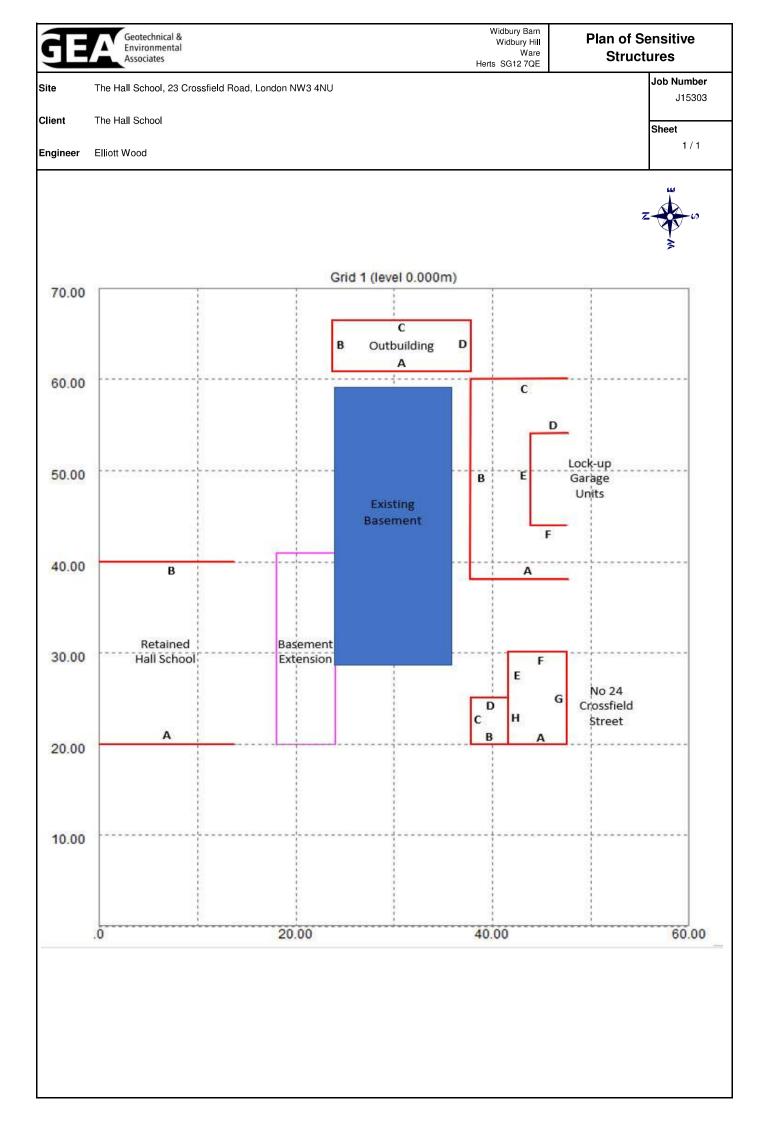

$\bigcap a a$	10	Job No.	Sheet No.	Rev.
Jasy	/5	J16006		
	Crossfield Street, London NW3 4NU	Drg. Ref.		
ombined waii ir	nstallation and Excavation	Made by ML	Date 28-Feb-2017	Checked
	Vel Enabled Side: Side: Side: Side: d p1 p2* d p1 p2* m] [m] [%] [m] [%] [%] 0000 Yes No - - - -			
ide x1 y1 [m] [m]	x2 y2 G.M. Curve: Vertical G.M. Curve: Horizontal [m] [m]			
3 24.000 41.000	 18.000 11.000 Exc. in front of high stiffchess wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 24.000 24.000 20.000 Exc. in front of high stiffchess wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 24.000 28.000 No vertical ground movement stiffchess wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 24.000 20.000 Exc. in front of high stiffchess wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 24.000 20.000 Exc. in front of high stiffness wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 15.000 20.000 Exc. in front of high stiffness wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 20.000 Exc. in front of high stiffness wall in stiff clay (CIRIA C760 Fig. 6.15(a)) 			
Circular Excavations				
Vertical Ground Movement (urve Name: oordinates:	Curves No vertical ground movement [Distance from wall / wall depth or max, excavation depth (x), Depth / wall depth or max, excavation depth (y), Settlement / wall depth or max. excavation depth (z) (%) [0.000,0.000][1.000,0.000][0.000,1.000,0.000][1.000,1.000,0.000]			
urve Fitting Method: Order: Order: olynomial: z =	Polynomial 1 0 0.0x + 0.0			
oeff. of Determination: urve Name: oordinates:	Inst. of contiguous bored pile wall in stiff clay (CIRIA C760 Fig. 6.8(b)) [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Settlement / wall depth or max. excavation depth ($\{0\}$)			
urve Fitting Method:	[0.000,0.000,0.040][2.000,0.000,0.000] Polynomial			
Order: Order: Dynomial: z = Deff. of Determination:	1 0 -2.0E-2x + 4.0E-2			
urve Name: pordinates:	Exc. in front of high stiffness wall in stiff clay (CIRIA C760 Fig. 6.15(b)) [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Settlement / wall depth or max. excavation depth (z) ($\$$)]			
urve Fitting Method:	$ \begin{bmatrix} 0,000, 0,000, 0,039 \\ [0,400, 0,000, 0,067 \\ [0,400, 0,000, 0,067 \\ [0,500, 0,000, 0,067 \\ [0,500, 0,000, 0,067 \\ [1,200, 0,000, 0,067 \\ [1,200, 0,000, 0,067 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,065 \\ [1,200, 0,000, 0,000 \\ [1,200, 0$			
Order: Order: olynomial: z = oeff. of Determination:	4 0 -2.6455E-3x ⁴ + 2.8495E-2x ³ - 1.0051E-1x ² + 1.0569E-1x + 3.8990E-2 9.9991E-1			
orizontal Ground Moveme				
urve Name: oordinates: urve Fitting Method: Order: Order:	<pre>No horizontal ground movement [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Horizontal movement / wall depth or max. excavation depth (z) (%)] [0.000, 0.000, 0.000][1.000, 0.000, 0.000][0.000, 1.000, 0.000][1.000, 1.000, 0.000] Polynomial 0 0</pre>			
olynomial: z = oeff. of Determination:				
<pre>urve Name: coordinates: urve Fitting Method: order:</pre>	<pre>Inst. of contiguous bored pile wall in stiff clay (CIRIA C760 Fig. 6.8(a)) [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Horizontal movement / wall depth or max. excavation depth (2)(4)] [0.200, 0.000, 0.041][0.050, 0.000, 0.038][0.100, 0.000, 0.036][0.150, 0.000, 0.024] [0.200, 0.000, 0.025][0.250, 0.000, 0.030][0.550, 0.000, 0.027] [0.400, 0.000, 0.025][0.450, 0.000, 0.030][0.550, 0.000, 0.022] [0.550, 0.000, 0.025][0.450, 0.000, 0.021][0.550, 0.000, 0.021] [0.600, 0.000, 0.014][0.750, 0.000, 0.018][0.700, 0.000, 0.101][0.550, 0.000, 0.021] [0.600, 0.000, 0.014][0.1650, 0.000, 0.018][0.700, 0.000, 0.101][0.550, 0.000, 0.015] [0.800, 0.000, 0.001][1.550, 0.000, 0.031][0.500, 0.000][1.350, 0.000, 0.001] [1.400, 0.000, 0.005][1.250, 0.000, 0.001][1.300, 0.000, 0.003] [1.400, 0.000, 0.003][1.250, 0.000, 0.001][1.350, 0.000, 0.003] [20ynomial 3 </pre>			
: Order: · Order: ·olynomial: z = ·oeff. of Determination:	3 -4.2486E-3x ³ + 1.9096E-2x ² - 4.6221E-2x + 4.0729E-2 1.0000			
oeff. of Determination: urve Name: oordinates:	Exc. in front of high stiffness wall in stiff clay (CIRIA C760 Fig. 6.15(a)) [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Horizontal movement / wall depth or max. excavation depth (z) (A)]			
urve Fitting Method: Order: Order: olynomial: z =	[0.000,0.000,0.150][4.000,0.000,0.000] Polynomial 1 0 -3.75E-2x + 1.50E-1			
peff. of Determination:				
amage Category Strains	0 (Negligible) 1 (Very Slight) 2 (Slight) 3 (Moderate)			
Burland Strain Limi	to to to to 1 (Very Slight) 2 (Slight) 3 (Moderate) 4 (Severe)			
	20.0.20 Copyright © Oasys 1997-2019			Page

Program XDisp Version 20.0.0.20 Copyright © Oasys 1997-2019 C:Users\Matt Legg\Desktop\XDisp Workings\The Hall School\...\Combined Movements.xdd

