eng17

7 Rosecroft Avenue London NW3 7QA

Basement Impact Assessment for William Tozer Associates

REVISIONS Revisions are highlighted in the text

Rev	Date	Ву	Notes

Job No: ENG/210111 February 2021 Prepared by: Paul Cullen BA, BAI (Hons) CEng MIEI

INDEX

- 1. Introduction
- 2. Site and Development Appraisal
 - 2.1 Existing Site in Context
 - 2.2 Proposed Development
 - 2.3 Existing Ground Conditions
 - 2.4 Site Hydrology
- 3. Proposed Structure
 - 3.1 Foundations in General
 - 3.2 Basement Construction
 - 3.3 Party Wall Matters
- 4. Construction Sequence/Methodology
 - 4.1 Assumed Sequence of Construction
 - 4.2 Noise and Vibration
 - 4.3 Impact on the Local Environment
 - 4.4 Impact on Adjacent Structures and Services
- 5. CMS Specifics
- 6. Sustainability

APPENDICES

- A Sketches of Proposals, Suggested Sequencing and Temporary Works
- **B** Structural Calculations
- C Arboricultural Investigation Report from Parsons Tree Care
- **D** Borehole records

1. INTRODUCTION

This report has been prepared by eng17 Ltd, consulting civil & structural engineers, to accompany the planning submission by William Tozer Associates and is intended to satisfy the requirements of Camden Council Planning Department.

The purpose of this report is to ascertain the potential impact that the deepened area of the proposed garden structure may have on ground stability, the hydrogeology and the hydrology in the vicinity of the site. The assessments were carried out in general accordance with the Borough of Camden guidelines as requested by the client.

The following report outlines the structural methodology for the proposed garden structure with excavation, floor and timber frame superstructure construction. The proposals excavate the ground level adjacent to the rear boundary to increase the available ceiling level in the building, to accommodate a climbing / bouldering wall.

This report should be read in conjunction with the attached arboricultural report by Parsons Tree Care and the structural drawings.

2. SITE & DEVELOPMENT APPRAISAL

2.1 Existing Site and Context

Rosecroft Avenue is a residential street in the Hampstead area of London as shown in Figure 1. The property is not listed on the English Heritage website but the site does lie within the Camden Conservation Area.

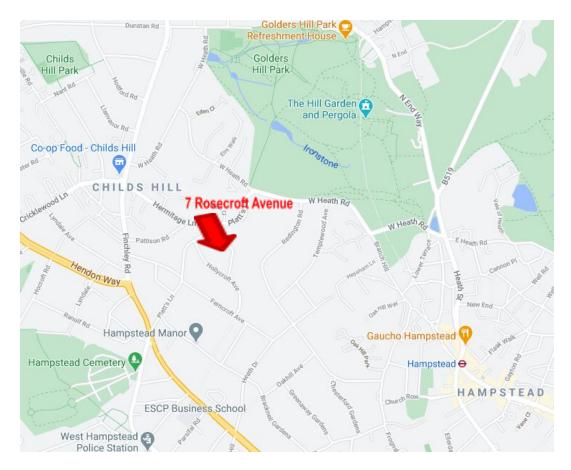


Figure 1a: Location Map

The existing structure is a single-storey timber shed within the rear garden of the property.

Figure 1b: Satellite view

The historic bomb map shows that the site did not suffer damage caused by air raid strikes during the Second World War.



Figure 2: Bomb Map

A map from *The Lost Rivers of London* by Nicholas Barton shows headwater springs to tributaries of two of London's subterranean watercourses approximately 150m from the site; Brent Reservoir to the north and the Westbourne to the south, as indicated in Figure 3. However, the site is not directly affected and there are no known flooding issues with the subject property or the immediate environs.

Figure 3: Lost Rivers of London

The Tube Map in Figure 4 shows no tube lines passing within the vicinity of the site. The nearest tube line is the Northern Line running through Golders Hill Park, about 500m east of the site.

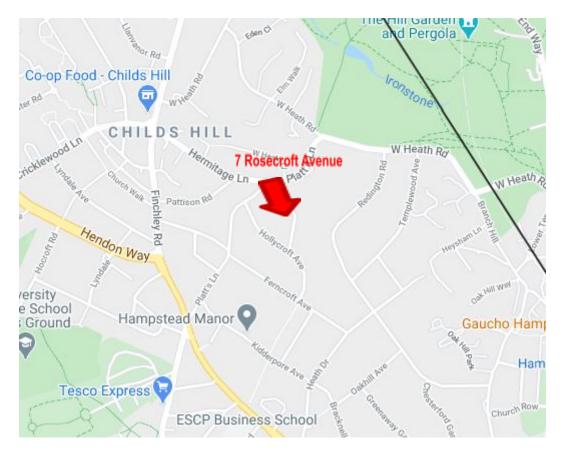


Figure 4 Tube Map

The British Geological Survey website has a map that illustrates the general soil profile in this area. The site is located on the boundary between London Clay Formation and Bagshot Formation bedrock. The superficial geology is London Clay Formation. This has been explored in more detail via trial pits with the assistance of Parsons Tree Care and is discussed in their report in Appendix C. Two boreholes have been carried out in close proximity to the site, both are included in Appendix D. One borehole is approximately 250m west of the site and the other is approximately 800m east of the site.

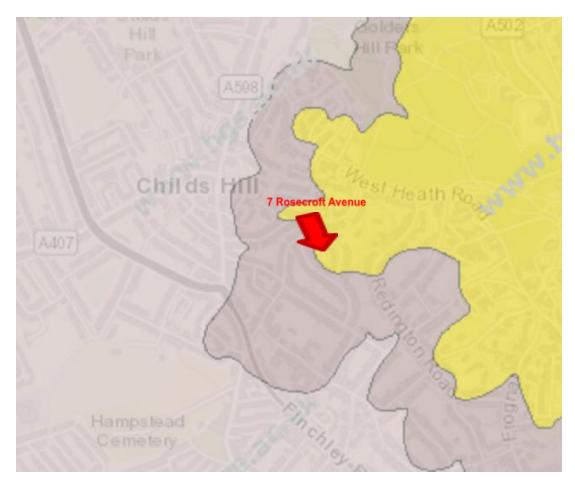


Figure 5: Extract from British Geological Survey Map (website)

2.2 Proposed Development

The proposed development involves deepening the rear garden area to provide a climbing wall and office space. The lowest point of the deepened area will be approximately 1.5m below the existing rear garden level.

This report will only address the issues arising from the deepening of the rear garden area.

2.3 Existing Ground Conditions

A site-specific site investigation has been carried out. The trial holes to a depth of 0.7m bgl indicate that the existing ground is brown sandy clay and pebbles. The existing ground conditions where the excavation is proposed are illustrated in Trial Pit 2 within the arboricultural report, appended to this report. Fibrous root system is present from previously removed vegetations such as ivy, however no structural roots were uncovered. Lime trees are growing beyond the rear boundary, in the garden of 15 Hollycroft Avenue, however, these roots haven't grown under the presumed 400mm wall foundation into the garden of 7 Rosecroft Avenue.

2.4 Site Hydrology

The proposed building will be deepened only in the climbing wall area. The construction of the deepened area is unlikely to have a detrimental effect on the hydrogeology of the site. No ground water was encountered in any of the trial holes at depths of up to 1.0m below ground level.

There is a combined sewer indicated on the attached Thames Water Sewer Map running along the centre of Rosecroft Avenue. There is a 125mm HPPE water supply main also running along Rosecroft Avenue, shown on the attached Thames Water Map. Their positions are outside the site of the proposed excavation.

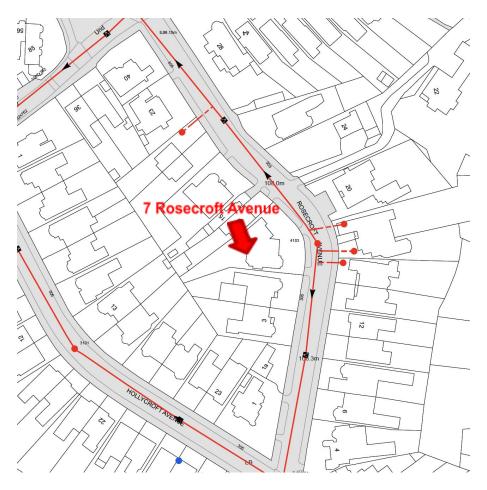


Figure 6a: Thames Water Asset Location Sewer Map

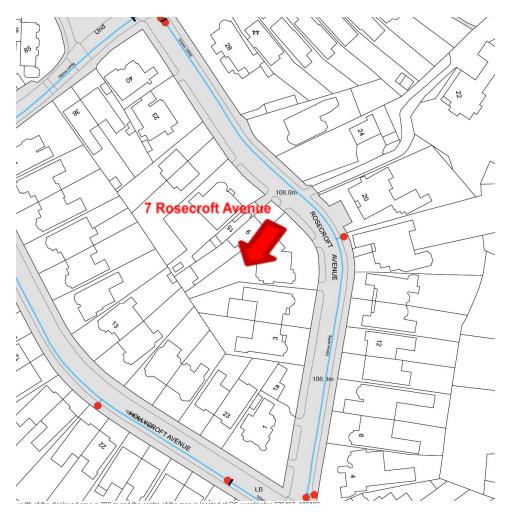



Figure 6b: Thames Water Asset Location Water Map

The site is outside the fluvial/tidal flood zone of the River Thames and its tributaries. The long term flood risk is deemed very low due to both surface water and rivers and the sea flooding, as per the flood map extracted from the planning website. The flood map for planning website indicates a low probability of flooding and that no flood risk assessment is required.

Figure 7a: Risk of flooding from surface water

Extent of flooding from rivers or the sea

● High ● Medium ● Low ● Very low ⊕ Location you selected

Figure 7b: Risk of flooding from rivers or the sea

3 PROPOSED STRUCTURE

3.1 Foundations in General

There is approximately 0.5m of soil and stones over 2.5m of brown, sandy clay, over 1.5m of very stiff London Clay. The basement slab and walls will be founded within the London Clay, which will provide a suitable bearing stratum for the support of the proposed garden structure. The arboricultural report proposes pad foundations to avoid damaging the existing tree roots. However, to mitigate the effects of heave, piled foundations are proposed. The design and sequence of temporary works for the basement will be driven by the following factors:

- The stability of the top soil and underlying clay
- Maintaining the stability of adjacent out buildings (9 Rosecroft Avenue) and landscaping
- Accommodating the existing public sewer serving 7 Rosecroft Avenue

3.2 Deepened Area Construction

The formation level for the deepened area will be within the London Clay formation.

The new structure will comprise reinforced concrete retaining walls and floor slab in the deepened area and a suspended RC slab at the higher office level. The entire floorplate will be piled. The intention is to use screw piles to reduce the carbon footprint of concrete piles and protect the tree roots. The office floor load will be fully supported by the piles, adding no surcharge to the existing ground at formation level, thereby protecting the existing tree roots.

The excavations are predicted to remain dry during construction but an allowance for minor pumping will be made in the event that any pockets of groundwater are encountered.

3.3 Party Wall Matters

The proposed development falls within the scope of the Party Wall etc Act 1996. Procedures under the Act and will be dealt with in full by the Employer's Party Wall Surveyor. The Party Wall Surveyor will prepare and serve necessary Notices under the provisions of the Act and agree Party Wall Awards in the event of disputes. The Contractor will be required to provide the Party Wall Surveyor with appropriate drawings, method statements and other relevant information covering the works that are notifiable under the Act. The resolution of matter under the Act and provision of the Party Wall Awards will protect the interests of all owners.

4 CONSTRUCTION SEQUENCE/METHODOLOGY

All of the works, particularly the sub-structure are to be carried out in a manner that minimises any noise and vibration that may affect the neighbouring properties. The engineer will make regular site visits during the construction.

Outline construction sequence and temporary works assumed in the design as described below will be superseded by the Contractor's proposals. The Contractor will be required to submit full proposals, method statements and calculations to the engineer for review prior to the start of any works on site.

The Contractor will be responsible for the design, erection and maintenance of all temporary works in accordance with all relevant British Standards. The Contractor is to provide adequate temporary works and supervision to ensure that the stability of the existing structure, excavations and surrounding structures are maintained at all times.

4.1 Assumed Sequence of Construction

The anticipated constructed sequence is shown on the sketches in Appendix A. The main stages of the work area are as outlined below:

The borehole logs taken from neighbouring properties confirm that the site-specific ground conditions comprise 0.5m of soil and stones over 2.5m of brown, sandy clay, over London Clay. See Appendix D.

The borehole sunk at 378 Finchley Road (No. TQ28NE421) encountered ground water at 1.20m below ground level. Any water will be closely monitored as London Clay can easily host groundwater (rising in level depending on the period of the year) or at least perched water.

The existing boundary wall foundations comprise concrete footings as per the attached recorded trial pits in Appendix C.

The proposed building is approximately 30m from the nearest buildings on Rosecroft Avenue and Hollycroft Avenue. Therefore the proposed excavations will not adversely affect the existing structures.

The new structure will be designed for a maximum ground bearing pressure of 100Kn/m2. The soil conditions are considered suitable for safe excavation and underpinning work.

Construction Sequence

- 1. Hoarding will be erected around the site to protect the work area from the residents of 7 Rosecroft Avenue.
- 2. Demolition of existing shed to be carried out by contractor in a safe manor, following RAMS approved by the engineer.
- 3. Access to the dig area will be via the passageway to the side of 7 Rosecroft Avenue. Spoil will be removed via wheelbarrows through the passageway to a skip located at the front.

- 4. The existing perimeter walls will be underpinned in bays not exceeding 1000mm in accordance with eng17's specification, as shown on the attached sequence of works drawings.
- 5. The excavation and underpinning will be temporarily horizontally propped across the site as shown on the drawings. If necessary, localized pumping will be used to remove ground water during excavations and underpinning, although it must be noted that groundwater was not encountered in the trial holes during site investigations.
- 6. When the central soil mound (berm) is to be excavated and removed a new line of temporary horizontal propping will be provided laterally across the full width of the site using RMD props or similar.
- 7. The new concrete basement slab will be cast on completion of the underpinning works. Once this slab is cured the lower level temporary props can be removed.
- 8. The timber frame walls and roof can be constructed.

Some of the issues that affect the sequence of works on this project are:

- Forming sensible access onto the site to minimise disruption to the neighbouring residents
- Heave issues from the London Clay
- Providing a safe working environment
- Sustainability

Generally, the scale of the works is such that relatively straightforward methods can be used for the basement construction.

4.2 Noise, Dust and Vibration

The Contractor shall undertake the works in such a way as to minimise noise, dust and vibration when working close to adjacent buildings in order to protect the amenities of the nearby occupiers. The demolition of existing structure shall be carried out, where possible, to minimise vibration to the adjacent properties and associated construction noise. All demolitions and excavations will be undertaken in a carefully controlled sequence, taking into account the requirement to minimise vibration and noise.

4.3 Impact on Local Environment

The new lower ground floor and basement structure will be designed and built with detailed consideration to the impact of the local environment, including screw piles where possible, and entirely timber frame superstructure. The external landscaping will be designed sufficiently to allow there to be little change to surface water flows. Similarly we would expect there to be little effect on the local flora. The trees on the property will be protected by suspended flooring and piles.

4.4 Impact on Adjacent Structures and Services

Impact on Adjacent Structure 9 Rosecroft Avenue outbuilding

The 9 Rosecroft Avenue outbuilding is a timber clad shed with corrugated iron roof, to the north of the subject building.

The proposed underpinning/retaining wall details for 7 Rosecroft Avenue will be designed to support the vertical and surcharge loadings generated from the building at 9 Rosecroft Avenue. The excavation and construction for the new basement will be carried out in a safe sequence with lateral props provided to maintain lateral stability of the adjacent ground and structures. A method statement for the works will be completed by the Contractor for party wall purposes. We do not envisage any significant damage will develop as a consequence of the proposed work.

Impact on Rear Garden of 15 Hollycroft Avenue

The garden at 7 Rosecroft Avenue slopes down to the rear and steps c. 900mm further down to the adjoining garden at the rear boundary on Hollycroft Avenue. The proposed excavation reduces the ground level by approximately 1500mm so, c. 600mm below the Hollycroft rear garden level.

Impact on the Existing Sewers

The existing Thames Water sewer running along Rosecroft Avenue will remain in operation at all times and will not be affected by the works. Similarly, the mains water supply located in the roadway will not be affected.

Impact on the Public Footpath & Highway

The works will not unduly impact the pavement and highway. Construction activities will be confined to within the site, as there is ample space within the rear garden for off-street site set-up.

Impact on Buried Services on the Site

We do not expect any impact on services as they enter the site. However, all reasonable precautions will be carried out using CAT scanning, initial hand digging, and reference to utility maps.

5 BIA Specifics

The following section covers specifically the points required by Camden Council BIA guidance. The information is primarily contained elsewhere within this report and is referenced here for convenience.

• Whether the geology is capable of supporting the loads and construction techniques to be imposed.

The calculations below indicate that the ground bearing pressures resulting from the work are well within the limits recommended by the intrusive ground investigation.

• The impact of the subterranean development, and associated construction and temporary works, on the structural integrity and natural ability for movement of existing and surrounding structures, utilities, infrastructure and man-made cavities, such as tunnels.

The anticipated ground movement and associated damage is predicted to be of 'very slight' or locally 'slight' in accordance with the Burland Category of CIRIA C580.

• Whether the development will initiate slope instability which may threaten its neighbours.

Local topography means that slope stability is not an issue for this site.

• The impact of the subterranean development on drainage, sewage, surface water on ground water, flows and levels.

There will be a very slight increase in the in-foul discharge volumes. Groundwater issues are covered in section 2.4, which confirms no impact.

• How many geological, hydrological and structural concerns have been satisfactorily addressed?

This is covered in section 2, 3 and 4 as well as the calculations in Appendix B.

• The engineering details of the scheme, including proposals for the excavation and construction.

Indicative preliminary sketches of the structure and proposed sequence of works are shown in Section Appendix A.

• The impact of the proposed subterranean development on the structural stability of the existing and adjoining buildings, especially listed buildings.

See section 4.4.

• The impact of the proposed subterranean development on existing and proposed trees.

An arboricultural report is included in Appendix C. A trench was excavated along the rear boundary with Hollycroft Avenue and no significant roots were found in this area where the excavation is proposed. No adverse impact is expected if permanent and temporary works are followed as per engineer's drawings. The floor slabs are designed as two way spanning, onto pile capping beams, so the load will be transferred through the piles and won't adversely affect the tree roots.

• The sequence for the temporary works, which mitigates the effects on neighbours, and the details and design of the preferred method of Temporary Works.

An indicative preliminary works scheme and sequence of works has been indicated in the drawings in Appendix A to be read with the anticipated construction sequence given in section 4 above, and calculations in Appendix B. The final design will be the responsibility of the Contractor but will be subject to review, comment and approval by the Structural Engineer to ensure its adequacy and suitability for the works proposed.

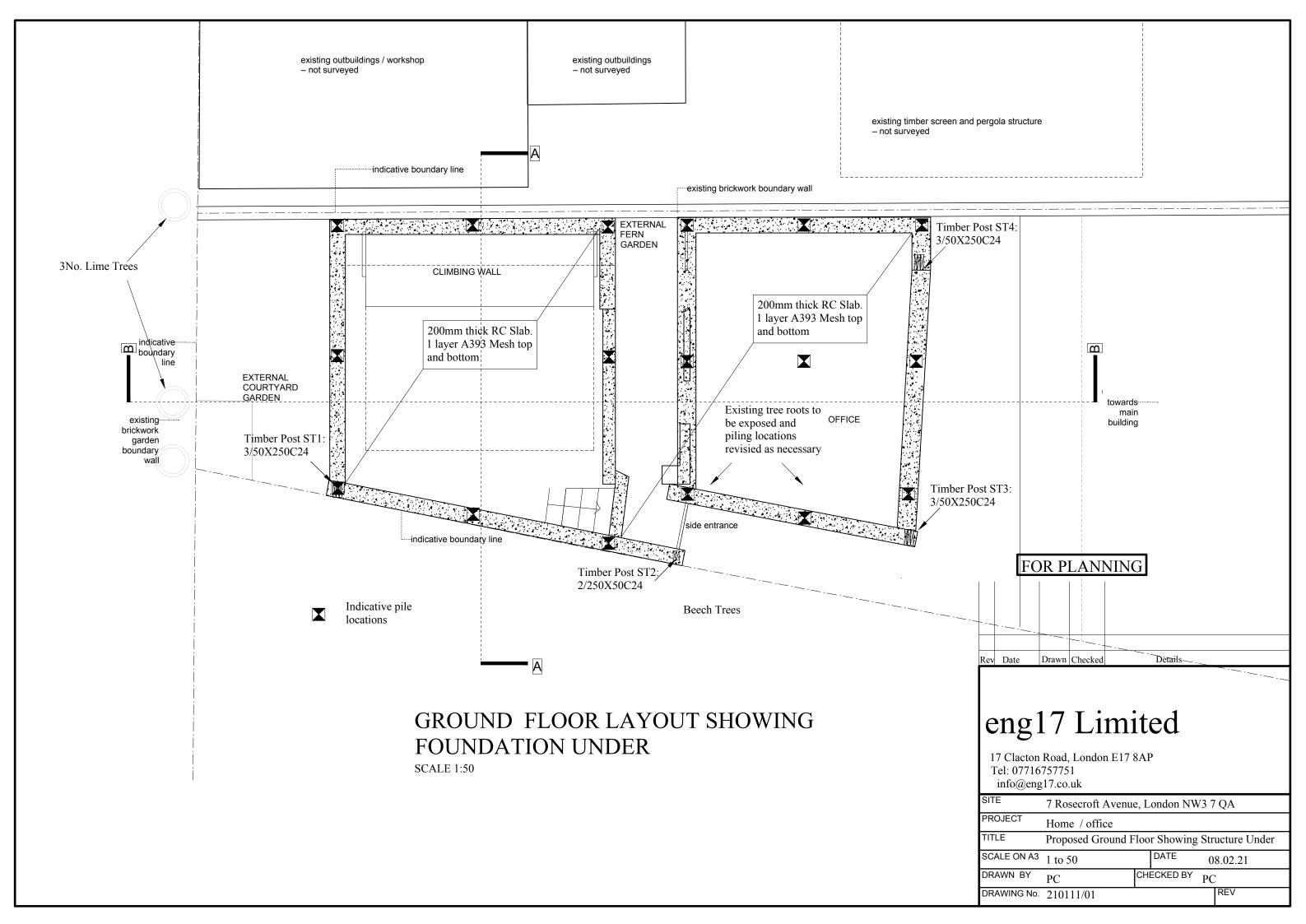
6 SUSTAINABILITY

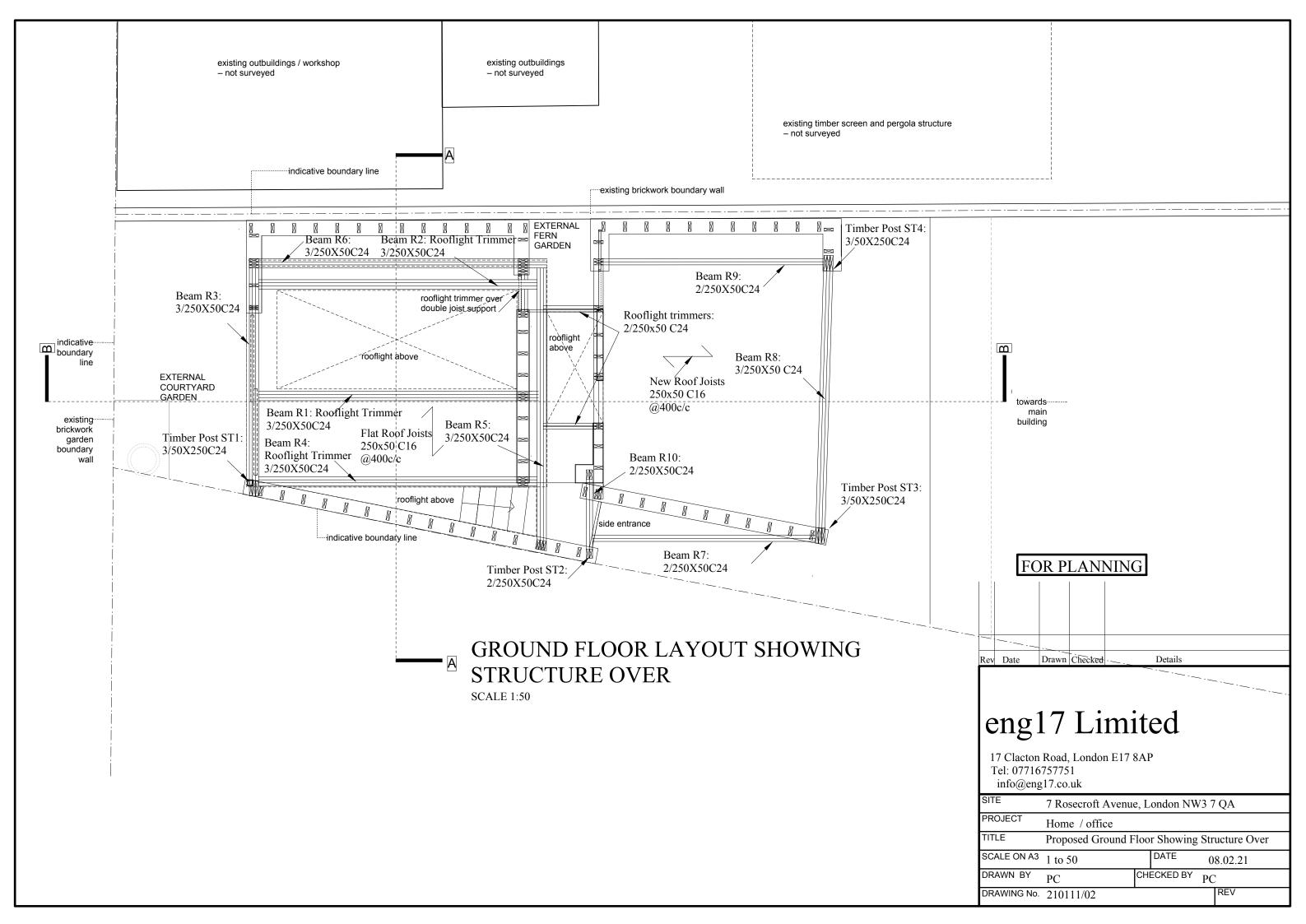
The proposed development has been designed in line with the iStructE One Planet Living initiative for sustainable design:

