

Camden Mixed Developments Limited

Grand Union House

Energy Strategy & Overheating Assessment

February 2021 70009120

Public

Camden Mixed Developments Limited

Grand Union House

Energy Strategy & Overheating Assessment

PROJECT NO. 70009120

February 2021

WSP 70 Chancery Lane London WC2A 1AF

+44 (0) 20 7314 5000 +44 (0) 20 7314 5111

wsp.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	DRAFT ISSUE	FINAL ISSUE		
Date	February 2021	February 2021		
Prepared by	Jacob Cox	Jacob Cox/Stephen Gallacher		
Signature				
Checked by	Stephen Gallacher	Michela Martini		
Signature				
Authorised by	Stephen Gallacher	Stephen Gallacher		
Signature				
Project number	70009120	70009120		
Report number				
File reference				

CONTENTS

1	EXECUTIVE SUMMARY	1
2	PROJECT BACKGROUND	4
3	POLICY CONTEXT	5
4	BASELINE CARBON EMISSIONS	7
5	BE LEAN: DEMAND REDUCTION	8
6	BE CLEAN: HEATING INFRASTRUCTURE	13
7	BE GREEN: RENEWABLE ENERGY	16
8	RESULTS	20

TABLES

TABLE 1-1 NON-RESIDENTIAL CARBON EMISSIONS REDUCTIONS 2 **TABLE 1-2 RESIDENTIAL CARBON EMISSIONS REDUCTIONS** 2 **TABLE 1-3 DEVELOPMENT CARBON EMISSIONS REDUCTIONS** 2 **TABLE 1-4** NON-RESIDENTIAL CARBON EMISSIONS REDUCTIONS 2 TABLE 1-5 **RESIDENTIAL CARBON EMISSIONS REDUCTIONS** 2 **TABLE 1-6 DEVELOPMENT CARBON EMISSIONS REDUCTIONS** 2 TABLE 4-1 NON-RESIDENTIAL BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7 TABLE 4-2 **RESIDENTIAL BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7** TABLE 4-3 DEVELOPMENT BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7 TABLE 4-4 NON-RESIDENTIAL BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7 **TABLE 4-5 RESIDENTIAL BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7** TABLE 4-6 DEVELOPMENT BASELINE REGULATED AND UNREGULATED CARBON EMISSIONS FOR THE SCHEME 7 TABLE 5-1 FABRIC PERFORMANCE TARGETS 8 **TABLE 5-2** PROPOSED ENERGY CONSERVATION MEASURES FOR NON-DOMESTIC AREAS 8 TABLE 5-3 BE LEAN: NON-RESIDENTIAL CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES9 TABLE 5-4 BE LEAN: RESIDENTIAL CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES 9 TABLE 5-5 BE LEAN: DEVELOPMENT CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES 9 **TABLE 5-6** BE LEAN: NON-RESIDENTIAL CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES10 **TABLE 5-7** BE LEAN: RESIDENTIAL CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES 10 **TABLE 5-8** BE LEAN: DEVELOPMENT CARBON EMISSIONS AFTER THE APPLICATION OF ENERGY EFFICIENCY MEASURES 10 TABLE 5-9 FABRIC ENERGY EFFICIENCY AND CARBON EMISSIONS RESULTS BY RESIDENTIAL BLOCK 10 **TABLE 5-10** SUMMARY OF OVERHEATING ANALYSIS RESULTS 12 **TABLE 6-1** BE CLEAN: NON-RESIDENTIAL CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15 **TABLE 6-2** BE CLEAN: RESIDENTIAL CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15 **TABLE 6-3** BE CLEAN: DEVELOPMENT CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15 TABLE 6-4 BE CLEAN: NON-RESIDENTIAL CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15 **TABLE 6-5** BE CLEAN: RESIDENTIAL CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15 TABLE 6-6 BE CLEAN: DEVELOPMENT CARBON EMISSIONS AFTER THE PROVISION OF ENERGY EFFICIENCY SUPPLY MEASURES 15

- TABLE 7-1
 NON-RESIDENTIAL CARBON EMISSIONS REDUCTIONS
 17
- TABLE 7-2RESIDENTIAL CARBON EMISSIONS REDUCTIONS17
- TABLE 7-3DEVELOPMENT CARBON EMISSIONS REDUCTIONS17
- TABLE 7-4NON-RESIDENTIAL CARBON EMISSIONS REDUCTIONS18
- TABLE 7-5RESIDENTIAL CARBON EMISSIONS REDUCTIONS18
- TABLE 7-6DEVELOPMENT CARBON EMISSIONS REDUCTIONS18
- TABLE 8-1
 FABRIC ENERGY EFFICIENCY AND CARBON EMISSIONS RESULTS BY RESIDENTIAL BLOCK 20
- TABLE 8-2DEVELOPMENT CARBON DIOXIDE EMISSIONS AT EACH STAGE OF THE ENERGY HIERARCHY (SAP 10)20
- TABLE 8-3
 DEVELOPMENT REGULATED CARBON DIOXIDE SAVINGS FROM EACH STAGE OF THE ENERGY HIERARCHY
 21

FIGURES

FIGURE 2-1 SITE PLAN OF THE PROPOSED DEVELOPMENT (WITHIN RED LINE BOUNDARY) 4 FIGURE 4-1 RENDER OF THE IES MODEL OF THE DEVELOPMENT 7 EXCERPT FROM THE LONDON HEAT MAP SHOWING AREAS OF HIGH HEAT DEMAND AND EXISTING/PROPOSED DISTRICT HEATING NETWORKS FIGURE 6-1 FIGURE 6-2 EXCERPT FROM CAMDEN LOCAL PLAN (2017) SHOWING THE DEVELOPMENT LOCATED OUTSIDE OF AREAS HIGHLIGHTED AS POTENTIAL NETWORK AREAS 13 FIGURE 6-3 PLANT AREA LOCATED AT MEZZANINE LEVEL 14 FIGURE 6-4 PLANT AREA LOCATED AT LEVEL 4 14 FIGURE 7-1 PROPOSED PV ARRAY LAYOUT 16

APPENDICES

APPENDIX A BE LEAN BRUKL APPENDIX B BE GREEN BRUKL APPENDIX C BE LEAN DER WORKSHEET APPENDIX D BE GREEN DER WORKSHEET **APPENDIX E OVERHEATING CHECKLIST**

13

EXECUTIVE SUMMARY 1

This Energy Strategy ('the Strategy') is submitted in support of a detailed planning application ('the Application') made on behalf of Camden Mixed Developments Limited ('the Applicant') for the adaptive re-use, alterations and extensions ('the Proposed Development') to Grand Union House, 16-20 Kentish Town Road, London ('the Site').

WSP has been commissioned by the Applicant to develop the energy strategy for the Proposed Development in Camden, which will be submitted as part of the planning application.

The proposed development comprises the partial demolition, re-build and upward extension to provide additional Class E office and commercial floorspace, six residential units (Class C3), new areas of landscaping and public realm.

The development will provide approximately 6,656 m² GIA of office space, 251 m² GIA of ground floor retail space and 523 m² GIA of residential space, 6No. units (3 x 2 Bed, 3 x 1 Bed, one of which is fully wheelchair accessible).

1.1 ENERGY AND CARBON TARGETS

There are national, regional and local policies which set targets for energy and carbon emission reduction. The development will be designed to target the most onerous requirements applicable at each phase of development.

On that basis, the implications of the relevant targets for the proposed development can be summarised as follows:

- ξ All development must meet the prevailing Building Regulations requirements. The development will be brought forward under Part L 2013 and this has been used as the basis of the energy strategy.
 - The development will also be assessed using the recently proposed SAP 10 carbon emissions factors for reference.
- β Camden requires new residential and non-residential developments to achieve an on-site reduction of 35% reduction in carbon emissions.
- 8 Camden Planning Guidance – Sustainability states any shortfall must of the 35% on-site target may require a s106 financial contribution to Camden's carbon offset fund.
- 8 Connection to a district heat network and evaluate the feasibility of CHP systems.
- Non-residential development should be designed to meet BREEAM Excellent; and
- Ş Major developments should provide a reduction in expected CO₂ emissions through the use of on-site renewable energy generation, where feasible to do so.

ENERGY STRATEGY 1.2

The energy strategy has been structured in accordance with the energy hierarchy: Be Lean, Be Clean, Be Green. The proposals for the scheme have been developed in accordance with the desire to achieve an energy efficient and sustainable development. The building will be designed to achieve optimum energy performance and will incorporate the following design features:

NON-RESIDENTIAL

- 5.296 m² of office space (NIA) and 236 m² of ground floor commercial space (NIA).
- Significantly exceed the limiting fabric requirements of Part L2A (2013) of the Building Regulations.

- § Low energy LED/fluorescent lighting incorporating daylight and motion controls will be specified throughout.
- Ş The non-residential will be served by a central variable refrigerant flow (VRF) system. Refrigerant pipework will be distributed from the external units in the plant enclosure at Level 4, via risers located strategically throughout the building.
- § It is not currently possible to serve the development from a district heating network as there are currently no existing networks near to the development.
- Ş A CHP engine has not been proposed for the site as the true carbon savings of the technologies have diminished with the decarbonisation of the grid. Using up to date carbon emission factors for grid electricity causes CHP engines to produce more carbon than a standard boiler system.
- § Therefore, the space heating and DHW demand shall be met with VRF.
- § A significant PV array is proposed to be located on the roof of the level 04. This will provide a further reduction in carbon emissions from the development.
- Ş The retail units will be completed to shell and core standard only, providing base services for future extension by tenants, who will be responsible for provision of services to suit their particular requirements. Retail units to be served by individual direct expansion units, with adequate provision for installation by tenants provided. The retail areas will be separately metered.

RESIDENTIAL

- § Significantly exceed the limiting fabric requirements of Part L1A (2013) of the Building Regulations.
- ß A CHP engine has not been proposed for the site as the true carbon savings of the technologies have diminished with the decarbonisation of the grid. Using up to date carbon emission factors for grid electricity causes CHP engines to produce more carbon than a standard boiler system.
- Ş The residential apartments will be provided with heating and domestic hot water (DHW) from a packed heat pump (per apartment). The heat pump is located within the utility cupboard of each apartment, connected to a roof mounted external unit via pipework located in the risers. The heat pump also contains an internal DHW tank for storage.
- ξ Low energy LED lighting will be specified throughout; and
- δ A PV array is proposed to be located on the roof of the residential block. This will provide a further reduction in carbon emissions from the development.

1.3 SAP 2012 RESULTS

Accredited thermal simulation software IES VE 2021 was used to determine the regulated carbon emissions for the non-residential element of the development. Elmhurst Design SAP 2012 software was used to determine the regulated carbon emissions for the residential element of the development.

Table 1-1 Non-residential carbon emissions reductions

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	133.71	156.85	-
Be Lean	116.75	156.85	12.7%
Be Clean	116.75	156.85	12.7%
Be Green	75.64	156.85	43.4%

Table 1-2 Residential carbon emissions reductions

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	7.40	0.12	-
Be Lean	6.75	0.12	8.8%
Be Clean	6.75	0.12	8.8%
Be Green	4.08	0.12	44.9%

Table 1-3 Development carbon emissions reductions

	TOTAL REGULATED EMISSIONS (MT CO₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	141.11	156.97	-
Be Lean	123.50	156.97	12.5%
Be Clean	123.50	156.97	12.5%
Be Green	79.72	156.97	43.5%

1.4 SAP10.0 RESULTS

Using the 'GLA carbon emissions reporting spreadsheet v1.1' the carbon emissions can be updated to reflect more up to date carbon factors for each fuel type. The updated results are as below

Table 1-4 Non-residential carbon emissions reductions

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	72.82	70.42	-
Be Lean	70.06	70.42	3.8%
Be Clean	70.06	70.42	3.8%
Be Green	33.96	70.42	53.4%

Table 1-5 Residential carbon emissions reductions

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	6.60	0.06	-
Be Lean	5.76	0.06	12.7%
Be Clean	5.76	0.06	12.7%
Be Green	1.83	0.06	72.3%
Table 1.C. Development	t oarban amiaaiana raduatian	-	

Table 1-6 Development carbon emissions reductions

	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	79.42	70.48	-
Be Lean	75.81	70.48	4.5%
Be Clean	75.81	70.48	4.5%
Be Green	35.79	70.48	54.9%

Using SAP 2012 carbon factors, both the residential and non-residential elements significantly exceed the 35% onsite reduction target set in the London Plan. Using SAP10.0 carbon factors, both the residential and non-residential elements significantly exceed the 35% onsite reduction target set in the London Plan.

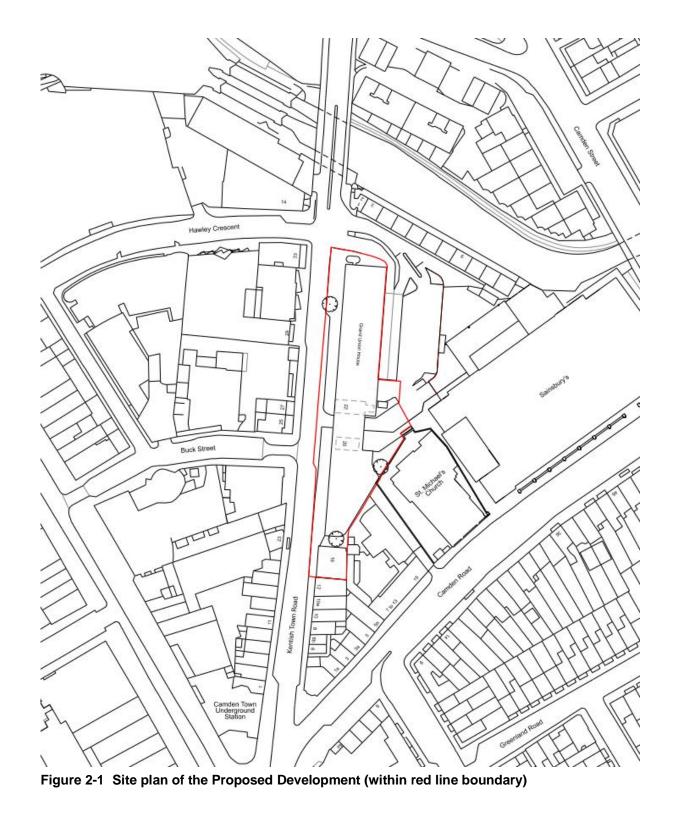
1.5 OVERHEATING SUMMARY

The strategy for minimising cooling demand in accordance with London Plan Policy SI 4 and Camden Policy CC2 for the Proposed Development is as follows:

- S The residential elements do not have any South facing glazing which helps to reduce the solar gains entering the dwellings.
- S The bedrooms are on the East side of the dwellings. Therefore, there is reduced solar gains entering these rooms reducing the risk of sleep being disturbed in the night due to increased temperatures.
- § 100% low energy lighting will be provided to reduce internal heat gains within the apartments.
- S A highly efficient fabric specification is proposed incorporating glazing with low-e solar shield glass to protect the interior from solar gain.
- S MVHR has been specified throughout to provide background ventilation.
- When natural ventilation is applied, the development complies with CIBSE TM59.
- S However, due to air quality and acoustic issues a natural ventilation strategy may not be appropriate and comfort cooling will be required.

wsp

2 PROJECT BACKGROUND


2.1 DEVELOPMENT DESCRIPTION

This Energy Strategy ('the Strategy') is submitted in support of a detailed planning application ('the Application') made on behalf of Camden Mixed Developments Limited ('the Applicant') for the adaptive re-use, alterations and extensions ('the Proposed Development') to Grand Union House, 16-20 Kentish Town Road, London ('the Site').

WSP has been commissioned by the Applicant to develop the energy strategy for the Proposed Development in Camden, which will be submitted as part of the planning application.

The proposed development comprises the partial demolition, re-build and upward extension to provide additional Class E office and commercial floorspace, six residential units (Class C3), new areas of landscaping and public realm.

The development will provide approximately 6,656 m² GIA of office space, 251 m² GIA of ground floor retail space and 523 m² GIA of residential space, 6No. units (3 x 2 Bed, 3 x 1 Bed, one of which is fully wheelchair accessible).

POLICY CONTEXT 3

The London Borough of Camden's approach to sustainable development is underpinned by the National Planning Policy Framework (NPPF) and policies from the current and draft New London Plan (minor suggested changes August 2018) and the Camden Local Plan.

NATIONAL PLANNING POLICY FRAMEWORK 3.1

The National Planning Policy Framework (NPPF) was updated initially in July 2018 with minor amendment in February 2019, which replaces the 2012 NPPF. Plans and decisions should apply a presumption in favour of sustainable development.

The NPPF sets the planning context for sustainable design and construction. It is this that Local Planning Policies are based on and adapted to account for regionally specific requirements.

The NPPF identifies three dimensions to sustainable development - economic, social and environmental - which should be applied jointly and simultaneously:

- § **Economic objective** – to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure;
- Ş Social objective - to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range of homes can be provided to meet the needs of present and future generations; and by fostering a well-designed and safe built environment, with accessible services and open spaces that reflect current and future needs and support communities' health, social and cultural well-being; and
- β Environmental objective - to contribute to protecting and enhancing our natural, built and historic environment; including making effective use of land, helping to improve biodiversity, using natural resources prudently, minimising waste and pollution, and mitigating and adapting to climate change, including moving to a low carbon economy.

The NPPF promotes the pursuit of sustainable development by seeking positive improvements to the built and natural environment, and to people's quality of life. This will include:

- δ Delivering a sufficient supply of homes
- Building a strong, competitive economy
- Ensuring the vitality of town centres
- Promoting healthy and safe communities
- Promoting sustainable transport
- Supporting high quality communications
- Making effective use of land
- Achieving well-designed places
- Protecting green belt land
- Meeting the challenge of climate change, flooding and coastal change

- Conserving and enhancing the natural environment Ş
- §. Facilitating the sustainable use of materials.

NEW LONDON PLAN (2021) & SUSTAINABLE DESIGN AND 3.2 CONSTRUCTION SPG

ENERGY AND CARBON DIOXIDE EMISSIONS

- § The overall carbon dioxide emissions from a development should be minimised through the implementation of the energy hierarchy.
- § Development should be designing to meet the following Regulated carbon dioxide standards:
 - Residential and Non-residential buildings: Zero Carbon 35% carbon emissions improvement upon Building Regulations Part L 2013 on site with shortfalls paid up to zero for both categories of building.
- ξ Developments should contribute to ensuring resilient energy infrastructure and a reliable energy supply, including from local low and zero carbon sources.
- 8 Developers are encouraged to include innovative low and zero carbon technologies to minimise carbon dioxide emissions with developments and keep up to date with rapidly improving technologies.

ENERGY DEMAND ASSESSMENT

Applications are to be accompanied by an energy demand assessment

USE LESS ENERGY

- 8 The design of developments should prioritise passive measures
- § Developers should aim to achieve Part L 2013 Building Regulations requirements through design and energy efficiency alone, as far as is practical.

EFFICIENT ENERGY SUPPLY

- Developers should assess the potential for their development to:
 - Connect to an existing district heating or cooling network;
 - Expand an existing district heating or cooling network, and connect to it; or
- Establish a site wide network, and enable the connection of existing buildings near the development

RENEWABLE ENERGY

Major developments should incorporate renewable energy technologies to minimise overall carbon dioxide emissions, where feasible.

CARBON DIOXIDE OFF-SETTING

Where developments do no achieve the Mayor's carbon dioxide reduction targets set-out, the developers should contribute to the local borough's carbon dioxide off-setting fund.

MONITORING ENERGY USE

Developers are encouraged to incorporate monitoring equipment and systems where appropriate to enable occupiers to monitor and reduce their energy use.

SUPPORTING A RESILIENT ENERGY SUPPLY

δ Developers are encouraged to incorporate equipment that would enable their schemes to participate in demand side response opportunities.

CAMDEN LOCAL PLAN (2017) & CPG: ENERGY EFFICIENCY AND 3.3 **ADAPTATION 2021**

The Camden Local Plan (adopted in June 2017) set out the Council's planning policies and its replace the current Core Strategy and Development Policies planning documents (adopted in 2010). It ensures that Camden continues to have robust, effective and up-to-date planning policies that respond to changing circumstances and the borough's unique characteristics and contribute to delivering the Camden Plan and other local priorities. The Local Plan covers the period from 2016-2031.

ENERGY HIERARCHY

- β All development is expected to reduce their carbon dioxide emissions by the following the steps in the energy hierarchy to reduce energy consumption.
- 8 Developments involving 500sg m (gross internal) floor-space or more are required to submit an energy statement which demonstrates how carbon dioxide emissions will be reduced in line with the energy hierarchy.

ENERGY EFFICIENCY: NEW BUILDINGS

- All new development is to be designed to minimise carbon dioxide emissions by being as energy efficient as is feasible and viable.
 - Natural systems
 - Preventing Overheating
 - Thermal Performance
 - Mechanical Systems
 - Other energy efficient technology
- 8 Development will be expected to achieve 60% of the un-weighted credit in the Energy category of their **BREEAM** Assessment.

DECENTRALISED ENERGY NETWORKS AND COMBINED HEAT AND POWER

- Developments will aim to connect to a decentralised energy network and use the heat unless developers can demonstrate it is not technically feasible or financially viable.
- § Where a development is not connecting immediately to a network the following measures need to be included in vour scheme:
 - space in the plant room for a heat exchanger, any other plant and pipe and electricity connections; and
 - Pipes from the plant room to the property boundary where the decentralised energy pipe is most likely to be located.