Num 0.00001 0.00000 0.	Rev.	Sheet No.	ob No.	ال								A 10	$\overline{)}_{aa}$
Perial School, Crossfield Street, London NW3 4NU Drg. Ref. Image: Description of the school of			J16006									ys	JUS
Name 0 Muture Particular Date Chr Nex 0<			Drg. Ref.				4NU						
Name 0 (Magdialaba) 1 (Very filgh) 2 (High) 3 (Moderate) 1 (Very filgh) 2 (Eligh) 3 (Moderate) 4 (Rewee) cills Duildings-Cennyty Displacement Dis	Checked								avation	u ⊨xca	uon and	Installa	ndined Wall
		201602017		101		.o	te	to	.0	to	to		Name
Name Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td>vere)</td><td>:e) 4 (Ser</td><td>3 (Moderat</td><td>ight) :</td><td>2 (Sl:</td><td>ry Slight)</td><td></td><td>cific Buildings - Geo</td></thl<></thline<>						vere)	:e) 4 (Ser	3 (Moderat	ight) :	2 (Sl:	ry Slight)		cific Buildings - Geo
			Poisson's E/G Ratio				Offsets from	Along	Along				Building Name
1 24 Crossfield N 0.01 24 Crossfield N 0.000 5.0000 0.00000					vity	Sensiti	Movement Calculations						
4 24 Crossfield 3 Us 4 24 Crossfield 3 Us 4 24 Crossfield 0.0000 0.0000 Burland Brain 0.2000 2.0000 7 24 Crossfield 3 Us 7 24 Crossfield 0.0000 0.0000 Burland Brain 0.2000 2.00000 <t< td=""><td></td><td></td><td>0.20000 2.6000</td><td>d Strain Limits</td><td>10000 Burlan 10000 Burlan</td><td>0.0 0.</td><td>0.</td><td>5.99900</td><td>0.00000</td><td>field B</td><td>24 Cross</td><td>Sub 2</td><td>24 Crossfield B</td></t<>			0.20000 2.6000	d Strain Limits	10000 Burlan 10000 Burlan	0.0 0.	0.	5.99900	0.00000	field B	24 Cross	Sub 2	24 Crossfield B
8 24 Crossfield H 0.000 0.99900 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 0 GARACES A 0.0000 9.9990 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 11 GARACES C 0.0000 9.9990 0.0 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 13 GARACES D Sub 13 GARACES D 0.0000 3.9990 0.0 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 13 GARACES P Sub 13 GARACES P 0.0000 3.9990 0.0 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 14 OUTBUILDING B Sub 16 GARACES P Sub 16 0.0000 3.9990 0.0 0.0 0.1000 Burland Strain Linkts 0.2000 2.6000 15 OUTBUILDING B Sub 16 OUTBUILDING C 0.0000 13.9990 0.0 0.0 0.0000 2.0000 2.6000 16 OUTBUILDING B Sub 16 OUTBUILDING C 0.0000 13.9990 0.0 0.0 0.000 0.0000 2.0000 2.0000 </td <td></td> <td></td> <td>0.20000 2.6000 0.20000 2.6000 0.20000 2.6000</td> <td>d Strain Limits d Strain Limits d Strain Limits</td> <td>10000 Burlan 10000 Burlan 10000 Burlan</td> <td>0.0 0. 0.0 0. 0.0 0.</td> <td>0. 0. 0.</td> <td>3.79900 4.99900 5.99900</td> <td>0.00000 0.00000 0.00000</td> <td>field D field E field F</td> <td>24 Cross 24 Cross 24 Cross</td> <td>Sub 4 Sub 5 Sub 6</td> <td>24 Crossfield D 24 Crossfield E 24 Crossfield F</td>			0.20000 2.6000 0.20000 2.6000 0.20000 2.6000	d Strain Limits d Strain Limits d Strain Limits	10000 Burlan 10000 Burlan 10000 Burlan	0.0 0. 0.0 0. 0.0 0.	0. 0. 0.	3.79900 4.99900 5.99900	0.00000 0.00000 0.00000	field D field E field F	24 Cross 24 Cross 24 Cross	Sub 4 Sub 5 Sub 6	24 Crossfield D 24 Crossfield E 24 Crossfield F
2 GARAGES D Sub 12 SCARAGES D Sub 12 SCARAGES D GARAGES D 0.00000 9.9990 0.0 0.10000 Burland Strain Linits 0.20000 2.6000 4 GARAGES P Sub 14 SCARAGES P Sub 14 SCARAGES P 0.00000 9.9990 0.0 0.10000 Burland Strain Linits 0.20000 2.6000 4 GARAGES P Sub 14 SCARAGES P Sub 17 OUTBUILINS S Sub 17 SCARAGES P 0.00000 1.9990 0.0 0.10000 Burland Strain Linits 0.20000 2.6000 7 OUTBUILINS C Sub 17 SUB ALL A Sub 13 Sub 13 OTTBUILINS C 0.00000 1.4990 0.0 0.0 0.10000 Burland Strain Linits 2.20000 2.6000 9 THE ALL A Sub 13 OTTBUILINS D 0.00000 1.40000 0.0 0.10000 Burland Strain Linits 0.20000 2.6000 9 THE ALL A Sub 13 OTTBUILINS D 0.00000 1.40000 0.0 0.10000 Burland Strain Linits 0.20000 2.6000 2 HEAL A Sub 12 OTTBUILINS D 0.00000 1.60000 0.0<			0.20000 2.6000 0.20000 2.6000 0.20000 2.6000	d Strain Limits d Strain Limits d Strain Limits	10000 Burlan 10000 Burlan 10000 Burlan).0 0.).0 0.).0 0.	0.	4.99900 9.99900 21.99900	0.00000	field H A B	24 Cross GARAGES GARAGES	Sub 8 Sub 9 Sub 10	24 Crossfield H GARAGES A GARAGES B
SOUTBOLING A SOUTBOLING A SOUTBOLING B SUB 15 OUTBOLING B SOUTBOLING B SOUTBOLING SOUTBOLIN			0.20000 2.6000	d Strain Limits d Strain Limits	10000 Burlan 10000 Burlan).0 0.).0 0.	0.	3.99900	0.00000	D	GARAGES GARAGES	Sub 12 Sub 13	GARAGES D GARAGES E
9 THE HALL B Sub 13 THE HALL B 0.00000 14.0000 0.0 0.10000 Burland Strain Limits 0.2000 2.6000 c/fic Buildings - Bending Parameters c/fic Building Name Sub-Building Height Default Hogging: Nogging: Sagging:			0.20000 2.6000 0.20000 2.6000 0.20000 2.6000	d Strain Limits d Strain Limits d Strain Limits	10000 Burlan 10000 Burlan 10000 Burlan).0 0.).0 0.).0 0.	0.	13.99900 5.49900 13.99900	0.00000	ING B ING C	OUTBUILD OUTBUILD	Sub 15 Sub 16 Sub 17	OUTBUILDING A OUTBUILDING B OUTBUILDING C
Building Name Sub-Building Height Default Name Hogging: Hogging: Hogging: Sagging: Sagging: Sagging: Sagging: Building Name La La Mom, of Area victor Dist. of Bending from N.A. 1 24 Crossfield A Sub 1 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 24 Crossfield B Sub 5 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 24 Crossfield F Sub 5 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 24 Crossfield F Sub 5 10.000 Yes 233.33			0.20000 2.6000	d Strain Limits	10000 Burlan).0 0.	0.	14.00000	0.00000 :	Α	THE HALL	Sub 19	THE HALL A
Image: Second				Sagging:	Sagging:	Sagging:	Hogging:	Hogging:	Hogging:	efault H		Sub-Buildin	-
I I				N.A. from Edge of	Bending Strain	of Area (per unit	N.A. from Edge of	Bending Strain	of Area per unit	· · · · ·		Name	
2 24 Crossfield B Sub 2 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 24 Crossfield C Sub 4 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 24 Crossfield B Sub 4 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 24 Crossfield B Sub 5 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 24 Crossfield B Sub 6 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 24 Crossfield B Sub 6 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 24 Crossfield B Sub 6 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 24 Crossfield B Sub 6 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 24 Crossfield B Sub 6 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 5 Canada Sub 6 10.000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUBULDING B Sub 1 5 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000				Tension [m]	[m]	[m ³]	Tension [m]	[m]	[m ³]				
5 24 Crossfield F Sub 5 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 7 24 Crossfield G Sub 7 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 7 24 Crossfield G Sub 7 10.000 Yes 333.33 10.000 10.000 83.333 5.0000 5.0000 9 GRARGES A Sub 9 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GRARGES B Sub 10 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GRARGES C Sub 11 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GRARGES C Sub 12 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GRARGES C Sub 12 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 GRARGES C Sub 12 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 GRARGES C Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 GRARGES C Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 GRARGES C Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OTTEVILDING A Sub 15 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OTTEVILDING A Sub 15 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OTTEVILDING A Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OTTEVILDING C Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000				2.0000 2.0000 2.0000	2.0000 2.0000 2.0000	5.3333 5.3333 5.3333	0 4.0000 0 4.0000 0 4.0000	4.0000 4.0000 4.0000	21.333 21.333 21.333	Yes Yes Yes	4.0000 4.0000 4.0000	Sub 2 Sub 3 Sub 4	24 Crossfield B 24 Crossfield C 24 Crossfield D
9 GARAGES A Sub 9 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GARAGES B Sub 10 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 1 GARAGES C Sub 11 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES E Sub 12 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES E Sub 13 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 3 GARAGES E Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 4 GARAGES E Sub 15 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OUTBUILDING E Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OUTBUILDING E Sub 16 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OUTBUILDING E Sub 17 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 8 OUTBUILDING E Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OTBUILDING E Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OTBUILDING E Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OTBUILDING E Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000				5.0000 5.0000 5.0000	5.0000 5.0000 5.0000	83.333 83.333 83.333	0 10.000 0 10.000 0 10.000	10.000	333.33 333.33 333.33	Yes Yes Yes	10.000 10.000 10.000	Sub 5 Sub 6 Sub 7	24 Crossfield E 24 Crossfield F 24 Crossfield G
3 GARAGES E Sub 13 4.0000 Yes 21.333 4.0000 5.3333 2.0000 2.0000 4 GARAGES F Sub 14 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 5 OUTBUILDING A Sub 15 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 6 OUTBUILDING C Sub 15 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 7 OUTBUILDING C Sub 17 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 8 OUTBUILDING C Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OUTBUILDING C Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OUTBUILDING C Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 OUTBUILDING D Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000				2.0000	2.0000 2.0000	5.3333	0 4.0000 0 4.0000	4.0000	21.333 21.333	Yes Yes	4.0000	Sub 10 Sub 11	GARAGES B GARAGES C
7 OUTBUILDING C Sub 17 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 8 OUTBUILDING D Sub 18 4.0000 Yes 21.333 4.0000 4.0000 5.3333 2.0000 2.0000 9 THE HAL A Sub 19 14.000 Yes 914.67 14.000 14.000 228.57 7.0000 7.0000				2.0000 2.0000 2.0000	2.0000 2.0000 2.0000	5.3333 5.3333 5.3333	0 4.0000 0 4.0000 0 4.0000	4.0000 4.0000 4.0000	21.333 21.333 21.333	Yes Yes Yes	4.0000 4.0000 4.0000	Sub 13 Sub 14 Sub 15	GARAGES E GARAGES F OUTBUILDING A
				2.0000 2.0000 7.0000	2.0000 2.0000 7.0000	5.3333 5.3333 228.67	0 4.0000 0 4.0000 0 14.000	4.0000 4.0000 14.000	21.333 21.333 914.67	Yes Yes Yes	4.0000 4.0000 14.000	Sub 17 Sub 18 Sub 19	OUTBUILDING C OUTBUILDING D THE HALL A
				7.0000	,	220.07	, 14.000	14.000	514.07	162	14.000	340 20	THE TALL D
am XDisp Version 20.0.0.20 Copyright © Oasys 1997-2019	Page							0010			0.000	- 00 0 0 0 0	


	GEOTECHNICAL AND	Job No.	Sheet No.	Rev.
Oasys	ENVIRONMENTALASSOCIAT	ES LTD <i>J15302</i>		
The Hall School, Crossfield	Street, London NW3 4NU	Drg. Ref.		
Total drained movement		Made by ML	Date	Checked
		IVIL .		
Titles Job No.: J15302 Job Title: The Hall Scho	ol, Crossfield Street, London NW3 4NU			
Sub-title: Total drained Calculation Heading: Initials: ML	movement			
Checker: Date Saved: Date Checked: Notes:				
File Name: Total heave.p	dd Legg\Desktop\PDisp workings\The Hall School			
History				
Date Time By 12-Aug-2016 14:24 Matt Legg 12-Aug-2016 14:42 Matt Legg	Notes			
26-Feb-2019 17:54 Matt Legg 26-Feb-2019 21:14 Matt Legg 27-Feb-2019 11:03 Matt Legg	Open			
Analysis Options				
General				
Global Poisson's ratio: 0.50 Maximum allowable ratio between values Horizontal rigid boundary level: -50.0 Displacements at load centroids: Yes	of E: 1.5 0 [m CD]			
GSA piled raft data : No Elastic				
Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement				
Using legacy heave correction factor: Consolidation Consolidation : No	NU			
Soil ProfilesShort-term				
Layer Name Level at Number of	Youngs Youngs Poissons Non-linear Modulus Modulus ratio curve : Top : Btm.			
levels [mOD] 1 Layer 1 0.0 1 2 Layer 2 -1.5000 6	[kN/m²] [kN/m²] 15000. 22500. 0.50000 None 45000. 75000. 0.50000 None			
3 Layer 3 -8.0000 7 4 Layer 4 -15.000 10 5 Layer 5 -25.000 10	75000. 105000. 0.50000 None 105000. 150000. 0.50000 None 150000. 195000. 0.50000 None			
6 Layer 6 -35.000 10 7 Layer 7 -45.000 5 Soil ProfilesTotal	195000. 240000. 0.50000 None 240000. 262500. 0.50000 None			
Layer Name Level at Number of ref. top intermediate displacement	Youngs Youngs Poissons Non-linear Modulus Modulus ratio curve : Top : Btm.			
[mOD] 1 Layer 1 0.0 1 2 Layer 2 -1.5000 6	[kN/m²] [kN/m²] 11240. 16860. 0.20000 None 33720. 55200. 0.20000 None			
3 Layer 3 -8.0000 7 4 Layer 4 -15.000 10 5 Layer 5 -25.000 10	55200. 78680. 0.20000 None 78680. 112400. 0.20000 None 112400. 146120. 0.20000 None			
6 Layer 6 -35.000 10 7 Layer 7 -45.000 5 Soil Zones	146120. 179840. 0.20000 None 179840. 196700. 0.20000 None			
	Ymin Ymax Profile [m] [m] 0.0 70.000 Total			
Rectangular Load Data		Value : Value :		
ref. of Plane	(Global) (Global) (Global) : Angle : Width : Length Normal ? : x : y : z of local x or y (local z) x from Radius	Tangential Tangential (local x) (local y)		
2 Wall Line Load 1 Horizontal	[m] [m] <td>[kN/m²] [kN/m²] 0.0 0.0 0.0 0.0 0.0 0.0</td> <td></td> <td></td>	[kN/m ²] [kN/m ²] 0.0 0.0 0.0 0.0 0.0 0.0		
4 Wall Line Load 3 Horizontal 5 Wall Line Load 4 Horizontal	21.0000 20.0000 -6.0000 0.0 9.000 3.7500 42.000 21.00000 41.00000 -6.00000 0.0 9.0000 3.7500 42.000	0.0 0.0		
Displacement Grids Name Extrusion: X1 Y1 Direction	Z1 X2 Y2 Z2 Intervals Extrusion: Call Along Distance Intervals	culate Detailed Results		
[m] [m]	Line Along [m] [m] [m] [No.] [m] [No.]			
Grid 1 Global X 0.00000 0.00000 -3	.60000 - 70.00000 -3.60000 70 50.00000 50 Yes	No		
Warnings (1)The load at (21.000, 31.500, -3.600)m lies wide of all soil zones. Displacements at its centre have b	een requested. The first soil profile	will be used.	

1

	Job No. J16006	Sheet No.	Rev.
Combined Wall Installation and Excavation	Drg. Ref. Made by D ML 21	Date 28-Feb-2017	Checked
Max Max Gradiant of Max Gradiant of Min Radius Min ant Tensile Rocisontal Vettoal Strain Displacement Displacement Curveture Cur Ourve (Roging) (S	sge Category		
mm 1.1 1.1 <th1.1< th=""> <th1.1< th=""> <th1.1< th=""></th1.1<></th1.1<></th1.1<>	<pre>0 (Megligible) 0 (Megligible) 0 (Megligible) 0 (Megligible) 0 (Megligible) 1 (Very Slight) </pre>		
Program XDisp Version 20.0.0.20 Copyright © Oasys 1997-2019 C:\Users\Matt Legg\Desktop\XDisp Workings\The Hall Schoo\\Combined Movements.xdd		Printed 27-Feb-2019	Page 1 Time 10:06

