

# SITE INVESTIGATION FACTUAL REPORT

| Report No:     | 719009                     |
|----------------|----------------------------|
| Client:        | Crawford Claims Management |
| Site:          | 9 Willoughby Road          |
| Client Ref:    | SU1904557                  |
| Date of Visit: | 07/05/2020                 |





Home Emergency Response - Subsidence Investigation - Drainage Services – Crack & Level Monitoring – Property Video Surveys

Unit E2 First Floor Suite, Boundary Court Willow Farm Business Park, Castle Donington Leicestershire, DE74 2NN 20843 2272362
 in enquiries@cet-uk.com
 www.cet-uk.com

CET is the trading name of CET Structures Ltd Registered in England No. 02527130





| TEST REPORT:       | Trial Pit               |          |                   |
|--------------------|-------------------------|----------|-------------------|
| REPORT NUMBER:     | C1042928 / 101499.1.1.1 |          |                   |
| TRIAL PIT REF:     | TP1                     | DATE:    | 07/05/2020        |
| CLIENT:            | Crawford & Co           | SITE:    | 9 Willoughby Road |
| JOB NO:            | 719009                  | WEATHER: | Sunny             |
| EXCAVATION METHOD: | Hand tools              |          |                   |



For Strata below 1400mm see Bore Hole log

### Key:

W

- D Small disturbed sample J Jar sample
- B Bulk disturbed sample V Pilcon vane (kPa)
  - Water sample M Mackintosh probe
- TDTD Too dense to drive

### Remarks:

Test results reported relate only to the items tested. This report shall not be reproduced except in full without approval of the Laboratory. For and on behalf of CET Scott Alger - Lab

Report Format:

DE74 2UD

01622 858545 enquiries@cet-uk.com www.cet-uk.com Approved Signatory 07-May-20

> CET is the trading name for CET Structures Limited. Registered in England No. 02527130

Report version 1

|          |            |                |                | Sheet:                    | 1 of 1        | Site:            | 9 Willoughby Road |            |            |        |          |        |
|----------|------------|----------------|----------------|---------------------------|---------------|------------------|-------------------|------------|------------|--------|----------|--------|
|          | Boreh      | ole            | 1              |                           | Job No:       | 719009           |                   |            |            |        |          |        |
|          |            |                |                |                           | Date:         | 07/05/2020       |                   |            |            |        |          |        |
| Boring N | lethod:    | Rotary Auger   |                | 1                         | Ground Level: |                  | Client:           | Crawford C | Claims Ma  | nageme | nt       |        |
| Diamete  | r (mm):    | 100            | Weather:       | dry                       |               |                  |                   |            |            |        |          |        |
| Depth    |            |                |                | Soil Description          |               |                  |                   | 1          |            | Sam    | ples and | Tests  |
| (m)      |            |                |                |                           |               |                  |                   | Thickness  | Legend     | Depth  | Туре     | Result |
| 0.00     | See Trial  | Pit            |                |                           |               |                  |                   | 1.40       |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
| 1.40     | Very stiff | brown-grey v   | eined silty C  | LAY                       |               |                  |                   | 1.10       | × ×        |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | × ×        | 1.50   | D        |        |
|          |            |                |                |                           |               |                  |                   |            | × ×        |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | <u>~ ×</u> |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | <u>~ ×</u> |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | ×          | 2.00   | DV       | 130+   |
|          |            |                |                |                           |               |                  |                   |            | × ×        | 2.00   | 01       | 130+   |
|          |            |                |                |                           |               |                  |                   |            | ×          |        |          | 150.   |
|          |            |                |                |                           |               |                  |                   |            | ××         |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | ××         |        |          |        |
| 2.50     | Very stiff | brown-grey v   | veined silty s | andy CLAY                 |               |                  |                   | 0.50       | ××         | 2.50   | D        |        |
|          |            |                |                |                           |               |                  |                   |            | ××         |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | ××         |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | × ×        |        |          |        |
|          |            |                |                |                           |               |                  |                   |            | × ×        |        |          |        |
| 3.00     |            |                |                | End of BH                 |               |                  |                   |            |            | 3.00   | DV       | 130+   |
|          |            |                |                |                           |               |                  |                   |            |            |        |          | 130+   |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        | -        |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
|          |            |                |                |                           |               |                  |                   |            |            |        |          |        |
| Remarks  | :          |                |                |                           |               | Key:             |                   | 1          | 1          |        | То       | Max    |
| BH ends  | at 3.0m.BH | I dry and open | on completio   | n,no roots observed below | 2.0m.         | D - Disturbed Sa | ample             |            |            |        | Depth    | Dia    |
|          |            |                |                |                           |               | B - Bulk Sample  |                   |            |            |        | (m)      | (mm)   |
|          |            |                |                |                           |               | W - Water Samp   | ple               | Roots      |            |        | 2.00     | 1      |
|          |            |                |                |                           |               | J - Jar Sample   |                   | Roots      |            |        |          |        |
|          |            |                |                |                           |               | V - Pilcon Shear | Vane (kPa         | Roots      |            |        |          |        |
|          |            |                |                |                           |               | M - Mackintosh   | Probe             | Depth to V | Vater (m)  |        |          |        |
|          |            |                | T              |                           | 1             | TDTD - Too Den   | ise To Drive      | 9          |            |        |          |        |
| Logged:  |            | IC             | SA             | Checked:                  | Approved:     | Version          | V1.0 28/0         | 1/16       |            |        | N.T.S.   |        |