Financial Contribution: if your scheme does not connect to a Decentralised energy network or have a secure agreement to do so within 3 years, and does not include combined heat and power, a financial contribution may be required to enable expansion of the network and future connection.

RENEWABLE ENERGY

- To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.
- § All developments are to target at least a 20% reduction in carbon dioxide emissions through the installation of on-site renewable energy technologies.
- Ş When assessing the feasibility and viability of renewable energy technology, the Council will consider the overall cost of all the measures proposed and resulting carbon savings to ensure that the most cost-effective carbon reduction technologies are implemented in line with the energy hierarchy.

BUILDING REGULATIONS (PART L) 3.4

All new buildings constructed in the UK must meet the minimum requirements of the UK Building Regulations. With regards to energy and carbon compliance, all buildings must meet the building regulations Part L 'Target Emission Rate' (TER) requirements for the Part L revision which is current at the time of initial construction works for each particular developmental phase. Part L 2013 has been used as the basis of this energy statement, however the development will need to comply with the revision of Part L which is current at the start of construction.

The current proposed date for Part L 2021 to be implemented is June 2022. A meaningful start to construction on site will need to have been achieved before the implementation date of Part L 2021 to lock the development into being assessed against Part L 2013.

BASELINE CARBON EMISSIONS

The first stage of the energy assessment is to establish the baseline site energy demand and CO₂ emissions based on dynamic energy modelling software.

Detailed energy modelling was undertaken based on the methodology from Part L2A 2013 of the Building Regulations in order to establish the baseline carbon emissions for the development. Any building services installed will comply with the limiting values listed in the relevant Non-Domestic Building Services Compliance Guide.

WSP utilised a dynamic simulation software package, the Virtual Environment (VE) suite from Integrated Environmental Solutions (IES). This is a fully validated commercially available software package that is available for the purpose of demonstrating compliance with the Building Regulations. IES VE is an integrated suite of applications based around a 3D geometrical model.

This process enabled the optimum fabric and building services specification to meet Camden's planning targets.

SAP 2012 RESULTS 4.1

Table 4-1 to Table 4-3 summarise the baseline carbon emissions for the whole development.

Table 4-1 Non-residential baseline regulated and unregulated carbon emissions for the scheme

	NON-RESIDENTIAL	UNREGULATED	REDUCTION IN
	REGULATED EMISSIONS	EMISSIONS	REGULATED EMISSIONS
	(MT CO ₂)	(MT CO2)	(%)
Part L 2013 Compliant Non-Residential*	133.71	156.85	-

Table 4-2 Residential baseline regulated and unregulated carbon emissions for the scheme

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	7.40	0.12	-

Table 4-3 Development baseline regulated and unregulated carbon emissions for the scheme

	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	141.11	156.97	-

Figure 4-1 shows the geometry of the Proposed Development within the Energy Model using accredited thermal simulation software IES VE. This model has been utilised to undertake the Part L 2013 and Energy Hierarchy calculations.

SAP 10.0 RESULTS 4.2

Table 4-1 to Table 4-3 summarise the baseline carbon emissions for the whole development using SAP10.0 carbon factors.

Table 4-4 Non-residential baseline regulated and unregulated carbon emissions for the scheme

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNF
Part L 2013 Compliant Non-Residential*	72.82	

Table 4-5 Residential baseline regulated and unregulated carbon emissions for the scheme EGULATED MISSIONS **REDUCTION IN REGULATED** MT CO₂) EMISSIONS (%)

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNRE EM (N
Part L 2013 Compliant Residential*	6.60	

Table 4-6 Development baseline regulated and unregulated carbon emissions for the scheme

	TOTAL REGULATED EMISSIONS (MT CO2)	UNRE EMI (N
Part L 2013 Compliant Development*	79.42	

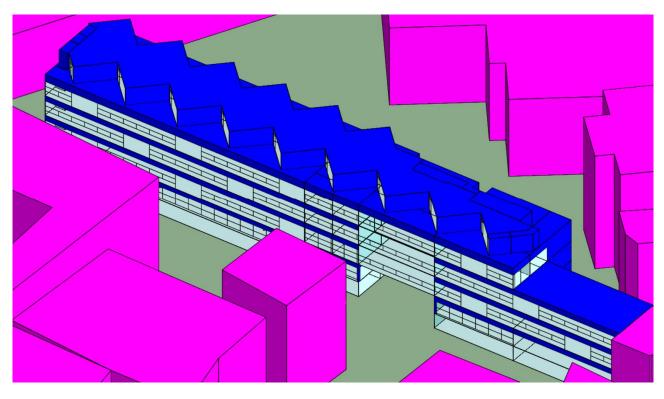


Figure 4-1 Render of the IES model of the development

REGULATED **REDUCTION IN** EMISSIONS **REGULATED EMISSIONS** (MT CO₂) (%)

70.42

0.06

EGULATED **ISSIONS REDUCTION IN REGULATED** EMISSIONS (%) MT CO₂)

70.48

BE LEAN: DEMAND REDUCTION 5

The first step to achieving Building Regulations compliance and the targets outlined previously is to reduce energy demand. The measures associated with reducing demand can be termed as 'Energy Efficiency Measures'.

BUILDING FABRIC 5.1

Table 5-1 Fabric performance targets

The proposed building will be clad with a curtain walling system comprising high performance insulating glass units.

At this stage it is anticipated that an overall U-value for the curtain walling system of 1.4 W/m²K will be achieved. For the purposes of this assessment these values have been used, though solutions will be sought to optimise the U-value further where possible in order to realise further carbon reductions.

Glazing will be specified to achieve a g-value of 0.40 for ground and mezzanine floors, 0.30 for the remaining office floors and 0.50 for the residential areas. This will provide the necessary solar control to assist in minimising summertime solar gains and reducing the overheating risk whilst helping to improve daylighting.

The current proposals for the building fabric performance for Grand Union House are summarised in Table 5-1

ELEMENT	NON-RESIDENTIAL	RESIDENTIAL
Curtain wall/glazing U-value (W/m ² K)	1.40	1.40
External Wall U-value (W/m ² K)	0.15	0.15
Common Area Core Wall U-value (W/m ² K)	N/A	0.25
Glazing g-value	0.30/0.40	0.50
Ground floor U-value (W/m ² K)	0.13	0.13
Roof U-value (W/m ² K)	0.13	0.13
Residential Front Doors U-value (W/m ² K)	N/A	1.00
Air permeability (m ³ /hr.m ² @ 50 Pa)	3.0	3.0
Thermal Bridging	Include in the façade U-value where appropriate. Otherwise 10% of associated U-value	Default ($y = 0.15$)

THE BUILDING SERVICES 5.2

High performance MEP building services are proposed for the scheme. Table 5-2 lists the general specification for the heating and cooling system, and lighting and ventilation strategy for the proposed development.

OFFICE AREAS (USE CLASS E)

All office areas are to be fitted to a Cat A standard. Heating and cooling will be provided to all office areas by EC/DC controlled low energy VRF Fan Coil Units (FCU's).

Fresh air will be provided by central air handling units with high efficiency heat recovery. Louvres for intake and exhaust air will be located on the building façade.

Domestic hot water will be provided by the VRF for the building.

All spaces will include 100% low energy lighting, including LED light fittings to the open plan office areas. Photoelectric sensors will be applied to building perimeter areas and motion sensors will be applied throughout.

OFFICE LOBBY AREAS

The reception lobby shall be fitted with high level FCUs. At stage 3, thermal analysis shall determine whether over door heaters are going to be required over the entrance to the reception.

SHOWER/CHANGING/CYCLE STORE AREAS

The cycle changing rooms will be provided with either FCUs or some form of under floor heating, this shall be developed at the next design stage.

The cycle changing and on floor WCs shall be served by a local extract system. A high-level extract fan shall extract air from each of the WCs and changing areas, exhausting directly through the facade. Make up air shall be via the adjacent office space.

FLEXIBLE RETAIL AND LEISURE USES (CLASS E)

The units will be completed to shell and core standard only, providing base services for future extension by tenants and temporary life safety systems protecting the building while the units are unoccupied. The tenants will be responsible for provision of services to suit their requirements.

For the Part L2A analysis, reasonable assumptions have been made for the fit-out design typical of the units. This includes heating and ventilation via fan coil units, mechanical ventilation using in-ceiling air handling plant, and low energy shop and display lighting with efficient controls.

Table 5-2 F	Proposed energy conservation measures for non-
ELEMENT	RATIONALE AND PERFORMANCE TAP

Air Handling Plant	Fresh air to office areas will be provided by Other areas will also be served by on floor Supply and exhaust ventilation to ancillary be designed to exceed the minimum perfor Building Services Compliance Guide wi
Energy Recovery	subsequent design stages. Air handling systems will incorporate heat refrom the exhaust air stream to the supply absorbing material, which is slowly rotated
Terminal Units	All office areas are to be fitted to a Cat A stand office areas by EC/DC controlled low energy VR to achieve a specific fan power in operation lower than the Part L 2013 limiting SFP. Ground floor flexible retail and leisure spa standard only and be fitted out by tenants.

-domestic areas

RGET

ded by central AHUs to achieve an SFP of 1.8WI/s. n floor AHUs.

cillary spaces (including retail and plant space) will performance criteria outlined in the Non-Domestic ide with the performance validated during the

heat recovery systems. These transfer waste heat supply air stream via a honeycomb matrix of heat otated within the supply and exhaust air streams.

A standard. Heating and cooling will be provided to all ergy VRF Fan Coil Units (FCU's). These are designed peration as low as 0.18 W/I/s, which is significantly FP.

ure spaces will be developed to a shell and core

wsp

ELEMENT	RATIONALE AND PERFORMANCE TARGET
	All office areas will be served by the main energy centre, with VRF distribution throughout.
Heating and Cooling Plant	The energy centre will comprise of reversible Air Source Heat Pumps which are capable of providing both heating and cooling to the building. The ASHP will have a heating COP of around 4.5 and a cooling SEER in the region of 4.5 .
Lighting Technology	Detailed lighting proposals will be developed during the subsequent design phases. High efficiency lighting will be provided throughout to significantly exceed the minimum requirements of the Non-Domestic Building Services Compliance Guide. This includes the use of high efficiency fluorescent and/or LED luminaries to all spaces. Lighting to achieve a lighting power density of 1.2 W/m²/100 lux or less in the office spaces and 2 W/m²/100 lux elsewhere.
Display Lighting	Display lighting can be a significant source of energy consumption. High efficiency display lighting will be specified throughout to reduce the carbon emissions and cooling loads associated with display lighting provision. This will better than Part L limiting values and the notional building's design and will achieve a minimum efficacy of 80 Im/W.
Lighting Control	Occupancy sensing and daylight harvesting will be specified to an appropriate level throughout the different areas of the building. This assists in reducing the use of artificial lighting when areas are not occupied.

RESIDENTIAL UNITS (USE CLASS C3)

The building services for all residential units will be fully fitted as part of the development and will consist of heating and domestic hot water (DHW) from a packed heat pump (per apartment). The heat pump is located within the utility cupboard of each apartment, connected to a roof mounted external unit via pipework located in the risers. The heat pump also contains an internal DHW tank for storage. Each individual apartment will be provided with a Mechanical Ventilation Heat Recovery (MVHR) unit to provide whole house ventilation. Fresh air and exhaust ducts will connect to the façade at high level. Each apartment will be provided with 100% low energy lighting. A PV array of approximately 8kWp (48m²) is to be provided and connected to the landlord's supply.

5.3 CARBON EMISSION REDUCTION

Based upon the energy efficiency measures outlined, and excluding the contribution of the ASHP and PV systems the following total carbon emissions are calculated in Table 5-3 to Table 5-5.

The carbon emissions for the development are shown to be lower than the minimum requirements of the Building Regulations.

This is achieved via the use of the energy efficiency measures proposed (including a highly efficient building fabric, 100% low energy lighting and high efficiency building services) which far exceed the minimum requirements of the Regulations.

5.4 SAP 2012 RESULTS

 Table 5-3
 Be Lean: Non-residential carbon emissions after

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UN
Part L 2013 Compliant Non-Residential*	133.71	
Be Lean	116.75	

 Table 5-4
 Be Lean: Residential carbon emissions after the

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNR EM (
Part L 2013 Compliant Residential*	7.40	
Be Lean	6.75	

Table 5-5 Be Lean: Development carbon emissions after the

	TOTAL REGULATED EMISSIONS (MT CO ₂)	UNRE EMI (M
Part L 2013 Compliant Development*	141.11	1
Be Lean	123.50	1

*The energy efficiency savings have been calculated on the basis that the building is served by a central heating system served by gas fired boilers only.

the application IREGULATED EMISSIONS (MT CO₂)	of energy efficiency measures REDUCTION IN REGULATED EMISSIONS (%)
156.85	-
156.85	12.7%
application of e EGULATED /IISSIONS MT CO ₂)	nergy efficiency measures REDUCTION IN REGULATED EMISSIONS (%)
0.12	-
0.12	8.8%
e application of EGULATED ISSIONS IT CO ₂)	energy efficiency measures REDUCTION IN REGULATED EMISSIONS (%)
156.97	-
156.97	12.5%

5.5 SAP 10.0 RESULTS

Table 5-6 Be Lean: Non-residential carbon emissions after the application of energy efficiency measures	Table 5-6	Be Lean: Non-residentia	I carbon emissions after	the application of er	nergy efficiency measures
---	-----------	-------------------------	--------------------------	-----------------------	---------------------------

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	72.82	70.42	-
Be Lean	70.06	70.42	3.8%

 Table 5-7
 Be Lean: Residential carbon emissions after the application of energy efficiency measures

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	6.60	0.06	-
Be Lean	5.76	0.06	12.7%

 Table 5-8
 Be Lean: Development carbon emissions after the application of energy efficiency measures

	TOTAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	79.42	70.48	-
Be Lean	75.81	70.48	4.5%

*The energy efficiency savings have been calculated on the basis that the building is served by a central heating system served by gas fired boilers only.

5.6 PART L FABRIC ENERGY EFFICIENCY

The introduction of the FEE standard is arguably the most significant change introduced with Part L 2013.

The TFEE (Target Fabric Energy Efficiency) standard is the maximum amount of energy which can be used to heat and cool a new dwelling. The TFEE standard is calculated by using a building of the same size and shape as the actual dwelling, but with the fabric and building services performance stipulated within Appendix R of SAP 2012. A 15% increase to this value is then added, ostensibly to avoid setting overly restrictive targets.

As the compliance with the TFEE standard falls under the requirements of Criterion 1, it is also seen as required by law, rather than statutory guidance.

The thermal performance of the façade has been considered in detail early on in the design process and close consideration has been given to the thermal performance of the façade based on the emerging design.

Accredited Design SAP2012 software was used to determine the FEE standards for a sample of typical apartments. An analysis has been undertaken on the all residential units to establish the performance of the fabric in relation to the TFEE. Results for TFEE and the Dwelling FEE (DFEE) for all residential units are as follows:

Table 5-9 Fa	abric energy efficiency and carbon emission		
	AVERAGE DFEE (KWH/M ²)	AVERAGE TFEE	
Residential Block	52.06	52.88	

ns results by residential block

E (KWH/M²) % DFEE<TFEE

3

1.6%

OVERHEATING ANALYSIS 5.7

Policy 5.9 of the London Plan requires major development proposals to reduce potential overheating and reliance on air conditioning systems and demonstrate this is in accordance with the following cooling hierarchy:

1. Minimise internal heat generation through energy efficient design;

2. Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls;

3. Manage the heat within the building through exposed internal thermal mass and high ceilings;

4. Passive ventilation:

5. Mechanical ventilation; and

6. Active cooling systems.

Residential units within this development present a challenge, as comfort cooling systems are not desirable due to the running costs associated with them which could lead to higher service charges; and the ambient noise levels and local air pollution mean that natural ventilation is not an option.

The passive design of these units has been considered in great detail, and the orientation and massing has considered its position on the application site relative to other buildings which will provide an element of shading but also to maximise daylight opportunities. Internal layouts have also been refined to allow the daylighting requirements to be achieved without reliance on excessive amounts of glazing. Facade options have been studied to minimise heat loss and solar gains, and to investigate the introduction of external shading measures.

A range of overheating studies have been undertaken in line with guidance in industry documents such as CIBSE TM52, CIBSE TM59 and CIBSE Guide A, and a dynamic simulation model has been developed in order to test the influence of various parameters and ensure that overheating will not be an issue. The environmental solution involves an increased volume of mechanical ventilation with boost facilities during warmer weather. Future weather files have also been studied to understand the impact of climate change.

The strategy for minimising cooling demand in accordance with Policy 5.9 for the Proposed Development is as follows:

- The residential elements do not have any South facing glazing which helps to reduce the solar gains entering the dwellings
- The bedrooms are on the East side of the dwellings. Therefore, there is reduced solar gains entering these rooms reducing the risk of sleep being disturbed in the night due to increased temperatures.
- § 100% low energy lighting will be provided to reduce internal heat gains within the apartments.
- β A highly efficient fabric specification is proposed incorporating glazing with low-e solar shield glass to protect the interior from solar gain.
- 8 MVHR has been specified throughout to provide background ventilation.
- δ When natural ventilation is applied, the development complies with CIBSE TM59.
- § However, due to air quality and acoustic issues a natural ventilation strategy may not be appropriate and comfort cooling will be required.

The Domestic Overheating Checklist is contained within the Appendices of this report.

Overheating in Corridors

In addition, it is recognised that market feedback on internal heat networks (particularly within multi storey residential buildings) in recent years has highlighted a common, significant failing; the overheating of internal corridor spaces particularly in summer. However, the proposed development does not have a centralised heat network for the residential units. Therefore, CIBSE TM59 states that the corridors do not need to be assessed but will still be included in the model.

OVERHEATING ANALYSIS

According to the results of the SAP calculations, all apartments modelled pass Building Regulations Part L Criterion 3 with the building fabric specifications set in section 5 and with the assumption that apartments benefit from internal curtains as specified in SAP 2012 guidance: "Unless specifically included in the design specification a default of dark coloured curtains should be assumed closed during daylight hours (f=1)"

A further dynamic model overheating analysis was carried out for all dwellings at the proposed development. The aim of the analysis was to evaluate the internal temperatures in the apartments to assess the potential for overheating, in line with the requirements of the GLA. The GLA requires overheating modelling to be undertaken using the following three design years:

- S DSY 1 1989: a moderately warm summer.
- §. DSY 2 - 1976: a year with a prolonged period of sustained warmth.
- S DSY 3 2003: a year with a very intense single warm spell.

Due to location of the development being outside of the Central Activity Zone, compliance with the criteria is required when assessing against using the following weather file:

Ş London LHR DSY1 2020s, high emissions, 50 percentile scenario.

The dwellings must be assessed against DSY 2 and DSY3 but do not need to achieve compliance in order to satisfy the TM59 criteria. Also, the dwellings must be assessed against a future weather profile.

CIBSE TM59 OVERHEATING CRITERIA

CIBSE TM59 sets out criteria based on the adaptive approach to thermal comfort of CIBSE TM52. The 'adaptive' approach to thermal comfort shows that the temperature at which the majority of people are comfortable 'tracks' the mean indoor temperature because of the correlation between indoor and outdoor temperature in naturally ventilated (free-running) buildings.

The following two criteria, taken together, provide a robust yet balanced assessment of the risk of overheating of residential buildings in the UK and Europe. If a room fails either of the two criteria then the whole associated dwelling is classed as overheating.

The first criterion states the number of hours (He) during which ΔT (the difference between the actual operative temperature in a room and the limiting maximum acceptable air temperature) is greater than or equal to one degree (K) during the period May to September inclusive shall not be more than 3% of occupied hours.

The second criterion deals with the severity of overheating overnight in bedrooms only. To guarantee comfort during the sleeping hours the operative temperature in the bedroom from 10pm to 9am shall not exceed 26°C for more than 1% of the annual hours (equivalent to 32 hours).

There are four assessment categories within TM52 which is dependent on the acceptable temperature range of free-running buildings. The CIBSE suggestion is that designers should aim to remain within the Category II limits.

