

Job No: 1350

Date: Sep 2020

	Project				Job Ref.	
	Camden	Lock Market, Lo	ndon NW1		13	50
	Section				Sheet no./rev.	
LIM ENGINEERING LTD consulting engineers						2
5 5	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			

<u>General</u>

These calculations cover the design of the structural elements for the proposed roof replacement.

The design is based on:

BS 6399-Loading BS 8110-Concrete BS 5950-Steel BS 5628-Masonry BS 5268-Timber

General loading

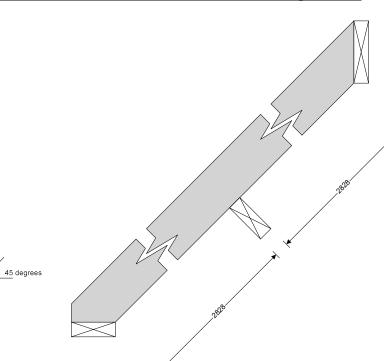
Roof:

•	Dead load:	$1.0 \frac{\mathrm{kN}}{\mathrm{m}^2}$
•	Imposed load:	$0.75 \frac{\mathrm{kN}}{\mathrm{m}^2}$

Ground, floors:

•	Dead load:	$0.85 \frac{\mathrm{kN}}{\mathrm{m}^2}$
•	Imposed load:	$1.5 \frac{\mathrm{kN}}{\mathrm{m}^2}$

Walls:


220 mm Brick wall

- $4.4 \frac{kN}{m^2}$ 120 mm Brick wall
- 2.4120 mm Stud wall
- 0.6

	Project				Job Ref.	
	Camder	n Lock Market, L	ondon NW1		13	50
	Section				Sheet no./rev.	
LIM ENGINEERING LTD consulting engineers						3
0 0	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			

<u>ROOF:</u>

R - TIMBER RAFTER DESIGN (BS5268-2:2002) - 150x50 @400 c/c

TEDDS calculation version 1.0.03

Rafter details

Breadth of timber sections; Depth of timber sections; Rafter spacing; Rafter slope; Clear span of rafter on horizontal; Clear span of rafter on slope; Rafter span; Timber strength class;

Section properties

Cross sectional area of rafter; Section modulus; Second moment of area; Radius of gyration;

Loading details

Rafter self weight; Dead load on slope; Imposed load on plan; Imposed point load;

Modification factors

Section depth factor; Load sharing factor; b = 50 mm h = 150 mm s = 400 mm α = 45.0 deg L_{clh} = 2000 mm L_{cl} = L_{clh} / cos(α) = 2828 mm Continuous C16

 $A = b \times h =$ **7500**mm² $Z = b \times h² / 6 =$ **187500**mm³ $I = b \times h³ / 12 =$ **14062500**mm⁴ $r = \sqrt{(I / A)} =$ **43.3**mm

$$\begin{split} F_{j} &= b \times h \times \rho_{char} \times g_{acc} = \textbf{0.02 kN/m} \\ F_{d} &= \textbf{1.00 kN/m}^{2} \\ F_{u} &= \textbf{0.75 kN/m}^{2} \\ F_{p} &= \textbf{0.90 kN} \end{split}$$

 $K_7 = (300 \text{ mm} / \text{h})^{0.11} = 1.08$ $K_8 = 1.10$

	Project		Landan NIM/4		Job Ref.	4250
		en Lock Market,				1350
LIM ENGINEERING LTD	Section				Sheet no./rev.	4
consulting engineers	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
Consider long term load cor	ndition					
Load duration factor;		K ₃ = 1.0	D			
Total UDL perpendicular to rat	iter;	$F = F_d \times$	$\cos(\alpha) \times s + F_j$	$\times \cos(\alpha) = 0.2$	299 kN/m	
Notional bearing length;		$L_b = F \times$	L _{cl} / [2 \times (b $\times \sigma_{cr}$	_{p1} × K ₈ - F)] =	4 mm	
Effective span;		$L_{eff} = L_{cl}$	+ L _b = 2832 mm	ı		
Check bending stress at pur	lin					
Bending stress parallel to grain	n;	σm = 5.3	00 N/mm²			
Permissible bending stress;		$\sigma_{m_{adm}} =$	$\sigma_m \times K_3 \times K_7 \times I$	K ₈ = 6.292 N	/mm ²	
Applied bending stress;		σm_max =	$F \times L_{\text{eff}}^2$ / (8 \times Z	2) = 1.598 N/r	nm²	
			PASS - Appl	lied bending	stress within per	missible lii
Check compressive stress p	parallel to grain	n at purlin				
Compression stress parallel to	•	-)0 N/mm ²			
Minimum modulus of elasticity	,	E _{min} = 5 8	300 N/mm²			
Compression member factor;		K ₁₂ = 0.6	62			
Permissible compressive stres	s;	—	$\sigma_{c} \times K_{3} \times K_{8} \times K_{8}$			
Applied compressive stress;					$n(\alpha) / 3) / (8 \times A) =$	
		PA	ASS - Applied c	compressive	stress within per	missible li
Check combined bending an	nd compressiv	e stress parall	el to grain at pu	urlin		
Euler stress;		$\sigma_e = \pi^2 \times$	$E_{min} / \lambda^2 = 13.3$	83 N/mm ²		
Euler coefficient;		K _{eu} = 1 -	- (1.5 × σ_{c_max} ×	K ₁₂ / σ _e) = 0.	989	
Combined axial compression a	and bending ch	eck; $\sigma_{m_{max}}$ /	$(\sigma_{m_{adm}} \times K_{eu})$ +	σ_{c_max} / σ_{c_ad}	m = 0.290 ; < 1	
	PASS - Co	ombined comp	ressive and be	ending stres	ses are within per	missible li
Check bending stress in low	ver portion of r	after				
Bending stress parallel to grain	n;	σ _m = 5.3	00 N/mm ²			
Permissible bending stress;		$\sigma_{m_{adm}} =$	$\sigma_m \times K_3 \times K_7 \times I$	K ₈ = 6.292 N	/mm²	
Applied bending stress;		$\sigma_{m_{max}} =$	$9\times F \times L_{eff}^{2}/$ (12	28 × Z) = 0.8	99 N/mm ²	
			PASS - Appl	lied bending	stress within per	missible lii
Check compressive stress p	parallel to grain	n in lower porti	on of rafter			
Compression stress parallel to	grain;	σc = 6.80)0 N/mm²			
Minimum modulus of elasticity	,	E _{min} = 5 8	300 N/mm²			
Compression member factor;		K ₁₂ = 0.6	52			
Permissible compressive stres	s;	$\sigma_{c_{adm}} =$	$\sigma_{c} \times K_{3} \times K_{8} \times K_{8}$	(₁₂ = 4.623 N/	/mm ²	
Applied compressive stress;		σ _{c_max} =	$3 \times F \times L_{eff} \times (cc)$	$ot(\alpha)$ + 13 × ta	an(lpha) / 3) / (8 $ imes$ A) =	= 0.226 N/m
		PA	ASS - Applied c	compressive	stress within per	rmissible lii
Check combined bending ar	nd compressiv	e stress parall	el to grain in lo	wer portion	of rafter	
Euler stress;		$\sigma_e = \pi^2 \times$	ε E _{min} / λ ² = 13.3	83 N/mm ²		
Euler coefficient;		K _{eu} = 1 -	- (1.5 $\times \sigma_{c_{max}} \times$	K ₁₂ / σ _e) = 0.	984	
Combined axial compression a	and bending ch	eck; σ _{m_max} /	$(\sigma_{m_adm} \times K_{eu})$ +	$\sigma_{c_{max}}$ / $\sigma_{c_{ad}}$	m = 0.194 ; < 1	
	PASS - Co	ombined comp	ressive and be	ending stres	ses are within per	rmissible li
Check shear stress						
Shear stress parallel to grain;		τ = 0.67	0 N/mm ²			
		$\tau_{adm} = \tau$	× K ₃ × K ₈ = 0.73	7 N/mm ²		
Permissible shear stress;						
Permissible shear stress; Applied shear stress;		τ _{max} = 15	$5 \times F \times L_{eff}$ / (16	× A) = 0.106	N/mm ²	

