                                                 | 3.504                                                                                                                                                      | ΪĒ                                                                                                                                |                                                                                                          | i —                                             | (28)                                                 |
| Walls T                                                                                                                                                                        | Гуре1                                                                                                                                                                                        | 350.                                                                                                                                                                                                      | 79                                                                                                                                                                                           | 0                                                                                                                                                                        |                                                                                              | 350.7                                                                                                      | 9 ×                                                         | 0.15                                                 | =                                                                                                                   | 52.62                                                                                                                                                      | ī ī                                                                                                                               |                                                                                                          | i —                                             | (29)                                                 |
| Walls 1                                                                                                                                                                        | Гуре2                                                                                                                                                                                        | 1116                                                                                                                                                                                                      | .81                                                                                                                                                                                          | 275.5                                                                                                                                                                    | 1                                                                                            | 841.3                                                                                                      | x                                                           | 0.18                                                 | =                                                                                                                   | 151.43                                                                                                                                                     | īī                                                                                                                                |                                                                                                          | i —                                             | (29)                                                 |
| Walls 1                                                                                                                                                                        | Гуре3                                                                                                                                                                                        | 123                                                                                                                                                                                                       | .7                                                                                                                                                                                           | 33.4                                                                                                                                                                     | 3                                                                                            | 90.22                                                                                                      | x                                                           | 0.18                                                 | =                                                                                                                   | 16.24                                                                                                                                                      | ĪĒ                                                                                                                                |                                                                                                          | i —                                             | (29)                                                 |
| Roof 1                                                                                                                                                                         | Гуре1                                                                                                                                                                                        | 153                                                                                                                                                                                                       | .3                                                                                                                                                                                           | 0                                                                                                                                                                        |                                                                                              | 153.3                                                                                                      | x                                                           | 0.12                                                 | =                                                                                                                   | 18.4                                                                                                                                                       | ΞĒ                                                                                                                                |                                                                                                          | i —                                             | (30)                                                 |
| Roof 7                                                                                                                                                                         | Гуре2                                                                                                                                                                                        | 21.3                                                                                                                                                                                                      | 3                                                                                                                                                                                            | 0                                                                                                                                                                        |                                                                                              | 21.3                                                                                                       | ×                                                           | 0.12                                                 | =                                                                                                                   | 2.56                                                                                                                                                       |                                                                                                                                   |                                                                                                          |                                                 | (30)                                                 |
| Roof 1                                                                                                                                                                         | ГуреЗ                                                                                                                                                                                        | 360                                                                                                                                                                                                       | .1                                                                                                                                                                                           | 46.3                                                                                                                                                                     | 4                                                                                            | 313.7                                                                                                      | 6 X                                                         | 0.12                                                 | =                                                                                                                   | 37.65                                                                                                                                                      |                                                                                                                                   |                                                                                                          |                                                 | (30)                                                 |
| Roof 7                                                                                                                                                                         | Гуре4                                                                                                                                                                                        | 263                                                                                                                                                                                                       | .8                                                                                                                                                                                           | 0                                                                                                                                                                        |                                                                                              | 263.8                                                                                                      | ×                                                           | 0.12                                                 | =                                                                                                                   | 31.66                                                                                                                                                      |                                                                                                                                   |                                                                                                          |                                                 | (30)                                                 |
| Roof 7                                                                                                                                                                         | Гуре5                                                                                                                                                                                        | 37.6                                                                                                                                                                                                      | 6                                                                                                                                                                                            | 0                                                                                                                                                                        |                                                                                              | 37.6                                                                                                       | x                                                           | 0.12                                                 | =                                                                                                                   | 4.51                                                                                                                                                       |                                                                                                                                   |                                                                                                          | ]                                               | (30)                                                 |
| 12                                                                                                                                                                             | roo of o                                                                                                                                                                                     | lamonte                                                                                                                                                                                                   | m2                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                              | -                                                                                                          |                                                             |                                                      |                                                                                                                     |                                                                                                                                                            |                                                                                                                                   |                                                                                                          |                                                 | -                                                    |
| Total a                                                                                                                                                                        | lea or e                                                                                                                                                                                     | lements                                                                                                                                                                                                   | , 111                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                              | 3245.                                                                                                      | 9                                                           |                                                      |                                                                                                                     |                                                                                                                                                            |                                                                                                                                   |                                                                                                          |                                                 | (31)                                                 |
| * for win                                                                                                                                                                      | dows and                                                                                                                                                                                     | roof winde                                                                                                                                                                                                | ows, use e                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                              | niue calcul                                                                                                |                                                             | formula 1                                            | /[(1/U-valu                                                                                                         | e)+0.04] a                                                                                                                                                 | s given in                                                                                                                        | paragraph 3                                                                                              | 3.2                                             | (31)                                                 |
| * for win<br>** includ                                                                                                                                                         | dows and<br>le the area                                                                                                                                                                      | roof winde<br>is on both                                                                                                                                                                                  | ows, use e<br>sides of in                                                                                                                                                                    | nternal wal                                                                                                                                                              |                                                                                              | niue calcul                                                                                                | ated using                                                  |                                                      |                                                                                                                     | e)+0.04] a                                                                                                                                                 | s given in                                                                                                                        | paragraph 3                                                                                              |                                                 | -                                                    |
| * for win<br>** includ<br>Fabric                                                                                                                                               | dows and<br>le the area<br>heat los                                                                                                                                                          | roof winde<br>is on both<br>is, W/K =                                                                                                                                                                     | ows, use e<br>sides of in<br>= S (A x                                                                                                                                                        | nternal wal                                                                                                                                                              |                                                                                              | niue calcul                                                                                                | ated using                                                  | formula 1<br>(26)(30)                                | + (32) =                                                                                                            |                                                                                                                                                            |                                                                                                                                   | Ę                                                                                                        | 852.78                                          | (33)                                                 |
| * <i>for win</i><br>** <i>includ</i><br>Fabric<br>Heat c                                                                                                                       | dows and<br>le the area<br>heat los<br>apacity (                                                                                                                                             | roof winde<br>is on both<br>is, W/K =<br>Cm = S(                                                                                                                                                          | ows, use e<br>sides of in<br>= S (A x<br>(A x k)                                                                                                                                             | nternal wal<br>U)                                                                                                                                                        | s and part                                                                                   | lue calcul<br>itions                                                                                       | ated using                                                  |                                                      | + (32) =<br>((28).                                                                                                  | e)+0.04] a<br>.(30) + (32<br>tive Value:                                                                                                                   | 2) + (32a).                                                                                                                       | Ę                                                                                                        | 852.78<br>0                                     | (33)<br>(34)                                         |
| * for wind<br>** includ<br>Fabric<br>Heat co<br>Therma                                                                                                                         | dows and<br>e the area<br>heat los<br>apacity f<br>al mass                                                                                                                                   | roof winde<br>is on both<br>is, W/K =<br>Cm = S(<br>parame                                                                                                                                                | ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>tter (TMF                                                                                                                               | nternal wal<br>U)<br>P = Cm -                                                                                                                                            | s and part                                                                                   | itions<br>kJ/m²K                                                                                           | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica                                                                                         | .(30) + (32                                                                                                                                                | 2) + (32a).<br>Medium                                                                                                             | (32e) = [                                                                                                | 852.78                                          | (33)                                                 |
| * for win<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desig                                                                                                               | dows and<br>e the area<br>heat los<br>apacity l<br>al mass<br>gn assess<br>used instea                                                                                                       | roof windo<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>iments wh<br>ad of a dei                                                                                                                    | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>tter (TMF<br>ere the de<br>tailed calcu                                                                                                  | nternal wal<br>U)<br>P = Cm -<br>tails of the<br>ulation.                                                                                                                | s and part<br>- TFA) in<br>constructi                                                        | itions<br>itions<br>kJ/m²K<br>ion are not                                                                  | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica                                                                                         | .(30) + (32<br>tive Value:                                                                                                                                 | 2) + (32a).<br>Medium                                                                                                             | (32e) = [                                                                                                | 852.78<br>0<br>250                              | (33)<br>(34)<br>(35)                                 |
| * for wind<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For designed<br>Can be d                                                                                               | dows and<br>e the area<br>heat los<br>apacity<br>al mass<br>gn assess<br>used instea<br>al bridge                                                                                            | roof winde<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L                                                                                                        | ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>eter (TMF<br>ere the de<br>tailed calco<br>x Y) cal                                                                                     | ternal wal<br>U)<br>= = Cm -<br>tails of the<br>ulation.<br>culated (                                                                                                    | TFA) in<br>constructi<br>using Ap                                                            | itions<br>kJ/m²K<br>on are not                                                                             | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica                                                                                         | .(30) + (32<br>tive Value:                                                                                                                                 | 2) + (32a).<br>Medium                                                                                                             | (32e) = [                                                                                                | 852.78<br>0                                     | (33)<br>(34)                                         |
| * for win<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desin<br>can be u<br>Therm<br>if details                                                                            | dows and<br>e the area<br>heat los<br>apacity<br>al mass<br>gn assess<br>used instea<br>al bridge                                                                                            | roof winde<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>Il bridging                                                                                         | ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>eter (TMF<br>ere the de<br>tailed calco<br>x Y) cal                                                                                     | nternal wal<br>U)<br>P = Cm -<br>tails of the<br>ulation.                                                                                                                | TFA) in<br>constructi<br>using Ap                                                            | itions<br>kJ/m²K<br>on are not                                                                             | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica<br>indicative                                                                           | .(30) + (32<br>tive Value:                                                                                                                                 | 2) + (32a).<br>Medium                                                                                                             | (32e) = [                                                                                                | 852.78<br>0<br>250<br>74.78                     | (33)<br>(34)<br>(35)<br>(36)                         |
| * for wini<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desin<br>can be u<br>Therm<br>if details<br>Total fa                                                               | dows and<br>le the area<br>heat los<br>apacity l<br>al mass<br>gn assess<br>used instea<br>al bridge<br>of therma<br>abric he                                                                | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>as : S (L<br>il bridging<br>at loss                                                                              | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calco<br>x Y) Cal<br>are not kn                                                                         | ternal wal<br>U)<br>= = Cm -<br>tails of the<br>ulation.<br>culated (                                                                                                    | TFA) in<br>constructi<br>using Ap<br>0.05 x (3                                               | itions<br>kJ/m²K<br>on are not                                                                             | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica<br>indicative<br>(33) +                                                                 | .(30) + (32<br>tive Value:<br>values of                                                                                                                    | r) + (32a)<br>Medium<br>TMP in Ta                                                                                                 | (32e) = [<br>bble 1f                                                                                     | 852.78<br>0<br>250                              | (33)<br>(34)<br>(35)                                 |
| * for wini<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desin<br>can be u<br>Therm<br>if details<br>Total fa                                                               | dows and<br>le the area<br>heat los<br>apacity l<br>al mass<br>gn assess<br>used instea<br>al bridge<br>of therma<br>abric he                                                                | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>as : S (L<br>il bridging<br>at loss                                                                              | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calco<br>x Y) Cal<br>are not kn                                                                         | D = Cm -<br>tails of the<br>ulation.<br>culated (<br>own (36) =                                                                                                          | TFA) in<br>constructi<br>using Ap<br>0.05 x (3                                               | itions<br>kJ/m²K<br>on are not                                                                             | ated using                                                  | (26)(30                                              | + (32) =<br>((28)<br>Indica<br>indicative<br>(33) +                                                                 | .(30) + (32<br>tive Value:<br>values of<br>(36) =                                                                                                          | r) + (32a)<br>Medium<br>TMP in Ta                                                                                                 | (32e) = [<br>bble 1f                                                                                     | 852.78<br>0<br>250<br>74.78                     | (33)<br>(34)<br>(35)<br>(36)                         |
| * for wini<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desin<br>can be u<br>Therm<br>if details<br>Total fa                                                               | dows and<br>te the area<br>heat los<br>apacity<br>al mass<br>gn assess<br>used instea<br>of therma<br>abric hea<br>tion hea                                                                  | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>il bridging<br>at loss<br>at loss ca                                                                | ows, use e<br>sides of ir<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calc<br>x Y) cal<br>are not kn<br>alculatec                                                             | D = Cm -<br>tails of the<br>ulation.<br>culated<br>iown (36) =                                                                                                           | - TFA) in<br>constructi<br>using Ap<br>0.05 x (3                                             | lue calcul<br>itions<br>I kJ/m²K<br>ion are not<br>pendix I<br>1)                                          | ated using<br>' known pr                                    | (26)(30                                              | (28) =<br>((28)<br>Indica<br>indicative<br>(33) +<br>(38)m                                                          | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × ()                                                                                           | 2) + (32a).<br>Medium<br>TMP in Ta<br>25)m x (5)                                                                                  | (32e) = [<br>bble 1f                                                                                     | 852.78<br>0<br>250<br>74.78                     | (33)<br>(34)<br>(35)<br>(36)                         |
| * for wini<br>** includ<br>Fabric<br>Heat C<br>Therm<br>For design<br>can be u<br>Therm<br>if details<br>Total fa<br>Ventila<br>(38)m=                                         | dows and<br>te the area<br>heat los<br>apacity<br>al mass<br>gn assess<br>sed instea<br>al bridge<br>of therma<br>abric hea<br>tion hea<br>Jan<br>1801.33                                    | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>as : S (L<br>Il bridging<br>at loss<br>at loss ca<br>Feb                                                         | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calc:<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9                                           | D = Cm -<br>tails of the<br>ulation.<br>culated i<br>own (36) =<br>d monthly<br>Apr                                                                                      | - TFA) in<br>constructi<br>using Ap<br>c 0.05 x (3<br>/<br>May                               | lue calcul<br>itions<br>h kJ/m²K<br>on are not<br>pendix H<br>1)<br>Jun                                    | ated using<br>known pr<br>C                                 | (26)(30<br>ecisely the                               | (28)                                                                                                                | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × (<br>Oct                                                                                     | 25)m x (5)<br>Nov<br>1771.3                                                                                                       | (32e) = [<br>[<br>[<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[               | 852.78<br>0<br>250<br>74.78                     | (33)<br>(34)<br>(35)<br>(36)<br>(37)                 |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi<br>can be u<br>Therm<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr                                | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>sed instea<br>al bridge<br>of therma<br>abric hea<br>tion hea<br>Jan<br>1801.33                                   | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>I bridging<br>at loss<br>at loss ca<br>Feb<br>1796.06                                               | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calci<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9                                           | D = Cm -<br>tails of the<br>ulation.<br>culated i<br>own (36) =<br>d monthly<br>Apr                                                                                      | s and part<br>TFA) in<br>constructi<br>using Ap<br>0.05 x (3<br>May<br>1762.12               | lue calcul<br>itions<br>h kJ/m²K<br>on are not<br>pendix H<br>1)<br>Jun                                    | ated using<br>known pr<br>C                                 | (26)(30<br>ecisely the<br>Aug<br>1737.1              | + (32) =<br>((28)<br>Indica<br>i indicative<br>(33) +<br>(38) m<br>Sep<br>1749.14<br>(39) m<br>2676.71              | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × ()<br>Oct<br>1762.12<br>= (37) + (3<br>2689.69                                               | 2) + (32a).<br>Medium<br><i>TMP in Ta</i><br>25)m x (5)<br>Nov<br>1771.3<br>38)m<br>2698.86                                       | (32e) = [<br>                                                                                            | 852.78<br>0<br>250<br>74.78<br>927.56           | (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>(38)         |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm.<br>For desi,<br>can be u<br>Therm.<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr<br>(39)m=                   | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>sed instea<br>al bridge<br>of therma<br>abric hea<br>tion hea<br>Jan<br>1801.33<br>ransfer c<br>2728.89           | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>Il bridging<br>at loss<br>at loss ca<br>Feb<br>1796.06<br>coefficier<br>2723.63                     | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calci<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9<br>nt, W/K<br>2718.46                     | Appr<br>1766.66<br>2694.22                                                                                                                                               | s and part<br>TFA) in<br>constructi<br>using Ap<br>0.05 x (3<br>May<br>1762.12               | lue calcul<br>itions<br>kJ/m²K<br>on are not<br>pendix H<br>1)<br>Jun<br>1741.01                           | ated using<br>known pr<br>Jul<br>1741.01                    | (26)(30<br>ecisely the<br>Aug<br>1737.1              | + (32) =<br>((28)<br>Indica<br>i indicative<br>(33) +<br>(38)m<br>Sep<br>1749.14<br>(39)m<br>2676.71                | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × ()<br>Oct<br>1762.12<br>= (37) + (5<br>2689.69<br>Average =                                  | 2) + (32a).<br>Medium<br><i>TMP in Ta</i><br>25)m x (5)<br>Nov<br>1771.3<br>38)m<br>2698.86<br>Sum(39),                           | (32e) = [<br>                                                                                            | 852.78<br>0<br>250<br>74.78                     | (33)<br>(34)<br>(35)<br>(36)<br>(37)                 |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm.<br>For desi,<br>can be u<br>Therm.<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr<br>(39)m=                   | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>sed instea<br>al bridge<br>of therma<br>abric hea<br>tion hea<br>Jan<br>1801.33<br>ransfer c<br>2728.89           | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>Il bridging<br>at loss<br>at loss ca<br>Feb<br>1796.06<br>coefficier<br>2723.63                     | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calci<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9                                           | Appr<br>1766.66<br>2694.22                                                                                                                                               | s and part<br>TFA) in<br>constructi<br>using Ap<br>0.05 x (3<br>May<br>1762.12               | lue calcul<br>itions<br>kJ/m²K<br>on are not<br>pendix H<br>1)<br>Jun<br>1741.01                           | ated using<br>known pr<br>Jul<br>1741.01                    | (26)(30<br>ecisely the<br>Aug<br>1737.1              | + (32) =<br>((28)<br>Indica<br>i indicative<br>(33) +<br>(38)m<br>Sep<br>1749.14<br>(39)m<br>2676.71                | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × ()<br>Oct<br>1762.12<br>= (37) + (3<br>2689.69                                               | 2) + (32a).<br>Medium<br><i>TMP in Ta</i><br>25)m x (5)<br>Nov<br>1771.3<br>38)m<br>2698.86<br>Sum(39),                           | (32e) = [<br>                                                                                            | 852.78<br>0<br>250<br>74.78<br>927.56           | (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>(38)         |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi<br>can be u<br>Therm<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr<br>(39)m=<br>Heat lc<br>(40)m= | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>ised instea<br>al bridge<br>of therma<br>abric hea<br>Jan<br>1801.33<br>ansfer c<br>2728.89<br>oss para<br>1.08   | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>as : S (L<br>il bridging<br>at loss<br>tt loss ca<br>Feb<br>1796.06<br>coefficier<br>2723.63<br>meter (H         | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calc:<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9<br>nt, W/K<br>2718.46<br>HLP), W/<br>1.08 | Apr<br>1766.66<br>2694.22<br>1.07                                                                                                                                        | - TFA) in<br>constructi<br>using Ap<br>0.05 x (3<br>/<br>May<br>1762.12<br>2689.69           | lue calcul<br>itions<br>h kJ/m <sup>2</sup> K<br>on are not<br>pendix H<br>1)<br>Jun<br>1741.01<br>2868.57 | ated using<br>known pr<br>Jul<br>1741.01<br>2668.57         | (26)(30)<br>ecisely the<br>Aug<br>1737.1<br>2664.66  | + (32) =<br>((28)<br>Indica<br>indicative<br>(33) +<br>(38)m<br>Sep<br>1749.14<br>(39)m<br>2676.71                  | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × (<br>Oct<br>1762.12<br>= (37) + (3<br>2689.69<br>Average =<br>= (39)m +                      | 2) + (32a)<br>Medium<br>TMP in Ta<br>25)m × (5)<br>Nov<br>1771.3<br>38)m<br>2698.86<br>Sum(39),<br>(4)<br>1.07                    | (32e) = [<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[ | 852.78<br>0<br>250<br>74.78<br>927.56           | (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>(38)         |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi<br>can be u<br>Therm<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr<br>(39)m=<br>Heat lc<br>(40)m= | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>ised instea<br>al bridge<br>of therma<br>abric hea<br>Jan<br>1801.33<br>cansfer co<br>2728.89<br>oss para<br>1.08 | roof winde<br>is on both<br>is, w/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>es : S (L<br>il bridging<br>at loss<br>tt loss ca<br>Feb<br>1796.06<br>coefficier<br>2723.63<br>meter (H<br>1.08 | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calcu<br>x Y) cal<br>are not kn<br>alculated<br>Mar<br>1790.9<br>nt, W/K<br>2718.46<br>HLP), W/<br>1.08 | Internal wal<br>U)<br>C = Cm -<br>tails of the<br>ulation.<br>culated in<br>iown (36) =<br>d monthl:<br>Apr<br>1766.66<br>2694.22<br>(m <sup>2</sup> K<br>1.07<br>le 1a) | - TFA) in<br>constructi<br>using Ap<br>• 0.05 x (3<br>/<br>May<br>1762.12<br>2689.69<br>1.06 | lue calculi<br>itions<br>kJ/m <sup>2</sup> K<br>on are not<br>pendix H<br>1)<br>1741.01<br>2668.57<br>1.06 | ated using<br>known pr<br>Jul<br>1741.01<br>2668.57<br>1.06 | (26)(30)<br>ecisely the<br>1737.1<br>2664.66<br>1.06 | + (32) =<br>((28)<br>Indica<br>indicative<br>(33) +<br>(38)m<br>Sep<br>1749.14<br>(39)m<br>2676.71<br>(40)m<br>1.06 | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × (<br>Oct<br>1762.12<br>= (37) + (3<br>2689.69<br>Average =<br>= (39)m +<br>1.06<br>Average = | 2) + (32a)<br>Medium<br><i>TMP in Ta</i><br>25)m × (5)<br>Nov<br>1771.3<br>38)m<br>2698.86<br>Sum(39),<br>(4)<br>1.07<br>Sum(40), | (32e) = [<br>                                                                                            | 852.78<br>0<br>250<br>74.78<br>927.56<br>2694.2 | (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>(38)<br>(38) |
| * for winn<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi<br>can be u<br>Therm<br>if details<br>Total fa<br>Ventila<br>(38)m=<br>Heat tr<br>(39)m=<br>Heat lc<br>(40)m= | dows and<br>e the area<br>heat los<br>apacity i<br>al mass<br>gn assess<br>ised instea<br>al bridge<br>of therma<br>abric hea<br>Jan<br>1801.33<br>ansfer c<br>2728.89<br>oss para<br>1.08   | roof windd<br>is on both<br>is, W/K =<br>Cm = S(<br>parame<br>ments wh<br>ad of a del<br>as : S (L<br>il bridging<br>at loss<br>tt loss ca<br>Feb<br>1796.06<br>coefficier<br>2723.63<br>meter (H         | ows, use e<br>sides of in<br>= S (A x<br>(A x k)<br>ter (TMF<br>ere the de<br>tailed calc:<br>x Y) cal<br>are not kn<br>alculatec<br>Mar<br>1790.9<br>nt, W/K<br>2718.46<br>HLP), W/<br>1.08 | Apr<br>1766.66<br>2694.22<br>1.07                                                                                                                                        | - TFA) in<br>constructi<br>using Ap<br>0.05 x (3<br>/<br>May<br>1762.12<br>2689.69           | lue calcul<br>itions<br>h kJ/m <sup>2</sup> K<br>on are not<br>pendix H<br>1)<br>Jun<br>1741.01<br>2868.57 | ated using<br>known pr<br>Jul<br>1741.01<br>2668.57         | (26)(30)<br>ecisely the<br>Aug<br>1737.1<br>2664.66  | + (32) =<br>((28)<br>Indica<br>indicative<br>(33) +<br>(38)m<br>Sep<br>1749.14<br>(39)m<br>2676.71                  | .(30) + (32<br>tive Value:<br>values of<br>(36) =<br>= 0.33 × (<br>Oct<br>1762.12<br>= (37) + (3<br>2689.69<br>Average =<br>= (39) m +<br>1.06             | 2) + (32a)<br>Medium<br>TMP in Ta<br>25)m × (5)<br>Nov<br>1771.3<br>38)m<br>2698.86<br>Sum(39),<br>(4)<br>1.07                    | (32e) = [<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[ | 852.78<br>0<br>250<br>74.78<br>927.56<br>2694.2 | (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>(38)<br>(38) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 3 of 16