MODELLING ASSUMPTIONS

For the purposes of this analysis the following key assumptions have been made based on CIBSE TM59 guidance:

Occupancy and Equipment gains

- 8 Maximum sensible heat gain of 75W/person and a maximum latent heat gain of 55W/person are assumed in living spaces.
- § Lighting energy is assumed at 2W/m² from 6pm to 11pm.
- Gain profiles are as described on the table below:

ROOM TYPE	OCCUPANCY	EQUIPMENT LOAD
Studio	2 people at all times	Peak load of 450W from 6pm to 8pm 200W from 8pm to 10pm 110W from 9am to 6pm and from 10pm to 12pm Base load of 85W for the rest of the day
1 bedroom apartment Kitchen/Living/Dining	1 person from 9am to 10pm; room is unoccupied for the rest of the day	Peak load of 450W from 6pm to 8pm 200W from 8pm to 10pm 110W from 9am to 6pm and from 10pm to 12pm Base load of 85W for the rest of the day
2 bedroom apartment Kitchen/Living/Dining	2 people from 9am to 10pm; room is unoccupied for the rest of the day	Peak load of 450W from 6pm to 8pm 200W from 8pm to 10pm 110W from 9am to 6pm and from 10pm to 12pm Base load of 85W for the rest of the day
3 bedroom apartment Kitchen/Living/Dining	3 people from 9am to 10pm; room is unoccupied for the rest of the day	Peak load of 450W from 6pm to 8pm 200W from 8pm to 10pm 110W from 9am to 6pm and from 10pm to 12pm Base load of 85W for the rest of the day
3 bedroom apartment Kitchen	3 people at 25% gains from 9am to 10pm; room is unoccupied for the rest of the day	Peak load of 300W from 6pm to 8pm Base load of 50W for the rest of the day
3 bedroom apartment Living Room	3 people at 75% gains from 9am to 10pm; room is unoccupied for the rest of the day	Peak load of 150W from 6pm to 8pm 60W from 9am to 6pm and from 10pm to 12pm Base load of 35W for the rest of the day
Double bedroom	2 people at 70% gains from 11pm to 8am 2 people at full gains from 8am to 9am and from 10pm to 11pm 1 person at full gains from 9am to 10pm	Peak load of 80W from 8am to 11pm Base load of 10W during sleeping hours
Single bedroom (too small to accommodate double bed)	1 person at 70% gains from 11pm to 8am 1 person at full gains from 8 am to 11pm	Peak load of 80W from 8am to 11pm Base load of 10W during sleeping hours

Ventilation

- § The primary means of reducing overheating risk is to open windows. Occupants are considered to open windows when the internal temperature exceeds 22°C and the room is occupied. Due to noise and air quality restrictions utilising a natural ventilation strategy may not be applicable. Therefore, the impact of windows being shut will also be assessed.
- β Wherever possible, opening windows will be provided to meet the purge ventilation requirements of Part F of the Building Regulations.

- MVHR units operate in 'bypass mode' in summer to better reduce the risk of overheating. MVHR is assumed to operate continuously in kitchen/living/dining and bedrooms at 0.3/l/s/m² to meet minimum fresh air requirements. Ş
- Ş Infiltration is assumed at 0.15ACH continuously.
- ξ No MVHR boost has been considered for the purposes of assessing overheating risk but this could be used in extreme weather situations
- § Corridors are unventilated, stairs are only ventilated by infiltration

Shading

A g-value of 0.5 has been assumed without the incorporation of blinds, subject to design development. Varying g-values were assessed but overheating compliance was not achieved when reducing the g-value to 0.3. Also, this had a negative impact on the carbon emission, so the g-value was kept at 0.5.

OVERHEATING RESULTS 5.8

The overheating analysis was carried out to CIBSE TM59 requirements. All dwellings were assessed against Category II criteria. Overheating analysis was carried out using the four weather files as described in section 9.1. A summary of the results is provided below.

Table 5-10 Summary of overheating analysis results

	NO. OF TM59 COMPLIANT OCCUPIED ROOMS		
WEATHER FILE	With windows open	With West facing windows closed	With all windows closed
DSY 1	15 of 15	9 of 15	0 of 15
DSY 2	0 of 15	0 of 15	0 of 15
DSY 3	0 of 15	0 of 15	0 of 15

5.9 **OVERHEATING CONCLUSION**

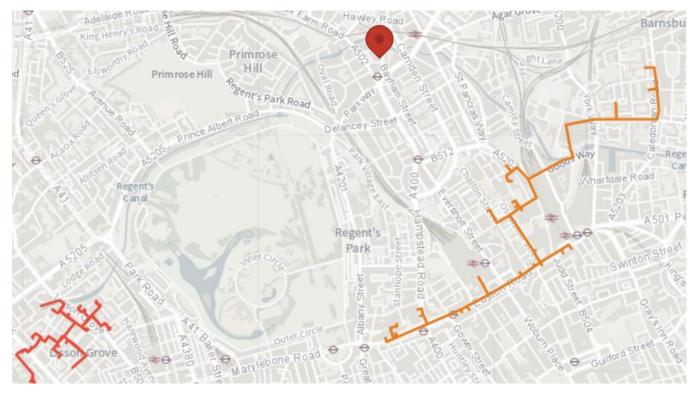
The strategy for minimising cooling demand in accordance with Policy 5.9 for the Proposed Development is as follows:

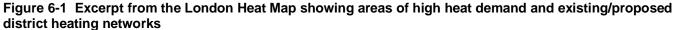
- S The residential elements do not have any South facing glazing which helps to reduce the solar gains entering the dwellings.
- 8 The bedrooms are on the East side of the dwellings. Therefore, there is reduced solar gains entering these rooms reducing the risk of sleep being disturbed in the night due to increased temperatures.
- § 100% low energy lighting will be provided to reduce internal heat gains within the apartments.
- § A highly efficient fabric specification is proposed incorporating glazing with low-e solar shield glass to protect the interior from solar gain.
- Ş MVHR has been specified throughout to provide background ventilation.
- Ş When natural ventilation is applied, the development complies with CIBSE TM59.
- ξ However, due to air quality and acoustic issues a natural ventilation strategy may not be appropriate and comfort cooling will be required.

BE CLEAN: HEATING INFRASTRUCTURE 6

After consumption has been reduced through the application of energy efficiency measures, the next step is to consider low carbon technologies in order to provide further reduction in carbon dioxide emissions.

6.1 DISTRICT HEATING NETWORK


The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study. An excerpt from the London Heat Map across (Figure 6-1) shows the location of any existing and proposed district heating systems within the vicinity of the development (existing networks are shown in yellow and proposed/future networks in red).


Local Plan Policy CS15 requires new developments to connect to any district heating networks available. The nearest existing district heating network is the Bunhill network which is approximately 4km away from the development (shown in yellow). The distance to the existing network makes it an unviable solution as the capital cost and network losses would be too great.

The limited space and constrained site for an energy centre means it is only possible to provide heat for the proposed development alone and not to connect to and serve other buildings

6.2 FUTURE DISTRICT HEATING NETWORK CONNECTION

A possible future district heating network is shown closer to the site (Euston Road), with the closest connection point on Goldington Street to the South East of the development which is approximately 1km. Again, the distance is too great to make connection a viable solution.

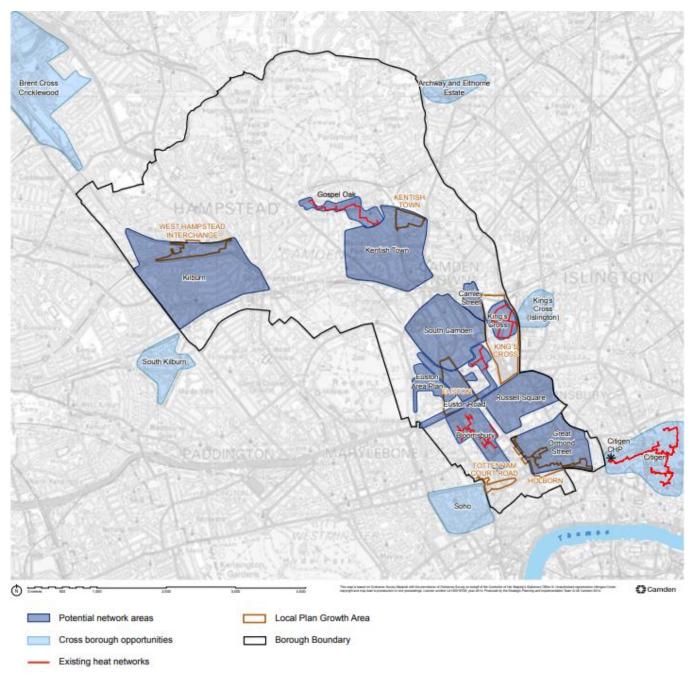


Figure 6-2 Excerpt from Camden Local Plan (2017) showing the Development located outside of areas highlighted as potential network areas

COMBINED HEAT AND POWER (CHP) 6.3

The predominant use for the development is proposed to be Class E office space with some flexible Class E retail and leisure spaces at ground level and C3 residential units. This development mix provides a low hot water demand and combined with a highly efficient building fabric contained within the "Be Lean" stage of the Energy Hierarchy, the development is not anticipated to have a significant demand for heat. The predominant regulated energy uses in the development will be for cooling, ventilation and lighting.

Due to the low demand for space heating and domestic hot water (DHW) the anticipated run hours of a CHP unit would fall below the GLA target of 5,000 run hours per year. This reduces the total heat contribution of CHP to the Proposed Development to fall below a target of 60%.

Recent guidance from the GLA states 'as the electricity grid decarbonises the carbon savings achieved from gasengine CHP will decrease and with growing concerns of the impact of the technology on air quality, applicants will be expected to utilise other low carbon technologies'. Also, the GLA lists CHP engines as not applicable for smallmedium residential developments and non-domestic developments with a simultaneous demand for heat and power that do not have a year-round base load for optimum operation of CHP such as offices.

CENTRALISED COOLING SYSTEM 6.4

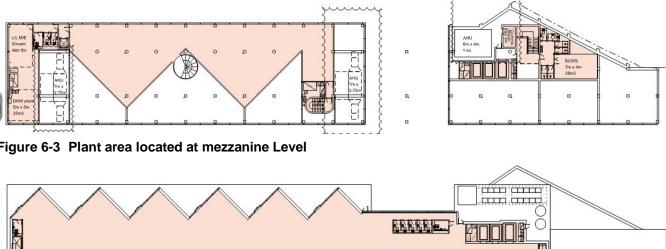
As noted previously, the office areas will be provided with cooling, served by a centralised VRF system. The preferred solution at present is to generate chilled water for comfort cooling with reversible Air Source Heat Pumps (ASHPs) located at Level 4.

LOCAL PLANNING CRITERIA, INCLUDING LAND USE AND NOISE 6.5

Previously, the GLA encouraged the use of CHP systems; however, recent GLA guidance discourages the use of CHP. As CHP is not proposed for the development this minimises the noise levels on site. The development will be served by reversible Air Source Heat Pumps (ASHPs) which will provide space heating and cooling, and domestic hot water, and are located on the roof of the proposed building.

The reversible ASHPs will be located on the roof of the development and will not use additional land adjacent to the Proposed Development.

The location of the units on the roof has been selected to minimise impact on adjacent properties. Noise levels will comply with local planning requirements.


FEASIBILITY OF EXPORTING HEAT/ELECTRICITY FROM THE 6.6 SYSTEM

It is anticipated that the ASHP units will be sized to serve only the requirements of the Proposed Development as there is not a heat network in place to facilitate the exportation of heat to other buildings in the local area. In addition, the low temperature heat generated from the ASHPs would not be compatible with any of the existing heat networks in the City.

The significant PV arrays on both the office building and residential block will generate a significant quantity of renewable electricity. Offices typically have high electrical loads that coincide with the PV arrays generating electricity during the day, so all will be used on site. However, the residential PV array is significant and may produce more electricity than is required on site. Therefore, it is anticipated that excess electricity will be exported from the site.

6.7 **ENERGY CENTRE**

Detailed energy centre layouts will be developed as part of the schematic design phase post planning, however sufficient space has been allowed for all plant to be accommodated as the design develops. Refer to Figure 6-3 and Figure 6-4 for a plan of the proposed MEP plant at mezzanine level and level 4.

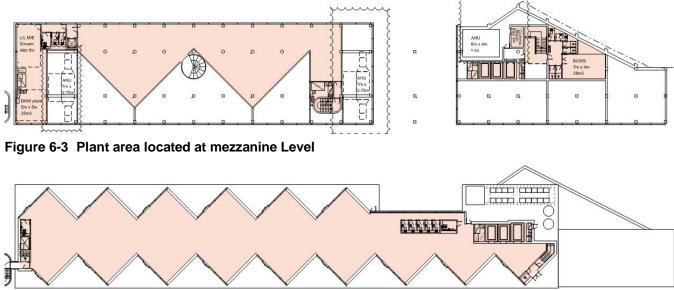


Figure 6-4 Plant area located at Level 4

CARBON EMISSIONS REDUCTION 6.9

As the development is not proposing to connect to a district heating network or be served by CHP, the carbon emissions savings remain unchanged from the "Be Lean" stage of the Energy Hierarchy. The overall carbon emissions for the development is shown in Table 6-1 to Table 6-3.

6.10 SAP 2012 RESULTS

 Table 6-1
 Be Clean: Non-residential carbon emissions after the provision of energy efficiency supply
 measures

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	133.71	156.85	-
Be Lean	116.75	156.85	12.7%
Be Clean	116.75	156.85	12.7%

Table 6-2 Be Clean: Residential carbon emissions after the provision of energy efficiency supply measures

	RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	7.40	0.12	-
Be Lean	6.75	0.12	8.8%
Be Clean	6.75	0.12	8.8%

 Table 6-3
 Be Clean: Development carbon emissions after the provision of energy efficiency supply
 measures

	TOTAL REGULATED EMISSIONS (MT CO₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	141.11	156.97	-
Be Lean	123.50	156.97	12.5%
Be Clean	123.50	156.97	12.5%

6.11 SAP 10.0 RESULTS

 Table 6-4
 Be Clean: Non-residential carbon emissions after the provision of energy efficiency supply
 measures

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential**	72.82	70.42	-
Be Lean	70.06	70.42	3.8%
Be Clean	70.06	70.42	3.8%
Table 6-5 Be Clean: Residential carbon emissions after the provision of energy efficiency supply measures			
	RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	6.60	0.06	-
Be Lean	5.76	0.06	12.7%
Be Clean	5.76	0.06	12.7%
Table 6-6 Be Clean: Development carbon emissions after the provision of energy efficiency supply measures			
	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant	79.42	70.48	-

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential**	72.82	70.42	-
Be Lean	70.06	70.42	3.8%
Be Clean	70.06	70.42	3.8%
Table 6-5 Be Clean: Re measures	sidential carbon emissions af	ter the provision of e	nergy efficiency supply
	RESIDENTIAL REGULATED EMISSIONS (MT CO ₂)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	6.60	0.06	-
Be Lean	5.76	0.06	12.7%
Be Clean	5.76	0.06	12.7%
Table 6-6 Be Clean: De measures	velopment carbon emissions	after the provision of	energy efficiency supply
	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant	79.42	70.48	_

	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULA EMISSIOI (MT CO2
Part L 2013 Compliant Development*	79.42	70.48
Be Lean	75.81	70.48
Be Clean	75.81	70.48

*The energy efficiency savings have been calculated on the basis that the building is served by a central heating system served by gas fired boilers only.

*The energy efficiency savings have been calculated on the basis that the building is served by a central heating system served by gas fired boilers only.

4.5%

4.5%

7 BE GREEN: RENEWABLE ENERGY

Renewable Energy Technologies can provide a source of energy on-site that is not primarily based on the consumption of fossil fuels or grid electricity and/or utilises a heat source that is renewable such as ground source and solar thermal systems.

In accordance with the requirements of Section 5.2 of the London Plan and Camden's Local Plan, we have evaluated a number of renewable energy technologies and outlined how they may be applied to the development.

7.1 WIND POWER

Harnessing the kinetic energy of wind can provide a renewable source of onsite electricity generation. Wind turbines need to be positioned where a frequent and steady source of wind is available that is not too turbulent or uneven in direction.

Typically, wind turbines are located in open areas where there is minimum disruption to prevailing winds. Locating wind turbines on the top of commercial buildings is not normally feasible due to the acoustic and vibrations impacts associated with nearby dwellings.

Wind conditions prevent the implementation of wind power generation from being feasible. In addition, it is not considered to be appropriate in townscape and architectural terms to provide wind turbines on top of the building. On that basis they are not proposed for the Proposed Development.

7.2 BIOMASS HEATING

Biomass heating has embodied environmental impacts from transport and fuel combustion which makes it less desirable in Air Quality Management Areas (AQMAs).

A review of the potential impact on air quality from increased wood fuelled biomass use in London has been carried out by AEA Energy & Environment, and was published in December 2007. The assessment indicates that potentially increasing the contribution from small-scale wood fuelled biomass combustion may lead to a substantial increase in nitrogen dioxide and particulate matter concentrations. Further to this, solid biomass relies on a reliable fuel supply which must be delivered and stored on site.

The site would therefore require good access routes and space for fuel storage and plant, which could not feasibly be incorporated within the proposed scheme due to its location within the London Borough of Camden and the limited space for the development. It also has relatively high maintenance requirements and fuel costs. This technology is therefore deemed to be unsuitable for the Proposed Development.

7.3 GROUND SOURCE HEATING AND/OR COOLING

Ground source heating and/or cooling may be incorporated to make use of the thermal storage and ground temperature to provide heating and/or cooling to a building. Ground source heating is an effective renewable energy source when used to provide space heating via low grade heating system such as underfloor heating.

The ground plus 4-storey development is located in the London Borough of Camden with a small building footprint which will be inadequate space to locate sufficient horizontal or vertical ground loops to provide meaningful contributions to the heating and/or cooling to the development. In addition, the basement level of the development is part of the neighbouring Sainsbury's and is not within the red line boundary of the Proposed Development.

Therefore, the use of ground source heating and/or cooling is not considered feasible for the Proposed Development.

7.4 SOLAR THERMAL HOT WATER HEATING

Solar thermal hot water (STHW) generation involves capturing solar radiant heat to preheat or heat domestic hot water.

Correctly located and orientated, solar thermal systems can meet a proportion of a building's domestic hot water dependent on the expected demand profile and available space for locating STHW panels.

The limited roof space available of the Proposed Development is insufficient to provide any meaningful contribution to the development's heating requirements from solar. The limited availability of roof space is partly due to the provision of a publicly accessible roof terrace. On that basis STHW is not proposed for inclusion within the scheme.

7.5 PHOTOVOLTAIC PANELS

The feasibility of providing photovoltaic (PV) panels has been assessed based upon estimated energy production (kWh) from the installed location along with manufacturers cost data to enable a life cycle cost analysis to be undertaken. Panels correctly oriented, maintained and not obscured by shading can be expected to provide in the region of 120kWh/m²/year in London.

The office building roof and residential roof areas have been identified as a potential location to accommodate PV panels to serve the development. The office roof would accommodate approximately 279 m² of PV lying at an incline of 5°. Also, there is sufficient space for approximately 48m² of PV on the roof of the residential block. The office and residential PV arrays are orientated South West and West respectively.

This would equate to a carbon reduction of approximately 25.81 MT CO_2 when using SAP 2012 carbon factors or 11.59 MT CO_2 when using SAP10.0 carbon factors.

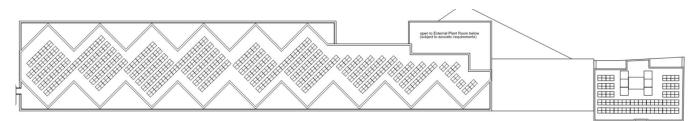


Figure 7-1 Proposed PV array layout

7.6 AIR SOURCE HEAT PUMPS (ASHPS)

Air source heat pumps (ASHPs) can provide heating and/or cooling utilising air temperatures. The use of ASHPs are an effective LZC technology as they have high efficiencies for both heating and cooling.

Due to the increase in decarbonisation of the National Grid, the use of high efficiency electric based systems provides a long term low carbon development. The use of ASHPs has a considerable positive effect on local air quality as there is no combustion on site.

The local air quality in London is poor and steps undertaken to improve air quality are beneficial. ASHPs generate no local emissions which has a considerable effect on local air quality.

Due to the low heat demand for the office and ground floor commercial units through highly efficient building fabric and low hot water demand, the VRF system can utilise ASHPs as an ideal method of providing space heating, cooling and DHW and is considered feasible for the development.

7.7 WATER SOURCE HEAT PUMPS

WSHPs have a significantly higher coefficient of performance (COP) than ASHPs due to the higher temperature of the heat source which is constant throughout the year. A highly efficient building fabric combined with low hot water demand provide an ideal method of providing space heating and DHW to the development. Low flow temperatures from the WSHPs further reduce the energy consumption and carbon emissions for the Proposed Development.

WSHPs are powered by grid supplied electricity. As mentioned in the ASHP section above, the National Grid is increasingly decarbonising due to an increase in renewable energy generation and a reduction in coal power generation. This leads to a long term low carbon solution for the Proposed Development.

The use of external water sources, such as The Regents Canal, provides the opportunity to be a heat sink for chiller heat rejection. The relatively low river water temperatures compared to ambient air temperatures mean that better efficiencies can be achieved by the chillers.

However, the canal is situated at a considerable distance to the North of the application site and similar to the issues with connecting to existing DHNs, the distances would make connection to the river expensive with little benefit for the Proposed Development.

7.8 CARBON EMISSIONS REDUCTION

All renewable energy technologies which may be considered feasible for the scheme have been assessed, the outcomes of which are summarised above. From that exercise, it was concluded that only ASHPs and PV systems could be suitable for inclusion in the proposal as the low-grade heat is ideal for the development that has a highly efficient building fabric and low demand for hot water.

The use of high efficiency electrically based systems provides a long term low carbon solution and minimises impacts on local air quality. As the National Grid is becoming increasingly decarbonised, the use of an ASHP solution will continue to provide progressively lower carbon emissions in operation. In addition, as the ASHPs are not a combustion technology, there are no emissions from the system, thus helping to improve air quality in the Camden.

It is proposed to install ASHPs to provide heating, cooling and hot water to the development which will work towards the Mayor's aims in the forthcoming draft New London Plan.

The use of ASHPs provides a carbon saving of 17.97 MT CO_2 and the PV array provides a carbon saving of 25.81 MT CO_2 .