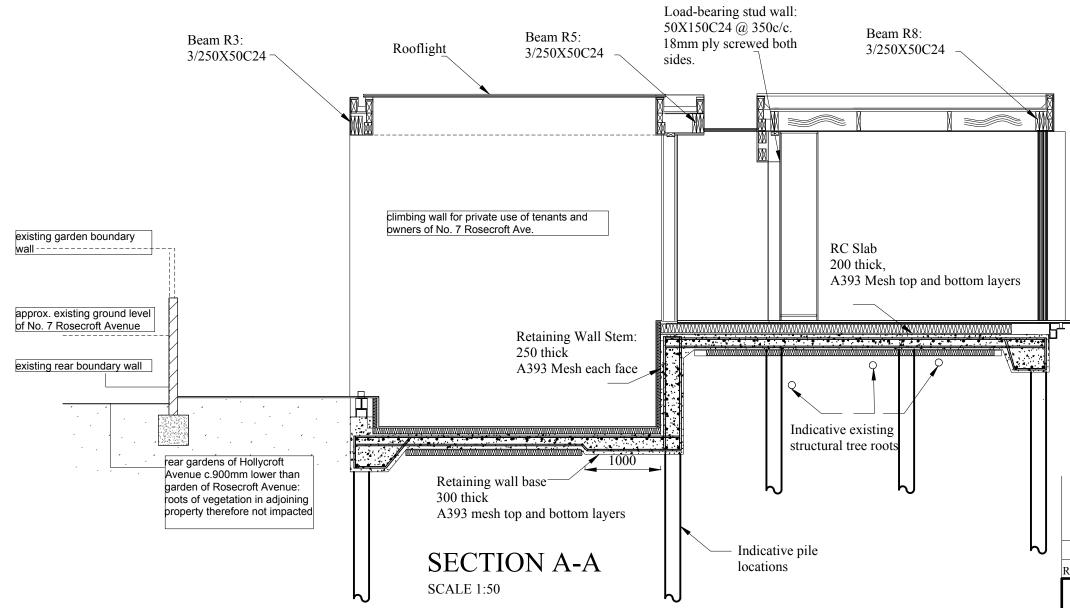
Zero waste in materials: Bolted connections between timber beams used rather than welds to encourage zero waste when the building reaches the end of its life.Zero carbon energy: Screw piles preferable to deep concrete trench foundations.Superstructure in timber rather than steel frame / masonry.

Culture & community: Flexible design incorporating dual-use of tiltable climbing wall / open floor space.

Land and Nature: Piles incorporated to reduce spoil waste from deep excavation for pad foundations and limiting the volume of material directed to landfill.

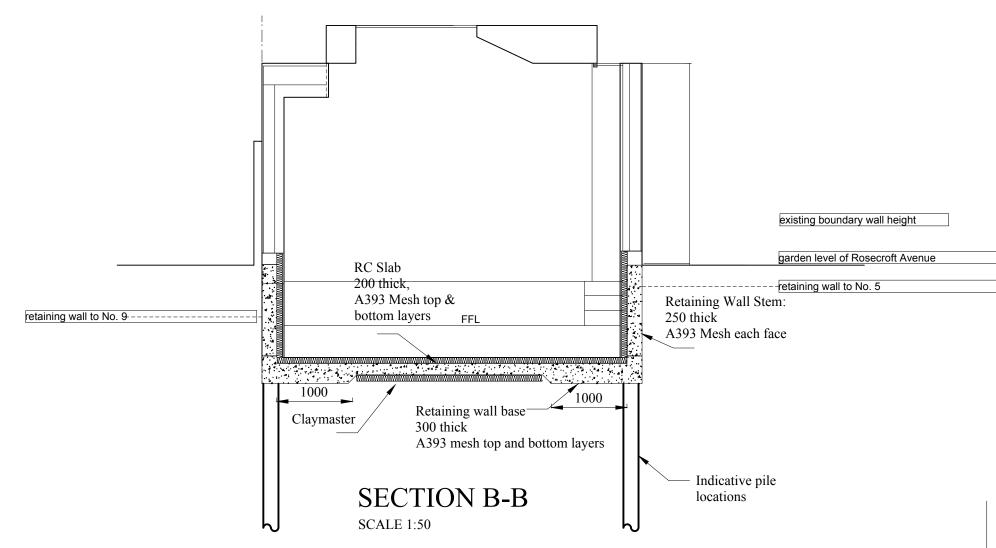

Materials and Products / Land and Nature: Piling to reduce the impact to the existing trees in close proximity to the proposed excavation.


APPENDICES


- A Sketches of Proposals, Suggested Sequencing and Temporary Works
- **B** Structural Calculations
- C Arboricultural Investigation Report from Parsons Tree Care
- D Borehole Records

APPENDIX A

Sketches of Proposals, Suggested Sequencing and Temporary Works

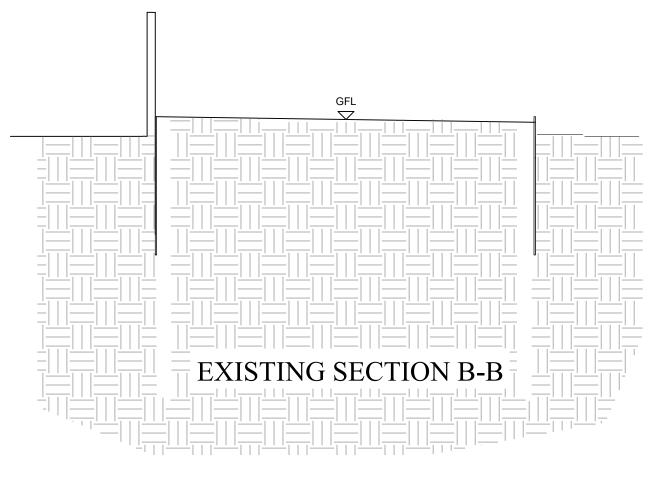


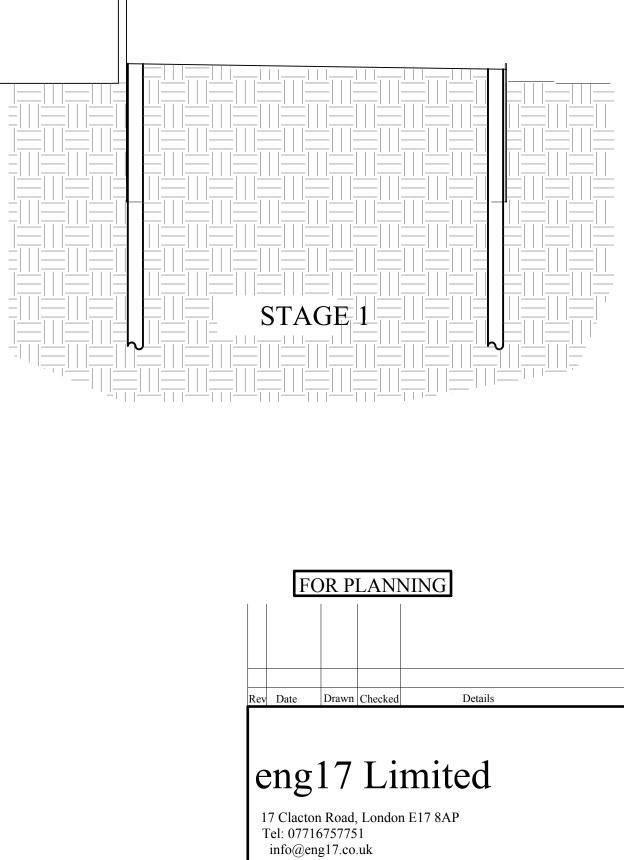
<u> </u>		a ——			_
 existing g hand) to re 				avated (by possible	
without dis level grour				tems, to vnwards to	
rear bound					
				_	
FO	R P	LAN	NIN	Ĵ	
	D.	<u> </u>		D (1	
Rev Date	Drawn	Checked		Details	
1		т •		1	
engl	[/	L1	m	lted	
17 Clacton Tel: 07716			n E17	8AP	
info@eng					
SITE	7 Ro	secroft A	Avenu	e, London N	W3 7 QA
PROJECT	Hom	e / offic	ce		
TITLE	Secti	on A-A			
SCALE ON A3	1 to 5	50		DATE	08.02.21
DRAWN BY	PC			CHECKED BY	PC

REV

DRAWN BY

PC DRAWING No. 210111/03

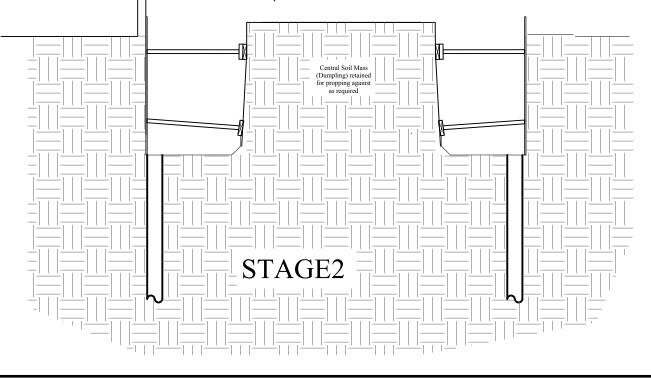

	FC	OR P	LANI	NING
Rev	Date	Drawn	Checked	Details


eng17 Limited

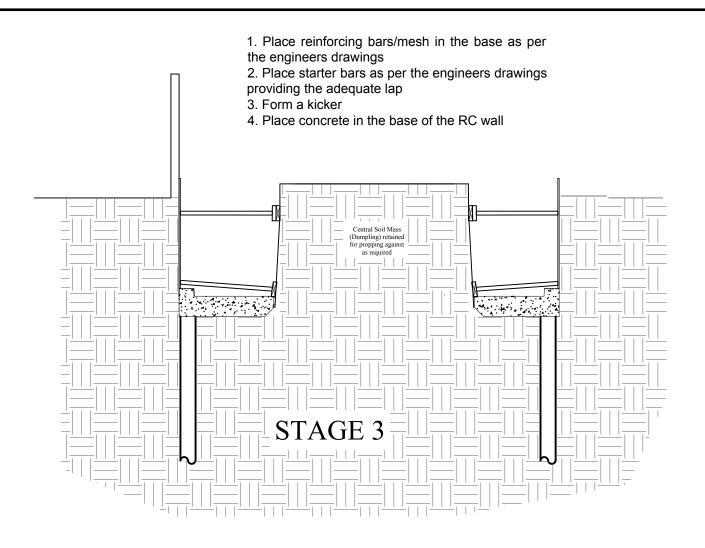
17 Clacton Road, London E17 8AP Tel: 07716757751 info@eng17.co.uk nk

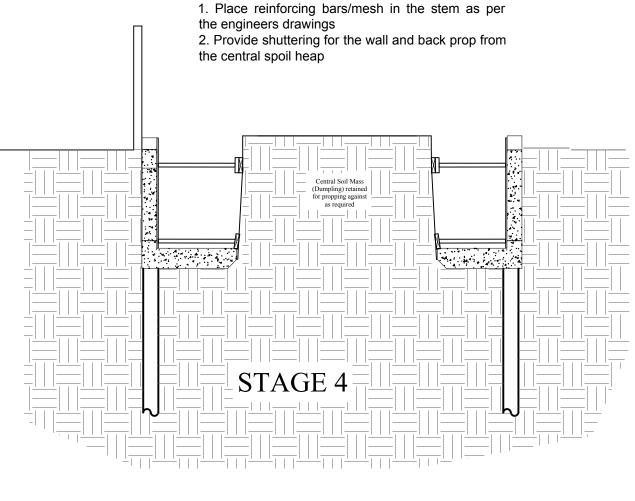
• •

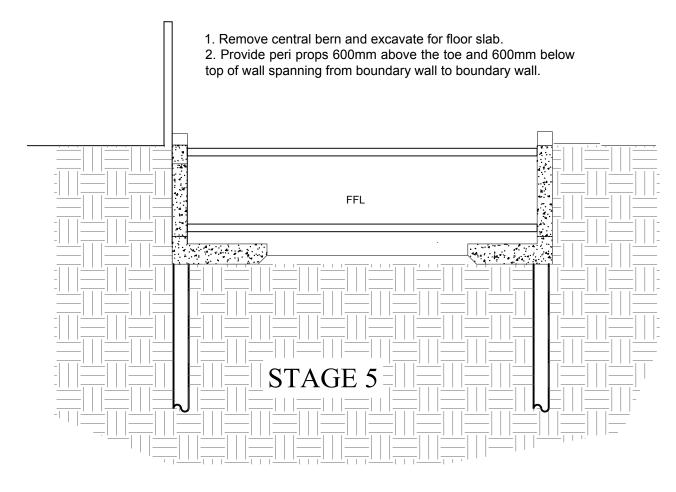
SITE	7 Rosecroft Avenue, London NW3 7 QA				
PROJECT	Home / office				
TITLE	Section B-B				
SCALE ON A3	1 to 50	[DATE	0	8.02.21
DRAWN BY	PC	CHE	CKED BY	PC	
DRAWING No.	210111/04				REV



1. Excavate to formation level in 1m wide sections as shown on engineer's drawing S01

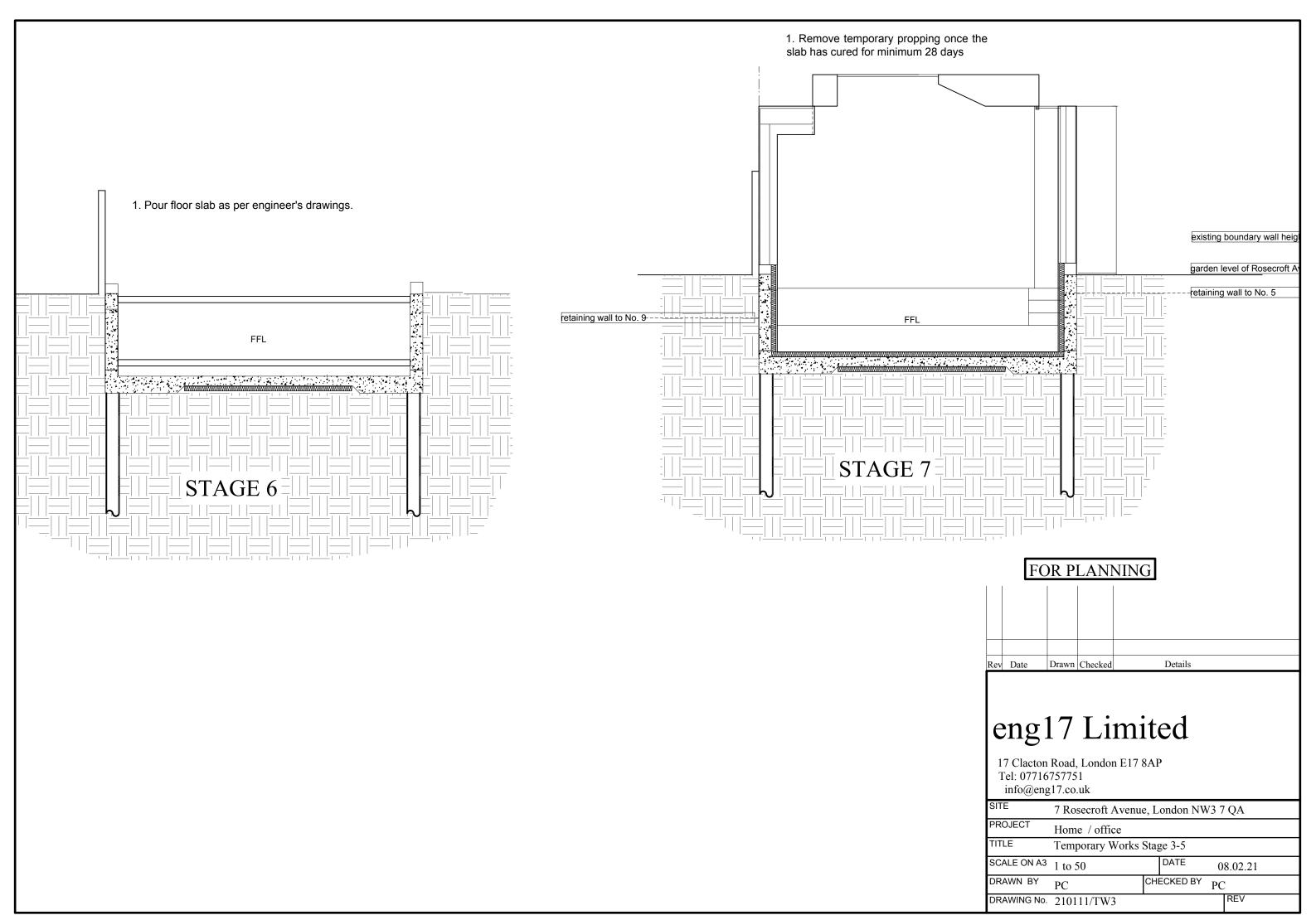

 Allow to provide sacrificial propping to prevent loose soil caving in. In areas of poor soil conditions trench sheeting is to be used with Kingspan infills 3. Back prop against central spoil heap


4. Cut piles to formation level, allowing for minimum lap starter bars



1. Install piles as per piling engineer's drawings and specificaitons

SITE	7 Rosecroft Avenue, London NW3 7 QA					
PROJECT	Home / office					
TITLE	Temporary Works Stage 1-2					
SCALE ON A3	1 to 50		DATE	0	8.02.21	
DRAWN BY	PC	CHE	ECKED BY	PC	2	
DRAWING No.	210111/TW1				REV	


	FC	OR P	LAN	NING
lev	Date	Drawn	Checked	Details

eng17 Limited

17 Clacton Road, London E17 8AP Tel: 07716757751

info@eng17.co.uk

SITE	7 Rosecroft Avenue, London NW3 7 QA					
PROJECT	Home / office					
TITLE	Temporary Works Stage 3-5					
SCALE ON A3	1 to 50		DATE	0	8.02.21	
DRAWN BY	PC	CHE	ECKED BY	PC	C	
DRAWING No.	210111/TW2				REV	
						_

7 Rosecroft Avenue London NW3 7QA

APPENDIX B

Structural Calculations

Structural Calculations

Prepared for: 7 Rosecroft Avenue Prepared by: Paul Cullen 9 February 2021 Job No. ENG/210111

DESIGN SUMMARY

Home office structural design.

Timber frame superstructure with RC retaining walls and floor slab to support climbing wall. Piling recommended to to proximity of trees and ground conditions.

DESIGN AND CALCULATION OF ROOF JOISTS

Analysis

Worst case span: 3.7m

See Tedds - Provide 50 x 250 C16 @ 400mm centres

DESIGN AND CALCULATION OF ROOFLIGHT SUPPORT BEAM R1

Analysis

Span: 4.3m UDL from roof and roof light

Calculation of Load

Description		Dead Load	Live Load
Roof	3.2m/2 (0.65 + 0.75kN/m2	1	1.2
Total		1	1.2

Reactions: 2.5 +2.6 See Tedds - Provide 3/50 x 200 C24

DESIGN AND CALCULATION OF FRONT DOOR BEAM R8

Analysis

Span: 4.4m UDL from roof

Calculation of Load

Description		Dead Load	Live Load
Roof	3.7m/2 (0.65 + 0.75)kN/m2	1.2	1.4
Total		1.2	1.4

Reactions: 3.0 + 3.1kN See Tedds - Provide 3/50 x 250 C24

CHECKING FRONT DOOR BEAM AS FRAME

Analysis

Assume full wind load from side wall panels transferred through connections and not shear wall section

Calculation of Load

Wind load acting on frame = $3.8m/2 \times 2.82m \times 0.8kN/m2 = 4.3kN$

See Tedds - Provide 3/50 x 250 C24 columns and beam

Design moment connection for 12.9kNm

CHECKING WALL PANELS FOR RACKING

Analysis

Assume panel sizes of 4.0 long x 2.4m high and 5.2m long x 2.4m high

See Tedds - Provide 18mm ply sheathing each side - ok

DESIGN AND CALCULATION OF RETAINING WALLS

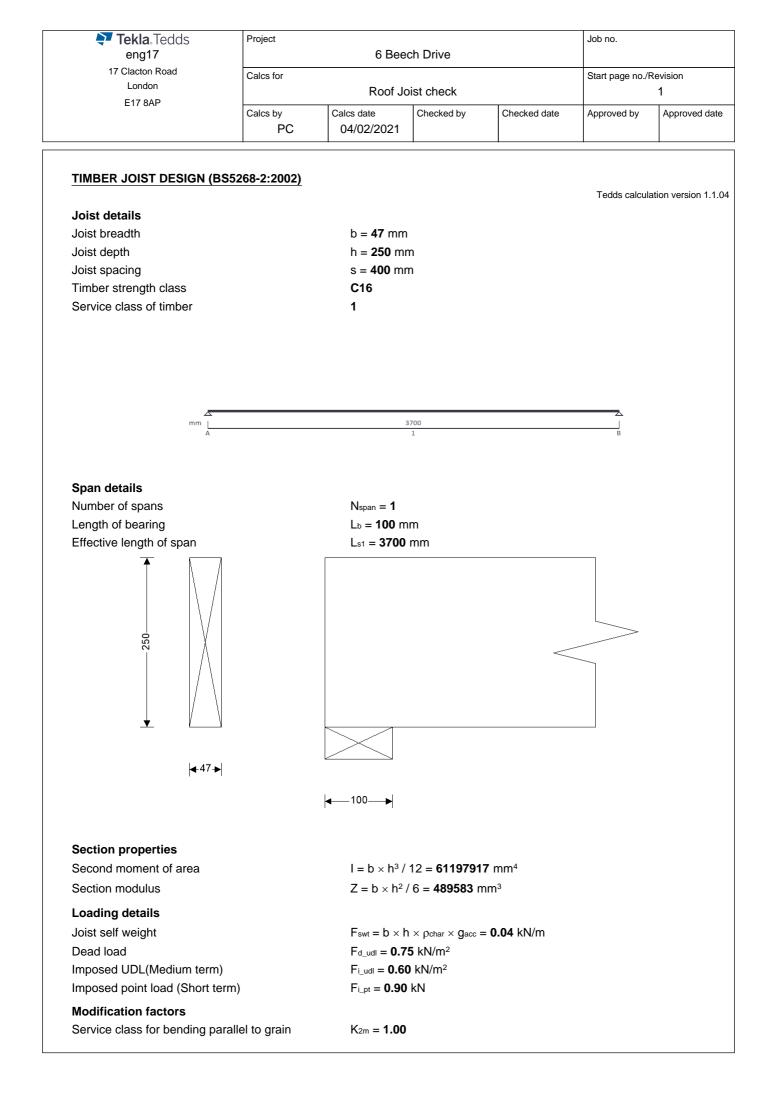
Analysis

Design as unpropped cantilever. Retaining wall stem 1.5m high to retain 1.5m earth Assume base 1.0m long, no heel Assume 500mm water - none found on site to depth of 1.0m bgl Vertical load on stem of wall and roof above = 4.0kN/m