Printed 27-Feb-2019	(dol.	on doi.	Sheet No.	UN ON	Rev	
	Casv	S											16006				
Wethouthy and and and and and and and and and and	The Hall School, C	rossfield Str	et, London NW3 4NU									Ō	J. Ref.				
Matrix Matrix<	Compined wall ins	italiation and	Excavation									Mac ML	e by	Date 28-Feb-201	17	Checked	
Interpretation Interpreation Interpretation Interpre	Specific Building Damage Resu Stage: Stage: Name Specific Ref.	ults - Critical Segmen - Specific 3: Building: Name	s within Each Building Parametor	Critical Sub-Buildin	Critica G Segment	Start		Slope	Max Max tlement Tensil	Min Radius o	Min Addius o		tegory				
	. 70 X									n Curvatun (Hogginç [m]	re Curvatur 3) (Sagging [m]	9. .					
1 1 0	Base Model	24 Crossfield A 24 Crossfield B	All vertical displacements are les All vertical displacements are les Max Stripenent	s than the 1 is than the 1 sub 2 sub 2	imit sens imit sens imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity. itivity. 2.8500 3.7 2.8500 3.7	Sagging		0.32136 0.0156 0.32136 0.0156			. 0 (Neglig	(ble) ble)				_
	ō	Crossfield (Max Tensile Strain Main Radius of Curvature (Hogging) Min Radius of Curvature (Sagging) Max Stope Max Settlement	Sub 2 Sub 3 Sub 3 Sub 3		2.8500 3.7 	agging agging agging		0.32136 0.015. - 0.47988 35.7635 0.47988 35.7635			- 0 (Negliç - 0 (Neglig - 0 (Neglig					_
	o	Crossfield	Min Radiate of Curvature (Rogging) Min Radius of Curvature (Sagging) Max Stope Max Settlement Max Tensile Strain	sub 3 Sub 3 Sub 4 Sub 4 Sub 4 4 Sub 4 4 Sub 4 4 Sub 4 3 Sub 4 3 Sub 3 Sub 4 Sub 3 Sub 4 Sub 3 Sub 4 Sub 3 Sub 4 Sub 4 Su	ı.əəəə		- agging ogging ogging		0.47988 0.0035 0.47988 0.0035 0.47988 0.0238 0.47988 0.0238				1ble) (ble) (ble) (ble)				_
	o	Crossfield 1	Min Kadius of Curvature (nogging) Min Radius of Curvature (Sagging) All vertical displacements are les All vertical displacements are les All vertical displacements are les	sub 4 s than the 1 s than the 1 s than the 1	I - imit sens imit sens	0.0 0.9 - itivity. itivity.	- burbbon n					2	1016)				
	O	24 Crossfield F	All Vertical displacements are let All Vertical displacements are let All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the list than the list than the list than the list the list the list the list the list than the list than the list than the list th	imit sens imit sens imit sens imit sens imit sens	itivity. Itivity. Itivity. Itivity.											_
1 1	Q	Crossfield (All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the 1 is than the 1	imit sens imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity.											
	0	24 Crossfield H	All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the 1 s than the 1 s than the 1 s than the 1 s than the 1	imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity.											
1010-010101 101-01010 1011-010101 101-010010 1011-01010101 <	Ø	<	All vertical displacements are les All vertical displacements are les	s than the 1 s than the 1	imit sens imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity.											_
10 10 <td< td=""><td>Ð</td><td></td><td>All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les</td><td>is than the 1 is than the 1.</td><td>imit sens imit sens imit sens imit sens imit sens</td><td>ittivity. ittivity. ittivity. ittivity. ittivity.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ð		All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	is than the 1 is than the 1.	imit sens imit sens imit sens imit sens imit sens	ittivity. ittivity. ittivity. ittivity. ittivity.											
Print (11) 11 (11)	Q		All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the 1 s than the 1 s than the 1 s than the 1 s than the 1	imit sens imit sens imit sens imit sens imit sens	ittivity. ittivity. ittivity. ittivity. ittivity.											
	0		All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the l s than the l s than the l s than the l s than the l	imit sens imit sens imit sens imit sens imit sens	ittivity. ittivity. ittivity. ittivity.											
	Ø		All vertical displacements are les All vertical displacements are les	s than the l s than the l s than the l s than the l	imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity.											
In construction	o	GARAGES F	All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the l s than the l s than the l s than the l s than the l	imit sens imit sens imit sens	itivity. itivity. itivity.											
It enstrivity to enstrivity	0		All Vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	s than the l s than the l	imit sens imit sens imit sens imit sens imit sens	itivity. Itivity. Itivity. Itivity.											_
it sensitivity. A sensitivity. A sensitivity. A sensitivity. Printed 27-Feb-2019	D	OUTBUILDING B	All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	is than the 1 is than the 1	imit sens imit sens imit sens imit sens imit sens	itivity. itivity. itivity. itivity. itivity.											
Printed 27-Feb-2019	0		All vertical displacements are les All vertical displacements are les All vertical displacements are les All vertical displacements are les	is than the 1 is than the 1 is than the 1 is than the 1 is than the 1	imit sens imit sens imit sens imit sens	ittivity. ittivity. ittivity. ittivity.											
	Program XDisp Version 20. C:\Users\Matt Legg\Desktor	0.0.20 Copyright p\XDisp Workings	© Oasys 1997-2019 The Hall School∖Combined Mo	vements.xd	_Р									Printed	27-Feb-2019	Page Time 10:06	10:06

				Page 2
Rev.		Checked		Page
ö				
Sheet No.		Date 28-Feb-2017		
	2			
Job No.	J16006	Made by ML	(meglidible) (meglidible) (meglidible) (meglidible) (meglidible) (meglidible) (meglidible) (meglidible) (mergildible) (mergildible) (mergildible)	
			agging 4 3080 - 0 (N 4 3080 - 0 (N 4 3080 - 0 (N 2 8971 - 1 (V 2 8971 - 1 (V 2 8971 - 1 (V - 1 1 (V) - 1 (V) - 1 1 (V) - 1 (V)	
			Addition of Additi	
			Sect Lamon 1 3.2337 3.2337 3.7694 4.8264 3.7669 4.8264 3.7669	
			00 Heoging 14 Segging 15 Segging 15 Segging 16 Heoging 08 Heoging 10 Segging 10 Segging 10 Heoging	
			Sup gamma and a standard and a standard a st	
	₽		-un a construction of the set of	
	NW3 4h		lacements a lacements a lacements a lacements a lacements a vature (sag vature (sag vature (sag	019
	-ondon	avalion	refact diagonal diago	sys 1997-20
	Street, L		All ve contraction of the second seco	ight © Oas
6	The Hall School, Crossfield Street, London NW3 4NU	comdined wall installation and excavation	stand: curad: curad: c	Program XDisp Version 20.0.0.20 Copyright © Oasys 1997-2019
SASD	ool, Cro	all Inste		sion 20.0.(
D	all Sch			XDisp Ver:
C) He H		. Here and the second	Program.

Geotechnical & Environmental Associates (GEA) is an engineer-led and clientfocused independent specialist providing a complete range of geotechnical and contaminated land investigation, analytical and consultancy services to the property and construction industries.

We have offices at

Widbury Barn Widbury Hill Ware Hertfordshire SG12 7QE tel 01727 824666 mail@gea-ltd.co.uk

Church Farm Gotham Road Kingston on Soar Notts NG11 ODE tel 01509 674888 midlands@gea-ltd.co.uk

Enquiries can also be made on-line at

www.gea-ltd.co.uk

where information can be found on all of the services that we offer.

GEA

The Hall School 2190008 Structural and Civil Engineering Planning Report & Basement Impact Assessment

C Flood Risk Assessment

elliottwood engineering a better society

C Elliott Wood Partnership Ltd

The Hall School

Flood Risk Assessment and Below Ground Drainage Statement

engineering a better society

		Remarks:	For Planning				
Revision:	P1	Prepared by:	K Trimmer	Checked by:	K Trimmer	Approved by:	T Kenning
Date:	01/03/2019	Signature:	KTr	Signature:	KTr	Signature:	TKe

Contents

Introduction
Existing Site
Existing Drainage
Proposed Development
Proposed Drainage Strategy
Maintenance Requirements
Flood Risk Policy
Flooding from Rivers and Seas
Flooding from Surface Water
Flooding from Sewers
Flooding from Groundwater
Flooding from Artificial Water Bodies
Flood Risk Summary

Appendices

А	Topographic Survey
В	Site Investigation – Borehole Logs
С	Thames Water Sewer Records
D	CCTV Drainage Survey Plan
Е	Previous Correspondance with Thames Water
F	Microdrainage Calculations

elliottwood

engineering a better **society**

•	••	••	••	•	• •	•	•	• •	•	•	•	• •	•••	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	• •	•••	•	•	•	•••	•	•	• •	•	• •	••	• •	• •	•	••	•	1	l
•	••	•••	•••		•••	•	•	•••	•	•	•				•	•	•	• •			•	•	•	•	•	•	•••		•	•	•	•••	•••		•	•	•••	•	•	•••	•	•••		•	•••	•	•••	•		1
•	•••	•••	•••	•	•••	•	•	•••	•	•	•	• •	•••	•	•	•	•	• •			•	•	•	•	•	•	•••		•	•	•	• •	•••	•	•	•		•	•	•••	•	•••		•		•	•••			1
•	••	•••	•••		•••	•	•	•••	•	•	•				•	•	•	• •			•	•	•	•	•	•	•••		•	•	•	•••	•••		•	•	•••	•	•	•••	•	•••		•	•••	•	•••	•	2	2
•	••	•••	•••			•	•		•	•	•	• •	•••	•	•	•	•	• •	• •		•	•	•	•	•	•		•	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••		•	•••	•	•••	•••	2	2
•		•••	•••	•	•••	•	•	•••	•	•	•	• •	•••	•	•	•	•	• •	• •		•	•	•	•	•	•	•••	•	•	•	•	•••	•••	•	•	•	• •	•	•	• •	•	•••		• •		•	• •	•	3	3
•	••	•••	•••	•	•••	•	•	•••	•	•	•	• •	•••	•	•	•	•	• •	• •		•	•	•	•	•	•	•••		•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••		•	•••	•	•••		3	3
•		• •	•••	•	•••	•	•	•••	•	•	•	• •	•••	•	•	•	•	• •				•	•	•	•	• •	•••	•	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••		•		•	•••		2	1
•		•••	•••			•	•		•	•	•	• •	•••	•	•	•	•	• •	• •		•	•	•	•	•	•	•••	•	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••		•		•	•••		2	1
•	•••	•••	•••		•••	•	•	•••	•	•	•		•••		•	•	•	• •			•	•	•	•	•	•	•••	•••	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••	•••	•	•••	•	•••	•••	2	1
•	•••	•••	•••		•••	•	•	•••	•	•	•		•••		•	•	•	• •			•	•	•	•	•	•	•••	•••	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••	•••	•	•••	•	•••	•••	Ę	5
•	•••	•••	•••		•••	•	•	•••	•	•	•		•••		•	•	•	• •			•	•	•	•	•	•	•••	•••	•	•	•	• •	•••	•	•	•	•••	•	•	•••	•	•••	•••	•	•••	•	•••	•••	6	3
•						•	•				•	• •			•	•		• •					•	•								• •			•	•		•			•	• •	• •	•••			• •	• •	6	3

	4
E	3
	2
[)
E	=
	F

One

Introduction

1.1

Elliott Wood Partnership Ltd have been appointed to produce a Below Ground Drainage Strategy and Flood Risk Assessment to support a detailed planning application for the development at The Hall School, 23 Crossfield Rd, London NW3 4NU.

Two

Existing Site

2.1

The Hall School is located in South Hampstead, London, and lies within the London Borough of Camden (LBC). The National Grid reference for the site is 526932E, 184533N. (Refer to Figure 1 for the site location map.)

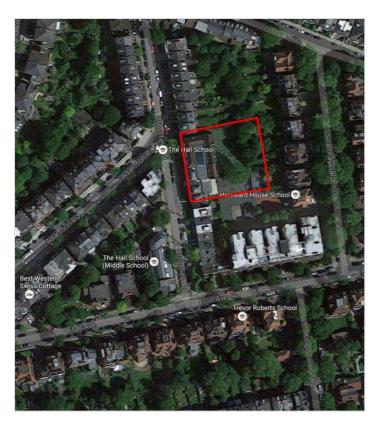


Figure 1 – Site Location Plan (Microsoft product screen shot reprinted with permission from Microsoft Corporation)

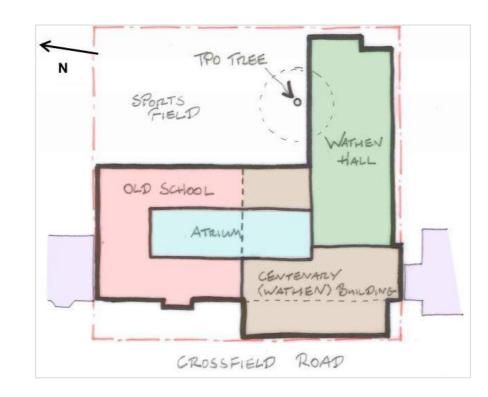


Figure 2 – Existing Buildings

2.2

The existing site comprises of existing school buildings (of varying ages). Namely the 'Old School', 'Wathen Hall', 'Centenary' (Wathen) Building' and the main 'Atrium'. Refer to Figure 2 above which shows the existing arrangement.

2.3

The existing site also comprises of an external play space to the rear of the 'Old School' which is primarily covered by a multi-use games area (MUGA). An existing London plane tree is located adjacent to the Wathen Hall building, which is subject to a Tree Preservation Order (TPO) and is to be retained as part of the proposed scheme.

2.4

Pedestrian access to the site is via Crossfield Road. The entire site is approximately 2,180m² and is considered to be 100% impermeable in the existing state.

2.5

A topographic survey has been completed by Metrix Surveys Ltd in October 2015; this can be found in Appendix A. The site broadly consists of a shallow slope from northwest to southeast, with the external playing space being approximately 1.5m below the level of Crossfield Road.

2.6

A ground investigation report was been prepared by GEA Ltd in August 2016, refer to Appendix B for borehole log extracts. Boreholes between 5 & 25m below ground level (bgl) were undertaken as part of the survey works. These found ground conditions to be Made Ground (general depth of made ground was found to be 1-4m bgl) with underlying London Clay, which extended the full extent of the 25m deep boreholes. British Geological Survey (BGS) maps show that the clay may extend to a depth of up to 95m bgl.

Ground water seepage was encountered on site (approximately 1-4m bgl); however, this was thought to be perched water.

Three

Existing Drainage

3.1

beneath Eton Avenue.

3.2

A CCTV survey of the existing below ground drainage has been conducted on the site which demonstrates the existing property drains via two existing combined water connections at lower ground floor level. One connection is for the existing older retained building and the other connection is for the buildings which are being demolished and replaced. Refer to Appendix D for the CCTV survey report plan.

3.3

The surface water runoff rates for the existing site have been calculated using the Modified Rational Method equation below (based on CIRIA C697):

Q = 2.78.C.i.A

Where Q = Existing peak runoff (l/s), C = non-dimensional runoff coefficient=1,*i* = Rainfall intensity and A = total catchment area being drained

The existing surface water run-off rate associated with the demolished and reconstructed building has been calculated as follows, based on an area of 830m² and a rainfall intensity of 50mm/hr.

1 of 6

Q = 2.78 x 1 x 50mm/hr x 0.083

Q Total = 11.5 l/s

Public sewer records have been obtained from Thames Water and are included in Appendix C. Sewer records show that the offsite sewer network is combined (sewers carry both foul and surface water flows). Records show that a 300mm diameter combined water sewer is located in Crossfield Road, which drains towards the 1194x762mm sewer which runs

Elliott Wood Partnership Ltd

If considering the whole site (which includes the existing old retained building and MUGA), the surface water runoff rate has been calculated as follows, based on an area of 2,180m² and a rainfall intensity of 50mm/hr.

$Q = 2.78 \times 1 \times 50 \text{ mm/hr} \times 0.218$

Q Total = 30.3 l/s

Four

Proposed Development

4.1

The project involves the redevelopment of the school site, retaining the early school buildings but demolishing and replacing subsequent additions. The front elevation to the new extension will be sympathetic in size and treatment to the retained fabric, with additional studio and classroom space provided in place of the existing hall at the rear of the site.

