SURFACE WATER DRAINAGE ASSESSMENT & OUTLINE SUDS STRATEGY

BASEMENT FLAT 39 PRIORY ROAD CAMDEN

LBHGEO

LBH4627suds January 2021

	Document Control							
			Darcy Kitson-Boyce MEng (Hons) GMICE FGS FRGS	Seamus Lefroy-Brooks BSc(hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC NQMS SQP DoWCoP QP RoGEP UK Registered Ground Engineering Adviser				
1.0	11 th Jan 2021							

LBHGEO Ltd.

12 Little Balmer Buckingham

MK18 1TF

Tel: 01280 308160

email: enquiry@LBHGEO.co.uk
website: www.LBHGEO.co.uk

Company registered in England No. 4922494

CONTENTS

CC	ONTENTS						
FC	REWOR	RD-GUIDANCE NOTES	Ę				
1.	INTRO	DUCTION	6				
	1.1	BACKGROUND	6				
	1.2	BRIEF	6				
	1.3	SUDS GUIDANCE	6				
	1.4	REPORT STRUCTURE	7				
2.	THE SI	те	8				
	2.1	SITE LOCATION	8				
	2.2	TOPOGRAPHICAL SETTING	8				
	2.3	GROUND CONDITIONS	ç				
	2.4	SITE DESCRIPTION	ę				
	2.5	EXISTING SURFACE WATER DRAINAGE	11				
3.	PROPO	DSED DEVELOPMENT	13				
4.	SURFA	CE WATER MANAGEMENT	15				
	4.1	SURFACE WATER MANAGEMENT (SWM) OBJECTIVES	15				
	4.2	SUDS DISCHARGE HIERACHY	15				
	4.3	FEASIBLE SUDS COMPONENTS	16				
	4.4	BENEFITS	17				
	4.4.1	WATER QUANTITY	17				
	4.4.2	WATER QUALITY	17				
	4.4.3	AMENITY	18				
	4.4.4	BIODIVERSITY	18				
5.	INITIAL	DESIGN CONSIDERATIONS	19				
	5.1	GREENFIELD RUNOFF RATE	19				
	5.2	EXISTING RUNOFF RATE	19				
6.	PROPO	OSED SURFACE WATER DRAINAGE SCHEME	20				
	6.1	MAINTENANCE	22				
7.	CONCI	USION	23				

FOREWORD-GUIDANCE NOTES

GENERAL

This report has been prepared for a specific client and to meet a specific brief. The preparation of this report may have been affected by limitations of scope, resources or time scale required by the client. Should any part of this report be relied on by a third party, that party does so wholly at its own risk and LBHGEO disclaims any liability to such parties.

The observations and conclusions described in this report are based solely upon the agreed scope of work. LBHGEO has not performed any observations, investigations, studies or testing not specifically set out in the agreed scope of work and cannot accept any liability for the existence of any condition, the discovery of which would require performance of services beyond the agreed scope of work.

VALIDITY

Any use of or reliance upon the report in circumstances other than those for which it was commissioned shall be at the client's sole risk. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should therefore not be relied upon in such altered circumstances.

THIRD PARTY INFORMATION

The report may present an opinion based upon information received from third parties. However, no liability can be accepted for any inaccuracies or omissions in that information.

1. INTRODUCTION

1.1 BACKGROUND

It is proposed to extend the basement flat of No. 39 Priory Road. This rear extension will form a new living / dining room area opening onto a basement level patio with stepped access to the elevated rear garden. In addition, a new front basement lightwell is also proposed.

1.2 BRIEF

LBHGEO have been appointed to prepare a Surface Water Drainage Assessment & Outline SuDS Strategy to support a forthcoming planning application to be submitted to the London Borough of Camden.

1.3 SUDS GUIDANCE

The government advice is that developers should seek opportunities to reduce the overall level of flood risk through the appropriate application of sustainable drainage systems.

Sustainable drainage systems are designed to control surface water run off close to where it falls and mimic natural drainage as closely as possible. They provide opportunities to:

- reduce the causes and impacts of flooding;
- remove pollutants from urban run-off at source;
- · combine water management with green space with benefits for amenity, recreation and wildlife.

The aim is to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, highway drain, or another drainage system;
- 4. to a combined sewer.

The London Borough of Camden requires drainage solutions to incorporate SuDS principles as laid out in the Non-Statutory Technical Standards¹ for Sustainable Drainage Systems and the London Plan².

For redevelopment sites where there is a net increase in impermeable area, development must include at least one 'source control' SuDS measure. Examples of potential Source Control measures include:

- blue/green roof
- rainwater harvesting
- bio-retention
- rain garden
- · permeable paving

¹ DEFRA March 2015 Non-Statutory Technical Standards (NSTS) for sustainable drainage systems

² London Plan Chapter Five - London's Responses to Climate Change Policy 5.1.3 Sustainable Drainage

Underground storage/attenuation tanks are not encouraged and are to be used only as a last resort.

The Camden Local plan provides guidance for water and flooding under Policy CC3, where the council will seek to ensure a development reduces the risk of flooding where possible and will require a development to utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible.

Additionally, the Camden Planning Guidance for Sustainability (CPG3) (July 2015, updated March 2018) states the following:

"All developments are expected to manage drainage and surface water on-site or as close to the site as possible, using Sustainable Drainage Systems (SUDS) and the hierarchy set out below.

The Council will expect plans and application documents to describe how water will be managed within the development, including an explanation of the proposed SUDS, the reasons why certain SUDS have been ruled out and detailed information on materials and landscaping.

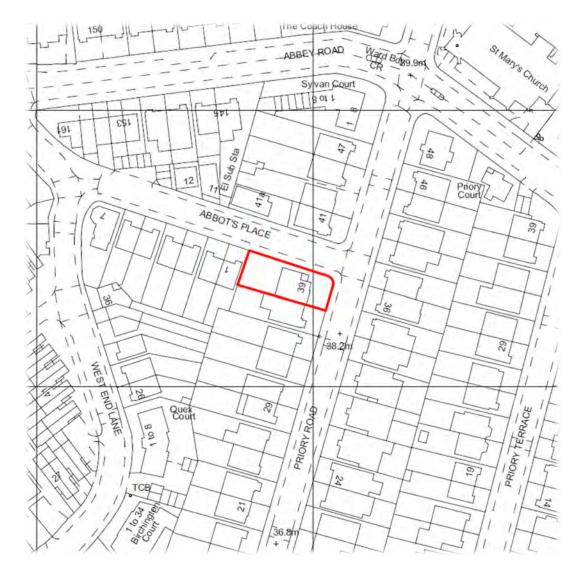
The Council will expect developments to achieve a greenfield surface water run-off rate once SUDS have been installed. As a minimum, surface water run-off rates should be reduced by 50% across the development."

1.4 REPORT STRUCTURE

This report describes the site characteristics and the proposed development, following which consideration is then given to the feasibility of different SuDS techniques for this site, in line with the SuDS hierarchy.

An analysis is then presented of surface water run-off and of the attenuation volume that will be required to achieve the required reduction in the predicted run-off rates, taking into account increased rainfall rates due to anticipated climatic change.

A SuDS strategy is then developed including information about the proposed SuDS types, with an aim to reduce the drainage discharge rates as far as can be reasonably achieved in the proposed post-development scenario.


The report is accompanied by detailed calculations and a summary sustainable drainage pro-forma.

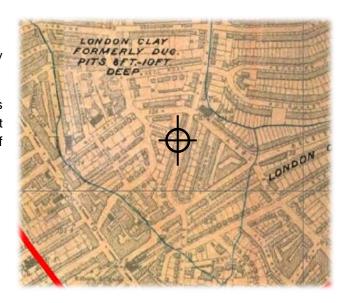
2. THE SITE

2.1 SITE LOCATION

The site is located at the junction of Priory Road and Abbot's Place in South Hampstead, within the Priory Road Conservation Area, and may be approximately located by the postcode NW6 4NN or by National Grid Reference 525585, 183920.

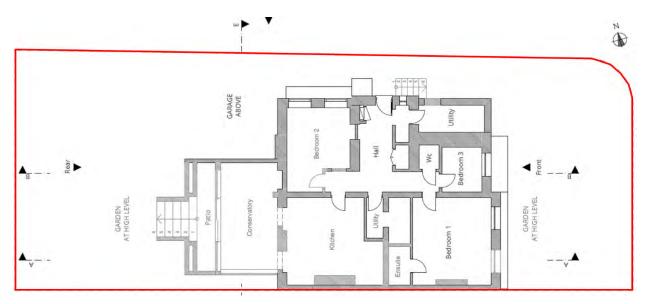
2.2 TOPOGRAPHICAL SETTING

The site lies on the lower southern slopes of Hampstead Hill on land that falls gently to the south.

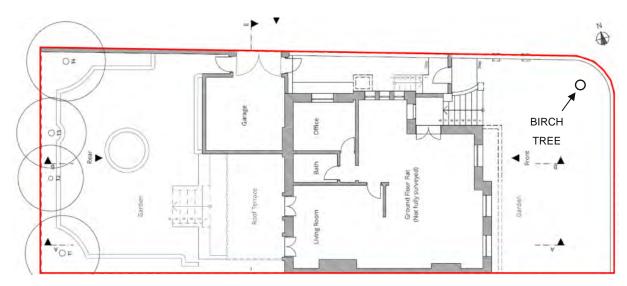

Tributaries of the River Westbourne run to the west and east of the site. At its closest, the course of the river runs some 125m to the northeast of the site.

2.3 GROUND CONDITIONS

The site is directly underlain by the London Clay Formation, which is essentially impermeable.


A site specific ground investigation was undertaken in December 2020, confirming that London Clay is present beneath a limited depth of made ground.

2.4 SITE DESCRIPTION


The site is occupied by a four storey Victorian semi-detached villa. The property comprises a side entrance from Abbot's Place as well as garden areas to the front and rear, both bordered by tall hedgerows. Both the front and rear garden areas are situated at street level.

The building is understood to be divided into four residential units, each occupying a floor level. A garage, accessible from Abbot's Place, is present at ground level, while a conservatory extension is present at basement level with stepped access up to the rear garden. This extension supports a partial roof terrace used by the ground floor flat.