	Project	a ale Mauleat	London NIM/4		Job Ref.	4050			
		LOCK Markel,	London NW1			1350			
LIM ENGINEERING LTD	Section	Sheet no./rev	Sheet no./rev. 5						
consulting engineers	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	jv	Sep 2020	ma	Duic	The a py	Duic			
Check deflection									
Permissible deflection;		$\delta_{adm} = 0.1$	003 × L _{eff} = 8.4 9	96 mm					
Bending deflection;			L_{eff}^4 / (185 × Em		0 mm				
Shear deflection;			$F \times L_{eff}^2 / (5 \times E)$						
Total deflection;			+ δ _s = 0.927 mi	,					
· · · · · · · · · · · · · · · · · · ·		•max •b			lection within pe	rmissible lim			
Consider medium term load co	ondition								
Load duration factor;		K ₃ = 1.2	5						
Total UDL perpendicular to rafte	r;	$F = [F_u \times$	$\cos(\alpha)^2 + F_d \times f_d$	$\cos(\alpha)] \times s + I$	$F_i \times \cos(\alpha) = 0.44$	9 kN/m			
Notional bearing length;		-	L _{cl} / [2 × (b × σ _{cr}	() <u>-</u>	, , ,				
Effective span;			+ L _b = 2834 mm	/=					
Check bending stress at purli	n								
Bending stress parallel to grain;		σm = 5.3 0	00 N/mm²						
Permissible bending stress;		$\sigma_{m_{adm}} =$	$\sigma_m imes K_3 imes K_7 imes I$	K ₈ = 7.865 N/I	mm²				
Applied bending stress;		σ _{m_max} =	$\sigma_{m_max} = F \times L_{eff}^2 / (8 \times Z) = 2.403 \text{ N/mm}^2$						
			PASS - Appl	lied bending	stress within pe	rmissible lim			
Check compressive stress particular	rallel to grain a	t purlin							
Compression stress parallel to g	rain;	σc = 6.80	0 N/mm ²						
Minimum modulus of elasticity;		E _{min} = 58	800 N/mm ²						
Compression member factor;		K ₁₂ = 0.5	8						
Permissible compressive stress;		$\sigma_{c_{adm}} = 0$	$\sigma_{c} \times K_{3} \times K_{8} \times K_{8}$	1 ₁₂ = 5.406 N/r	mm²				
Applied compressive stress;		$\sigma_{c_{max}} = 3$	$3 \times F \times L_{eff} \times (cc)$	$\operatorname{pt}(\alpha)$ + 8 × tan	$(\alpha) / 3) / (8 \times A) =$	0.233 N/mm ²			
		PA	SS - Applied o	compressive	stress within pe	rmissible lim			
Check combined bending and	compressive s	-							
Euler stress;			$E_{min} / \lambda^2 = 13.3$						
Euler coefficient;		K _{eu} = 1 –	\cdot (1.5 × $\sigma_{c_{max}}$ ×	K ₁₂ / σ _e) = 0.9	85				
Combined axial compression an	•		[σ _{m_adm} × K _{eu}) +						
			ressive and be	ending stress	ses are within pe	rmissible lim			
Check bending stress in lower	r portion of raft								
Bending stress parallel to grain;			00 N/mm ²		<u>,</u>				
Permissible bending stress;		-	$\sigma_{\rm m} \times {\rm K}_3 \times {\rm K}_7 \times {\rm I}$						
Applied bending stress;		σ _{m_max} =	$\sigma_{m_max} = 9 \times F \times L_{eff}^2 / (128 \times Z) = 1.352 \text{ N/mm}^2$ PASS - Applied bending stress within permissible lim						
a				nea benaing	stress within per	riiissidie iiii			
Check compressive stress par	-	-							
Compression stress parallel to g	rain;		0 N/mm ²						
Minimum modulus of elasticity; Compression member factor;		Emin = 58 K ₁₂ = 0.5	800 N/mm ²						
Permissible compressive stress;			ν ο σ _c × K3 × K8 × K	12 = 5 406 N/r	mm ²				
Applied compressive stress;		-			$\ln(\alpha) / 3) / (8 \times A)$	= 0.339 N/mn			
Applied compressive sitess,					stress within pe				
Check combined bending and	compressive s			-	-				
Euler stress;		-	$E_{min} / \lambda^2 = 13.3$	-					
					70				
Euler coefficient;		$\kappa_{eu} = 1 -$	\cdot (1.5 $\times \sigma_{c_{max}} \times$	K ₁₂ / σ _e) = U.9	10				