| 4. Water hea                                 | iting ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rgy requ          | irement:     |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/yea     | ar:         |      |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------------------|------------------------------------------|----------------------|--------------------|----------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------|
| Assumed occi<br>if TFA > 13.<br>if TFA £ 13. | .9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | : [1 - exp   | ·(-0.0003               | 349 x (TF                                | =A -13.9             | )2)] + 0.(         | 0013 x (                   | TFA -13             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .03         |             | (42) |
| nnual averag                                 | ial average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hot water         | usage by     | 5% if the d             | lwelling is                              | designed             |                    |                            | se target c         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3         |             | (43) |
| ot more that 125                             | s litres per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | person per        | r day (all w | rater use, f            | hot and co                               | id)                  |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| Jan                                          | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar               | Apr          | May                     | Jun                                      | Jul                  | Aug                | Sep                        | Oct                 | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dec         |             |      |
| ot water usage                               | in litres pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r day for ea      | ach month    | Vd,m = fa               | ctor from                                | Table 1c x           | (43)               |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| 14)m= 195.03                                 | 187.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180.84            | 173.75       | 166.66                  | 159.57                                   | 159.57               | 166.66             | 173.75                     | 180.84              | 187.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195.03      |             |      |
| nergy content o                              | f hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | used - cal        | culated m    | onthly = 4.             | 190 x Vd,i                               | n x nm x L           | )<br>Tm / 3600     |                            |                     | um(44) <sub>112</sub><br>ables 1b, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 2127.58     | (44  |
| 5)m= 289.22                                  | 252.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 261.03            | 227.57       | 218.36                  | 188.43                                   | 174.61               | 200.36             | 202.75                     | 236.29              | 257.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280.1       |             |      |
|                                              | 1. And 1. |                   |              |                         |                                          |                      |                    |                            | Total = Su          | Im(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =           | 2789.6      | (45  |
| instantaneous v                              | water heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ing at point      | of use (no   | hot water               | r storage),                              | enter 0 in           | boxes (46          |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             | 0    |
| 46)m= 43.38                                  | 37.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.15             | 34.14        | 32.75                   | 28.26                                    | 26.19                | 30.05              | 30.41                      | 35.44               | 38.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.01       |             | (46) |
| Vater storage                                | loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| itorage volun                                | ne (litres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) includir        | ng any se    | olar or W               | WHRS                                     | storage              | within sa          | ame ves                    | sel                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000        |             | (47  |
| community I                                  | heating a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and no ta         | unk in dw    | velling, e              | nter 110                                 | litres in            | (47)               |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| therwise if n                                | o stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hot wate          | er (this in  | icludes i               | nstantar                                 | neous co             | mbi boil           | ers) ente                  | er 'O' in i         | (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |      |
| /ater storage                                | loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |                         |                                          |                      |                    |                            |                     | ar ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |             |      |
| a) If manufac                                | turer's d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eclared I         | oss facte    | or is kno               | wn (kW                                   | n/day):              |                    |                            |                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .67         |             | (48  |
| emperature                                   | factor fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table           | 2b           |                         |                                          |                      |                    |                            |                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .54         |             | (49  |
| nergy lost fro                               | om wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r storage         | , kWh/y      | ear                     |                                          |                      | (48) x (49         | ) =                        |                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.6         |             | (50  |
| b) If manufac                                | turer's d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eclared of        | cylinder     | loss fact               | or is not                                | known:               |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| lot water stor                               | rage loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | factor fr         | om Tab       | e 2 (kW                 | h/litre/da                               | iy)                  |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |             | (51  |
| f community I                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | on 4.3       |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| olume factor                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |             | (52  |
| emperature t                                 | factor fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table           | 2b           |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |             | (53  |
| inergy lost fro                              | om water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r storage         | , kWh/ye     | ar                      |                                          |                      | (47) x (51)        | ) x (52) x (               | 53) =               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |             | (54  |
| Enter (50) or                                | (54) in (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55)               |              |                         |                                          |                      |                    |                            |                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6         |             | (55  |
| Vater storage                                | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lculated t        | for each     | month                   |                                          |                      | ((56)m = (         | 55) × (41)                 | m                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| 6)m= 111.66                                  | 100.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.66            | 108.05       | 111.66                  | 108.05                                   | 111.66               | 111.66             | 108.05                     | 111.66              | 108.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.66      |             | (56  |
| cylinder contain                             | s dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d solar sto       | rage, (57)   | m = (56)m               | x [(50) - (                              | (H11)] ÷ (5          | 0), else (5        | 7)m = (56)                 | m where             | (H11) is fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | om Appendix | н           |      |
| 7)m= 111.66                                  | 100.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.66            | 108.05       | 111.66                  | 108.05                                   | 111.66               | 111.66             | 108.05                     | 111.66              | 108.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.66      |             | (57  |
| 111.00                                       | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.00            | 100.00       | 111.00                  | 100.05                                   | 111.00               | 111.00             | 100.00                     | 111.00              | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.00      |             |      |
| rimary circui                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |             | (58  |
| rimary circui                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              | Surger and and a        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1                    | and and the second |                            | 1000                | - 275.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |      |
| (modified by                                 | y factor f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rom Tab           | le H5 if t   | here is s               | solar wa                                 | ter heati            | ng and a           | cylinde                    | r thermo            | ostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |      |
| 59)m= 23.26                                  | 21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.26             | 22.51        | 23.26                   | 22.51                                    | 23.26                | 23.26              | 22.51                      | 23.26               | 22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.26       |             | (59  |
| ombi loss ca                                 | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each          | month        | (61)m =                 | (60) ÷ 30                                | 65 × (41             | )m                 |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| 61)m= 0                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0            | 0                       | 0                                        | 0                    | 0                  | 0                          | 0                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |             | (61  |
| otal heat req                                | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water h           | eating or    | alculated               | for eac                                  | h month              | (62)m =            | 0.85 ×                     | (45)m +             | (46)m +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (57)m + (   | 59)m + (61) | m    |
| 62)m= 424.14                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 395.95            | 358.14       | 353.28                  | 318.99                                   | 309.52               | 335.28             | 333.32                     | 371.21              | 388.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 415.01      | /           | (62  |
| 444.14                                       | Cale of a constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S an ann - connti |              | California de la person | in a construction of the                 | Sector sector sector | internation of a   | Carl Contractor Contractor | Reaction and second | and an and a state of the state |             |             | 1.2  |
| olar DHM innet                               | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using App         |              |                         |                                          |                      |                    |                            | Contribut           | non to wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er neating) |             |      |
| iolar DHW input                              | I lince if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ECHDO             | andlar       |                         |                                          |                      |                    |                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |      |
| olar DHW input<br>add additiona              | al lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FGHRS<br>0        | and/or \     | /WHRS                   | applies<br>0                             | , see Ap             | 0 pendix C         | <b>)</b>                   | 0                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |             | (63  |