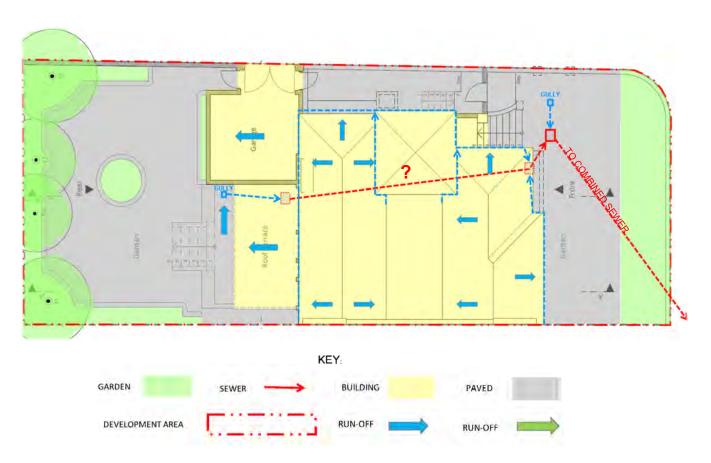
EXISTING LOWER GROUND (BASEMENT) FLOOR

EXISTING GROUND FLOOR

The majority of the rear garden area comprises a hard-surfaced patio with landscaped borders, including four mature trees (two cypress, two lime) at the far rear of the site. A fifth tree, adjacent to Abbot's Place, was recently felled.

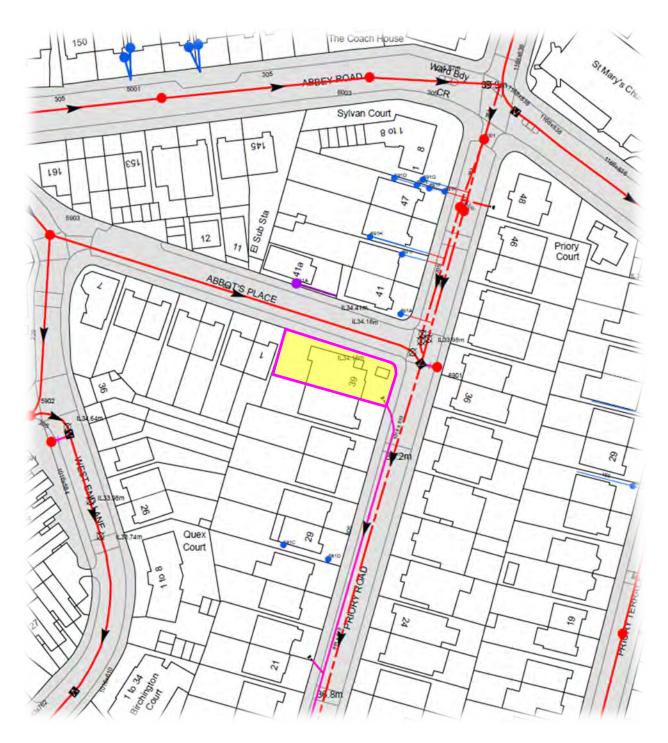
EXISTING REAR PATIO / GARDEN

2.5 EXISTING SURFACE WATER DRAINAGE

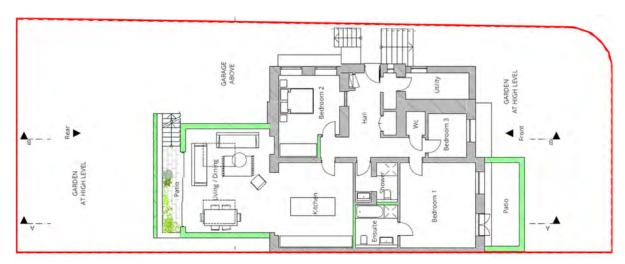

The property is mostly hard-surfaced and the surface water run-off collected on site is directed to a single manhole at the front, and then towards a 305mm diameter local combined sewer running southwards below Priory Road.

The entirety of the main building roof drains towards a manhole located in a small lightwell at the front of the property. The run-off from the rear part of the roof is routed (at roof level) around to the front and towards the same manhole.

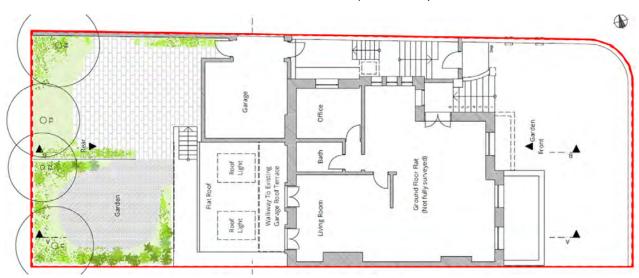
The run-off from the garage extension is directed into a planter bordering the extension to the rear.


The run-off from the existing basement conservatory and the low level rear patio is directed towards a gully, which then connects with an internal manhole located below the conservatory, before being directed towards the manhole at the front of the site via a drain below the existing building.

The hard-surfaced areas of the rear garden appear to drain towards either landscaped borders or the central planter.


THAMES WATER SEWER NETWORK

3. PROPOSED DEVELOPMENT


It is proposed to construct a new basement extension to replace the existing basement level conservatory together with a new basement level patio, which will extend further into the rear garden and provide a stepped access the garden.

At the front of the property, a new lightwell is proposed to be constructed, extending approx. 2m from the elevation and excavated to the existing basement level.

A reconfiguration of the rear garden / patio area is also proposed, including a slight net increase in the area of soft landscaping.

PROPOSED LOWER GROUND (BASEMENT) FLOOR

PROPOSED GROUND FLOOR

SCHEDULE OF ESTIMATED AREAS										
	EXISTING						PR	OPOS	ED	
		Cv	%		%	Proposed	Cv	%		%
FRONT AREAS	100sqm	0.77	23.5%			100sqm	0.77	23.5%		
BUILDING	180sqm	0.77	42.4%	%IMP	87.1%	193sqm	0.77	45.4%	%IMP	84%
REAR PATIOS	90sqm	0.77	21.2%			64sqm	0.77	15.1%		
GARDENS	55sqm	0.4	12.9%	%PER	12.9%	68sqm	0.4	16.0%	%PER	16%
TOTAL PROPERTY AREA	425sqm		100.0%		100.0%	425sqm		100.0%		100.0%

4. SURFACE WATER MANAGEMENT

4.1 SURFACE WATER MANAGEMENT (SWM) OBJECTIVES

The drainage strategy follows the guidance set out in the 2015 CIRIA C753 SuDS Manual; the principle of SuDS design is that surface water runoff is managed for maximum benefit. Biodiversity

4.2 SUDS DISCHARGE HIERACHY

The surface water runoff should be managed using the following techniques, as outlined in order of priority by the following drainage hierarchy:

SuDS Drainage Hierarchy	Suitable for the site? (Y/N)	Comment
Store rainwater for later use	Y	There is limited space for rainwater harvesting. Small water butts could be included.
Use infiltration techniques	N	The London Clay is unsuitable for soakaway infiltration.
Attenuate rainwater in ponds or open water features for gradual release	N	There is insufficient space to introduce open water garden features at this site.
Attenuate rainwater by storing in tanks or sealed water features for gradual release	Y	There is scope for attenuation storage within a cellular storage layer underlying the rear garden.
Discharge rainwater direct to a watercourse	N	There is no available watercourse.
Discharge rainwater to a surface water sewer/drain	N	There is no surface water sewer serving the site.
Discharge rainwater to the combined sewer	Y	The site discharges to the combined sewer beneath Priory Road.

The objective is to control the quantity of runoff to support the management of flood risk and maintain and protect the natural water cycle. The hierarchy seeks to ensure that surface water runoff is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site.

Before disposal of surface water to the public sewer is considered, all other options set out in the above hierarchy need to be exhausted.

4.3 FEASIBLE SUDS COMPONENTS

SUDS Component	Description	Suitable for the site? (Y/N)	Comment
Rainwater harvesting	Collection of rainwater runoff from roofs or impermeable areas for reuse.	Y	Water butts could potentially be included.
Green roofs	Vegetated areas installed on the top of buildings provide visual and ecological benefits in addition to surface water runoff reduction and enhanced building performance.	N	Although the new extension provides a flat roof area suitable for planting, this roof will replace the existing balcony terrace belonging to the ground floor flat and may not be available for planting.
Blue roofs	Roof design intended to store water providing attenuation storage.	N	The envisaged roof construction is not suitable for supporting the weight of attenuation storage.
Infiltration systems	Infiltration can contribute to reducing runoff rates and volumes while supporting base flow and groundwater recharge processes.	N	The London Clay is not suitable for infiltration.
Proprietary treatment systems	Proprietary treatment systems are manufactured products which remove specified pollutants from surface water runoff.	N	Not required.
Filter strips/drains	Filter strips are gently sloping strips of grass that provide treatment of runoff from adjacent impermeable areas. Filter drains are gravel or stone filled trenches which provide temporary subsurface storage for attenuation conveyance and filtration of surface water runoff.	N	There is insufficient space.
Swales	Swales are shallow, flat bottomed, vegetated open channels designed to convey, treat, and attenuate surface water runoff.	N	There is insufficient space.
Bioretention systems	Rain gardens or shallow landscaped depressions that may reduce surface water runoff rates and volumes and/or treat pollution using engineered soils and vegetation.	N	There is insufficient space for anything other than possibly some very small features within the rear garden.

Trees	Trees aid surface water management through transpiration, inception, infiltration and phytoremediation.	Y	There are existing trees and possibly some scope for additional planting to be introduced in the new soft landscaped areas in the rear garden.
Pervious Pavements	Pervious pavements facilitate the infiltration of surface water into a subsurface structure where filtration, adsorption, biodegradation or sedimentation may also provide treatment of the runoff.	Y	There is scope for permeable paving beneath the rear garden, in conjunction with attenuation storage beneath
Attenuation storage tanks	Attenuation storage tanks provide below-ground void space for the temporary storage of surface water before infiltration, controlled release or use.	Y	Attenuation storage tanks are feasible within the rear garden area.
Detention basins	Attenuation storage in the form of dry landscaped depressions.	N	Not possible.
Ponds and wetlands	Permanent water filled ponds or wetlands that provide attenuation storage or treatment of surface water runoff.	N	There is insufficient space.

4.4 BENEFITS

The types of benefits that may be achieved by utilising SuDS are categorised by the design objectives outlined in the following section.

4.4.1 WATER QUANTITY

The proposed changes to the rear garden provide opportunity to increase the soft landscaping cover of the site, which will in turn reduce the overall rainfall run-off.

Additionally, due to the above reworking of the rear patio of the site there is scope to reduce runoff rates and volumes through the inclusion of cellular attenuation storage. The latter can receive surface water directed from the building in addition to acting in combination with overlying pervious paving.