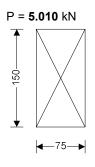
	Project				Job Ref.			
	Camden	Lock Market, Lo	ondon NW1			1350		
LIM ENGINEERING LTD	Section				Sheet no./rev.			
consulting engineers		I	T	T		6		
	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	jv	Sep 2020	ma					
	PASS - Con	nbined compre	essive and ben	ding stresses	are within per	missible l		
Check shear stress								
Shear stress parallel to grain;		τ = 0.670 Ι	N/mm²					
Permissible shear stress;		$\tau_{adm} = \tau \times I$	K ₃ × K ₈ = 0.921	N/mm ²				
Applied shear stress;		τ_{max} = 15 ×	\times F $ imes$ L _{eff} / (16 $ imes$	A) = 0.159 N/m	im ²			
			PASS - App	olied shear stro	ess within per	missible l		
Check deflection								
Permissible deflection;		$\delta_{adm} = 0.00$	03 × L _{eff} = 8.501	mm				
Bending deflection;		$\delta_b = F \times L_e$	$_{\rm ff}^4$ / (185 $ imes$ E _{mean}	n × I) = 1.264 m	m			
Shear deflection;		δ_s = 12 × F	$^{2} \times L_{eff}^{2} / (5 \times E_{n})$	nean × A) = 0.13 ′	1 mm			
Total deflection;		$\delta_{max} = \delta_b +$	δ_s = 1.396 mm					
			PASS	- Total deflect	ion within per	missible l		
Consider short term load co	<u>ndition</u>							
Load duration factor;		K ₃ = 1.50						
Total UDL perpendicular to rat	iter;	$F = F_d \times co$	$ps(\alpha) \times s + F_{j} \times s$	cos(α) = 0.299	kN/m			
Notional bearing length;		$L_{b} = [F \times L]$	$_{cl}$ + $F_{p} \times \cos(\alpha)$]	/ [2 × (b × σ_{cp1}	× K ₈ - F)] = 6 m	nm		
Effective span;		$L_{eff} = L_{cl} +$	L _{eff} = L _{cl} + L _b = 2835 mm					
Check bending stress at pur	lin							
Bending stress parallel to grain		σm = 5.300	N/mm ²					
Permissible bending stress;		$\sigma_{\rm m} adm = \sigma$	$m \times K_3 \times K_7 \times K_8$	a = 9.438 N/mm	2			
Applied bending stress;		σ _{m max} = F	×L _{eff} ²/(8×Z)+3×F	- _p ×cos(α)×L _{eff} /(;	32×Z) = 2.503	V/mm ²		
		_	. ,	ed bending str	,			
Check compressive stress p	arallel to grain a	at purlin						
Compression stress parallel to	grain;	σc = 6.800	N/mm ²					
Minimum modulus of elasticity	;	E _{min} = 580	0 N/mm²					
Compression member factor;		K ₁₂ = 0.54						
Permissible compressive stres	ss;	$\sigma_{c_{adm}} = \sigma_{c}$	$\times K_3 \times K_8 \times K_{12}$	e = 6.047 N/mm	2			
Applied compressive stress;		$\sigma_{c_{max}} = 3$	$F \times L_{eff} \times (cot(\alpha) +$	8×tan(α)/3)/(8×	A)+F _p ×sin(α)/A	= 0.240		
N/mm ²		DAG	C Applied on	marcocius etr	aaa within nar	minnihlal		
Check combined bending ar	nd comprossivo		S - Applied co	-	ess within per	iiiissibie i		
Euler stress;		-	$E_{min} / \lambda^2 = 13.358$					
Euler coefficient;			$1.5 \times \sigma_{c max} \times K$					
Combined axial compression a	and bending chec		$m_{adm} \times K_{eu}$) + σ		0.309: < 1			
	-	nbined compre				missible l		
Check bending stress in low	er portion of raf	ter						
Bending stress parallel to grain	ו;	σ _m = 5.300	N/mm ²					
Permissible bending stress;		$\sigma_{m_{adm}} = \sigma$	$_{ m m} imes m K_3 imes m K_7 imes m K_8$	3 = 9.438 N/mm	2			
Applied bending stress;		$\sigma_{m_{max}} = F$	×L _{eff} ²/(16×Z)+13 PASS - Applie	3×F _p ×cos(α)×L _e ed bending str	. ,			
Check compressive stress p	arallel to grain i	n lower portior		5	•			
Compression stress parallel to	-	σc = 6.800						
Minimum modulus of elasticity	-	E _{min} = 580						
Compression member factor;		K ₁₂ = 0.54						

	Project				Job Ref.	
	Camd	en Lock Market, I	London NW1			1350
	Section				Sheet no./rev	
LIM ENGINEERING LTD consulting engineers						7
0 0	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
Permissible compressive stres	ss;	$\sigma_{c_{adm}} = c$	$\sigma_c imes K_3 imes K_8 imes K$	K ₁₂ = 6.047 N/	mm ²	
Applied compressive stress;		$\sigma_{c_{max}} = 3$	B×F×L _{eff} ×(cot(α))+4×tan(α))/(8	$B \times A$)+ $F_p \times sin(\alpha)/A =$	= 0.297 N/mm
		PA	SS - Applied o	compressive	stress within pe	rmissible lim
Check combined bending an	nd compressi	ve stress paralle	l to grain in lo	ower portion	of rafter	
Euler stress;		σ_{e} = π^{2} ×	$E_{min} / \lambda^2 = 13.3$	358 N/mm ²		
Euler coefficient;		K _{eu} = 1 –	(1.5 $ imes \sigma_{c_{max}} imes$	K ₁₂ / σ _e) = 0.9	82	
Combined axial compression a	and bending cl	neck; σ _{m_max} / ($\sigma_{m_{adm}} imes K_{eu}$) +	σ_{c_max} / σ_{c_adr}	n = 0.346 ; < 1	
	PASS - C	Combined comp	ressive and be	ending stress	ses are within pe	rmissible lim
Check shear stress						
Shear stress parallel to grain;		τ = 0.670	N/mm ²			
Permissible shear stress;		$ au_{adm} = au imes$	K ₃ × K ₈ = 1.10)6 N/mm ²		
Applied shear stress;		τ _{max} = 15	\times F \times L _{eff} / (16	\times A) + 3 \times F _p	$\times \cos(\alpha) / (2 \times A)$	= 0.233 N/mn
			PASS - A	pplied shear	stress within pe	rmissible lim
Check deflection						
Permissible deflection;		$\delta_{adm} = 0.0$	003 × L _{eff} = 8.5	04 mm		
Bending deflection;		$\delta_{b} = L_{eff}^{3}$	× (F×L _{eff} /185 +	- 0.015×F _p ×co	$DS(\alpha)) / (E_{mean} \times I)$	= 2.600 mm
		$\delta_s = 12 \times$	$L_{eff} \times (F \times L_{eff} + 2)$	$2 \times F_{p} \times cos(\alpha))$	$(5 \times E_{mean} \times A) = 0$	0.219 mm
Shear deflection;		-				
Shear deflection; Total deflection;			+ δ _s = 2.818 m	m		