# Laboratory Summary Results

Our Ref : 719009

9 Willoughby Road Location :

Client: Crawford Claims Management

Cartwright House, Tottle Road, Riverside Business Park, NG2 1RU Address:

| S<br>TP/BH                                                                                                                                                   | ample Ref<br>Depth                                                        | Type          | Moisture<br>Content     | Soil<br>Fraction     | Liquid<br>Limit              | Plastic<br>Limit                                                        | Plasticity<br>Index | Liquidity *<br>Index | Modified *<br>Plasticity                   | Soil *<br>Class      | Filter Paper<br>Contact | Soil<br>Sample       | Oedometer<br>Strain | Estimated *<br>Heave | In situ *<br>Shear Vane | Organic *<br>Content                  | pH *<br>Value | Sulphate                | Content * (1)           | *<br>Class |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|-------------------------|----------------------|------------------------------|-------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------|----------------------|-------------------------|----------------------|---------------------|----------------------|-------------------------|---------------------------------------|---------------|-------------------------|-------------------------|------------|
| No                                                                                                                                                           | (m)                                                                       | - 77 -        | (%)[1]                  | > 0.425mm<br>(%) [2] | (%)[3]                       | (%)[4]                                                                  | (%)[5]              | [5]                  | Index<br>(%)[6]                            | [7]                  | Time<br>(h)             | Suction<br>(kPa) [8] | [9]                 | Potential (mm)[10]   | Strength<br>(kPa) [11]  | (%)[12]                               | [13]          | so <sub>3</sub><br>[14] | so <sub>4</sub><br>[15] | [16]       |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
| 1                                                                                                                                                            | U/S 1.20                                                                  | D             | 21                      | <5                   | 58                           | 19                                                                      | 39                  | 0.05                 | 39                                         | CH                   | 168                     | 766                  |                     |                      | 150                     |                                       |               |                         |                         |            |
|                                                                                                                                                              | 15                                                                        | р             | 21                      | <5                   |                              |                                                                         |                     |                      |                                            |                      | 168                     | 615                  |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              | 1.5                                                                       | D             | 21                      | $\langle \rangle$    |                              |                                                                         |                     |                      |                                            |                      | 100                     | 015                  |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              | 2.0                                                                       | D             | 22                      | <5                   | 46                           | 22                                                                      | 24                  | 0.00                 | 24                                         | CI                   | 168                     | 280                  |                     |                      | 130                     |                                       |               |                         |                         |            |
|                                                                                                                                                              | 2.5                                                                       | D             | 24                      | <5                   |                              |                                                                         |                     |                      |                                            |                      | 168                     | 173                  |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              | 2.0                                                                       | D             | 20                      |                      | ~ ~                          | 27                                                                      | 20                  | 0.02                 | 20                                         | CII                  | 1.00                    | 120                  |                     |                      | 120                     |                                       |               |                         |                         |            |
|                                                                                                                                                              | 3.0                                                                       | D             | 28                      | <5                   | 22                           | 27                                                                      | 28                  | 0.03                 | 28                                         | СН                   | 168                     | 128                  |                     |                      | 130                     |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