Five

Proposed Drainage Strategy

5.1

The surface water drainage strategy for the site has been considered in line with London Plan Policies 5.12 (Flood Risk Management) and 5.13 (Sustainable Drainage). The following drainage hierarchy has therefore been considered:

- Store rainwater for later use 1.
- 2. Use infiltration techniques, such as porous surfaces in non-clay areas
- 3. Attenuate rainwater in ponds or open water features for gradual release
- Attenuate rainwater by storing in tanks or sealed water features 4 for gradual release
- Discharge rainwater direct to a watercourse 5.
- 6. Discharge rainwater to a surface water sewer/drain
- 7. Discharge rainwater to the combined sewer.

5.2

Drainage via infiltration has been considered for the development however following a review of the ground conditions (i.e. underlying clay) it is considered that soakaways are not viable for this project.

5.3

External space on site is limited, as such, attenuation within ponds or open water features is not considered to be feasible.

5.4

There are no nearby accessible water courses and the existing Thames Water sewer network in the vicinity is combined use.

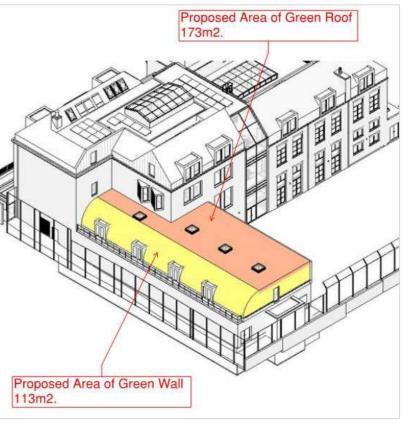
5.5

Considering the above, the foul and surface water generated by the development will aim to re-use the existing gravity connections from the development. Ultimately discharging to the Thames Water combined sewer beneath Crossfield Road.

5.6

For this development, 62% of the site consists of the existing old retained building and existing MUGA which drain via a separate combined water outlet. The remaining 38% of the site contains buildings which are to be demolished and reconstructed.

5.7


When considering the existing buildings to be retained, it is not considered feasible to implement a restriction on surface water run-off, due to the extreme complexities associated with separating the existing drainage network on site (in order to install the appropriate flow controls and attenuation devices).

5.8

When considering the new build element of the development, it is again not considered feasible to restrict run-off via below ground attenuation devices. It is not considered viable to install a tank underneath the existing MUGA due to the damage it would cause, the implications with the TPO of the London Plane Tree and it is considered unlikely that drainage would be able to discharge via gravity this way. Surface water would therefore require pumping, which is not deemed feasible, as this would increase the flood risk to the building.

5.9

In light of the above, alternative solutions for restricting run-off from the development areas have been explored. Where possible, a green roof has been introduced (over the Wathen Hall building), covering 173m² of roof area, which is indicated in orange on Figure 3 below). A green wall system is also proposed in areas shown in yellow, which equates to approximately 113m². Refer to the Architects general arrangement drawings and building elevations for the extents of the green roof and green wall proposed.

5.10

The above proposals have been discussed previously with both Thames Water and the Lead Local Flood Authority (refer to Appendix E for previous correspondence with Thames Water).

elliottwood

engineering a better society

Figure 3 – Proposed green roof and green wall extents

5.11

In summary, Thames Water were previously satisfied with the surface water proposals at the development site and the run-off restrictions achieved by installing the green roof system. It should be noted that since the time of the discussions with Thames Water the green roof area has increased from 163m² to 173m². Refer to Appendix F for the Microdrainage calculations for the site pre-development and post-development for the area that the green roof covers.

5.12

In conjunction with the above, low flow water efficient appliances will be specified as part of the new development in order to reduce water consumption. These will be specified by the project M&E Engineer.

5.13

The evaluation of SuDS devices is summarised in the table below:

SuDS Technique	Y/N	Comment
Green Roofs	Y	Green roofs will be incorporated within the scheme. Refer to the Architect's drawings for location and extents. Run- off restrictions achieved from the green roof system have been reviewed with Thames Water who are satisfied with the proposals.
Basins and ponds	N	External space on site is limited, attenuation within ponds or open water features is not considered to be feasible.
Filter strips and swales	N	Filter strips and swales are not appropriate due to unsuitable ground conditions.
Infiltration devices	N	Infiltration is not deemed feasible for this site as the existing ground conditions are not conducive to infiltration techniques.
Tanked systems	N	When considering the existing buildings to be retained, it is not considered feasible to implement a restriction on surface water run-off – refer to section 5.8 of this report.
		When considering the new build element of the development, it is again not considered feasible to restrict run-off via below ground attenuation devices. It is not considered viable to install a tank underneath the existing MUGA due to the damage it would cause, the implications with the TPO of the London Plane Tree and it is considered unlikely that drainage would be able to discharge via gravity this way. Surface water would therefore require pumping, which is not deemed feasible, as this would increase the flood risk to the building.
		The green roof and green wall specified are deemed to be a more appropriate form of SuDS device in this instance.

Six

Maintenance Requirements

6.1

All SuDS devices will be maintained by the property owner for the lifetime of the development in accordance with the SuDS Manual as summarised below:

Green Roofs:

Maintenance Schedule	Required Action	Recommended Frequency
	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability.	Annually and after severe storms
Regular Inspections	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e. year one), replace dead plants as required.	Monthly (but usually the responsibility of manufacturer)
Regular	Post establishment, replace dead plants as required (where >5% of coverage)	Annually (in Autumn)
maintenance	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required – clippings should be removed and allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled.	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Gullies:

leaf fall in the autumn.

Drainage pipes, manholes & silt traps:

Inspect manholes & silt traps for build-up of silt and general debris (once a year, preferably after leaf fall in the autumn). If silt/debris is building up then clean with jetting lorry / gully sucker and inspect pipe - repeat cleaning if required. If the pipes to be jetted are plastic then a high flow, low pressure setting should be used so that the pipes are not damaged.

Unusual / unresolved problems:

If the drainage system is still holding water following cleaning with a jetter, or the jetting of the system removes excessive amounts of debris this may indicate greater issues within the system. A CCTV survey is likely to be required and further advice should be sought from a drainage engineer.

Seven

Flood Risk Policy

7.1

Camden Strategic Flood Risk Assessment - The LBC Strategic Flood Risk Assessment (SFRA) was completed by URS in July 2004. This report aims to provide a reference and policy document to inform the local development framework and any subsequent plans.

7.2

Sequential Test and Exception Test - The Sequential and Exception Tests should be applied when choosing the location of new development and the layout of the development site. The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding. The Exception Test is utilised if no suitable development areas can be found in low risk areas. As the proposed development is located within Flood Zone 1, both the sequential test and the exception test are not required.

elliottwood

Inspection and removal of debris from silt trap once a year; preferably after

Eight

Flooding from Rivers and Sea

8.1

Flood Zone information published by GOV.uk shows that the proposed school site lies within Flood Risk Zone 1 (low risk). Sites within Flood Zone 1 have a chance of flooding of less than 1 in 1000 years (0.1%) due to coastal or river flooding. The flood risk in the surrounding area can be seen in Figure 4.

8.2

A review of the Flood Maps found within the LBC SFRA confirms that this site is located within Flood Zone 1, and as noted within the LBC SFRA, no historic flooding has occurred within the borough as a result of fluvial or tidal sources.

8.3

After review of the relevant information this development is considered to be at low risk of flooding from rivers and seas.

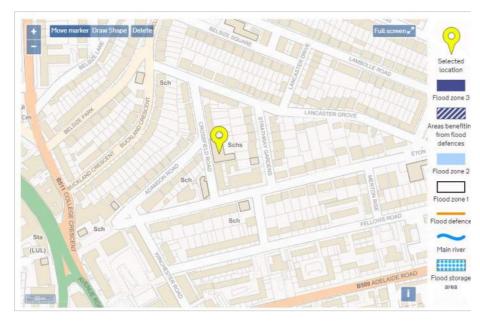


Figure 4 – Flood Zones in Surrounding Area (GOV.uk)

Flooding from Surface Water

8.4

Overland rainwater flows occur when the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded. The extents of overland flooding will depend upon the rainfall event, the degree of saturation of the soil, the permeability of soils and the topography of the site.

8.5

Following review of the GOV.uk surface water map (refer to Figure 5), this site is considered to be at very low risk of flooding from overland flow i.e. less than 1 in 1000 chance of flooding any given year. The site is also shown to be located in a low risk area in the LBC SFRA 'Updated Flood Maps for Surface Water Flooding' map (uFMfSW) as shown in Figure 6.

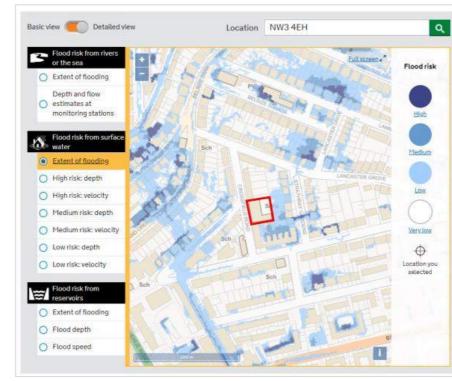


Figure 5 – Risk of surface water flooding (GOV.uk)

Figure 6 – LBC SFRA Figure 3v uFMfSW)

8.6

In general the levels along the western boundary of the site are above those along the pavement of Crossfield Road. Therefore surface water within the road will ultimately flow away from the site, towards Eton Avenue, discharging into local highway gullies. Refer to Appendix A for the site topographical survey.

8.7

After review of the relevant information this development is considered to be at low risk of flooding from surface water.

Flooding from Sewers

8.8

Public sewer records have been obtained from Thames Water and are included in Appendix C. Sewer records show that the offsite sewer network is combined (sewers carry both foul and surface water flows). Records show that a 300mm diameter combined water sewer is located in Crossfield Road.

8.9

Thames Water are responsible for operating and maintaining their sewer infrastructure, therefore the likelihood of sewer surcharging is expected to be low.

engineering elliottwood a better society ium (1 in 100 year Low (1 in 1000 year) Very Low (<1 in 1000 year

8.10

The LBC SFRA shows that the site is located within an area which has had one reported incidence of internal sewer flooding. Refer to Figure 7 for an extract of the SFRA 'DG5 Internal Sewer Flooding' map.

8.11

The LBC SFRA also shows that the site is located outside of areas which have previously had reported issues as a result of external sewer flooding. Refer to Figure 8 for an extract of the SFRA 'DG5 External Sewer Flooding' map.

8.12

All new drainage on site will be designed to protect the local drainage network against public sewer surcharge.

8.13

After review of the relevant information this development is considered to be at **low risk** of flooding from sewers.

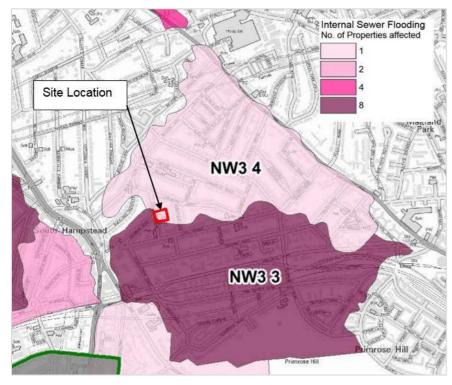


Figure 7 – LBC SFRA DG5 Internal Sewer Flooding Map

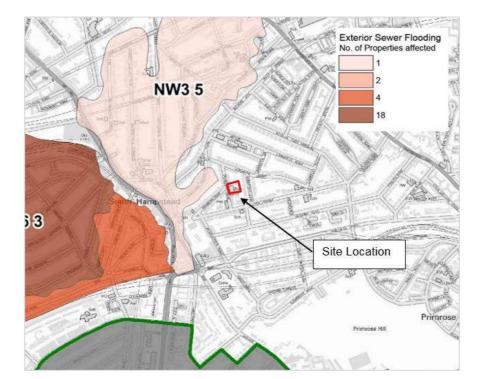


Figure 8 – LBC SFRA DG5 External Sewer Flooding Map

Flooding from Groundwater

8.14

Groundwater flooding can occur following an extended prolonged period of low intensity rainfall. The future risk from this source is more uncertain than surface water as the climate change predictions indicate that although sea levels will rise, thus possibly raising groundwater levels, overall summer rainfall will decrease, therefore having a long-term effect of lowering the groundwater levels. However, long periods of wet weather are predicted to increase, and these are the type of weather patterns that can cause groundwater flooding to occur.

8.15

A Ground investigation report has been prepared by GEA Ltd in August 2016. Boreholes between 5 & 25m below ground level (bgl) were undertaken as part of the survey works. The boreholes found the ground conditions to be Made Ground (general depth of made ground was found to be 1-4m bgl) with underlying London Clay, which extended the full extent of the 25m deep borehole. British Geological Survey (BGS) maps show that the clay may extend to a depth of up to 95m bgl.

8.16

Ground water seepage was encountered on site (approximately 1-4m bgl); however, this was thought to be perched water, refer to Appendix B for the SI Borehole Logs. Data from BGS indicates that the continuous standing groundwater level is approximately 90m below ground level.

8.17

The EA does not have a from groundwater.

8.18

The LBC SFRA shows areas within the borough that are susceptible to elevated ground water (refer to Figure 9); the development site is not located within one of these areas.

8.19

The site itself and majority of the surrounding area is paved which reduces the risk of ground water at the surface. Flooding due to ground water elsewhere in the area would follow localised flow paths, similar to those shown on the GOV.uk surface water flood risk map, and would then discharge into the local sewer system.

8.20

After review of the relevant information this development is considered to be at **low risk** of flooding from groundwater.