PURLINS PR1 150x150 Timber Joists by inspection

	Project				Job Ref.	
	Camd	en Lock Market,	London NW1		13	350
	Section				Sheet no./rev.	
LIM ENGINEERING LTD consulting engineers					8	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			

D1 - TIMBER MEMBER DESIGN TO BS5268-2:2002 - 150x75 Timber Joists


dTEDDS calculation version 1.5.07

Load derivation:

 $P = 4.05 \times 0.5 \times (1.0 + 0.75) \times 1.25 \times 1.6 \times \cos 45 = 5.01 \text{ kN}$

Analysis results

Design axial compression;

	Timber	section	details
--	--------	---------	---------

Breadth of sections;	b = 75 mm
Depth of sections;	h = 150 mm
Number of sections in member;	N = 1
Overall breadth of member;	b _b = N × b = 75 mm
Timber strength class;	C16
Member details	
Service class of timber;	1
Load duration;	Long term
Effective length - cl.2.11.3	
Unbraced length in x-axis;	L _x = 2700 mm
Effective length factor in x-axis - Table 21;	K _x = 1
Effective length in x-axis;	L _{ex} = L _x × K _x = 2700 mm
Unbraced length in y-axis;	L _y = 2700 mm
Effective length factor in y-axis - Table 21;	K _y = 1
Effective length in y-axis;	$L_{ey} = L_y \times K_y = 2700 \text{ mm}$
Section properties	
Cross sectional area of member;	A = N \times b \times h = 11250 mm ²
Section modulus;	Z_x = N × b × h ² / 6 = 281250 mm ³
	$Z_y = h \times (N \times b)^2 / 6 = 140625 \text{ mm}^3$
Second moment of area;	$I_x = N \times b \times h^3 / 12 = 21093750 \text{ mm}^4$
	$I_y = h \times (N \times b)^3 / 12 = 5273437 \text{ mm}^4$
Radius of gyration;	i _x = √(I _x / A) = 43.3 mm
	i _y = √(I _y / A) = 21.7 mm
Modification factors	
Duration of loading - Table 17;	K ₃ = 1.00
Total depth of member - cl.2.10.6;	K ₇ = (300 mm / h) ^{0.11} = 1.08
Load sharing - cl.2.9;	K ₈ = 1.00

	Project	Project				
	Camd	Camden Lock Market, London NW1				
LIM ENGINEERING LTD consulting engineers	Section		Sheet no./rev			
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	iv	Sep 2020	ma			

Slenderness ratio - cl.2.11.4

Permissible slenderness ratio; Slenderness ratio; λ_{max} = **180**

 $\lambda = \max(L_{ex} / i_x, L_{ey} / i_y) = 124.708$

PASS - Slenderness ratio is less than permissible slenderness ratio

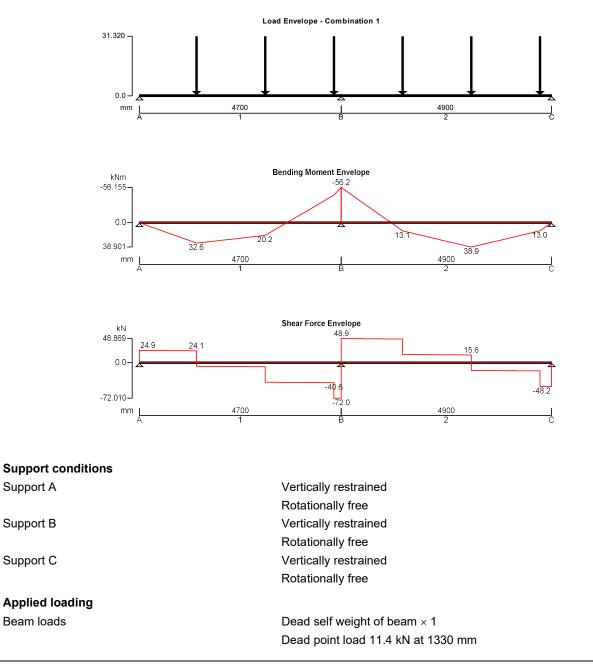
Compression parallel to grain

Permissible compressive stress; Applied compressive stress;
$$\begin{split} \sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{1.872} \ \text{N/mm}^2 \\ \sigma_{c_a} = \text{P} \ / \ \text{A} = \textbf{0.445} \ \text{N/mm}^2 \end{split}$$

PASS - Applied compressive stress is less than permissible compressive stress

B1 - 152 UC 23 Tie beam Padstone P1 350x100x10mm Th. Steel Plate

	Project		Job Ref.					
	Camden	Lock Market, Lo	1350					
	Section							
LIM ENGINEERING LTD consulting engineers				10				
0 0	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	jv	Sep 2020	ma					