|                                                                                                                                                              |                                                                           |               |                         |                      |                              |                                                                         |                     |                      |                                            |                      |                         |                      |                     |                      |                         |                                       |               |                         |                         |            |
| Test Met                                                                                                                                                     | thods / Notes<br>7 · Part 2 · 1990 Test                                   | No 3 2        |                         |                      | [8] In-house met             | thod S9a adapted<br>t Procedure S17a                                    | from BRE IP 4/93    | Swell/Strain Tes     | t                                          | [16] BRE Sp          | ecial Digest One (C     | oncrete in Aggres    | ssive Ground) Augus | st 2005              | <u>Key</u>              | D' 1 1 1                              | 11 >          |                         |                         |            |
| [1] DS 15/7, Latt 2, 1770, Text NO 5.2     [9] III-HOUSE TEXT FORCEURE ST/A: One Dimensional Swell/Strain Text       [2] Estimated if <5% otherwise measured |                                                                           |               |                         |                      |                              | L                                                                       | Note that if t      | he SO4 content falls | s into the DS-4 or<br>s falling into the l | DS-5 class, it would | 1 be                    | D                    | Disturbed sampl     | e (small)            |                         |                                       |               |                         |                         |            |
| [3] BS 1377 : Part 2 : 1990, Test No 4.4     [11] Values of shear strength were determined in situ by CET using                                              |                                                                           |               |                         |                      |                              | class respectively unless water soluble magnesium testing is undertaken |                     |                      | 'n                                         | U                    | Undisturbed sample      |                      |                     | _ <b>G</b>           |                         |                                       |               |                         |                         |            |
| [4] BS 137                                                                                                                                                   | 1377 : Part 2 : 1990, Test No 5.3 a Pilcon hand vane or Geonor vane (GV). |               |                         |                      |                              | to prove otherwise.                                                     |                     |                      |                                            | w                    | Groundwater sample      |                      |                     | $\equiv $            |                         |                                       |               |                         |                         |            |
| [5] BS 137                                                                                                                                                   | 7 : Part 2 : 1990, Test                                                   | t No 5.4      |                         |                      | [12] BS 1377 : P             | art 3 : 1990, Test                                                      | No 4                |                      |                                            |                      |                         |                      |                     |                      | ENP                     | Essentially Non-Plastic by inspection |               |                         | E(≯-                    | {)-        |
| [6] BRE D                                                                                                                                                    | igest 240 : 1993                                                          |               |                         |                      | [13] BS 1377 : P             | art 2 : 1990, Test                                                      | No 9                |                      |                                            | * These tes          | ts are not UKAS acc     | credited             |                     |                      | U/S                     | Underside of Foundation               |               |                         |                         | ワ          |
| [7] BS 593                                                                                                                                                   | 0 : 2018 : Figure 8 - F                                                   | Plasticity Ch | hart for the classified | cation               | [14] BS 1377 : P             | art 3 : 1990, Test                                                      | No 5.6              |                      |                                            | Full reports         | can be provided upo     | on request.          |                     |                      |                         |                                       |               |                         |                         | AS         |
| of fine s                                                                                                                                                    | soils                                                                     |               |                         |                      | [15] SO <sub>4</sub> = 1.2 x | SO <sub>3</sub>                                                         |                     |                      |                                            |                      |                         |                      |                     |                      | Version:                | 5BH V1.1 -                            | 13.01.2020    | )                       | 410                     | 51         |

Construction Testing Solutions Ltd - Bootham Lane Industrial Estate, Dunscroft, Doncaster, DN7 4JU

Date Sampled: 07/05/2020

- Date Received : 12/05/2020
  - 12/05/2020

Date of Report : 19/05/2020

Date Tested :

4161

## Moisture Content Profiles

Our Ref : 719009 9 Willoughby Road Location : Work carried out for: Crawford Claims Management





Notes
1. If plotted, 0.4 LL and PL+2 ( after Driscoll, 1983 ) should only be applied to London Clay ( and similarly overconsolidated clay) at shallow depths.