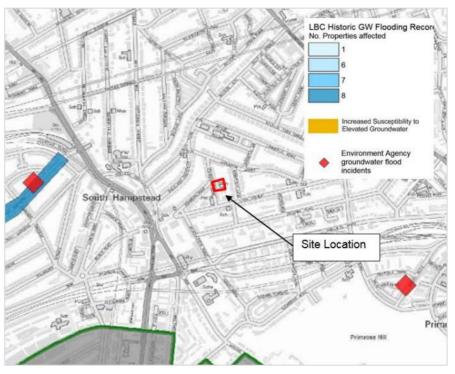


Figure 9 – LBC SFRA Increased Susceptibility to Elevated Groundwater Map

elliottwood

The EA does not have any historic evidence of flooding in the area arising

Flooding from Artificial Water Bodies

8.21

The closest watercourses to the site are the Hampstead Ponds (which are located approximately 1,250m north of the site) and the Regents Canal (which is located approximately 1,350m south of the site). Refer to Figure 10 which shows the 'Risk of Flooding from Reservoirs' map found on the EA website.

8.22

The LBC SFRA confirms that no flooding incidents associated with the Regents Canal have been recorded within the borough, and that the risk of flooding as a result of overtopping or breaching of the canal is considered to be low.

8.23

The LBC SFRA also notes that inspection of the Hampstead Ponds is carried out as required under the Reservoirs Act 1975, routine maintenance is carried out as and when required.

8.24

After review of the relevant information this development is considered to be at **low risk** of flooding from artificial water bodies.

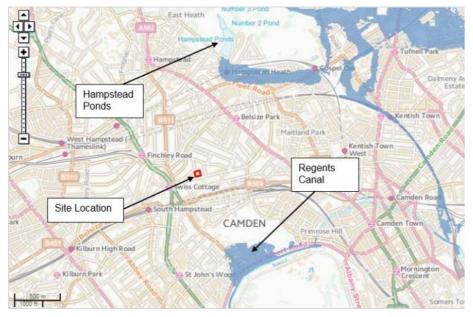


Figure 10 – Risk of Flooding from Reservoirs Map(Contains Environment Agency information © Environment Agency and/or database rights. Based on information © Local Authorities)

Flood Risk Summary

8.25

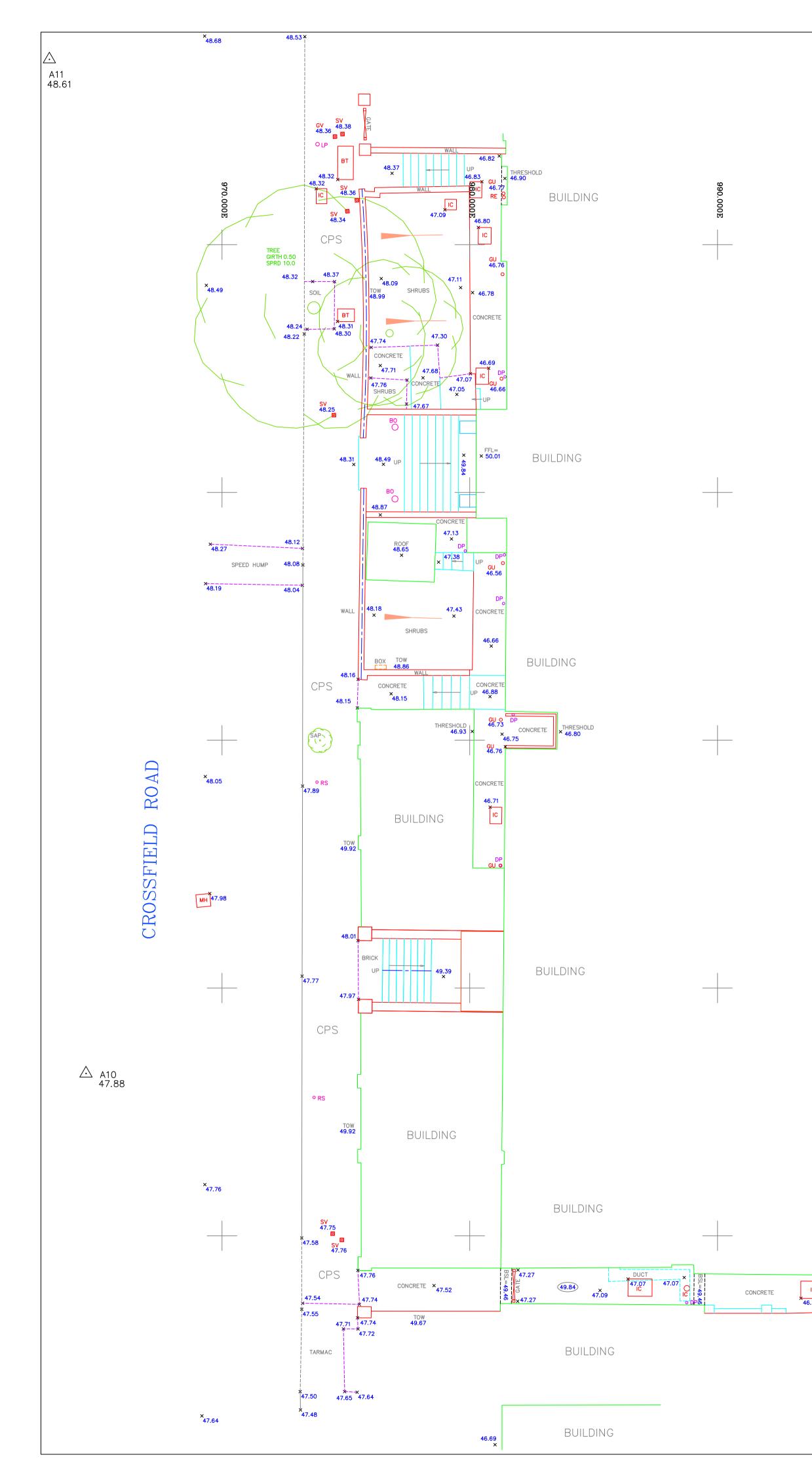
A review of all potential sources of flooding has found the site be at low. The new proposed drainage network should ensure that the building remains safe from flooding in the event of a localised drainage failure. In addition, levels across the site should ensure that surface water is directed away from building entrances.

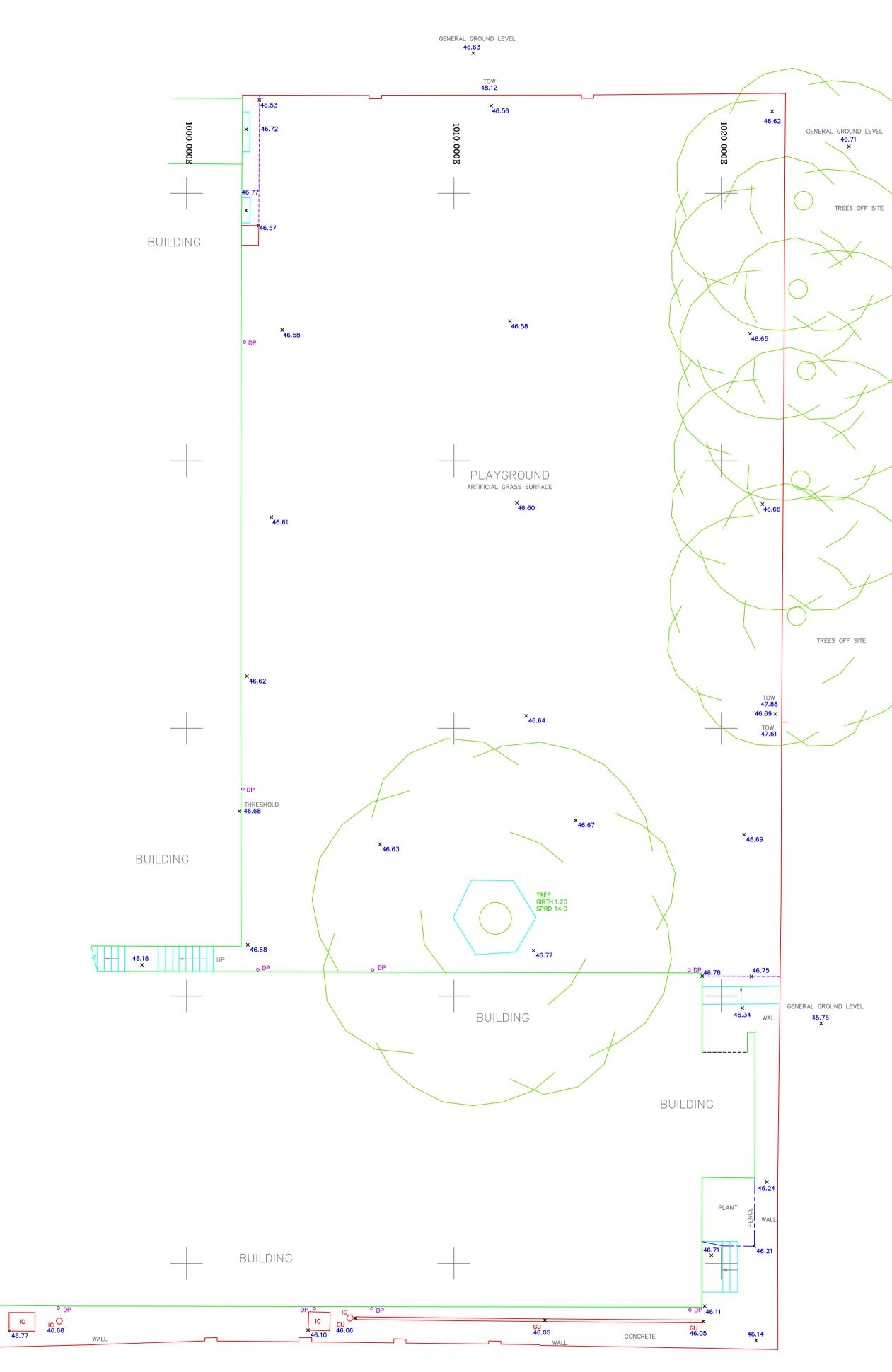
elliottwood

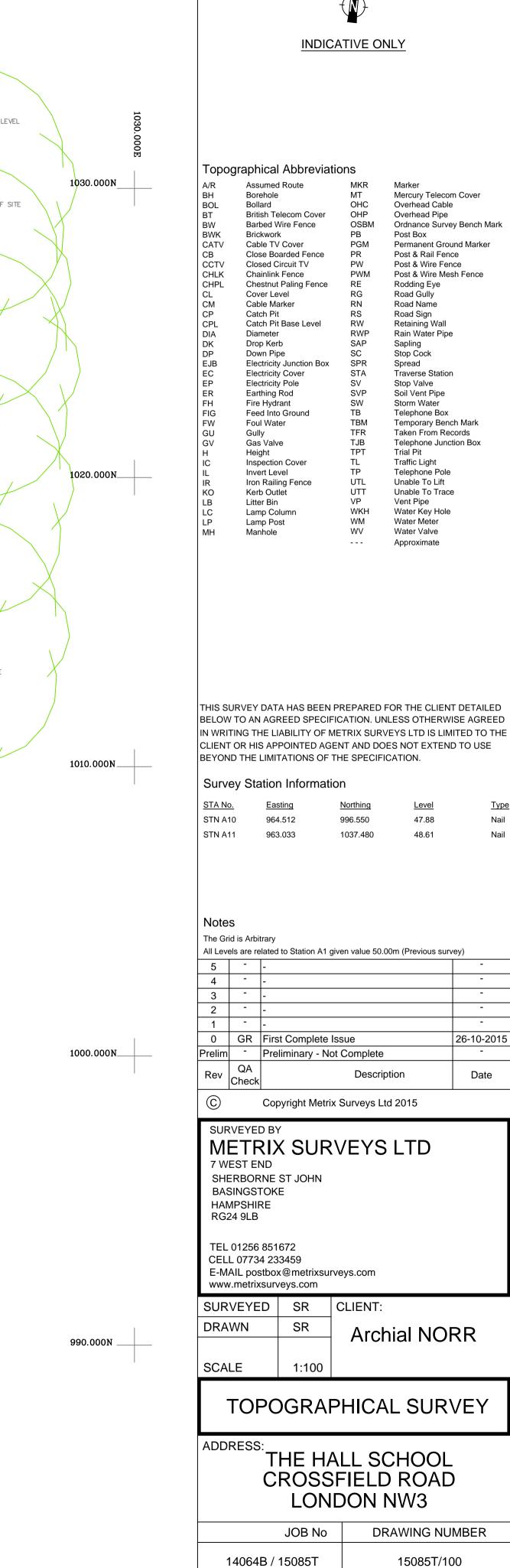
engineering a better **society**

6 of 6 Elliott Wood Partnership Ltd

Appendices


engineering a better society


A Topographic Survey


elliottwood

engineering a better **society**

A Elliott Wood Partnership Ltd

A1 Sheet - 841mm X 594mm

B Site Investigation – Borehole Logs

elliottwood

engineering a better **society**

B Elliott Wood Partnership Ltd

	Associates				_	Ware SG12 7QE	The Hall School, 23 Crossfield Street, London NW3 4NU	BH1
Boring Metho	d		Casing [Diameter	Ground Level (mOD)		Client	Job Number
	Cable Percussion	Dej 2.0	pth 00	Diameter 150	-		The Hall School	J15302
Rig		Location				Dates	Engineer	Sheet
	526946.00E 184515.00N		28/	/10/2015	Elliott Wood	Sheet 1 o		
Depth	Sample / Tests	Casing	Water	Field Records	Level	Depth (m)	Description	Legend
(m)	Sample / Tests	Depth (m)	Depth (m)	Field Records	(mOD)	(Thickness) (0.10)	Astro Turf surface over foam underlay and asphalt	Legend
).20	D1						Lean-mix concrete over stone chippings	
).30).50	D2 B3					-	Asphalt Made Ground (brownish grey silty clay with rootlets, gravel,	/
).75	D4						brick, coal and concrete fragments)	
						_ (1.05)		
L.20 - 1.65	B5					-		
L.20 - 1.65	SPT (C)N=11	1.00		N=11		_ 1.35	Medium to firm fissured brown silty CLAY with pockets of	
				(1,2/2,2,3,4)		_	orange-brown silt and fine sand and fine selenite, has blocky	
1.75	D6					-	fissuring.	××
2.00 - 2.45	U7					(1.65)		××
						È (1.00)		××
						-		××
2.75	D8					E		××
3.00 - 3.45	D9					3.00	Stiff high strength locally fissured brown silty laminated CLAY	××
3.00 - 3.45	SPT (S)N=15	2.00		N=15 (1,2/3,3,4,5)		-	with partings and pockets of orange-brown and grey silt and	××
				(1,2,3,3,4,3)		-	fine to coarse selenite crystals.	××
3.75	D10					E		××
4.00 - 4.45	U11					-		
						-		××
						E		×— —×
4 75	012					-		
4.75	D12					-		^— —×
5.00 - 5.45 5.00 - 5.45	D13 SPT (S)N=16	2.00		N=16		E		×
				(1,2/3,3,4,6)		-		××
						-		××
						E		××
6.00	D14					-		××
						(6.50)		××
6.50 - 6.95	U15					E		××
						-		××
						E		××
						F		××
7.50	D16					F		××
						E		××
8.00 - 8.45	D17					E_		××
3.00 - 8.45	SPT (S)N=19	2.00		N=19		F		××
				(4,3/4,5,5,5)		E		××
						F		x
						F		×
9.00	D18					E	abundant partings of orange-brown silty sand.	
						F		
9.50 - 9.95	U19					9.50	Very stiff high strength to very high strength dark grey silty	
						E	CLAY, locally very laminated with fine selenite, occasional	×_×_×
							white shells, occasional pale grey veins and white Continued on Next Page	
Remarks	•	•				•	Scale	Logged
1 hrs coost m	wing rig and all a	uinment t	to borok				(approx)	By
	oving rig and all ec ction pit excavated						1:50	ML
	laystone between							1

