

Project					Job no.	
Camden Hub Hotel, Camden High Street					8/2022	
Calcs for					Start page no./Revision	
1 in 100 Year Storm Event + 30%CC					1	
Calcs by		Calcs date 05/11/2019	Checked by	Checked date 05/11/2019	Approved by	Approved date 05/11/2019
		33,, 2010		00,,2010		00,, 2010

DESIGN RAINFALL

In accordance with the Wallingford Procedure

Tedds calculation version 2.0.01

Design rainfall intensity

Ratio 60 min to 2 day rainfall of 5 yr return period r = 0.440

5-year return period rainfall of 60 minutes duration M5_60min = **20.0** mm

Increase of rainfall intensity due to global warming $p_{climate} = 30 \%$ Factor Z1 (Wallingford procedure) Z1 = 0.65

 $Rainfall \ for \ 15min \ storm \ with \ 5 \ year \ return \ period \\ M5_15min_i = Z1 \times M5_60min \times (1 + p_{climate}) = \textbf{16.8} \ mm$

Factor Z2 (Wallingford procedure) Z2 = **2.00**

Rainfall for 15min storm with 100 year return period M100_15min = $Z2 \times M5_15min_i = 33.7$ mm Design rainfall intensity $I_{max} = M100_15min / D = 134.8$ mm/hr

Maximum surface water runoff

Catchment area $A_{catch} = 620 \text{ m}^2$ Percentage of area that is impermeable p = 100 %

Maximum surface water runoff $Q_{max} = A_{catch} \times p \times I_{max} = 23.2 \text{ l/s}$