There may additionally be some limited opportunity to introduce rainwater harvesting.

The aim will be to achieve a minimum 50% betterment and as close to greenfield runoff rates as is possible.

4.4.2 WATER QUALITY

The water quality design objective is to manage the quality of runoff to prevent pollution, supporting the management of water quality in the receiving surface waters and groundwater and design system resilience to cope with future change.

The areas of planting and soft landscaping offer scope for filtering of the surface water.

4.4.3 AMENITY

The amenity design objective is to create and sustain better places for people by implementing the following criteria for the site:

- Maximise multi-functionality
- Enhance visual character
- Deliver safe surface water management systems
- Support development resilience/adaptability to future change
- Maximise legibility
- Support community environmental learning

The areas of planting and soft landscaping provide amenity value.

4.4.4 BIODIVERSITY

The biodiversity design objective is to create and sustain better places for nature by implementing the following criteria for the site:

- Support and protect natural local habitats and species
- Contribute to the delivery of local biodiversity objectives
- Contribute to habitat connectivity
- Create diverse, self-sustaining and resilient ecosystems.

The areas of planting and soft landscaping provide biodiversity value.

5. INITIAL DESIGN CONSIDERATIONS

An analysis has been undertaken of the pre- and post- development surface water run-off rates and volumes over a range of storm intensities and durations.

5.1 GREENFIELD RUNOFF RATE

The Greenfield runoff rates from the site have been calculated using the UK SuDS online tool and the Institute of Hydrology (IoH) 124 methodology.

Greenfield Rates:				
Qbar:	0.18 l/sec			
1 in 1	0.15 l/sec			
1 in 30	0.44 l/sec			
1 in 100	0.58 l/sec			
1 in 200	0.68 l/sec			

5.2 EXISTING RUNOFF RATE

The site comprises a total area of approximately 425m² of which approx. 88% is impermeably surfaced. A basic SuDS feature in the form of a small rain garden is present at the rear elevation of the ground floor garage.

The existing peak storm runoff for the 1% (1 in 100 year) annual probability 15 min rainfall event on the site is estimated to be 11.0 l/sec. The calculation was based on the Wallingford Procedure and the resulting runoff was calculated using the Modified Rational Method with an M5-60 of 20mm, an 'r' value of 0.42 and a critical rainfall intensity of 99.3 mm/hr.

The rainfall runoff volume for the 1% (1 in 100 year) annual probability, 6 hour duration storm from the existing site is estimated to be 25.2 m^3 .

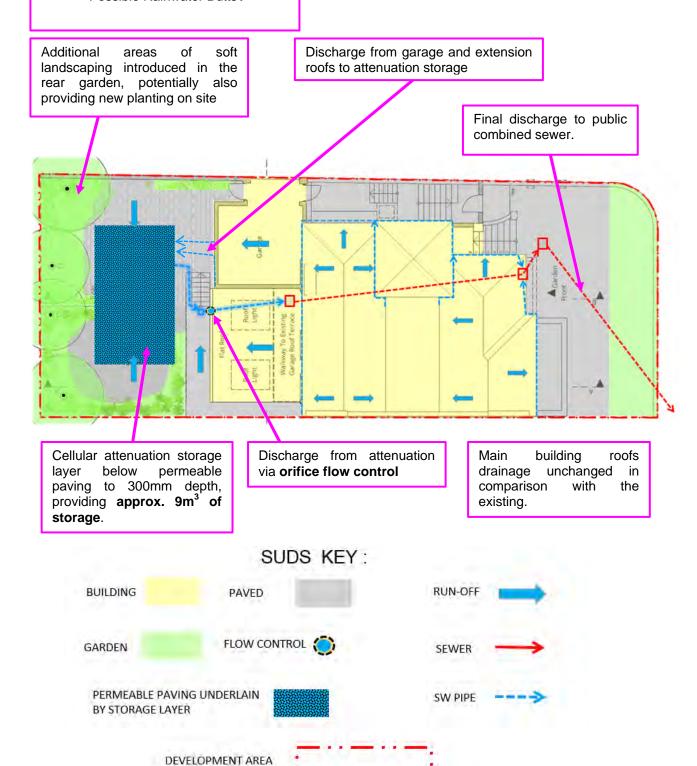
6. PROPOSED SURFACE WATER DRAINAGE SCHEME

Attenuation storage is to be provided beneath the rear garden.

In ideal SuDS circumstances the runoff from the entire site would be directed towards the proposed attenuation storage, before discharging to the combined sewer. However, in this case, it is not possible to gain access to the roof and therefore the main roof drainage arrangement cannot be reconfigured.

However, while the existing surface water drainage system for the main roof will be maintained, all rainfall incident on the proposed rear extension and the rear patio area can be attenuated.

The volume of storage to be provided can be such that it would accommodate the theoretical storage required for achieving 50% betterment of the existing discharge from the whole site, (for the 1 in 100 year rainfall event in consideration of up to 40% climate change allowance).


These calculations indicate that some 9m³ of attenuation storage should be considered and this can be provided by 300mm deep cellular storage underlying 30m² of permeable paving within the rear garden of the site.

The attenuated flow will then be directed towards the manhole at the front of the property and then on to the combined sewer beneath Priory Road.

Not shown on plan:

- Possible small rain garden features in rear garden?
- Possible Rainwater Butts?

6.1 MAINTENANCE

There is a need to introduce arrangements for on-going SuDS maintenance over the lifetime of the development.

The proposed SuDS features will require some regular inspection and maintenance to clear any accumulated sediment or debris which may reduce the storage capacity as well as to ensure the inlets and outlets are clear and do not impede the water flow.

Maintenance activities can be broadly categorised as:

- Regular maintenance consists of inspections and basic tasks carried out to a frequent schedule (more frequently than once per year) including inspections, silt, litter or debris removal and vegetation management.
- Occasional maintenance comprises tasks that are required on a much less frequent and predictable basis (e.g. annual checks)
- Remedial maintenance describes the intermittent tasks that may be required to rectify faults
 associated with the system such as inlet and outlet repairs, infiltration surface rehabilitation,
 replacement of blocked filter materials/fabrics, system rehabilitation immediately following a
 pollution event.

7. CONCLUSION

This assessment has demonstrated that the developer has sought opportunities to reduce the overall level of flood risk through the appropriate application of sustainable drainage systems.

This assessment demonstrates that there is scope for various SuDS features that can restrain run-off, in accordance with Policy CC3 of the Camden Local Plan, to mitigate the risk of future surface water flooding, taking into account potential climate change.

APPENDIX

SUSTAINABLE DRAINAGE PRO-FORMA
PRELIMINARY DRAINAGE CALCULATIONS

SuDS PROFORMA

(based upon London Sustainable Drainage proforma v2019.02)

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	39 PRIORY ROAD	
<u>s</u>	Address & post code	NW3 5HB	
tai	OS Grid ref. (Easting, Northing)	E 525585	
)et		N 183920	
	LPA reference (if applicable)		
1. Project & Site Details	Brief description of proposed work	Construction of a new rear basement extension as well as a front basement level lightwell.	
6,	Total site Area for Attenuation	425 m ²	
Д	Total existing impervious area	370 m ²	
. ⊢i	Total proposed impervious area	357 m ²	
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No	
	Existing drainage connection type and location	Combined Sewer beneath Priory Road	
	Designer Name	SRLB	
	Designer Position	Principal	
	Designer Company	LBHGEO	

SuDS PROFORMA

(based upon London Sustainable Drainage proforma v2019.02)

	2a. Infiltration Feasibility					
	Superficial geology classification	N/A				
	Bedrock geology classification		London Clay			
ıts	Site infiltration rate		1.E-09 m/s			
eL	Depth to groundwater level	No g	o groundwater table present			
Ε	Is infiltration feasible?		No			
ge	2b. Drainage Hierarchy					
ran		Feasible (Y/N)	Proposed (Y/N)			
Ā	1 store rainwater for later use	Υ	Υ			
ırge	2 use infiltration techniques, such as porous sareas	N	N			
scha	3 attenuate rainwater in ponds or open wate gradual release	r features for	N	N		
2. Proposed Discharge Arrangements	4 attenuate rainwater by storing in tanks or s features for gradual release	Υ	Υ			
Se	5 discharge rainwater direct to a watercourse	9	N	N		
odo	6 discharge rainwater to a surface water sew	N	N			
Pr	7 discharge rainwater to the combined sewel	Υ	Υ			
~i	2c. Proposed Discharge Details					
	Proposed discharge location	Combine	ed Sewer beneath Priory Road			
	Has the owner/regulator of the discharge location been consulted?	pe a reduction in the volume and rate of er entering the TW sewer				

SuDS PROFORMA

(based upon London Sustainable Drainage proforma v2019.02)

	3a. Discharge Rates & Required Storage						
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)		
	Qbar	0.18					
	1 in 1	0.15	3.52	5.22	1.76		
	1 in 30	0.44	8.59	11.42	4.30		
	1 in 100	0.58	11.02	14.98	5.51		
	1 in 100 + CC			22.64	5.51		
tegy	Climate change allow	vance used	40%				
Strat	3b. Principal Method	of Flow Control	Orifice				
e ,	3c. Proposed SuDS M	1easures					
3. Drainage Strategy			Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)		
Га	Rainwater harvesting	5	0		0		
	Infiltration systems		0		0		
3.	Green roofs		0	0	0		
	Blue roofs		0	0	0		
	Filter strips		0	0	0		
	Filter drains		0	0	0		
	Bioretention / tree p	its	0	0	0		
	Pervious pavements		120	30	9		
	Swales		0	0	0		
	Basins/ponds		0	0	0		
	Attenuation tanks		0		0		
	Total		120	30	9		

(based upon London Sustainable Drainage proforma v2019.02)

	4a. Discharge & Drainage Strategy	Page/section of drainage report		
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Appendix to the SuDS Assessment		
	Drainage hierarchy (2b)	Section 4		
4. Supporting Information	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Discharge is to be via existing manhole and existing sewer connection - there will be no new connection and a reduction in the volume and rate of water entering the TW sewer		
Infor	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Appendix to the SuDS Assessment		
ing	Proposed SuDS measures & specifications (3b)	Section 6		
T T	4b. Other Supporting Details	Page/section of drainage report		
ď	Detailed Development Layout	P12		
4. Sup	Detailed drainage design drawings, including exceedance flow routes	P21		
•	Detailed landscaping plans	P12		
	Maintenance strategy	Section 4.6		
	Demonstration of how the proposed SuDS measures improve:	SuDS Assessment report		
	a) water quality of the runoff?			
	b) biodiversity?	Section 4.4		
	c) amenity?			