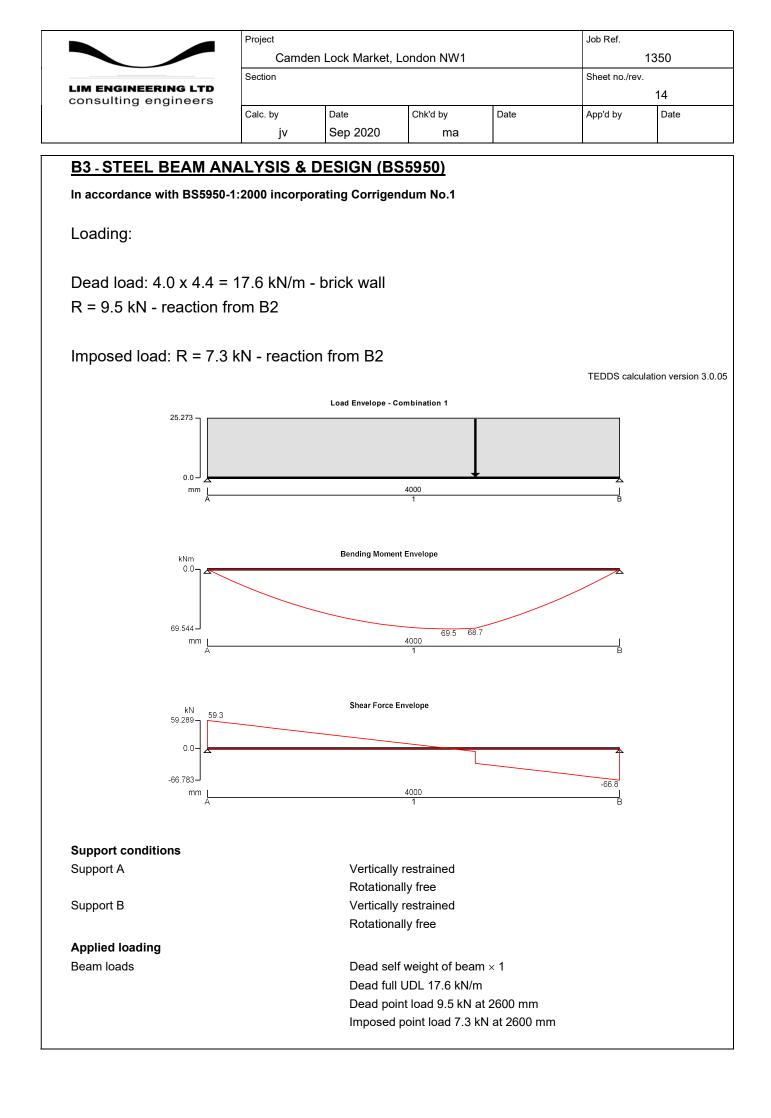

B2 - STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1 Loading:

Dead load: 4.0 x 0.5 x 1.0 x 1.25 x 1.6 x 1.4 = 5.6 kN - point load Nd = 2 x 5.7 = 11.4 kN

Imposed load: 4.0 x 0.5 x 0.75 x 1.25 x 1.6 x 16 = 4.8 kN NI = 2 x 4.8 = 9.6 kN

TEDDS calculation version 3.0.05


	Camden	Lock Market, Lo	ondon NW1		1	1350
	Section				Sheet no./rev	
						11
consulting engineers	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
				N at 1330 mm		
		•	t load 11.4 kN			
				N at 2930 mm		
		•	t load 11.4 kN			
				N at 4530 mm		
		•	t load 11.4 kN	N at 6130 mm		
			t load 11.4 kN			
		-		N at 7730 mm		
			t load 11.4 kN			
		•		N at 9330 mm		
Load combinations		1 · P				
Load combination 1		Support A		Dead >	< 1.40	
		11,			ed × 1.60	
		Span 1		Dead⇒		
				Impose	ed × 1.60	
		Support B		Dead >		
				Impose	ed × 1.60	
		Span 2		Dead >		
				Impose	ed × 1.60	
		Support C		Dead >	< 1.40	
				Impose	ed × 1.60	
Analysis results						
Maximum moment;		M _{max} = 38.	9 kNm;	M _{min} =	-56.2 kNm	
Maximum moment span 1;		Ms1_max = 3	32.6 kNm;	Ms1_min	= -56.2 kNm	ı
Maximum moment span 2;		M _{s2_max} = 3		-	= -56.2 kNm	ı
Maximum shear;		V _{max} = 48.	9 kN;	V _{min} = -	-72 kN	
Maximum shear span 1;		V _{s1_max} = 2		-	= -72 kN	
Maximum shear span 2;		V _{s2_max} = 4			= -48.2 kN	
Deflection;		δ _{max} = 2.1		δ _{min} = (
Deflection span 1;		δ _{s1_max} = 1			= 0 mm	
Deflection span 2;	•	δ _{s2_max} = 2			= 0 mm	
Maximum reaction at support		$R_{A_{max}} = 2$		R _{A_min} :	= 24.9 kN	
Unfactored dead load reaction		$R_{A_Dead} = 9$				
Unfactored imposed load reac Maximum reaction at support		RA_Imposed = RB_max = 12		D - · ·	= 120.9 kN	
Unfactored dead load reaction		$R_{B \text{ Dead}} = 4$		rs_min ·	- 120.3 KIN	
Unfactored imposed load reaction		-				
Maximum reaction at support		$R_{C max} = 4$		Rc min	= 48.2 kN	
Unfactored dead load reaction		$R_{C_{Dead}} = 1$				
Unfactored imposed load read						
Section details						
Section type;		UKC 203x	203x46 (Tata	Steel Advance)		
Steel grade;		S275				
From table 9: Design streng	th p _y					
Thickness of element;		max(T, t) =	= 11.0 mm			
Design strength;		py = 275 N	/mm ²			

	Project Camden Lo	ck Market, L	ondon N\//1		Job Ref.	1350
	Section				Sheet no./rev.	1550
LIM ENGINEERING LTD consulting engineers						12
concerning engineere	Calc. by Da	ate	Chk'd by	Date	App'd by	Date
	jv S	ер 2020	ma			
Modulus of elasticity;		E = 20500	00 N/mm ²			
	_ ↓					
	-203.2	-	→ ←7.2			
	▼ ~ 					
	◀		-203.6			
Lateral restraint						
		Span 1 ha	is lateral restrair	t at supports or	nly	
		-	is lateral restrair		-	
Effective length factors						
Effective length factor in major a		K _x = 1.00				
Effective length factor in minor a Effective length factor for lateral		K _y = 1.00				
		, КША – 1.0 К _{LT.В} = 1.0				
		K _{LT.C} = 1.0				
Classification of cross section	ns - Section 3.5					
		ε = √[275	N/mm² / p _y] = 1 .0	00		
Internal compression parts -	Table 11					
Depth of section;		d = 160.8				
		d / t = 22.3	3 × ε <= 80 × ε;	Class	1 plastic	
Outstand flanges - Table 11			404 0			
Width of section;			= 101.8 mm 5 × ε <= 10 × ε;	Class	2 compact	
		671 - 5.6	· · · · · · · · · · · · · · · · · · ·	01033	Section is cl	ass 2 com
					-	
Shear capacity - Section 4.2.3	}					
Shear capacity - Section 4.2.3 Design shear force;	}	F _v = max(a	abs(V _{max}), abs(V	′ _{min})) = 72 kN		
	}	F _v = max(a d / t < 70 >	3 ×			
Design shear force;	\$	d / t < 70 >	×ε Web does	′′ _{min})) = 72 kN not need to be	checked for s	shear buck
Design shear force; Shear area;	8	d / t < 70	κε <i>Web does</i> = 1463 mm ²	not need to be	checked for s	shear buck
Design shear force;	3	d / t < 70 $A_v = t \times D$ $P_v = 0.6 \times$	× ε <i>Web does</i> = 1463 mm ² p _y × A _ν = 241.4	not need to be		
Design shear force; Shear area; Design shear resistance;		d / t < 70 $A_v = t \times D$ $P_v = 0.6 \times$	κε <i>Web does</i> = 1463 mm ²	not need to be		
Design shear force; Shear area;		$d / t < 70 \Rightarrow$ $A_v = t \times D$ $P_v = 0.6 \times$ PA	× ε <i>Web does</i> = 1463 mm ² p _y × A _ν = 241.4	not need to be kN ear resistance	exceeds desi	