| 64)m=   | 424.14     | 374.82    | 395.95     | 358.14      | 353.28    | 318,99    | 309.52     | 335.28      | 333.32      | 371.21              | 388.5       | 415.01     |         |      |
|---------|------------|-----------|------------|-------------|-----------|-----------|------------|-------------|-------------|---------------------|-------------|------------|---------|------|
|         |            |           |            |             |           |           |            | Outp        | out from w  | ater heate          | (annual)    | 12         | 4378.15 | (64  |
| leat g  | ains from  | m water   | heating,   | kWh/m       | onth 0.2  | 5 ′ [0.85 | × (45)m    | + (61)m     | 1] + 0.8 >  | c [(46)m            | + (57)m     | + (59)m]   |         | -    |
| 65)m=   | 204.1      | 181.6     | 194.73     | 180.12      | 180.54    | 167.1     | 165.99     | 174.55      | 171.87      | 186.5               | 190.21      | 201.07     |         | (65) |
| inclu   | ide (57)   | m in calo | culation   | of (65)m    | only if c | ylinder i | s in the o | dwelling    | or hot w    | ater is fr          | om com      | munity hea | ating   |      |
| 5. Int  | ternal da  | ains (see | Table 5    | and 5a      | ):        |           |            |             |             |                     |             |            |         |      |
|         |            |           | 5), Wat    |             |           |           |            |             |             |                     |             |            |         |      |
| letab   | Jan        | Feb       | Mar        | Apr         | May       | Jun       | Jul        | Aug         | Sep         | Oct                 | Nov         | Dec        |         |      |
| i6)m=   | 361.51     | 361.51    | 361.51     | 361.51      | 361.51    | 361.51    | 361.51     | 361.51      | 361.51      | 361.51              | 361.51      | 361.51     |         | (66  |
| ightin  | g gains    | (calcula  | ted in Ap  | pendix      | L, equat  | ion L9 o  | r L9a), a  | lso see '   | Table 5     |                     | P.          |            |         |      |
| 7)m=    | 406.42     | 360.98    | 293.57     | 222.25      | 166.13    | 140.26    | 151.55     | 197         | 264.41      | 335.73              | 391.84      | 417.72     |         | (67  |
| pplia   | nces da    | ins (calc | ulated ir  | Append      | dix L. eq | uation L  | 13 or L1   | 3a), also   | see Ta      | ble 5               |             |            |         |      |
| =m(8    | 2541.88    | 2568.25   | 2501.78    | 2360.28     | 2181.66   | 2013.78   | 1901.62    | 1875.25     | 1941.71     | 2083.22             | 2261.84     | 2429.72    |         | (68  |
| ookin   | ng gains   | (calcula  | ted in A   | ppendix     | L, equat  | ion L15   | or L15a    | , also se   | e Table     | 5                   | 0           |            |         |      |
| 9)m=    | 77.18      | 77.18     | 77.18      | 77.18       | 77.18     | 77.18     | 77.18      | 77.18       | 77.18       | 77.18               | 77.18       | 77.18      |         | (69  |
| umps    | and fai    | ns cains  | (Table 5   | ja)         |           |           |            |             |             |                     | 2           |            |         |      |
| 70)m=   | 6          | 6         | 6          | 6           | 6         | 6         | 6          | 6           | 6           | 6                   | 6           | 6          |         | (70  |
| osses   | se.a. ev   | aporatio  | n (nega    | tive valu   | es) (Tab  | le 5)     |            |             |             |                     |             | <u> </u>   |         |      |
| (1)m=   | -241.01    |           | -241.01    | -241.01     | -241.01   | -241.01   | -241.01    | -241.01     | -241.01     | -241.01             | -241.01     | -241.01    |         | (71  |
| Vater   | heating    | gains (T  | able 5)    |             |           |           |            |             |             |                     |             | ·          |         |      |
| 2)m=    | 274.33     | 270.23    | 261.73     | 250.17      | 242.66    | 232.09    | 223.11     | 234.62      | 238.71      | 250.67              | 264.19      | 270.25     |         | (72  |
| otal i  | nternal    | qains =   |            |             |           | (66)      | m + (67)m  | 1 + (68)m + | (69)m +     | (70) <b>m + (</b> 7 | 1)m + (72)  | m          |         |      |
| 73)m=   | 3426.31    | 3403.15   | 3260.76    | 3036.38     | 2794.13   | 2589.81   | 2479.96    | 2510.54     | 2648.51     | 2873.3              | 3121.55     | 3321.37    |         | (73  |
| 6. Sol  | lar gains  |           |            |             |           | a:        |            |             |             |                     |             |            |         |      |
| Solar g | ains are c | alculated | using sola | r flux from | Table 6a  | and assoc | iated equa | tions to co | nvert to th | e applicab          | le orientat | tion.      |         |      |
|         | ation: A   | Access F  | actor      | Area        |           | Flu       | x          |             | g_          |                     | FF          |            | Gains   |      |
| rienta  |            |           |            |             |           |           |            |             |             |                     |             |            |         |      |

|       | Та   | ble 6d |   | m²    |   | Table 6a |       | Table 6b | T     | able 6c |       | (W)    |      |
|-------|------|--------|---|-------|---|----------|-------|----------|-------|---------|-------|--------|------|
| North | 0.9x | 0.77   | × | 11.16 | × | 10.63    | ] × [ | 0.63     | ] × [ | 0.7     | =     | 72.53  | (74) |
| North | 0.9x | 0.77   | × | 5.58  | x | 10.63    | ×     | 0.63     | x     | 0.7     | =     | 90.67  | (74) |
| North | 0.9x | 0.77   | × | 2.73  | × | 10.63    | ×     | 0.63     | x     | 0.7     | =     | 53.23  | (74) |
| North | 0.9x | 0.77   | × | 5.4   | × | 10.63    | ) × [ | 0.63     | ) × [ | 0.7     | =     | 17.55  | (74) |
| North | 0.9x | 0.77   | × | 1.96  | × | 10.63    | ) × [ | 0.63     | ×     | 0.7     | =     | 25.48  | (74) |
| North | 0.9x | 0.77   | × | 4.08  | × | 10.63    | x [   | 0.63     | ] × [ | 0.7     | =     | 13.26  | (74) |
| North | 0.9x | 0.77   | × | 11,16 | × | 20.32    | × [   | 0.63     | ×     | 0.7     | =     | 138.61 | (74) |
| North | 0.9x | 0.77   | × | 5.58  | × | 20.32    | ) × [ | 0.63     | ] × [ | 0.7     | =     | 173.27 | (74) |
| North | 0.9x | 0.77   | × | 2.73  | × | 20.32    | ×     | 0.63     | ) × [ | 0.7     | =     | 101.73 | (74) |
| North | 0.9x | 0.77   | × | 5.4   | × | 20.32    | ) × [ | 0.63     | ] × [ | 0.7     | ] = [ | 33.54  | (74) |
| North | 0.9x | 0.77   | × | 1.96  | x | 20.32    | ) × [ | 0.63     | ) × [ | 0.7     | ] = [ | 48.69  | (74) |
| North | 0.9x | 0.77   | × | 4.08  | × | 20.32    | ] × [ | 0.63     | ) × [ | 0.7     | ] = [ | 25.34  | (74) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 5 of 16

| SAP | WorkSheet: | New | dwelling | design | stage |
|-----|------------|-----|----------|--------|-------|
|     |            |     |          |        |       |

| North | 0.9x | 0.77 | × | 11.16 | ×     | 34.53 | ×     | 0.63 | ] × [    | 0.7 | ] = [        | 235.54 | (74) |
|-------|------|------|---|-------|-------|-------|-------|------|----------|-----|--------------|--------|------|
| North | 0.9x | 0.77 | × | 5.58  | ī × ī | 34.53 | ī × ī | 0.63 | i x i    | 0.7 | i - F        | 294.43 | (74) |
| North | 0.9x | 0.77 | × | 2.73  | Ī×Ī   | 34.53 | ī × ī | 0.63 | i × ľ    | 0.7 | i <u>-</u> F | 172.86 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ] × [ | 34.53 | 1 × [ | 0.63 | i × i    | 0.7 | ī - Г        | 56.99  | (74) |
| North | 0.9x | 0.77 | x | 1.96  | ×     | 34.53 | 1 × [ | 0.63 | X        | 0.7 | i - F        | 82.73  | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 34.53 | ×     | 0.63 | İ x İ    | 0.7 | <u>1 - F</u> | 43.06  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | ×     | 55.46 | × [   | 0.63 | ] × [    | 0.7 | ī = [        | 378.34 | (74) |
| North | 0.9x | 0.77 | × | 5.58  | ×     | 55.46 | ×     | 0.63 | ] x [    | 0.7 | ] = [        | 472.92 | (74) |
| North | 0.9x | 0.77 | × | 2.73  | ×     | 55.46 | × [   | 0.63 | ] × [    | 0.7 | ] = [        | 277.65 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 55.46 | ×     | 0.63 | x        | 0.7 | - [          | 91.53  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 55.46 | ×     | 0.63 | x        | 0.7 | =            | 132.89 | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ) × [ | 55.46 | ×     | 0.63 | ] × [    | 0.7 | = [          | 69.16  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | x     | 74.72 | ×     | 0.63 | x        | 0.7 | =            | 509.66 | (74) |
| North | 0.9x | 0.77 | x | 5.58  | ×     | 74.72 | ×     | 0.63 | ] × [    | 0.7 | = [          | 637.07 | (74) |
| North | 0.9x | 0.77 | × | 2.73  | ×     | 74.72 | ×     | 0.63 | ×        | 0.7 | =            | 374.02 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 74.72 | ×     | 0.63 | ] × [    | 0.7 | ] = [        | 123.3  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 74.72 | ×     | 0.63 | x        | 0.7 | =            | 179.02 | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 74.72 | ×     | 0.63 | ] × [    | 0.7 | ] = [        | 93.16  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | ×     | 79.99 | ×     | 0.63 | ] × [    | 0.7 | =            | 545.6  | (74) |
| North | 0.9x | 0.77 | × | 5.58  | ×     | 79.99 | ×     | 0.63 | ] × [    | 0.7 | ] = [        | 682    | (74) |
| North | 0.9x | 0.77 | × | 2.73  | ×     | 79.99 | ×     | 0.63 | <b>x</b> | 0.7 | =            | 400.4  | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 79.99 | Χ.    | 0.63 | ×        | 0.7 | =            | 132    | (74) |
| North | 0.9x | 0.77 | x | 1.96  | ×     | 79.99 | ×     | 0.63 | ×        | 0.7 | =            | 191.65 | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 79.99 | ×     | 0.63 | ×        | 0.7 | =            | 99.73  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | ×     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 509.39 | (74) |
| North | 0.9x | 0.77 | × | 5.58  | ×     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 636.74 | (74) |
| North | 0.9x | 0.77 | × | 2.73  | x     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 373.83 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | x     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 123.24 | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 178.93 | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 74.68 | ×     | 0.63 | ×        | 0.7 | =            | 93.11  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | ×     | 59.25 | x     | 0.63 | ×        | 0.7 | =            | 404.14 | (74) |
| North | 0.9× | 0.77 | × | 5.58  | ×     | 59.25 | ×     | 0.63 | ×        | 0.7 | =            | 505.17 | (74) |
| North | 0.9x | 0.77 | × | 2.73  | ×     | 59.25 | ×     | 0.63 | X        | 0.7 | _ = _        | 296.58 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 59.25 | ×     | 0.63 | ×        | 0.7 | _ = _        | 97.77  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | ×     | 59.25 | ×     | 0.63 | ×        | 0.7 | =            | 141.95 | (74) |
| North | 0.9x | 0.77 | × | 4.08  | ×     | 59.25 | ×     | 0.63 | ×        | 0.7 | _ = _        | 73.87  | (74) |
| North | 0.9x | 0.77 | × | 11.16 | ×     | 41.52 | ×     | 0.63 | x        | 0.7 | ] = [        | 283.2  | (74) |
| North | 0.9x | 0.77 | × | 5.58  | ×     | 41.52 | ×     | 0.63 | ×        | 0.7 | ╡╹┝          | 354    | (74) |
| North | 0.9x | 0.77 | × | 2.73  | ×     | 41.52 | ×     | 0.63 | X        | 0.7 | ╡╹┝          | 207.83 | (74) |
| North | 0.9x | 0.77 | × | 5.4   | ×     | 41.52 | ×     | 0.63 | ×        | 0.7 | ╡╹┝          | 68.52  | (74) |
| North | 0.9x | 0.77 | × | 1.96  | x     | 41.52 | ×     | 0.63 | x        | 0.7 | =            | 99.47  | (74) |

Page 6 of 16

|  | SAP | WorkSheet: | New | dwelling | design | stage |
|--|-----|------------|-----|----------|--------|-------|
|--|-----|------------|-----|----------|--------|-------|

| North | 0.9x | 0.77 | ×        | 4.08  | x | 41.52 | ×     | 0.63 | ] × [ | 0.7 | 7 = Г        | 51.77  | (74) |
|-------|------|------|----------|-------|---|-------|-------|------|-------|-----|--------------|--------|------|
| North | 0.9x | 0.77 | ×        | 11.16 | x | 24.19 | ī × Ī | 0.63 | i × ľ | 0.7 | ī - Ē        | 165    | (74) |
| North | 0.9x | 0.77 | x        | 5.58  | x | 24.19 | ī × Ī | 0.63 | i × ľ | 0.7 | i - F        | 206.25 | (74) |
| North | 0.9x | 0.77 | ×        | 2.73  | × | 24.19 | ] × [ | 0.63 | i × ľ | 0.7 | ī - Г        | 121.09 | (74) |
| North | 0.9x | 0.77 | x        | 5.4   | x | 24.19 | ×     | 0.63 | İ×Ī   | 0.7 | ] = [        | 39.92  | (74) |
| North | 0.9x | 0.77 | ×        | 1.96  | × | 24.19 | ] × [ | 0.63 | ] × [ | 0.7 | ] <u>-</u> [ | 57.96  | (74) |
| North | 0.9x | 0.77 | ×        | 4.08  | × | 24.19 | ] × [ | 0.63 | ] × [ | 0.7 | ] = [        | 30.16  | (74) |
| North | 0.9x | 0.77 | ×        | 11.16 | × | 13.12 | ×     | 0.63 | ] × [ | 0.7 | ] = [        | 89.48  | (74) |
| North | 0.9x | 0.77 | ×        | 5.58  | × | 13.12 | ] × [ | 0.63 | ] × [ | 0.7 | ] = [        | 111.85 | (74) |
| North | 0.9x | 0.77 | ×        | 2.73  | x | 13.12 | ×     | 0.63 | ] × [ | 0.7 | ] = [        | 65.67  | (74) |
| North | 0.9x | 0.77 | ×        | 5.4   | x | 13.12 | ×     | 0.63 | ×     | 0.7 | =            | 21.65  | (74) |
| North | 0.9x | 0.77 | <b>x</b> | 1.96  | × | 13.12 | ×     | 0.63 | ] × [ | 0.7 | =            | 31.43  | (74) |
| North | 0.9x | 0.77 | ×        | 4.08  | x | 13.12 | ×     | 0.63 | x     | 0.7 | =            | 16.36  | (74) |
| North | 0.9x | 0.77 | x        | 11.16 | x | 8.86  | ×     | 0.63 | ] × [ | 0.7 | =            | 60.47  | (74) |
| North | 0.9x | 0.77 | ×        | 5.58  | × | 8.86  | ×     | 0.63 | ×     | 0.7 | =            | 75.58  | (74) |
| North | 0.9x | 0.77 | ×        | 2.73  | × | 8.86  | ×     | 0.63 | ] × [ | 0.7 | -            | 44.38  | (74) |
| North | 0.9x | 0.77 | ×        | 5.4   | × | 8.86  | ×     | 0.63 | ×     | 0.7 | =            | 14.63  | (74) |
| North | 0.9x | 0.77 | ×        | 1.96  | × | 8.86  | ×     | 0.63 | ] × [ | 0.7 | =            | 21.24  | (74) |
| North | 0.9x | 0.77 | ×        | 4.08  | × | 8.86  | ×     | 0.63 | × [   | 0.7 | =            | 11.05  | (74) |
| East  | 0.9x | 0.54 | ×        | 4.79  | × | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 20.16  | (76) |
| East  | 0.9x | 0.54 | ×        | 13.04 | × | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 54.89  | (76) |
| East  | 0.9x | 0.54 | ×        | 16.83 | x | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 70.84  | (76) |
| East  | 0.9x | 0.54 | x        | 7.19  | × | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 30.27  | (76) |
| East  | 0.9x | 0.77 | ×        | 3.38  | × | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 20.29  | (76) |
| East  | 0.9x | 0.77 | ×        | 5.58  | × | 19.64 | ×     | 0.63 | ×     | 0.7 | _ = _        | 200.96 | (76) |
| East  | 0.9x | 0.77 | ×        | 2.73  | × | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 81.93  | (76) |
| East  | 0.9x | 0.77 | ×        | 3.9   | x | 19.64 | ×     | 0.63 | ×     | 0.7 | =            | 46.82  | (76) |
| East  | 0.9x | 0.77 | ×        | 1.96  | x | 19.64 | ×     | 0.63 | ×     | 0.7 | -            | 35.29  | (76) |
| East  | 0.9x | 0.54 | ×        | 4.79  | × | 38.42 | ×     | 0.63 | ×     | 0.7 | _ = _        | 39.44  | (76) |
| East  | 0.9x | 0.54 | ×        | 13.04 | × | 38.42 | ×     | 0.63 | ×     | 0.7 | =            | 107.38 | (76) |
| East  | 0.9x | 0.54 | ×        | 16.83 | x | 38.42 | ×     | 0.63 | ×     | 0.7 | =            | 138.59 | (76) |
| East  | 0.9x | 0.54 | ×        | 7.19  | × | 38.42 | ×     | 0.63 | ×     | 0.7 | ╡╹└          | 59.21  | (76) |
| East  | 0.9x | 0.77 | ×        | 3.38  | × | 38.42 | ×     | 0.63 | I × L | 0.7 | ╡╹┝          | 39.69  | (76) |
| East  | 0.9x | 0.77 | ×        | 5.58  | x | 38.42 | ×     | 0.63 | ×     | 0.7 | _ = _        | 393.12 | (76) |
| East  | 0.9x | 0.77 | ×        | 2.73  | × | 38.42 | ×     | 0.63 | X     | 0.7 | =            | 160.28 | (76) |
| East  | 0.9x | 0.77 | ×        | 3.9   | x | 38.42 | ×     | 0.63 | ×     | 0.7 | ╡╹┝          | 91.59  | (76) |
| East  | 0.9x | 0.77 | ×        | 1.96  | × | 38.42 | ×     | 0.63 |       | 0.7 | ╡╹┝          | 69.04  | (76) |
| East  | 0.9x | 0.54 | ×        | 4.79  | × | 63.27 | ×     | 0.63 | ×     | 0.7 | ╡╹┝          | 64.96  | (76) |
| East  | 0.9x | 0.54 | ×        | 13.04 | x | 63.27 |       | 0.63 |       | 0.7 | ╡╹┝          | 176.84 | (76) |
| East  | 0.9x | 0.54 | ×        | 16.83 | × | 63.27 | ×     | 0.63 | ×     | 0.7 | ╡╹┝          | 228.23 | (76) |
| East  | 0.9x | 0.54 | X        | 7.19  | x | 63.27 | x     | 0.63 | x     | 0.7 | =            | 97.5   | (76) |