See Tedds Provide 250mm thick stem with A393 Mesh 300 thick base with A393 Mesh

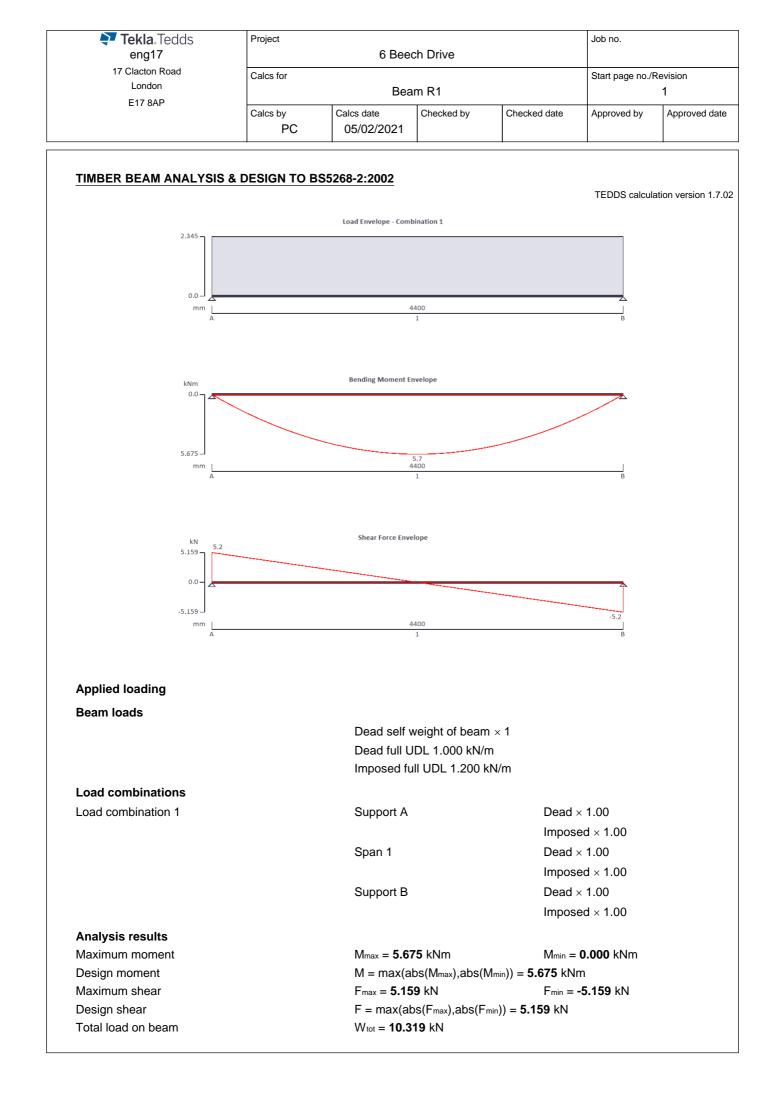
DESIGN AND CALCULATION OF FLOOR SLAB

Analysis

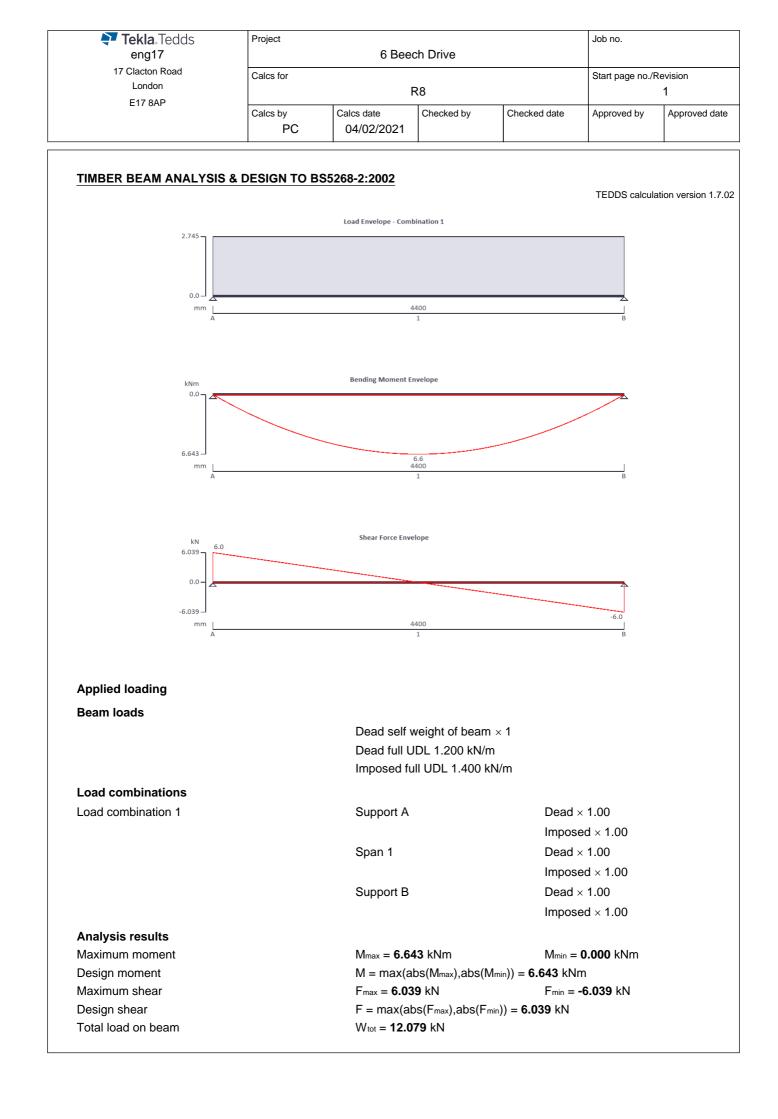

Assume two way spanning, 5.0m each direction Max load = 3.0kN/m2 Check for punching shear for 34kN - greater of floor area on central pile and assumed climbing wall support point load.

See Tedds - Provide 200mm thick slab with A393 Mesh top and bottom layers

CHECKING SCREW PILE LOAD CAPACITY


Analysis

TBC following piling design


F Tekla Tedds eng17	roject	6 Beed	ch Drive		Job no.	
	alcs for				Start page no./F	Revision
London E17 8AP		Roof Jo	ist check			2
	alcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
Service class for compression		K _{2c} = 1.00				
Service class for shear parallel to	grain	K _{2s} = 1.00				
Service class for modulus of elast	city	K _{2e} = 1.00				
Section depth factor		K7 = 1.02				
Load sharing factor		K ₈ = 1.10				
Consider medium term loads						
Load duration factor		K ₃ = 1.25				
Maximum bending moment		M = 0.985				
Maximum shear force		V = 1.065 k R = 1.065 k				
Maximum support reaction Maximum deflection		δ = 2.792 n				
		0 – 2.7 92 H				
Check bending stress		σm = 5.300	NI/mama2			
Bending stress					/ma.ma?	
Permissible bending stress	_		ζ7 × K8 = 7.435 N	/mm²		
Applied bending stress			/ Z = 2.012 N/n	d bending stres	se within norn	aiccible lir
			PASS - Applie	a bending stres	s within peri	
Check shear stress		0.070 \	1/ 2			
Shear stress		τ = 0.670 Ν		004 11/22 22 2		
Permissible shear stress			$X_{2s} \times K_3 \times K_8 = 0$			
Applied shear stress		$ au_{max} = 3 \times V$	= (2 × b × h) = PASS - App	0.136 N/mm ²	ss within pern	nissible lir
Check bearing stress						
Compression perpendicular to gra	in (no wane)	σcp1 = 2.20	0 N/mm²			
Permissible bearing stress		$\sigma_{c_adm} = \sigma_{cp}$	$_{1} imes \mathbf{K}_{2c} imes \mathbf{K}_{3} imes \mathbf{K}_{3}$	Ka = 3.025 N/mm ²	2	
Applied bearing stress		$\sigma_{c_max} = R /$	(b × L _b) = 0.22	7 N/mm ²		
			PASS - Applie	ed bearing stres	ss within pern	nissible lir
Check deflection						
Permissible deflection		$\delta_{adm} = min($	Ls1 × 0.003, 14	mm) = 11.100 m	nm	
Bending deflection (based on Eme	an)	δ bending = 2.	609 mm			
Shear deflection		δshear = 0.18	33 mm			
Total deflection		$\delta=\delta$ bending -	+ δshear = 2.792	mm		
			PASS -	Actual deflection	on within pern	nissible lin
Consider short term loads						
Load duration factor		K3 = 1.50				
Maximum bending moment		M = 1.407	kNm			
Maximum shear force		V = 1.521 k	٢N			
Maximum support reaction		R = 1.521 k				
Maximum deflection		δ = 3.546 n	nm			
Check bending stress						
Bending stress		σm = 5.300	N/mm ²			
Permissible bending stress		$\sigma_{m_adm} = \sigma_{m}$	$1 \times K_{2m} \times K_3 \times K_3$	K7 × K8 = 8.922 N	/mm²	
Applied bending stress		$\sigma_{m_max} = M$	/ Z = 2.874 N/n	nm²		
			PASS - Applie	d bending stres	ss within pern	nissible lir

	roject				Job no.		
eng17		6 Bee	ch Drive				
17 Clacton Road C	alcs for				Start page no./F		
E17 8AP		Roof Jo	oist check			3	
	alcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat	
	PC	04/02/2021					
Check shear stress							
Shear stress		τ = 0.670 Ν	I/mm ²				
Permissible shear stress	$ au_{adm} = au imes k$	$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 1.106 \text{ N/mm}^2$					
Applied shear stress	$\tau_{max} = 3 \times V / (2 \times b \times h) = 0.194 \text{ N/mm}^2$						
			PASS - Ap	plied shear stre	ss within pern	nissible limi	
Check bearing stress							
Compression perpendicular to gra	in (no wane)	σcp1 = 2.20	0 N/mm ²				
Permissible bearing stress		$\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = 3.630 \text{ N/mm}^2$					
Applied bearing stress		σc_max = R / (b × Lь) = 0.324 N/mm ²					
			PASS - Appl	ied bearing stre	ss within pern	nissible limi	
Check deflection							
Permissible deflection		$\delta_{adm} = min(L_{s1} \times 0.003, 14 \text{ mm}) = 11.100 \text{ mm}$					
Bending deflection (based on Emer	δbending = 3.285 mm						
Shear deflection		$\delta_{\text{shear}} = 0.2$	61 mm				
Total deflection		$\delta = \delta$ bending	+ δshear = 3.546	3 mm			

P Tekla Tedds P eng17	roject	6 Bee	ch Drive		Job no.	
	alcs for				Start page no./	Revision
		Bea	am R1			2
E17 8APC	alcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved da
Reactions at support A		RA_max = 5.	159 kN	RA_min	= 5.159 kN	•
Unfactored dead load reaction at s	support A	$R_{A_Dead} = 2$. 519 kN			
Unfactored imposed load reaction	at support A	$R_{A_{mposed}} =$	= 2.640 kN			
Reactions at support B		$R_{B_{max}} = 5.$		R _{B_min}	= 5.159 kN	
Unfactored dead load reaction at s Unfactored imposed load reaction		$R_{B_{Dead}} = 2$ $R_{B_{Imposed}} = 1$				
	 ←100		<			
Timber section details						
Breadth of sections		b = 47 mm	I			
Depth of sections		h = 250 mr	m			
Number of sections in member		N = 3				
Overall breadth of member		$b_b = N \times b$	= 141 mm			
Timber strength class		C24				
Member details						
Service class of timber		1				
Load duration		Long term				
Length of span Length of bearing		L _{s1} = 4400 L _b = 100 m				
C C						
Section properties Cross sectional area of member		0 N	≺ h = 35250 mr	~2		
Section modulus			\times h = 35250 m \times h ² / 6 = 1468			
Section modulus			$(\times b)^2 / 6 = 828$			
Second moment of area		-	$(h^3 / 12 = 183)$			
Second moment of area			$(1^{3} / 12 = 183)$ × b) ³ / 12 = 584			
Radius of gyration) = 72.2 mm	400438 11111		
Radius of gyration) = 40.7 mm			
		y = y(1y) A	/			
Modification factors		1/- 4.00				
Duration of loading - Table 17 Bearing stress - Table 18		K3 = 1.00 K4 = 1.00				
Total depth of member - cl.2.10.6			mm / h) ^{0.11} = 1.	02		
Load sharing - cl.2.10.11		K ₈ = 1.10	, – ••			
Minimum modulus of elasticity - Ta	able 20	K9 = 1.21				
Lateral support - cl.2.10.8						
Ends held in position and member	s held in line	, as by direct co	nnection of she	eathing, deck or	joists	
Permissible depth-to-breadth ratio		5.00		-		
Actual depth-to-breadth ratio		h / (N × b)	= 1.77			
				PASS -	Lateral suppo	rt is adoqua

Tekla Tedds	Project				Job no.			
eng17		6 Beed	ch Drive					
17 Clacton Road London	Calcs for				Start page no./			
E17 8AP		Bea	m R1		3			
2110/1	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved d		
	FC	05/02/2021						
Compression perpendicula	ar to grain							
Permissible bearing stress (r	no wane)	$\sigma_{c_adm} = \sigma_{cp}$	$1 \times K_3 \times K_4 \times k_4$	K8 = 2.640 N/mm	2			
Applied bearing stress		$\sigma_{c_a} = R_{A_m}$	ax / (N $ imes$ b $ imes$ Lb	b) = 0.366 N/mm ²				
		σc_a / σc_adm	= 0.139					
PA	SS - Applied co	mpressive stress	s is less than	permissible cor	mpressive stre	ess at bear		
Bending parallel to grain								
Permissible bending stress		σ m_adm = σ m	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 8.417 \text{ N/mm}^2$					
Applied bending stress		σ _{m_a} = M / Z _x = 3.864 N/mm ²						
		σm_a / σm_adm = 0.459						
		PASS - Applied	I bending stre	ess is less than	permissible b	ending stre		
Shear parallel to grain								
Permissible shear stress		$ au_{adm} = au imes K$	K3 × K8 = 0.781	I N/mm²				
Applied shear stress		$\tau_a = 3 \times F / (2 \times A) = 0.220 \text{ N/mm}^2$						
		τa / τadm = 0	.281					
		PASS - Ap	oplied shear s	stress is less tha	an permissible	e shear stre		
Deflection								
Modulus of elasticity for defle	ection	$E = E_{min} \times k$	K9 = 8712 N/m	1m²				
Permissible deflection		$\delta_{adm} = min($	δ_{adm} = min(0.551 in, 0.003 \times Ls1) = 13.200 mm					
Bending deflection		δb_s1 = 7.156 mm						
Shear deflection		δv_s1 = 0.35	5 mm					
Total deflection	$\delta_{a} = \delta_{b_s1} + \delta_{v_s1} = 7.511 \text{ mm}$							
		$\delta_a / \delta_{adm} = 0$).569					
		PA	ASS - Total de	eflection is less	than permissi	hle deflect		

Tekla Tedds eng17	Project	6 Bee	ch Drive		Job no.	
17 Clacton Road London	Calcs for				Start page no./	
E17 8AP		_	R8			2
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved da
Reactions at support A		RA_max = 6.	030 kN		= 6.039 kN	
Unfactored dead load reaction at	support A	$R_{A}max = 0.$ $R_{A}Dead = 2$		►A_min	= 0.039 KN	
Unfactored imposed load reactio	n at support A	RA_Imposed =	3.080 kN			
Reactions at support B		R _{B_max} = 6.	039 kN	R _{B_min}	= 6.039 kN	
Unfactored dead load reaction a	t support B	$R_{B_{Dead}} = 2$.959 kN			
Unfactored imposed load reactio	n at support B	RB_Imposed =	3.080 kN			
	→ 100	→	<			
Timber section details						
Breadth of sections		b = 47 mm				
Depth of sections		h = 250 m				
Number of sections in member		N = 3				
Overall breadth of member		$b_b = N \times b$	= 141 mm			
Timber strength class		C24				
Member details						
Service class of timber		1				
Load duration		Long term	l			
Length of span		Ls1 = 4400	mm			
Length of bearing		Lb = 100 m	im			
Section properties						
Cross sectional area of member		$A = N \times b$	< h = 35250 mr	m²		
Section modulus		$Z_x = N \times b$	× h² / 6 = 1468	3750 mm ³		
		$Z_y = h \times (N)$	× b) ² / 6 = 828	3375 mm³		
Second moment of area		$I_x = N \times b >$	< h ³ / 12 = 183	593750 mm⁴		
		$I_y = h \times (N$	× b) ³ / 12 = 58	400438 mm ⁴		
Radius of gyration) = 72.2 mm			
		$i_y = \sqrt{I_y / A}$) = 40.7 mm			
Modification factors						
Duration of loading - Table 17		K3 = 1.00				
Bearing stress - Table 18		K4 = 1.00				
Total depth of member - cl.2.10.6	6	-	mm / h) ^{0.11} = 1.	02		
Load sharing - cl.2.10.11	T	K ₈ = 1.10				
-	i able 20	K9 = 1.21				
Minimum modulus of elasticity -						
Minimum modulus of elasticity -						
Minimum modulus of elasticity - Lateral support - cl.2.10.8 Ends held in position and memb		-	nnection of she	eathing, deck or	joists	
Minimum modulus of elasticity -		e, as by direct co 5.00 h / (N × b)		eathing, deck or	joists	

Tekla.Tedds eng17	Project	6 Beed	h Drive		Job no.		
17 Clacton Road	Calcs for				Start page no./	Revision	
London		F	88		Clart page 10./1	3	
E17 8AP	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved of	
	PC	04/02/2021			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Compression perpendicula	r to grain						
Permissible bearing stress (n	-	$\sigma_{c_adm} = \sigma_{cp}$	1 × K 3 × K 4 × k	K8 = 2.640 N/mm	2		
Applied bearing stress		$\sigma_{c_a} = R_{B_ma}$	ax / (N \times b \times Lb	b) = 0.428 N/mm ²			
		σc_a / σc_adm	= 0.162				
PA	SS - Applied co	mpressive stress	is less than	permissible cor	npressive stre	ess at bear	
Bending parallel to grain							
Permissible bending stress		$\sigma_{m adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = 8.417 \text{ N/mm}^{2}$					
Applied bending stress		$\sigma_{m_a} = M / Z_x = 4.523 \text{ N/mm}^2$					
, .pped		$\sigma_{m} = \alpha - \frac{1}{2} - $					
				ess is less than	permissible b	endina str	
Shear parallel to grain						g	
Permissible shear stress		$\tau_{adm} = \tau \times K$	з × K8 = 0.781	I N/mm ²			
Applied shear stress			$(2 \times A) = 0.25$				
Applied silear siless		$\tau_a - 3 \times 1$		7 N /11111			
				stress is less tha	an normissihla	shoar str	
Definition		1 A00 - Ap	ipneu snear s	30 033 13 1033 116		Sincar Str	
Deflection	atian	·	(0740 NI	2			
Modulus of elasticity for defle	CTION		$E = E_{min} \times K_9 = 8712 \text{ N/mm}^2$				
Permissible deflection		$\delta_{adm} = min(0.551 in, 0.003 \times L_{s1}) = 13.200 mm$					
Bending deflection		δb_s1 = 8.37					
Shear deflection		$\delta_{v_s1} = 0.41$					
Total deflection		$\delta_a = \delta_{b_s1} + \delta_{v_s1} = 8.792 \text{ mm}$					
		$\delta_a / \delta_{adm} = 0$					
		PA	SS - Total de	eflection is less	than permissi	hle deflect	

	eng17	edds	Projec	t	6 1	Beech Drive				Job no.		
	17 Clacton F				01	Seech Drive					(5	
	London		Calcs	for	2D analysis	s large door	opening			Start pa	age no./Re\ 1	
	E17 8AF	>	Calcs	by	Calcs date	Checked		Checked of	late	Approve	ed by	Approved da
				PC	04/02/202	21						
					1995-1-1:20							
In acc	ordance v	with EN199	5-1-1:200	4 + A2:20	14 incorpoi	rating corrig	jendum	June 20	06 and			on version 2.2
ANAL	YSIS									Tedd	ls calculatio	on version 1.0
Geom	etry											
					Geometry	(m) - C24 (E	C5)		0			
		4			4.				3	•		
		2.6 1 test							2.6	2		
Materi		z							2	~	1	
	ials me		X	Young	s Modulus	Shear Mo	odulus			Å		
Na	me	Der (kg	nsity /m³)		l/mm²	kN/m	m²		2 hermal	Å		
Na		Der (kg	nsity				m²		2 hermal efficie	Å		
Na	me (EC5)	Der (kg	nsity /m³) 20	kN	V/mm² 11	kN/m	m²		2 hermal efficie °C⁻1	Å		
Na C24 (Sectio	me (EC5)	Der (kg	nsity /m³) 20 M	kN loment of	I/mm ² 11 f inertia	kN/m 0.69 Shear ar	m² 9 ea paral	Co lel to	2 hermal efficie °C⁻1	Å		
Na C24 (Sectio	me (EC5) ons	Der (kg. 4: Area	nsity /m³) 20 M Ma	kN loment of ajor	I/mm² 11 f inertia Minor	kN/m 0.69 Shear ar Minor	m² 9 ea paral M	Co lel to ajor	2 hermal efficie °C⁻1	Å		
Na C24 (Section Na	me (EC5) ons me	Der (kg 4: Area (cm²)	nsity /m³) 20 Ma Ma (c	loment of ajor m ⁴)	I/mm² 11 f inertia Minor (cm⁴)	kN/m 0.69 Shear are Minor (cm²)	m² 9 ea paral Ma (c	lel to ajor :m²)	2 hermal efficie °C⁻1	Å		
Na C24 (Section Na 3/50	me (EC5) ons me x250	Der (kg 4) Area (cm²) 375	nsity /m³) 20 M Ma (c 195	kN loment of ajor m⁴) j31.3	V/mm ² 11 f inertia Minor (cm ⁴) 7031.3	kN/m 0.69 Shear ar Minor (cm ²) 312.5	m ² 9 ea paral Ma (c 3 ⁴	lel to ajor :m ²) 12.5	2 hermal efficie °C⁻1	Å		
Na C24 (Section Na 3/50 3/50x2	me (EC5) ons me x250 250(1)	Der (kg 4: Area (cm²)	nsity /m³) 20 M Ma (c 195	loment of ajor m ⁴)	I/mm² 11 f inertia Minor (cm⁴)	kN/m 0.69 Shear are Minor (cm²)	m ² 9 ea paral Ma (c 3 ⁴	lel to ajor :m²)	2 hermal efficie °C⁻1	Å		
Na C24 (Section Na 3/50 3/50x2 Nodes	me (EC5) ons me x250 250(1) s	Der (kg 42 Area (cm ²) 375 375	nsity /m³) 20 M Ma (c 195	kN loment of ajor m ⁴) 531.3 531.3	V/mm ² 11 f inertia Minor (cm ⁴) 7031.3 7031.3	kN/m 0.69 Shear ard Minor (cm ²) 312.5 312.5	m ² ea paral (c 3 ² 3 ²	Co lel to ajor :m ²) 12.5 12.5	2 hermal efficie °C-1 0	Int		
Na C24 (Section Na 3/50 3/50x2	me (EC5) ons me x250 250(1) s Co-ord	Der (kg 4: Area (cm ²) 375 375	nsity /m³) 20 Ma Ma (c 195	kN loment of ajor m ⁴) 531.3 531.3	V/mm ² 11 f inertia Minor (cm ⁴) 7031.3 7031.3 n	kN/m 0.69 Shear are Minor (cm ²) 312.5 312.5 Coordinate	m ² 9 ea paral (c 3 ⁴ 3 ⁴ 3 ⁴	Co lel to ajor :m ²) 12.5 12.5	2 hermal efficie °C-1 0	nt pring		
Na C24 (Section Na 3/50 3/50x2 Nodes	me (EC5) ons me x250 250(1) s Co-ord X	Der (kg 4: Area (cm ²) 375 375 375	nsity /m³) 20 M Ma (c 195	kN loment of ajor m ⁴) 531.3 531.3	V/mm ² 11 f inertia Minor (cm ⁴) 7031.3 7031.3	kN/m 0.69 Shear ard Minor (cm ²) 312.5 312.5	m ² ea paral (c 3 ² 3 ² system Angle	Co lel to ajor m ²) 12.5 12.5	2 hermal efficie °C-1 0	nt pring Z	Rot.	
Na C24 (Section Na 3/50 3/50x 3/50x	me (EC5) ons me x250 250(1) s Co-ord	Der (kg 4: Area (cm ²) 375 375	nsity /m³) 20 Ma Ma (c 195	kN loment of ajor m ⁴) 531.3 531.3	V/mm ² 11 f inertia Minor (cm ⁴) 7031.3 7031.3 n	kN/m 0.69 Shear are Minor (cm ²) 312.5 312.5 Coordinate	m ² 9 ea paral (c 3 ⁴ 3 ⁴ 3 ⁴	Co lel to ajor :m ²) 12.5 12.5	2 hermal efficie °C-1 0	nt pring	Rot. kNm/°	