GREENFIELD RUNOFF

Catchment Area: 425sqm 0.043ha

PO Code: NW3 5HB

Hydrological

Region: 6 From Wallingford on-line tool

SAAR: 650mm From Wallingford on-line tool

SOIL type: 4 From Wallingford on-line tool

Clayey Sand Sandy Clay Clay Rock Sand SOIL SPR: 0.47 Derived as follows: 1 2 3 5 0.3 0.37 SPR 0.1 0.47 0.53

From Wallingford on-line tool using IH 124 Method

Qbar: 213.4 Calculated from SPR and SAAR

Greenfield Peak

 Run-off Rate:
 Growth curve Factor

 1 in 1
 181.4 l/sec
 0.85

 1 in 30
 512.2 l/sec
 2.40

 1 in 100
 680.7 l/sec
 3.19

 1 in 200
 798.1 l/sec
 3.74

Qbar: 0.18 l/sec Greenfield

Peak Run-off Rate:

1 in 1 0.15 l/sec 1 in 30 0.44 l/sec 1 in 100 0.58 l/sec

1 in 200 0.68 l/sec

National Non-Statutory Guidance:

For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

SuDs CALCULATIONS				
Project: 39 PRIORY ROAD				
GREENFIELD F	RUNOFF			
Sheet 1 of 8				
Project Reference: LBH 4627				
Date: 23/12/2020	Rev: 1			
Client: Alfredo	Michelucci			

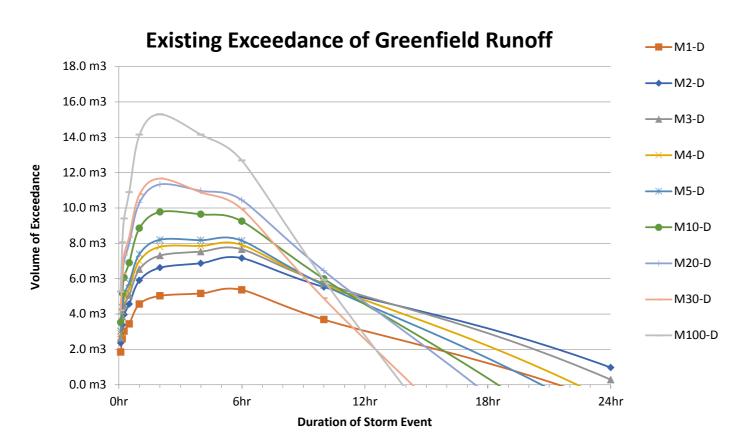
RAINFALL PEAK INTENSITY (i)

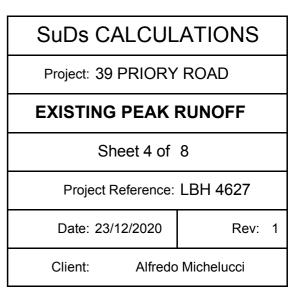
								D Dui	ration	Z 1	M5-D
								5min	5min	0.38	7.6mm
	M5-60 :	20		From Wallings	ford Fia A1			10min	10min	0.55	11.0mm
	r:	0.42		From Wallings	_			15min	15min	0.65	13.0mm
		•••-			5. a			30min	30min	0.75	15.0mm
								1hr	60min	1.00	20.0mm
								2hr	120min	1.20	24.0mm
								4hr	240min	1.40	28.0mm
								6hr	360min	1.60	32.0mm
								10hr	600min	1.70	34.0mm
								24hr	1440min	2.20	44.0mm
								48hr	2880min	2.50	50.0mm
							Z 2				
	ıration	M5-D	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	7.6mm	0.62	0.79	0.89	0.97	1.02	1.19	1.36	1.43	1.79
10min	10min	11.0mm	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.49	1.91
15min	15min	13.0mm	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.49	1.91
30min	30min	15.0mm	0.62	0.81	0.90	0.97	1.03	1.24	1.44	1.53	1.99
1hr	60min	20.0mm	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.54	2.03
2hr	120min	24.0mm	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.54	2.03
4hr	240min	28.0mm	0.66	0.82	0.91	0.97	1.03	1.24	1.44	1.53	2.01
6hr	360min	32.0mm	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.51	1.97
10hr	600min	34.0mm	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.51	1.97
24hr	1440min	44.0mm	0.70	0.84	0.92	0.97	1.02	1.19	1.38	1.47	1.89
48hr	2880min	50.0mm	0.72	0.85	0.93	0.98	1.02	1.17	1.34	1.42	1.81
							MT-D				
ים מ	ıration	M5-D	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	7.6mm	4.7mm	6.0mm	6.8mm	7.4mm	7.8mm	9.0mm	10.3mm	10.8mm	13.6mm
10min	10min	11.0mm	6.7mm	8.7mm	9.9mm	10.7mm	11.3mm	13.4mm	15.5mm	16.4mm	21.0mm
15min	15min	13.0mm	7.9mm	10.3mm	11.7mm	12.6mm	13.4mm	15.9mm	18.3mm	19.4mm	24.8mm
30min	30min	15.0mm	9.3mm	12.2mm	13.5mm	14.6mm	15.5mm	18.6mm	21.6mm	22.9mm	29.9mm
1hr	60min	20.0mm	12.8mm	16.2mm	18.0mm	19.4mm	20.6mm	24.8mm	29.0mm	30.9mm	40.6mm
2hr	120min	24.0mm	15.4mm	19.4mm	21.6mm	23.3mm	24.7mm	29.8mm	34.8mm	37.0mm	48.7mm
4hr	240min	28.0mm	18.5mm	23.0mm	25.5mm	27.2mm	28.8mm	34.7mm	40.3mm	42.9mm	56.3mm
6hr	360min	32.0mm	21.8mm	26.6mm	29.1mm	31.0mm	33.0mm	39.0mm	45.4mm	48.4mm	63.0mm
10hr	600min	34.0mm	23.1mm	28.2mm	30.9mm	33.0mm	35.0mm	41.5mm	48.3mm	51.5mm	67.0mm
24hr	1440min	44.0mm	30.8mm	37.0mm	40.5mm	42.7mm	44.9mm	52.4mm	60.7mm	64.5mm	83.2mm
48hr	2880min	50.0mm	36.0mm	42.5mm	46.5mm	49.0mm	51.0mm	58.5mm	67.0mm	71.0mm	90.5mm
-											
							Intensity i				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	56.5mm/hr	72.0mm/hr	81.2mm/hr	88.5mm/hr	93.0mm/hr	108.5mm/hr	124.0mm/hr	130.1mm/hr	163.2mm/hr
10min	10min	0.17hr	40.3mm/hr	52.1mm/hr	59.4mm/hr	64.0mm/hr	68.0mm/hr	80.5mm/hr	93.1mm/hr	98.3mm/hr	126.1mm/hr
15min	15min	0.25hr	31.7mm/hr	41.1mm/hr	46.8mm/hr	50.4mm/hr	53.6mm/hr	63.4mm/hr	73.3mm/hr	77.5mm/hr	99.3mm/hr
30min	30min	0.50hr	18.6mm/hr	24.3mm/hr	27.0mm/hr	29.1mm/hr	30.9mm/hr	37.2mm/hr	43.2mm/hr	45.8mm/hr	59.7mm/hr
1hr	60min	1.00hr	12.8mm/hr	16.2mm/hr	18.0mm/hr	19.4mm/hr	20.6mm/hr	24.8mm/hr	29.0mm/hr	30.9mm/hr	40.6mm/hr
2hr	120min	2.00hr	7.7mm/hr	9.7mm/hr	10.8mm/hr	11.6mm/hr	12.4mm/hr	14.9mm/hr	17.4mm/hr	18.5mm/hr	24.4mm/hr
4hr	240min	4.00hr	4.6mm/hr	5.7mm/hr	6.4mm/hr	6.8mm/hr	7.2mm/hr	8.7mm/hr	10.1mm/hr	10.7mm/hr	14.1mm/hr
6hr	360min	6.00hr	3.6mm/hr	4.4mm/hr	4.9mm/hr	5.2mm/hr	5.5mm/hr	6.5mm/hr	7.6mm/hr	8.1mm/hr	10.5mm/hr
10hr	600min	10.00hr	2.3mm/hr	2.8mm/hr	3.1mm/hr	3.3mm/hr	3.5mm/hr	4.1mm/hr	4.8mm/hr	5.1mm/hr	6.7mm/hr
24hr	1440min	24.00hr	1.3mm/hr	1.5mm/hr	1.7mm/hr	1.8mm/hr	1.9mm/hr	2.2mm/hr	2.5mm/hr	2.7mm/hr	3.5mm/hr
48hr	2880min	48.00hr	0.6mm/hr	0.8mm/hr	0.8mm/hr	0.9mm/hr	0.9mm/hr	1.1mm/hr	1.3mm/hr	1.3mm/hr	1.7mm/hr
48hr	2880min	48.00hr	0.8mm/hr	0.9mm/hr	1.0mm/hr	1.0mm/hr	1.1mm/hr	1.2mm/hr	1.4mm/hr	1.5mm/hr	1.9mm/hr

SuDs CALCULATIONS										
Project: 39 PRIORY ROAD										
RAINFALL PEAK INTENSITY										
Sheet 2 of 8										
Project Reference: LBH 4627										
Date: 23/12/2020 Rev:										
Client: Alfredo Michelucci										