Page 7 of 16

|  | SAP | WorkSheet: | New | dwelling | design | stage |
|--|-----|------------|-----|----------|--------|-------|
|--|-----|------------|-----|----------|--------|-------|

| East | 0.9x 0.77 | ,<br>,   | C        | 3.38  | ×   | 63.27  | ×        | 0.63 | x | 0.7 | ] = [ | 65.36   | (76) |
|------|-----------|----------|----------|-------|-----|--------|----------|------|---|-----|-------|---------|------|
| East | 0.9x 0.77 | ,        |          | 5.58  | 1 × | 63.27  | x        | 0.63 | x | 0.7 | 1 = i | 647.41  | (76) |
| East | 0.9x 0.77 |          |          | 2.73  | ×   | 63.27  | ×        | 0.63 | x | 0.7 | i - i | 263.95  | (76) |
| East | 0.9x 0.77 | 3        | 0        | 3.9   | ×   | 63.27  | ×        | 0.63 | x | 0.7 | i = i | 150.83  | (76) |
| East | 0.9x 0.77 | )        | <        | 1.96  | x   | 63.27  | ×        | 0.63 | x | 0.7 | i = i | 113.7   | (76) |
| East | 0.9x 0.54 | ,        | <b>5</b> | 4.79  | ×   | 92.28  | ×        | 0.63 | x | 0.7 | i - i | 94.74   | (76) |
| East | 0.9x 0.54 | ,        |          | 13.04 | ×   | 92.28  | ×        | 0.63 | x | 0.7 | i - i | 257.91  | (76) |
| East | 0.9x 0.54 |          | 0        | 16.83 | ×   | 92.28  | ×        | 0.63 | x | 0.7 | i = i | 332.86  | (76) |
| East | 0.9× 0.54 | ,        | < 1      | 7.19  | ×   | 92.28  | ×        | 0.63 | × | 0.7 | ] = [ | 142.2   | (76) |
| East | 0.9x 0.77 | ,        | ¢        | 3.38  | x   | 92.28  | x        | 0.63 | x | 0.7 | ] = [ | 95.32   | (76) |
| East | 0.9x 0.77 | ,        | 6        | 5.58  | x   | 92.28  | ×        | 0.63 | x | 0.7 | =     | 944.2   | (76) |
| East | 0.9x 0.77 | ,        | c 📃      | 2.73  | ×   | 92.28  | ×        | 0.63 | x | 0.7 | ] = [ | 384.96  | (76) |
| East | 0.9x 0.77 |          | e 📃      | 3.9   | x   | 92.28  | x        | 0.63 | x | 0.7 | =     | 219.98  | (76) |
| East | 0.9x 0.77 |          | c i      | 1.96  | x   | 92.28  | ×        | 0.63 | x | 0.7 | =     | 165.83  | (76) |
| East | 0.9x 0.54 | )        | (        | 4.79  | ×   | 113.09 | ×        | 0.63 | × | 0.7 | =     | 116.1   | (76) |
| East | 0.9x 0.54 | )        | 0        | 13.04 | x   | 113.09 | ×        | 0.63 | × | 0.7 | ] = [ | 316.07  | (76) |
| East | 0.9x 0.54 | )        | <        | 16.83 | ×   | 113.09 | ×        | 0.63 | x | 0.7 | =     | 407.94  | (76) |
| East | 0.9x 0.54 | )        |          | 7.19  | ×   | 113.09 | ×        | 0.63 | x | 0.7 | ] = [ | 174.28  | (76) |
| East | 0.9x 0.77 | )        | ç 📃      | 3.38  | x   | 113.09 | ×        | 0.63 | x | 0.7 | =     | 116.82  | (76) |
| East | 0.9x 0.77 | )        | <        | 5.58  | ×   | 113.09 | ×        | 0.63 | × | 0.7 | =     | 1157.16 | (76) |
| East | 0.9x 0.77 | )        | ¢.       | 2.73  | x   | 113.09 | ×        | 0.63 | x | 0.7 | =     | 471.78  | (76) |
| East | 0.9x 0.77 | )        | c        | 3.9   | x   | 113.09 | ×        | 0.63 | × | 0.7 | =     | 269.59  | (76) |
| East | 0.9x 0.77 | ( )<br>) | e        | 1.96  | ×   | 113.09 | ×        | 0.63 | × | 0.7 | =     | 203.23  | (76) |
| East | 0.9x 0.54 | ,        | <u> </u> | 4.79  | ×   | 115.77 | ×        | 0.63 | × | 0.7 | =     | 118.85  | (76) |
| East | 0.9x 0.54 | <b>)</b> | 0        | 13.04 | ×   | 115.77 | <b>x</b> | 0.63 | x | 0.7 | =     | 323.56  | (76) |
| East | 0.9x 0.54 |          | c        | 16.83 | ×   | 115.77 | ×        | 0.63 | x | 0.7 | =     | 417.6   | (76) |
| East | 0.9x 0.54 | )        | C        | 7,19  | x   | 115.77 | x        | 0.63 | x | 0.7 | =     | 178.4   | (76) |
| East | 0.9x 0.77 |          | 6        | 3.38  | x   | 115.77 | x        | 0.63 | x | 0.7 | =     | 119.59  | (76) |
| East | 0.9x 0.77 | 6        | 6 .      | 5.58  | ×   | 115.77 | ×        | 0.63 | × | 0.7 | =     | 1184.56 | (76) |
| East | 0.9x 0.77 | 2        | G        | 2.73  | ×   | 115.77 | ×        | 0.63 | x | 0.7 | =     | 482.95  | (76) |
| East | 0.9x 0.77 |          | 2        | 3.9   | x   | 115.77 | x        | 0.63 | x | 0.7 | =     | 275.97  | (76) |
| East | 0.9x 0.77 |          |          | 1.96  | ×   | 115.77 | ×        | 0.63 | × | 0.7 | =     | 208.04  | (76) |
| East | 0.9x 0.54 | )        | 0        | 4.79  | x   | 110.22 | ×        | 0.63 | x | 0.7 | =     | 113.15  | (76) |
| East | 0.9x 0.54 | )        | ( )      | 13.04 | x   | 110.22 | ×        | 0.63 | x | 0.7 | =     | 308.04  | (76) |
| East | 0.9x 0.54 | )        | 9        | 16.83 | ×   | 110.22 | ×        | 0.63 | x | 0.7 | =     | 397.57  | (76) |
| East | 0.9x 0.54 | )        | C        | 7.19  | x   | 110.22 | x        | 0.63 | x | 0.7 | =     | 169.85  | (76) |
| East | 0.9x 0.77 | )        | <        | 3.38  | ×   | 110.22 | ×        | 0.63 | × | 0.7 | =     | 113.85  | (76) |
| East | 0.9x 0.77 | )        | ¢        | 5.58  | ×   | 110.22 | ×        | 0.63 | × | 0.7 | =     | 1127.74 | (76) |
| East | 0.9x 0.77 | )        |          | 2.73  | x   | 110.22 | ×        | 0.63 | x | 0.7 | =     | 459.79  | (76) |
| East | 0.9x 0.77 | )        | e        | 3.9   | ×   | 110.22 | ×        | 0.63 | x | 0.7 | -     | 262.74  | (76) |
| East | 0.9x 0.77 | )        | 0        | 1.96  | x   | 110.22 | ×        | 0.63 | x | 0.7 | =     | 198.06  | (76) |

Page 8 of 16

| SAP | WorkSheet: | New | dwelling | design | stage |
|-----|------------|-----|----------|--------|-------|
|     |            |     |          |        |       |

| East | 0.9x | 0.54 | × | 4.79  | x   | 94.68 | ×           | 0.63 | x | 0.7 | ] = [        | 97.2   | (76) |
|------|------|------|---|-------|-----|-------|-------------|------|---|-----|--------------|--------|------|
| East | 0.9x | 0.54 | × | 13.04 | x   | 94.68 | x           | 0.63 | x | 0.7 | í - ľ        | 264.6  | (76) |
| East | 0.9x | 0.54 | × | 16.83 | x   | 94.68 | ×           | 0.63 | x | 0.7 | 1 - F        | 341.51 | (76) |
| East | 0.9x | 0.54 | × | 7.19  | ×   | 94.68 | ×           | 0.63 | x | 0.7 | ī - Ē        | 145.9  | (76) |
| East | 0.9x | 0.77 | × | 3.38  | x   | 94.68 | ×           | 0.63 | x | 0.7 | ī - Ē        | 97.8   | (76) |
| East | 0.9x | 0.77 | × | 5.58  | ×   | 94.68 | ×           | 0.63 | x | 0.7 | 1 - F        | 968.72 | (76) |
| East | 0.9x | 0.77 | × | 2.73  | ×   | 94.68 | ×           | 0.63 | x | 0.7 | <u>i - F</u> | 394.95 | (76) |
| East | 0.9x | 0.77 | × | 3.9   | x   | 94.68 | ×           | 0.63 | x | 0.7 | Ī = Ē        | 225.69 | (76) |
| East | 0.9x | 0.77 | × | 1.96  | ×   | 94.68 | ×           | 0.63 | x | 0.7 | Ī - [        | 170.13 | (76) |
| East | 0.9x | 0.54 | × | 4.79  | x   | 73.59 | x           | 0.63 | x | 0.7 | ] = [        | 75.55  | (76) |
| East | 0.9x | 0.54 | × | 13.04 | x   | 73.59 | ×           | 0.63 | x | 0.7 | ] = [        | 205.67 | (76) |
| East | 0.9x | 0.54 | × | 16.83 | x   | 73.59 | ×           | 0.63 | x | 0.7 | ] = [        | 265.44 | (76) |
| East | 0.9x | 0.54 | × | 7.19  | x   | 73.59 | x           | 0.63 | x | 0.7 | ] = [        | 113.4  | (76) |
| East | 0.9x | 0.77 | x | 3.38  | x   | 73.59 | ×           | 0.63 | x | 0.7 | ] = [        | 76.02  | (76) |
| East | 0.9x | 0.77 | × | 5.58  | x   | 73.59 | x           | 0.63 | × | 0.7 | -            | 752.96 | (76) |
| East | 0.9x | 0.77 | × | 2.73  | ) x | 73.59 | ×           | 0.63 | × | 0.7 | ] = [        | 306.99 | (76) |
| East | 0.9x | 0.77 | × | 3.9   | ×   | 73.59 | ×           | 0.63 | x | 0.7 | ] = [        | 175.42 | (76) |
| East | 0.9x | 0.77 | × | 1.96  | x   | 73.59 | ×           | 0.63 | x | 0.7 | ] = [        | 132.24 | (76) |
| East | 0.9x | 0.54 | × | 4.79  | x   | 45.59 | ×           | 0.63 | x | 0.7 | ] = [        | 46.8   | (76) |
| East | 0.9x | 0.54 | × | 13.04 | ×   | 45.59 | ×           | 0.63 | × | 0.7 | ] = [        | 127.41 | (76) |
| East | 0.9x | 0.54 | × | 16.83 | x   | 45.59 | ×           | 0.63 | x | 0.7 | ] = [        | 164.45 | (76) |
| East | 0.9x | 0.54 | × | 7.19  | x   | 45.59 | ×           | 0.63 | × | 0.7 | ] = [        | 70.25  | (76) |
| East | 0.9x | 0.77 | x | 3.38  | ×   | 45.59 | <b>(x</b> ) | 0.63 | x | 0.7 | ] = [        | 47.09  | (76) |
| East | 0.9x | 0.77 | × | 5.58  | ×   | 45.59 | ×           | 0.63 | × | 0.7 | ] = [        | 466.47 | (76) |
| East | 0.9x | 0.77 | × | 2.73  | ×   | 45.59 | ×           | 0.63 | x | 0.7 | ] = [        | 190.18 | (76) |
| East | 0.9x | 0.77 | × | 3.9   | ×   | 45.59 | ×           | 0.63 | x | 0.7 | ] = [        | 108.67 | (76) |
| East | 0.9x | 0.77 | × | 1.96  | x   | 45.59 | x           | 0.63 | x | 0.7 | =            | 81.92  | (76) |
| East | 0.9x | 0.54 | × | 4.79  | x   | 24.49 | x           | 0.63 | x | 0.7 | ] = [        | 25.14  | (76) |
| East | 0.9x | 0.54 | × | 13.04 | ×   | 24.49 | ×           | 0.63 | × | 0.7 | =            | 68.44  | (76) |
| East | 0.9x | 0.54 | × | 16.83 | ×   | 24.49 | ×           | 0.63 | × | 0.7 | =            | 88.33  | (76) |
| East | 0.9x | 0.54 | × | 7.19  | x   | 24.49 | x           | 0.63 | x | 0.7 | =            | 37.74  | (76) |
| East | 0.9x | 0.77 | × | 3.38  | ×   | 24.49 | ×           | 0.63 | x | 0.7 | =            | 25.3   | (76) |
| East | 0.9x | 0.77 | × | 5.58  | x   | 24.49 | ×           | 0.63 | x | 0.7 | ] = [        | 250.57 | (76) |
| East | 0.9x | 0.77 | × | 2.73  | x   | 24.49 | ×           | 0.63 | x | 0.7 | =            | 102.16 | (76) |
| East | 0.9x | 0.77 | × | 3.9   | ×   | 24.49 | ×           | 0.63 | x | 0.7 | =            | 58.38  | (76) |
| East | 0.9x | 0.77 | × | 1.96  | x   | 24.49 | x           | 0.63 | x | 0.7 | =            | 44.01  | (76) |
| East | 0.9x | 0.54 | × | 4.79  | ×   | 16.15 | ×           | 0.63 | × | 0.7 | ] = [        | 16.58  | (76) |
| East | 0.9x | 0.54 | × | 13.04 | ×   | 16.15 | ×           | 0.63 | × | 0.7 | ] = [        | 45.14  | (76) |
| East | 0.9x | 0.54 | × | 16.83 | ×   | 16.15 | ×           | 0.63 | × | 0.7 | ] = [        | 58.26  | (76) |
| East | 0.9x | 0.54 | × | 7.19  | x   | 16.15 | ×           | 0.63 | × | 0.7 | ] = [        | 24.89  | (76) |
| East | 0.9x | 0.77 | × | 3.38  | x   | 16.15 | x           | 0.63 | x | 0.7 | =            | 16.68  | (76) |