GEA	Geotechnical & Environmental Associates					Widbury Barn Widbury Hill Ware SG12 7QE	Site The Hall School, 23 Crossfield Street, London NW3 4NU	Bore Num BH1	ber	
Boring Method	1 		Casing [Diameter	Ground	Level (mOD)	Client	Job		-
Dismantlable C	able Percussion	Depth Diameter		-		The Hall School	Num J1530			
Rig		2.00 150			Dates	Engineer	Shee		-	
		Location 526946.00E 184515.00N					Sheet		3	
Depth	Denth Coring Wotor			28/ Level	'10/2015 Depth (m)	Elliott Wood				
(m)	Sample / Tests	Depth (m)		Field Records	(mOD)	(Thickness)	Description	Leger	nd ¥	
10.50 11.00 - 11.45	D20 D21						foraminifera.		치치치	
11.00 - 11.45	SPT (S)N=24	2.00		N=24 (3,4/5,6,6,7)						
12.50 - 12.95	U23					- - - - - - - - - - -			xi xi xi x	
13.50	D24					- - - - -			—×	
14.00 - 14.45 14.00 - 14.45	D25 SPT (S)N=27	2.00		N=27 (3,5/5,6,7,9)					ki ki ki k	
15.00	D26					(15.50) 				
15.50 - 15.95	U27									
16.50	D28									
17.00 - 17.45 17.00 - 17.45	D29 SPT (S)N=33	2.00		N=33 (14,15/11,8,6,8)			claystone at 17.00 m			
18.00	D30								IXI IXI	
18.50 - 18.95	U31								<u>ki ki ki ki</u>	
19.50	D32									
20.00 - 20.45	D33						Continued on Next Page			-
Remarks 4 hrs spent mo	ving rig and all ec	uipment	to boreho	le location.			Scale (appro 1:50	x) By ML	≥d	
Services inspec Chiselling on cl 5hrs spent rem	ition pit excavated aystone between oving rig and equ nonitoring standp	d from GL 17.0 m to ipment o	to 1.2 m o 17.30 m ff of site.	for 1 hr. for 30 mins.			1.50			

GZ	Geotechnical & Environmental Associates					Widbury Barn Widbury Hill Ware SG12 7QE	Site The Hall School, 23 Crossfield Street, London NW3 4NU	Borehole Number BH1	
Boring Method			Casing	Diameter	Ground	Level (mOD) Client		Job	
	able Percussion	Dej		Diameter	Croand			Number	
Rig	able Percussion	2.0		150	-		The Hall School	J15302	
		Location			Dates I		Engineer	Sheet	
		526946.0	OE 1845	15.00N	28/	10/2015	Elliott Wood	Sheet 3 of 3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
20.00 - 20.45	SPT (S)N=34	2.00	,	N=34				×_^×	
				(5,6/7,8,8,11)		-		××	
						-		××	
						-		××	
21.00	D34					-			
						-		××	
21.50 - 21.95	U35					-		××	
						-		××	
						=		××	
								××	
22.50	D36					 -		××	
						-		××	
23.00 - 23.45	D37	2.00		N-25		 -		××	
23.00 - 23.45	SPT (S)N=35	2.00		N=35 (5,6/8,8,9,10)		_		××	
						_		××	
						-	claystone at 23.70 m	××	
24.00	D38					-		××	
						-		××	
24.55 - 25.00	D40					- -		××	
24.55 - 25.00	SPT (S)N=37	2.00		N=37		-		×× ××	
24.55 - 25.00	U39			(7,6/7,8,9,13)		25.00	Complete at 25.000m	<u>^×</u>	
						-			
						-			
						-			
						_			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						-			
						- -			
						-			
							Scale	Logged	
Remarks							Scale (approx		
	ving rig and all eq						1:50	ML	
Services inspec	tion pit excavated								
	aystone between	17.0 m to	17 30 m	for 30 mins					

	Associates				Ware SG12 7QE		The Hall School, 23 Crossfield Street, London NW3 4NU	BH2	
Boring Metho	d	Casing Diameter			Ground Level (mOD)		Client	Job	
Drive-in Window Sampler		De	pth	Diameter	1		The Hall School	Number J15302	
		Location				Dates	Engineer	Sheet	
		526939.0	DOE 18453	39.00N			Elliott Wood	Sheet 1 o	
Depth	Sample / Tests	Casing	Water	Field Records	Level	Depth (m)	Description	Legend	
(m)		Depth (m)	Depth (m)		(mOD)	(Thickness) - (0.20)	Concrete		
						- (0.20) - (0.20) - (0.20) - 0.40	Made Ground (dark brown and black silty sandy gravel with		
							ash) Made Ground (brown silty clay with gravel and fine brick fragments)		
						_ (2.00)			
2.00	D1					 			
				Seepage		- 2.40 - (0.40) - 2.80	Made Ground (crushed brick and gravel)		
						 (1.00)	Made Ground (greyish brown loosely cemented gravel and brick)		
						- 3.80			
1.00	D2					 	Firm fissured locally very thinly laminated silty CLAY with partings of bluish grey silt occasional pockets of dark orange brown fine sand, coarse selenite and fine white shells	· <u>× </u>	
4.50	D3					(1.50)			
5.00	D4					 - - 5.30			
						 	Complete at 5.300m		
						- - 			
						- - -			
						- - -			
						_ _ _ _			
						- - - -			
						 - - -			
						- 			
						- - -			
Remarks						- -	Scale	Logged	
Borehole adva	nced through the monitoring standp			at a depth of 1.80 i	m.		(approx) 1:50		

g Z	Geotechnical & Environmental Associates	ieotechnical & Widbury Barn nvironmental Widbury Hill ssociates SG12 7QE The Hal		The Hall School, 23 Crossfield Street, London NW3 4NU	Number BH3			
Boring Metho	d	Casing Diameter			Ground Level (mOD)		Client	Job
Drive-in Windo	ow Sampler	Depth Diameter				The Hall School	Number J15302	
		Location			Dates	Engineer	Sheet	
		526964.00E 184508.00N					Elliott Wood	Sheet 1 o
Depth		Casing	Water		30/ Level	10/2015 Depth (m)		Legend
(m)	Sample / Tests	Depth (m)	Depth (m)	Field Records	(mOD)	(Thickness) (0,15)	Description Concrete with 6 mm reinforcement	Legend
						- (<u>8:15</u>) -	Made Ground (dark brown silty clay with gravel, decayed	
							roots, brick and coal fragments)	
						(1.05)		
0.90	D1					 		
				Seepage		(<u>1.20</u>)	Made Ground (brown silty clay with gravel)	
1.60	D2					- 1.40 	Soft rapidly becoming firm fissured brown CLAY with bluish grey veins, occasional small pockets of orange-brown fine	
						- - -	sand and fine selenite	
						-		
						-		
2.60	D3					 		<u></u>
						_		
						-		
3.60	D4					- (4.60)		<u> </u>
						-		
						- - -	T	
4.60	D5					-	coarse selenite and pockets of pale grey silt below 4.50 m	
						_		
						-		
- 00						-		
5.60	D6					-		
						6.00	Complete at 6.000m	
						<u> </u>		
						-		
						-		
						-		
						L_ 		
						-		
						-		
						⊢ − ━		
						- -		
Remarks							Scale	Logged
					70		(approx)	Ву
Borehole adva	inced through the	base of Ti	rial Pit No	2 at a depth of 0.7	70 m.		1:50	ML
								1

] =7 4	Geotechnical & Environmental Associates					Widbury Hill Ware	Site The Hall School, 23 Crossfield Street, London NW3 4NU	Numbe
ring Metho		I	Casing D	:	Crowned	SG12 7QE		Job
Drive-in Window Sampler		Casing Diameter Depth Diameter		Ground Level (mOD)			Number	
							The Hall School	J15302
		Location					Engineer	Sheet 1
Danth			DOE 18452	0.00N		10/2015 Depth (m)	Elliott Wood	Sileet 1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thickness)	Description	Legend
						(8.28)	Concrete Made Ground (brown silty clay with gravel and brick	00000000
						- (0.80)	fragments)	
						[(0.80) [
						- 1.00	Firm fissured locally very thinly laminated silty CLAY with	
							partings of bluish grey silt occasional pockets of dark orange- brown fine sand, coarse selenite and fine white shells	<u> </u>
						-	brown line sand, coarse selenite and line white shells	
								×
								×;
						-		<u>~</u>
						-		
						(4.00)		<u></u>
						E (×
								×
								×
								×
								×
						- 5.00	Complete at 5.000m	
						_		
						-		
						-		
						-		
						-		
						-		
						<u> </u>		
						F		
						-		
						-		
						F		
marks	1						Scale	Logged
	nonitoring stand		od in har	holo to a danth - f	F E 00		(approx)	Ву
Jundwater i	nomitoring standp	npe install	eu in bore	ehole to a depth of	5.00 m.		1:50	ML
								1

C Thames Water Sewer Records

elliottwood

engineering a better **society**

C Elliott Wood Partnership Ltd

Elliott Wood Partnership LLP 241

LONDON SW19 1SD

Search address supplied	The Hall School Charitable Trust 23 Crossfield Road London NW3 4NU

Your reference	2150206 The Hall School Hampstead

Our reference ALS/ALS Standard/2015_3055369

Search date

29 May 2015

You are now able to order your Asset Location Search requests online by visiting www.thameswater-propertysearches.co.uk

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T0845 070 9148Esearches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Search address supplied: The Hall School Charitable Trust, 23, Crossfield Road, London, NW3 4NU

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer

Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk

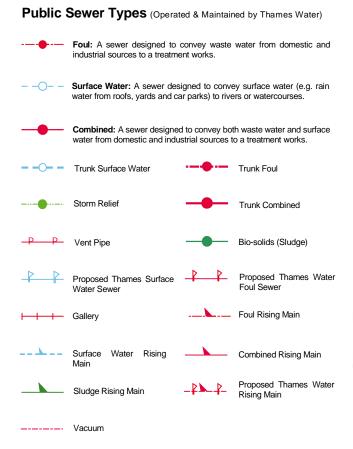
Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

NB. Levels quoted in metres Ordnance Newlyn Datum. Th	he value -9999.00 indicates that no survey information is available
---	---

Manhole Reference	Manhole Cover Level	Manhole Invert Level
17CC	n/a	n/a
17CB	n/a	n/a
7701	64.11	59.55
7601	n/a	n/a
75AI	n/a	n/a
7605	62.39	54.49
76CB	n/a	n/a
75BC	n/a	n/a
761A	n/a	n/a
8602	60.58	52.1
8702	n/a	n/a
86BD	n/a	n/a
86BC	n/a	n/a
87BB	n/a	n/a
87AJ	n/a	n/a
861B	n/a	n/a
861A	n/a	n/a
851D	n/a	n/a
86AB	n/a	n/a
8503	58.09	52.29
96AF	n/a	n/a
96AE	n/a	n/a
9601	n/a	n/a
9702	60.11	54.16
9703	60.69	54.89
07BJ	n/a	n/a
0601	n/a	n/a
0502	n/a	n/a
	n/a	n/a
0602		
0701	59.18	54.13
151A	n/a	n/a
941A	n/a	n/a
9401	n/a	n/a
941B	n/a	n/a
8401	n/a	n/a
74BA	0	0
9501	57.16	52.81
851A	n/a	n/a
851B	n/a	n/a
85BA	n/a	n/a
851C	n/a	n/a
7501	n/a	n/a
65CG	n/a	n/a
75BI	n/a	n/a
65CH	n/a	n/a
65CI	n/a	n/a
0501	57.19	n/a
8203	n/a	n/a
7301	54.25	52.42
7302	57.15	54.52
7304	n/a	n/a
9301	n/a	n/a
931A	n/a	n/a
021A	50.62	49.35
1301	n/a	n/a
The position of the apparatus shown on th	his plan is given without obligation and warranty an	d the accuracy cannot be guaranteed. Service pipes are no
	no plan lo grion manout obligation and manantin an	

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve
 Dam Chase
- Fitting
 Meter

Meter

X

4

Ξ

 \sim

<u>\</u>-/

O Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve Drop Pipe Ancillary

Outfall

Inlet

Undefined End

member of Property Insight on 0845 070 9148.

Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

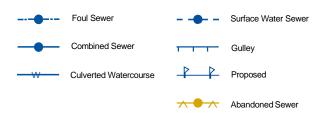
6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole

reference number and should not be taken as a measurement. If you are

unsure about any text or symbology present on the plan, please contact a

Other Symbols

Symbols used on maps which do not fall under other general categories

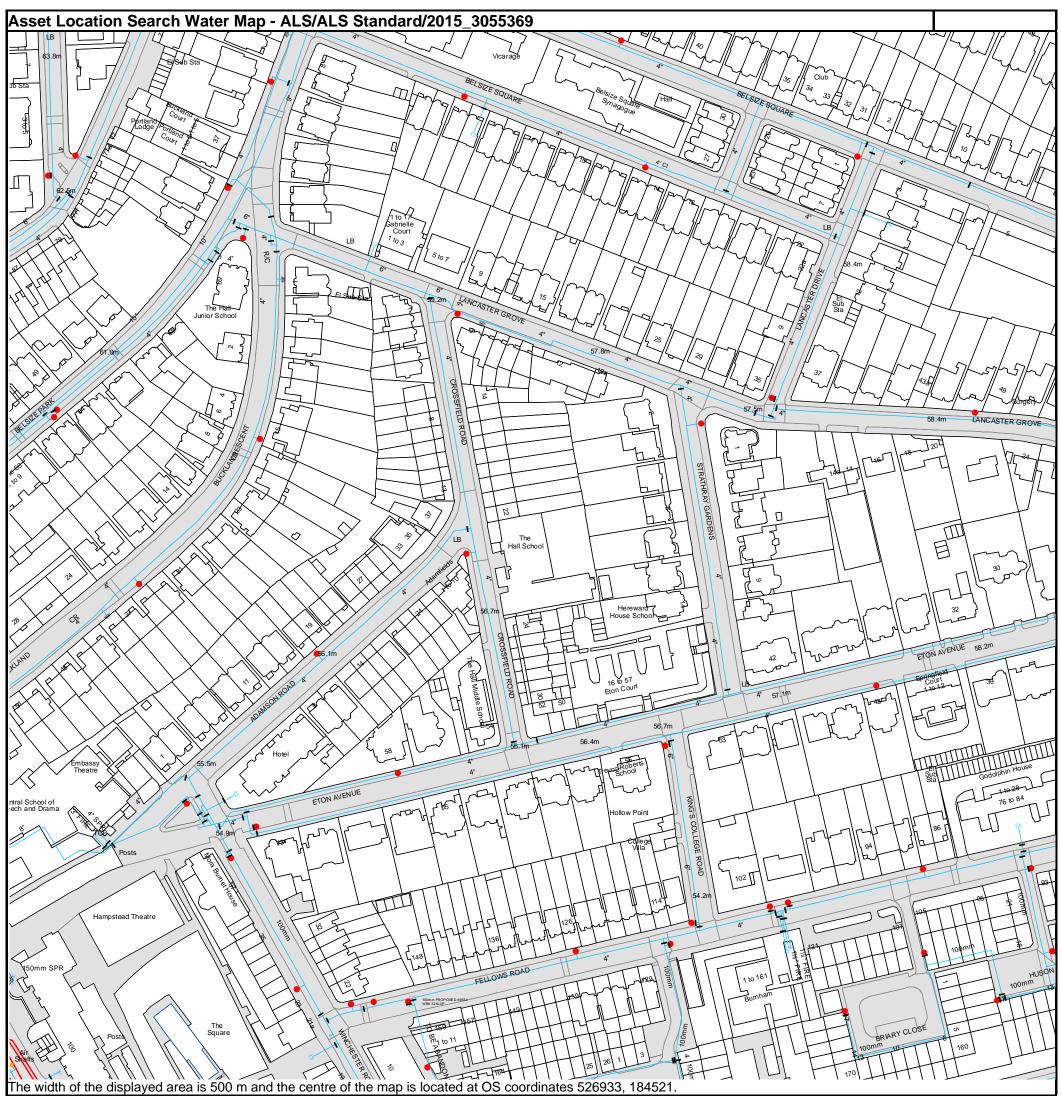

- ▲ / ▲ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement
Operational Site
Chamber
Tunnel
Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)


Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

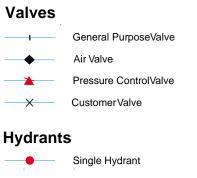
2) All measurements on the plans are metric.

- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.



ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)


- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- FIRE Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
 - Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
 - **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND			
Up to 300mm (12")	900mm (3')			
300mm - 600mm (12" - 24")	1100mm (3' 8")			
600mm and bigger (24" plus)	1200mm (4')			

Meters

_ _ _ _

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

 Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to him at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS.	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

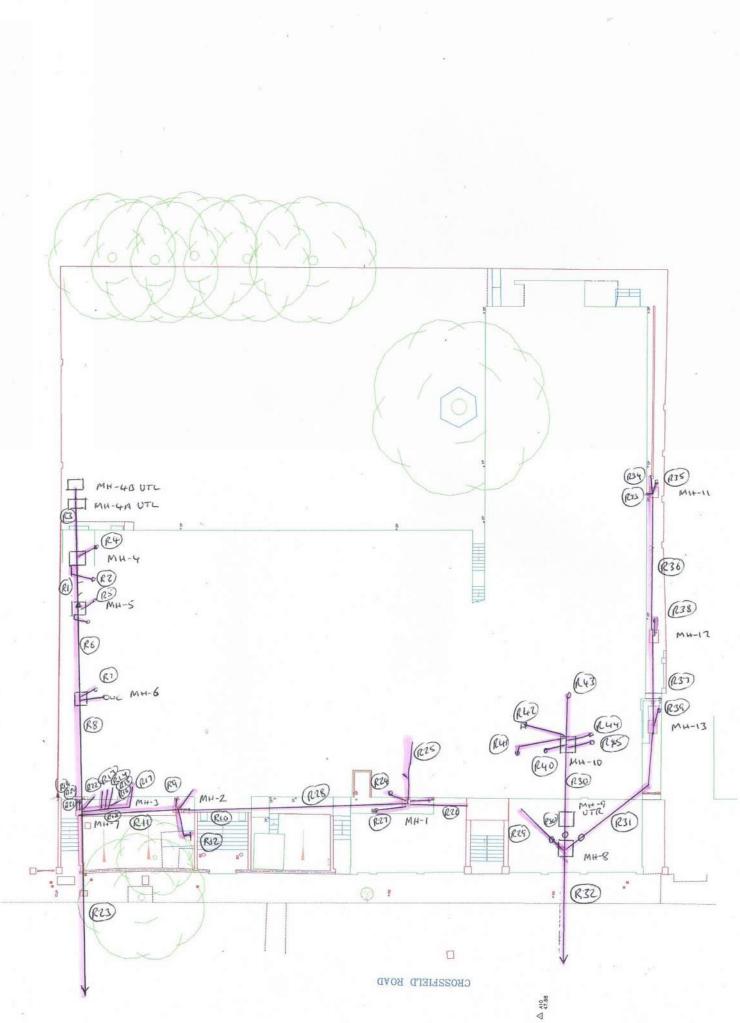
Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Email: <u>admin@tpos.co.uk</u>

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE


The Hall School 2190008 Flood Risk Assessment and Below Ground Drainage Statement

D CCTV Drainage Survey Plan

elliottwood

engineering a better **society**

D Elliott Wood Partnership Ltd

The Hall School 2190008 Flood Risk Assessment and Below Ground Drainage Statement

E Previous Correspondence with Thames Water

elliottwood

engineering a better **society**

E Elliott Wood Partnership Ltd

From: John Georgoulias <john.georgoulias@thameswater.co.uk> Sent: 08 February 2019 10:01 To: Keri Trimmer <k.trimmer@elliottwood.co.uk> Subject: THE HALL SCHOOL [Filed 08 Feb 2019 10:06]

Hi Keri,

Please find below our formal response sent to the Local Authority on 27th March 2018.

London Borough of Camden Camden Town Hall ArgyleOStreet Euston Road London WC1H 8EQ2027 March 201820

Our DTS Ref: 53960 Your Ref: 2016/6319/P - Disc of surface water

Dear Sir/Madam

Re: THE HALL SCHOOL, 23 CROSSFIELD ROAD, LONDON, NW3 4NT

Waste Comments

Thank you for consulting Thames Water for the discharge of matters relating to surface water. Thames Water confirm they are happy for the surface water condition referenced to be discharged based on the information submitted

Water Comments

Supplementary Comments

Further to discussions with Keri Trimmer from the Elliot Wood Partnership, Thames Water confirms that we are happy with the surface water proposals and as such agree to the discharge of the related condition.

Yours faithfully

Development Planning Department

Development Planning, Thames Water, Maple Lodge STW, Denham Way, Rickmansworth, WD3 9SQ <u>Tel:020</u> 3577 9998 Email: <u>devcon.team@thameswater.co.uk</u>

Kind regards

John Georgoulias

Developer Services – Thames Valley Regional Development Planning Lead Mobile 07747 645428 Landline 020 3577 9959 john.georgoulias@thameswater.co.uk

Maple Lodge Sewage Treatment Works, Denham Way, Rickamsworth, WD3 9SQ Find us online at <u>developers.thameswater.co.uk</u>

New site? Need network capacity information? Developers can make a pre-planning enquiry at thameswater.co.uk/preplanning The Hall School 2190008 Flood Risk Assessment and Below Ground Drainage Statement