Elements

4.4

4.4

0

0

2.6

2.6

Fixed

Free

Free

Fixed

Free

Free

Free

Free

Free

0

0

0

0

0

0

0

0

0

0

0

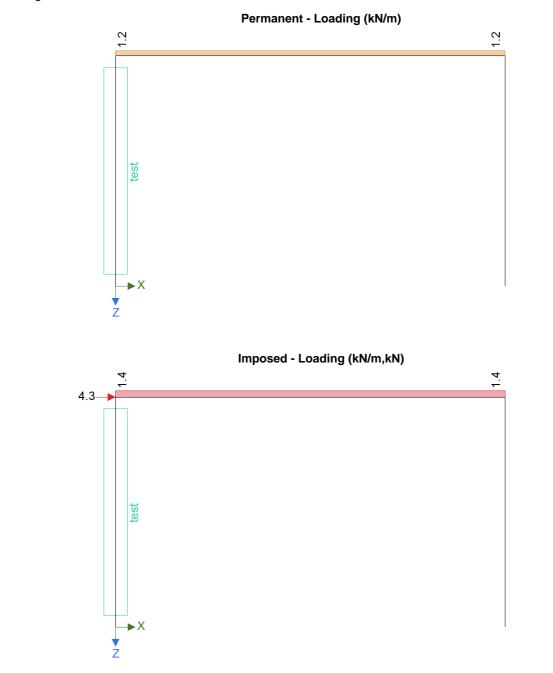
0

2

3

4

Tekla Tedds eng17	Project 6 Beech Drive				Job no.	
17 Clacton Road London E17 8AP	Calcs for 2D analysis large door opening				Start page no./Revision 2	
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved date


Element	J	Nodes		Section	Material		Releases		Rotated
	(m)	Start	End			Start moment	End moment	Axial	
1	2.6	1	4	3/50x250(1)	C24 (EC5)	Fixed	Fixed	Fixed	
2	2.6	2	3	3/50x250(1)	C24 (EC5)	Fixed	Fixed	Fixed	
3	4.4	4	3	3/50x250	C24 (EC5)	Fixed	Fixed	Fixed	

Members

Name	Elem	ients
	Start	End
test	1	1

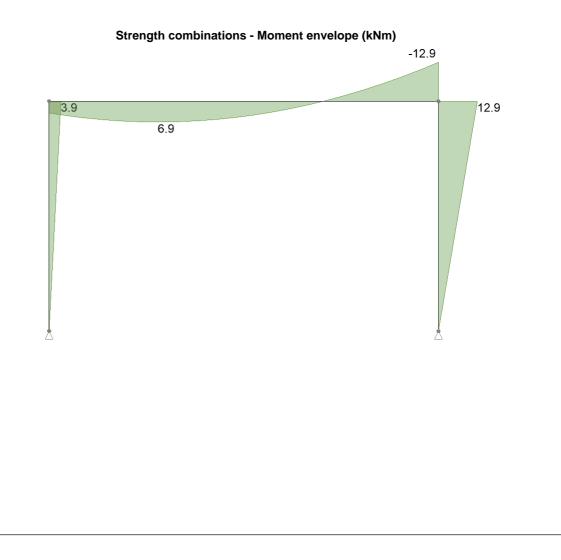
Loading

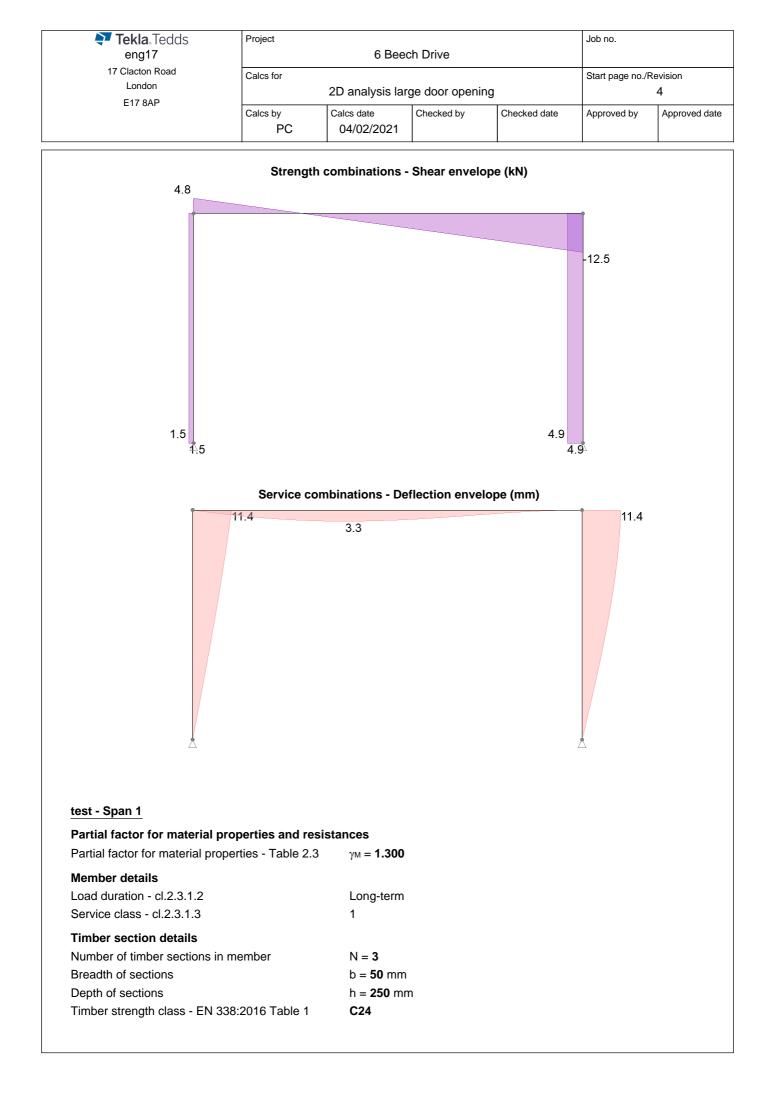
Self weight included

२ Tekla , Tedds	Project				Job no.	
eng17						
17 Clacton Road	Calcs for			Start page no./Revision		
London E17 8AP	2D analysis large door opening			3		
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved date

Load combination factors tip tup post Load combination xigo xigo

Node loads


Node	Load case	Fo	orce	Moment
		X	Z	
		(kN)	(kN)	(kNm)
4	Imposed	4.3	0	0


Element Loads

Element	Load case	Load Type	Orientation	Description
3	Permanent	UDL	GlobalZ	1.2 kN/m
3	Imposed	UDL	GlobalZ	1.4 kN/m

Results

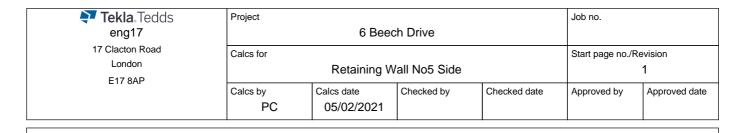
Forces

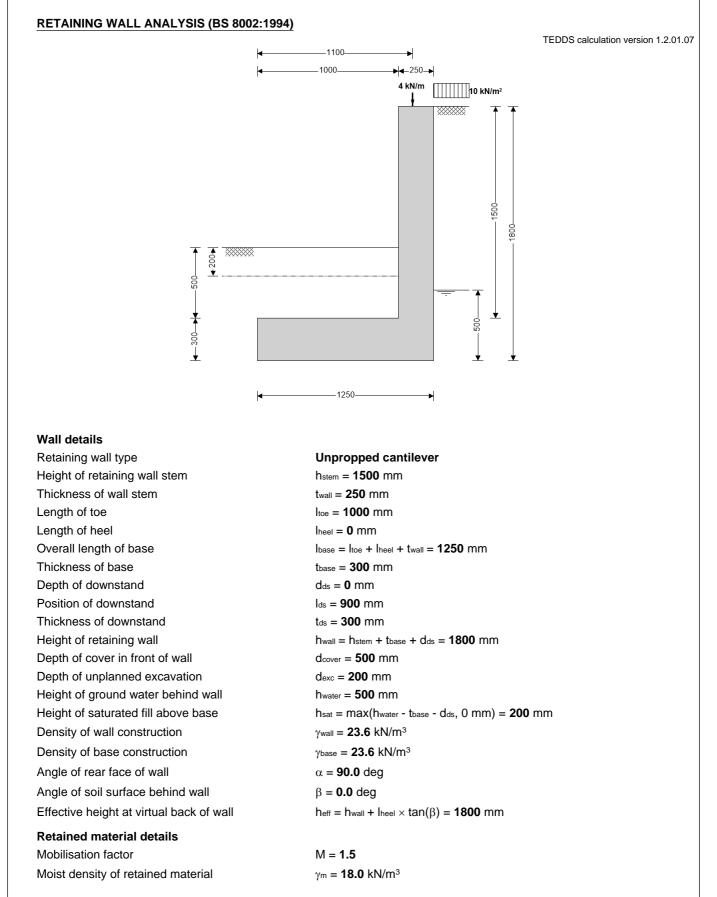
Pr eng17	oject	6 Beed	ch Drive		Job no.	
17 Closton Bood	alcs for				Start page no./I	
E17 8AP		2D analysis large door opening				5
Ca	Ics by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
⊲ —50— →						
		Characteristic shear Characteristic comp Characteristic comp	a, A, 37500 mm ² y, 1562500 mm ³ z, 312500 mm ³ area, I _y , 195312500 m area, I _z , 7812500 mm y, 72.2 mm z, 14.4 mm ass C24 mg strength, f _{m,k} , 24 M strength, f _{w,k} , 4 N/mm ression strength para ression strength para n strength parallel to asticity, E _{0.mean} , 1100 ulus of elasticity, E _{0.00} asticity, G _{mean} , 690 N ty, $\rho_{k'}$, 350 kg/m ³	V/mm² n² allel to grain, f _{c.0.k} , 21 N/ pendicular to grain, f _{c.90} grain, f _{t.0.k} , 14.5 N/mm 0 N/mm² 5, 7400 N/mm²	_k , 2.5 N/mm²	
Span details						
Bearing length		Lb = 100 m	m			
Consider Combination 1 - 1.35G	+ 1.5Q + 1.5I	RQ (Strength)				
Consider Combination 1 - 1.35G Modification factors	+ 1.5Q + 1.5I	RQ (Strength)				
Modification factors						
Modification factors Duration of load and moisture conte	ent - Table 3.	1 k _{mod} = 0.7 k _{def} = 0.6				
Modification factors Duration of load and moisture control Deformation factor - Table 3.2	ent - Table 3. r - cl.6.1.6(2)	1 k _{mod} = 0.7 k _{def} = 0.6				
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution factor	ent - Table 3. r - cl.6.1.6(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7				
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance -	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1				
Modification factors Duration of load and moisture conte Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance - System strength factor - cl.6.6	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1	kN			
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 6.1.4 Pd = 5.374	kN A = 0.143 N/m	1m²		
Modification factors Duration of load and moisture conte Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 6.1.4 Pd = 5.374 σc,0,d = Pd /	A = 0.143 N/m	ιm² ν = 12.438 N/mn	n²	
Modification factors Duration of load and moisture conte Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2)	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 6.1.4 Pd = 5.374 σc,0,d = Pd /	A = 0.143 N/m × ksys × fc.0.k / γr		n²	
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress Design compressive strength	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6	1 $k_{mod} = 0.7$ $k_{def} = 0.6$ $k_m = 0.7$ $k_{cr} = 0.67$ $k_{sys} = 1.1$ 5.1.4 $P_d = 5.374$ $\sigma_{c,0,d} = P_d / f_{c,0,d} = k_{mod}$ $\sigma_{c,0,d} / f_{c,0,d} = k_{mod}$	A = 0.143 N/m × k _{sys} × fc.o.k / γr = 0.012			ession str
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress Design compressive strength	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6	1 $k_{mod} = 0.7$ $k_{def} = 0.6$ $k_m = 0.7$ $k_{cr} = 0.67$ $k_{sys} = 1.1$ 5.1.4 $P_d = 5.374$ $\sigma_{c,0,d} = P_d / f_{c,0,d} = k_{mod}$ $\sigma_{c,0,d} / f_{c,0,d} = k_{mod}$	A = 0.143 N/m × k _{sys} × fc.o.k / γr = 0.012	M = 12.438 N/mn		ession str
Modification factors Duration of load and moisture conte Deformation factor - Table 3.2 Bending stress re-distribution facto Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress Design compressive strength PASS - Check design at start of span	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral	1 $k_{mod} = 0.7$ $k_{def} = 0.6$ $k_{m} = 0.7$ $k_{cr} = 0.67$ $k_{sys} = 1.1$ 5.1.4 $P_{d} = 5.374$ $\sigma_{c,0,d} = P_{d} /$ $f_{c,0,d} = k_{mod}$ $\sigma_{c,0,d} / f_{c,0,d} =$ Illel compression	A = 0.143 N/m × k _{sys} × fc.o.k / γr = 0.012	M = 12.438 N/mn		ession str
Modification factors Duration of load and moisture control Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - O System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress Design compressive strength PASS - Check design at start of span Check compression perpendicul	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6 Design paral ar to the gra	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 $P_d = 5.374$ $\sigma_{c,0,d} = P_d / f_{c,0,d} = kmod - \sigma_{c,0,d} / f_{c,0,d} = lel compression illel compression$	A = 0.143 N/m × k _{sys} × f _{c.0.k} / γ _f = 0.012 on strength ex	M = 12.438 N/mn		ession str
Modification factors Duration of load and moisture contro Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive stress Design compressive strength PASS - Check design at start of span Check compression perpendicul Design perpendicular compression	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6 Design paral ar to the gra	1 $k_{mod} = 0.7$ $k_{def} = 0.6$ $k_{m} = 0.7$ $k_{cr} = 0.67$ $k_{sys} = 1.1$ 5.1.4 $P_{d} = 5.374$ $\sigma_{c,0,d} = P_{d} /$ $f_{c,0,d} = k_{mod}$ $\sigma_{c,0,d} / f_{c,0,d} =$ Illel compression	A = 0.143 N/m × k _{sys} × f _{c.0.k} / γι = 0.012 on strength ex 501 kN	M = 12.438 N/mn		ession str
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compression Effective contact length	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis	1 $kmod = 0.7$ kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd /$ $f_{c,0,d} = kmod$ $\sigma_{c,0,d} / f_{c,0,d} =$ Illel compression in - cl.6.1.5 $F_{c,y,90,d} = 1.4$ $L_{b,ef} = L_{b} = 1$	A = 0.143 N/m × k _{sys} × f _{c.0.k} / γr = 0.012 on strength ex 501 kN 100 mm	n = 12.438 N/mn αceeds design p	oarallel compr	ession str
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compression Effective contact length Design perpendicular compressive	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6 Design paral ar to the gra - major axis stress - exp.6	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Rmod - \sigma_{c,0,d} / f_{c,0,d} = Id / f_{c,0,d} = Id - Id$	A = 0.143 N/m × ksys × fc.o.k / γr = 0.012 on strength ex 501 kN 100 mm	vi = 12.438 N/mn kceeds design p L _{b,ef}) = 0.100 N/	oarallel compr mm²	ession str
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compression Effective contact length	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) ne grain - cl.6 Design paral ar to the gra - major axis stress - exp.6	1 $kmod = 0.7$ kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd /$ $f_{c,0,d} = kmod$ $\sigma_{c,0,d} / f_{c,0,d} =$ Illel compression in - cl.6.1.5 $F_{c,y,90,d} = 1.4$ Lb,ef = Lb = 10 6.4 $\sigma_{c,y,90,d} = Fc$ $f_{c,y,90,d} = kmod$	A = 0.143 N/m × ksys × fc.o.k / γr = 0.012 on strength ex 501 kN 100 mm	ν = 12.438 N/mn cceeds design p L _{b,ef}) = 0.100 N/ / γ _M = 1.481 N/m	oarallel compr mm²	ession str
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compression Effective contact length Design perpendicular compressive	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Pd / f_{c,0,d} = kmod \sigma_{c,0,d} / f_{c,0,d} = ldIllel compressionin - cl.6.1.5Fc,y,90,d = 1.4Lb,ef = Lb = 15.4 \sigma_{c,y,90,d} = Fcfc,y,90,d = kmod \sigma_{c,y,90,d} =$	A = 0.143 N/m × ksys × fc.0.k / γn = 0.012 on strength ex 501 kN 100 mm ,y,90,d / (N × b × od × ksys × fc.90.k 90 × fc.y,90,d) = 0	м = 12.438 N/mn cceeds design p L _{b,ef}) = 0.100 N/ / γм = 1.481 N/m 9.068	oarallel compr mm² 1m²	
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compressive Design perpendicular compressive	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Pd / f_{c,0,d} = kmod \sigma_{c,0,d} / f_{c,0,d} = ldIllel compressionin - cl.6.1.5Fc,y,90,d = 1.4Lb,ef = Lb = 15.4 \sigma_{c,y,90,d} = Fcfc,y,90,d = kmod \sigma_{c,y,90,d} =$	A = 0.143 N/m × ksys × fc.0.k / γn = 0.012 on strength ex 501 kN 100 mm ,y,90,d / (N × b × od × ksys × fc.90.k 90 × fc.y,90,d) = 0	м = 12.438 N/mn cceeds design p L _{b,ef}) = 0.100 N/ / γм = 1.481 N/m 9.068	oarallel compr mm² 1m²	
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compressive Design perpendicular compressive PASS - Design perpendicular compressive	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Pd / f_{c,0,d} = kmod \sigma_{c,0,d} / f_{c,0,d} = ldIllel compressionin - cl.6.1.5Fc,y,90,d = 1.4Lb,ef = Lb = 15.4 \sigma_{c,y,90,d} = Fcfc,y,90,d = kmod \sigma_{c,y,90,d} =$	A = 0.143 N/m × ksys × fc.0.k / γ r = 0.012 on strength ex 501 kN 100 mm y,90,d / (N × b × vd × ksys × fc.90.k 90 × fc.y,90,d) = 0 ngth exceeds	м = 12.438 N/mn cceeds design p L _{b,ef}) = 0.100 N/ / γм = 1.481 N/m 9.068	oarallel compr mm² 1m²	
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compressive Design perpendicular compressive PASS - Design perpendicular compressive PASS - Design perpendicular compressive	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Pd / f_{c,0,d} = kmod = \sigma_{c,0,d} / f_{c,0,d} = ld = $	A = 0.143 N/m × ksys × fc.0.k / γ r = 0.012 on strength ex 501 kN 100 mm .y,90,d / (N × b × .vd × ksys × fc.90.k 90 × fc,y,90,d) = 0 ngth exceeds kN	м = 12.438 N/mn cceeds design p L _{b,ef}) = 0.100 N/ / γм = 1.481 N/m 9.068	oarallel compr mm² nm² dicular compr	
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to th Design axial compression Design compressive stress Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compressive Design perpendicular compressive PASS - Design perpendicular compressive PASS - Design perpendicular compressive Check shear force - Section 6.1.7 Design shear force	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Rmod \sigma_{c,0,d} / f_{c,0,d}Illel compressionin - cl.6.1.5Fc.y.90,d = 1.4Lb.ef = Lb = 15.4 \sigma_{c,y,90,d} = Fcfc.y.90,d = kmod \sigma_{c,y,90,d} = Kmod rectricks = 1f.4 \sigma_{c,y,90,d} = Kmod rectricks = 1f.5 \sigma_{c,y,90,d} = Kmod rectricks = 1$	A = 0.143 N/m × ksys × fc.0.k / γ r = 0.012 on strength ex- 501 kN 100 mm ,y,90,d / (N × b × vd × ksys × fc.90.k 90 × fc,y,90,d) = 0 ngth exceeds kN Fy,d / (kcr × N ×	M = 12.438 N/mn (ceeds design p L _{b,ef}) = 0.100 N/ / γ _M = 1.481 N/m (.068) design perpend	oarallel compr mm² nm² dicular compr	
Modification factors Duration of load and moisture contect Deformation factor - Table 3.2 Bending stress re-distribution factor Crack factor for shear resistance - System strength factor - cl.6.6 Check compression parallel to the Design axial compression Design compressive strength Design compressive strength PASS - Check design at start of span Check compression perpendicular Design perpendicular compressive Design perpendicular compressive Design perpendicular compressive Design perpendicular compressive Check shear force - Section 6.1.7 Design shear force Design shear stress - exp.6.60	ent - Table 3. r - cl.6.1.6(2) cl.6.1.7(2) he grain - cl.6 Design paral ar to the gra - major axis stress - exp.6 strength	1 kmod = 0.7 kdef = 0.6 km = 0.7 kcr = 0.67 ksys = 1.1 5.1.4 Pd = 5.374 $\sigma_{c,0,d} = Pd / f_{c,0,d} = Rmod \sigma_{c,0,d} / f_{c,0,d}Illel compressionin - cl.6.1.5Fc.y.90,d = 1.4Lb.ef = Lb = 15.4 \sigma_{c,y,90,d} = Fcfc.y.90,d = kmod \sigma_{c,y,90,d} = Kmod rectricks = 1f.4 \sigma_{c,y,90,d} = Kmod rectricks = 1f.5 \sigma_{c,y,90,d} = Kmod rectricks = 1$	A = 0.143 N/m × ksys × fc.0.k / γ r = 0.012 on strength ex- 501 kN 100 mm y,90,d / (N × b × rd × ksys × fc.90.k 90 × fc,y,90,d) = 0 ngth exceeds kN Fy,d / (kcr × N × × ksys × fv.k / γ M	M = 12.438 N/mn (ceeds design p L _{b,ef}) = 0.100 N/ / γ _M = 1.481 N/m (.068 design perpend b × h) = 0.090 N	oarallel compr mm² nm² dicular compr	