7.9 SAP 2012 RESULTS

 Table 7-1
 Non-residential carbon emissions reductions

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO ₂)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	133.71	156.85	-
Be Lean	116.75	156.85	12.7%
Be Clean	116.75	156.85	12.7%
Be Green	75.64	156.85	43.4%

Table 7-2 Residential carbon emissions reductions

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	7.40	0.12	-
Be Lean	6.75	0.12	8.8%
Be Clean	6.75	0.12	8.8%
Be Green	4.08	0.12	44.9%

Table 7-3 Development carbon emissions reductions

	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	141.11	156.97	-
Be Lean	123.50	156.97	12.5%
Be Clean	123.50	156.97	12.5%
Be Green	79.72	156.97	43.5%

7.10 SAP10.0 RESULTS

Table 7-4 Non-residential carbon emissions reductions

	NON-RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Non-Residential*	72.82	70.42	-
Be Lean	70.06	70.42	3.8%
Be Clean	70.06	70.42	3.8%
Be Green	33.96	70.42	53.4%

Table 7-5 Residential carbon emissions reductions

	RESIDENTIAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Residential*	6.60	0.06	-
Be Lean	5.76	0.06	12.7%
Be Clean	5.76	0.06	12.7%
Be Green	1.83	0.06	72.3%

Table 7-6 Development carbon emissions reductions

	TOTAL REGULATED EMISSIONS (MT CO₂)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	79.42	70.48	-
Be Lean	75.81	70.48	4.5%
Be Clean	75.81	70.48	4.5%
Be Green	35.79	70.48	54.9%

Project No 70009120 February 2021 Page 18

7.11 AIR QUALITY

It has been recognised in the Draft New London Plan (with minor suggested changes 2018) that there is a movement towards electrical heating systems and moving away from gas fired systems to improve air quality in London. Below is an extract from Policy SI3 Energy Infrastructure of the Draft New London Plan:

"Major development proposals within Heat Network Priority Areas should have a communal low-temperature heating system

- the heat source for the communal heating system should be selected in accordance with the following heating hierarchy:
 - connect to local existing or planned heat networks
 - use zero-emission or local secondary heat sources (in conjunction with heat pump, if required)
 - use low emission combined heat and power (CHP) (only where there is a case for CHP to enable the delivery of an area-wide heat network)
 - use ultra-low NOx gas boilers.
- CHP and ultra-low NOx gas boiler communal or district heating systems should be designed to ensure that they meet the requirements of policy SI1 (A)
- Where a heat network is planned but not yet in existence the development should be designed for a connection at a later date"

This demonstrates that the Mayor recognises the air quality issues within London and is prioritising the use of existing and proposed heat networks, lower temperature heating systems and using zero emission sources to generate clean heat and/or power. These are being prioritised over the use of gas fired systems including, gas fired fuel cells, CHP and gas boilers.

The use of ASHPs for this development will help to improve the local air quality in Camden as the proposed Energy Strategy contained in this document will have no direct emissions from site. This reduces the NOx and particulate emissions in the vicinity of the Proposed Development.

Policy SI1 Improving Air Quality of the draft New London Plan states:

London's air quality should be significantly improved and exposure to poor air quality, especially for vulnerable people, should be reduced:

- development proposals should not:
- lead to further deterioration of existing poor air quality
- create any new areas that exceed air quality limits, or delay the date at which compliance will be achieved in areas that are currently in exceedance of legal limits
- reduce air quality benefits that result from the Mayor's or boroughs' activities to improve air quality
- create unacceptable risk of high levels of exposure to poor air quality.
- development proposals should use design solutions to prevent or minimise increased exposure to existing air pollution and make provision to address local problems of air quality. Particular care should be taken with developments that are in Air Quality Focus Areas or that are likely to be used by large numbers of people particularly vulnerable to poor air quality, such as children or older people.
- masterplans and development briefs for large-scale development proposals subject to an Environmental Impact Assessment should propose methods of achieving an Air Quality Positive approach through the new development.

- major development proposals must be at least air quality neutral and be submitted with an Air Quality Assessment.
- development proposals must demonstrate how they plan to comply with the Non-Road Mobile Machinery Low Emission Zone and reduce emissions from the demolition and construction of buildings following best practice guidance.
- development proposals should ensure that where emissions need to be reduced, this is done on-site. Where it can be demonstrated that on-site provision is impractical or inappropriate, off-site measures to improve local air quality may be acceptable, provided that equivalent air quality benefits can be demonstrated.

Table 7-4 Air quality impacts

STRATEGY	TOTAL FUEL CONSUMPTI – RESIDENTIAL
Grid electricity	15.43 MWh/year
Domestic/communal gas boilers	0 MWh/year
Gas CHP	0 MWh/year
Connection to existing DH network	0 MWh/year
Other gas use (e.g. cookers)	0.08MWh/year

TOTAL FUEL CONSUMPTION ΓΙΟΝ - NON-RESIDENTIAL

495.20 MWh/year

0 MWh/year

0 MWh/year

0 MWh/year

0 MWh/year

RESULTS 8

The three principal steps taken; Be Lean (Use Less Energy), Be Clean (Supply Energy Efficiently) and finally Be Green (Renewable Technology measures) are summarised below. The target (Building Regulations compliant) carbon emissions for the Proposed Development are calculated to be 141.11 MT CO₂ per annum.

DEMAND REDUCTION (BE LEAN) 8.1

Through the application of the measures identified in Section 5 the regulated carbon emissions are shown to be 123.50 MT CO₂ per annum.

HEATING INFRASTRUCTURE (BE CLEAN) 8.2

As the development is not proposing to connect to a district heating network or to provide a CHP to serve the building, there are no subsequent carbon savings in this stage of the Energy Hierarchy. Therefore, the total carbon emissions are the same as the Be Lean stage of the hierarchy and total 123.50 MT CO₂ per annum.

8.3 **RENEWABLE ENERGY (BE GREEN)**

The feasibility of a range of renewable technologies has been assessed in the context of the London Plan. It was concluded that only the incorporation of ASHPs and PV could be suitable for inclusion in the proposals; these are ideal technologies to serve the heating load of the highly efficiency building fabric and also low domestic hot water demand as well as generating zero carbon onsite electricity. This reduces the regulated carbon emissions to 79.72 MT CO₂ per annum.

8.4 PART L FABRIC ENERGY EFFICIENCY

Accredited Design SAP2012 software was used to determine the FEE standards for a sample of typical apartments. An analysis has been undertaken on the all residential units to establish the performance of the fabric in relation to the TFEE. Results for TFEE and the Dwelling FEE (DFEE) for all residential units are as follows:

Table 8-1 Fabric energy efficiency and carbon emissions results by residential block AVERAGE DFEE (KWH/M²) AVERAGE TFEE (KWH/M²) % DFEE<TFEE

Residential Block	52.06	52.88	1.6%

GUIDANCE ON PREPARING ENERGY ASSESSMENTS 8.5

In direct response to the information outlined within the 2020 Greater London Authority (GLA) Guidance on preparing Energy Assessments, the results outlined previously are summarised in the tables across, with the results presented against the overall carbon reduction target.

The proposals for the Proposed Development outlined within this energy strategy are considered to maximise the potential carbon savings which can be achieved on site through the provision of:

- § A highly efficient building fabric and optimal g-values to reduce the cooling load.
- Ş Efficient building services plant, including air handling plant with low specific fan powers and heat recovery.
- Ş Maximised use of LED and low energy fixtures elsewhere.
- § The use of ASHPs to provide low energy and low carbon heat to the building. This is a long-term low carbon solution as the National Grid is decarbonising.
- § Onsite zero carbon electricity generation through PV arrays.

Overall, the development is shown to achieve a 54.9% reduction in carbon emissions compared to the Part L 2013 baseline. This significantly exceeds the on-site target of a 35% reduction in carbon emissions from Part L 2013 for the development. The proposed energy strategy for the development is a long-term low carbon solution, has significant benefits relating to improving local air guality within the Camden and aligns with the Mayor's plans in the forthcoming New London Plan.

Table 8-2 Development carbon dioxide emissions at each stage of the energy hierarchy (SAP 10)

	TOTAL REGULATED EMISSIONS (MT CO2)	UNREGULATED EMISSIONS (MT CO2)	REDUCTION IN REGULATED EMISSIONS (%)
Part L 2013 Compliant Development*	79.42	70.48	-
Be Lean	75.81	70.48	4.5%
Be Clean	75.81	70.48	4.5%
Be Green	35.79	70.48	54.9%

wsp

	REGULATED CARBON DIOXIDE EMISSIONS SAVINGS (MT CO ₂ PER ANNUM)	REGULATED CARBON DIOXIDE EMISSIONS SAVINGS (%)
Savings from energy demand reduction	3.61	4.5%
Savings from energy efficient supply	0.0	0.0%
Savings from renewable energy	40.02	50.4%
Total Cumulative Savings	43.63	54.9%
Total Target Savings	79.42	100%
Annual Surplus	35.79	45.1
Cash in-lieu contribution (£) (Calculated at £95/Tonne CO ₂ over the period of 30 years)	£102,001	

Table 8-3 Development regulated carbon dioxide savings from each stage of the energy hierarchy

Project No 70009120 February 2021 Page 21

APPENDIX A

BE LEAN BRUKL

As designed

Compliance with England Building Regulations Part L 2013

Project name

Be Lean

Date: Mon Feb 08 17:00:53 2021

Administrative information

Building Details

Address: Grand Union House, ,

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.13 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.13 BRUKL compliance check version: v5.6.b.0

Certifier details

Name: Jacob Cox Telephone number: Address: , ,

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	19.3
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	19.3
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	16.8
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.15	0.15	0000000:Surf[0]
Floor	0.25	0.13	0.13	0000000:Surf[3]
Roof	0.25	0.13	0.13	01000037:Surf[0]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	0000005:Surf[4]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	1-1	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
U _{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]				

 U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)]

 U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	3

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES	
Whole building electric power factor achieved by power factor correction	>0.95	

1- VRF FCU with central AHU

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency		
This system	0.98	4	0	0	0.85		
Standard value	0.91*	2.6	N/A	N/A	0.5		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							
* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting							

* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

2- Retail

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency		
This system	0.98	4	0	0	0.9		
Standard value	0.91*	2.6	N/A	N/A	0.5		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							

* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

1- Retail

	Water heating efficiency	Storage loss factor [kWh/litre per day]					
This building	0.98	-					
Standard value	Standard value 0.9* N/A						
* Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting efficiency is 0.73.							

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SFP [W/(I/s)]			HD officionay							
ID of system type	Α	В	С	D	E	F	G	Н		HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
00 Reception	-	-	-	1.3		-	-	-	-	-	N/A
00 Office P E	-	-	-	1.3	-	-	Ξ	-	-	-	N/A
00 Office P W	-	E	-	1.3	-	-	-	-	L	-	N/A
00 Office C	-	-	-	1.3	-	-	-	-	-	-	N/A
00 Changing Rooms	-	-	1 -1	1.3	-	-	-	-	-	-	N/A
00 Coffee Shop	-	-	-	1.3	-	-	-	-	-	-	N/A
01 Office P	-	-	-	1.3	-	-	-	-	-	-	N/A

Zone name	SFP [W/(I/s)]										
ID of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
01 Office P W	-	-	-	1.3		-	-	-	-	-	N/A
01 Office P E	-	-	Ξ.	1.3	-	-	-	-	Ч.	-	N/A
01 Office C	-	-	-	1.3		-	-	-	-	-	N/A
01 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
01 Greenhouse	-	-	-	1.3		-	-	-	-	-	N/A
02 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office C	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3		-	-	-	-	-	N/A
03 Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office C	-	-	-	1.3	-	Ξ	-	-	-	-	N/A
03 Greenhouse	-	-	Ч	1.3	·	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3		-	-	-	-	-	N/A
02 Greenhouse	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
04 Office	-	-	-	1.3	· :	-	-	-	-	-	N/A
00 Retail	-	-	-	1.3	-	-	-	-	-	-	N/A
00 Retail	-	-	-	1.3	-	-	-	-	-	-	N/A
0M Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
0M Office C	-	4	-	1.3	-	-	-	4	-	-	N/A
0M Office P	-	-	-	1.3	-	-	-	-	-	-	N/A

General lighting and display lighting	Lumino	ous effic]		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]	
Standard value	60	60	22		
00 Circulation	-	254	-	24	
00 Circulation	-	304	-	13	
00 Cycle Store	-	156	-	169	
00 UKPN	90	-	-	84	
00 Bin Store	-	155	-	148	
00 WC	-	182	-	107	
00 Reception	-	153	80	513	
00 Office P E	147	-	-	912	
00 Circulation	-	316	-	7	
00 Circulation	-	257	-	22	
00 Office P W	147	-	-	912	
00 Office C	145	-	-	608	
00 Changing Rooms	-	162	-	79	
00 Cycle Store	-	155	-	85	
00 Coffee Shop	-	157	80	353	
00 Stairs	-	175	-	40	

General lighting and display lighting	Lumino				
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]	
Standard value	60	60	22		
00 Circulation	-	161	-	43	
01 Office P	151	-	-	1133	
01 Office P W	148	-	-	1128	
01 Office P E	148	-	-	1381	
01 Office C	145	-	-	884	
01 Stair	-	192	-	48	
01 Circulation		307	-	15	
01 WC		167	-	225	
01 Office P W	155	-	-	115	
01 Stairs		204	-	51	
01 Greenhouse	-	147	-	332	
01 Circulation	-	352	-	11	
01 WC	-	373	-	19	
02 Office P W	148	-	-	1128	
02 Office P E	148	-	-	1381	
02 Office C	145	-	-	884	
02 Stair	-	192	-	48	
02 Circulation	-	307	-	15	
02 Office P W	155	-	-	115	
03 Stairs	-	254	-	41	
02 Circulation	-	352	-	11	
02 WC	-	373	_	19	
03 Office P W	149	-	-	1128	
03 Office P E	149	-	-	1381	
03 Office C	145	-	-	884	
03 Stair	-	185	-	83	
03 Greenhouse	-	145	-	167	
03 Office P W	158	-	-	115	
02 Greenhouse	-	145	-	167	
03 Circulation	-	391	-	11	
03 WC	-	417	-	19	
02 Stairs	-	236	-	41	
02 Office P	151	-	-	1133	
02 WC	-	167	-	225	
03 Circulation	-	414	-	10	
03 WC	-	171	-	225	
03 Office P W	160	-	-	375	
04 Circulation	-	311	-	27	
04 Office	- 151		-	2878	
04 WC	-	- 224	-	69	
04 WC 04 Stairs		367		11	
04 Stairs 04 Circulation	-	398	-	8	
	-		-		
04 WC	-	346	-	17	

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
04 Circulation	-	333	-	9
00 Retail	-	148	80	2691
00 Retail	-	160	80	1001
0M Circulation	-	389	-	9
0M Plant	83	-	-	193
0M Plant	81	-	-	307
0M Stair	-	195	-	51
0M Stairs	-	178	-	64
0M Plant	82	-	-	294
0M WC	-	251	-	34
0M Circulation	-	398	-	7
0M Plant	77	-	-	562
0M Office P E	148	1	-	878
0M Office C	146	-	-	347
0M Office P	424	-	-	94

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00 Reception	NO (-27.7%)	NO
00 Office P E	YES (+2.2%)	NO
00 Office P W	NO (-32.8%)	NO
00 Office C	NO (-55.5%)	NO
00 Changing Rooms	YES (+4.7%)	NO
00 Coffee Shop	NO (-51.3%)	NO
01 Office P	NO (-21.3%)	YES
01 Office P W	NO (-38%)	YES
01 Office P E	NO (-14.6%)	YES
01 Office C	NO (-59.7%)	NO
01 Office P W	NO (-11.8%)	YES
01 Greenhouse	YES (+17%)	NO
02 Office P W	NO (-28.4%)	YES
02 Office P E	NO (-5.8%)	YES
02 Office C	NO (-55.2%)	NO
02 Office P W	NO (-1.2%)	YES
03 Office P W	NO (-17.1%)	YES
03 Office P E	NO (-2.4%)	YES
03 Office C	NO (-52%)	NO
03 Greenhouse	NO (-37.6%)	NO
03 Office P W	YES (+5.7%)	YES
02 Greenhouse	YES (+0.1%)	NO
02 Office P	NO (-23%)	YES
03 Office P W	YES (+10.3%)	YES
04 Office	NO (-43.3%)	YES

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00 Retail	NO (-48.8%)	NO
00 Retail	NO (-69.3%)	NO
0M Office P E	YES (+0.1%)	NO
0M Office C	NO (-36.9%)	NO
0M Office P	NO (-61.8%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?		
Is evidence of such assessment available as a separate submission?	YES	
Are any such measures included in the proposed design?	YES	

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m ²]	6944	6944
External area [m ²]	8143.2	8143.2
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	3	3
Average conductance [W/K]	5788.94	4044.48
Average U-value [W/m ² K]	0.71	0.5
Alpha value* [%]	0	10

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

5

95

Area	Building Type
Aica	
	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges
	C2A Secure Residential Institutions
	Residential spaces
	D1 Non-residential Institutions: Community/Day Centre
	D1 Non-residential Institutions: Libraries, Museums, and Galleries
	D1 Non-residential Institutions: Education
	D1 Non-residential Institutions: Primary Health Care Building
	D1 Non-residential Institutions: Crown and County Courts
	D2 General Assembly and Leisure, Night Clubs, and Theatres
	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	12.79	6.95
Cooling	7.92	7.53
Auxiliary	6.47	4.47
Lighting	9.24	19.09
Hot water	9.69	9.34
Equipment*	43.52	43.52
TOTAL**	46.11	47.39

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	140.16	124.36
Primary energy* [kWh/m²]	98.17	112.95
Total emissions [kg/m ²]	16.8	19.3

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

H	HVAC Systems Performance										
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER	
[ST] Split or m	ulti-split sy	stem, [HS]	LTHW boile	r, [HFT] Na	tural Gas, [CFT] Electr	icity			
	Actual	54.7	113.9	15.8	9.4	6.8	0.96	3.36	0.98	4.5	
	Notional	26	121	8.4	8.9	4.5	0.86	3.79			
[ST] Split or m	ulti-split sy	stem, [HS] I	LTHW boile	er, [HFT] Na	tural Gas, [CFT] Electr	icity			
2	Actual	27.5	134.8	8	11.1	8	0.96	3.36	0.98	4.5	
	Notional	24	161.7	7.7	11.9	5.7	0.86	3.79			
[ST] No Heatin	g or Coolin	g								
	Actual	0	0	0	0	0	0	0	0	0	
	Notional	0	0	0	0	0	0	0			

Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type HS = Heat source HFT = Heating fuel type CFT

- = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U і-тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.15	0000000:Surf[0]
Floor	0.2	0.13	0000000:Surf[3]
Roof	0.15	0.13	01000037:Surf[0]
Windows, roof windows, and rooflights	1.5	1.4	0000001:Surf[1]
Personnel doors	1.5	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
U _{i-Typ} = Typical individual element U-values [W/(m²K)]			U _{i-Min} = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the m	ninimum U	-value occ	curs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	3

APPENDIX B

BE GREEN BRUKL

As designed

Compliance with England Building Regulations Part L 2013

Project name

Be Green

Date: Mon Feb 08 17:14:02 2021

Administrative information

Building Details

Address: Grand Union House, ,

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.13 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.13 BRUKL compliance check version: v5.6.b.0

Certifier details

Name: Jacob Cox Telephone number: Address: , ,

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	19.3
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	19.3
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	10.9
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.15	0.15	0000000:Surf[0]
Floor	0.25	0.13	0.13	0000000:Surf[3]
Roof	0.25	0.13	0.13	01000037:Surf[0]
Windows***, roof windows, and rooflights	2.2	1.4	1.4	0000005:Surf[4]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	1-1	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
Ua-Limit = Limiting area-weighted average U-values [W	//(m²K)]			

 U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)]

 U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	3

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values				
Whole building electric power factor achieved by power factor correction	>0.95			

1- VRF FCU with central AHU

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency					
This system	4.5	4	0	0	0.85					
Standard value	2.5*	2.6	N/A	N/A	0.5					
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES										
* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.										