Page 9 of 16

| SAP | WorkSheet: | New | dwelling | design | stage |
|-----|------------|-----|----------|--------|-------|
|     |            |     |          |        |       |

| East  | 0.9x | 0.77 | × | 5.58 | x        | 16.15  | ×            | 0.63 | × | 0.7 | ] = [         | 165.26 | (76) |
|-------|------|------|---|------|----------|--------|--------------|------|---|-----|---------------|--------|------|
| East  | 0.9x | 0.77 | × | 2.73 | x        | 16.15  | ×            | 0.63 | x | 0.7 | i - i         | 67.38  | (76) |
| East  | 0.9x | 0.77 | × | 3.9  | x        | 16.15  | ×            | 0.63 | x | 0.7 | i <u>-</u> i  | 38.5   | (76) |
| East  | 0.9x | 0.77 | × | 1.96 | ×        | 16.15  | ×            | 0.63 | x | 0.7 | ī = Ē         | 29.02  | (76) |
| South | 0.9x | 0.77 | × | 3.38 | x        | 46.75  | ×            | 0.63 | x | 0.7 | ī - Ē         | 386.35 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 46.75  | ×            | 0.63 | x | 0.7 | ī - Ē         | 351.06 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 46.75  | ×            | 0.63 | x | 0.7 | <u>i -  i</u> | 140.02 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 76.57  | ×            | 0.63 | x | 0.7 | ī - Ē         | 632.74 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 76.57  | ×            | 0.63 | x | 0.7 | ] = [         | 574.94 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | x        | 76.57  | x            | 0.63 | x | 0.7 | ] = [         | 229.32 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 97.53  | ×            | 0.63 | x | 0.7 | ] = [         | 806    | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 97.53  | ×            | 0.63 | x | 0.7 | ] = [         | 732.37 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | x        | 97.53  | x            | 0.63 | x | 0.7 | ] = [         | 292.11 | (78) |
| South | 0.9x | 0.77 | x | 3.38 | x        | 110.23 | x            | 0.63 | x | 0.7 | ] = [         | 910.95 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 110.23 | ×            | 0.63 | × | 0.7 | =             | 827.74 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 110.23 | ×            | 0.63 | × | 0.7 | =             | 330.15 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 114.87 | ×            | 0.63 | x | 0.7 | =             | 949.27 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 114.87 | ×            | 0.63 | × | 0.7 | ] = [         | 862.56 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 114.87 | ×            | 0.63 | x | 0.7 | =             | 344.04 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | <b>x</b> | 110.55 | ×            | 0.63 | × | 0.7 | ] = [         | 913.54 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 110.55 | ×            | 0.63 | x | 0.7 | ] = [         | 830.09 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | x        | 110.55 | ×            | 0.63 | x | 0.7 | - [           | 331.09 | (78) |
| South | 0.9x | 0.77 | x | 3.38 | ×        | 108.01 | ( <b>x</b> ) | 0.63 | x | 0.7 | ] = [         | 892.59 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 108.01 | ×            | 0.63 | × | 0.7 | ] = [         | 811.05 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 108.01 | ×            | 0.63 | x | 0.7 | ] = [         | 323.5  | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 104.89 | ×            | 0.63 | × | 0.7 | =             | 866.82 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | x        | 104.89 | x            | 0.63 | x | 0.7 | =             | 787.64 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | x        | 104.89 | x            | 0.63 | x | 0.7 | =             | 314.16 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 101.89 | ×            | 0.63 | x | 0.7 | =             | 841.96 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 101.89 | ×            | 0.63 | × | 0.7 | =             | 765.05 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | x        | 101.89 | x            | 0.63 | x | 0.7 | =             | 305.15 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 82.59  | ×            | 0.63 | x | 0.7 | -             | 682.47 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 82.59  | ×            | 0.63 | x | 0.7 | ] = [         | 620.13 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 82.59  | ×            | 0.63 | x | 0.7 | =             | 247.34 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 55.42  | ×            | 0.63 | x | 0.7 | =             | 457.95 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | x        | 55.42  | x            | 0.63 | x | 0.7 | -             | 416.12 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 55.42  | ×            | 0.63 | × | 0.7 | ] = [         | 165.97 | (78) |
| South | 0.9x | 0.77 | × | 3.38 | ×        | 40.4   | ×            | 0.63 | × | 0.7 | =             | 333.84 | (78) |
| South | 0.9x | 0.77 | × | 2.73 | ×        | 40.4   | ×            | 0.63 | × | 0.7 | _ = _         | 303.35 | (78) |
| South | 0.9x | 0.77 | × | 1.96 | ×        | 40.4   | ×            | 0.63 | × | 0.7 | _ = _         | 120.99 | (78) |
| West  | 0.9x | 0.77 | × | 5.58 | x        | 19.64  | ×            | 0.63 | x | 0.7 | =             | 133.97 | (80) |

Page 10 of 16

|  | SAP | WorkSheet: | New | dwelling | design | stage |
|--|-----|------------|-----|----------|--------|-------|
|--|-----|------------|-----|----------|--------|-------|

| West | 0.9x | 0.77 | ×   | 3.38 | × | 19.64  | ×     | 0.63 | ×        | 0.7 | =     | 40.58  | (80) |
|------|------|------|-----|------|---|--------|-------|------|----------|-----|-------|--------|------|
| West | 0.9x | 0.77 | ×   | 2.73 | × | 19.64  | ×     | 0.63 | <b>x</b> | 0.7 | =     | 98.32  | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 19.64  | ×     | 0.63 | ×        | 0.7 | =     | 35.29  | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 38.42  | ×     | 0.63 | x        | 0.7 | =     | 262.08 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | x | 38.42  | ×     | 0.63 | x        | 0.7 | =     | 79.37  | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 38.42  | ×     | 0.63 | ×        | 0.7 | =     | 192.33 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 38.42  | ) × [ | 0.63 | ] × [    | 0.7 | =     | 69.04  | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 63.27  | ×     | 0.63 | x        | 0.7 | =     | 431.6  | (80) |
| West | 0.9× | 0.77 | ×   | 3.38 | × | 63.27  | ×     | 0.63 | ×        | 0.7 | =     | 130.72 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 63.27  | ×     | 0.63 | ×        | 0.7 | =     | 316.74 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 63.27  | ×     | 0.63 | x        | 0.7 | =     | 113.7  | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 92.28  | ×     | 0.63 | ] × [    | 0.7 | =     | 629.47 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | x | 92.28  | ×     | 0.63 | ×        | 0.7 | =     | 190.65 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 92.28  | ×     | 0.63 | x        | 0.7 | =     | 461.95 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 92.28  | ×     | 0.63 | ×        | 0.7 | =     | 165.83 | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 113.09 | ×     | 0.63 | ×        | 0.7 | 1     | 771.44 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 113.09 | ×     | 0.63 | ×        | 0.7 | =     | 233.64 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 113.09 | ×     | 0.63 | ×        | 0.7 | ] = [ | 566.14 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 113.09 | ×     | 0.63 | x        | 0.7 | =     | 203.23 | (80) |
| West | 0.9x | 0.77 | × [ | 5.58 | × | 115.77 | ×     | 0.63 | <b>x</b> | 0.7 | ] = [ | 789.7  | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 115.77 | ×     | 0.63 | ) × [    | 0.7 | ] = [ | 239.18 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 115.77 | ×     | 0.63 | ×        | 0.7 | =     | 579.54 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 115.77 | X     | 0.63 | ×        | 0.7 | =     | 208.04 | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 110.22 | ×     | 0.63 | ×        | 0.7 | =     | 751.83 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 110.22 | ×     | 0.63 | x        | 0.7 | =     | 227.7  | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 110.22 | ×     | 0.63 | ×        | 0.7 | =     | 551.75 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | x | 110.22 | x     | 0.63 | ×        | 0.7 | =     | 198.06 | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | x | 94.68  | x     | 0.63 | ×        | 0.7 | =     | 645.81 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 94.68  | ×     | 0.63 | ×        | 0.7 | =     | 195.59 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 94.68  | ×     | 0.63 | ] × [    | 0.7 | =     | 473.94 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 94.68  | x     | 0.63 | x        | 0.7 | =     | 170.13 | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 73.59  | ×     | 0.63 | ×        | 0.7 | =     | 501.97 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 73.59  | ×     | 0.63 | x        | 0.7 | =     | 152.03 | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 73.59  | ×     | 0.63 | x        | 0.7 | =     | 368.38 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 73,59  | ×     | 0.63 | × [      | 0.7 | =     | 132.24 | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 45.59  | ×     | 0.63 | x        | 0.7 | ] = [ | 310.98 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | × | 45.59  | ×     | 0.63 | x        | 0.7 | =     | 94.18  | (80) |
| West | 0.9x | 0.77 | ×   | 2.73 | × | 45.59  | ×     | 0.63 | ×        | 0.7 | =     | 228.22 | (80) |
| West | 0.9x | 0.77 | ×   | 1.96 | × | 45.59  | ×     | 0.63 | ) x [    | 0.7 | =     | 81.92  | (80) |
| West | 0.9x | 0.77 | ×   | 5.58 | × | 24.49  | ×     | 0.63 | ×        | 0.7 | -     | 167.05 | (80) |
| West | 0.9x | 0.77 | ×   | 3.38 | x | 24.49  | x     | 0.63 | x        | 0.7 | =     | 50.59  | (80) |
|      |      |      |     |      |   |        |       |      |          |     |       |        |      |