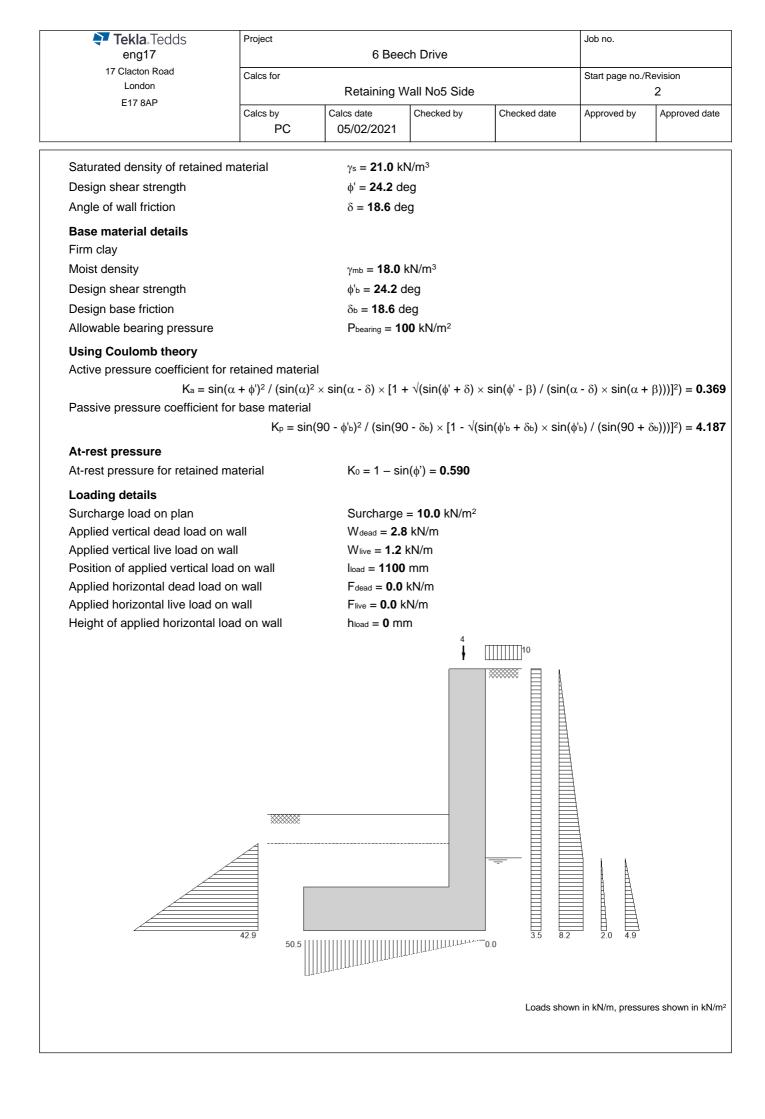
Tekla Tedds eng17	Project	6 Bee	ch Drive			
17 Clacton Road London	Calcs for				Start page no./F	
E17 8AP		2D analysis lar		ng		6
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
Check columns subjected to			-	-	g - cl.6.3.2	
Effective length for y-axis ben	aing		2600 mm = 2	340 mm		
Slenderness ratio		$\lambda_y = L_{e,y} / i_y$		\		
Relative slenderness ratio - ex	•		τ × √ (f c.0.k / E0.0	5) = 0.55		
Effective length for z-axis ben	ding	L _{e,z} = 0 mm				
Slenderness ratio		$\lambda_z = L_{e,z} / i_z$		`		
Relative slenderness ratio - ex	p. 6.22	λ rel,z = λ z / 2	π × √(fc.0.k / E0.0	,		
			λ	rel,y > 0.3 columr	n stability che	ck is req
Straightness factor		βc = 0.2				
Instability factors - exp.6.25, 6	.26, 6.27 & 6.28			$(0.3) + \lambda_{rel,y^2} = 0$		
				$(0.3) + \lambda_{rel,z^2}) = 0$.470	
			$\gamma + \sqrt{(k_y^2 - \lambda_{rel,y^2})}$			
		$k_{c,z} = 1 / (k_z)$	z + $\sqrt{(kz^2 - \lambda_{rel,z^2})}$)) = 1.064		
Column stability checks - exp.	6.23 & 6.24	$\sigma_{c,0,d} / (k_{c,y}$	× fc,0,d) = 0.012			
		σ c,0,d / (kc,z	× fc,0,d) = 0.011			
				PASS - Co	lumn stability	is accep
Check design at end of spar	1					
Check shear force - Section	6.1.7					
Design shear force		F _{y,d} = 1.50 ²	l kN			
Design shear stress - exp.6.60)	-		b × h) = 0.090 N	I/mm ²	
Design shear strength				= 2.369 N/mm ²		
g.,g.,		$\tau_{y,d} / f_{v,y,d} =$	-			
				hear strength e	xceeds desigr	n shear s
Check bending moment - Se	ction 6.1.6					
Design bending moment		M _{y,d} = 3.90	1 kNm			
Design bending stress		$\sigma_{m,y,d} = M_{y,d}$	i / Wy = 2.497	N/mm²		
Design bending strength		$f_{m,y,d} = k_{mod}$	\times k sys \times f m.k / γ r	a = 14.215 N/mm	1 ²	
		σm,y,d / fm,y,d				
				ng strength exce	eeds design b	ending s
Check combined bending a	nd axial compre		•	-	-	-
Combined loading checks - ex) ² + σm,y,d / fm,y,	d = 0.176		
·		-	$)^2 + k_m \times \sigma_{m,y,d}$			
	PA	SS - Combined			on utilisation	is accep
Check columns subjected to	either compres	ssion or combin	ed compress	ion and bending	g - cl.6.3.2	
Effective length for y-axis ben	-		2600 mm = 2	-		
Slenderness ratio	J	$\lambda_y = L_{e,y} / i_y$				
Relative slenderness ratio - ex	p. 6.21		τ × √(fc.0.k / E0.0	5) = 0.55		
Effective length for z-axis ben	-	L _{e,z} = 0 mm	-	,		
Slenderness ratio	5	$\lambda_z = L_{e,z} / i_z$				
Relative slenderness ratio - ex	p. 6.22		 π × √(fc.0.k / E0.0	5) = 0		
			-	rel,y > 0.3 columr	n stabilitv che	ck is rea
Straightness factor		βc = 0.2		.,		
Instability factors - exp.6.25, 6	.26. 6.27 & 6.28	•	1 + βc × (λrely -	$(0.3) + \lambda_{rel,y^2}) = 0$.676	
		10 - 0.0 - 1			-	

Tekla Tedds	Project				Job no.		
eng17		6 Beech Drive					
17 Clacton Road	Calcs for		Start page no./I	Start page no./Revision			
London E17 8AP		2D analysis lar		7			
LITOAF	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	PC	04/02/2021					
		k _{c,y} = 1 / (k	y + √ (k y² - λrel,y²	²)) = 0.935			
		$k_{c,z} = 1 / (k_z)$	$z + \sqrt{k^2 - \lambda_{rel,z^2}}$	²)) = 1.064			
Column stability checks - ex	σc,0,d / (k c,y	× fc,0,d) + σ m,y,d	/ f _{m,y,d} = 0.188				
		σc,0,d / (k c,z	× fc,0,d) + km × d	om,y,d / fm,y,d = 0.1	34		
				PASS - Co	olumn stability is acceptab		
Check beams subjected to	o either bending	or combined ben	ding and con	npression - cl.6.	.3.3		
Lateral buckling factor - exp	.6.34	k _{crit} = 1.000					
Beam stability check - exp.6	6.35	$(\sigma_{m,y,d} / (k_{crit} \times f_{m,y,d}))^2 + \sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.042$					
				PASS - I	Beam stability	is acceptab	
Consider Combination 2 -	1.0G + 1.0Q + 1.0	0RQ (Service)					
Check design at end of sp							
Check y-y axis deflection	- Section 7.2						
Instantaneous deflection		$\delta_y = 11.4 \text{ mm}$					
Quasi-permanent variable lo	oad factor	ψ2 = 0.3					
Final deflection with creep		$\delta_{y,Final} = \delta_{y}$	< (1 + k _{def}) = 18	8.3 mm			
Allowable deflection		$\delta_{y,Allowable} =$	Lm1_s1 / 125 = 2	20.8 mm			
		$\delta_{y,Final}$ / $\delta_{y,AI}$	lowable = 0.879				
				llowable deflect	ion overade fi	nal doflactic	

PASS - Allowable deflection exceeds final deflection


eng17		6 Bee	ch Drive			
17 Clacton Road London	Calcs for	Dealing	internet about		Start page no./F	
E17 8AP			istance check			1
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
TIMBER PANEL RACKING	RESISTANCE -	BS5268:SECTIO	N 6.1:1996		TEDDS calcula	ation version
Dwellings not exceeding s	even storeys					
Building details						
Building name		home / off	ice			
Windward elevation		Front				
Building storey		Ground				
Racking panel no.1 -						
X						
C C		۰.	andom set a f	la ira ar		
ž		Seco	ondary sheat	ning		
Panel height			- Prin	nary sheathing		
ц Ч			<			
ane						
a .			- M			
×						
X						
×						
×		<				
X	k					
X		b .				
X		Panel In				
X		Danel length				
The second se		Panel length				
		Danel length				
		Panel length				
Wall panel details						
Length of panel		L = 4.000 r				
Length of panel Height of panel		L = 4.000 r H _{wp} = 2.40	0 m			
Length of panel Height of panel Total area of wall panel		L = 4.000 r H _{wp} = 2.40 At = L × H _w	0 m _{vp} = 9.600 m ²			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa		L = 4.000 r $H_{wp} = 2.400$ $A_t = L \times H_w$ $A_a = 0.000$	0 m _{vp} = 9.600 m ² m ²			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members	anel openings	L = 4.000 r Hwp = 2.400 At = L × Hw Aa = 0.000 38 mm x 7	0 m _{vp} = 9.600 m ² m ² 72 mm or large	۶r		
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa	anel openings n timber frame wa	L = 4.000 r H_{wp} = 2.400 A_t = L × H_w A_a = 0.000 38 mm x 7 Fudl = 2.400	0 m //p = 9.600 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or	anel openings n timber frame wa	L = 4.000 r H_{wp} = 2.400 A_t = L × H_w A_a = 0.000 38 mm x 7 Fudl = 2.400	0 m //p = 9.600 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un	anel openings n timber frame wa	L = 4.000 r H_{wp} = 2.400 A_t = L × H_w A_a = 0.000 38 mm x 7 Fudl = 2.400	0 m //p = 9.600 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details	anel openings n timber frame wa	L = 4.000 m $H_{wp} = 2.400$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 II F _{udl} = 2.400 d load F = min(F _u)	0 m //p = 9.600 m ² m ² /2 mm or large 0 kN/m al, 10.5 kN/m) =			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type	anel openings n timber frame wa	L = 4.000 r H_{wp} = 2.400 A_t = L × H_w A_a = 0.000 38 mm x 7 II F _{udl} = 2.400 d load F = min(Fu Plywood t_p = 9.50 m	0 m _{VP} = 9.600 m ² m ² '2 mm or large 0 kN/m _{dl} , 10.5 kN/m) =		n 1.25 × standa	ard thick
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness	anel openings n timber frame wa niformly distributed	L = 4.000 m $H_{wp} = 2.400$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 II FudI = 2.400 d load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$	0 m m ² = 9.600 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN	= 2.400 kN/m G - Greater thar	1.25 × standa	ard thick
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness	anel openings n timber frame wa niformly distributed	L = 4.000 r H_{wp} = 2.400 A_t = L × Hw A_a = 0.000 38 mm x 7 II FudI = 2.400 d load F = min(Fu Plywood t_p = 9.50 m T_p = 18.00	0 m m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN hax(T _P / t _P , 0.75	= 2.400 kN/m G - Greater thar	n 1.25 × standa	ard thick
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standar Nail diameter	anel openings n timber frame wa niformly distributed rd board thickness	L = 4.000 r Hwp = 2.400 At = L × Hw Aa = 0.000 38 mm x 7 II FudI = 2.400 d load F = min(Fu Plywood t_p = 9.50 m T_p = 18.00 Bp = min(m	0 m ^{γp} = 9.600 m ² m ² '2 mm or large 0 kN/m ^{dl} , 10.5 kN/m) = mm mm WARNIN hax(T _P / t _P , 0.75 mm	= 2.400 kN/m G - Greater thar	n 1.25 × standa	ard thick
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard	anel openings n timber frame wa niformly distributed rd board thickness cing	L = 4.000 r $H_{wp} = 2.400$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 II Fudl = 2.400 d load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ r	0 m ₂ = 9.600 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN hax(T _P / t _P , 0.75 mm mm	= 2.400 kN/m G - Greater thar	n 1.25 × standa	ard thick


Tekla Tedds eng17	Project	6 Beed	h Drive		Job no.		
17 Clacton Road	Calcs for				Start page no./F	Revision	
London		Racking resi		2			
E17 8AP	Calcs by	Calcs date	Approved by	Approved			
	PC	04/02/2021					
Modification factors for vari	ation in fixing ar			-			
Variation in nail diameter			3 mm = 1.000)			
Variation in nail spacing		K _{102p} = 1.00					
Variation in board thickness			\times B _p - B _p ² - 0.8				
Material modification factors		$K_{mp} = K_{101p}$	\times K102p \times K103p	o = 1.138			
Secondary sheathing details	5						
Secondary board type		Plasterboa	rd				
Standard board thickness		t₅ = 12.50 n	nm				
Proposed board thickness		Ts = 12.50	mm				
Ratio of proposed to standard	board thickness	B₅ = min(m	ax(Ts / ts, 0.75	5), 1.25) = 1.00			
Screw diameter		Ds = 3.50 m	nm				
Standard perimeter screw spa	icing	ss = 150 mr	s _s = 150 mm				
Proposed perimeter screw spa	acing	S₅ = 150 m	m				
From Table 2 – Basic rackin	g resistance for	a range of mate	rials and cor	nbinations of m	aterials		
Basic racking resistance		Rbs = 0.120	kN/m				
Modification factors for vari	ation in fixing ar	d thickness of	secondary sł	heathing			
Variation in screw diameter		K101s = 1.00	0				
Variation in screw spacing		K102s = 1.00	0				
Variation in board thickness		K103s = 2.8	\times Bs – Bs ² – 0.	8 = 1.000			
Material modification factors		$K_{ms} = K_{101s}$	imes K102s $ imes$ K103s	= 1.000			
Modification factors for wal	l height, length, d	openings, vertio	al load and i	nteraction			
Height of wall panels		K104 = 2.4 n	n / H _{wp} = 1.000	D			
Length of walls		K105 = (L / 2	2.4 m) ^{0.4} = 1.2	27			
Fully framed openings in walls	6	K106 = (1 –	1.3 × Aa / At) ²	= 1.000			
Vertical load on timber frame		-		N/m) - 0.0015× (F / 1 kN/m)²)×	(2.4 m / L) ⁽	
		K107 = 1.16		, (, ,	. /	
Interaction		K108 = 1.10					
Wall modification factors				K107 × K108 = 1.57	7		
Packing registered of wall r	banel						
Racking resistance of wall L			(5) (815 KN		
Racking resistance of wall particular Racking resistance of wall particular resistance of wall p	nel	$RR = L \times K_W$	$r imes (R_{bp} imes K_{mp} \cdot F_{mp})$	+ \mathbf{K} bs $\times \mathbf{K}$ ms) = $\mathbf{I}\mathbf{Z}$			


eng17	Project	6 Bee	ch Drive		Job no.	
17 Clacton Road	Calcs for				Start page no./	Revision
London E17 8AP		Racking res	istance check			3
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
Racking panel no.2 -		Seco	ondary sheat	hing hary sheathing		
	Ą	Panel length				
Wall panel details Length of panel		L = 5.200 r	m			
-		L = 5.200 r H _{wp} = 2.40				
Length of panel		Hwp = 2.40				
Length of panel Height of panel	anel openings	Hwp = 2.40	0 m _{/p} = 12.480 m ²			
Length of panel Height of panel Total area of wall panel	anel openings	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$	0 m _{/p} = 12.480 m ²	ır		
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa	n timber frame wall	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$	0 m /p = 12.480 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un	n timber frame wall	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$	0 m /p = 12.480 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details	n timber frame wall	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load $F = min(F_w)$	0 m /p = 12.480 m ² m ² /2 mm or large 0 kN/m			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un	n timber frame wall	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$	0 m ^{7p} = 12.480 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) =			
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness	n timber frame wall	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 H F _{udl} = 2.400 H load F = min(Fu H load F = min(Fu Plywood $t_p = 9.50$ m	0 m //p = 12.480 m ² m ² /2 mm or large 0 kN/m dl, 10.5 kN/m) =		n 1.25 × stand	ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness	n timber frame wall niformly distributed	$H_{wp} = 2.40$ $A_{t} = L \times H_{w}$ $A_{a} = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu Plywood $t_{p} = 9.50$ m $T_{p} = 18.00$	0 m m ² 12.480 m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm WARNIN	= 2.400 kN/m G - Greater thar	n 1.25 × stand	ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness	n timber frame wall niformly distributed	$H_{wp} = 2.40$ $A_{t} = L \times H_{w}$ $A_{a} = 0.000$ 38 mm x 7 H F _{udl} = 2.400 H load F = min(Fu Plywood $t_{p} = 9.50$ m $T_{p} = 18.00$ $B_{p} = min(m)$	0 m m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN max(T _P / t _P , 0.75)	= 2.400 kN/m G - Greater thar	n 1.25 × stand	ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard	n timber frame wall niformly distributed rd board thickness	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$	0 m m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN hax(T _P / t _P , 0.75 mm	= 2.400 kN/m G - Greater thar	n 1.25 × stand	ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed pa Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standar Nail diameter	n timber frame wall niformly distributed rd board thickness cing	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m	0 m m ² = 12.480 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN max(T _P / t _P , 0.75 mm mm	= 2.400 kN/m G - Greater thar	1.25 × stand	ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standar Nail diameter Standard perimeter nail space	n timber frame wall niformly distributed rd board thickness cing	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m	0 m m ² 2 mm or large 3 kN/m dl, 10.5 kN/m) = mm mm WARNIN hax(T _P / t _P , 0.75 mm mm	= 2.400 kN/m G - Greater thar), 1.25) = 1.25		ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard Nail diameter Standard perimeter nail space	n timber frame wall niformly distributed rd board thickness cing	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m	0 m m ² = 12.480 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = mm mm WARNIN max(T _p / t _p , 0.75) mm mm erials and com	= 2.400 kN/m G - Greater thar), 1.25) = 1.25		lard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard Nail diameter Standard perimeter nail space Proposed perimeter nail space	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $F_{udl} = 2.400$ H load F = min(Fu H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m $S_p = 150$ m r a range of mate $R_{bp} = 1.680$	0 m m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = m mm WARNIN max(T _P / t _P , 0.75 mm m erials and com 0 kN/m	= 2.400 kN/m G - Greater thar), 1.25) = 1.25 nbinations of ma		ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standar Nail diameter Standard perimeter nail space Proposed perimeter perimeter nail space Proposed perimeter nail space Proposed perimeter perimet	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $I = F_{udl} = 2.400$ H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m r a range of mate $R_{bp} = 1.680$	0 m m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = m mm WARNIN max(T _P / t _P , 0.75 mm m erials and com 0 kN/m	= 2.400 kN/m G - Greater thar), 1.25) = 1.25 nbinations of ma thing		ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed part Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard Nail diameter Standard perimeter nail space Proposed perimeter perimeter nail space Proposed perimeter nail	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for	$H_{wp} = 2.40$ $A_t = L \times H_w$ $A_a = 0.000$ 38 mm x 7 $I = F_{udl} = 2.400$ H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m r a range of mate $R_{bp} = 1.680$	0 m m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = m mm WARNIN max(T _P / t _P , 0.75 mm m erials and com 0 kN/m f primary sheat / 3 mm = 1.000	= 2.400 kN/m G - Greater thar), 1.25) = 1.25 nbinations of ma thing		lard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed part Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard Nail diameter Standard perimeter nail space Proposed perimeter nail space From Table 2 – Basic rack Basic racking resistance Modification factors for va Variation in nail diameter	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for ariation in fixing a	Hwp = 2.40 At = L × Hw Aa = 0.000 38 mm x 7 H Fudl = 2.400 H load F = min(Fu Plywood $t_p = 9.50$ m $T_p = 18.00$ $B_p = min(m)$ $D_p = 3.00$ m $S_p = 150$ m $S_p = 150$ m r a range of mate $R_{bp} = 1.680$ ind thickness of $K_{101p} = D_p$ / $K_{102p} = 1.0$	0 m m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = m mm WARNIN max(T _P / t _P , 0.75 mm m erials and com 0 kN/m f primary sheat / 3 mm = 1.000	= 2.400 kN/m G - Greater thar), 1.25) = 1.25 nbinations of ma thing		ard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed partimber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standar Nail diameter Standard perimeter nail space Proposed perimeter nail space From Table 2 – Basic rack Basic racking resistance Modification factors for va Variation in nail diameter Variation in nail spacing	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for	Hwp = 2.40 At = L × Hw Aa = 0.000 38 mm x 7 H Fudl = 2.400 H load F = min(Fu Plywood tp = 9.50 m Tp = 18.00 Bp = min(m Dp = 3.00 m Sp = 150 m Sp = 150 m r a range of mate Rbp = 1.680 md thickness of K101p = Dp A K102p = 1.0 K102p = 2.8	0 m $_{P_P} = 12.480 \text{ m}^2$ m^2 (2 mm or large 0 kN/m $_{dl}$, 10.5 kN/m) = m mm WARNIN max(T_P / t_P , 0.75 mm m erials and com 0 kN/m f primary sheat / 3 mm = 1.000 00	= 2.400 kN/m G - Greater than), 1.25) = 1.25 nbinations of ma thing		lard thickn
Length of panel Height of panel Total area of wall panel Aggregate area of framed part Timber members Uniformly distributed load or For calculation equivalent un Primary sheathing details Primary board type Standard board thickness Proposed board thickness Ratio of proposed to standard Nail diameter Standard perimeter nail space Proposed perimeter nail space From Table 2 – Basic rack Basic racking resistance Modification factors for va Variation in nail diameter Variation in nail spacing Variation in board thickness	n timber frame wall niformly distributed rd board thickness cing acing ing resistance for ariation in fixing a	Hwp = 2.40 At = L × Hw Aa = 0.000 38 mm x 7 H Fudl = 2.400 H load F = min(Fu Plywood tp = 9.50 m Tp = 18.00 Bp = min(m Dp = 3.00 m Sp = 150 m Sp = 150 m r a range of mate Rbp = 1.680 md thickness of K101p = Dp A K102p = 1.0 K102p = 2.8	0 m m ² = 12.480 m ² m ² 2 mm or large 0 kN/m dl, 10.5 kN/m) = m m WARNIN max(T _P / t _P , 0.75) m m m erials and com 0 kN/m f primary sheat / 3 mm = 1.000 00 × B _P - B _P ² - 0.8	= 2.400 kN/m G - Greater than), 1.25) = 1.25 nbinations of ma thing		lard thickn

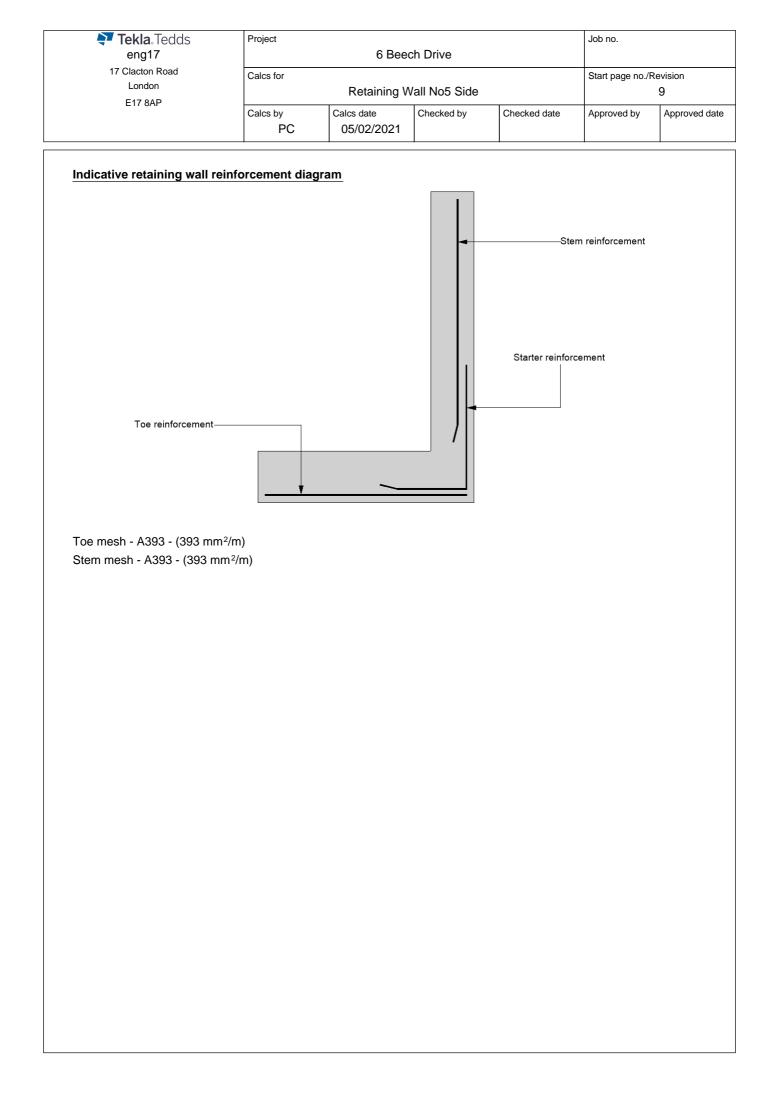
Tekla Tedds eng17	Project	6 Bee	ch Drive			
17 Clacton Road	Calcs for				Start page no./	Revision
		Racking res	sistance check			4
E17 8AP	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved
Standard board thickness		ts = 12.50	mm	1	I	
Proposed board thickness		Ts = 12.50				
Ratio of proposed to standa	ard board thicknes	s Bs = min(n	nax(T₅ / t₅, 0.75	5), 1.25) = 1.00		
Screw diameter		Ds = 3.50	mm			
Standard perimeter screw s	spacing	ss = 150 m	ım			
Proposed perimeter screw	spacing	S₅ = 150 n	nm			
From Table 2 – Basic rac	king resistance fo	or a range of mat	erials and cor	nbinations of m	aterials	
Basic racking resistance		Rbs = 0.12	0 kN/m			
Modification factors for v	ariation in fixing	and thickness of	f secondarv sł	heathing		
Variation in screw diameter	-	K101s = 1.0	-			
Variation in screw spacing		K102s = 1.0	00			
Variation in board thickness	S	K103s = 2.8	\times Bs – Bs ² – 0.	.8 = 1.000		
Material modification factor	S	$K_{ms} = K_{101s}$	s × K 102s × K 103s	= 1.000		
Modification factors for w	vall boight longth	oponings vorti	ical load and i	ntoraction		
Height of wall panels	van neight, iengti		$m / H_{wp} = 1.000$			
Length of walls		$K_{105} = 1.32$				
Fully framed openings in w	alls		-1.3 × Aa / At) ²	= 1.000		
Vertical load on timber fram			-	– 1.000 (N/m) - 0.0015× ($F / 1 k N / m)^2 $	$(2.4 m / 1)^{0}$
ventical load off timber fram		$K_{107} = 1.15$		((),(),(),(),(),(),(),(),(),(),(),(),(),	1 / 1 KN/III) J×	(2.4 111 / L)
Interaction		$K_{108} = 1.10$				
Wall modification factors				K107 × K108 = 1.67	' 3	
		100 - 10104 /			•	
Racking resistance of wa	-					
Racking resistance of wall	-		-	+ Rbs × Kms) = 17	.669 KN	
Racking resistance of plast	erboard only	$R_{PO} = L \times I$	$K_{W} imes R_{bs} imes K_{ms}$:	= 1.044 kN		
Total racking resistance of	of building					
Total racking resistance of	all panels	Rtotal = 30.4	484 kN			
Total contribution of mason	iry	Mtotal = 0.0	00 kN			
Total contribution of plaster	board	Ptotal = 1.8	01 kN			
Total contribution of catego	ory 1 and 2 materia	Is Stotal = Rtota	al - Mtotal - Ptotal =	= 28.683 kN		
Maximum contribution of pl	asterboard	P _{max} = 0.5	\times Stotal = 14.34	2 kN		
Total racking resistance of	building	$R_{build} = S_{tot}$	al + Mtotal + min	$(P_{total}, P_{max}) = 30.$	484 kN	
Racking panel summary						
Racking panel no.1						
Panel dimensions	4000 mm lon	g x 2400 mm high	with studs no	smaller than 38	mm $ imes$ 72 mm	
Loading		JDL to top rail				
Primary sheathing	18.0 mm Plyv	vood with 3.00 mr	n dia.nails at 1	50 mm centres		
Secondary sheathing	12.5 mm Plas	sterboard with 3.5	0 mm dia.screv	ws at 150 mm ce	ntres	
Masonry cladding	None					
Masonry cladding						
Racking panel no.2		a x 2400 mm high	with studs no	smaller than 38	$mm \times 72 mm$	
	5200 mm lon	y x 2400 mini niyi				
Racking panel no.2 Panel dimensions Loading	2.400 kN/m L	JDL to top rail				
Racking panel no.2 Panel dimensions Loading Primary sheathing	2.400 kN/m L 18.0 mm Plyv	JDL to top rail vood with 3.00 mr	n dia.nails at 1			
Racking panel no.2 Panel dimensions Loading	2.400 kN/m L 18.0 mm Plyv	JDL to top rail	n dia.nails at 1		ntres	