2- Retail

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency					
This system	4.5	4	0	0	0.9					
Standard value	2.5*	2.6	N/A	N/A	0.5					
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system VES										

Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system | YES * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

1- Retail

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	4.5	-
Standard value	1	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]									
ID of system type		В	С	D	E	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
00 Reception	-	-	-	1.3	-	-	-	-	-	-	N/A
00 Office P E	-	-	-	1.3		-	-	-	-	-	N/A
00 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
00 Office C	-	-	Ч.	1.3	-	-	-	-	н	-	N/A
00 Changing Rooms	-	-	-	1.3		-	-	-	-	-	N/A
00 Coffee Shop	-	-		1.3		-	-	-	-	-	N/A
01 Office P	-	-	-	1.3	-	-	-	-	-	-	N/A
01 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A

Zone name		SFP [W/(I/s)]									
ID of system type	Α	В	С	D	E	F	G	н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
01 Office P E	-	-	-	1.3		-	-	-	-	-	N/A
01 Office C	-	÷.	Ч	1.3	9-	-	-	-	μ.	-	N/A
01 Office P W	-	-	-	1.3	<u></u>	-	-	-	-	-	N/A
01 Greenhouse	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office C	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3	e-	-	-	-	-	-	N/A
03 Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office C	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Greenhouse	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Greenhouse	-	-	-	1.3	-	-	-	-	-	-	N/A
02 Office P	-	-	-	1.3	-	-	-	-	-	-	N/A
03 Office P W	-	-	-	1.3	-	-	-	-	-	-	N/A
04 Office	-	-	-	1.3	-	-	-	-	-	-	N/A
00 Retail	-	-	-	1.3		-	-	-	-		N/A
00 Retail	-	-	-	1.3	-	-	-	-	-	-	N/A
0M Office P E	-	-	-	1.3	-	-	-	-	-	-	N/A
0M Office C	-	-	-	1.3	-	-	-	-	-	-	N/A
0M Office P	-	4	-	1.3	-	-	-	4	-	-	N/A

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
00 Circulation	-	254	-	24
00 Circulation	-	304	-	13
00 Cycle Store	-	156	-	169
00 UKPN	90	-	-	84
00 Bin Store	-	155	-	148
00 WC	-	182	-	107
00 Reception	-	153	80	513
00 Office P E	147	-	-	912
00 Circulation	-	316	-	7
00 Circulation	-	257	-	22
00 Office P W	147	-	-	912
00 Office C	145	-	-	608
00 Changing Rooms	-	162	-	79
00 Cycle Store	-	155	-	85
00 Coffee Shop	-	157	80	353
00 Stairs	-	175	-	40
00 Circulation	-	161	-	43

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
01 Office P	151	-	-	1133
01 Office P W	148	-	-	1128
01 Office P E	148	-	-	1381
01 Office C	145	-	-	884
01 Stair	-	192	-	48
01 Circulation	-	307	-	15
01 WC	-	167	-	225
01 Office P W	155	-	-	115
01 Stairs	-	204	-	51
01 Greenhouse	-	147	-	332
01 Circulation	-	352	-	11
01 WC	-	373	-	19
02 Office P W	148	-	-	1128
02 Office P E	148	-	-	1381
02 Office C	145	-	-	884
02 Stair	-	192	-	48
02 Circulation	-	307	-	15
02 Office P W	155	-	-	115
03 Stairs	-	254	-	41
02 Circulation	-	352	-	11
02 WC	-	373	-	19
03 Office P W	149	-	-	1128
03 Office P E	149	-	-	1381
03 Office C	145	-	-	884
03 Stair		185	-	83
03 Greenhouse	-	145	-	167
03 Office P W	- 158			115
02 Greenhouse		- 145	-	167
03 Circulation	-	391		11
03 WC	-	417	-	19
02 Stairs	-	236	-	41
02 Office P	-		-	1133
	151	-	-	
02 WC	-	167	-	225
03 Circulation	-	414	-	10
03 WC	-	171	-	225
03 Office P W	160	-	-	375
04 Circulation	-	311	-	27
04 Office	151	-	-	2878
04 WC	-	224	-	69
04 Stairs	-	367	-	11
04 Circulation	-	398	-	8
04 WC	-	346	-	17
04 Circulation	-	333	-	9

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
00 Retail	-	148	80	2691
00 Retail	-	160	80	1001
0M Circulation	-	389	-	9
0M Plant	83	-	-	193
0M Plant	81	-	-	307
0M Stair	-	195	-	51
0M Stairs	-	178	-	64
0M Plant	82	-	-	294
0M WC	-	251	-	34
0M Circulation	-	398	-	7
0M Plant	77	-	-	562
0M Office P E	148	-	-	878
0M Office C	146	-	-	347
0M Office P	424	-	-	94

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?	
00 Reception	NO (-27.7%)	NO	
00 Office P E	YES (+2.2%)	NO	
00 Office P W	NO (-32.8%)	NO	
00 Office C	NO (-55.5%)	NO	
00 Changing Rooms	YES (+4.7%)	NO	
00 Coffee Shop	NO (-51.3%)	NO	
01 Office P	NO (-21.3%)	YES	
01 Office P W	NO (-38%)	YES	
01 Office P E	NO (-14.6%)	YES	
01 Office C	NO (-59.7%)	NO	
01 Office P W	NO (-11.8%)	YES	
01 Greenhouse	YES (+17%)	NO	
02 Office P W	NO (-28.4%)	YES	
02 Office P E	NO (-5.8%)	YES	
02 Office C	NO (-55.2%)	NO	
02 Office P W	NO (-1.2%)	YES	
03 Office P W	NO (-17.1%)	YES	
03 Office P E	NO (-2.4%)	YES	
03 Office C	NO (-52%)	NO	
03 Greenhouse	NO (-37.6%)	NO	
03 Office P W	YES (+5.7%)	YES	
02 Greenhouse	YES (+0.1%)	NO	
02 Office P	NO (-23%)	YES	
03 Office P W	YES (+10.3%)	YES	
04 Office	NO (-43.3%)	YES	
00 Retail	NO (-48.8%)	NO	

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00 Retail	NO (-69.3%)	NO
0M Office P E	YES (+0.1%)	NO
0M Office C	NO (-36.9%)	NO
0M Office P	NO (-61.8%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?			
Is evidence of such assessment available as a separate submission?	YES		
Are any such measures included in the proposed design?	YES		

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m ²]	6944	6944
External area [m ²]	8143.2	8143.2
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	3	3
Average conductance [W/K]	5788.94	4044.48
Average U-value [W/m ² K]	0.71	0.5
Alpha value* [%]	0	10

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

5

95

Area	Building Type
Aica	
	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges
	C2A Secure Residential Institutions
	Residential spaces
	D1 Non-residential Institutions: Community/Day Centre
	D1 Non-residential Institutions: Libraries, Museums, and Galleries
	D1 Non-residential Institutions: Education
	D1 Non-residential Institutions: Primary Health Care Building
	D1 Non-residential Institutions: Crown and County Courts
	D2 General Assembly and Leisure, Night Clubs, and Theatres
	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs

Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	3.03	6.95
Cooling	6.93	7.53
Auxiliary	6.47	4.47
Lighting	9.24	19.09
Hot water	2.11	9.34
Equipment*	43.52	43.52
TOTAL**	27.79	47.39

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	6.11	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	132.16	124.36
Primary energy* [kWh/m²]	83.18	112.95
Total emissions [kg/m ²]	10.9	19.3

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

H	HVAC Systems Performance												
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER			
[ST] Split or m	ulti-split sy	stem, [HS]	Heat pump	(electric): a	ir source, [HFT] Electr	icity, [CFT]	Electricity				
	Actual	59.7	99.2	3.8	8.2	6.8	4.41	3.36	4.5	4.5			
	Notional	26	121	8.4	8.9	4.5	2.56	3.79					
[ST] Split or m	ulti-split sy	stem, [HS]	Heat pump	(electric): a	ir source, [HFT] Electr	icity, [CFT]	Electricity				
	Actual	28.4	125.8	1.8	10.4	8	4.41	3.36	4.5	4.5			
	Notional	24	161.7	7.7	11.9	5.7	2.56	3.79					
[ST] No Heatin	g or Coolin	g										
	Actual	0	0	0	0	0	0	0	0	0			
	Notional	0	0	0	0	0	0	0					

Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type HS = Heat source HFT = Heating fuel type CFT

- = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U і-Тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.15	0000000:Surf[0]
Floor	0.2	0.13	0000000:Surf[3]
Roof	0.15	0.13	01000037:Surf[0]
Windows, roof windows, and rooflights	1.5	1.4	0000001:Surf[1]
Personnel doors	1.5	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
J _{i-Typ} = Typical individual element U-values [W/(m²K)]			U _{i-Min} = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the m	ninimum U	-value occ	curs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	3

APPENDIX C

BE LEAN DER WORKSHEET

FULL SAP CALCULATION PRINTOUT Design SAP Calculation Type: New Build (As Designed) elmhurst energy **Property Reference** 02 S Issued on Date 19/02/2021 Assessment 02 S Be Lean Prop Type Ref 2B4P Reference Property SAP Rating 84 B DER 15.13 TER 17.28 % DER<TER Environmental 89 B 12.42 CO₂ Emissions (t/year) DFEE TFEE 0.76 40.17 40.31 **General Requirements Compliance** Fail % DFEE<TFEE 0.36

Mr. Jacob Cox, Jacob Cox, Tel: 02031165949, jacob.cox@wsp.com

Assessor Details

Client

Assessor ID

T241-0001

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England								
DWELLING AS DE:	SIGNED							
Mid-floor flat,	total floor area 57 m²							
It is not a con	vers items included with mplete report of regulat							
la TER and DER Fuel for main 1 Fuel factor:1. Target Carbon 1 Dwelling Carbon	neating:Mains gas	ER) 17.28 kgCO□/m² (DER) 15.13 kgCO□/m²OK						
lb TFEE and DFI Target Fabric I		40.3 kWh/m²/yr						
Floor	0.14 (max. 0.30) 0.00 (max. 0.20) (no floor)	Highest 0.21 (max. 0.70) OK - OK						
	(no roof) 1.36 (max. 2.00)							
2a Thermal brid Thermal bridgin	dging ng calculated using defa	ult y-value of 0.15						
3 Air permeabi	 Lity							
Air permeabili Maximum	y at 50 pascals:	10.0	ок					
4 Heating effic Main heating sy Data from manu: 123 123	ciency ystem:	Boiler system with radiators or underfloor - Ma	ins gas					
Efficiency: 98 Minimum: 88%	ŝ	OK						
Secondary heat:	ing system:	None						
5 Cylinder insu Hot water stord Permitted by DI Primary pipewo:	ulation age BSCG 2.10 ck insulated:	Measured store loss: 1.03 kWh/day OK Yes	ОК					
6 Controls								
Space heating of	controls:	Programmer and at least two room thermostats	ОК					
Hot water cont:	cols:	Cylinderstat Independent timer for DHW	OK OK					
Boiler interlo	ck	Yes	OK					
7 Low energy 1: Percentage of : Minimum	ights Fixed lights with low-en		ок					
8 Mechanical ve Continuous supp Specific fan po	oly and extract system	0.59						
Maximum		1.5	OK					
	/:	89%	OK					
MVHR efficiency Minimum:		70%	010					
Minimum:	mperature							
Minimum: 9 Summertime to Overheating ris Based on:	emperature		Fail					
Minimum: 9 Summertime te Overheating ris Based on: Overshading:	emperature sk (Thames Valley):	High Average						
Minimum: 9 Summertime to Overheating ri: Based on: Overshading: Windows facing Windows facing	emperature sk (Thames Valley): East: West:	High Average 5.25 m², No overhang 11.40 m², No overhang						
Minimum: 9 Summertime te Overheating ris Based on: Overshading: Windows facing Air change rate	emperature sk (Thames Valley): East: West: ::	High Average 5.25 m², No overhang 11.40 m², No overhang 0.10 ach	Fail					
Minimum: 9 Summertime te Overshading riz Based on: Overshading: Windows facing Mindows facing Air change rate Blinds/curtain	emperature sk (Thames Valley): East: West: s: s:	High Average 5.25 m², No overhang 11.40 m², No overhang	Fail 00% of daylight hours					
Minimum: 9 Summertime tr Overheating ris Based on: Overshading: Windows facing Windows facing Air change rate Blinds/curtains	emperature sk (Thames Valley): East: West: :: :: ::	High Average 5.25 m², No overhang 11.40 m², No overhang 0.10 ach Dark-coloured curtain or roller blind, closed 1	Fail 00% of daylight hours					
Minimum: 9 Summertime tr 0 verheating ri: Based on: 0 vershading: Windows facing Windows facing Air change ratt Blinds/curtain 	emperature sk (Thames Valley): East: West: : : : s alue	High Average 5.25 m², No overhang 11.40 m², No overhang 0.10 ach Dark-coloured curtain or roller blind, closed 1	Fail 00% of daylight hours					

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions					
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln)	57.1900	Area (m2) 57.1900 (1b)	Storey height (m) x 2.6500 (2b)	=	Volume (m3) 151.5535 (1b) - (3b) (4)
Dwelling volume		(3a) + (3b)+(3c)+(3d)+(3e)(3	ı) =	151.5535 (5)

2. Ventilation rate

					main heating		condary heating	0	ther	tota	1 m3	per hour	
Number of chimr	neys				ō	+	ō	+	0 =		0 * 40 =	0.0000	
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
Number of inter		ns									0 * 10 =	0.0000	
Number of passi											0 * 10 =	0.0000	
Number of fluel	less gas fi	res									0 * 40 =	0.0000	(7c)
											Air changes	per hour	
Infiltration du	ue to chimn	eys, flues	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	(8)
Pressure test												Yes	
Measured/design												3.0000	
Infiltration ra Number of sides												0.1500	(18)
Number of sides	s shertered											2	(19)
Shelter factor								(20) = 1 -	[0.075 x	(19)] =	0.8500	(20)
Infiltration ra	ate adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.1275	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
			0 1500	0 1400	0.1371	0.1211	0.1211	0.1179	0.1275	0.1371	0.1434	0.1498	(22b)
Adj infilt rate	0.1626	0.1594	0.1562	0.1403									
Adj infilt rate Balanced mecha					0.15/1	0.1211	0.1221	0.11/0	0.12270	0.10/1			(222)
-	anical vent	ilation wit			0.1371	0.1211	0.1211	0.117.9	0.1270	0.1071		0.5000	(23a)
Balanced mecha	anical vent ventilation	ilation wit	h heat reco	very					0.11/0	011071			(23a)

Element				Gross	Openings	Net	Area	U-value	АхU	K-	value	АхК	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Front Door						1.	8900	1.0000	1.8900				(26)
Glazing (Uw =	1.40)					16.	6500	1.3258	22.0739				(27)
External Wall	1			33.2000	16.6500	16.	5500	0.1500	2.4825				(29a
Common Area				8.9800	1.8900	7.	0900	0.2075	1.4710				(29a
Other Wall				11.8200		11.8200 0.0750		0.8865				(29a	
Total net area	al net area of external elements Aum(A, m2 ric heat loss, W/K = Sum (A x U)		Aum(A, m2)			54.0000							(31)
Fabric heat lc	oss, $W/K = S$	Sum (A x U)					(26)(3	30) + (32) =	28.8038				(33)
Party Wall 1						29.	0700	0.0000	0.0000				(32)
Thermal mass p	parameter (T	MP = Cm / 7	FA) in kJ/m	2K								100.0000	(35)
Thermal bridge	es (Default	value 0.150) * total ex	posed area)								8.1000	(36)
Total fabric h	neat loss									(33)	+ (36) =	36.9038	(27)
										(00)	()	50.5050	(37)
Ventilation he	eat loss cal	culated mor	thly (38)m	= 0.33 x (2	25)m x (5)					(00)		50.9050	(37)
Ventilation he	eat loss cal Jan	culated mor. Feb	nthly (38)m Mar	= 0.33 x (2 Apr	25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(37)
Ventilation he						Jun 15.4852	Jul 15.4852	Aug 15.3258	Sep 15.8040	ι	Nov 16.6011		,
(38) m	Jan 17.5576	Feb	Mar	Apr	May					Oct		Dec	
	Jan 17.5576	Feb	Mar	Apr	May					Oct		Dec	(38)
(38) m	Jan 17.5576 coeff 54.4614	Feb 17.3982 54.3020	Mar 17.2387	Apr 16.4417	May 16.2822	15.4852	15.4852	15.3258	15.8040	Oct 16.2822	16.6011	Dec 16.9199	(38)
(38)m Heat transfer	Jan 17.5576 coeff 54.4614	Feb 17.3982 54.3020	Mar 17.2387	Apr 16.4417	May 16.2822	15.4852	15.4852	15.3258	15.8040	Oct 16.2822	16.6011	Dec 16.9199 53.8237	(38)
(38)m Heat transfer Average = Sum(Jan 17.5576 coeff 54.4614 (39)m / 12 =	Feb 17.3982 54.3020	Mar 17.2387 54.1426	Apr 16.4417 53.3455	May 16.2822 53.1861	15.4852 52.3890	15.4852 52.3890	15.3258 52.2296	15.8040 52.7078	Oct 16.2822 53.1861	16.6011 53.5049	Dec 16.9199 53.8237 53.3056	(38) (39) (39)
(38)m Heat transfer Average = Sum(HLP	Jan 17.5576 coeff 54.4614 (39)m / 12 = Jan	Feb 17.3982 54.3020 Feb	Mar 17.2387 54.1426 Mar	Apr 16.4417 53.3455 Apr	May 16.2822 53.1861 May	15.4852 52.3890 Jun	15.4852 52.3890 Jul	15.3258 52.2296 Aug	15.8040 52.7078 Sep	Oct 16.2822 53.1861 Oct	16.6011 53.5049 Nov	Dec 16.9199 53.8237 53.3056 Dec	(38) (39) (39) (40)
(38)m Heat transfer	Jan 17.5576 coeff 54.4614 (39)m / 12 = Jan	Feb 17.3982 54.3020 Feb	Mar 17.2387 54.1426 Mar	Apr 16.4417 53.3455 Apr	May 16.2822 53.1861 May	15.4852 52.3890 Jun	15.4852 52.3890 Jul	15.3258 52.2296 Aug	15.8040 52.7078 Sep	Oct 16.2822 53.1861 Oct	16.6011 53.5049 Nov	Dec 16.9199 53.8237 53.3056 Dec 0.9411	(38) (39) (39) (40)

4. Water heating energy requirements (kWh/year) · 1.9012 (42) 79.3529 (43) Assumed occupancy Average daily hot water use (litres/day) Feb Mar Jul Jan Apr Jun May Aug Sep Oct Nov Dec
 Jaily
 <th 71.4176 78.1474 74.5917 89.6753 87.2882 (44) 125.3614 (45) 1248.5305 (45) 74.5917 97.7299 71.4176 84.3335 77.7659 90.7463 80.9400 84.1141 105.7560 115.4410 Energy content (annual) Distribution loss (46)m = 0.15 x (45)m 19.4169 16.9821 17.5240 Total = Sum(45)m = 15.2779 14.6595 12.6500 11.7221 13.4513 13.6119 15.8634 17.3161 18.8042 (46)

Water storage Store volume a) If manufac Temperature Enter (49) or Total storage	factor from (54) in (58	m Table 2b	actor is kno	own (kWh/da	ay):							150.0000 1.0300 0.7930 0.8168	(48) (49)
	25.3202	22.8698	25.3202	24.5034	25.3202	24.5034	25.3202	25.3202	24.5034	25.3202	24.5034	25.3202	(56)
If cylinder co	ontains ded	icated solar	storage										()
-	25.3202	22.8698	25.3202	24.5034	25.3202	24.5034	25.3202	25.3202	24.5034	25.3202	24.5034	25.3202	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Total heat red	quired for w	water heatin	ng calculate	ed for each	month								
	154.7661	136.0840	142.1471	126.3559	123.0501	108.8369	103.4676	114.9954	115.2497	131.0762	139.9444	150.6816	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Su	um (63) m =	0.0000	(63)
Output from w,	/h												
	154.7661	136.0840	142.1471	126.3559	123.0501	108.8369	103.4676	114.9954	115.2497	131.0762	139.9444	150.6816	(64)
								Total pe	er year (kWl	n/year) = Su	um (64) m =	1546.6551	(64)
Heat gains fro	om water hea	ating, kWh/r	nonth										
	63.2969	55.9396	59.1011	53.4687	52.7513	47.6436	46.2401	50.0732	49.7759	55.4200	57.9868	61.9388	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts Jul Oct 95.0588
 Jan
 Feb
 Mar
 Apr
 May
 Jun

 (66)m
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 76.0425
 5.01013
 3
 30.05
 76.0425
 51.013
 31.3604
 12.505
 12.5059
 12.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3.0000
 3 Mar Jun 95.0588 Jan Feb Apr 95.0588 May 95.0588 Jul Aug Sep 95.0588 95.0588 95.0588 Nov Dec 95.0588 95.0588 (66) 7.1649 5.5122 9.6167 12.2107 14.2516 15.1928 (67) 124.0445 122.3239 126.6597 135.8901 147.5418 158.4928 (68) 32.5059 32.5059 (69) 32 5059 32 5059 32 5059 32 5059 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 (70) Losses e.g. evaporation (negative values) (Table 5) -76.0470 -76.0 Water heating gains (Table 5) 85.0765 83.2434 79.4369 74.2621 70.9023 66.1717 62.1507 67.3026 69.1331 74.4893 80.5373 83.2511 (72) Total internal gains 320.1848 318.4195 307.8254 290.8262 273.7738 257.1510 246.2250 251.3091 259.9272 277.1077 296.8484 311.4543 (73)

6. Solar gains

[Jan]		A	Area m2		Speci	g Specific data or Table 6b		FF Specific data or Table 6c		ss or 6d	Gains W		
East West			5.2 11.4		19.6403 19.6403		0.5000 0.5000		.9000 .9000	0.77 0.77		32.1553 69.8229	
Solar gains Total gains	101.9782	199.4910 517.9105	328.5332	479.1461 769.9724	587.2115 860.9854	601.1155	572.2865 818.5115	491.5856	382.0977 642.0249	236.7128	127.1548	83.8619	