Page 11 of 16

| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 2.7                                                                                                                                                                                                                              | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.49                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x                                                                                                                                                                     | 0.7                                                                                                                                  | =                                                                                                                                           | 124 | .59  | (80                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                              | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.49                                                                                                                                                                                                                                                                                                | i . F                                                                                                                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ょ╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           | 44  |      | (80                                                                                                                                                       |
| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 5.5                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.15                                                                                                                                                                                                                                                                                                | i . F                                                                                                                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ <sub>╺</sub> ╞                                                                                                                                                      | 0.7                                                                                                                                  | -                                                                                                                                           | -   | 0.17 | (80                                                                                                                                                       |
| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.15                                                                                                                                                                                                                                                                                                | ╡╷╞                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ <sub>╸</sub> ╞                                                                                                                                                      | 0.7                                                                                                                                  | =                                                                                                                                           | -   | 37   | (80                                                                                                                                                       |
| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 2.7                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.15                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ <sub>╸</sub> ╞                                                                                                                                                      | 0.7                                                                                                                                  | =                                                                                                                                           |     | .85  | (80                                                                                                                                                       |
| West                                                                                                                                                                                                                                                                                                                              | 0.9x                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                              | ×                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.15                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.7                                                                                                                                  | =                                                                                                                                           |     | 02   | (80                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          | A STATE OF                                                                                                                                                                                                       | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                   | ╡┈┝                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡┈┟                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           |     | 8.2  | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                | 1                                                                                                                                                                                                                 | x                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                                                   | ╡┊╞                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ᆠ╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           | -   | .19  | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                 | = ^                                                                                                                                                                                                                 | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                                                                                                                                                                                                                                                                                                   | ╡ᆠ┝                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ᆠ╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           |     | 5.67 | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          | and the second second                                                                                                                                                                                            | 1                                                                                                                                                                                                                 |                                                                                                                                                                                                                     | 46.                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ᆠ╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           |     | 8.85 | (82                                                                                                                                                       |
| a 1880                                                                                                                                                                                                                                                                                                                            | nts 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.7                                                                                                                                  | -                                                                                                                                           | -   | 1.33 | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          | NO-CONTRACTORY                                                                                                                                                                                                   | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡┊╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           | -   | 8.47 | (82                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                   | nts 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                 | - ×                                                                                                                                                                                                                 | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 189                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡┈╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           | -   | 6.15 | (82                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                   | nts 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                 | x                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 157                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.7                                                                                                                                  | =                                                                                                                                           | -   | 7.6  | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ᆠ╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           |     | 5.12 | (82                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                   | nts 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                 |                                                                                                                                                                                                                     | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                   | ╡┊╞                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ᆠ╞                                                                                                                                                                   | 0.7                                                                                                                                  | -                                                                                                                                           |     | 3.89 | (82                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                   | nts 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              | 1277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡ <sub>╺</sub> ╞                                                                                                                                                      | 0.7                                                                                                                                  | =                                                                                                                                           | -   | .95  | (82                                                                                                                                                       |
| Roofligh                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                   | 46.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                   | ╡┈┝                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╡┈╞                                                                                                                                                                   | 0.7                                                                                                                                  | =                                                                                                                                           |     | .24  | (82                                                                                                                                                       |
| Fotal g<br>84)m= [                                                                                                                                                                                                                                                                                                                | 5924.26                                                                                                                                                                                                          | nternal a                                                                                                                                                                                                         | nd solar<br>10544.06                                                                                                                                                                                                | 13372.46                                                                                                                                                                                                                         | = (73)m<br>15404.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + (83)ı<br>15520.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n , watts                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   | 2 10998.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5402.78<br>8276.07                                                                                                                                                    |                                                                                                                                      | 2086.89<br>5408.26                                                                                                                          | -   |      |                                                                                                                                                           |
| Total g<br>84)m=<br>7. Me<br>Temp                                                                                                                                                                                                                                                                                                 | ains – i<br>5924.26<br>an inter<br>erature                                                                                                                                                                       | nternal a<br>8055.65<br>nal temp<br>during h                                                                                                                                                                      | nd solar<br>10544.06<br>erature<br>eating p                                                                                                                                                                         | (84)m =<br>13372.46<br>(heating<br>eriods in                                                                                                                                                                                     | = (73)m<br>15404.97<br>  season<br>n the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + (83)(<br>15520.<br>))<br>ng are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n , watts<br>36 14778.6:<br>a from Ta                                                                                                                                                                                                                                                                | 2 13078.2<br>able 9, T                                                                                                                                            | 2 10998.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                      |                                                                                                                                             | ]   | 1    | (84                                                                                                                                                       |
| Total g<br>84)m=<br>7. Me<br>Temp                                                                                                                                                                                                                                                                                                 | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac                                                                                                                                                          | nternal a<br>8055.65<br>nal temp<br>during h<br>ctor for ga                                                                                                                                                       | nd solar<br>10544.06<br>erature<br>eating p<br>ains for l                                                                                                                                                           | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are                                                                                                                                                                        | = (73)m<br>15404.97<br>I season<br>I the livi<br>ea, h1,m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + (83)(<br>15520.)<br>ng are<br>n (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n , watts<br>36 14778.63<br>a from T <i>a</i><br>Table 9a)                                                                                                                                                                                                                                           | 2 13078.2<br>able 9, T                                                                                                                                            | 2 10998.88<br>h1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8276.07                                                                                                                                                               | 6189.28                                                                                                                              | 5408.26                                                                                                                                     | ]   | 1    | (84                                                                                                                                                       |
| Fotal g<br>84)m=<br>7. Mea<br>Temp<br>Utilisa                                                                                                                                                                                                                                                                                     | ains – i<br>5924.26<br>an inter<br>erature                                                                                                                                                                       | nternal a<br>8055.65<br>nal temp<br>during h                                                                                                                                                                      | nd solar<br>10544.06<br>erature<br>eating p                                                                                                                                                                         | (84)m =<br>13372.46<br>(heating<br>eriods in                                                                                                                                                                                     | = (73)m<br>15404.97<br>  season<br>n the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + (83)(<br>15520.<br>))<br>ng are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n , watts<br>36 14778.63<br>a from T <i>a</i><br>Table 9a)                                                                                                                                                                                                                                           | 2 13078.2<br>able 9, T                                                                                                                                            | 2 10998.88<br>h1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                      |                                                                                                                                             | ]   | 1    | (84                                                                                                                                                       |
| Total g<br>84)m=<br>7. Mea<br>Temp<br>Utilisa<br>86)m=                                                                                                                                                                                                                                                                            | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1                                                                                                                                              | nternal a<br>8055.65<br>nal temp<br>during h<br>ctor for ga<br>Feb<br>1                                                                                                                                           | nd solar<br>10544.06<br>erature<br>eating p<br>ains for I<br>Mar<br>1                                                                                                                                               | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.99                                                                                                                                                         | = (73)m<br>15404.97<br>I season<br>I the livi<br>ea, h1,m<br>May<br>0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + (83)(<br>15520.<br>))<br>ing are<br>1 (see<br>Jur<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n , watts<br>36 14778.6;<br>a from Ta<br>Table 9a)<br>1 Jul<br>0.73                                                                                                                                                                                                                                  | 2 13078.2<br>able 9, T<br>Aug<br>0.81                                                                                                                             | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8276.07<br>Oct                                                                                                                                                        | 6189.28                                                                                                                              | 5408.26<br>Dec                                                                                                                              | ]   | 1    | (84                                                                                                                                                       |
| Total g<br>84)m=<br>7. Mea<br>Temp<br>Utilisa<br>86)m=<br>Mean                                                                                                                                                                                                                                                                    | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna                                                                                                                                   | nternal a<br>8055.65<br>during h<br>ctor for ga<br>Feb<br>1                                                                                                                                                       | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in                                                                                                                                              | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.99                                                                                                                                                         | = (73)m<br>15404.97<br>1 season<br>n the livi<br>ea, h1,m<br>May<br>0.97<br>ea T1 (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.                                                                       | n , watts<br>36 14778.63<br>a from Ta<br>Table 9a)<br>1 Jul<br>0.73<br>teps 3 to                                                                                                                                                                                                                     | 2 13078.2<br>able 9, T<br>Aug<br>0.81                                                                                                                             | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>Dle 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8276.07<br>Oct                                                                                                                                                        | 6189.28                                                                                                                              | 5408.26<br>Dec                                                                                                                              | ]   | 1    | 83)<br>(85)<br>(88)                                                                                                                                       |
| Total g<br>84)m= [<br>7. Mea<br>Temp<br>Utilisa<br>86)m= [<br>Mean<br>87)m= [                                                                                                                                                                                                                                                     | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83                                                                                                                          | nternal a<br>8055.65<br>nal temp<br>during h<br>stor for ga<br>Feb<br>1<br>I temper<br>19.94                                                                                                                      | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13                                                                                                                                     | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.99<br>living are<br>20.4                                                                                                                                   | = (73)m<br>15404.97<br>season<br>n the livi<br>ea, h1,m<br>May<br>0.97<br>ea T1 (fi<br>20.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + (83)<br>(15520)<br>ng are<br>n (see<br>Jur<br>0.88<br>ollow s<br>20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n , watts<br>36 14778.63<br>a from T <i>a</i><br>Table 9a)<br>1 Jul<br>0.73<br>teps 3 to<br>5 20.92                                                                                                                                                                                                  | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tat<br>20.9                                                                                                         | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8276.07<br>Oct                                                                                                                                                        | 6189.28<br>Nov<br>1                                                                                                                  | 5408.26<br>Dec<br>1                                                                                                                         | ]   | 1    | (84<br>(85                                                                                                                                                |
| Fotal g<br>84)m= [<br>7. Mea<br>Temp<br>Utilisa<br>86)m= [<br>86)m= [<br>87)m= [<br>Temp                                                                                                                                                                                                                                          | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature                                                                                                               | nternal a<br>8055.65<br>nal temp<br>during h<br>ctor for g:<br>Feb<br>1<br>I temper<br>19.94<br>during h                                                                                                          | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p                                                                                                                         | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.99<br>living an<br>20.4<br>eriods in                                                                                                                       | = (73)m<br>15404.97<br>1 season<br>n the livi<br>ea, h1,m<br>May<br>0.97<br>ea T1 (fi<br>20.66<br>n rest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + (83)<br>(15520)<br>ng are<br>1 (see<br>Jur<br>0.88<br>ollow s<br>20.85<br>dwellii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n , watts<br>36 14778.6:<br>7 a from Ta<br>7 able 9a)<br>1 Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T                                                                                                                                                                                          | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tat<br>20.9                                                                                                         | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8276.07<br>Oct<br>1                                                                                                                                                   | 6189.28<br>Nov<br>1<br>20.06                                                                                                         | 5408.26<br>Dec<br>1                                                                                                                         | ]   | 1    | (8)<br>(8)<br>(8)<br>(8)                                                                                                                                  |
| Fotal g.         84)m=         7. Mean         Temp         Utilisa         86)m=         Mean         87)m=         Temp         88)m=                                                                                                                                                                                           | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02                                                                                                      | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02                                                                                                   | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02                                                                                                                | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03                                                                                                                     | <ul> <li>(73)m</li> <li>15404.97</li> <li>Season</li> <li>the livi</li> <li>ea, h1,m</li> <li>May</li> <li>0.97</li> <li>ea T1 (f</li> <li>20.66</li> <li>n rest of</li> <li>20.03</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + (83)1<br>15520.<br>ng are<br>1 (see<br>0.88<br>0llow s<br>20.85<br>dwellii<br>20.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n , watts<br>a from T <i>a</i><br>Table 9a)<br>Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T<br>4 20.04                                                                                                                                                                                           | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>Cable 9,<br>20.04                                                                                    | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8276.07<br>Oct                                                                                                                                                        | 6189.28<br>Nov<br>1                                                                                                                  | 5408.26<br>Dec<br>1                                                                                                                         | ]   | 1    | (84<br>(85<br>(86)<br>(87                                                                                                                                 |
| Fotal g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         Utilisa         Utilisa         Utilisa                                                                                                                                           | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac                                                                                         | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g:<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for g                                                                                     | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for I                                                                                                  | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.03<br>rest of d                                                                                                       | <ul> <li>(73)m</li> <li>15404.97</li> <li>Season</li> <li>season</li> <li>the livi</li> <li>ea, h1,m</li> <li>May</li> <li>0.97</li> <li>ea T1 (fi</li> <li>20.66</li> <li>n rest of</li> <li>20.03</li> <li>welling,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + (83)1<br>15520.<br>ing are<br>1 (see<br>0.88<br>ollow s<br>20.85<br>dwellin<br>20.04<br>h2,m (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n , watts<br>36 14778.6<br>a from Ta<br>Table 9a)<br>Jul<br>0.73<br>teps 3 to<br>20.92<br>ng from T<br>20.04<br>see Table                                                                                                                                                                            | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tat<br>20.9<br>able 9,<br>20.04<br>e 9a)                                                                            | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0ct<br>1<br>20.39                                                                                                                                                     | 6189.28<br>Nov<br>1<br>20.06<br>20.03                                                                                                | 5408.26<br>Dec<br>1<br>19.81<br>20.02                                                                                                       | ]   | 1    | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> </ul>                                                                  |
| Fotal g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         88)m=         Utilisa         88)m=         Utilisa                                                                                                                                               | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1                                                                                    | nternal a<br>8055.85<br>nal temp<br>during h<br>tor for ga<br>Feb<br>1<br>temper<br>19.94<br>during h<br>20.02<br>tor for ga<br>1                                                                                 | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for I<br>1                                                                                             | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99                                                                                                | <ul> <li>(73)m</li> <li>15404.97</li> <li>season</li> <li>n the livi</li> <li>ea, h1,m</li> <li>May</li> <li>0.97</li> <li>ea T1 (fr</li> <li>20.66</li> <li>n rest of</li> <li>20.03</li> <li>welling,</li> <li>0.95</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + (83)n<br>15520.<br>ng are<br>(see<br>Jun<br>0.88<br>0llow s<br>20.85<br>dwellin<br>20.04<br>h2,m (<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n , watts<br>a from Ta<br>Table 9a)<br>Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T<br>20.04<br>(see Table<br>0.6                                                                                                                                                                                | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, '<br>20.04<br>e 9a)<br>0.7                                                                   | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8276.07<br>Oct<br>1<br>20.39<br>20.03                                                                                                                                 | 6189.28<br>Nov<br>1<br>20.06                                                                                                         | 5408.26<br>Dec<br>1                                                                                                                         | ]   | 1    | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> </ul>                                                                  |
| Total g         84)m=         7. Me:         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         88)m=         Utilisa         89)m=         Mean                                                                                                    | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna                                                                         | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for ga<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for ga<br>1<br>I temper                                                                   | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for r<br>1<br>ature in                                                                                 | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest                                                                                    | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.                                                                       | n , watts<br>36 14778.6<br>a from Ta<br>Table 9a)<br>1 Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T<br>1 20.04<br>see Tablo<br>0.6<br>(follow st                                                                                                                                                 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, '<br>20.04<br>e 9a)<br>0.7<br>teps 3 to                                                      | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>0.95<br>0 7 in Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8276.07<br>Oct<br>1<br>20.39<br>20.03<br>1<br>le 9c)                                                                                                                  | 6189.28<br>Nov<br>1<br>20.06<br>20.03                                                                                                | 5408.26<br>Dec<br>1<br>19.81<br>20.02                                                                                                       | ]   | 1    | <ul> <li>(82)</li> <li>(85)</li> <li>(87)</li> <li>(87)</li> <li>(88)</li> <li>(88)</li> <li>(88)</li> </ul>                                              |
| Fotal g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         88)m=         Utilisa         88)m=         Utilisa         89)m=         Mean                                                                      | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1                                                                                    | nternal a<br>8055.85<br>nal temp<br>during h<br>tor for ga<br>Feb<br>1<br>temper<br>19.94<br>during h<br>20.02<br>tor for ga<br>1                                                                                 | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for I<br>1                                                                                             | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99                                                                                                | <ul> <li>(73)m</li> <li>15404.97</li> <li>season</li> <li>n the livi</li> <li>ea, h1,m</li> <li>May</li> <li>0.97</li> <li>ea T1 (fr</li> <li>20.66</li> <li>n rest of</li> <li>20.03</li> <li>welling,</li> <li>0.95</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + (83)n<br>15520.<br>ng are<br>(see<br>Jun<br>0.88<br>0llow s<br>20.85<br>dwellin<br>20.04<br>h2,m (<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n , watts<br>36 14778.6<br>a from Ta<br>Table 9a)<br>1 Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T<br>1 20.04<br>see Tablo<br>0.6<br>(follow st                                                                                                                                                 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, '<br>20.04<br>e 9a)<br>0.7                                                                   | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>0.95<br>7 in Tab<br>19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25                                                        | 6189.28<br>Nov<br>1<br>20.06<br>20.03<br>1<br>18.76                                                                                  | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4                                                                                          |     |      | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(9)</li> </ul>                           |
| Fotal g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         88)m=         Utilisa         88)m=         Utilisa         89)m=         Mean                                                                      | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna                                                                         | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for ga<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for ga<br>1<br>I temper                                                                   | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for r<br>1<br>ature in                                                                                 | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest                                                                                    | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.                                                                       | n , watts<br>36 14778.6<br>a from Ta<br>Table 9a)<br>1 Jul<br>0.73<br>teps 3 to<br>5 20.92<br>ng from T<br>1 20.04<br>see Tablo<br>0.6<br>(follow st                                                                                                                                                 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, '<br>20.04<br>e 9a)<br>0.7<br>teps 3 to                                                      | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>0.95<br>7 in Tab<br>19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25                                                        | 6189.28<br>Nov<br>1<br>20.06<br>20.03                                                                                                | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4                                                                                          |     | 1    | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(9)</li> </ul>                           |
| Fotal g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         88)m=         Utilisa         89)m=         Mean         90)m=         Mean                                                                         | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna                                                     | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for ga<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for ga<br>tor for ga<br>1<br>I temper<br>18.57                                            | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for r<br>1<br>ature in<br>1<br>8.86                                                                    | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living an<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh                                                               | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n , watts         36         14778.62         a from Ta         Table 9a)         1         Jul         0.73         teps 3 to         5         20.92         ng from T         20.04         see Table         0.6         (follow st         19.95         fLA × T1                               | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, '<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94                                             | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>0.95<br>7 in Tab<br>19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8276.07<br>Oct<br>1<br>20.39<br>20.03<br>1<br>10.03<br>1<br>19.25<br>1LA = Livin                                                                                      | 6189.28<br>Nov<br>1<br>20.06<br>20.03<br>1<br>18.76<br>ng area + (r                                                                  | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4<br>4) =                                                                                  |     |      | <ul> <li>48)</li> <li>38)</li> <li>78)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>40)</li> <li>40)</li> <li>40)</li> </ul>              |
| Fotal g         84)m=         7. Mean         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         89)m=         Mean         90)m=         Mean         92)m=                                                                                        | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna<br>18.48                                            | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g:<br>Feb<br>1<br>I temper:<br>19.94<br>during h<br>20.02<br>tor for g:<br>1<br>I temper:<br>18.57<br>I temper:<br>18.64                                  | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for I<br>1<br>ature in<br>1<br>18.86<br>ature (fo<br>18.92                                             | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh<br>19.32                                                     | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n , watts         36         14778.63         a from Ta         Table 9a)         1         Jul         0.73         teps 3 to         6         20.92         ng from Ta         20.04         see Table         0.6         (follow st         19.95         fLA × T1         20                   | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, 7<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94<br>1 + (1 –<br>19.99                        | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>Th2 (°C)<br>20.03<br>0.95<br>7 in Tab<br>19.74<br>fLA) × T2<br>19.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25           fLA = Livin           19.3                   | 6189.28<br>Nov<br>1<br>20.06<br>20.03<br>1<br>18.76                                                                                  | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4                                                                                          |     |      | <ul> <li>48)</li> <li>38)</li> <li>78)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>40)</li> <li>40)</li> <li>40)</li> </ul>              |
| Total g         84)m=         7. Mean         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         89)m=         Utilisa         90)m=         Mean         90)m=         Mean         92)m=         Apply                                            | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna<br>18.48<br>adjustr                                 | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for g<br>tor for g<br>1<br>I temper<br>18.57<br>I temper<br>18.64<br>nent to ti            | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for I<br>1<br>ature in<br>1<br>18.86<br>ature (fo<br>18.92<br>ne mean                                  | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh<br>19.32<br>interna                                          | <ul> <li>(73)m</li> <li>(73)m</li> <li>(730m)</li> /ul>                                                                          | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>10.88<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.9 | n , watts         36         14778.63         a from Ta         Table 9a)         1         0.73         teps 3 to         5         20.92         ng from Ta         20.04         see Table         0.6         (follow st         19.95         : fLA × T1         : 20         : 20         : 20 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94<br>1 + (1 –<br>19.99<br>e 4e, wh                         | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>Th2 (°C) | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25           fLA = Livin           19.3           opriate | 6189.28           Nov           1           20.06           20.03           1           18.76           ng area + (r           18.83 | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4<br>4) =<br>18.47                                                                         |     |      | (63<br>(84<br>(84<br>(85<br>(85<br>(87<br>(87<br>(87<br>(87<br>(87<br>(87<br>(87<br>(87)<br>(87)<br>(                                                     |
| Total g         (84)m=         7. Mer         Temp         Utilisa         (86)m=         (86)m=         (86)m=         (86)m=         (87)m=         Temp         (88)m=         Utilisa         (89)m=         Utilisa         (89)m=         Mean         (90)m=         Mean         (92)m=         Apply         (93)m=      | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna<br>18.48<br>adjustr<br>18.48                        | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g:<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for g:<br>1<br>temper<br>18.57<br>I temper<br>18.64<br>nent to tl<br>18.64                | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for<br>1<br>ature in<br>18.86<br>ature (fo<br>18.92<br>ne mean<br>18.92                                | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh<br>19.32                                                     | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n , watts         36         14778.63         a from Ta         Table 9a)         1         0.73         teps 3 to         5         20.92         ng from Ta         20.04         see Table         0.6         (follow st         19.95         : fLA × T1         : 20         : 20         : 20 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>able 9, 7<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94<br>1 + (1 –<br>19.99                        | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>Th2 (°C)<br>20.03<br>0.95<br>7 in Tab<br>19.74<br>fLA) × T2<br>19.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25           fLA = Livin           19.3                   | 6189.28<br>Nov<br>1<br>20.06<br>20.03<br>1<br>18.76<br>ng area + (r                                                                  | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4<br>4) =                                                                                  |     |      | <ul> <li>48)</li> <li>38)</li> <li>78)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>38)</li> <li>40)</li> <li>40)</li> <li>40)</li> </ul>              |
| Total g         (84)m=         7. Mer         Temp         Utilisa         (86)m=         (86)m=         (86)m=         (86)m=         (87)m=         Temp         (88)m=         Utilisa         (89)m=         Utilisa         (89)m=         Mean         (90)m=         Mean         (92)m=         Apply         (93)m=      | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna<br>18.48<br>adjustr<br>18.48                        | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g:<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for g:<br>1<br>temper<br>18.57<br>I temper<br>18.64<br>nent to tl<br>18.64                | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for<br>1<br>ature in<br>18.86<br>ature (fo<br>18.92<br>ne mean<br>18.92                                | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.03<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh<br>19.32<br>interna                                          | <ul> <li>(73)m</li> <li>(73)m</li> <li>(730m)</li> /ul>                                                                          | + (83)<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>10.88<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.85<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.9 | n , watts         36         14778.63         a from Ta         Table 9a)         1         0.73         teps 3 to         5         20.92         ng from Ta         20.04         see Table         0.6         (follow st         19.95         : fLA × T1         : 20         : 20         : 20 | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tab<br>20.9<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94<br>1 + (1 –<br>19.99<br>e 4e, wh                         | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>Th2 (°C) | 8276.07           Oct           1           20.39           20.03           1           le 9c)           19.25           fLA = Livin           19.3           opriate | 6189.28           Nov           1           20.06           20.03           1           18.76           ng area + (r           18.83 | 5408.26<br>Dec<br>1<br>19.81<br>20.02<br>1<br>18.4<br>4) =<br>18.47                                                                         |     |      | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(9)</li> <li>(91)</li> <li>(91)</li> </ul>            |
| Total g         84)m=         7. Mea         Temp         Utilisa         86)m=         Mean         87)m=         Temp         Utilisa         88)m=         Utilisa         89)m=         Utilisa         90)m=         Mean         90)m=         Mean         92)m=         Apply         93)m=         8. Spa         Set Ti | ains – i<br>5924.26<br>an inter<br>erature<br>ation fac<br>Jan<br>1<br>interna<br>19.83<br>erature<br>20.02<br>ation fac<br>1<br>interna<br>18.41<br>interna<br>18.48<br>adjustr<br>18.48<br>acc hea<br>i to the | nternal a<br>8055.65<br>nal temp<br>during h<br>tor for g:<br>Feb<br>1<br>I temper<br>19.94<br>during h<br>20.02<br>tor for g:<br>1<br>I temper<br>18.57<br>I temper<br>18.64<br>nent to ti<br>18.64<br>ting requ | nd solar<br>10544.06<br>eating p<br>ains for I<br>Mar<br>1<br>ature in<br>20.13<br>eating p<br>20.02<br>ains for<br>1<br>20.02<br>ains for<br>1<br>ature in<br>18.86<br>ature (fo<br>18.92<br>iirement<br>ernal ter | (84)m =<br>13372.46<br>(heating<br>eriods in<br>iving are<br>0.99<br>living are<br>20.4<br>eriods in<br>20.4<br>eriods in<br>20.3<br>rest of d<br>0.99<br>the rest<br>19.26<br>r the wh<br>19.32<br>interna<br>19.32<br>mperatum | <ul> <li>(73)m</li> <li>(73)m</li> <li>(15404.97)</li> <li>(15</li></ul> | + (83)1<br>15520.<br>15520.<br>ng are<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>15520.<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n     watts       a     from Ta       Table 9a)     Jul       0.73     0.73       teps 3 to     20.92       ng from Ta     20.04       see Table     0.6       (follow st     19.95       cfLA × T1     20       a     20                                                                            | 2 13078.2<br>able 9, T<br>Aug<br>0.81<br>7 in Tat<br>20.9<br>able 9, 1<br>20.04<br>e 9a)<br>0.7<br>teps 3 to<br>19.94<br>1 + (1 – 1<br>19.99<br>e 4e, wh<br>19.99 | 2 10998.88<br>h1 (°C)<br>Sep<br>0.97<br>ble 9c)<br>20.73<br>Th2 (°C)<br>20.03<br>Th2 (°C) | 8276.07           Oct           1           20.39           20.03           1           19.25           1LA = Livit           19.3           opriate           19.3   | 6189.28           Nov           1           20.06           20.03           1           18.76           ng area + (*           18.83 | 5408.26           Dec           1           19.81           20.02           1           18.4           4) =           18.47           18.47 |     |      | <ul> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> </ul> |