GREENFIELD PEAK RUNOFF

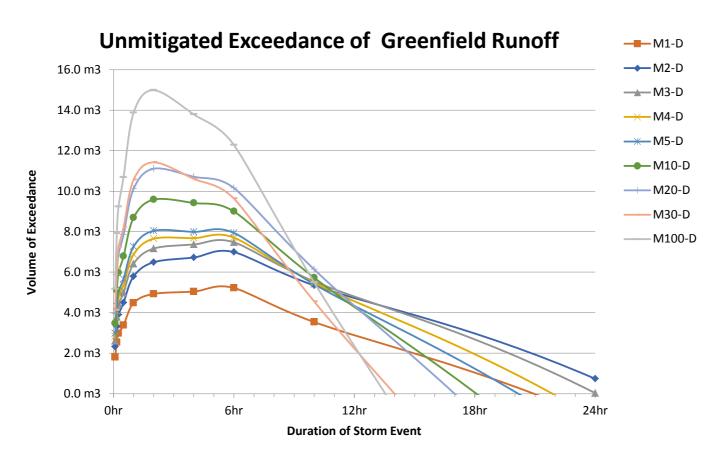
	Hydrological Region:	6		From Wallings	ford on-line too	I	Qbar:	0.18 l/sec						
							Run-Off Q							
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D			
5min	5min	0.08hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
10min	10min	0.17hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
15min	15min	0.25hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
30min	30min	0.50hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
1hr	60min	1.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
2hr	120min	2.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
4hr	240min	4.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
6hr	360min	6.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
10hr	600min	10.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
24hr	1440min	24.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
48hr	2880min	48.00hr	0.15 l/sec	0.16 l/sec	0.18 l/sec	0.21 l/sec	0.23 l/sec	0.29 l/sec	0.36 l/sec	0.44 l/sec	0.58 l/sec			
			Run-Off Volume											
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D			
5min	5min	0.08hr	0.0 m3	0.0 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.2 m3			
10min	10min	0.17hr	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.2 m3	0.2 m3	0.3 m3	0.3 m3			
15min	15min	0.25hr	0.1 m3	0.1 m3	0.2 m3	0.2 m3	0.2 m3	0.3 m3	0.3 m3	0.4 m3	0.5 m3			
30min	30min	0.50hr	0.3 m3	0.3 m3	0.3 m3	0.4 m3	0.4 m3	0.5 m3	0.6 m3	0.8 m3	1.0 m3			
1hr	60min	1.00hr	0.6 m3	0.6 m3	0.7 m3	0.7 m3	0.8 m3	1.1 m3	1.3 m3	1.6 m3	2.1 m3			
2hr	120min	2.00hr	1.1 m3	1.1 m3	1.3 m3	1.5 m3	1.7 m3	2.1 m3	2.6 m3	3.1 m3	4.2 m3			
4hr	240min	4.00hr	2.2 m3	2.3 m3	2.6 m3	3.0 m3	3.3 m3	4.2 m3	5.1 m3	6.3 m3	8.3 m3			
6hr	360min	6.00hr	3.3 m3	3.4 m3	4.0 m3	4.5 m3	5.0 m3	6.3 m3	7.7 m3	9.4 m3	12.5 m3			
10hr	600min	10.00hr	5.6 m3	5.7 m3	6.6 m3	7.5 m3	8.4 m3	10.6 m3	12.8 m3	15.7 m3	20.8 m3			
24hr	1440min	24.00hr	13.3 m3	13.8 m3	15.9 m3	18.0 m3	20.1 m3	25.4 m3	30.8 m3	37.6 m3	50.0 m3			
48hr	2880min	48.00hr	26.6 m3	27.6 m3	31.8 m3	35.9 m3	40.1 m3	50.8 m3	61.6 m3	75.2 m3	100.0 m3			

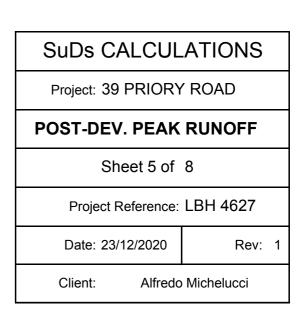

SuDs CALCUL	ATIONS							
Project: 39 PRIORY ROAD								
GREENFIELD PEAR	K RUNOFF							
Sheet 3 of 8								
Project Reference:	LBH 4627							
Date: 23/12/2020	Rev: 1							
Client: Alfredo	Michelucci							



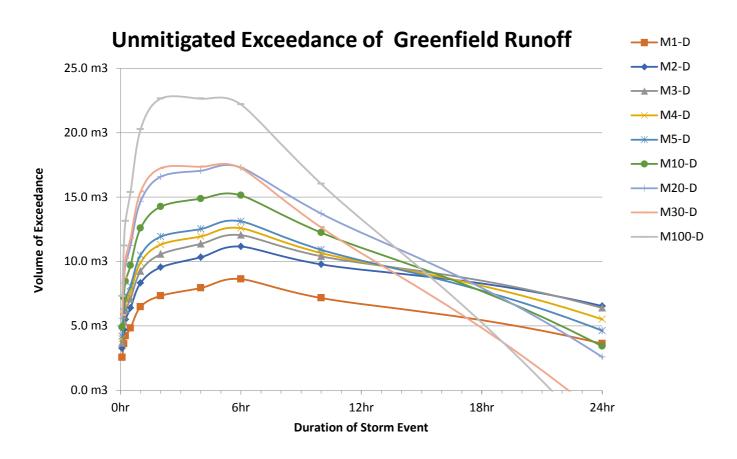
EXISTING PEAK RUNOFF

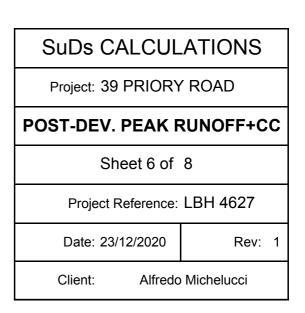
C _v :	0.72	Volumetric Run-Off Coefficient
C _R :	1.3	Routing Coefficient


							Run-Off Q				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	6.3 l/sec	8.0 l/sec	9.0 l/sec	9.8 l/sec	10.3 l/sec	12.0 l/sec	13.8 l/sec	14.4 l/sec	18.1 l/sec
10min	10min	0.17hr	4.5 l/sec	5.8 l/sec	6.6 l/sec	7.1 l/sec	7.5 l/sec	8.9 l/sec	10.3 l/sec	10.9 l/sec	14.0 l/sec
15min	15min	0.25hr	3.5 l/sec	4.6 l/sec	5.2 l/sec	5.6 l/sec	5.9 l/sec	7.0 l/sec	8.1 l/sec	8.6 l/sec	11.0 l/sec
30min	30min	0.50hr	2.1 l/sec	2.7 l/sec	3.0 l/sec	3.2 l/sec	3.4 l/sec	4.1 l/sec	4.8 l/sec	5.1 l/sec	6.6 l/sec
1hr	60min	1.00hr	1.4 l/sec	1.8 l/sec	2.0 l/sec	2.2 l/sec	2.3 l/sec	2.8 l/sec	3.2 l/sec	3.4 l/sec	4.5 l/sec
2hr	120min	2.00hr	0.9 l/sec	1.1 l/sec	1.2 l/sec	1.3 l/sec	1.4 l/sec	1.7 l/sec	1.9 l/sec	2.1 l/sec	2.7 l/sec
4hr	240min	4.00hr	0.5 l/sec	0.6 l/sec	0.7 l/sec	0.8 l/sec	0.8 l/sec	1.0 l/sec	1.1 l/sec	1.2 l/sec	1.6 l/sec
6hr	360min	6.00hr	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.6 l/sec	0.6 l/sec	0.7 l/sec	0.8 l/sec	0.9 l/sec	1.2 l/sec
10hr	600min	10.00hr	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.6 l/sec	0.7 l/sec
24hr	1440min	24.00hr	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec
48hr	2880min	48.00hr	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec
						R	Run-Off Volum	ıe			
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	1.9 m3	2.4 m3	2.7 m3	2.9 m3	3.1 m3	3.6 m3	4.1 m3	4.3 m3	5.4 m3
10min	10min	0.17hr	2.7 m3	3.5 m3	4.0 m3	4.3 m3	4.5 m3	5.4 m3	6.2 m3	6.5 m3	8.4 m3
15min	15min	0.25hr	3.2 m3	4.1 m3	4.7 m3	5.0 m3	5.3 m3	6.3 m3	7.3 m3	7.7 m3	9.9 m3
30min	30min	0.50hr	3.7 m3	4.9 m3	5.4 m3	5.8 m3	6.2 m3	7.4 m3	8.6 m3	9.1 m3	11.9 m3
1hr	60min	1.00hr	5.1 m3	6.5 m3	7.2 m3	7.7 m3	8.2 m3	9.9 m3	11.6 m3	12.3 m3	16.2 m3
2hr	120min	2.00hr	6.1 m3	7.8 m3	8.6 m3	9.3 m3	9.9 m3	11.9 m3	13.9 m3	14.8 m3	19.5 m3
4hr	240min	4.00hr	7.4 m3	9.2 m3	10.2 m3	10.8 m3	11.5 m3	13.9 m3	16.1 m3	17.1 m3	22.5 m3
6hr	360min	6.00hr	8.7 m3	10.6 m3	11.6 m3	12.4 m3	13.2 m3	15.6 m3	18.1 m3	19.3 m3	25.2 m3
10hr	600min	10.00hr	9.2 m3	11.3 m3	12.4 m3	13.2 m3	14.0 m3	16.6 m3	19.3 m3	20.5 m3	26.7 m3
24hr	1440min	24.00hr	12.3 m3	14.8 m3	16.2 m3	17.0 m3	17.9 m3	20.9 m3	24.2 m3	25.8 m3	33.2 m3
48hr	2880min	48.00hr	14.4 m3	17.0 m3	18.6 m3	19.6 m3	20.4 m3	23.4 m3	26.8 m3	28.3 m3	36.1 m3
					E	xceedance o	f Greenfield R	un-Off Volum	10		
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	1.8 m3	2.3 m3	2.6 m3	2.9 m3	3.0 m3	3.5 m3	4.0 m3	4.2 m3	5.3 m3
10min	10min	0.17hr	2.6 m3	3.4 m3	3.8 m3	4.1 m3	4.4 m3	5.2 m3	6.0 m3	6.3 m3	8.0 m3
15min	15min	0.25hr	3.0 m3	4.0 m3	4.5 m3	4.8 m3	5.1 m3	6.1 m3	7.0 m3	7.3 m3	9.4 m3
30min	30min	0.50hr	3.4 m3	4.6 m3	5.1 m3	5.4 m3	5.8 m3	6.9 m3	8.0 m3	8.4 m3	10.9 m3
1hr	60min	1.00hr	4.6 m3	5.9 m3	6.5 m3	7.0 m3	7.4 m3	8.8 m3	10.3 m3	10.8 m3	14.1 m3
2hr	120min	2.00hr	5.0 m3	6.6 m3	7.3 m3	7.8 m3	8.2 m3	9.8 m3	11.3 m3	11.7 m3	15.3 m3
4hr	240min	4.00hr	5.2 m3	6.9 m3	7.5 m3	7.8 m3	8.2 m3	9.6 m3	11.0 m3	10.9 m3	14.1 m3
6hr	360min	6.00hr	5.4 m3	7.2 m3	7.7 m3	7.9 m3	8.1 m3	9.2 m3	10.4 m3	9.9 m3	12.7 m3
10hr	600min	10.00hr	3.7 m3	5.5 m3	5.7 m3	5.7 m3	5.6 m3	6.0 m3	6.4 m3	4.9 m3	5.9 m3
24hr	1440min	24.00hr	-1.0 m3	1.0 m3	0.3 m3	-0.9 m3	-2.1 m3	-4.5 m3	-6.6 m3	-11.8 m3	-16.8 m3
48hr	2880min	48.00hr	-12.3 m3	-10.6 m3	-13.2 m3	-16.4 m3	-19.8 m3	-27.4 m3	-34.9 m3	-46.9 m3	-63.9 m3
				C _v :							
	Catchment Area:	425sqm	100%								
	Permeable:	55sqm	13%	0.40							
	Impermeable:	370sqm	87%	0.77							
				0.72							