	Project	en Lock Market,	London NW1		Job Ref.	1350
	Section	en Lock Market,	London NVV		Sheet no./rev	
						13
consulting engineers	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
Effective length for lateral-to	rsional buckli	ing - Section 4.	3.5			
Effective length for lateral torsid	onal buckling;	L _E = 1.0	× L _{s2} = 4900 m	ım		
Slenderness ratio;		$\lambda = L_E / I$	yy = 95.437			
Equivalent slenderness - Sec	ction 4.3.6.7					
Buckling parameter;		u = 0.84	7			
Torsional index;		x = 17.7	13			
Slenderness factor;		v = 1 / [1	+ 0.05 \times (λ / x	() ²] ^{0.25} = 0.799		
Ratio - cl.4.3.6.9;		βw = 1.0	00			
Equivalent slenderness - cl.4.3	.6.7;	λ _{LT} = u ×	$\mathbf{v} \times \mathbf{\lambda} \times \sqrt{[\beta w]}$	= 64.564		
Limiting slenderness - Annex E	3.2.2;	$\lambda_{L0} = 0.4$	\times ($\pi^2 \times E / p_y$)	^{0.5} = 34.310		
		λιτ > λι	o - Allowance	should be mad	de for lateral-tor	sional buck
Bending strength - Section 4	.3.6.5					
Robertson constant;		αLT = 7.0				
Perry factor;		η∟⊤ = ma	$\mathbf{x}(\alpha_{LT} \times (\lambda_{LT} - \lambda_{T}))$	LLO) / 1000, 0) =	0.212	
Euler stress;		$p_E = \pi^2 \times$	E / λ _{LT} ² = 485	.4 N/mm ²		
		φ _L τ = (p _y	+ (η _{LT} + 1) × p	E) / 2 = 431.6 N	l/mm ²	
Bending strength - Annex B.2.7	1;	p _b = p _E ×	а р _у / (фіт + (фіт	⁻² - p _E × p _y) ^{0.5}) =	201.8 N/mm ²	
Equivalent uniform moment	factor - Sectio	on 4.3.6.6				
Moment at quarter point of seg	ment;	M ₂ = 3.2	kNm			
Moment at centre-line of segme	ent;	M ₃ = 29 .	7 kNm			
Moment at three quarter point of	of segment;	M ₄ = 28 .	7 kNm			
Maximum moment in segment;		M _{abs} = 5	6.2 kNm			
Maximum moment governing b	ouckling resista	ance; $M_{LT} = M_{a}$	_{abs} = 56.2 kNm			
Equivalent uniform moment fac	tor for lateral-	torsional bucklin	g;			
		m∟⊤ = ma	x(0.2 + (0.15 ×	M_2 + 0.5 × M_3	+ 0.15 × M₄) / Ma	ubs, 0.44) = 0 .
Buckling resistance moment	- Section 4.3					
Buckling resistance moment;		•	< S _{xx} = 100.4 k	Nm		
			= 182.6 kNm			
			PASS - Mome	nt capacity ex	ceeds design b	ending mon
Check vertical deflection - Se						
Consider deflection due to imp	osed loads			_		
Limiting deflection;			/ 360 = 13.61 1			
Maximum deflection span 2;				(δ _{min})) = 2.087 r		
		P	ASS - Maximu	m deflection d	loes not exceed	deflection l

 $\frac{(9.5+7.3)\cdot 10^3}{0.42\cdot 100} = 400$ mm

Provide 450x100x12mm Th. Steel Plate

	Project	ock Market	London NW1		Job Ref.	1350
	Camden L Section	ock Market,	LONGON NW1		Chart /	1350
LIM ENGINEERING LTD	Section				Sheet no./rev	v. 15
consulting engineers	Opto hu	Data	Objekt has	Data	Annelder	
	,	^{Date} Sep 2020	Chk'd by	Date	App'd by	Date
	jv	3ep 2020	ma			
Load combinations						
Load combination 1		Support	A	De	ead \times 1.40	
				Im	posed \times 1.60	
		Span 1		De	ead \times 1.40	
				Im	posed \times 1.60	
		Support	В	De	ead \times 1.40	
				Im	posed \times 1.60	
Analysis results						
Maximum moment;		M _{max} = 6	9.5 kNm;	M	_{min} = 0 kNm	
Maximum shear;		V _{max} = 59	9.3 kN;	Vr	_{nin} = -66.8 kN	
Deflection;		$\delta_{max} = 0.5$	9 mm;	δπ	_{nin} = 0 mm	
Maximum reaction at support			59.3 kN;	R	4_min = 59.3 kN	
Unfactored dead load reaction	at support A;	$R_{A_{Dead}} =$	= 39.4 kN			
Unfactored imposed load reac			_d = 2.6 kN			
Maximum reaction at support			66.8 kN;	R	_{3_min} = 66.8 kN	
Unfactored dead load reaction		-	= 42.3 kN			
Unfactored imposed load reac	tion at support B;	RB_Impose	_d = 4.7 kN			
Section details						
Section type;		UKC 203	3x203x46 (Tata	ı Steel Advan	ce)	
		0075	•		,	
Steel grade;	4h	S275			,	
From table 9: Design streng	th p _y				,	
From table 9: Design streng Thickness of element;	th p _y	max(T, t) = 11.0 mm			
From table 9: Design streng Thickness of element; Design strength;	th p _y	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element;	th py ↓	max(T, t p _y = 275) = 11.0 mm			
From table 9: Design streng Thickness of element; Design strength;	th py ↑ ↓ ↓	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;	th py ↑ ↓ ↓ ↓ ↓ ↓ ↓	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;	th py ↑ $\stackrel{↓}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{$	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;	th py ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;	th py	max(T, t p _y = 275) = 11.0 mm N/mm²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ²)00 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength;		max(T, t p _y = 275) = 11.0 mm N/mm ²)00 N/mm ²			
From table 9: Design streng Thickness of element; Design strength; Modulus of elasticity;		max(T, t) py = 275 E = 2050) = 11.0 mm N/mm ² D00 N/mm ²			
From table 9: Design streng Thickness of element; Design strength; Modulus of elasticity; Lateral restraint		max(T, t) py = 275 E = 2050) = 11.0 mm N/mm ²)00 N/mm ²			
From table 9: Design streng Thickness of element; Design strength; Modulus of elasticity; Lateral restraint Effective length factors		max(T, t) py = 275 E = 2050) = 11.0 mm N/mm ² 000 N/mm ²			
From table 9: Design streng Thickness of element; Design strength; Modulus of elasticity; Lateral restraint Effective length factors Effective length factor in major	Taxis;	max(T, t) py = 275 E = 2050 Span 1 h K _x = 1.00) = 11.0 mm N/mm ² 000 N/mm ² -7.2 -203.6 			
From table 9: Design streng Thickness of element; Design strength; Modulus of elasticity;	Taxis; Taxis;	max(T, t) py = 275 E = 2050 Span 1 h K _x = 1.00 K _y = 1.00) = 11.0 mm N/mm ² D00 N/mm ²			