| Utilisation factor for gains, hm:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |             |       |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------|-------|
| (94)m= 1 1 1 0.99 0.95 0.8                                               | 0.6 0.69 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               | 1 1             |             | (94)  |
| Useful gains, hmGm , W = (94)m x (84)m                                   | den fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | -10             |             |       |
| (95)m= 5924.02 8053.79 10528.89 13237.59 14566.72 12485.01 88            | 04.95 9009.13 10387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53 8255.44 61   | 88.45 5408.1    | 3           | (95)  |
| Monthly average external temperature from Table 8                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | _           |       |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 1                                       | 6.6 16.4 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.6            | 7.1 4.2         |             | (96)  |
| Heat loss rate for mean internal temperature, Lm , W=[(3                 | 9)m x [(93)m– (96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m]              |                 |             |       |
| (97)m= 38701.08 37421.82 33769.43 28065.16 21479.11 14227.23 90          | 69.88 9558.19 15214.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89 23405.81 316 | 47.12 38641.0   | 03          | (97)  |
| Space heating requirement for each month, kWh/month =                    | 0.024 x [(97)m – (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 | -           |       |
| (98)m= 24386.14 19735.32 17290.96 10675.85 5142.82 0                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11271.88 183    | 30.24 24725.2   | 28          |       |
|                                                                          | Total per ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ar (kWh/year) = | Sum(98)1.5.9.12 | = 131558.49 | (98)  |
| Space heating requirement in kWh/m²/year                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 52.09       | (99)  |
| 8c. Space cooling requirement                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |             | _     |
| Calculated for June, July and August. See Table 10b                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |             |       |
|                                                                          | Jul Aug Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p Oct           | Nov Dec         | 5           |       |
| Heat loss rate Lm (calculated using 25°C internal temperative            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | om Table 1      | 0)          |       |
|                                                                          | 47.45 20251.45 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0               | 0 0             | Ń.          | (100) |
| Utilisation factor for loss hm                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | -               | _           |       |
| (101)m= 0 0 0 0 0.65 0                                                   | 0.76 0.68 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0               | 0 0             | 7           | (101) |
| Useful loss, hmLm (Watts) = (100)m x (101)m                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | -           |       |
| (102)m= 0 0 0 0 0 16427.14 149                                           | 19.22 13710.78 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0               | 0 0             |             | (102) |
| Gains (solar gains calculated for applicable weather region              | on, see Table 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 20           |                 |             |       |
| (103)m= 0 0 0 0 0 17208.77 163                                           | 88.15 14477.1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0               | 0 0             |             | (103) |
| Space cooling requirement for month, whole dwelling, con                 | ntinuous ( kWh) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.024 x [(103)  | n – (102)m      | ] x (41)m   |       |
| set (104)m to zero if (104)m < 3 × (98)m                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |             |       |
| (104)m= 0 0 0 0 0 562.77 10                                              | 92.88 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 0 0             |             | -     |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal = Sum(1.04  | 125610          | 1655.65     | (104) |
| Cooled fraction                                                          | t C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = cooled are    | a ÷ (4) =       | 0.59        | (105) |
| Intermittency factor (Table 10b)<br>(106)m= 0 0 0 0 0 0.25 0             | 0.25 0.25 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0               | 0 0             | 7           |       |
|                                                                          | 020002 10202020 111000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                 | -           | (100) |
| Space cooling requirement for month = $(104)m \times (105) \times (105)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal = Sum(1,0,  | 4) =            | 0           | (106) |
|                                                                          | 32.27 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 0 0             | 7           |       |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal = Sum(1,0,  | 33. S.          | 245.83      | (107) |
| Cases cooling convictment in hMM/m2/veer                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | )               |             |       |
| Space cooling requirement in kWh/m²/year                                 | A DECEMBER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWN | )7) ÷ (4) =     |                 | 0.1         | (108) |
| 9a. Energy requirements – Individual heating systems inclu               | uding micro-CHP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |             |       |
| Space heating:<br>Fraction of space heat from secondary/supplementary sy | stem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 | 0.1         | (201) |
| Fraction of space heat from main system(s)                               | (202) = 1 - (201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               |                 | 0.9         | (202) |
| Fraction of main heating from main system 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 0.1         | (203) |
| Fraction of total heating from main system 1                             | (204) = (202) × [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - (203)] =      |                 | 0.81        | (204) |
| Fraction of total heating from main system 2                             | (205) = (202) × (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (03) =          |                 | 0.09        | (205) |
| Efficiency of main space heating system 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8               |                 | 319.7       | (206) |
| Emolency of main space heating system i                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 319.7       | (200) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 13 of 16

| Effici     | ency of                                | main sp          | ace heat  | ting syste | em 2     |          |        |        |            |                                         |                                | Γ         | 93.3              | (207)  |
|------------|----------------------------------------|------------------|-----------|------------|----------|----------|--------|--------|------------|-----------------------------------------|--------------------------------|-----------|-------------------|--------|
| Effici     | ency of                                | seconda          | iry/suppl | ementar    | y heatin | g systen | n, %   |        |            |                                         |                                | Ī         | 80                | (208)  |
| Cooli      | ing Syst                               | em Ener          | gy Effici | ency Rat   | tio      |          |        |        |            |                                         |                                | Ī         | 6.75              | (209)  |
|            | Jan                                    | Feb              | Mar       | Apr        | May      | Jun      | Jul    | Aug    | Sep        | Oct                                     | Nov                            | Dec       | kWh/ye            | ar     |
| Spac       | <u> </u>                               | T                | · · · ·   | calculate  | -        | <u> </u> |        |        |            |                                         |                                |           |                   |        |
|            | 24386.14                               | 19735.32         | 17290.96  | 10675.85   | 5142.82  | 0        | 0      | 0      | 0          | 11271.88                                | 18330.24                       | 24725.28  |                   |        |
| (211)r     | n = {[(98                              | 3)m x (20        | 04)]}x1   | 100 ÷ (20  | )6)      |          |        |        |            |                                         |                                |           |                   | (211)  |
|            | 6178.53                                | 5000.19          | 4380.88   | 2704.86    | 1303     | 0        | 0      | 0      | 0          | 2855.87                                 | 4644.2                         | 6264.46   |                   |        |
|            |                                        |                  |           |            |          |          |        | Tota   | al (kWh/ye | ar) =Sum(                               | 211) <sub>1.510.12</sub>       | Ē         | 33331.99          | (211)  |
| (213)      | n =(98)r                               | n x (203)        | ) x 100 ÷ | - (207)    |          |          |        |        |            |                                         |                                |           |                   |        |
| (213)m=    | 2352.36                                | 1903.73          | 1667.94   | 1029.82    | 496.09   | 0        | 0      | 0      | 0          |                                         | 1768.19                        |           |                   | _      |
|            |                                        |                  |           |            |          |          |        | Tota   | il (kWh/ye | ar) =Sum()                              | 213),                          | -         | 12690.53          | (213)  |
| Spac       | e heatir                               | ig fuel (s       | econdar   | y), kWh/   | month    |          |        |        |            |                                         |                                |           |                   |        |
| = {[(98    | 3)m x (2                               | 01)]}x1          | 00 ÷ (20  | (8)        |          |          |        |        |            |                                         |                                |           |                   |        |
| (215)m     | 3048.27                                | 2466.91          | 2161.37   | 1334.48    | 642.85   | 0        | 0      | 0      | 0          | 100000000000000000000000000000000000000 | 2291.28                        | 100000000 |                   | _      |
|            |                                        |                  |           |            |          |          |        | Tota   | l (kWh/ye  | ar) =Sum(                               | 21 <b>5)<sub>15.1015</sub></b> | -         | 16444.81          | (215)  |
| Water      | heating                                | g                |           |            |          |          |        |        |            |                                         |                                |           |                   |        |
| Outpu      | 10000000000000000000000000000000000000 |                  |           | ulated a   |          |          |        |        |            | 1                                       | 02010                          | <u> </u>  |                   |        |
|            | 424.14                                 | 374.82           | 395.95    | 358.14     | 353.28   | 318.99   | 309.52 | 335.28 | 333.32     | 371.21                                  | 388.5                          | 415.01    |                   | -      |
| Efficie    | -                                      | ater hea         | ater      |            |          |          |        |        |            | 511010701                               |                                |           | 79.6              | (216)  |
| (217)m     |                                        | 88.23            | 87.9      | 87.12      | 85.33    | 79.6     | 79.6   | 79.6   | 79.6       | 87.16                                   | 88.04                          | 88.43     |                   | (217)  |
|            |                                        | heating.         |           |            |          |          |        |        |            |                                         |                                |           |                   |        |
|            | 479.93                                 | m x 100<br>424.8 | 450.43    | 411.08     | 413.99   | 400.74   | 388.85 | 421.21 | 418.74     | 425.89                                  | 441.25                         | 469.31    |                   |        |
|            |                                        |                  |           |            |          |          |        | Tota   | al = Sum(2 | (19a) <sub>112</sub> =                  |                                |           | 5146.22           | (219)  |
| Space      | e coolin                               | g fuel, k        | Wh/mo     | nth.       |          |          |        |        |            |                                         |                                | J.        | 25.00800155       | _      |
|            |                                        | ')m+ (20         |           | 00003945   |          | _        |        |        |            |                                         |                                |           |                   |        |
| (221)m=    | 0                                      | 0                | 0         | 0          | 0        | 12.38    | 24.04  | 0      | 0          | 0                                       | 0                              | 0         |                   |        |
|            |                                        |                  |           |            |          |          |        | Tota   | al = Sum(2 | 21) <sub>8.8</sub> =                    |                                |           | 36.42             | (221)  |
| Annua      | al totals                              |                  |           |            |          |          |        |        |            | k                                       | Wh/yea                         |           | kWh/yea           | r      |
| Space      | heating                                | fuel use         | ed, main  | system     | 1        |          |        |        |            |                                         |                                | Γ         | 33331.99          |        |
| Space      | heating                                | fuel use         | ed, main  | system     | 2        |          |        |        |            |                                         |                                | Ī         | 12690.53          | Ē      |
| Space      | heating                                | fuel use         | ed, seco  | ndary      |          |          |        |        |            |                                         |                                | Ī         | 16444.81          | Ē      |
| Water      | heating                                | fuel use         | ed        |            |          |          |        |        |            |                                         |                                | Ĩ         | 5146.22           | Ī      |
| Space      | cooling                                | fuel use         | ed        |            |          |          |        |        |            |                                         |                                | Ī         | 36.42             | Ī      |
| Electri    | icity for (                            | pumps, f         | ans and   | electric   | keep-ho  | t        |        |        |            |                                         |                                |           |                   |        |
| centr      | al heatii                              | ng pump          | :         |            |          |          |        |        |            |                                         |                                | 60        |                   | (230c) |
| boile      | r with a                               | fan-assis        | sted flue |            |          |          |        |        |            |                                         |                                | 45        |                   | (230e) |
| Total e    | electricit                             | y for the        | above,    | kWh/yea    | r        |          |        | sum    | of (230a)  | (230g) =                                |                                | را        | 105               | (231)  |
| Electri    | icity for I                            | ighting          |           | 78         |          |          |        |        |            |                                         |                                | ř         | 2871.02           | (232)  |
|            | - C                                    | erated b         | y PVs     |            |          |          |        |        |            |                                         |                                | ĥ         | -3346.17          | (233)  |
| 1000000780 |                                        | ~~               | ·         |            |          |          |        |        |            |                                         |                                | L         | CONTRACTOR OF THE |        |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 14 of 16