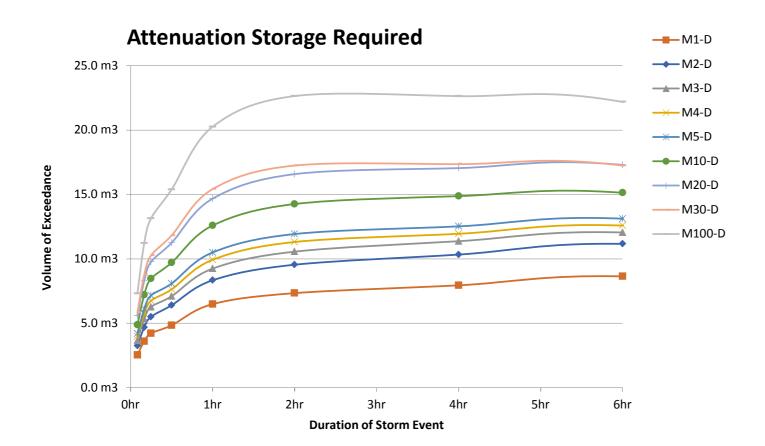
POST- DEVELOPMENT PEAK RUNOFF

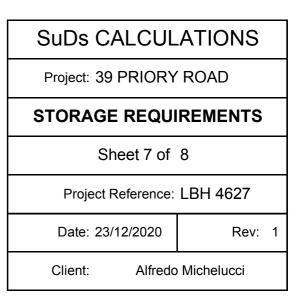

	C _V : C _R :	0.71 1.3		Volumetric Ru Routing Coeff	ın-Off Coefficier Ticient	nt CI	imate Change	e Allowance:	0%		
							Run-Off Q				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	6.2 l/sec	7.9 l/sec	8.9 l/sec	9.7 l/sec	10.2 l/sec	11.8 l/sec	13.5 l/sec	14.2 l/sec	17.8 l/sec
10min	10min	0.17hr	4.4 l/sec	5.7 l/sec	6.5 l/sec	7.0 l/sec	7.4 l/sec	8.8 l/sec	10.2 l/sec	10.7 l/sec	13.8 l/sec
15min	15min	0.25hr	3.5 l/sec	4.5 l/sec	5.1 l/sec	5.5 l/sec	5.8 l/sec	6.9 l/sec	8.0 l/sec	8.5 l/sec	10.8 l/sec
30min	30min	0.50hr	2.0 l/sec	2.7 l/sec	2.9 l/sec	3.2 l/sec	3.4 l/sec	4.1 l/sec	4.7 l/sec	5.0 l/sec	6.5 l/sec
1hr	60min	1.00hr	1.4 l/sec	1.8 l/sec	2.0 l/sec	2.1 l/sec	2.2 l/sec	2.7 l/sec	3.2 l/sec	3.4 l/sec	4.4 l/sec
2hr	120min	2.00hr	0.8 l/sec	1.1 l/sec	1.2 l/sec	1.3 l/sec	1.3 l/sec	1.6 l/sec	1.9 l/sec	2.0 l/sec	2.7 l/sec
4hr	240min	4.00hr	0.5 l/sec	0.6 l/sec	0.7 l/sec	0.7 l/sec	0.8 l/sec	0.9 l/sec	1.1 l/sec	1.2 l/sec	1.5 l/sec
6hr	360min	6.00hr	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.6 l/sec	0.6 l/sec	0.7 l/sec	0.8 l/sec	0.9 l/sec	1.1 l/sec
10hr	600min	10.00hr	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.6 l/sec	0.7 l/sec
24hr	1440min	24.00hr	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec
48hr	2880min	48.00hr	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec
						_	0607				
	D Duration		M1-D	M2-D	M2 D		Run-Off Volum		Mao D	M20 D	M400 D
Emin	D Duration 5min	0.08hr	ט-רואו 1.9 m3	2.4 m3	M3-D 2.7 m3	M4-D 2.9 m3	M5-D 3.0 m3	M10-D 3.6 m3	M20-D 4.1 m3	M30-D 4.3 m3	M100-D 5.3 m3
5min 10min	10min	0.08111 0.17hr	2.6 m3	2.4 m3	3.9 m3	4.2 m3	4.5 m3	5.0 m3	6.1 m3	6.4 m3	8.3 m3
15min	15min	0.17111 0.25hr	3.1 m3	4.0 m3	4.6 m3	5.0 m3	5.3 m3	6.2 m3	7.2 m3	7.6 m3	9.8 m3
30min	30min	0.25m 0.50hr	3.7 m3	4.0 m3	4.0 m3	5.0 m3	6.1 m3	7.3 m3	8.5 m3	9.0 m3	9.6 ms 11.7 m3
1hr	60min	1.00hr	5.0 m3	6.4 m3	7.1 m3	7.6 m3	8.1 m3	9.7 m3	11.4 m3	12.1 m3	16.0 m3
2hr	120min	2.00hr	6.0 m3	7.6 m3	8.5 m3	9.1 m3	9.7 m3	9.7 ms 11.7 m3	13.7 m3	14.6 m3	19.1 m3
4hr	240min	4.00hr	7.3 m3	9.0 m3	10.0 m3	10.7 m3	11.3 m3	13.6 m3	15.7 m3	16.9 m3	22.1 m3
6hr	360min	6.00hr	8.6 m3	10.4 m3	11.4 m3	12.2 m3	13.0 m3	15.3 m3	17.9 m3	19.0 m3	24.8 m3
10hr	600min	10.00hr	9.1 m3	11.1 m3	12.2 m3	13.0 m3	13.8 m3	16.3 m3	19.0 m3	20.2 m3	26.3 m3
24hr	1440min	24.00hr	12.1 m3	14.5 m3	15.9 m3	16.8 m3	17.6 m3	20.6 m3	23.9 m3	25.4 m3	32.7 m3
48hr	2880min	48.00hr	14.1 m3	16.7 m3	18.3 m3	19.3 m3	20.0 m3	23.0 m3	26.3 m3	27.9 m3	35.6 m3
				140 D			Greenfield R			1400 D	14400 D
	D Duration	0.001	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	1.8 m3	2.3 m3	2.6 m3	2.8 m3	3.0 m3	3.5 m3	4.0 m3	4.1 m3	5.2 m3
10min	10min	0.17hr	2.5 m3	3.3 m3	3.8 m3	4.1 m3	4.3 m3	5.1 m3	5.9 m3	6.2 m3	7.9 m3
15min	15min	0.25hr	3.0 m3	3.9 m3	4.4 m3	4.8 m3	5.1 m3	6.0 m3	6.9 m3	7.2 m3	9.2 m3
30min	30min	0.50hr	3.4 m3	4.5 m3	5.0 m3	5.3 m3	5.7 m3	6.8 m3	7.8 m3	8.2 m3	10.7 m3
1hr 2hr	60min 120min	1.00hr 2.00hr	4.5 m3 4.9 m3	5.8 m3 6.5 m3	6.4 m3 7.2 m3	6.9 m3 7.7 m3	7.3 m3 8.0 m3	8.7 m3 9.6 m3	10.1 m3 11.1 m3	10.6 m3 11.4 m3	13.9 m3 15.0 m3
4hr	240min	4.00hr	5.0 m3	6.7 m3	7.2 m3 7.4 m3	7.7 m3	8.0 m3	9.4 m3	10.7 m3	10.6 m3	13.8 m3
6hr	360min	4.00m 6.00hr	5.0 m3	7.0 m3	7.4 m3 7.5 m3	7.7 m3	7.9 m3	9.4 m3 9.0 m3	10.7 m3	9.6 m3	12.3 m3
10hr	600min	10.00hr	3.5 m3	5.3 m3	5.5 m3	5.5 m3	5.4 m3	5.7 m3	6.1 m3	4.6 m3	5.5 m3
24hr	1440min	24.00hr	-1.2 m3	0.7 m3	0.0 m3	-1.2 m3	-2.4 m3	-4.8 m3	-7.0 m3	-12.2 m3	-17.3 m3
48hr	2880min	48.00hr	-12.5 m3	-10.9 m3	-13.5 m3	-16.7 m3	-20.1 m3	-27.8 m3	-35.3 m3	-47.3 m3	-64.4 m3
10111	2000111111	10.00111	5.2 m3	10.0 1110	10.0 1110	10.7 1110	20.11110	27.01110	00.0 1110	11.4 m3	15.0 m3
				C _v :							
С	atchment Area:	425sqm	100%	·							
Pern	neable Garden	68sqm	16%	0.40							
	lasar a 12	0.57	0.407	0.77							
	Impermeable:	357sqm	84%	0.77							
				0.71							