Temperature du Utilisation fa						Fh1 (C)						21.0000
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	29.1695	29.2551	29.3413	29.7797	29.8689	30.3234	30.3234	30.4159	30.1400	29.8689	29.6909	29.5151
alpha	2.9446	2.9503	2.9561	2.9853	2.9913	3.0216	3.0216	3.0277	3.0093	2.9913	2.9794	2.9677
util living an												
	0.9412	0.9004	0.8196	0.6797	0.5222	0.3764	0.2772	0.3162	0.5170	0.7764	0.9098	0.9498
TIM	19.2824	19.6306	20.1144	20.5875	20.8477	20.9585	20.9877	20.9817	20.8923	20.4785	19.7920	19.2193
Th 2	20.1233	20.1256	20.1280	20.1397	20.1421	20.1539	20.1539	20.1562	20.1492	20.1421	20.1374	20.1327
util rest of h												
	0.9336	0.8884	0.7996	0.6493	0.4830	0.3304	0.2255	0.2606	0.4642	0.7448	0.8968	0.9432
MIT 2	18.5551	18.8947	19.3583	19.8030	20.0301	20.1287	20.1483	20.1475	20.0786	19.7200	19.0665	18.5004
Living area fi	raction								fLA =	Living area	a / (4) =	0.4802
TIN	18.9043	19.2480	19.7213	20.1797	20.4227	20.5271	20.5513	20.5480	20.4693	20.0842	19.4148	18.8456
Temperature ad												-0.2500
adjusted MIT	18.6543	18.9980	19.4713	19.9297	20.1727	20.2771	20.3013	20.2980	20.2193	19.8342	19.1648	18.5956
8. Space heat:												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9178	0.8701	0.7828	0.6414	0.4845	0.3372	0.2346	0.2701	0.4688	0.7323	0.8792	0.9286
Jseful gains	387.4681	450.6572	498.1385	493.8593	417.1337	289.3996	191.9958	200.6410	300.9497	376.2621	372.7986	367.0804
	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000

													()
Heat loss rate	≥W												
	781.7557	765.5516	702.3002	588.3841	450.6295	297.4176	193.9090	203.5919	322.5351	491.1299	645.5282	774.8257	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	293.3500	211.6091	151.8963	68.0579	24.9209	0.0000	0.0000	0.0000	0.0000	85.4616	196.3654	303.3625	(98)
Space heating												1335.0236	(98)
Space heating	per m2									(98)	/ (4) =	23.3437	(99)

elmhurst energy

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r10

8c. Space cooling requirement

Not applicable

9a. Energy requirements -												
Fraction of space heat fr Fraction of space heat fr Efficiency of main space Efficiency of secondary/s Space heating requirement	om main sy: heating sy: upplementa	stem(s) stem 1 (in)	 k)	m (Table 11)						0.0000 1.0000 98.0000 0.0000 1362.2690	(202) (206) (208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 293.3500		151.8963	68.0579	24.9209	0.0000	0.0000	0.0000	0.0000	85.4616	196.3654	303.3625	(98)
Space heating efficiency 98.0000	(main heat 98.0000	ing system 98.0000	1) 98.0000	98.0000	0.0000	0.0000	0.0000	0.0000	98.0000	98.0000	98.0000	(210)
Space heating fuel (main 299.3367			69.4468	25.4294	0.0000	0.0000	0.0000	0.0000	87.2057	200.3728	309.5536	(211)
Water heating requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating												
Water heating requirement 154.7661		142.1471	126.3559	123.0501	108.8369	103.4676	114.9954	115.2497	131.0762	139.9444	150.6816	(64)
Efficiency of water heate (217)m 98.0000		98.0000	98.0000	98.0000	98.0000	98.0000	98.0000	98.0000	98.0000	98.0000	98.0000 98.0000	(216)
Fuel for water heating, k	Wh/month	145.0481		125.5613		105.5791	117.3423				153.7568	
Water heating fuel used Annual totals kWh/year											1578.2195	
Space heating fuel - main Space heating fuel - seco											1362.2690 0.0000	
mechanical ventilation central heating pump Total electricity for the Electricity for lighting Total delivered energy fo	above, kWl (calculate)	h/year d in Append	3260) ix L)								152.7235 30.0000 182.7235 261.0541 3384.2661	(230c) (231) (232)
12a. Carbon dioxide emiss	ions - Ind	ividual hea	ting system	s including	micro-CHP							
Space heating - main syst Space heating - secondary Water heating (other fuel Space and water heating Pumps and fans Energy for lighting Total CO2, kg/year Dwelling Carbon Dioxide E	em 1)						Energy kWh/year 1362.2690 0.0000 1578.2195 182.7235 261.0541		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190	k	Emissions g CO2/year 294.2501 0.0000 340.8954 635.1455 94.8335 135.4871 865.4661 15.1300	(263) (264) (265) (267) (268) (272)
16 CO2 EMISSIONS ASSOCIAT DER Total Floor Area Assumed number of occupan CO2 emission factor in Ta CO2 emissions from applia CO2 emissions from cookin Total CO2 emissions of Additional allowable elec Resulting CO2 emissions o Net CO2 emissions	ts ble 12 for nces, equa g, equation fset from 1 tricity gen	electricit; tion (L14) n (L16) biofuel CHP neration, k1	y displaced ₩h/m²/year	from grid		IY GENERATI	ON TECHNOLO	GIES		TFA N EF	15.1300 57.1900 1.9012 0.5190 17.1804 2.8786 35.1890 0.0000 0.0000 0.0000 35.1890	ZC2 ZC3 ZC4 ZC5 ZC6 ZC7

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	FARGET EMI	w Build (As SSIONS	Designed) 09 Jan 20		9.92, Januar	ry 2014)							
. Overall dwel	ling dimen	sions											
round floor btal floor are welling volume	a TFA = (1	a)+(1b)+(1c	c)+(1d)+(1e)(ln)	Ξ	57.1900		Area (m2) 57.1900		ey height (m) 2.6500 +(3d)+(3e)		Volume (m3) 151.5535 151.5535	(1b) (4)
. Ventilation	rate												
umber of chimn umber of open umber of intern	flues mittent fa	ns			main heating 0 0	+ +	econdary heating 0 0	+ +	other 0 = 0 =		0 * 40 = 0 * 20 = 2 * 10 =	3 per hour 0.0000 0.0000 20.0000	(6a) (6b) (7a)
umber of passi umber of fluel		res									0 * 10 = 0 * 40 =	0.0000 0.0000	(7c)
nfiltration du ressure test easured/design nfiltration ra umber of sides	AP50 te	-	and fans	= (6a)+(6b))+(7a)+(7b)+((7c) =				20.0000	Air change / (5) =	0.1320 Yes 5.0000 0.3820	(8)
helter factor nfiltration ra	te adjuste	d to includ	de shelter	factor					(20) = 1 - (2	[0.075 x 1) = (18)		0.8500 0.3247	
ind speed ind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
dj infilt rate ffective ac	0.4140 0.5857	0.4058 0.5824	0.3977 0.5791	0.3571 0.5638	0.3490 0.5609	0.3084 0.5476	0.3084 0.5476	0.3003 0.5451		0.3490 0.5609	0.3653 0.5667	0.3815 0.5728	
		oss paramet											
Heat losses lement ER Opaque door ER Opening Typ Kternal Wall 1 ommon Area cher Wall	and heat 1	oss paramet	er	Gross m2 33.2000 8.9800 11.8200	Openings m2 12.4100 1.8900	1 12 20 7 11	tArea m2 .8900 .4100 .7900 .0900 .8200	U-value W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	A x W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2	-value kJ/m2K	A x K kJ/K	(26) (27) (29a) (29a) (29a)
Heat losses of the second seco	e (Uw = 1. of externa s, W/K = S	40) l elements um (A x U)	er Aum(A, m2)	Gross m2 33.2000 8.9800 11.8200	m2 12.4100	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800	W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2 6		kJ/K	(26) (27) (29a) (29a) (29a) (31) (33)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 ommon Area ther Wall otal net area abric heat loss hermal mass pa hermal bridges otal fabric he	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss	40) l elements um (A x U) MP = Cm / T ined value	Aum(A, m2) FFA) in kJ/ 0.050 * to	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed	m2 12.4100 1.8900 area)	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2 6 7			(26) (27) (29a) (29a) (29a) (31) (33) (35) (36)
. Heat losses of lement ER Opaque door ER Opening Typy kternal Wall 1 bran net area abric heat loss hermal mass pas hermal bridges btal fabric hear antilation hear 38)m	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914	40) l elements um (A x U) MP = Cm / T ined value	Aum(A, m2) FFA) in kJ/ 0.050 * to	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed	m2 12.4100 1.8900 area)	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep</pre>	K 0 7 2 2 6 7	kJ/m2K	kJ/K 250.0000 2.7000	(26) (27) (29a) (29a) (31) (33) (35) (36) (37)
. Heat losses of lement ER Opaque door ER Opening Typ- xternal Wall 1 botal net area of abric heat loss hermal mass pa hermal bridges tal fabric heat entilation heat 38)m eat transfer co	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137	Aum(A, m2) (FA) in kJ/ 0.050 * to hthly (38)m Mar	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr	m2 12.4100 1.8900 area) 25)m x (5) May	1 12 20 7 11 54	m2 .8900 .7900 .0900 .8200 .0000 (26)(3	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423</pre>	K 0 7 2 2 2 6 6 7 7 (33) 0Ct	kJ/m2K + (36) = Nov	kJ/K 250.0000 2.7000 28.1887 Dec	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (38)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area (abric heat los) hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average)	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137	Aum(A, m2) YFA) in kJ/ 0.050 * to hthly (38)m Mar 28.9619	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525	1 12 20 7 11 54 Jun 27.3853	m2 .8900 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617	<pre>w, 1.890 16.452 3.742 2.127 2.127 = 25.488 \$ep 27.6423 55.8309 \$ep</pre>	K 0 7 2 2 6 7 7 (33) 0ct 28.0525	kJ/m2K + (36) = Nov 28.3425	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area (abric heat los) hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average)	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb	Aum(A, m2) YFA) in kJ/ 0.050 * to hthly (38)m Mar 57.1506 Mar	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May	1 12 20 7 11 54 27.3853 55.5739 Jun	m2 .8900 .4100 .7900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 56.2412 0 0 ct	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40)
. Heat losses . lement ER Opaque door ER Opaning Typ, kternal Wall 1 otal net area : baric heat loss hermal mass pa hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average) ays in month	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28	Aum(A, m2) YFA) in kJ/ 0.050 * to thly (38)m Mar 28.9619 57.1506 Mar 0.9993 31	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	1 12 20 7 11 54 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (38) (39) (39) (40) (40)
. Heat losses . . Heat losses . . Heat losses . . Ropaque door CR Opaning Typ, tternal Wall 1 . There Wall . There wall	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements	Aum(A, m2) 2FA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 5 (kWh/year	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	Jun 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41)
. Heat losses . . Heat losses . . Heat losses . . Ropaque door . Ropaque door . Ropaque door . Ropaque door . Water heat loss . Water heat . Water heat . Water heat . Sumed occupan.	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements	Aum(A, m2) 2FA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 5 (kWh/year	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	Jun 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41)
. Heat losses a lement ER Opaque door ER Opening Typy xternal Wall 1 Dtal net area a bhric heat loss hermal mass pa hermal bridges Dtal fabric heat abric heat loss hermal bridges Dtal fabric heat at transfer counce werage = Sum (3) LP LP (average) ays in month . Water heating ssumed occupany verage daily heat aily hot water	and heat 1 e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy ot water u Jan use 87.2882 129.4459	<pre>d40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements se (litres/</pre>	Aum(A, m2) YFA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 3 (kWh/year (day)	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	1 12 20 7 11 54 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>www. 1.890 16.452 3.742 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762 30 Sep 7.7.7559</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0 0 0.9834 31 31 0 0 0 ct 80.9400 105.7560	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885 30 Nov 84.1141 115.4410</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31 1.9012 79.3529 Dec 87.2882 125.3614	(26) (27) (29a) (29a) (31) (35) (36) (37) (38) (39) (40) (40) (40) (41) (41) (42) (43)
. Heat losses . lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area . abric heat loss hermal mass pa hermal bridges otal fabric he. entilation hear 38)m eat transfer c. verage = Sum (3 LP LP (average) ays in month . Water heatin. water heatin. water dealy ho aily hot water nergy content istribution los	and heat 1 e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r 	oss paramet 40) 1 elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements se (litres/ Feb 84.1141 113.2142 = 0.15 x (4	Aum(A, m2) YFA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 3 (kWh/year (day) Mar 80.9400 116.8269	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30) Apr 77.7659	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31 31 May 74.5917	Jun 27.3853 55.5739 Jun 0.9717 30 Jun 71.4176	m2 .8900 .4100 .7900 .0900 .2200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31 Jul 71.4176	W/m2K 1.0000 1.3258 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31 Aug 74.5917	<pre>w, 1.890 1.6452 3.742 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762 30 Sep 7.7.7659 90.7463</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0 0 0.9834 31 31 0 0 0 ct 80.9400 105.7560	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885 30 Nov 84.1141</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31 1.9012 79.3529 Dec 87.2882 125.3614	(26) (27) (29a) (29a) (31) (33) (36) (37) (38) (39) (40) (40) (40) (41) (41) (41) (42) (43) (44) (45) (45)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Total storage	1000												
iotal stolage	23.3325	21.0745	23.3325	22.5798	23.3325	22.5798	23.3325	23.3325	22.5798	23.3325	22.5798	23.3325	(= 6)
				22.3790	23.3323	22.3/90	23.3323	23.3323	22.3/90	23.3323	22.3/90	23.3323	(36)
If cylinder co	ntains ded	icated sola:	r storage										
	23.3325	21.0745	23.3325	22.5798	23.3325	22.5798	23.3325	23.3325	22.5798	23.3325	22.5798	23.3325	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat req	uired for a	water heatir	ng calculate	ed for each	month								
	176.0408	155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Si	um (63) m =	0.0000	(63)
Output from w/	h												
	176.0408	155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	(64)
								Total pe	er year (kWl	h/year) = Si	um (64) m =	1797.1479	(64)
Heat gains fro	m water he	ating, kWh/r	nonth					-	-	-			
	80.3167	71.3123	76.1209	69.9394	69.7711	64.1144	63.2599	67.0930	66.2466	72.4398	74.4576	78.9586	(65)

5. Internal ga	ins (see Ta	ble 5 and 5	ja)									
Metabolic gain	s (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588 (66)
Lighting gains	(calculate	d in Append	dix L, equat	tion L9 or 3	L9a), also :	see Table 5						
	14.7947	13.1406	10.6866	8.0905	6.0477	5.1057	5.5169	7.1711	9.6251	12.2212	14.2640	15.2059 (67)
Appliances gai	ns (calcula	ted in Appe	endix L, equ	ation L13	or L13a), a	lso see Tab	le 5					
	165.8087	167.5293	163.1935	153.9631	142.3114	131.3604	124.0445	122.3239	126.6597	135.8901	147.5418	158.4928 (68)
Cooking gains	(calculated	in Appendi	x L, equat:	ion L15 or :	L15a), also	see Table 3	5					
	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. ev	aporation (negative va	alues) (Tabi	le 5)								
	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470 (71)
Water heating	gains (Tabl	e 5)										
	107.9525	106.1195	102.3130	97.1381	93.7784	89.0477	85.0268	90.1787	92.0092	97.3653	103.4133	106.1272 (72)
Total internal	gains											
	343.0736	341.3070	330.7107	313.7093	296.6551	280.0315	269.1058	274.1913	282.8116	299.9943	319.7367	334.3435 (73)

6. Solar gains	

[Jan]	[Jan]		Area m2				Speci	g fic data Table 6b	Specific or Tab		Acces facto Table	or	Gains W	
East West			3.9 8.5		19.6403 19.6403		0.6300 0.6300		.7000 .7000	0.77		23.4691 51.0197		
Solar gains Total gains	74.4888 417.5624	145.7159 487.0228	239.9733 570.6840	349.9867 663.6960	428.9219 725.5770	439.0779 719.1094	418.0200 687.1259	359.0730 633.2644	279.0989 561.9104	172.9042 472.8984	92.8788 412.6155	61.2560 395.5995	1 7	

lemperature du	ring heatin	g periods i	n the livin	g area from	Table 9, T	'h1 (C)						21.0000	(8
Jtilisation fa													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	69.0940	69.2946	69.4924	70.4365	70.6160	71.4639	71.4639	71.6231	71.1349	70.6160	70.2538	69.8791	
lpha	5.6063	5.6196	5.6328	5.6958	5.7077	5.7643	5.7643	5.7749	5.7423	5.7077	5.6836	5.6586	
til living ar	ea												
	0.9947	0.9868	0.9584	0.8621	0.6859	0.4902	0.3553	0.4015	0.6588	0.9251	0.9876	0.9960	(8
IT	20.0815	20.2538	20.5243	20.8137	20.9570	20.9947	20.9993	20.9986	20.9745	20.7503	20.3600	20.0521	(8
h 2	20.0791	20.0815	20.0839	20.0951	20.0972	20.1069	20.1069	20.1088	20.1032	20.0972	20.0929	20.0885	(8
til rest of h	ouse												
	0.9930	0.9827	0.9462	0.8285	0.6301	0.4238	0.2835	0.3244	0.5837	0.8975	0.9831	0.9947	(8
IIT 2	18.8628	19.1139	19.4994	19.8934	20.0598	20.1038	20.1067	20.1082	20.0854	19.8250	19.2780	18.8272	(9
iving area fr	action								fLA =	Living area	(4) =	0.4802	(9
4IT	19.4479	19.6612	19.9915	20.3353	20.4906	20.5315	20.5353	20.5358	20.5123	20.2693	19.7975	19.4153	(9
Cemperature ad	ljustment											0.0000	
adjusted MIT	19.4479	19.6612	19.9915	20.3353	20.4906	20.5315	20.5353	20.5358	20.5123	20.2693	19.7975	19.4153	(9

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9915	0.9804	0.9448	0.8381	0.6551	0.4556	0.3180	0.3615	0.6189	0.9034	0.9813	0.9935	(94)
Useful gains	414.0041	477.4977	539.1750	556.2271	475.3035	327.6379	218.4965	228.9147	347.7535	427.2332	404.8835	393.0160	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	870.7044	846.0190	771.0478	644.7722	494.3952	329.6390	218.6996	229.3299	358.0034	543.8133	717.8048	864.7512	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	339.7851	247.6463	172.5134	63.7525	14.2042	0.0000	0.0000	0.0000	0.0000	86.7356	225.3033	350.9710	(98)
Space heating												1500.9114	(98)
Space heating	per m2									(98)	/ (4) =	26.2443	(99)

8c. Space cooling requirement

Not applicable

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy requirements - Individua											
Fraction of space heat from seconda Fraction of space heat from main sys Efficiency of main space heating sy Efficiency of secondary/supplementa Space heating requirement	ry/suppleme stem(s) stem 1 (in	ntary syste %)								0.0000 1.0000 93.5000 0.0000 1605.2528	(202) (206) (208)
Jan Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 339.7851 247.6463	172.5134	63.7525	14.2042	0.0000	0.0000	0.0000	0.0000	86.7356	225.3033	350.9710	(98)
Space heating efficiency (main heat 93.5000 93.5000	ing system 93.5000	1) 93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating fuel (main heating sy 363.4065 264.8624	stem) 184.5063	68.1845	15.1917	0.0000	0.0000	0.0000	0.0000	92.7654	240.9661	375.3700	(211)
Water heating requirement 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement 176.0408 155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	1. 1
Efficiency of water heater (217)m 86.5399 86.0530	84.9583	82.7607	80.6544	79.8000	79.8000	79.8000	79.8000	83.3762	85.7180	79.8000 86.6782	
Fuel for water heating, kWh/month 203.4216 180.4702 Water heating fuel used	192.3553	177.5533	178.9423	162.1872	156.3187	170.7646	170.2232	182.7272	187.2803	198.3848 2160.6285	
Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary										1605.2528 0.0000	
Electricity for pumps and fans: central heating pump main heating flue fan Total electricity for the above, kW Electricity for lighting (calculate Total delivered energy for all uses	d in Append	ix L)								30.0000 45.0000 75.0000 261.2799 4102.1612	(230e) (231) (232)
12a. Carbon dioxide emissions - Ind											
Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans						Energy kWh/year 1605.2528 0.0000 2160.6285 75.0000 261.2799		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190	k	Emissions cg CO2/year 346.7346 0.0000 466.6958 813.4304 38.9250 135.6043	(261) (263) (264) (265) (267)
Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and wate Fuel factor (mains gas) Emissions per m2 for lighting Emissions per m2 for pumps and fans Target Carbon Dioxide Emission Rate	-	4.2233 * 1.	00) + 2.371:	1 + 0.6806,	rounded to			0.2130		135.6043 987.9596 14.2233 1.0000 2.3711 0.6806 17.2800	(272) (272a) (272b) (272c)

APPENDIX D

BE GREEN DER WORKSHEET

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

Property Reference	02 S				Issued on Date	19/02/2021
Assessment	02 S Be Green		Pr	op Type Ref	2B4P	
Reference						
Property						
SAP Rating		85 B	DER	7.64	TER	25.10
Environmental		95 A	% DER <ter< th=""><th></th><th>69.56</th><th></th></ter<>		69.56	
CO ₂ Emissions (t/year)		0.34	DFEE	40.17	TFEE	40.31
General Requirements	Compliance	Fail	% DFEE <tfee< th=""><th></th><th>0.36</th><th></th></tfee<>		0.36	
Assessor Details Mr Client	r. Jacob Cox, Jacob Cox, Tel	: 0203116594	9, jacob.cox@wsp	o.com	Assessor ID	T241-0001