	Project	n Lock Market,	ondon NIM/1		Job Ref.	1350	
	Section	II LOCK Market,			Sheet no./rev		
LIM ENGINEERING LTD	Section				Sheet no.//ev	. 16	
consulting engineers	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	jv	Sep 2020	ma				
Classification of cross section	ons - Section 3	-					
		ε = √[275	5 N/mm² / p _y] = '	1.00			
Internal compression parts -	Table 11						
Depth of section;		d = 160.					
		d / t = 22	.3 × ε <= 80 × ε	; Cl	ass 1 plastic		
Outstand flanges - Table 11							
Width of section;			= 101.8 mm				
		b / T = 9	$3 \times \varepsilon \le 10 \times \varepsilon;$	Cl	ass 2 compact		
					Section is c	lass 2 comp	
Shear capacity - Section 4.2	.3						
Design shear force;			(abs(V _{max}), abs	(V _{min})) = 66.8	kN		
		d / t < 70					
		· · ·		s not need to	be checked for	shear buckl	
Shear area;			D = 1463 mm ²				
Design shear resistance;			$\times p_y \times A_v = 241.$		nce exceeds des	ian choor fo	
		F.	433 - Design s	iledi lesisidi	ice exceeds des	iyii shear io	
Moment capacity - Section 4	.2.5				00 E I NI		
Design bending moment;			(abs(M _{s1_max}), a	,			
Moment capacity low shear - c			$(p_y \times S_{xx}, 1.2 \times $	ρy × Ζ _{xx}) – 130	D.O KINIII		
Effective length for lateral-to		-					
Effective length for lateral tors	ional buckling;		× L _{s1} = 4000 mn	n			
Slenderness ratio;		$\lambda = L_E / r$	_{yy} = 77.908				
Equivalent slenderness - Se	ction 4.3.6.7		_				
Buckling parameter;		u = 0.84					
Torsional index;		x = 17.7		210 25 - 0 0 4 4			
Slenderness factor; Ratio - cl.4.3.6.9;		ν = 17[1 β _W = 1.0	+ 0.05 × $(\lambda / x)^2$	⁻] ^{0.20} = 0.844			
Equivalent slenderness - cl.4.3	367		$\mathbf{v} \times \mathbf{\lambda} \times \sqrt{[\beta_W]} =$	55 686			
Limiting slenderness - Annex I			× $(\pi^2 \times E / p_v)^{0.5}$				
Limiting sich concess - Annex I	J.Z.Z,		(, , , , , , , , , , , , , , , , , , ,		de for lateral-tor	sional huckl	
Donding strength Oration		70L1 F 70L(
Bending strength - Section 4 Robertson constant;	t.J.D.J	α _{LT} = 7.0					
Perry factor;				a) / 1000 0) –	0 150		
Euler stress;		-	$η_{LT} = max(α_{LT} \times (λ_{LT} - λ_{L0}) / 1000, 0) = 0.150$ $p_E = π^2 \times E / λ_{LT}^2 = 652.5 \text{ N/mm}^2$				
		•	+ $(\eta_{LT} + 1) \times p_E$		J/mm ²		
Bending strength - Annex B.2.	1:		$p_{y} / (\phi_{LT} + (\phi_{LT}^{2})^{2})$				
			ראָי (אָבו י (אָבו	r⊢∩ry/ /-			
Equivalent uniform moment Moment at quarter point of seg		n 4.3.6.6 M ₂ = 46.	7 kNm				
	-	$M_2 = 40.$ $M_3 = 68$					
		M ₃ = 54 .					
Moment at centre-line of segment							
	-	M _{abs} = 69	9.5 kNm				
Moment at centre-line of segment at three quarter point	·,						
Moment at centre-line of segment Moment at three quarter point Maximum moment in segment	;; buckling resistal	nce; M _{LT} = M _a	_{bs} = 69.5 kNm				

Project					Job Ref.	
	Camd	en Lock Market,	London NW1		1350	
LIM ENGINEERING LTD consulting engineers	Section				Sheet no./rev	17
concurring origineore	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
Buckling resistance momer	nt - Section 4.3	.6.4				
Buckling resistance moment;		$M_b = p_b >$	< S _{xx} = 111.4 kN	١m		
		M_b / m_{LT}	= 122.9 kNm			

Check vertical deflection - Section 2.5.2 Consider deflection due to imposed loads Limiting deflection; Maximum deflection span 1;

 $\delta_{\text{lim}} = L_{s1} / 360 = 11.111 \text{ mm}$

 $\boldsymbol{\delta} = \text{max}(\text{abs}(\boldsymbol{\delta}_{\text{max}}), \text{ abs}(\boldsymbol{\delta}_{\text{min}})) = \textbf{0.921} \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Padstone P3

$$\frac{(42.3+4.7)\cdot10^3}{1.0\cdot100} = 470$$
mm

Provide 500x100x20mm Th. Steel Plate

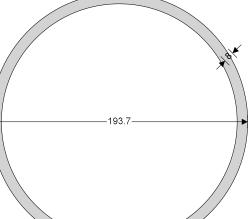
Project		Job Ref.	Job Ref.		
Camd	en Lock Market,		1350		
Section				Sheet no./rev	
					18
Calc. by	Date	Chk'd by	Date	App'd by	Date
jv	Sep 2020	ma			
	Camd Section Calc. by	Camden Lock Market, Section Calc. by Date	Camden Lock Market, London NW1 Section Calc. by Date Chk'd by	Camden Lock Market, London NW1 Section Calc. by Date Chk'd by Date	Camden Lock Market, London NW1 Section Calc. by Date Chk'd by Date