2. Unless specifically noted the profiles have not been related to a site datum.

Note

1. Unless otherwise stated, values of Shear Strength were determined in situ by CET using a Pilcon Hand Vane the calibration of which is limited to a maximum reading of 140 kPa.

2. Unless specifically noted the profiles have not been related to a site datum.

**Shear Strength Profiles** 

07/05/2020 Date Sampled : Date Received : 12/05/2020 Date Tested : 12/05/2020 Date of Report : 19/05/2020

## Moisture Content Profiles

Our Ref : 719009 9 Willoughby Road Location : Work carried out for: Crawford Claims Management



# Soil Suction Profiles

07/05/2020 Date Sampled : Date Received : 12/05/2020 Date Tested : 12/05/2020 Date of Report : 19/05/2020



Notes
1. If plotted, 0.4 LL and PL+2 ( after Driscoll, 1983 ) should only be applied to London Clay ( and similarly overconsolidated clay) at shallow depths.

2. Unless specifically noted the profiles have not been related to a site datum.

### Note

When shown, the theoretical equilibrium suction profiles are based on conventional assumptions associated with London Clay (and similarly overconsolidated clays) at shallow depths. Note that the sample disturbance component is dependant on the method of sampling and any subsequent recompaction. The above plots show this to be 100kPa which is the value suggested by the BRE on the basis of their limited number of tests on recompacted samples. This may or may not be appropriate in this instance and judgement should be exercised.

|                                                                                      |                                                           | Sheet: 1 of 1                                        |                                                      |                             |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|
| EDCI                                                                                 |                                                           |                                                      | Site: 9 Willoughby Raod,                             |                             |
| EPSL                                                                                 |                                                           | Job No: <b>719009</b>                                |                                                      |                             |
| European Plant Sciel                                                                 | nce Laboratory                                            | Order No: 1555244                                    | out for: Crawford Claims MGM'                        | r sus                       |
|                                                                                      |                                                           | EDSI Dof <b>D3637</b>                                |                                                      |                             |
|                                                                                      |                                                           | EPSL Rel. <b>R303</b> /4                             |                                                      |                             |
|                                                                                      |                                                           | Certificate                                          | e of Analysis                                        |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
| The following work was correference given as to the ty<br>The results were as follow | ommissioned by CET on<br>pes of tree or shrub from<br>s - | behalf of their client. Ro<br>which they may have or | ot samples were obtained in sealed packets iginated. | from the above site with no |
| Trial pit/                                                                           | Root diameter                                             |                                                      | Tree, shrub or climber                               | <b>Result</b> of            |
| Borehole<br><u>number</u>                                                            | ( <u>mm</u> )                                             | <u>fr</u>                                            | om which root originates                             | <u>starch test</u>          |
| TP1 (USF)                                                                            | 4 mm                                                      |                                                      | Fraxinus spp.                                        | Positive                    |
|                                                                                      |                                                           |                                                      | 3 roots                                              |                             |
| BH1 (to 2m)                                                                          | 1.5 mm                                                    |                                                      | Fraxinus spp.                                        | Positive                    |
|                                                                                      |                                                           |                                                      | 2 roots                                              |                             |
| Fraxinus spp. include con                                                            | mmon ash.                                                 |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |
| MDM                                                                                  |                                                           |                                                      |                                                      |                             |
|                                                                                      |                                                           |                                                      |                                                      |                             |

Head of Laboratory Services : M D Mitchell B.Sc. (Hons), M.Phil. Plant Anatomist : Dr G S Turner B.Sc. (Hons), M.Sc., Ph.D Plant Anatomist : Dr R J Shaw B.Sc. (Hons), Ph.D Consultant: Dr M P Denne B.Sc. (Hons), M.Sc., Ph.D Registered in England. No 3256771, Registered Office:Yarmouth House, 1300 Parkway, Solent Business Park, Hampshire, PO15 7AE