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

		ed Document L1A, 2013 Editi		
DWELLING AS DESIGN	ED			
Mid-floor flat, to	tal floor area 57 m 2			
It is not a comple	items included with: te report of regulat:			
la TER and DER Fuel for main heat Fuel factor:1.55 (Target Carbon Diox Dwelling Carbon Di	ing:Electricity electricity) ide Emission Rate (TH	ER) 25.10 kgCO□/m² (DER) 7.64 kgCO□/m²OK		
Dwelling Fabric En	gy Efficiency (TFEE) ergy Efficiency (DFE	E)40.2 kWh/m²/yrOK		
2 Fabric U-values				
Element Av External wall 0. Party wall 0.	14 (max. 0.30) 00 (max. 0.20)	Highest 0.21 (max. 0.70) -	OK OK	
Roof (n	o floor) o roof) 36 (max. 2.00)	1.40 (max. 3.30)	OK	
		1.10 (max. 5.50)		
	g alculated using defau			
3 Air permeability Air permeability a Maximum	t 50 pascals:	3.00 (design value) 10.0		OK
4 Heating efficien Main heating system		Heat pump with radiators		ic
Secondary heating	system.	None		
		None		
5 Cylinder insulat Hot water storage Permitted by DBSCG	ion 2.10	Measured store loss: 1.03 OK	3 kWh/day	ок
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i	ion 2.10 nsulated:	Measured store loss: 1.03		
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i	ion 2.10 nsulated:	Measured store loss: 1.03 OK Yes		
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: :	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW	e control	
5 Cylinder insulat Hot water storage Permitted by DBSGG Primary pipework i 	ion 2.10 nsulated: rols: : s d lights with low-ene	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75%	e control	ок
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 6 Controls Space heating cont Hot water controls 	<pre>ion 2.10 sulated:</pre>	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75%	control	OK OK
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	<pre>ion 2.10 sulated:</pre>	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75%	control	OK OK
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: : d lights with low-end lation and extract system :	Measured store loss: 1.0: OK Yes Time and temperature zone Cylinderstat Independent timer for DHV ergy fittings:100% 75% 0.59 1.5 89% 70%	: control	OK OK
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 6 Controls Space heating cont Hot water controls 	<pre>ion 2.10 rols: rols: s d lights with low-ene lation and extract system : rature</pre>	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High	control	ок ок ок
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: : d lights with low-ene lation and extract system : rature Thames Valley):	Measured store loss: 1.0: OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70%	: control	ок ок ок ок
<pre>5 Cylinder insulat Hot water storage Permitted by DBSCG Drimary pipework i 6 Controls Space heating cont Hot water controls </pre>	<pre>ion 2.10 sulated: rols: d lights with low-end and extract system rature Thames Valley): t:</pre>	Measured store loss: 1.0: OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High Average 5.25 m², No overhang 11.40 m², No overhang	: control	ок ок ок ок
<pre>5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i </pre>	ion 2.10 nsulated: rols: s d lights with low-end lation and extract system : rature Thames Valley): t: t:	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High Average 5.25 m ² , No overhang	roller blind, closed 10	OK OK OK OK OK Fail
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: s d lights with low-end lation and extract system : rature Thames Valley): t: t:	Measured store loss: 1.03 OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High Average 5.25 m², No overhang 11.40 m², No overhang 0.10 ach Dark-coloured curtain or	roller blind, closed 10	OK OK OK OK OK Fail
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: s d lights with low-end lation and extract system : rature Thames Valley): t: t:	Measured store loss: 1.0: OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High Average 5.25 m², No overhang 11.40 m², No overhang 0.10 ach Dark-coloured curtain or 0.00 W/m²K	roller blind, closed 10	OK OK OK OK OK Fail
5 Cylinder insulat Hot water storage Permitted by DBSCG Primary pipework i 	ion 2.10 nsulated: rols: : s d lights with low-end lation and extract system : rature Thames Valley): t: t:	Measured store loss: 1.0: OK Yes Time and temperature zone Cylinderstat Independent timer for DHW ergy fittings:100% 75% 0.59 1.5 89% 70% High Average 5.25 m², No overhang 0.10 ach Dark-coloured curtain or 0.00 W/m²K	roller blind, closed 10	OK OK OK OK OK Fail

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions					
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln)	57.1900	Area (m2) 57.1900 (1b)	Storey height (m) x 2.6500 (2b)	=	Volume (m3) 151.5535 (1b) - (3b) (4)
Dwelling volume		(3a) + (3b)+(3c)+(3d)+(3e)(3	ı) =	151.5535 (5)

2. Ventilation rate

					main heating		condary heating	0	ther	tota	1 m3	per hour	
Number of chimr	neys				ō	+	ō	+	0 =		0 * 40 =	0.0000	
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
Number of inter		ns									0 * 10 =	0.0000	
Number of passi											0 * 10 =	0.0000	
Number of fluel	less gas fi	res									0 * 40 =	0.0000	(7c)
											Air changes	per hour	
Infiltration du	ue to chimn	eys, flues	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	(8)
Pressure test												Yes	
Measured/design												3.0000	
Infiltration ra Number of sides												0.1500	(18)
Number of sides	s shertered											2	(19)
Shelter factor								(20) = 1 -	[0.075 x	(19)] =	0.8500	(20)
Infiltration ra	ate adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.1275	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
			0 1500	0 1400	0.1371	0.1211	0.1211	0.1179	0.1275	0.1371	0.1434	0.1498	(22b)
Adj infilt rate	0.1626	0.1594	0.1562	0.1403									
Adj infilt rate Balanced mecha					0.15/1	0.1211	0.1221	0.11/0	0.12270	0110/1			(222)
-	anical vent	ilation wit			0.1371	0.1211	0.1211	0.117.9	0.1270	0.1071		0.5000	(23a)
Balanced mecha	anical vent ventilation	ilation wit	h heat reco	very					0.11/0	011071			(23a)

Element				Gross	Openings	Net	Area	U-value	АхU	K-	value	АхК	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Front Door						1.	8900	1.0000	1.8900				(26)
Glazing (Uw =	1.40)					16.	6500	1.3258	22.0739				(27)
External Wall	1			33.2000	16.6500	16.	5500	0.1500	2.4825				(29a
Common Area				8.9800	1.8900	7.	0900	0.2075	1.4710				(29a
Other Wall				11.8200		11.	8200	0.0750	0.8865				(29a
Total net area	a of externa	l elements	Aum(A, m2)			54.	0000						(31)
Fabric heat lo	oss, $W/K = S$	Sum (A x U)					(26)(3	30) + (32) =	28.8038				(33)
Party Wall 1						29.	0700	0.0000	0.0000				(32)
Thermal mass p	parameter (T	MP = Cm / 7	FA) in kJ/m	2K								100.0000	(35)
Thermal bridge	es (Default	value 0.150) * total ex	posed area)								8.1000	(36)
Total fabric h	neat loss									(33)	+ (36) =	36.9038	(27)
										(00)	()	50.5050	(37)
Ventilation he	eat loss cal	culated mor	thly (38)m	= 0.33 x (2	25)m x (5)					(00)		50.9050	(37)
Ventilation he	eat loss cal Jan	culated mor. Feb	nthly (38)m Mar	= 0.33 x (2 Apr	25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(37)
Ventilation he						Jun 15.4852	Jul 15.4852	Aug 15.3258	Sep 15.8040	ι	Nov 16.6011		,
(38) m	Jan 17.5576	Feb	Mar	Apr	May					Oct		Dec	
	Jan 17.5576	Feb	Mar	Apr	May					Oct		Dec	(38)
(38) m	Jan 17.5576 coeff 54.4614	Feb 17.3982 54.3020	Mar 17.2387	Apr 16.4417	May 16.2822	15.4852	15.4852	15.3258	15.8040	Oct 16.2822	16.6011	Dec 16.9199	(38)
(38)m Heat transfer	Jan 17.5576 coeff 54.4614	Feb 17.3982 54.3020	Mar 17.2387	Apr 16.4417	May 16.2822	15.4852	15.4852	15.3258	15.8040	Oct 16.2822	16.6011	Dec 16.9199 53.8237	(38)
(38)m Heat transfer Average = Sum(Jan 17.5576 coeff 54.4614 (39)m / 12 =	Feb 17.3982 54.3020	Mar 17.2387 54.1426	Apr 16.4417 53.3455	May 16.2822 53.1861	15.4852 52.3890	15.4852 52.3890	15.3258 52.2296	15.8040 52.7078	Oct 16.2822 53.1861	16.6011 53.5049	Dec 16.9199 53.8237 53.3056	(38) (39) (39)
(38)m Heat transfer Average = Sum(HLP	Jan 17.5576 coeff 54.4614 (39)m / 12 = Jan	Feb 17.3982 54.3020 Feb	Mar 17.2387 54.1426 Mar	Apr 16.4417 53.3455 Apr	May 16.2822 53.1861 May	15.4852 52.3890 Jun	15.4852 52.3890 Jul	15.3258 52.2296 Aug	15.8040 52.7078 Sep	Oct 16.2822 53.1861 Oct	16.6011 53.5049 Nov	Dec 16.9199 53.8237 53.3056 Dec	(38) (39) (39) (40)
(38)m Heat transfer	Jan 17.5576 coeff 54.4614 (39)m / 12 = Jan	Feb 17.3982 54.3020 Feb	Mar 17.2387 54.1426 Mar	Apr 16.4417 53.3455 Apr	May 16.2822 53.1861 May	15.4852 52.3890 Jun	15.4852 52.3890 Jul	15.3258 52.2296 Aug	15.8040 52.7078 Sep	Oct 16.2822 53.1861 Oct	16.6011 53.5049 Nov	Dec 16.9199 53.8237 53.3056 Dec 0.9411	(38) (39) (39) (40)

4. Water heating energy requirements (kWh/year) · 1.9012 (42) 79.3529 (43) Assumed occupancy Average daily hot water use (litres/day) Feb Mar Jul Jan Apr Jun May Aug Sep Oct Nov Dec
 Jaily
 <th 71.4176 78.1474 74.5917 89.6753 87.2882 (44) 125.3614 (45) 1248.5305 (45) 74.5917 97.7299 71.4176 84.3335 77.7659 90.7463 80.9400 84.1141 105.7560 115.4410 Energy content (annual) Distribution loss (46)m = 0.15 x (45)m 19.4169 16.9821 17.5240 Total = Sum(45)m = 15.2779 14.6595 12.6500 11.7221 13.4513 13.6119 15.8634 17.3161 18.8042 (46)

Water storage Store volume a) If manufac Temperature Enter (49) or Total storage	cturer decla factor from (54) in (55	n Table 2b	actor is kno	own (kWh/da	ay):							150.0000 1.0300 0.7209 0.7425	(48) (49)
	23.0183	20.7908	23.0183	22.2758	23.0183	22.2758	23.0183	23.0183	22.2758	23.0183	22.2758	23.0183	(56)
If cylinder co	ontains dedi	icated sola:	r storage										
	23.0183	20.7908	23.0183	22.2758	23.0183	22.2758	23.0183	23.0183	22.2758	23.0183	22.2758	23.0183	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Total heat red	quired for w	water heatin	ng calculate	ed for each	month								
	152.4642	134.0050	139.8453	124.1284	120.7483	106.6093	101.1657	112.6936	113.0221	128.7744	137.7168	148.3798	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Si	um (63) m =	0.0000	(63)
Output from w,													
	152.4642	134.0050	139.8453	124.1284	120.7483	106.6093	101.1657	112.6936	113.0221	128.7744	137.7168	148.3798	(64)
								Total pe	er year (kWl	h/year) = Si	um (64) m =	1519.5529	(64)
Heat gains fro													
	61.4554	54.2763	57.2596	51.6866	50.9099	45.8615	44.3987	48.2317	47.9938	53.5786	56.2048	60.0974	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts May 95.0588 Jul Oct 95.0588
 Jan
 Feb
 Mar
 Apr
 May
 Jun

 (66)m
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 95.0588
 32.5059
 163.1935
 153.9631
 142.3114
 131.3604
 12

 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 32.5059
 Mar Jun 95.0588 Jul Aug Sep 95.0588 95.0588 95.0588 Jan Feb Apr 95.0588 Nov Dec 95.0588 95.0588 (66) 7.1649 5.5122 9.6167 15.1928 (67) 12.2107 14.2516 124.0445 122.3239 126.6597 135.8901 147.5418 158.4928 (68) 32 5059 32 5059 32 5059 32 5059 32 5059 32 5059 (69)
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 32:5059
 <t Water heating gains (Table 5) 82.6014 80.7683 76.9619 71.7870 68.4273 63.6966 59.6756 64.8276 66.6580 72.0142 78.0622 80.7760 (72) Total internal gains 314.7097 312.9445 302.3503 285.3512 268.2987 251.6759 240.7499 245.8340 254.4521 271.6326 291.3733 305.9792 (73)

6. Solar gains

[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce fact Table	or	Gains W	
East West			5.2 11.4		19.6403 19.6403		0.5000 0.5000		.9000 .9000	0.77 0.77		32.1553 69.8229	
Solar gains Total gains	101.9782 416.6879	199.4910 512.4354	328.5332 630.8836	479.1461 764.4973	587.2115 855.5103	601.1155 852.7914	572.2865 813.0364	491.5856 737.4196	382.0977 636.5498	236.7128 508.3454	127.1548 418.5281	83.8619 389.8411	

Utilisation fa	uring heatin actor for ga					'hl (C)						21.0000
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	29.1695	29.2551	29.3413	29.7797	29.8689	30.3234	30.3234	30.4159	30.1400	29.8689	29.6909	29.5151
lpha	2.9446	2.9503	2.9561	2.9853	2.9913	3.0216	3.0216	3.0277	3.0093	2.9913	2.9794	2.9677
til living an												
	0.9430	0.9026	0.8223	0.6826	0.5248	0.3786	0.2790	0.3184	0.5205	0.7802	0.9122	0.9514
weekday	17.8052	18.3048	18.9879	19.6402	19.9758	20.1163	20.1455	20.1431	20.0438	19.5138	18.5504	17.7200
lweekend	19.8800	20.1064	20.4214	20.7301	20.9002	20.9727	20.9919	20.9879	20.9290	20.6578	20.2104	19.8389
4 / 16	9	8	9	8	9	9	9	9	8	9	8	9
4 / 9	22	20	22	22	22	21	22	22	22	22	22	22
6 / 9	0	0	0	0	0	0	0	0	0	0	0	0
1IT	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000
'h 2	20.1233	20.1256	20.1280	20.1397	20.1421	20.1539	20.1539	20.1562	20.1492	20.1421	20.1374	20.1327
til rest of b	nouse											
	0.9355	0.8908	0.8024	0.6522	0.4856	0.3323	0.2269	0.2625	0.4676	0.7488	0.8995	0.9450
'weekday	17.8052	18.3048	18.9879	19.6402	19.9758	20.1163	20.1455	20.1431	20.0438	19.5138	18.5504	17.7200
'weekend	17.8052	18.3048	18.9879	19.6402	19.9758	20.1163	20.1455	20.1431	20.0438	19.5138	18.5504	17.7200
IIT 2	20.1233	20.1256	20.1280	20.1397	20.1421	20.1539	20.1539	20.1562	20.1492	20.1421	20.1374	20.1327
iving area fi	raction								fLA =	Living area	/ (4) =	0.4802
IIT	20.5442	20.5455	20.5467	20.5528	20.5540	20.5601	20.5601	20.5614	20.5577	20.5540	20.5516	20.5491
	djustment											-0.1000
emperature ad		20.4455	20.4467	20.4528	20.4540	20.4601	20.4601	20.4614	20.4577	20.4540	20.4516	20.4491

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation 0.9384 0.8953 0.8100 0.6636 0.5001 0.3493 0.2459 0.4873 0.7608 0.9044 0.9475 (94) Utoful coing 291 0.022 9.622 10.1044 278 269 269 269 269 264 269

ULIIISALION	0.9304	0.0900	0.0100	0.0030	0.3001	0.3493	0.2439	0.2029	0.40/3	0./000	0.9044	0.94/5 (94)
Useful gains	391.0202	458.7932	510.9943	507.3470	427.8780	297.8897	199.9518	208.6262	310.1844	386.7333	378.5218	369.3691 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate	W											
	879.2378	844.1492	755.1090	616.2892	465.5916	307.0071	202.2292	212.1239	335.1001	524.0963	714.3742	874.5883 (97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (97a)
Space heating	kWh											

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

CALCULATIO		VVELLIN	G EIVIISSI		KEGULA		JIVIPLIAN		Jan 2014	,			
31 Space heating Space heating per	63.2339 r m2	258.9592	181.6213	78.4384	28.0590	0.0000	0.0000	0.0000	0.0000		241.8137) / (4) =	375.8831 1630.2067 28.5051	(98)
8c. Space cooling													
Not applicable													
9a. Energy requir													
Fraction of space Fraction of space Efficiency of ma: Efficiency of see Space heating rec	e heat fr e heat fr in space condary/s	com seconda: com main sy: heating sy: supplementa:	ry/supplemen stem(s) stem 1 (in S	ntary system								0.0000 1.0000 320.4220 100.0000 508.7686	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating red 30		258.9592	181.6213	78.4384	28.0590	0.0000	0.0000	0.0000	0.0000	102.1981	241.8137	375.8831	(98)
Space heating ef:	ficiency			1) 320.4220	320.4220	0.0000	0.0000	0.0000	0.0000	320.4220	320.4220	320.4220	
Space heating fue	el (main 13.3611	heating sy: 80.8182	stem) 56.6819	24.4797	8.7569	0.0000	0.0000	0.0000	0.0000	31.8948	75.4673	117.3088	(211)
Water heating red	quirement 0.0000	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating red		134.0050	139.8453	124.1284	120.7483	106.6093	101.1657	112.6936	113.0221	128.7744	137.7168	148.3798	(64)
Efficiency of wat (217)m 12			133.8550	133.8550	133.8550	133.8550	133.8550	133.8550	133.8550	133.8550	133.8550	133.8550 133.8550	
Fuel for water he 12 Water heating fue	13.9025		104.4752	92.7334	90.2083	79.6454	75.5786	84.1908	84.4362	96.2044	102.8851	110.8511 1135.2231	(219)
Annual totals kWN Space heating fue Space heating fue	h/year el - mair											508.7686 0.0000	(211)
Electricity for p (BalancedWith mechanical ver Total electricity Electricity for	hHeatReco ntilation y for the	overy, Datal 1 fans (SFP 2 above, kW	= 0.8 h/year	3260)	1.4000, SFP	= 0.8260)						152.7235 152.7235 261.0541	(231)
Energy saving/gen Total delivered e			es (Appendio	ces M ,N an	d Q)							2057.7693	(238)
12a. Carbon diox:													
								Energy	Emiss	ion factor		Emissions	
Space heating - r Space heating - s Water heating (of	secondary ther fuel	7						kWh/year 508.7686 0.0000 1135.2231		kg CO2/kWh 0.5190 0.5190 0.5190	k	g CO2/year 264.0509 0.0000 589.1808	(263) (264)
Space and water h Pumps and fans Energy for light:								152.7235 261.0541		0.5190 0.5190		853.2317 79.2635 135.4871	(267)
Energy saving/ge PV Unit Total CO2, kg/yea	ar							-1216.0000		0.5190		-631.1040 436.8783	(272)
Dwelling Carbon I	PIONING E	miission Rd	CC (DER)									7.6400	12/3/
16 CO2 EMISSIONS DER Total Floor Area Assumed number of CO2 emission fact CO2 emissions fro CO2 emissions fro Total CO2 emission Residual CO2 emissi Additional allow	f occupan tor in Ta om applia om cookin ons ssions of	nts able 12 for ances, equa ag, equation Efset from 1	electricity tion (L14) n (L16) biofuel CHP	/ displaced		E ELECTRICI	TY GENERATI	ON TECHNOLO	GIES		TFA N EF	7.6400 : 57.1900 1.9012 0.5190 17.1804 : 2.8786 : 27.6990 : 0.0000 :	ZC2 ZC3 ZC4 ZC5
Resulting CO2 em: Net CO2 emission:	issions c				electricity	generation						0.0000 27.6990	ZC7