POST- DEVELOPMENT PEAK RUNOFF + CC

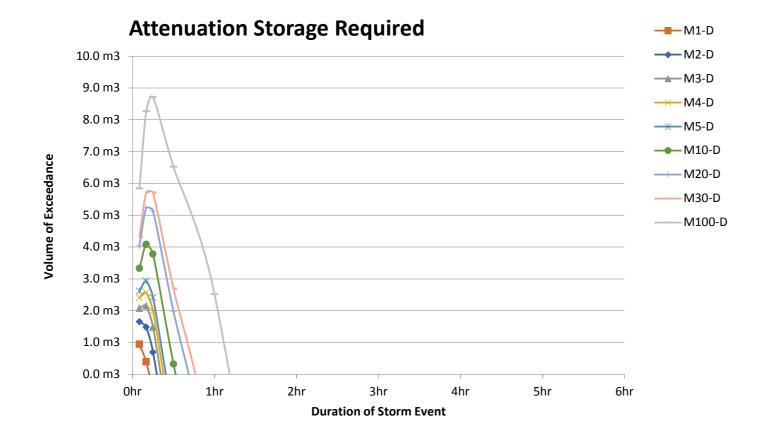
	C _V : C _R :	0.71 1.3		Volumetric Ru Routing Coeff	ın-Off Coefficio ficient	ent Cli	imate Change	e Allowance:	40%		
							Run-Off Q				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	8.6 l/sec	11.0 l/sec	12.4 l/sec	13.5 l/sec	14.2 l/sec	16.6 l/sec	19.0 l/sec	19.9 l/sec	25.0 l/sec
10min	10min	0.17hr	6.2 l/sec	8.0 l/sec	9.1 l/sec	9.8 l/sec	10.4 l/sec	12.3 l/sec	14.2 l/sec	15.0 l/sec	19.3 l/sec
15min	15min	0.25hr	4.8 l/sec	6.3 l/sec	7.2 l/sec	7.7 l/sec	8.2 l/sec	9.7 l/sec	11.2 l/sec	11.8 l/sec	15.2 l/sec
30min	30min	0.50hr	2.8 l/sec	3.7 l/sec	4.1 l/sec	4.4 l/sec	4.7 l/sec	5.7 l/sec	6.6 l/sec	7.0 l/sec	9.1 l/sec
1hr	60min	1.00hr	2.0 l/sec	2.5 l/sec	2.8 l/sec	3.0 l/sec	3.1 l/sec	3.8 l/sec	4.4 l/sec	4.7 l/sec	6.2 l/sec
2hr	120min	2.00hr	1.2 l/sec	1.5 l/sec	1.7 l/sec	1.8 l/sec	1.9 l/sec	2.3 l/sec	2.7 l/sec	2.8 l/sec	3.7 l/sec
4hr	240min	4.00hr	0.7 l/sec	0.9 l/sec	1.0 l/sec	1.0 l/sec	1.1 l/sec	1.3 l/sec	1.5 l/sec	1.6 l/sec	2.2 l/sec
6hr	360min	6.00hr	0.6 l/sec	0.7 l/sec	0.7 l/sec	0.8 l/sec	0.8 l/sec	1.0 l/sec	1.2 l/sec	1.2 l/sec	1.6 l/sec
10hr	600min	10.00hr	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.5 l/sec	0.6 l/sec	0.7 l/sec	0.8 l/sec	1.0 l/sec
24hr	1440min	24.00hr	0.2 l/sec	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec
48hr	2880min	48.00hr	0.1 l/sec	0.1 l/sec	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.3 l/sec
					140 D		un-Off Volum			1400 D	14400 B
	D Duration	0.001	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	2.6 m3	3.3 m3	3.7 m3	4.1 m3	4.3 m3	5.0 m3	5.7 m3	6.0 m3	7.5 m3
10min	10min	0.17hr	3.7 m3	4.8 m3	5.4 m3	5.9 m3	6.2 m3	7.4 m3	8.5 m3	9.0 m3	11.6 m3
15min	15min	0.25hr	4.4 m3	5.7 m3	6.4 m3	6.9 m3	7.4 m3	8.7 m3	10.1 m3	10.7 m3	13.7 m3
30min	30min	0.50hr	5.1 m3	6.7 m3	7.4 m3	8.0 m3	8.5 m3	10.2 m3	11.9 m3	12.6 m3	16.4 m3
1hr	60min	1.00hr	7.0 m3	8.9 m3	9.9 m3	10.7 m3	11.3 m3	13.6 m3	16.0 m3	17.0 m3	22.3 m3
2hr	120min	2.00hr	8.5 m3	10.7 m3	11.9 m3	12.8 m3	13.6 m3	16.4 m3 19.1 m3	19.1 m3	20.4 m3	26.8 m3
4hr 6hr	240min 360min	4.00hr 6.00hr	10.2 m3 12.0 m3	12.6 m3 14.6 m3	14.0 m3 16.0 m3	14.9 m3 17.1 m3	15.9 m3 18.1 m3		22.2 m3 25.0 m3	23.6 m3 26.6 m3	31.0 m3 34.7 m3
10hr	600min	10.00hr	12.0 m3	14.6 m3	17.0 m3	17.1 m3 18.1 m3	19.3 m3	21.5 m3 22.8 m3	26.6 m3	28.3 m3	34.7 ms 36.9 m3
24hr	1440min	24.00hr	16.9 m3	20.3 m3	22.3 m3	23.5 m3	24.7 m3	28.8 m3	33.4 m3	35.5 m3	45.8 m3
48hr	2880min	48.00hr	19.8 m3	23.4 m3	25.6 m3	27.0 m3	28.1 m3	32.2 m3	36.9 m3	39.1 m3	49.8 m3
10111	200011111	10.00111	10.0 1110	20.11110	20.0 1110	27.01110	20.11110	02.2 1110	00.0 1110	00.11110	10.0 1110
					E	xceedance of	Greenfield R	Run-Off Volum	e		
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	2.5 m3	3.3 m3	3.7 m3	4.0 m3	4.2 m3	4.9 m3	5.6 m3	5.8 m3	7.3 m3
10min	10min	0.17hr	3.6 m3	4.7 m3	5.3 m3	5.7 m3	6.1 m3	7.2 m3	8.3 m3	8.8 m3	11.2 m3
15min	15min	0.25hr	4.2 m3	5.5 m3	6.3 m3	6.8 m3	7.2 m3	8.5 m3	9.8 m3	10.3 m3	13.1 m3
30min	30min	0.50hr	4.8 m3	6.4 m3	7.1 m3	7.6 m3	8.1 m3	9.7 m3	11.2 m3	11.8 m3	15.4 m3
1hr	60min	1.00hr	6.5 m3	8.3 m3	9.2 m3	9.9 m3	10.5 m3	12.6 m3	14.7 m3	15.4 m3	20.3 m3
2hr	120min	2.00hr	7.3 m3	9.5 m3	10.6 m3	11.3 m3	11.9 m3	14.3 m3	16.6 m3	17.2 m3	22.6 m3
4hr	240min	4.00hr	7.9 m3	10.3 m3	11.4 m3	11.9 m3	12.5 m3	14.9 m3	17.0 m3	17.4 m3	22.6 m3
6hr	360min	6.00hr	8.6 m3	11.2 m3	12.1 m3	12.6 m3	13.1 m3	15.1 m3	17.3 m3	17.2 m3	22.2 m3
10hr	600min	10.00hr	7.2 m3	9.8 m3	10.4 m3	10.7 m3	10.9 m3	12.2 m3	13.7 m3	12.6 m3	16.0 m3
24hr	1440min	24.00hr	3.6 m3	6.5 m3	6.4 m3	5.5 m3	4.6 m3	3.4 m3	2.6 m3	-2.1 m3	-4.2 m3
48hr	2880min	48.00hr	-6.8 m3	-4.2 m3	-6.2 m3	-9.0 m3	-12.1 m3	-18.6 m3	-24.8 m3	-36.2 m3	-50.2 m3
				_							22.6 m3
0	otohmont Aras	42E2~~	1000/	C _v :							
	atchment Area:	425sqm	100%	0.40							
rem	neable Garden	68sqm	16%	0.40							
	Impermeable:	357sqm	84%	0.77							
			2.70	0.71	•						