Tekla, Tedds	Project				Job no.	
eng17		6 Beec	h Drive			
17 Clacton Road London E17 8AP	Calcs for	Racking resis	stance check		Start page no./Re	evision 5
	Calcs by PC	Calcs date 04/02/2021	Checked by	Checked date	Approved by	Approved date

Tekla Tedds	Project				Job no.	
eng17		6 Beec	h Drive			
17 Clacton Road	Calcs for				Start page no./Re	evision
London E17 8AP	Retaining Wall No5 Side					3
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved date

Vertical forces on wall	
Wall stem	$w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 8.9 \text{ kN/m}$
Wall base	Wbase = Ibase \times tbase \times γ base = 8.9 kN/m
Soil in front of wall	$w_p = I_{toe} \times d_{cover} \times \gamma_{mb} = 9 \text{ kN/m}$
Applied vertical load	$W_v = W_{dead} + W_{live} = 4 \text{ kN/m}$
Total vertical load	$W_{total} = W_{wall} + W_{base} + W_{p} + W_{v} = 30.7 \text{ kN/m}$
Horizontal forces on wall	
Surcharge	$F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 6.3 \text{ kN/m}$
Moist backfill above water table	$F_{m_a} = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = 5.3 \text{ kN/m}$
Moist backfill below water table	$F_{m_b} = K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 4.1 \text{ kN/m}$
Saturated backfill	$F_s = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times (\gamma_{s} - \gamma_{water}) \times h_{water}^2 = 0.5 \text{ kN/m}$
Water	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 1.2 \text{ kN/m}$
Total horizontal load	$F_{total} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} = 17.4 \text{ kN/m}$
Calculate stability against sliding	
Passive resistance of soil in front of wall	$F_{P} = 0.5 \times K_{P} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = 12.9 \text{ kN/m}$
Resistance to sliding	$F_{res} = F_p + (W_{total} - w_p - W_{live}) \times tan(\delta_b) = 19.8 \text{ kN/m}$
-	PASS - Resistance force is greater than sliding force
Overturning moments	
Surcharge	$M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 5.7 \text{ kNm/m}$
Moist backfill above water table	$M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 5 \text{ kNm/m}$
Moist backfill below water table	$M_{m_b} = F_{m_b} \times (h_{water} - 2 \times d_{ds}) / 2 = 1 kNm/m$
Saturated backfill	$M_{s} = F_{s} \times (h_{water} - 3 \times d_{ds}) / 3 = 0.1 \text{ kNm/m}$
Water	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 0.2 \text{ kNm/m}$
Total overturning moment	Mot = Msur + Mm_a + Mm_b + Ms + Mwater = 11.9 kNm/m
Restoring moments	
Wall stem	$M_{wall} = W_{wall} \times (I_{toe} + t_{wall} / 2) = 10 \text{ kNm/m}$
Wall base	$M_{\text{base}} = W_{\text{base}} \times I_{\text{base}} / 2 = 5.5 \text{ kNm/m}$
Design vertical dead load	$M_{dead} = W_{dead} \times I_{load} = 3.1 \text{ kNm/m}$
Total restoring moment	Mrest = Mwall + Mbase + Mdead = 18.6 kNm/m
Check stability against overturning	
Total overturning moment	Mot = 11.9 kNm/m
Total restoring moment	M _{rest} = 18.6 kNm/m
	PASS - Restoring moment is greater than overturning momen
Check bearing pressure	
Soil in front of wall	$M_{P_r} = w_P \times I_{toe} / 2 = 4.5 \text{ kNm/m}$
Design vertical live load	$M_{iive} = W_{iive} \times I_{load} = 1.3 \text{ kNm/m}$
Total moment for bearing	$M_{total} = M_{rest} - M_{ot} + M_{p_r} + M_{live} = 12.4 \text{ kNm/m}$
Total vertical reaction	R = W _{total} = 30.7 kN/m
Distance to reaction	$x_{\text{bar}} = M_{\text{total}} / R = 405 \text{ mm}$
Eccentricity of reaction	e = abs((I _{base} / 2) - x _{bar}) = 220 mm
	Reaction acts outside middle third of base
Bearing pressure at toe	$p_{toe} = R / (1.5 \times x_{bar}) = 50.5 \text{ kN/m}^2$
Bearing pressure at heel	$p_{\text{heel}} = 0 \text{ kN/m}^2 = 0 \text{ kN/m}^2$
	CC. Maximum haaring process is loss than allowable bearing process

PASS - Maximum bearing pressure is less than allowable bearing pressure


Tekla, Tedds	Project				Job no.	
eng17		6 Beec	h Drive			
17 Clacton Road London E17 8AP	Calcs for	Retaining W	all No5 Side		Start page no./Re	evision 4
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved date

Tekla.Tedds eng17	Project	6 Beed	ch Drive		Job no.				
17 Clacton Road	Calcs for				Start page no./F	Revision			
London E17 8AP		Retaining W	/all No5 Side			5			
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved d			
	L (BE 9002-4004)								
RETAINING WALL DESIGN	N (BS 6002.1994)	<u>l</u>			TEDDS calculatio	n version 1.2.0			
Ultimate limit state load fa	ctors								
Dead load factor		$\gamma f_d = 1.4$							
Live load factor		γf_l = 1.6							
Earth and water pressure fa	ctor	$\gamma f_e = 1.4$							
Factored vertical forces or	n wall								
Wall stem		Wwall_f = γf_d	imes h _{stem} $ imes$ t _{wall} $ imes$	γwall = 12.4 kN/n	n				
Wall base		Wbase_f = γf_0	$1 imes I_{base} imes t_{base} imes$	γbase = 12.4 kN	/m				
Soil in front of wall		$W_{p_f} = \gamma_{f_d} \times$	$I_{toe} \times \mathbf{d}_{cover} \times \gamma_{n}$	mb = 12.6 kN/m					
Applied vertical load		$W_{v_f} = \gamma_{f_d}$	$\langle W_{dead} + \gamma_{f_l} \times V$	Wlive = 5.8 kN/m					
Total vertical load		Wtotal_f = Wv	vall_f + Wbase_f + \	w _{p_f} + W _{v_f} = 43.	2 kN/m				
Factored horizontal at-rest	t forces on wall								
Surcharge		Fsur_f = γf + >	Ko × Surchard	ge × heff = 17 kN/	/m				
Moist backfill above water ta	ıble		-	-					
Moist backfill below water ta		$\begin{aligned} F_{m_a_f} &= \gamma_{f_e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = 12.6 \text{ kN/m} \\ F_{m_b_f} &= \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 9.7 \text{ kN/m} \end{aligned}$							
Saturated backfill				$F_{s_f} = \gamma_{f_e} \times 0.5 \times K_0 \times (\gamma_{s} \gamma_{water}) \times h_{water}^2 = 1.2 \text{ kN/m}$					
Water		$F_{water_f} = \gamma_{f_e} \times 0.5 \times h_{water}^2 \times \gamma_{water} = 1.7 \text{ kN/m}$							
Total horizontal load				_b_f + Fs_f + Fwate					
Passive resistance of soil in	front of wall			$(\delta_b) \times (d_{cover} + t_{ball})$		× γmb = 18			
kN/m		· •			,	·			
Factored overturning mon	nents								
Surcharge		$M_{sur_f} = F_{sur}$	$_f \times (h_{eff} - 2 \times c)$	l _{ds}) / 2 = 15.3 kN	lm/m				
Moist backfill above water ta	ıble	$M_{m_a_f} = F_m$	_a_f × (heff + 2 ×	hwater - $3 \times d_{ds}$) /	′ 3 = 11.7 kNm/	m			
Moist backfill below water ta	ble	$M_{m_b_f} = F_m$	$_b_f \times (h_{water} - 2$	$\times d_{ds}) / 2 = 2.4 k$	«Nm/m				
Saturated backfill		$M_{s_f} = F_{s_f}$	$<$ (h _{water} - 3 \times dd	s) / 3 = 0.2 kNm/	/m				
Water		$M_{water_f} = F_{v}$	vater_f × (hwater - 3	3 × d _{ds}) / 3 = 0.3	kNm/m				
Total overturning moment		Mot_f = Msur_	$M_{ot_f} = M_{sur_f} + M_{m_a_f} + M_{m_b_f} + M_{s_f} + M_{water_f} = \textbf{29.9} \text{ kNm/m}$						
Restoring moments									
Wall stem		$M_{wall_f} = W_{wall_f}$	all_f $ imes$ (Itoe + twall /	/ 2) = 13.9 kNm/	m				
Wall base		Mbase_f = Wb	$ase_f \times I_{base} / 2 =$	7.7 kNm/m					
Soil in front of wall		$M_{P_r_f} = w_{P_f}$	$f \times I_{toe} / 2 = 6.3$	kNm/m					
Design vertical load		$M_{v_f} = W_{v_f}$	\times load = 6.4 kN	m/m					
Total restoring moment		M _{rest_f} = M _w	all_f + M_{base_f} + N	$M_{p_r_f} + M_{v_f} = 34$.4 kNm/m				
Factored bearing pressure)								
Total moment for bearing			est_f - Mot_f = 4.5	kNm/m					
Total vertical reaction			= 43.2 kN/m						
Distance to reaction			i_f / Rf = 104 m						
Eccentricity of reaction		$e_f = abs((I_{bas}))$	ase / 2) - Xbar_f) =			third of 1			
Dooring processo at tas				Reaction acts o	outside middle	e inird of ba			
Bearing pressure at toe Bearing pressure at heel		-	$(1.5 \times X_{bar_f}) = 2$						
	$p_{heel_f} = 0 \ kN/m^2 = 0 \ kN/m^2$								
Rate of change of base read	tion	roto n	1 (2	890.23 kN/m²/m					

eng17	Project	6 Bee	ch Drive		Job no.	
17 Clacton Road	Calcs for				Start page no./F	Revision
London		Retaining V	Vall No5 Side			6
E17 8AP	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved of
	PC	05/02/2021				
Bearing pressure at mid stem		Pstem_mid_f =	max(p _{toe_f} - (ra	ate × (Itoe + twall / 2)), 0 kN/m²) = 0	0 kN/m²
Bearing pressure at stem / he	el	Pstem_heel_f =	= max(p _{toe_f} - (ra	ate × (I _{toe} + t _{wall})),	0 kN/m²) = 0 k	N/m²
Design of reinforced concre	ete retaining wal	l toe (BS 8002:1	994)			
Material properties						
Characteristic strength of con-	crete	fcu = 35 N/r	nm²			
Characteristic strength of rein	forcement	fy = 500 N/	mm²			
Base details						
Minimum area of reinforceme	nt	k = 0.13 %				
Cover to reinforcement in toe		Ctoe = 40 m	m			
Calculate shear for toe desi	gn					
Shear from bearing pressure		V _{toe_bear} = 3	$\mathbf{b} \times \mathbf{p}_{toe_{f}} \times \mathbf{X}_{bar_{f}}$	/ 2 = 43.2 kN/m		
Shear from weight of base		Vtoe_wt_base =	= $\gamma f_d \times \gamma pase imes I_f$	toe \times tbase = 9.9 kN	l/m	
Shear from weight of soil		Vtoe_wt_soil =	Wp_f - ($\gamma f_d \times \gamma m$	\times Itoe \times dexc) = 7.0	6 kN/m	
Total shear for toe design		Vtoe = Vtoe_	pear - Vtoe_wt_base	- Vtoe_wt_soil = 25.	7 kN/m	
Calculate moment for toe de	esign					
Moment from bearing pressur	e	Mtoe_bear = 3	$\mathbf{B} \times \mathbf{p}_{toe_{f}} \times \mathbf{X}_{bar_{f}}$	f $ imes$ (Itoe - Xbar_f + two	all / 2) / 2 = 44.1	i kNm/m
Moment from weight of base		Mtoe_wt_base	= ($\gamma f_d \times \gamma base \times$	$t_{base} \times (I_{toe} + t_{wall} /$	2) ² /2) = 6.3 k	Nm/m
Moment from weight of soil		Mtoe_wt_soil =	: (W p_f - (γf_d × γ	m× Itoe× dexc)) × (It	oe + twall) / 2 = 4	. 7 kNm/m
Total moment for toe design		Mtoe = Mtoe	bear - Mtoe wt bas	e - Mtoe_wt_soil = 33	. 1 kNm/m	
300	•	•				
	∢ —_200—					
↓ ↓ ↓ Check toe in bendina	⊲ —200—					
-	 ⊲ —200—	→ b = 1000 n	nm/m			
Width of toe	 ∢ 200		nm/m – Сtoe — (фtoe / 2)) = 255.0 mm		
Width of toe Depth of reinforcement	∢ 200	d _{toe} = t _{base} -				
Width of toe Depth of reinforcement	∢ 200	d _{toe} = t _{base} -	- $C_{toe} - (\phi_{toe} / 2)$ / (b × d_toe ² × fcu		inforcement is	s not requi
Width of toe Depth of reinforcement Constant	∢ 200	dtoe = tbase - Ktoe = Mtoe	- $C_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × fcu) = 0.015 Compression re		-
Width of toe Depth of reinforcement Constant	 ⊲ —200—	dtoe = tbase - Ktoe = Mtoe	$- c_{toe} - (\phi_{toe} / 2))/(b \times d_{toe}^2 \times f_{cu})/(b \times d_{toe}^2 \times f_{cu})/(0.5 + \sqrt{0.25 - (b^2)})$) = 0.015		-
Width of toe Depth of reinforcement Constant Lever arm		$d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = min(0)$ $Z_{toe} = 242 m$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu} 0.5 + $\sqrt{0.25}$ - (mm) = 0.015 Compression re	0.9)),0.95) × c	-
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement	t required	dtoe = tbase - Ktoe = Mtoe Ztoe = min((Ztoe = 242 n As_toe_des =	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu} 0.5 + $\sqrt{0.25}$ - (mm) = 0.015 Compression re min(K _{toe} , 0.225) / _{y × Ztoe}) = 314 mn	0.9)),0.95) × c	-
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinf	t required forcement	dtoe = tbase - Ktoe = Mtoe Ztoe = min((Ztoe = 242 r As_toe_des = As_toe_min =	$- C_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $(0.5 + \sqrt{0.25} - (mmm))$ $M_{toe} / (0.87 \times f_{base} = 3$) = 0.015 Compression re min(K _{toe} , 0.225) / _y × z _{toe}) = 314 mn 390 mm ² /m	0.9)),0.95) × c n²/m	-
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinf Area of tension reinforcement	t required forcement	dtoe = tbase - Ktoe = Mtoe Ztoe = min((Ztoe = 242 r As_toe_des = As_toe_min =	- Ctoe - $(\phi_{toe} / 2)$ / (b × dtoe ² × fcu 0.5 + $\sqrt{0.25}$ - (mm Mtoe / (0.87 × f k × b × tbase = 3 Max(As_toe_des,) = 0.015 Compression re min(K _{toe} , 0.225) / _{y × Ztoe}) = 314 mn	0.9)),0.95) × c n²/m	-
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinf Area of tension reinforcement Reinforcement provided	t required forcement t required	dtoe = tbase - Ktoe = Mtoe Ztoe = min((Ztoe = 242 r As_toe_des = As_toe_des = As_toe_req = A393 mes	- Ctoe - $(\phi_{toe} / 2)$ / (b × dtoe ² × fcu 0.5 + $\sqrt{0.25}$ - (mm Mtoe / (0.87 × f k × b × tbase = 3 Max(As_toe_des,) = 0.015 Compression re min(K _{toe} , 0.225) / _y × z _{toe}) = 314 mn 390 mm ² /m	0.9)),0.95) × c n²/m	-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinf Area of tension reinforcement Reinforcement provided Area of reinforcement provided	t required forcement t required	dtoe = tbase - Ktoe = Mtoe Ztoe = Mtoe Ztoe = 242 r As_toe_des = As_toe_min = As_toe_req = A393 mes As_toe_prov =	- $C_{toe} - (\phi_{toe} / 2)$ / (b × $d_{toe}^2 × f_{cu}$ 0.5 + $\sqrt{0.25}$ - (mm Mtoe / (0.87 × f_{tot}) k × b × $t_{base} = 3$ Max(As_toe_des, f h 393 mm ² /m) = 0.015 Compression re min(K _{toe} , 0.225) / _y × z _{toe}) = 314 mn 390 mm ² /m	0.9)),0.95) × c n²/m nm²/m	ltoe
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinf Area of tension reinforcement Reinforcement provided	t required forcement t required	dtoe = tbase - Ktoe = Mtoe Ztoe = Mtoe Ztoe = 242 r As_toe_des = As_toe_min = As_toe_req = A393 mes As_toe_prov =	- $C_{toe} - (\phi_{toe} / 2)$ / (b × $d_{toe}^2 × f_{cu}$ 0.5 + $\sqrt{0.25}$ - (mm Mtoe / (0.87 × f_{tot}) k × b × $t_{base} = 3$ Max(As_toe_des, f h 393 mm ² /m) = 0.015 Compression re min(K _{toe} , 0.225) / y × Ztoe) = 314 mn 390 mm ² /m As_toe_min) = 390 n	0.9)),0.95) × c n²/m nm²/m	ltoe

Tekla. Tedds eng17	Project	6 Bee	ch Drive		Job no.					
17 Clacton Road London	Calcs for	Retaining V	Vall No5 Side		Start page no./I	Revision 7				
E17 8AP	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved da				
Allowable shear stress				N/mm²), 5) × 1 N/						
From BS8110:Part 1:1997 -	- Table 3.8	PASS ·	- Design sneai	r stress is less t	nan maximun	n shear stres				
Design concrete shear stres	S	Vc_toe = 0.4		No ok						
				oe < Vc_toe - No sł	near reinforce	ment requir				
Design of reinforced conc	rete retaining wa	all stem (BS 8002	<u>2:1994)</u>							
Material properties	noroto	fcu = 35 N/	mm ²							
Characteristic strength of co Characteristic strength of rei		$f_y = 500 \text{ N/}$								
-	norcement	Iy = 300 IN/								
Wall details Minimum area of reinforcem	ont	k = 0.13 %								
Cover to reinforcement in ste		Cstem = 40								
Cover to reinforcement in wa		Cwall = 40 n								
Factored horizontal at-rest	forces on stem									
Surcharge			_ı × K₀ × Surcha	$arge imes (h_{eff} - t_{base})$	- dds) = 14.2 kN	J/m				
Moist backfill above water ta	ble	-		$\gamma_{m} \times (h_{eff} - t_{base} - t_{base})$	-					
Moist backfill below water ta	ble	$F_{s_mb_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = 3.9 \text{ kN/m}$								
Saturated backfill		$F_{s_s_f} = 0.5 \times \gamma_{f_e} \times K_0 \times (\gamma_{s-} \gamma_{water}) \times h_{sat}^2 = 0.2 \text{ kN/m}$								
Water		Fs_water_f =	$0.5 imes\gamma_{f_e} imes\gamma_{wate}$	$har \times h_{sat}^2 = 0.3 \text{ kN}$	/m					
Calculate shear for stem d Shear at base of stem	esign	Vstem = Fs_:	sur_f + Fs_m_a_f +	Fs_m_b_f + Fs_s_f +	• Fs_water_f = 31. *	1 kN/m				
Calculate moment for sten	n design									
Surcharge	Ū	$M_{s_sur} = F_{s_s}$	_sur_f × (hstem + t	base) / 2 = 12.7 kN	Nm/m					
Moist backfill above water ta	ble	Ms_m_a = F	s_m_a_f $ imes$ (2 $ imes$ hsa	at + heff - dds + tbas	e / 2) / 3 = 9.8	kNm/m				
Moist backfill below water ta	ble	$M_{s_m_b} = F_{s_b}$	s_m_b_f $ imes$ hsat / 2	= 0.4 kNm/m						
Saturated backfill		$M_{s_s} = F_{s_s}$	_f × h _{sat} / 3 = 0	kNm/m						
Water		Ms_water = F	s_water_f × hsat / 3	3 = 0 kNm/m						
Total moment for stem desig	jn	Mstern = Ms	_sur + Ms_m_a + N	Ms_m_b + Ms_s + M	s_water = 23 kNn	n/m				
↑ ↑										
50205										
-25020					\leq					
<u> </u>	•	•	•	•	•					
•										
	◀200									
Chook wall stom in her die	a									
Check wall stem in bendin Width of wall stem	9	b = 1000 r	nm/m							
Depth of reinforcement				/ 2) = 205.0 mm						
Constant			em / (b × dstem ² >	-						
			-	Compression re	inforcement is	s not requir				
						•				
Lever arm		Zstem = MIN	(0.5 + √(0.25 -	(MIN(Kstem, 0.225	z _{stem} = min(0.5 + √(0.25 - (min(K _{stem} , 0.225) / 0.9)),0.95) × d _{stem} z _{stem} = 195 mm					

Tekla Tedds	Project				Job no.			
eng17		6 Beech Drive						
17 Clacton Road London	Calcs for		Start page no./Revision					
E17 8AP		Retaining V		8				
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat		
	PC	05/02/2021						
Area of tension reinforcement	required	As_stem_des =	= M _{stem} / (0.87 :	× fy × Zstem) = 272	mm²/m			
Minimum area of tension reinf	forcement	As_stem_min =	$\mathbf{k} \times \mathbf{b} \times \mathbf{t}_{wall} = \mathbf{k}$	325 mm²/m				
Area of tension reinforcement	sion reinforcement required As_stem_req = Max(As_stem_des, As_stem			es, As_stem_min) = 32	em_min) = 325 mm²/m			
Reinforcement provided	A393 mesh							
Area of reinforcement provided		As_stem_prov = 393 mm ² /m						
		PASS - Reinforcement provided at the retaining wall stem is adequate						
Check shear resistance at v	vall stem							
Design shear stress		$v_{stem} = V_{stem} / (b \times d_{stem}) = 0.151 \text{ N/mm}^2$						
Allowable shear stress		v _{adm} = min(0.8 × √(f _{cu} / 1 N/mm²), 5) × 1 N/mm² = 4.733 N/mm²						
		PASS -	Design shear	r stress is less t	han maximun	n shear stre		
From BS8110:Part 1:1997 -	Table 3.8							
Design concrete shear stress		Vc_stem = 0.4	182 N/mm²					
			Vstem	n < Vc_stem - No st	near reinforce	ment requir		
Check retaining wall deflect	ion							
Basic span/effective depth rat	io	ratio _{bas} = 7						
Design service stress	$f_s = 2 \times f_y \times A_{s_stem_req} / (3 \times A_{s_stem_prov}) = 275.9 \text{ N/mm}^2$							
Modification factor	factor _{tens} = mi	in(0.55 + (477 N/m	120 ×1120 mm² - fs)/(120	(0.9 N/mm² + (N	/Istem/(b × dstem ²))))),2) = 1.71		
Maximum span/effective dept	h ratio	ratio _{max} = r	atio _{bas} × factor	tens = 11.96				
Actual span/effective depth ra	itio	ratio _{act} = hs	.tem / dstem = 7.3	32				
				PASS - Span	to depth ratio	is acceptal		