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	FARGET EMI	w Build (As SSIONS	Designed) 09 Jan 20		9.92, Januar	ry 2014)							
. Overall dwel	ling dimen	sions											
round floor btal floor are welling volume	a TFA = (1	a)+(1b)+(1c	c)+(1d)+(1e)(ln)	Ξ	57.1900		Area (m2) 57.1900		ey height (m) 2.6500 +(3d)+(3e)		Volume (m3) 151.5535 151.5535	(1b) (4)
. Ventilation	rate												
umber of chimn umber of open umber of intern	flues mittent fa	ns			main heating 0 0	+ +	econdary heating 0 0	+ +	other 0 = 0 =		0 * 40 = 0 * 20 = 2 * 10 =	3 per hour 0.0000 0.0000 20.0000	(6a) (6b) (7a)
umber of passi umber of fluel		res									0 * 10 = 0 * 40 =	0.0000 0.0000	(7c)
nfiltration du ressure test easured/design nfiltration ra umber of sides	AP50 te	-	and fans	= (6a)+(6b))+(7a)+(7b)+((7c) =				20.0000	Air change / (5) =	0.1320 Yes 5.0000 0.3820	(8)
helter factor nfiltration ra	te adjuste	d to includ	de shelter	factor					(20) = 1 - (2	[0.075 x 1) = (18)		0.8500 0.3247	
ind speed ind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
dj infilt rate ffective ac	0.4140 0.5857	0.4058 0.5824	0.3977 0.5791	0.3571 0.5638	0.3490 0.5609	0.3084 0.5476	0.3084 0.5476	0.3003 0.5451		0.3490 0.5609	0.3653 0.5667	0.3815 0.5728	
		oss paramet											
Heat losses lement ER Opaque door ER Opening Typ Kternal Wall 1 ommon Area cher Wall	and heat 1	oss paramet	er	Gross m2 33.2000 8.9800 11.8200	Openings m2 12.4100 1.8900	1 12 20 7 11	tArea m2 .8900 .4100 .7900 .0900 .8200	U-value W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	A x W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2	-value kJ/m2K	A x K kJ/K	(26) (27) (29a) (29a) (29a)
Heat losses of the second seco	e (Uw = 1. of externa s, W/K = S	40) l elements um (A x U)	er Aum(A, m2)	Gross m2 33.2000 8.9800 11.8200	m2 12.4100	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800	W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2 6		kJ/K	(26) (27) (29a) (29a) (29a) (31) (33)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 ommon Area ther Wall otal net area abric heat loss hermal mass pa hermal bridges otal fabric he	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss	40) l elements um (A x U) MP = Cm / T ined value	Aum(A, m2) FFA) in kJ/ 0.050 * to	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed	m2 12.4100 1.8900 area)	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	W/ 1.890 16.452 3.742 1.276 2.127	K 0 7 2 2 6 7			(26) (27) (29a) (29a) (29a) (31) (33) (35) (36)
. Heat losses of lement ER Opaque door ER Opening Typy kternal Wall 1 bran net area abric heat loss hermal mass pas hermal bridges btal fabric hear antilation hear 38)m	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914	40) l elements um (A x U) MP = Cm / T ined value	Aum(A, m2) FFA) in kJ/ 0.050 * to	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed	m2 12.4100 1.8900 area)	1 12 20 7 11	m2 .8900 .4100 .7900 .0900 .8200 .0000	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep</pre>	K 0 7 2 2 6 7	kJ/m2K	kJ/K 250.0000 2.7000	(26) (27) (29a) (29a) (31) (33) (35) (36) (37)
. Heat losses of lement ER Opaque door ER Opening Typ- xternal Wall 1 botal net area of abric heat loss hermal mass pa hermal bridges tal fabric heat entilation heat 38)m eat transfer co	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137	Aum(A, m2) (FA) in kJ/ 0.050 * to hthly (38)m Mar	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr	m2 12.4100 1.8900 area) 25)m x (5) May	1 12 20 7 11 54	m2 .8900 .7900 .0900 .8200 .0000 (26)(3	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 0.1800 30) + (32) Aug	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423</pre>	K 0 7 2 2 2 6 6 7 7 (33) 0Ct	kJ/m2K + (36) = Nov	kJ/K 250.0000 2.7000 28.1887 Dec	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (38)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area (abric heat los) hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average)	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137	Aum(A, m2) YFA) in kJ/ 0.050 * to hthly (38)m Mar 28.9619	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525	1 12 20 7 11 54 Jun 27.3853	m2 .8900 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617	<pre>w, 1.890 16.452 3.742 2.127 2.127 = 25.488 \$ep 27.6423 55.8309 \$ep</pre>	K 0 7 2 2 6 7 7 (33) 0ct 28.0525	kJ/m2K + (36) = Nov 28.3425	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40)
. Heat losses of lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area (abric heat los) hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average)	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb	Aum(A, m2) YFA) in kJ/ 0.050 * to hthly (38)m Mar 57.1506 Mar	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May	1 12 20 7 11 54 27.3853 55.5739 Jun	m2 .8900 .4100 .7900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 56.2412 0 0 ct	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40)
. Heat losses . lement ER Opaque door ER Opaning Typ, kternal Wall 1 otal net area : baric heat loss hermal mass pa hermal bridges otal fabric heat entilation heat 38)m eat transfer co verage = Sum(3) LP LP (average) ays in month	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28	Aum(A, m2) YFA) in kJ/ 0.050 * to thly (38)m Mar 28.9619 57.1506 Mar 0.9993 31	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	1 12 20 7 11 54 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (38) (39) (39) (40) (40)
. Heat losses . . Heat losses . . Heat losses . . Ropaque door CR Opaning Typ, tternal Wall 1 . There Wall . There wall	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements	Aum(A, m2) 2FA) in kJ/ 0.050 * to Athly (38)m Mar 28.9619 57.1506 Mar 0.9993 31 31 31	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	Jun 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41)
. Heat losses . . Heat losses . . Heat losses . . Ropaque door . Ropaque door . Ropaque door . Ropaque door . Water heat loss . Water heat . Water heat . Water heat . Sumed occupan.	e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy	40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements	Aum(A, m2) 2FA) in kJ/ 0.050 * to Athly (38)m Mar 28.9619 57.1506 Mar 0.9993 31 31 31	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	Jun 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>w, 1.890 16.452 3.742 1.276 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0.9834	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31	(26) (27) (29a) (29a) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41)
. Heat losses a lement ER Opaque door ER Opening Typy xternal Wall 1 Dtal net area a bhric heat loss hermal mass pa hermal bridges Dtal fabric heat abric heat loss hermal bridges Dtal fabric heat at transfer counce werage = Sum (3) LP LP (average) ays in month . Water heating ssumed occupany verage daily heat aily hot water	and heat 1 e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss t loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r cy ot water u Jan use 87.2882 129.4459	<pre>d40) l elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements se (litres/</pre>	Aum(A, m2) YFA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 3 (kWh/year (day)	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31	1 12 20 7 11 54 27.3853 55.5739 Jun 0.9717 30	m2 .8900 .4100 .7900 .0900 .8200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31	W/m2K 1.0000 1.3258 0.1800 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31	<pre>www. 1.890 16.452 3.742 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762 30 Sep 7.7.7559</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0 0 0.9834 31 31 0 0 0 ct 80.9400 105.7560	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885 30 Nov 84.1141 115.4410</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31 1.9012 79.3529 Dec 87.2882 125.3614	(26) (27) (29a) (29a) (31) (35) (36) (37) (38) (39) (40) (40) (40) (41) (41) (42) (43)
. Heat losses . lement ER Opaque door ER Opening Typy xternal Wall 1 otal net area . abric heat loss hermal mass pa hermal bridges otal fabric he. entilation hear 38)m eat transfer c. verage = Sum (3 LP LP (average) ays in month . Water heatin. water heatin. water dealy ho aily hot water nergy content istribution los	and heat 1 e (Uw = 1. of externa s, W/K = S rameter (T (User def at loss cal Jan 29.2914 oeff 57.4801 9)m / 12 = Jan 1.0051 31 g energy r 	oss paramet 40) 1 elements um (A x U) MP = Cm / T ined value culated mon Feb 29.1250 57.3137 Feb 1.0022 28 equirements se (litres/ Feb 84.1141 113.2142 = 0.15 x (4	Aum(A, m2) YFA) in kJ/ 0.050 * to Mar 28.9619 57.1506 Mar 0.9993 31 31 3 (kWh/year (day) Mar 80.9400 116.8269	Gross m2 33.2000 8.9800 11.8200 m2K tal exposed = 0.33 x (2 Apr 28.1958 56.3845 Apr 0.9859 30) Apr 77.7659	m2 12.4100 1.8900 area) 25)m x (5) May 28.0525 56.2412 May 0.9834 31 31 May 74.5917	Jun 27.3853 55.5739 Jun 0.9717 30 Jun 71.4176	m2 .8900 .4100 .7900 .0900 .2200 .0000 (26)(3 Jul 27.3853 55.5739 Jul 0.9717 31 Jul 71.4176	W/m2K 1.0000 1.3258 0.1800 0.1800 30) + (32) Aug 27.2617 55.4504 Aug 0.9696 31 Aug 74.5917	<pre>w, 1.890 1.6452 3.742 2.127 = 25.488 Sep 27.6423 55.8309 Sep 0.9762 30 Sep 7.7.7659 90.7463</pre>	K 0 7 2 2 6 7 7 (33) 0 0 2 8.0525 5 6.2412 0 0 0.9834 31 31 0 0 0 ct 80.9400 105.7560	<pre>kJ/m2K + (36) = Nov 28.3425 56.5311 Nov 0.9885 30 Nov 84.1141</pre>	kJ/K 250.0000 2.7000 28.1887 Dec 28.6456 56.8342 56.3838 Dec 0.9938 0.9859 31 1.9012 79.3529 Dec 87.2882 125.3614	(26) (27) (29a) (29a) (31) (33) (36) (37) (38) (39) (40) (40) (40) (41) (41) (41) (42) (43) (44) (45) (45)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Total storage	1000												
iotal stolage	23.3325	21.0745	23.3325	22.5798	23.3325	22.5798	23.3325	23.3325	22.5798	23.3325	22.5798	23.3325	(= 6)
				22.3790	23.3323	22.3/90	23.3323	23.3323	22.3/90	23.3323	22.3/90	23.3323	(36)
If cylinder co	ntains ded	icated sola:	r storage										
	23.3325	21.0745	23.3325	22.5798	23.3325	22.5798	23.3325	23.3325	22.5798	23.3325	22.5798	23.3325	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat req	uired for y	water heatir	ng calculate	ed for each	month								
	176.0408	155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Si	um (63) m =	0.0000	(63)
Output from w/	h												
	176.0408	155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	(64)
								Total pe	er year (kWl	h/year) = Si	um (64) m =	1797.1479	(64)
Heat gains fro	m water he	ating, kWh/r	nonth					-	-	-			
	80.3167	71.3123	76.1209	69.9394	69.7711	64.1144	63.2599	67.0930	66.2466	72.4398	74.4576	78.9586	(65)

5. Internal ga	ins (see Ta	ble 5 and 5	ja)									
Metabolic gain	s (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588	95.0588 (66)
Lighting gains	(calculate	d in Append	dix L, equat	tion L9 or 3	L9a), also :	see Table 5						
	14.7947	13.1406	10.6866	8.0905	6.0477	5.1057	5.5169	7.1711	9.6251	12.2212	14.2640	15.2059 (67)
Appliances gai	ns (calcula	ted in Appe	endix L, equ	ation L13	or L13a), a	lso see Tab	le 5					
	165.8087	167.5293	163.1935	153.9631	142.3114	131.3604	124.0445	122.3239	126.6597	135.8901	147.5418	158.4928 (68)
Cooking gains	(calculated	in Appendi	x L, equat:	ion L15 or :	L15a), also	see Table 3	5					
	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059	32.5059 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. ev	aporation (negative va	alues) (Tabi	le 5)								
	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470	-76.0470 (71)
Water heating	gains (Tabl	e 5)										
	107.9525	106.1195	102.3130	97.1381	93.7784	89.0477	85.0268	90.1787	92.0092	97.3653	103.4133	106.1272 (72)
Total internal	gains											
	343.0736	341.3070	330.7107	313.7093	296.6551	280.0315	269.1058	274.1913	282.8116	299.9943	319.7367	334.3435 (73)

6. Solar gains	

			Area m2										
[Jan]			A		Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acces facto Table	or	Gains W	
East West			3.9 8.5		19.6403 19.6403		0.6300 0.6300		.7000 .7000	0.77		23.4691 51.0197	
Solar gains Total gains	74.4888 417.5624	145.7159 487.0228	239.9733 570.6840	349.9867 663.6960	428.9219 725.5770	439.0779 719.1094	418.0200 687.1259	359.0730 633.2644	279.0989 561.9104	172.9042 472.8984	92.8788 412.6155	61.2560 395.5995	1 7

lemperature du	ring heatin	g periods i	n the livin	g area from	Table 9, T	'h1 (C)						21.0000	(8
Jtilisation fa													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	69.0940	69.2946	69.4924	70.4365	70.6160	71.4639	71.4639	71.6231	71.1349	70.6160	70.2538	69.8791	
lpha	5.6063	5.6196	5.6328	5.6958	5.7077	5.7643	5.7643	5.7749	5.7423	5.7077	5.6836	5.6586	
til living ar	ea												
	0.9947	0.9868	0.9584	0.8621	0.6859	0.4902	0.3553	0.4015	0.6588	0.9251	0.9876	0.9960	(8
IT	20.0815	20.2538	20.5243	20.8137	20.9570	20.9947	20.9993	20.9986	20.9745	20.7503	20.3600	20.0521	(8
h 2	20.0791	20.0815	20.0839	20.0951	20.0972	20.1069	20.1069	20.1088	20.1032	20.0972	20.0929	20.0885	(8
til rest of h	ouse												
	0.9930	0.9827	0.9462	0.8285	0.6301	0.4238	0.2835	0.3244	0.5837	0.8975	0.9831	0.9947	(8
IIT 2	18.8628	19.1139	19.4994	19.8934	20.0598	20.1038	20.1067	20.1082	20.0854	19.8250	19.2780	18.8272	(9
iving area fr	action								fLA =	Living area	(4) =	0.4802	(9
4IT	19.4479	19.6612	19.9915	20.3353	20.4906	20.5315	20.5353	20.5358	20.5123	20.2693	19.7975	19.4153	(9
Cemperature ad	ljustment											0.0000	
adjusted MIT	19.4479	19.6612	19.9915	20.3353	20.4906	20.5315	20.5353	20.5358	20.5123	20.2693	19.7975	19.4153	(9

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9915	0.9804	0.9448	0.8381	0.6551	0.4556	0.3180	0.3615	0.6189	0.9034	0.9813	0.9935	(94)
Useful gains	414.0041	477.4977	539.1750	556.2271	475.3035	327.6379	218.4965	228.9147	347.7535	427.2332	404.8835	393.0160	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	870.7044	846.0190	771.0478	644.7722	494.3952	329.6390	218.6996	229.3299	358.0034	543.8133	717.8048	864.7512	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	339.7851	247.6463	172.5134	63.7525	14.2042	0.0000	0.0000	0.0000	0.0000	86.7356	225.3033	350.9710	(98)
Space heating												1500.9114	(98)
Space heating	per m2									(98)) / (4) =	26.2443	(99)

8c. Space cooling requirement

Not applicable

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy requirements - Individua											
Fraction of space heat from second Fraction of space heat from main sy Efficiency of main space heating sy Efficiency of secondary/supplement Space heating requirement	ary/suppleme ystem(s) ystem 1 (in	ntary syste %)								0.0000 1.0000 93.5000 0.0000 1605.2528	(202) (206) (208)
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 339.7851 247.6463		63.7525	14.2042	0.0000	0.0000	0.0000	0.0000	86.7356	225.3033	350.9710	(98)
Space heating efficiency (main heat 93.5000 93.5000	ting system 93.5000	1) 93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating fuel (main heating space heating 5, 363,4065 264,8624		68.1845	15.1917	0.0000	0.0000	0.0000	0.0000	92.7654	240.9661	375.3700	(211)
Water heating requirement 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement 176.0408 155.2999	163.4218	146.9444	144.3248	129.4254	124.7423	136.2702	135.8381	152.3509	160.5328	171.9563	()
Efficiency of water heater (217)m 86.5399 86.0530	84.9583	82.7607	80.6544	79.8000	79.8000	79.8000	79.8000	83.3762	85.7180	79.8000 86.6782	
Fuel for water heating, kWh/month 203.4216 180.4702 Water heating fuel used	192.3553	177.5533	178.9423	162.1872	156.3187	170.7646	170.2232	182.7272	187.2803	198.3848 2160.6285	
Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary										1605.2528 0.0000	
Electricity for pumps and fans: central heating pump main heating flue fan Total electricity for the above, kl Electricity for lighting (calculat Total delivered energy for all uses	ed in Append	ix L)								30.0000 45.0000 75.0000 261.2799 4102.1612	(230e) (231) (232)
12a. Carbon dioxide emissions - Inc											
Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans						Energy kWh/year 1605.2528 0.0000 2160.6285 75.0000		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190	k	Emissions cg CO2/year 346.7346 0.0000 466.6958 813.4304 38.9250	(263) (264) (265) (267)
Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and wate Fuel factor (electricity) Emissions per m2 for lighting Emissions per m2 for pumps and fam Target Carbon Dioxide Emission Rate	5	4.2233 * 1.	55) + 2.371	1 + 0.6806,	rounded to	261.2799 2 d.p.		0.5190		135.6043 987.9596 14.2233 1.5500 2.3711 0.6806 25.1000	(272) (272a) (272b) (272c)

BLOCK COMPLIANCE Calculation Type: New Build (As Designed)

Block Reference	GUH	Issued on Date	19/02/2021
Block Name	GUH		
Assessor Details	Mr. Jacob Cox, Jacob Cox, Tel: 02031165949, jacob.cox@wsp.com	Assessor ID	T241-0001
Client			

Block Compliance Report - DER

Block Reference: GUH	Block Name: GUH				
Property-Assessment Reference	Multiplier	Floor Area (m²)	DER (kgCO ₂ /m²)	TER (kgCO ₂ /m ²)	% DER/TER
01 N-01 N Be Green	1	72.37	11.91	29.47	59.58 %
01 S-01 S Be Green	1	57.19	9.69	28.59	66.10 %
02 N-02 N Be Green	1	72.37	9.98	25.96	61.55 %
02 S-02 S Be Green	1	57.19	7.64	25.10	69.56 %
03 N-03 N Be Green	1	72.37	12.66	29.47	57.04 %
03 S-03 S Be Green	1	57.19	10.31	28.59	63.93 %
Totals:	6	388.68	62.19	167.16	
Average DER = $10.50 \text{ kgCO}_2/\text{m}^2$	% DER/TER	PASS			
Average TER = $27.91 \text{ kgCO}_2/\text{m}^2$	62.38 %				

Block Compliance Report - DFEE

Block Reference: GUH	Block Name: G	Block Name: GUH				
Property-Assessment Reference	Multiplier	Floor Area (m²)	DFEE (kWh/m²/yr)	TFEE (kWh/m²/yr)	% DFEE/TFEE	
01 N-01 N Be Green	1	72.37	57.26	60.58	5.48 %	
01 S-01 S Be Green	1	57.19	50.30	51.85	2.98 %	
02 N-02 N Be Green	1	72.37	47.83	49.03	2.44 %	
02 S-02 S Be Green	1	57.19	40.17	40.31	0.36 %	
03 N-03 N Be Green	1	72.37	60.86	60.58	-0.46 %	
03 S-03 S Be Green	1	57.19	53.33	51.85	-2.85 %	
Totals:	6	388.68	309.74	314.20		
Average DFEE = 52.06 kWh/m ² /yr	% DFEE/TFEE	PASS				
Average TFEE = 52.88 kWh/m ² /yr	1.55 %					

APPENDIX E

OVERHEATING CHECKLIST

SECTION 1 - SITE FEATURE	S AFFECTING VULNERABILITY TO OVERHEATING	RESPONSE		% single aspect with W orientation	N/A
Site Location	Urban – within central London or in a high-density conurbation	Yes		N/NE/NW	0%
	Peri-urban – on the suburban fringes of London	No		E	9.9%
	Busy road / A roads	A400 to the West of the development	ratio (glazing; internal floor area) on each façade?	S/SE/SW	0%
Air quality and/or Noise sensitivity – are any of the following in	Railways / Overground DLR	No		w	18.5%
vicinity of buildings?	Airport / Flight path	No	Daylighting	What is the average daylight factor range?	To be confirmed
	Industrial uses / waste facility	No		Are windows openable?	Yes
Proposed building use	Will any buildings be occupied by vulnerable people (e.g. elderly, disabled, young children)?	Yes	Window opening	What is the average percentage of openable area for the windows?	To be confirmed
r roposed building use	Are residents likely to be at home during the day (e.g. students)?	Yes		Fully openable	East facing glazing is fully openable
Dwelling Aspect	Are there any single aspect units	No single aspect units	Window opening – what is the extent of the opening?	Limited (e.g. for security, safety, wind loading reasons)	West facing glazing is openable but cannot be used to comply with
Glazing ratio	Is the glazing ratio (glazing: internal floor area) greater than 25%?	No		Where there are security issues (e.g. ground floor flats) has an	TM59
	If yes, is this to allow acceptable levels of daylighting?	N/A	Security	alternative night time natural ventilation method been provided (e.g. ventilation grates)?	To be confirmed Balconies provide to
	Single storey ground floor units	No ground floor units		Is there any external shading	the East facing façade
Security – Are there any security issues that could limit opening of windows for ventilation?	Vulnerable areas identified by the Police Architectural Liaison Officer	No	Shading	Is there any internal shading?	Occupants to install blinds or curtains (these have not been considered
	Other	No	Glazing specification	Is there any solar control glazing?	Glazing with a g-value of 0.5 has been specified
SECTION 2 – DESIGN FEATU	RES IMPLEMENTED TO MITIGATE OVERHEATING RISK	RESPONSE		Natural – background	No
	Will deciduous trees be provided for summer shading (to windows and pedestrian routes)?	No		Natural – purge	No
Landscaping	Will green roofs be provided?	Yes	Ventilation – What is the ventilation strategy	Mechanical – background (e.g. MVHR)	Yes
	Will other green or blue infrastructure be provided around buildings for evaporative cooling?	No		Mechanical – purge	No
Materials	Have high albedo (light colour) materials been specified?	Yes – This will be determined as the design progresses		What is the average design air change rate	0.3l/s/m ²
Dwelling aspect	% of total units that are single aspect	0%		Is communal heating present?	No
	% single aspect with N/NE/NW orientation	N/A		What is the flow/return temperature?	N/A
	% single aspect with E orientation	N/A	Heating system	Have horizontal pipe runs been minimised	N/A
	% single aspect with S/SE/SW orientation	N/A		Do the specification include insulation levels in line with the London Heat Network	N/A

wsp

WSP 70 Chancery Lane London WC2A 1AF

wsp.com