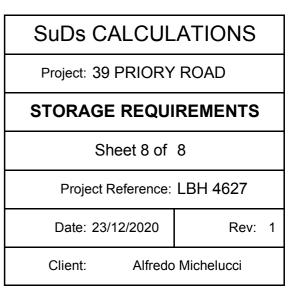




POST- DEVELOPMENT & SOURCE MITIGATION PEAK RUN-OFF + CC STORAGE

Proposed Discharge Rates: Greenfield x 1


							INFLOW				
	D Duration	•	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	2.6 m3	3.3 m3	3.7 m3	4.1 m3	4.3 m3	5.0 m3	5.7 m3	6.0 m3	7.5 m3
10min	10min	0.17hr	3.7 m3	4.8 m3	5.4 m3	5.9 m3	6.2 m3	7.4 m3	8.5 m3	9.0 m3	11.6 m3
15min	15min	0.25hr	4.4 m3	5.7 m3	6.4 m3	6.9 m3	7.4 m3	8.7 m3	10.1 m3	10.7 m3	13.7 m3
30min	30min	0.50hr	5.1 m3	6.7 m3	7.4 m3	8.0 m3	8.5 m3	10.2 m3	11.9 m3	12.6 m3	16.4 m3
1hr	60min	1.00hr	7.0 m3	8.9 m3	9.9 m3	10.7 m3	11.3 m3	13.6 m3	16.0 m3	17.0 m3	22.3 m3
2hr	120min	2.00hr	8.5 m3	10.7 m3	11.9 m3	12.8 m3	13.6 m3	16.4 m3	19.1 m3	20.4 m3	26.8 m3
4hr	240min	4.00hr	10.2 m3	12.6 m3	14.0 m3	14.9 m3	15.9 m3	19.1 m3	22.2 m3	23.6 m3	31.0 m3
6hr	360min	6.00hr	12.0 m3	14.6 m3	16.0 m3	17.1 m3	18.1 m3	21.5 m3	25.0 m3	26.6 m3	34.7 m3
10hr	600min	10.00hr	12.7 m3	15.5 m3	17.0 m3	18.1 m3	19.3 m3	22.8 m3	26.6 m3	28.3 m3	36.9 m3
24hr	1440min	24.00hr	16.9 m3	20.3 m3	22.3 m3	23.5 m3	24.7 m3	28.8 m3	33.4 m3	35.5 m3	45.8 m3
48hr	2880min	48.00hr	19.8 m3	23.4 m3	25.6 m3	27.0 m3	28.1 m3	32.2 m3	36.9 m3	39.1 m3	49.8 m3
							OUTFLOW				
	D Duration	•	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	0.0 m3	0.0 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.2 m3
10min	10min	0.17hr	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.1 m3	0.2 m3	0.2 m3	0.3 m3	0.3 m3
15min	15min	0.25hr	0.1 m3	0.1 m3	0.2 m3	0.2 m3	0.2 m3	0.3 m3	0.3 m3	0.4 m3	0.5 m3
30min	30min	0.50hr	0.3 m3	0.3 m3	0.3 m3	0.4 m3	0.4 m3	0.5 m3	0.6 m3	0.8 m3	1.0 m3
1hr	60min	1.00hr	0.6 m3	0.6 m3	0.7 m3	0.7 m3	0.8 m3	1.1 m3	1.3 m3	1.6 m3	2.1 m3
2hr	120min	2.00hr	1.1 m3	1.1 m3	1.3 m3	1.5 m3	1.7 m3	2.1 m3	2.6 m3	3.1 m3	4.2 m3
4hr	240min	4.00hr	2.2 m3	2.3 m3	2.6 m3	3.0 m3	3.3 m3	4.2 m3	5.1 m3	6.3 m3	8.3 m3
6hr	360min	6.00hr	3.3 m3	3.4 m3	4.0 m3	4.5 m3	5.0 m3	6.3 m3	7.7 m3	9.4 m3	12.5 m3
10hr	600min	10.00hr	5.6 m3	5.7 m3	6.6 m3	7.5 m3	8.4 m3	10.6 m3	12.8 m3	15.7 m3	20.8 m3
24hr	1440min	24.00hr	13.3 m3	13.8 m3	15.9 m3	18.0 m3	20.1 m3	25.4 m3	30.8 m3	37.6 m3	50.0 m3
48hr	2880min	48.00hr	26.6 m3	27.6 m3	31.8 m3	35.9 m3	40.1 m3	50.8 m3	61.6 m3	75.2 m3	100.0 m3
		·		ATTEN	NUATION STO	RAGE REQU	IRED TO MEE	T PROPOSED	DISCHARGE	RATE	
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	2.5 m3	3.3 m3	3.7 m3	4.0 m3	4.2 m3	4.9 m3	5.6 m3	5.8 m3	7.3 m3
10min	10min	0.17hr	3.6 m3	4.7 m3	5.3 m3	5.7 m3	6.1 m3	7.2 m3	8.3 m3	8.8 m3	11.2 m3
15min	15min	0.25hr	4.2 m3	5.5 m3	6.3 m3	6.8 m3	7.2 m3	8.5 m3	9.8 m3	10.3 m3	13.1 m3
30min	30min	0.50hr	4.8 m3	6.4 m3	7.1 m3	7.6 m3	8.1 m3	9.7 m3	11.2 m3	11.8 m3	15.4 m3
1hr	60min	1.00hr	6.5 m3	8.3 m3	9.2 m3	9.9 m3	10.5 m3	12.6 m3	14.7 m3	15.4 m3	20.3 m3
2hr	120min	2.00hr	7.3 m3	9.5 m3	10.6 m3	11.3 m3	11.9 m3	14.3 m3	16.6 m3	17.2 m3	22.6 m3
4hr	240min	4.00hr	7.9 m3	10.3 m3	11.4 m3	11.9 m3	12.5 m3	14.9 m3	17.0 m3	17.4 m3	22.6 m3
6hr	360min	6.00hr	8.6 m3	11.2 m3	12.1 m3	12.6 m3	13.1 m3	15.1 m3	17.3 m3	17.2 m3	22.2 m3
10hr	600min	10.00hr	7.2 m3	9.8 m3	10.4 m3	10.7 m3	10.9 m3	12.2 m3	13.7 m3	12.6 m3	16.0 m3
24hr	1440min	24.00hr	3.6 m3	6.5 m3	6.4 m3	5.5 m3	4.6 m3	3.4 m3	2.6 m3	-2.1 m3	-4.2 m3
48hr	2880min	48.00hr	-6.8 m3	-4.2 m3	-6.2 m3	-9.0 m3	-12.1 m3	-18.6 m3	-24.8 m3	-36.2 m3	-50.2 m3
ATTENUATION STORAGE REQUIRED:		8.6 m3	11.2 m3	12.1 m3	12.6 m3	13.1 m3	15.1 m3	17.3 m3	17.4 m3	22.6 m3	



POST- DEVELOPMENT & SOURCE MITIGATION PEAK RUN-OFF + CC STORAGE

	Proposed Disc	charge Rate:	5.51 l/sec 100 yr 15min	50%	of existing			(or greenfield	d where this is	greater)	
			,				INFLOW				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	2.6 m3	3.3 m3	3.7 m3	4.1 m3	4.3 m3	5.0 m3	5.7 m3	6.0 m3	7.5 m3
10min	10min	0.17hr	3.7 m3	4.8 m3	5.4 m3	5.9 m3	6.2 m3	7.4 m3	8.5 m3	9.0 m3	11.6 m3
15min	15min	0.25hr	4.4 m3	5.7 m3	6.4 m3	6.9 m3	7.4 m3	8.7 m3	10.1 m3	10.7 m3	13.7 m3
30min	30min	0.50hr	5.1 m3	6.7 m3	7.4 m3	8.0 m3	8.5 m3	10.2 m3	11.9 m3	12.6 m3	16.4 m3
1hr	60min	1.00hr	7.0 m3	8.9 m3	9.9 m3	10.7 m3	11.3 m3	13.6 m3	16.0 m3	17.0 m3	22.3 m3
2hr	120min	2.00hr	8.5 m3	10.7 m3	11.9 m3	12.8 m3	13.6 m3	16.4 m3	19.1 m3	20.4 m3	26.8 m3
4hr	240min	4.00hr	10.2 m3	12.6 m3	14.0 m3	14.9 m3	15.9 m3	19.1 m3	22.2 m3	23.6 m3	31.0 m3
6hr	360min	6.00hr	12.0 m3	14.6 m3	16.0 m3	17.1 m3	18.1 m3	21.5 m3	25.0 m3	26.6 m3	34.7 m3
10hr	600min	10.00hr	12.7 m3	15.5 m3	17.0 m3	18.1 m3	19.3 m3	22.8 m3	26.6 m3	28.3 m3	36.9 m3
24hr	1440min	24.00hr	16.9 m3	20.3 m3	22.3 m3	23.5 m3	24.7 m3	28.8 m3	33.4 m3	35.5 m3	45.8 m3
48hr	2880min	48.00hr	19.8 m3	23.4 m3	25.6 m3	27.0 m3	28.1 m3	32.2 m3	36.9 m3	39.1 m3	49.8 m3
							OUTFLOW				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	1.7 m3	1.7 m3	1.7 m3	1.7 m3	1.7 m3	1.7 m3	1.7 m3	1.7 m3	1.7 m3
10min	10min	0.17hr	3.3 m3	3.3 m3	3.3 m3	3.3 m3	3.3 m3	3.3 m3	3.3 m3	3.3 m3	3.3 m3
15min	15min	0.25hr	5.0 m3	5.0 m3	5.0 m3	5.0 m3	5.0 m3	5.0 m3	5.0 m3	5.0 m3	5.0 m3
30min	30min	0.50hr	9.9 m3	9.9 m3	9.9 m3	9.9 m3	9.9 m3	9.9 m3	9.9 m3	9.9 m3	9.9 m3
1hr	60min	1.00hr	19.8 m3	19.8 m3	19.8 m3	19.8 m3	19.8 m3	19.8 m3	19.8 m3	19.8 m3	19.8 m3
2hr	120min	2.00hr	39.7 m3	39.7 m3	39.7 m3	39.7 m3	39.7 m3	39.7 m3	39.7 m3	39.7 m3	39.7 m3
4hr	240min	4.00hr	79.3 m3	79.3 m3	79.3 m3	79.3 m3	79.3 m3	79.3 m3	79.3 m3	79.3 m3	79.3 m3
6hr	360min	6.00hr	119.0 m3	119.0 m3	119.0 m3	119.0 m3	119.0 m3	119.0 m3	119.0 m3	119.0 m3	119.0 m3
10hr	600min	10.00hr	198.3 m3	198.3 m3	198.3 m3	198.3 m3	198.3 m3	198.3 m3	198.3 m3	198.3 m3	198.3 m3
24hr	1440min	24.00hr	475.9 m3	475.9 m3	475.9 m3	475.9 m3	475.9 m3	475.9 m3	475.9 m3	475.9 m3	475.9 m3
48hr	2880min	48.00hr	951.8 m3	951.8 m3	951.8 m3	951.8 m3	951.8 m3	951.8 m3	951.8 m3	951.8 m3	951.8 m3
				ATTEN	NUATION STO	RAGE REQU	IRED TO MEE	T PROPOSEI	D DISCHARGE	RATE	
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	0.9 m3	1.7 m3	2.1 m3	2.4 m3	2.6 m3	3.3 m3	4.0 m3	4.3 m3	5.8 m3
10min	10min	0.17hr	0.4 m3	1.5 m3	2.1 m3	2.6 m3	2.9 m3	4.1 m3	5.2 m3	5.7 m3	8.3 m3
15min	15min	0.25hr	-0.6 m3	0.7 m3	1.5 m3	2.0 m3	2.4 m3	3.8 m3	5.1 m3	5.7 m3	8.7 m3
30min	30min	0.50hr	-4.8 m3	-3.2 m3	-2.5 m3	-1.9 m3	-1.4 m3	0.3 m3	2.0 m3	2.7 m3	6.5 m3
1hr	60min	1.00hr	-12.8 m3	-10.9 m3	-9.9 m3	-9.2 m3	-8.5 m3	-6.2 m3	-3.9 m3	-2.8 m3	2.5 m3
2hr	120min	2.00hr	-31.2 m3	-29.0 m3	-27.8 m3	-26.8 m3	-26.1 m3	-23.3 m3	-20.5 m3	-19.3 m3	-12.8 m3
4hr	240min	4.00hr	-69.1 m3	-66.7 m3	-65.3 m3	-64.4 m3	-63.4 m3	-60.2 m3	-57.1 m3	-55.7 m3	-48.3 m3
6hr	360min	6.00hr	-107.0 m3	-104.4 m3	-102.9 m3	-101.9 m3	-100.8 m3	-97.5 m3	-94.0 m3	-92.3 m3	-84.3 m3
10hr	600min	10.00hr	-185.6 m3	-182.8 m3	-181.3 m3	-180.1 m3	-179.0 m3	-175.5 m3	-171.7 m3	-170.0 m3	-161.4 m3
24hr	1440min	24.00hr	-458.9 m3	-455.6 m3	-453.6 m3	-452.4 m3	-451.2 m3	-447.1 m3	-442.5 m3	-440.4 m3	-430.1 m3
48hr	2880min	48.00hr	-932.0 m3	-928.4 m3	-926.2 m3	-924.8 m3	-923.7 m3	-919.6 m3	-914.9 m3	-912.7 m3	-902.0 m3
ATTENUA	TION STORAGE	REQUIRED:	0.9 m3	1.7 m3	2.1 m3	2.6 m3	2.9 m3	4.1 m3	5.2 m3	5.7 m3	8.7 m3