२ Tekla .Tedds	Project				Job no.	
eng17		7 Rosecro	oft Avenue			
17 Clacton Road London E17 8AP	Calcs for Slab				Start page no./Revision 1	
ETTOAP	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved date

RC SLAB DESIGN (BS8110:PART1:1997)	TEDDS calculation version 1.0.0
TWO WAY SPANNING SLAB DEFINITION – SIMPLY SUPPORTED	
Overall depth of slab $h = 200 \text{ mm}$	
Outer sagging steel	
Cover to outer tension reinforcement resisting sagging $c_{sag} = 35$ mm	
Trial bar diameter Dtryx = 10 mm	
Depth to outer tension steel (resisting sagging)	
$d_x = h - c_{sag} - D_{tryx}/2 = 160 \text{ mm}$	
Inner sagging steel	
Trial bar diameter $D_{tryy} = 10$ mm	
Depth to inner tension steel (resisting sagging)	
$d_y = h - c_{sag} - D_{tryx} - D_{tryy}/2 = 150 \text{ mm}$	
Materials	
Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$	
Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$	
Asy Nominal 1 m width Asx	
Shorter Span	
$h \downarrow f \downarrow $	
Longer Span	
Two-way spanning slab (simple)	
MAXIMUM DESIGN MOMENTSLength of shorter side of slab $I_x = 5.000$ m	
Length of longer side of slab $l_y = 5.000$ m	
Design ultimate load per unit area $n_s = 3.0 \text{ kN/m}^2$	

Tekla.Tedds eng17	Project 7 Rosecroft Avenue					
17 Clacton Road London E17 8AP	Calcs for Slab				Start page no./Revision 2	
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved date

Moment coefficients

 $\alpha_{sx} = (I_y / I_x)^4 / (8 \times (1 + (I_y / I_x)^4)) = 0.063$

 $\alpha_{sy} = (I_y / I_x)^2 / (8 \times (1 + (I_y / I_x)^4)) = 0.063$

Maximum moments per unit width - simply supported slabs

 $m_{sx} = \alpha_{sx} \times n_s \times l_{x^2} = 4.7 \text{ kNm/m}$

 $m_{sy} = \alpha_{sy} \times n_s \times l_{x^2} = 4.7 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) msx = 4.7 kNm/m

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

 $K_x = abs(m_{sx}) / (d_{x^2} \times f_{cu}) = 0.005$

K'x = min (0.156 , (0.402 \times (β_{bx} - 0.4)) - (0.18 \times (β_{bx} - 0.4)^2)) = 0.156

Outer compression steel not required to resist sagging

Concrete Slab Design - Sagging - Inner layer of steel (cl. 3.5.4)

Design sagging moment (per m width of slab) $m_{sy} = 4.7 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{by} = 1.0$

Area of reinforcement required

 $K_y = abs(m_{sy}) / (d_{y^2} \times f_{cu}) = 0.006$

 K'_y = min (0.156 , (0.402 \times (β_{by} - 0.4)) - (0.18 \times (β_{by} - 0.4)^2)) = 0.156

Inner compression steel not required to resist sagging

Two way Spanning Slab requiring tension steel only - mesh (sagging)

 $z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9)}))) = 152 mm$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 18 \text{ mm}$

 $z_y = min ((0.95 \times d_y), (d_y \times (0.5 + \sqrt{(0.25 - K_y/0.9)}))) = 142 mm$

Neutral axis depth $x_y = (d_y - z_y) / 0.45 = 17 \text{ mm}$

Area of outer tension steel required

 $A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 71 \text{ mm}^2/\text{m}$

Area of inner tension steel required

 $A_{sy_req} = abs(m_{sy}) / (1/\gamma_{ms} \times f_y \times z_y) = 76 \text{ mm}^2/\text{m}$

Tension steel

Provide A393 Mesh tension steel resisting sagging

Asx_prov = AsI = **393** mm²/m Asy_prov = Ast = **393** mm²/m

Tekla.Tedds eng17	Project	7 Rosecr	oft Avenue		Job no.	
17 Clacton Road London	Calcs for	c	ilab		Start page no./	Revision 3
E17 8AP	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
	PC	05/02/2021				
$D_x = d_{sl} = 10 \text{ mm } D_y$	y = dst = 10 mm					
		Ar	ea of tension	steel provided	sufficient to re	esist sagg
Check min and max areas	of steel resistin	g sagging				
Total area of concrete Ac =	h = 200000 mm ²	²/m				
Minimum % reinforce	ement k = 0.13 °	%				
$A_{st_min} = k \times A_c = 260$) mm²/m					
$A_{st_max} = 4 \% \times A_c = 3$	8000 mm²/m					
Steel defined:						
Outer steel resisting	sagging Asx_prov	= 393 mm²/m				
				Area of outer s	steel provided	(sagging)
Inner steel resisting	sagging Asy_prov	= 393 mm²/m				
				Area of inner s	teel provided	(sagging)
SHEAR RESISTANCE OF C	CONCRETE SLA	BS (CL 3.5.5)				
Outer tension steel resistir	ng sagging mon	nents				
Depth to tension stee	el from compress	sion face dx = 160	mm			
Area of tension reinf	orcement provide	ed (per m width of	slab) Asx_prov =	= 393 mm²/m		
Design ultimate shea	ar force (per m w	vidth of slab) V _x =	0 kN/m			
Characteristic streng	gth of concrete for	cu = 35 N/mm ²				
Applied shear stress						
vx = Vx / dx = 0.00 N/mm ²						
Check shear stress to clau	ıse 3.5.5.2					
Vallowable = min ((0.8 $N^{1/2}/mm$)	× $\sqrt{(f_{cu})}$, 5 N/mm	²) = 4.73 N/mm ²				
		,			She	ar stress
Shear stresses to clause 3	.5.5.3					
Design shear stres	S					
fcu_ratio = if (fcu > 40 N	l/mm² , 40/25 , fc	u/(25 N/mm²)) = 1. 4	400			
$v_{cx} = 0.79 \text{ N/mm}^2 \times 10^{-1} \text{ M/mm}^2$	min(3,100 \times Asx_	_{_prov} / dx) ^{1/3} × max(0	.67,(400 mm /	$(d_x)^{1/4}) / 1.25 \times f_{cu}$	u_ratio ^{1/3}	
v _{cx} = 0.56 N/mm ²						
Applied shear stress	5					
v _x = 0.00 N/mm ²						
				No sł	near reinforce	ment requ
SHEAR RESISTANCE OF C	CONCRETE SLA	ABS (CL 3.5.5)				
Inner tension steel resistin	ig sagging mom	nents				
Inner tension steel resistin Depth to tension stee			mm			

eng17	Project	7 Rosecro	oft Avenue		Job no.	
17 Clacton Road London	Calcs for				Start page no./R	
E17 8AP		_	lab			4
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved
Design ultimate she	ear force (per m widt	h of slab) $V_y = 0$	0 kN/m			
Characteristic stren	gth of concrete fcu =	35 N/mm ²				
Applied shear stress						
$v_y = V_y / d_y = 0.00 \text{ N/mm}^2$						
Check shear stress to cla	use 3.5.5.2					
Vallowable = min ((0.8 N ^{1/2} /mm)) $ imes \sqrt{({\sf f}_{\sf cu})},5~{\sf N}/{\sf mm}^2$)	= 4.73 N/mm ²				
					Shea	r stress
Shear stresses to clause 3	3.5.5.3					
Design shear stres	s					
$f_{cu_ratio} = if (f_{cu} > 40 N)$	V/mm² , 40/25 , fcu/(2	5 N/mm²)) = 1.4	400			
v_{cy} = 0.79 N/mm ² ×	$min(3,100 \times A_{sy_prov}$	$(d_y)^{1/3} \times max(0.0)$	67,(400 mm) /	$d_y)^{1/4}$ / 1.25 $ imes$ f _{cu} _	ratio ^{1/3}	
v _{cy} = 0.58 N/mm ²						
Applied shear stres	S					
v _y = 0.00 N/mm ²						
				No she	ear reinforcem	nent requ
SHEAR PERIMETERS	FOR A CIRCULAR	CONCENTRA	FED LOAD (CI	∟ 3.7.7)		
Diameter of lo	aded circle D∟= 300	mm				
Depth to tensi	on steel dx = 160 m	m				
Dimension fro	m edge of load to sh	ear perimeter I	$p = k_p \times d_x = 24$	10 mm where k _P	· = 1.50	
For punching shear cas	ses not affected by f	ree edges or ho	les:			
Total length of	f inner perimeter at e					
		edge of loaded a	area U0_gen = π	× DL = 942 mm		
	fouter perimeter at I				0 mm	
		from loaded ar	rea $u_{gen} = 4 \times 1$		0 mm	
Total length of	NCENTRATED LO	from loaded ar	rea $u_{gen} = 4 \times 1$		0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa	NCENTRATED LO	o from loaded ar	rea u _{gen} = 4 ×		0 mm	
Total length of <u>PUNCHING SHEAR AT CC</u> Tension steel resisting sa Total length of inne	DNCENTRATED LO	o from loaded ar ADS (CL 3.7.7) of loaded area	rea u _{gen} = 4 × 1 uo = 942 mm	DL + 8 × Ip = 312	0 mm	
Total length of <u>PUNCHING SHEAR AT CC</u> Tension steel resisting sa Total length of inne	DNCENTRATED LO gging r perimeter at edge o r perimeter at dimen	o from loaded ar ADS (CL 3.7.7) of loaded area	rea u _{gen} = 4 × 1 uo = 942 mm	DL + 8 × Ip = 312	0 mm	
Total length of <u>PUNCHING SHEAR AT CC</u> Tension steel resisting sa Total length of inne Total length of oute	DNCENTRATED LO gging r perimeter at edge o r perimeter at dimen d _x = 160 mm	o from loaded ar ADS (CL 3.7.7) of loaded area	rea u _{gen} = 4 × 1 uo = 942 mm	DL + 8 × Ip = 312	0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa Total length of inner Total length of outer Depth to outer steel Depth to inner steel	DNCENTRATED LO gging r perimeter at edge o r perimeter at dimen d _x = 160 mm	o from loaded ar ADS (CL 3.7.7) of loaded area of sion l _p from load	rea u _{gen} = 4 × 1 uo = 942 mm ded area u = 3	DL + 8 × Ip = 312	0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa Total length of innel Total length of oute Depth to outer steel Depth to inner steel Average depth to "to	DNCENTRATED LO gging r perimeter at edge of r perimeter at dimen d _x = 160 mm d _y = 150 mm	$d_x + d_y)/2 = 155$	rea u _{gen} = 4 × 1 uo = 942 mm ded area u = 3 .0 mm	D∟ + 8 × lp = 312 3 120 mm	0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa Total length of inner Total length of oute Depth to outer steel Depth to inner steel Average depth to "to Area of outer steel p	DNCENTRATED LO gging r perimeter at edge of r perimeter at dimen $d_x = 160 \text{ mm}$ $d_y = 150 \text{ mm}$ ension" steel $d_{av} = ($	$d_x + d_y)/2 = 155$ gh the perimete	rea u _{gen} = 4 × 1 u ₀ = 942 mm ded area u = 3 .0 mm r A _{sx_prov} = 39 3	D∟ + 8 × I _P = 312 1 20 mm 3 mm² /m	0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa Total length of inner Total length of oute Depth to outer steel Depth to inner steel Average depth to "to Area of outer steel p Area of inner steel p	DNCENTRATED LO gging r perimeter at edge of r perimeter at dimen $d_x = 160 \text{ mm}$ $d_y = 150 \text{ mm}$ ension" steel $d_{av} = ($ ber m effective throu	$d_x + d_y)/2 = 155$ gh the perimete	rea u _{gen} = 4 × 1 uo = 942 mm ded area u = 3 .0 mm r A _{sx_prov} = 39 r A _{sy_prov} = 39	D∟ + 8 × I _P = 312 1 20 mm 3 mm² /m 3 mm² /m	0 mm	
Total length of PUNCHING SHEAR AT CC Tension steel resisting sa Total length of inner Total length of oute Depth to outer steel Depth to inner steel Average depth to "te Area of outer steel p Area of inner steel p Max shear effective	DNCENTRATED LO gging r perimeter at edge of r perimeter at dimen $d_x = 160 \text{ mm}$ $d_y = 150 \text{ mm}$ ension" steel $d_{av} = ($ per m effective throu per m effective throu	d_{x} from loaded ar ADS (CL 3.7.7) of loaded area to sion l_{p} from load $d_{x} + d_{y})/2 = 155$ gh the perimete gh the perimete eter under consi	rea u _{gen} = 4 × 1 uo = 942 mm ded area u = 3 .0 mm r A _{sx_prov} = 39 r A _{sy_prov} = 39	D∟ + 8 × I _P = 312 1 20 mm 3 mm² /m 3 mm² /m	0 mm	

17 Clacton Road London E17 8AP Stress around loaded Stress around perime	Calcs for Calcs by PC	S Calcs date	Slab		Start page no./R	evision 5	
E17 8AP Stress around loaded	-		Slab			~	
Stress around loaded	-	Calcs date					
		05/02/2021	Checked by	Checked date	Approved by	Approved da	
Stress around perime	d area v _{max} = V _P /	$(u_0 \times d_{av}) = 0.23$	5 N/mm ²				
	eter $v = V_p / (u \times v)$	dav) = 0.071 N/m	m²				
Check shear stress to clau	se 3.7.7.2						
Vallowable = min ((0.8 N	^{1/2} /mm) × $\sqrt{(f_{cu})}$, 5	5 N/mm²) = 4.73 3	3 N/mm ²				
					Shea	ar stress - (
Shear stresses to clause 3.	7.7.4						
Design shear stress							
$f_{cu_ratio} = if (f_{cu} > 40 N/$	/mm² , 40/25 , fcu/	(25 N/mm ²)) = 1.	400				
Effective steel area for s	-						
$v_c = 0.79 \text{ N/mm}^2 \times \text{m}$	in(3, 100×(As_eff	/ d _{av})) ^{1/3} × max(().67, (400 mm /	′ dav) ^{1/4}) / 1.25 × ′	fcu_ratio ^{1/3}		
vc = 0.567 N/mm ²							
				NO She	ear reinforcem	ient require	
CONCRETE SLAB DEFLEC		CL 3.5.7)					
Slab span length 1x =							
Design ultimate mon		-	nsx = 5 kNm/m				
Depth to outer tensic	n steel dx = 160	mm					
Tension steel							
Area of outer tension	reinforcement pr	rovided Asx_prov =	393 mm²/m				
Area of tension reinfo	prcement required	d Asx_req = 71 mm	1²/m				
Moment Redistribution	on Factor $\beta_{bx} = 1$.00					
Modification Factors							
Basic span / effective depth	ratio (Table 3.9)	ratiospan_depth = 20)				
The modification factor for sp	ans in excess of	10m (ref. cl 3.4.6	.4) has not bee	n included.			
$f_{s} = 2 \times f_{y} \times A_{sx_req} / (3 \times A_{sx_req})$	rov \times β bx) = 60.2	N/mm²					
factor _{tens} = min (2 , 0.55 + (4	177 N/mm² - f ₅) /	(120 × (0.9 N/m	m² + msx / dx²))) = 2.000			
Calculate Maximum Span							
This is a simplified approach 3.4.6.4 and 3.4.6.7.	and further atten	tion should be giv	ven where spec	cial circumstance	es exist. Refer t	o clauses	
Maximum span Imax	= ratiospan_depth × 1	factor _{tens} \times d _x = 6.	40 m				
Check the actual beam spa	n						
Actual span/depth ra	tio lx / dx = 31.25						
Span depth limit rati	$O_{span_{depth}} \times factor$	tens = 40.00					

Tekla Tedds	Project				Job no.	
eng17						
17 Clacton Road London E17 8AP	Calcs for Slab				Start page no./Revision 6	
	Calcs by PC	Calcs date 05/02/2021	Checked by	Checked date	Approved by	Approved date

	Slab thickness h = 200 mm	
	Effective depth to bottom outer tension reinforcement $d_x = 160.0 \text{ mm}$	
	Diameter of tension reinforcement $D_x = 10 \text{ mm}$	
	Diameter of links L _{diax} = 0 mm	
Cover t	o outer tension reinforcement	
	Ctenx = h - dx - Dx / 2 = 35.0 mm	
Nomina	I cover to links steel	
	Cnomx = Ctenx - Ldiax = 35.0 mm	
Permise	sable minimum nominal cover to all reinforcement (Table 3.4)	
	_{Cmin} = 35 mm	
		Cover over steel resisting sagging (

APPENDIX C

Arboricultural Investigation Report from Parsons Tree Care

Arboricultural Report

29th September 2020

Client: Ariel Klien Site: 7 Rosecroft Avenue, London NW3 7QA

Trial dig - BS5837:2012: Trees in relation to design, demolition and construction – Recommendations.

With regards to the proposed installation of a garden room at the above site address, trial pits have been dug to ascertain the rooting activity in the rear garden.

This revision is to be read in conjunction with the initial report dated 6th June 2019 alongside the tree protection plan and tree constraints plan (*TPP 7 Rosecroft Av & TCP 7 Rosecroft Av*) as well the architects revised drawings A/02/501, which plot root findings on the updated scale plan.

Trial pit 1: Dig on south boundary uncovered x3 <50mm roots growing from T4 and X1 <100mm root growing from T6 green beech. See updated drawings (A/02/501) for locations and photos for illustrations of these roots.

Pits were hand dug to ascertain locations for pads to support and cantilever the garden room floor structure. All four pad locations are achievable without severing any primary roots found. An in significant quantity of fibrous root system will need to be removed when excavating soil for the pads.

Photo 1:

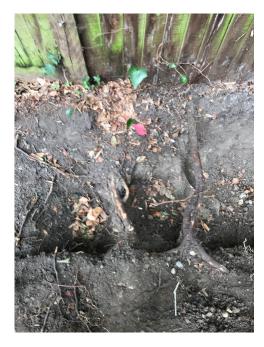
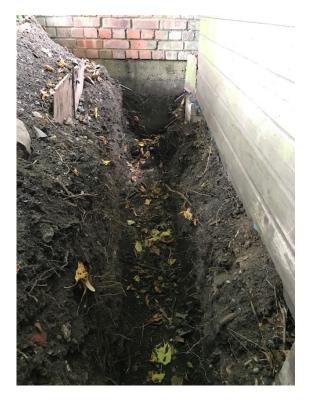


Photo 2:

email: frankparsons@me.com website: parsonstreecare.uk Parsons Tree Care Ltd

mobile: 07791 652 889 Company number 10337138 Registered office: 2 Accommodation Rd London NW11 8ED

Photo 1 illustrates x3 roots with a diameter less than 50mm, whilst one slightly larger root measured at 100mm grows from T6 as illustrated in photo 2.


Despite a small loss of fibrous root system from T4 and T6 the beech trees should not be impacted by the proposed installation of foundation pads to support the floor structure of the garden room.

***Amended proposal along rear boundary: to install a climbing wall. Refer to drawing no. A/02/501 Constraints are the roots of T7-9 inclusive.

Trial pit 2: A trial trench has been dug to a depth of 700mm. Findings uncovered no structural or woody roots. Fibrous root system is present from previously removed vegetation such as ivy. The rear boundary wall drops down by another 200mm to meet 15 Hollycroft Avenue property where the three Lime trees grow. It would seem the roots of these lime trees haven't grown under the presumed 400mm wall foundation and up into the mass of soil in the rear garden of 7 Rosecroft Avenue. See photos below for clarification.

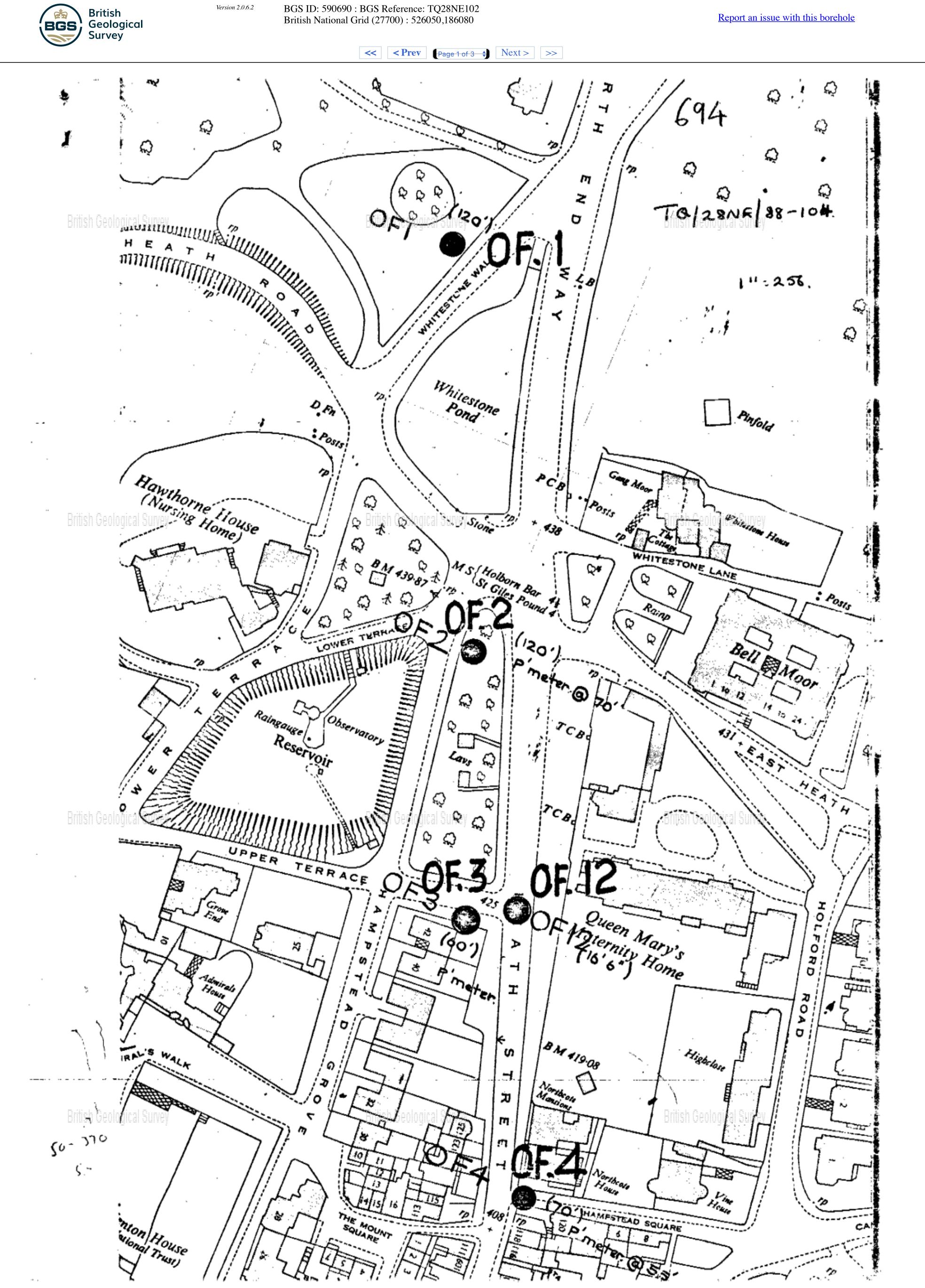
Photo 1:

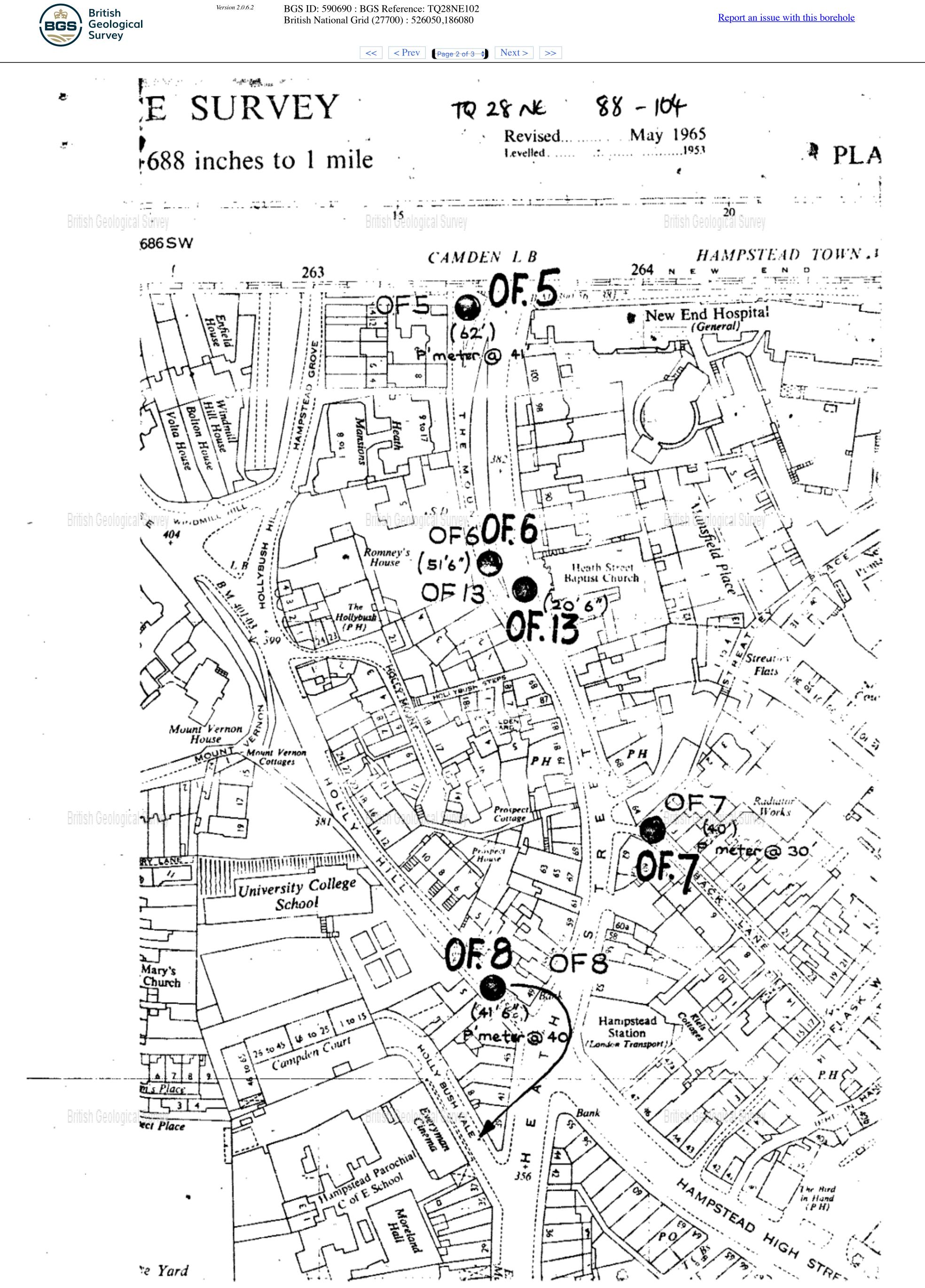
Photo 2:

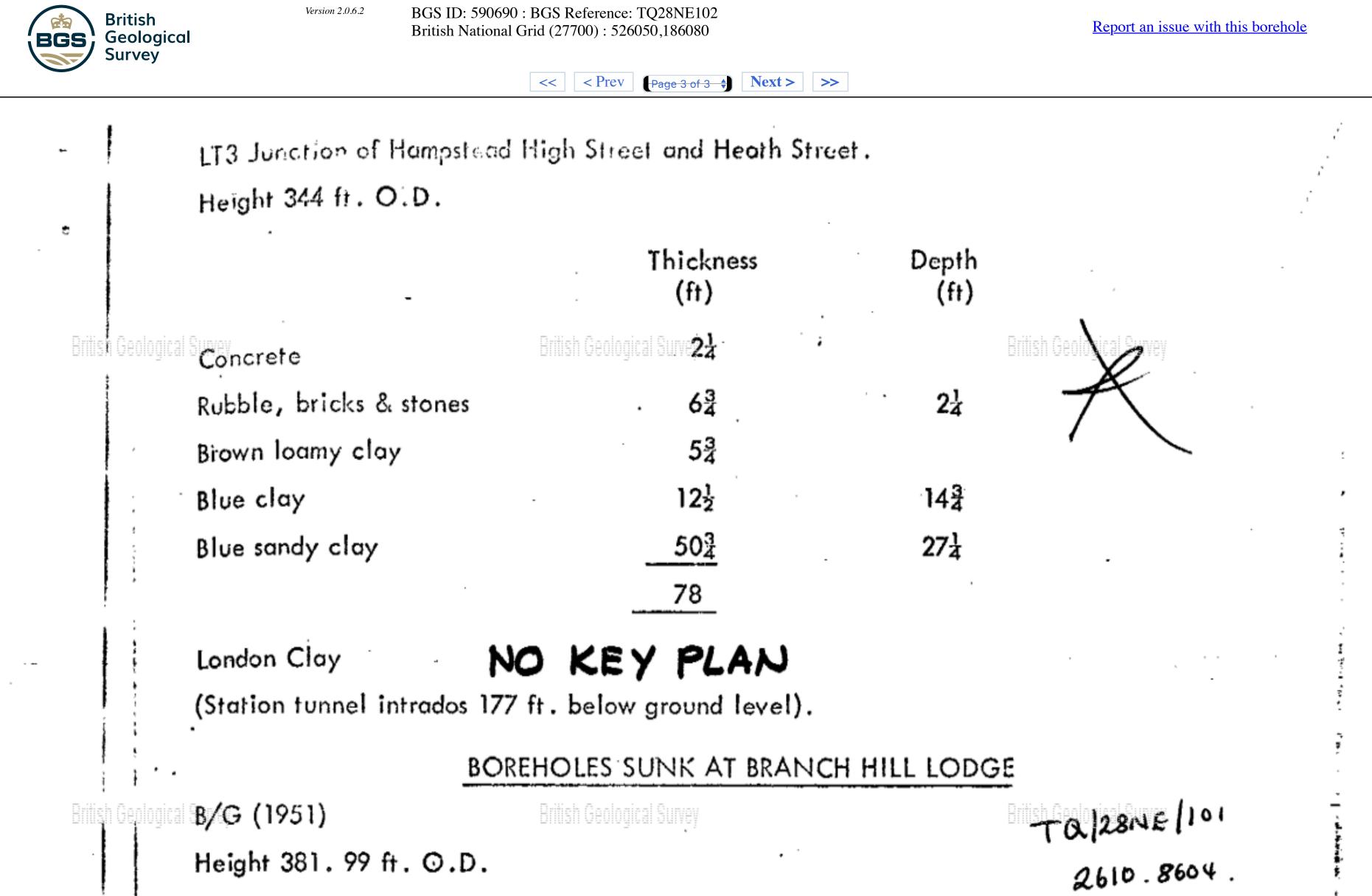
Conclusion:

Meeting the client and architect on site at the time of the trail dig enabled us to formulate a plan to mitigate excavation in the area adjacent to the row of Beech trees by way of sinking 4 concrete pads in locations sympathetic to the rooting activity of the Beech trees and supporting the floor base on these pads.

email: frankparsons@me.com website: parsonstreecare.uk Parsons Tree Care Ltd mobile: 07791 652 889 Company number 10337138 Registered office: 2 Accommodation Rd London NW11 8ED

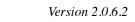

With regards to the roots of the Lime trees in 15 Hollycroft. The findings along the rear boundary wall (south west boundary) were not surprising as tree roots are hydrotropic and they is plenty of available soil / lawn in the rear garden in which they grow. Therefore excavation in this vicinity would be permissible not encroaching more than 20% into the RPA of T6. Heavy machinery is not permitted or accessible so excavation would be by hand dig and I am in touch with the contractor should they encounter any substantial rooting activity along the rear boundary where the proposed climbing wall is to be installed. I do not foresee a detrimental impact on trees numbered 1-9 during the project so long as the tree protection plan is to be followed and communication is maintained at this current level.


Yours sincerely,


Frank Parsons RFS certificate in Arboriculture AA Technicians certificate in Arboriculture (Level 4 Diploma in Arboriculture) 7 Rosecroft Avenue London NW3 7QA

APPENDIX D

Borehole Records



			2010.0004.
	Thickness (ft)	Depth (ft)	•
`Made ground	. 4		-
Brown sandy clay	4	4	. ALL
Loamy sand	1	8	С. В.
Brown sandy clay	6	9	
Grey sandy clay	3	15	
Brown sandy clay	12	18	
Britin Gelogical Blue sandy clay	British Geologic <u>al Sune</u>	30	British Geological Survey
	36		
B/H (1951)			
Height 427.44 ft.O.D.	Thickness (ft)	Depth (ft)	TQ /28116/102. 2605.8608.
Soil and stones	6		
Brown sandy clay	4	6	
Sandy clay and pebbles	6	10	CB.
Brown sandy clay	5 1	16	
British Geological Loamy sand	British Geological Sur 8 3	21 ¹ / ₂	British Geological Sunrey

	Brown sandy clay		7	30	
	White loamy sand		3	37	
				• .	~
	· · ·	•		-	
				· · · · · · · · · · · · · · · · · · ·	

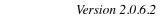
British Geological Survey

BGS

BGS ID: 18392244 : BGS Reference: TQ28NE421 British National Grid (27700) : 525120,186140

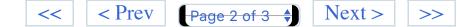
Report an issue with this borehole

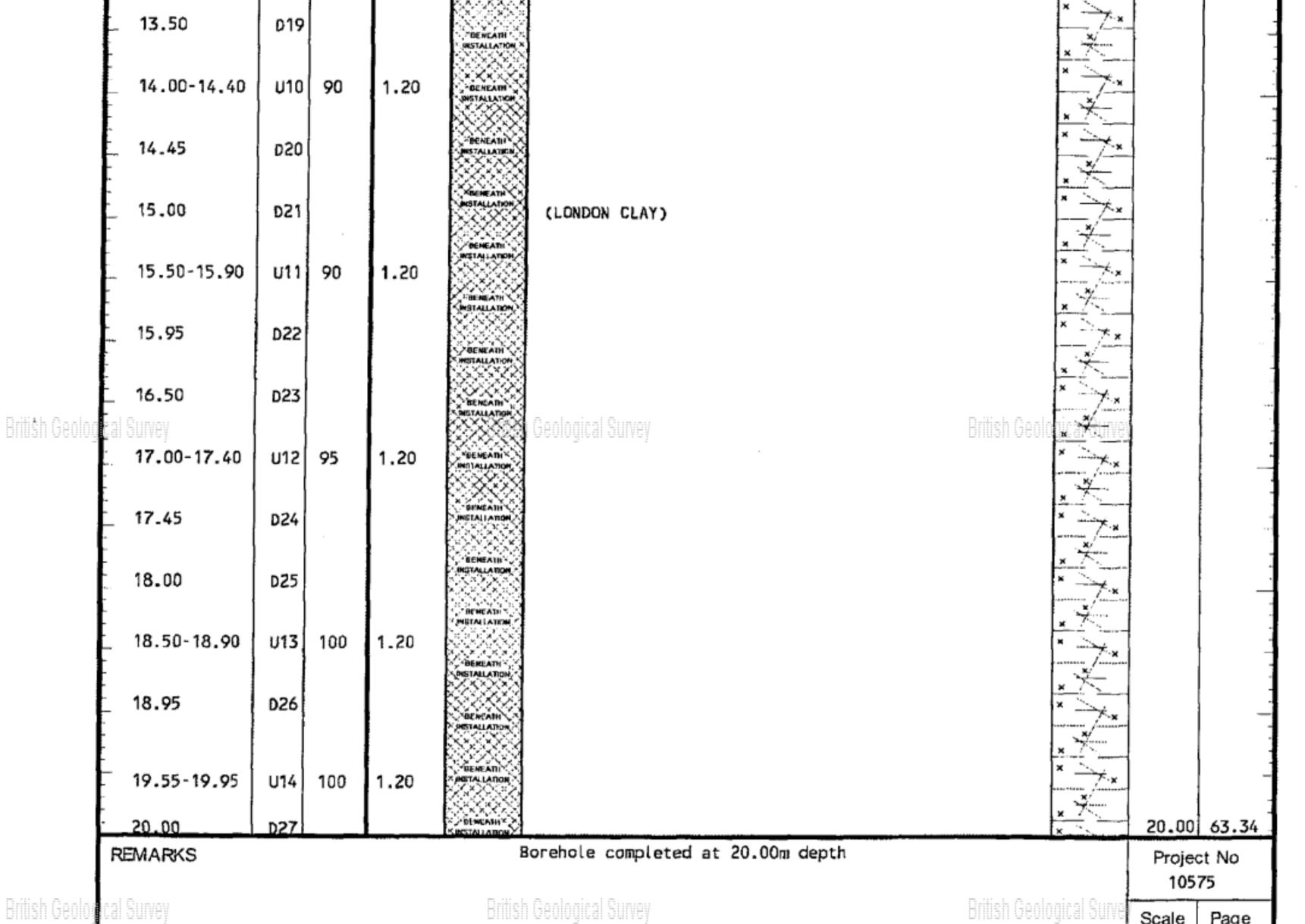
.


.

- --.

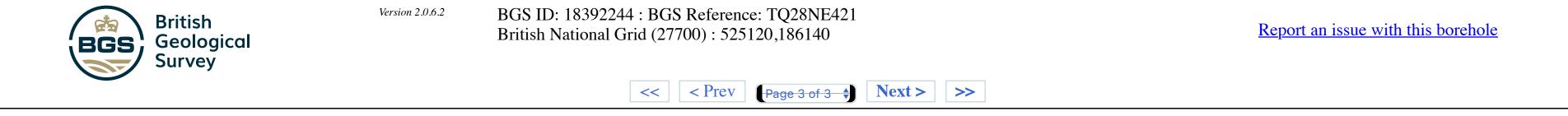
British Geolog	GROUN			Site:	378 FI	BOREHOLE BH1			
unnan oconoğ	Geo-Environmental 01733 566566			Date: 06/	06/06	Hole Size: 150mm dia to 20.00m	Ground Level:	83.34m, O.D.	
	Samples and in-situ Tests			(Date)	Inst	Deceription of Strain	Loopad	Depth	O.D.
	Depth m	Туре	Blows	Casing	Inst.	Description of Strata	Legend	Depth m	Level
	0.20-0.70	в1				MADE GROUND - CONCRETE		0.20	83.14
	1.00-1.50	82				MADE GROUND - Firm, friable, dark brown/brown/grey mottled slightly gravelly, sandy CLAY with occasional brick, concrete, coal and ash fragments		1 10	
	1.15-1.45	s	N12	0.90		Stiff brown/orange brown/light grey mottled CLAY with occasional selenite crystals. Becoming fissured below 2.50m		1.10	82.24
	1.75 2.00-2.40 2.03	D1 U1 W1	38	1.20 _{⊻s}					
	2.45	D2				(WEATHERED LONDON CLAY)			-
British Geolog	2.75 Cal Subject 3.00-3.40	D3 U2	48	1.20		n Geological Survey British Geolo	nic al Sun ie		
	7 / 5								

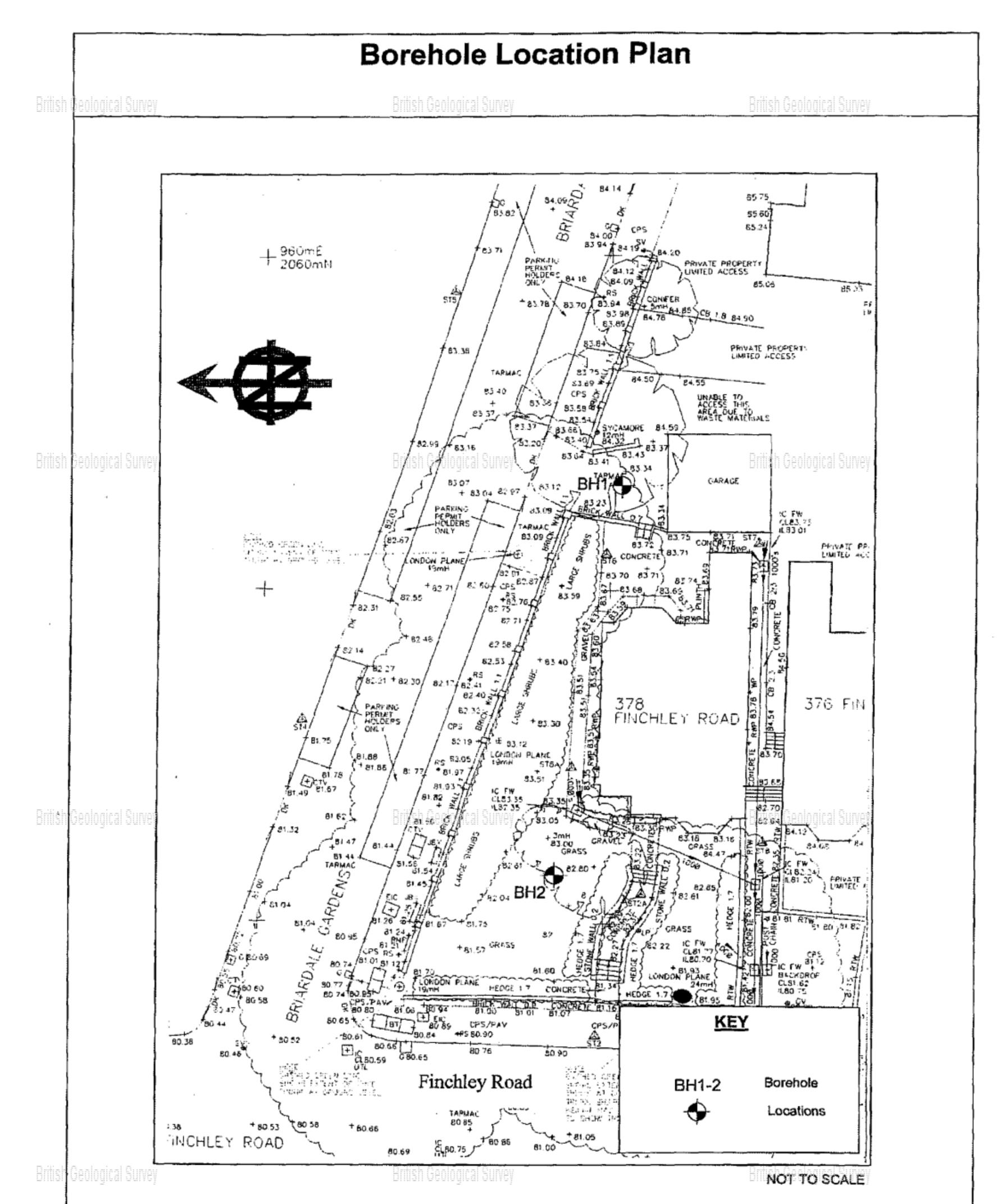

	E		}									}	
	3.45	D4										3.60	79.74-
	3.75	D5				Very stiff, c brown CLAY wi	losely fissure	ed to stif	ff, bro	wn/orange		3.00	
	4.00-4.40	U3	55	1.20	~~~~	N DIOWI CLAI WI	UN OCCASIONAL	setentie	crysta	15	12		
					CEENEATIN INSTALLATION						$\overline{\mathbf{x}}$		
	4.45	D6	ţ		BEMLATH	(WEATHERED LO	NDON CLAY)						-
	4.75	D7				8					X		-
	5.00-5.40	U4	55	1.20	BENEATH	§					K		-
					SEMBATH	8					TX-		
	5.45	D8				Stiff, becomin fissured, dar	ng very stiff	below 7.0	Om, cl	sely	*	5.50	77.84
	6.00	D9			DENSATIN	fissured, dari	k grey CLAY Wi ms	th occasi	onals	ilt and	×-*		1
		07				8					×		
	6.50-6.90	υ5	60	1.20	BENEATH	(LONDON CLAY)					×××		-
Briith Geolo	-		00		DENEATH	h Contonical Survoy				British Geo	× Se		-
Diman ocoio	6.95	D10			INSTALLATION [®]	ni ocnindirai onisci				Dillan Oct	⊢ .∡		
	- -				BENEATH						×		
	. 7.50	011									×_*		
											×		
	8.00-8.40	U6	62										
											× ×		
	8.45	D12			BENEATH						*		-
	-			l B	VER NEATH						* +*		-
	9.00	D13			ÎNSTALLATICA X						**		-
1	-				MENEATH						* - **		1
	9.50-9.90	U7	70	1.20							××		-
											* **	10.00	
	REMARKS 1 R	D14		p		l						Projec	73.34
	2. EX	reakin xcavat	g out ing a	concrete pit from (from 0. 0.20m t	00m to 0.20m for o 1.00m for 1 ho	0.50 hours					1057	
British Geolo	tural Sumev 4. Fi	ibrous	live	d to 1.20 roots obse	erved t	o 1.75m depth				British Geo	logical Surv	Scale	Page
1		canopi	pe ins	talled to	4.004	depth					_	1:50	1/2
	KEY N - SPT Blows for 0.3m Groundwater Strikes Groundwater O									bservatio	ns		
	B - Bulk Sample penetration U - Undisturbed SampleV - Vane Shear Test No Struck Rose to Rate Cased Sealed Date Hole									epth m	Water		
									Casing	Water			
	W - Water Sample S/C - SPT Spoon/Co	ne 🗴	c Leve	ision () kPa I on complet	ion					06/06/06	20.00	1.20 0.00 0.00	dry dry 2.03
	✓ Water Strike ✓ Water Rise	с <u>у</u>		l casing with dpìpe Level	ndrawn						4.00	0.00	2.05

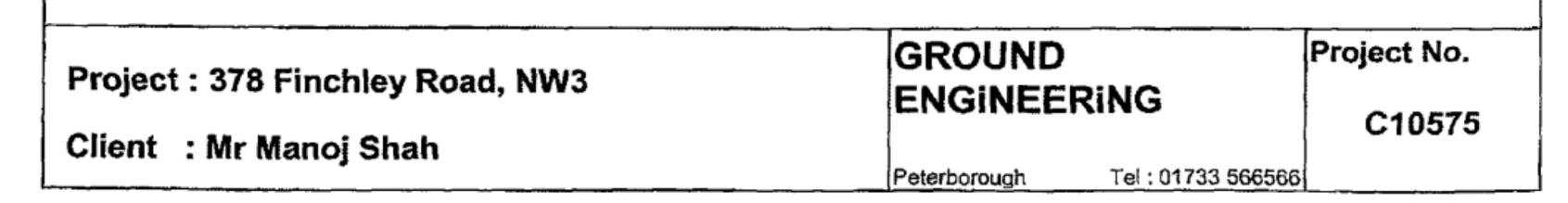

British Geological Survey

63

BGS


British Geologie ENGINEE				Site:	378 F1	BOREHOLE BH1										
onnan ocorogn	Geo-Environmental 01733 566566			Date: 06/	06/06	Nole Size: 150mm dia to 20.00m	Ground Level:	m. D.D.								
	Samples and in	l in-situ Tests		Samples and in-situ Tests		(Date)	1	Description of Strate	Langed	Death	0.D.					
	Depth m	Depth m Type Blows						Inst. Description of Strata					Legend	Depth m	Level m	
	10.50 11.00-11.40 11.45 12.00	015 U8 D16 D17	78	1.20	ABENEATI JASTALLATION BENEATH HISTALLATION DENEATH INSTALLATION MENEATH INSTALLATION	fragments at 15.00m	× × × × × × × × × × × × × × × × × × ×		73.34							
British Geologi	12.50-12.90	U9 D18	85	1.20	BENEATH INSTALLATION INSTALLATION	Geological Survey British Geolog			-							




British Geological Survey

Scale Page 1:50 2/2

									1	~/4		
KEY N - SPT Blows for 0.3m	Groundwater Strikes							Groundwater Observations				
D - Disturbed Sample Blows for quoted	Depth m							Depth m				
B - Bulk Sample penetration U - Undisturbed SampleV - Vane Shear Test	No St	ruck	Rose to	Rate	Cased	Sealed	Date	Hole	Casing	Water		
W - Water Sample Cohesion () kPa												
S/C - SPT Spoon/Cone Tc Level on completion												
 ✓ Water Strike c ▼w Level casing withdrawn ▼ Water Rise ▼s Standpipe Level 												
X Water Rise Xs Standpipe Level												