FIRST FLOOR:

C1 - STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

N = 120.9 + 0.6 = 121.5 kN


M = 0.1 x 121.5 = 12.2 kNm

TEDDS calculation version 3.0.05

Section details Section type; Steel grade; From table 9: Design strength py Thickness of element; Design strength; Modulus of elasticity;

CHS 193.7x8.0 (Tata Steel Celsius) S275

t = **8.0** mm p_y = **275** N/mm² E = **205000** N/mm²

Lateral restraint Distance between major axis restraints; Distance between minor axis restraints;	L _x = 2700 mm L _y = 0 mm	
Effective length factors Effective length factor in major axis; Effective length factor in minor axis; Effective length factor for lateral-torsional buckling;	K _x = 1.00 K _y = 1.00 K _{LT} = 1.00;	
Classification of cross sections - Section 3.5 Tubular sections - Table 12	ε = √[275 N/mm² / p _y] = 1.00	
	D / t = 24.2 × ε <= 80 × ε ² ;	Class 3 semi-compact Section is class 3 semi-compact

Moment capacity - Section 4.2.5 Design bending moment;

	Project Camden L	.ock Market, Lo	ondon NW1		Job Ref.	1350
	Section				Sheet no./rev	·.
LIM ENGINEERING LTD consulting engineers						19
0 0	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			
Effective plastic modulus - S	ection 3.5.6					
Limiting value for class 2 comp		$\beta_{2f} = 10 \times s$	e = 10			
Limiting value for class 3 semi-	-	β _{3f} = 15 × a				
Limiting value for class 2 comp		$\beta_{2w} = \max($	(100 × ε / (1 + 1	l.5 × r1), 40 × ε)) = 100	
Limiting value for class 3 semi-		-		2 × r2), 40 × ε) =		
Effective plastic modulus - cl.3	-	1	X X	,, ,		
,		1.485 × (S - Z) × [√[(140 / (D	/ t)) × (275 N/m	m² / p _v)] - 1], S	s) = 276047 n
Moment capacity low shear - c				y × Z) = 68.7 kN		,
	- ,		•	capacity exce		ending mom
Compression members - Sec	ction 4 7				g	J
Design compression force;		F₀ = 121.5	kN			
	w) ewie buekline					
Effective length for major (x-	x) axis buckling					
Effective length for buckling;			K _x = 2700 mm			
Slenderness ratio - cl.4.7.2;		$\lambda_x = L_{Ex} / r_x$	_{xx} = 41.086			
Compressive strength - Sect	ion 4.7.5					
Limiting slenderness;		$\lambda_0 = 0.2 \times$	$(\pi^2 \times E / p_y)^{0.5} =$	= 17.155		
Strut curve - Table 23;		а				
Robertson constant;		αx = 2.0				
Perry factor;		$\eta_{x} = \alpha_{x} \times (2)$	λx - λο) / 1000 =	= 0.048		
Euler stress;		$p_{Ex} = \pi^2 \times$	Ε / λ _x ² = 1198.0	3 N/mm ²		
		$\phi_x = (p_y + ($	η_x + 1) × p _{Ex}) /	2 = 765.5 N/mn	n ²	
Compressive strength - Annex	C.1;	$p_{cx} = p_{Ex} \times$	$p_y / (\phi_x + (\phi_x^2 -$	$p_{Ex} \times p_y)^{0.5}$) = 2	59.2 N/mm ²	
Compression resistance - Se	ection 4.7.4					
Compression resistance - cl.4.	7.4;	$P_{cx} = A \times p$	o _{cx} = 1209.6 kN			
		PASS - Cor	npression res	istance exceed	ls design con	npression fo
Compression members with	moments - Secti	on 4.8.3				
Comb.compression & bending	check - cl.4.8.3.2	$F_c / (A \times p)$	/) + M / M _c = 0.	272		
		PASS	- Combined b	ending and co	mpression ch	eck is satis
Member buckling resistance	- Section 4.8.3.3					
-		$M_{LT} = M_x =$	12.15 kNm			
Max major axis moment gover	-	g; m _x = 1.000)			
Max major axis moment gover Equiv uniform mnt factor - majo					\ 0.000	
		Fc / Pcx + r	$fi_X \times IVI / IVI_c \times (1)$	$+0.5 \times F_c / P_{cx}$	() = 0.286	

	Project		Job Ref.			
	Camden	13	50			
	Section				Sheet no./rev.	
LIM ENGINEERING LTD consulting engineers						20
0 0	Calc. by	Date	Chk'd by	Date	App'd by	Date
	jv	Sep 2020	ma			

GENERAL NOTES:

- 1: All dimension to be verified on site.
- 2: All drawings to be read in conjunction with Architect Drawings.
- 3: All steelwork design and fabrication in accordance with BS 5950.
- 4: Apply 2 coats of red oxide primer to all steel prior to erection.

5. All structural steelwork to be Mild Steel Grade S275, designed, fabricated & erected in accordance with B5950 Part 1. Details of main connections are shown on drawings. All other connections to have a minimum of 2No. M20 8.8 grade bolts, sherardized or zinc plated (generally use 12mm end plate and 4No M20 8.8 grade bolts)

- 6: All welding to be min. 6 mm fillet welds.
- 6: All bolts to be grade 8.8. For Splice connection use HSFG Bolts.
- 7. Timber joists to be min. grade C16.
- 8: Double joist to be bolted together with M10 bolts + 63 dia. TP connectors and washers plate @ 400 mm c/c.
- 9: Connections:
 - Timber/Masonry: BAT SPH HANGERS
 - Timber/Timber: BAT JIFFY HANGERS or Framing Anchors.
- 10: Allow for Bat M305 Straps @ 1200 mm c/c for restraints to all structural levels.
- 11: Concrete Padstones to be grade C25 (1:2:4).
- 12: Temporary propping by Contractor.
- 13: All works to be approved by Building Control Officer.
- 14: Mass concrete foundation to be grade C20(SR). General RC to be grade C35.
- 15: All Waterproofing and Drainage to Architect specification.
- 16: New brickwork to be 21 N/mmsq. New blockwork to be min. 7 N/mmsq setin 1:1:6 mortar.

17. Underside of the foundation to be found on undisturbed ground and to be approved by Building Control Surveyor on site.