| 10a. Fuel costs - individual heating sys                              | stems:                                          |                                                   |                             |
|-----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------|
|                                                                       | <b>Fuel</b><br>kWh/year                         | Fuel Price<br>(Table 12)                          | F <b>uel Cost</b><br>£/year |
| Space heating - main system 1                                         | (211) x                                         | 13.19 × 0.01 =                                    | 4396.49 (240)               |
| Space heating - main system 2                                         | (213) x                                         | 3.48 × 0.01 =                                     | 441.63 (241)                |
| Space heating - secondary                                             | (215) x                                         | 3.48 × 0.01 =                                     | 572.28 (242)                |
| Water heating cost (other fuel)                                       | (219)                                           | 3.48 × 0.01 =                                     | 179.09 (247)                |
| Space cooling                                                         | (221)                                           | 13.19 × 0.01 =                                    | 4.8 (248)                   |
| Pumps, fans and electric keep-hot                                     | (231)                                           | 13.19 × 0.01 =                                    | 13.85 (249)                 |
| (if off-peak tariff, list each of (230a) to (2<br>Energy for lighting | 230g) separately as applicable and (232)        | d apply fuel price according to<br>13.19 × 0.01 = |                             |
| Additional standing charges (Table 12)                                |                                                 |                                                   | 120 (251)                   |
|                                                                       | one of (233) to (235) x)                        | 13.19 × 0.01 =                                    | -441.36 (252)               |
| Appendix Q items: repeat lines (253) ar<br>Total energy cost          | nd (254) as needed<br>(245)(247) + (250)(254) = |                                                   | 5665.47 (255)               |
| 11a. SAP rating - individual heating sy                               |                                                 |                                                   | 5665.47 (255)               |
| a<br>an in stration the cost form                                     | acon na                                         |                                                   | r                           |
| Energy cost deflator (Table 12)                                       | [(255) x (256)] + [(4) + 45.0] =                |                                                   | 0.42 (256)                  |
| Energy cost factor (ECF)<br>SAP rating (Section 12)                   | [(200) x (200)] · [(4) · 40.0] -                |                                                   | 0.93 (257)<br>87.09 (258)   |
| 12a, CO2 emissions – Individual heati                                 | ng systems including micro-CHP                  |                                                   | 07.03                       |
|                                                                       |                                                 | Emission feator                                   | Emissions                   |
|                                                                       | Energy<br>kWh/year                              | Emission factor<br>kg CO2/kWh                     | Emissions<br>kg CO2/year    |
| Space heating (main system 1)                                         | (211) x                                         | 0.519 =                                           | 17299.3 (261)               |
| Space heating (main system 2)                                         | (213) x                                         | 0.216 =                                           | 2741.15 (262)               |
| Space heating (secondary)                                             | (215) x                                         | 0.216 =                                           | 3552.08 (263)               |
| Water heating                                                         | (219) x                                         | 0.216 =                                           | 1111.58 (264)               |
| Space and water heating                                               | (261) + (262) + (263) + (26                     | 64) =                                             | 24704.12 (265)              |
| Space cooling                                                         | (221) x                                         | 0.519 =                                           | 18.9 (266)                  |
| Electricity for pumps, fans and electric                              | (231) x                                         | 0.519 =                                           | 54.5 (267)                  |
| Electricity for lighting                                              | (232) x                                         | 0.519 =                                           | 1490.06 (268)               |
| Energy saving/generation technologies Item 1                          |                                                 | 0.519 =                                           | -1736.66 (269)              |
| Total CO2, kg/year                                                    |                                                 | sum of (265)(271) =                               | 24530.91 (272)              |
| CO2 emissions per m <sup>2</sup>                                      |                                                 | (272) + (4) =                                     | 9.71 (273)                  |
| El rating (section 14)                                                |                                                 |                                                   | 87 (274)                    |
| 13a. Primary Energy                                                   |                                                 |                                                   |                             |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 15 of 16

|                                                   | Energy<br>kWh/year      | Primary<br>factor   |   | P. Energy<br>kWh/year |       |
|---------------------------------------------------|-------------------------|---------------------|---|-----------------------|-------|
| Space heating (main system 1)                     | (211) x                 | 3.07                | = | 102329.21             | (261) |
| Space heating (main system 2)                     | (213) x                 | 1.22                | = | 15482.45              | (262) |
| Space heating (secondary)                         | (215) x                 | 1.22                | = | 20062.67              | (263) |
| Energy for water heating                          | (219) x                 | 1.22                | = | 6278.39               | (264) |
| Space and water heating                           | (261) + (262) + (263) + | (264) =             |   | 144152.72             | (265) |
| Space cooling                                     | (221) x                 | 3.07                | = | 111.81                | (266) |
| Electricity for pumps, fans and electric keep-hot | (231) x                 | 3.07                |   | 322.35                | (267) |
| Electricity for lighting                          | (232) x                 | 0                   | = | 8814.02               | (268) |
| Energy saving/generation technologies<br>Item 1   |                         | 3.07                | = | -10272.74             | (269) |
| 'Total Primary Energy                             |                         | sum of (265)(271) = |   | 143128.16             | (272) |
| Primary energy kWh/m²/year                        |                         | (272) + (4) =       |   | 56.67                 | (273) |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

## APPENDIX (iii)

## SAP L1A 2013/16 REGULATION COMPLIANCE REPORT

(SAP Checklist)

## **Regulations Compliance Report**

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.7 Printed on 05 October 2020 at 16:29:29

| ssessed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ondrej Gajdos (          | STR0006629)                                               | Building Type:                                          | Detached House       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------------------------------------------|----------------------|
| Dwelling Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 2000 CE- CATORINO #                                       |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESIGN STAGE             |                                                           | Total Floor Area: 2                                     | 2525.6m <sup>2</sup> |
| ite Reference :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28AR                     |                                                           | Plot Reference:                                         | 28, Avenue Road      |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | d, LONDON, NW8 6BU                                        |                                                         |                      |
| Client Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                           |                                                         |                      |
| Name:<br>Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                           |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | within the SAP calculations.<br>ations compliance.        |                                                         |                      |
| 1a TER and DER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        |                                                           |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | city (mains gas used for second                           |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | as used for secondary heating))                           |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xide Emission Rat        |                                                           | 13.6 kg/m <sup>2</sup>                                  | 0                    |
| 1b TFEE and DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ioxide Emission R        | ate (DER)                                                 | 10.09 kg/m <sup>2</sup>                                 | OK                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rgy Efficiency (TFE      | E)                                                        | 66.5 kWh/m <sup>2</sup>                                 |                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ergy Efficiency (D       |                                                           | 55.5 kWh/m <sup>2</sup>                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lengy Enloicitey (D      | 122)                                                      | 00.0 ((1111)                                            | OK                   |
| 2 Fabric U-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                        |                                                           |                                                         |                      |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Average                                                   | Highest                                                 |                      |
| External                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wall                     | 0.17 (max. 0.30)                                          | 0.18 (max. 0.70)                                        | OK                   |
| Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 0.12 (max. 0.25)                                          | 0.12 (max. 0.70)                                        | OK                   |
| Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 0.12 (max. 0.20)                                          | 0.12 (max. 0.35)                                        | OK                   |
| Openings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 1.30 (max. 2.00)                                          | 1.30 (max. 3.30)                                        | OK                   |
| 2a Thermal brid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTRACTOR DOLLARS NO. 1 |                                                           |                                                         |                      |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                          | from linear thermal transmittan                           | ces for each junction                                   |                      |
| 3 Air permeabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                           | 4.00 (decise a)                                         | 1994 A               |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pility at 50 pascals     |                                                           | 4.00 (design val<br>10.0                                | ue) Ok               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                           | 10.0                                                    |                      |
| 4 Heating efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | Line to see the second second                             | e de fine e le stine e le st                            | -1                   |
| Main Heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ig system:               | Heat pumps with radiators of<br>Ground source heat pump v | 경험 사람은 사람이 다 모양을 얻었다. 그는 것은 것은 것은 바람이 가지 않을 것 같이 같이 했다. |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Ground Source near pump (                                 |                                                         |                      |
| Main Heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng system 2:             | Database: (rev 465, produc                                | t index 016566):                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Boiler systems with radiator                              |                                                         | ains gas             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Brand name: Remeha                                        |                                                         | 9900.200 <b></b>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Model: Quinta Pro 65                                      |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Model qualifier:                                          |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | (Regular)                                                 |                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Efficiency 89.3 % SEDBUK                                  | 2009                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                           |                                                         |                      |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 1 of 3

# **Regulations Compliance Report**

|                                               | Minimum 88.0 %                |                                                  | OK |
|-----------------------------------------------|-------------------------------|--------------------------------------------------|----|
| Secondary heating system:                     | Room heaters - gas            |                                                  |    |
| coordinally realing operation                 | Data from manufacturer -      |                                                  |    |
|                                               | Gas fire or wall heater, bala | anced flue                                       |    |
|                                               | Efficiency 80.0 %             |                                                  |    |
|                                               | Minimum 63.0 %                |                                                  | OK |
| 5 Cylinder insulation                         |                               |                                                  |    |
| Hot water Storage:                            | Measured cylinder loss: 6.6   |                                                  |    |
|                                               | Permitted by DBSCG: 9.54      | l kWh/day                                        | OK |
| Primary pipework insulated:                   | Yes                           |                                                  | OK |
| 6 Controls                                    |                               |                                                  |    |
| Space heating controls                        | TTZC by plumbing and ele      | ortrical services                                | OK |
| Space heating controls 2:                     |                               | e control by suitable arrangement of plumbing an |    |
| Hot water controls:                           | Cylinderstat                  | e control by suitable alrangement of planning an | OK |
| 7 Low energy lights                           |                               |                                                  |    |
| Percentage of fixed lights with low           | v-energy fittings             | 100.0%                                           |    |
| Minimum                                       |                               | 75.0%                                            | OK |
| 8 Mechanical ventilation                      |                               |                                                  |    |
| Not applicable                                |                               |                                                  |    |
| 9 Summertime temperature                      |                               |                                                  |    |
| Overheating risk (Thames valley)              | 1                             | Not significant                                  | OK |
| Based on:                                     |                               |                                                  |    |
| Overshading:                                  |                               | Average or unknown                               |    |
| Windows facing: East                          |                               | 4.79m <sup>2</sup>                               |    |
| Windows facing: East                          |                               | 13.04m <sup>2</sup>                              |    |
| Windows facing: East                          |                               | 16.83m <sup>2</sup>                              |    |
| Windows facing: East                          |                               | 7.19m <sup>2</sup>                               |    |
| Windows facing: South                         |                               | 27.04m <sup>2</sup>                              |    |
| Windows facing: South                         |                               | 24.57m <sup>2</sup>                              |    |
| Windows facing: South                         |                               | 9.8m²                                            |    |
| Windows facing: West                          |                               | 22.32m <sup>2</sup>                              |    |
| Windows facing: West                          |                               | 6.76m <sup>2</sup>                               |    |
| Windows facing: West                          |                               | 16.38m <sup>2</sup>                              |    |
| Windows facing: West                          |                               | 5.88m²<br>22.32m²                                |    |
| Windows facing: North                         |                               | 22.32m <sup>2</sup>                              |    |
| Windows facing: North                         |                               | 27.9m²<br>16.38m²                                |    |
| Windows facing: North                         |                               | 5.4m²                                            |    |
| Windows facing: North                         |                               | 5.4m <sup>2</sup>                                |    |
| Windows facing: North                         |                               | 4.08m <sup>2</sup>                               |    |
| Windows facing: North<br>Windows facing: East |                               | 3.38m²                                           |    |
| Windows facing: East                          |                               | 33.48m²                                          |    |
| Windows facing: East                          |                               | 13.65m <sup>2</sup>                              |    |
| THILDWS IGUILY. LOST                          |                               |                                                  |    |
|                                               |                               | / offi-                                          |    |
| Windows facing: East<br>Windows facing: East  |                               | 7,8m²<br>5.88m²                                  |    |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 2 of 3

# **Regulations Compliance Report**

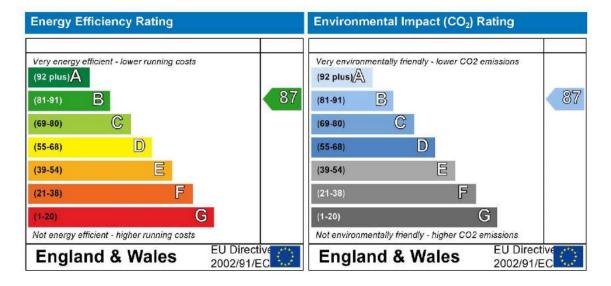
| Ventilation rate:             | 4.00                    |  |
|-------------------------------|-------------------------|--|
| Key features                  |                         |  |
| Thermal bridging              | 0.023 W/m²K             |  |
| Roofs U-value                 | 0.12 W/m <sup>2</sup> K |  |
| Floors U-value                | 0.12 W/m <sup>2</sup> K |  |
| Floors U-value                | 0.12 W/m²K              |  |
| Photovoltaic array            |                         |  |
| Fixed cooling system          |                         |  |
| Secondary heating (mains gas) |                         |  |

Stroma FSAP 2012 Version: 1.0.5.7 (SAP 9.92) - http://www.stroma.com

Page 3 of 3

APPENDIX (iv)

PEA – PREDICTED ENERGY ASSESSMENT (PRE-EPC)

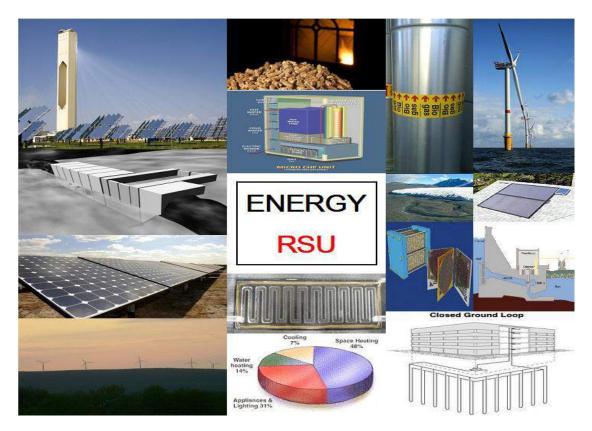

#### Predicted Energy Assessment



28, Avenue Road LONDON NW8 6BU Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 02 October 2020 Ondrej Gajdos 2525.6 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.




The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

### APPENDIX (v)

**ENERGY RSU** – RENEWABLES & SUSTAINABILITY UNIT



#### ENERGY RSU is an integrated energy sustainability unit able to provide the following:

- SAP Calculations & Certificates L1A&B New/Existing Buildings (NHER certified)
- SBEM Calculations & Certificates L2A&B New/Existing Buildings (BRE certified)
- EPC & DEC Certificates New Build (CIBSE certified)
- Rd SAP Survey EPC Certificates Existing Buildings (NHER certified)
- Commercial EPC Survey certificates Existing Buildings (BRE certified) Level 3, 4 & 5
- Energy Statements & Renewable Reports for Planning
- LEED/ BREEAM assessments (USGBC/BRE certified)
- Low/Zero Carbon (LZC) and Sustainability Appraisals/designs (CIBSE Low Carbon Consultant)
- Renewable Energy Appraisals and Designs
- Carbon Rating assessments
- 2D/3D CFD and Dynamic Thermal Simulations
- EPBD Air Conditioning Inspections (Article 20) and EPBD Asset Ratings & Certificates
- Energy Usage (Running Costs)
- Utility/ Bill Analysis and Recommendations
- Advice on Green and Environmental Issues Relating to M&E Building Services
- Code for Sustainable Homes New Build and Domestic Refurbishment (BRE certified)



ME7 Ltd, Jorand House, Bebington Close, Billericay, Essex, CM12 0DT Tel: +44(0)1277 353225 MB: +44(0)7412 601472 Web: www.me7.ltd Email: jb@me7.ltd

M&E Consultants

Energy Consultants