F MicroDrainage Calculations

elliottwood

engineering a better **society**

F Elliott Wood Partnership Ltd

Retur Maximum I Time of Conc	GREEN SEWEH Pip F rn Peri Rainfa centrat 1 Sewaq ric Rur	R DES Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	Ch Ne IGN by Sign Cr. s STANDA .nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned to e Area 1	the the iter: ARD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: ha)	ia for nhole s Englar Min Des Min Mi Eevel S ram fo Time	8.1 <u>ied F</u> Sizes nd and Add F Min Max sign De Vel fc n Slop Soffits Dr Sto Area	STANDA STANDA Wales 'low / imum : imum : imum : pth for Autor e for	nal ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
S WITHOUT (STORM Return Maximum Time of Conc Foul	GREEN SEWEH Pip F rn Peri Rainfa centrat 1 Sewaq ric Rur	R DES Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	Ch Ne IGN by ign Cr: s STANDA .nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. essigned to e Area 1 Time A (mins) (the the iter: ARD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: ha)	d by k 201 <u>Modif</u> ia for nhole s Englar Min Des Min Mi Cevel S ram fo Time	8.1 <u>ied F</u> Sizes nd and Add F Min Max sign De Vel fc n Slop Soffits Dr Sto Area	STANDA STANDA Wales 'low / imum : imum : imum : pth for Autor e for	nal ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) 10 %) m) 0.20 m) 1.50 m) 1.20 s) 1.0
S WITHOUT (STORM Return Maximum Time of Conc Foul	GREEN SEWEH Pip F rn Peri Rainfa centrat 1 Sewaq ric Rur	R DES Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	Ch Ne IGN by ign Cr: s STANDA .nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. essigned to e Area 1 Time A (mins) (the the iter: ARD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: ha)	d by k 201 <u>Modif</u> ia for nhole s Englar Min Des Min Mi Cevel S ram fo Time	8.1 <u>ied F</u> Sizes nd and Add F Min Max sign De Vel fc n Slop Soffits Dr Sto Area	STANDA STANDA Wales 'low / imum : imum : imum : pth for Autor e for	nal ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) 10 %) m) 0.20 m) 1.50 m) 1.20 s) 1.0
S WITHOUT (STORM Return Maximum Time of Conc Foul	GREEN SEWEH Pip F rn Peri Rainfa centrat 1 Sewaq ric Rur	R DES Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	Ch Ne IGN by ign Cr: s STANDA .nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. essigned to e Area 1 Time A (mins) (the the iter: ARD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: ha)	d by k 201 <u>Modif</u> ia for nhole s Englar Min Des Min Mi Cevel S ram fo Time	8.1 <u>ied F</u> Sizes nd and Add F Min Max sign De Vel fc n Slop Soffits Dr Sto Area	STANDA STANDA Wales 'low / imum : imum : imum : pth for Autor e for	nal ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) 10 %) m) 0.20 m) 1.50 m) 1.20 s) 1.0
STORM Retur Maximum I Time of Conc Foul	SEWEF Pip F Rainfa centrat I Sewaç ric Rur	R DES Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	Ne IGN by Sign Cr. s STANDA Infall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned to Area 1 Time A (mins) (the the iter: aRD Ma odel - 100 .000 .430 100 .000 <	k 201 <u>Modif</u> ia for nhole S Englar Min Des Min Mi Level S ram fo Time	ied F Sizes Sizes and and Add F Min Max Sign De Vel fo n Slop Soffits Or Sto Area	rm STANDA Wales 'low / imum : imum : imum : pth for r Auto e for	ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) 10 %) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Retur Maximum I Time of Conc Foul	Pip F Rainfa centrat 1 Sewaq ric Rur	Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	IGN by ign Cr. s STANDA nfall Mo ears) (mm) 21. cio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned to e Area 1 Time A (mins) (the iter: RD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: (ha)	<u>Modif</u> ia for nhole s Englar Min Des Min Min Min Sevel S ram fo Time	ied F Sizes Sizes and and Add F Min Max Sign De Vel fo n Slop Soffits Or Sto Area	rm STANDA Wales 'low / imum : imum : imum : pth for r Auto e for	ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Retur Maximum I Time of Conc Foul	Pip F Rainfa centrat 1 Sewaq ric Rur	Des De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	s STANDA nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned to e Area 1 Time A (mins) (iter: RD Ma odel - 100 .000 .430 100 .000 .750 with I Diag: mea (ha)	ia for nhole s Englar Min Des Min Mi Eevel S ram fo Time	Sizes Sizes and and Add F Min Max Sign De Vel fo In Slop Soffits Or Sto Area	rm STANDA Wales 'low / imum : imum : imum : pth for r Auto e for	ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (bight (bight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Maximum : Time of Conc Foul	F rn Peri Rainfa centrat l Sewag ric Rur	De Size FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	s STANDA nfall Mo ears) (mm) 21. cio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned to e Area 1 Time A (mins) (ARD Ma 0del - 100 .000 .430 100 .000 .750 with I Diag: (ha)	nhole : Englar Min Des Min Mi Level S <u>ram fo</u> Time	Sizes Add F Min Max Sign De Vel fo n Slop Soffits Or Sto Area	STANDA Wales 'low / .imum i .imum i .i	Clim Backd Backd or Op o Des	rop He rop He timisa ign or	hange (eight (eight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Maximum : Time of Conc Foul	F rn Peri Rainfa centrat l Sewag ric Rur	FSR Rai iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	nfall Mo ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. oeff. 0. esigned t e Area 1 Time A (mins) (odel - 100 .000 .430 100 .000 .750 with I Diag: (ha)	Englar Min Des Min Mi Level S ram fc Time	nd and Add F Min Max sign De Vel fc n Slop coffits or Sto Area	Wales low / imum l imum l imum l opth for r Auto e for	Clim Backd Backd or Op o Des	rop He rop He timisa ign or	hange (eight (eight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Maximum : Time of Conc Foul	rn Peri Rainfa centrat l Sewag ric Rur	iod (ye M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	ears) (mm) 21. tio R 0. n/hr) nins) s/ha) 0. oeff. 0. esigned t e Area 1 Time A (mins) (100 .000 .430 100 .000 .750 with I Diag: (ha)	Min Des Min Mi Level S ram fc Time	Add F Min Max ign De Vel fo n Slop soffits or Sto Area	low / imum i imum i pth for Auto e for	Clim Backd Backd or Op o Des	rop He rop He timisa ign or	hange (eight (eight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Maximum : Time of Conc Foul	Rainfa centrat 1 Sewa <u>c</u> ric Rur	M5-60 Rat all (mm tion (m ge (1/s noff Cc De <u>Time</u>	(mm) 21. tio R 0. a/hr) nins) s/ha) 0. beff. 0. esigned to esigned to the Area 1 Time A (mins) (.000 .430 100 .000 .750 with I Diag: Yrea (ha)	Min Des Min Mi Level S ram fo Time	Min Max Jign De Vel fo n Slop soffits <u>or Sto</u> Area	imum i imum i pth for or Auto oe for	Backd Backd or Op o Des	rop He rop He timisa ign or	hange (eight (eight (ation (hly (m/	%) m) 0.20 m) 1.50 m) 1.20 s) 1.0
Time of Conc Foul	Rainfa centrat 1 Sewag ric Rur	Rat all (mm tion (n ge (1/s noff Cc De <u>Time</u>	tio R 0. n/hr) nins) s/ha) 0. beff. 0. esigned t <u>e Area 1</u> Time A (mins) (.430 100 30 M .000 .750 with I Diag: Trea (ha)	Min Des Min Mi Level S ram fo Time	Min Max Jign De Vel fo n Slop soffits <u>or Sto</u> Area	imum i imum i pth for or Auto oe for	Backd Backd or Op o Des	rop He rop He timisa ign or	eight (eight (ation (nly (m/	m) 0.20 m) 1.50 m) 1.20 s) 1.0
Time of Conc Foul	centrat l Sewa <u>c</u> ric Rur	all (mm tion (m ge (l/s noff Cc De <u>Time</u> (n/hr) nins) s/ha) 0. beff. 0. esigned t <u>e Area 1</u> Time A (mins) (100 30 M .000 .750 with I Diag: Trea (ha)	Min Des Min Mi Level S ram fo Time	Max Jign De Vel fo In Slop Soffits Dr Sto Area	imum i pth for ar Auto pe for	Backd or Op o Des	rop He timisa ign or	eight (ation (nly (m/	m) 1.50 m) 1.20 s) 1.0
Time of Conc Foul	centrat l Sewa <u>c</u> ric Rur	tion (m ge (l/s noff Cc De <u>Time</u>	nins) s/ha) 0. beff. 0. esigned w <u>e Area 1</u> Time A (mins) (30 N .000 .750 with I Diag: Trea (ha)	Min Mi Level S <u>ram fc</u> Time	Vel fo n Slop offits or Sto Area	e for	o Des	ign or	nly (m/	s) 1.0
	ric Rur	noff Cc De <u>Time</u> (beff. 0. esigned t <u>e Area 1</u> Time A (mins) (.750 with I Diag: (ha)	Mi Level S ram fo Time	n Slop Soffits Dr Sto Area	e for		-	-	
vorumetr		De <u>Time</u>	esigned a <u>e Area l</u> Time A (mins) (with I Diag: Area (ha)	Gevel S ram fo Time	offits or Sto Area		opul	ursarl	.011 (1:	A) JU
		<u>Time</u>	e Area I Time A (mins) (Diag: area (ha)	ram fo Time	or Sto Area					
		(Time A (mins) ((ha)	Time	Area	<u>orm</u>				
		((mins) ((ha)	-						
			0-4 0.	011	(miris)	(ha)					
		-	0 1 0		4-8	0.006					
				I							
		Total	Area Con	ntribu	ting (ł	ha) = (0.017				
		Tot	al Pipe	Volum	e (m³)	= 0.0	79				
					· · · · · · · · · · · · · · · · · · ·						
	<u>1</u>	Netwo	rk Desi	ign T	'able	for S	storm				
ength Fall (m) (m)	Slope (1:X)				ase (1/s)	k (mm)	HYD	DIA (mm)	Sect	ion Typ	e Auto Desio
									Pipe	/Condui	
									-		
		<u>N</u>	letwork	Resi	ults 1	<u> Table</u>					
									Vel	Cap	Flow
		(m)	(ha)	Flow	(l/s)	(l/s)	(1/	s)		(1/s)	(1/s)
					0.0	0.0		0.0	0.77	6.0	4.6 4.6
T TOO'OO	0.22	0.200	0.01/		0.0	0.0		0.0	0.//	0.0	4.0
5.	000 0.050 Rain (mm/hr) (s	000 0.050 100.0 Rain T.C. (mm/hr) (mins) 100.00 6.11	000 0.050 100.0 0.00 <u>N</u> Rain T.C. US/IL (mm/hr) (mins) (m) 100.00 6.11 9.000	000 0.050 100.0 0.000 0.000 <u>Network</u> Rain T.C. US/IL E I.Area (mm/hr) (mins) (m) (ha) 100.00 6.11 9.000 0.017	000 0.050 100.0 0.000 0.00 <u>Network Rest</u> Rain T.C. US/IL Σ I.Area Σ (mm/hr) (mins) (m) (ha) Flow 100.00 6.11 9.000 0.017	000 0.050 100.0 0.000 0.00 0.00 <u>Network Results 7</u> Rain T.C. US/IL Σ I.Area Σ Base (mm/hr) (mins) (m) (ha) Flow (1/s) 100.00 6.11 9.000 0.017 0.0	000 0.050 100.0 0.000 0.00 0.00 0.00 0.600 <u>Network Results Table</u> Rain T.C. US/IL E I.Area E Base Foul (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) 100.00 6.11 9.000 0.017 0.0 0.0	000 0.050 100.0 0.000 0.00 0.0 0.600 o <u>Network Results Table</u> Rain T.C. US/IL E I.Area E Base Foul Add H (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/ 100.00 6.11 9.000 0.017 0.0 0.0	000 0.050 100.0 0.000 0.00 0.0 0.0 0.600 o 100 <u>Network Results Table</u> Rain T.C. US/IL E I.Area E Base Foul Add Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) 100.00 6.11 9.000 0.017 0.0 0.0 0.0	000 0.050 100.0 0.000 0.00 0.0 0.00 0.00	000 0.050 100.0 0.000 0.00 0.0 0.0 0.600 ο 100 Pipe/Condui <u>Network Results Table</u> Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) 100.00 6.11 9.000 0.017 0.0 0.0 0.0 0.77 6.0

Elliott Wood Partnership LTD					
	1 a				
	Micco				
Designed by jdelishaj	Dcainago				
Checked by	Diamaye				
Network 2018.1					
	Checked by				

Manhole Schedules for Storm

		(m)		(mm)	PN	Invert Level (m)	Diameter (mm)	PN	Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1 10	0.000	1.000	Open Manhole	1050	S1.000	9.000	100				
S2 10	0.000	1.050	Open Manhole	1050	S1.001	8.950	100	S1.000	8.950	100	
S3 10	0.000	1.100	Open Manhole	1050		OUTFALL		S1.001	8.900	100	

Elliott Wood Partnership LTD		Page 3
241 The Broadway		
London		1 and 1
SW19 1SD		Mirro
Date 01/03/2019 12:41	Designed by jdelishaj	Desinado
File SITE WITHOUT GREEN	Checked by	Diamaye
Innovyze	Network 2018.1	1

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000 S1.001		100 100					Open Manhole Open Manhole	

Downstream Manhole

PN	Length (m)	Slope (1:X)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
						Open Manhole Open Manhole	1050 1050

Elliott Wood Partnership LTD		Page 4
241 The Broadway		
London		1 m
SW19 1SD		Micro
Date 01/03/2019 12:41	Designed by jdelishaj	Desinado
File SITE WITHOUT GREEN	Checked by	Diamage
Innovyze	Network 2018.1	1

<u>Area Summary for Storm</u>

Pipe Number		PIMP Name		Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	-	-	100	0.017	0.017	0.017
1.001	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.017	0.017	0.017

Free Flowing Outfall Details for Storm

Outfall Pipe Number		C. Level (m)			Min Level (m)	,	W (mm)	
S1.001	S3	10.000	8.	900	0.000	1050	0	

Elliott Wood Partnership LTD		Page 5
241 The Broadway		-
London		
SW19 1SD		Mirco
Date 01/03/2019 12:41	Designed by jdelishaj	Micro
File SITE WITHOUT GREEN	Checked by	Drainage
Innovyze	Network 2018.1	
1 year Return Period Summary of	Critical Results by Maximum Lev	<u>el (Rank 1)</u>
	for Storm	
Si	mulation Criteria	
	1.000 Additional Flow - % of Total Flo	ow 0.000
	0 MADD Factor * 10m ³ /ha Storag	
Hot Start Level (mm)	0 Inlet Coeffiecier 0.500 Flow per Person per Day (l/per/day	
Foul Sewage per hectare (1/s)		,
	aphs 0 Number of Storage Structures 0 rols 0 Number of Time/Area Diagrams 0	
	rols 0 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
<u>Synthe</u> Rainfall Model	e <u>tic Rainfall Details</u> FSR Ratio R 0.432	
	Iland and Wales Cv (Summer) 0.750	
M5-60 (mm)	21.000 Cv (Winter) 0.840	
Mennin for Elecel Dick	lowning (mm) 200 0 DWD Status OFF	
-	Warning (mm) 300.0 DVD Status OFF sis Timestep Fine Inertia Status OFF	
-	DTS Status ON	
Profile(s)	Summer and Winte	r
	15, 30, 60, 120, 240, 360, 480, 960, 144	
Return Period(s) (years) Climate Change (%)	1, 30, 10 0, 0, 1	
erimate change (a)	, , , , ,	0
		Water
US/MH Return Climat	e First (X) First (Y) First (Z) Over	
PN Name Storm Period Change	e Surcharge Flood Overflow Ac	et. (m)
S1.000 S1 15 Winter 1 +0	% 30/15 Winter	9.047
S1.001 S2 15 Winter 1 +0	% 30/15 Winter	8.997
Surcharged Floo	oded Pipe	
· _	ume Flow / Overflow Flow Leve	
PN Name (m) (m	³) Cap. (l/s) (l/s) Status Excee	ded
	.000 0.45 2.4 OK	
S1.001 S2 -0.053 0	.000 0.44 2.3 OK	
	0.0010 -	
©198	32-2018 Innovyze	

41 The Broad ondon W19 1SD ate 01/03/20 ile SITE WIT nnovyze 30 year Retu	- 19 12:41 HOUT GREEN	N C	Designed by Checked by Network 2018	_	1j		ro inag
W19 1SD ate 01/03/20 ile SITE WIT nnovyze	HOUT GREE	N C	Checked by	_	aj	— Mir Dra	ro inaci
ate 01/03/20 ile SITE WIT	HOUT GREE	N C	Checked by	_	aj	Min Dra	ro iinad
ile SITE WIT	HOUT GREE	N C	Checked by	_	aj	Dra	inaq
nnovyze		N		1		DIC	
-	urn Period		Network 2018	: 1			<u> </u>
<u>30 year Retu</u>	Irn Period			• -			
Manhole H Foul Set	Hot Start 1 eadloss Coef: wage per hec Number of In Number of C Rainfal M5- Margin for 1	<u>1)</u> <u>Simu</u> ion Factor 1. art (mins) Level (mm) f (Global) 0. tare (1/s) 0. tare (1/s) 0. uput Hydrograp Online Contro <u>Synthet:</u> 1 Model Region Engla 60 (mm) Flood Risk Wa: Analysiz Profile(s)	Lation Criteri 000 Addition 0 MADE 0 500 Flow per F 000 ohs 0 Number of ols 0 Number of ols 0 Number of ols 0 Number of ols 0 Number of crite Rainfall Def FSR and and Wales (21.000 (rning (mm) 300 s Timestep Fi	a lal Flow -) Factor * In: Person per f Storage f Time/Are f Real Tim tails Ratio Cv (Summer Cv (Winter .0 DVI ne Inertia ON	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures a Diagrams le Controls R 0.432 () 0.750 () 0.840 D Status Of a Status Of mmer and W</pre>	L Flow 0.0 corage 2.0 ecient 0.8 c/day) 0.0 0 0 0 FF FF	00 00 00
		Change (%)				0, 0	Water
US/MH PN Name		eturn Climate eriod Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level (m)
S1.000 S1	15 Winter	30 +0%	30/15 Winter				9.108
	15 Winter		30/15 Winter				9.052
	Surcha	arged Flooded		Pipe			
	US/MH Dep	-	Flow / Overfl	-		Level	
PN	Name (m	1) (m ³)	Cap. (1/s) (l/s)	Status	Exceeded	
S1.000	S1 (0.008 0.000	1.08	5.7	SURCHARGED		
DI.000		0.002 0.000		5.5			

	Areal Re Ho Hot St Sewage per Number Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	Ch Ne ary of 1) Simul tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 ns 0 Number .s 0 Number	Results <u>Results</u> <u>n</u> onal Flow - DD Factor * In Person per of Storage	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures</pre>	um Level Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	(Ran)
SW19 1SD Date 01/03 File SITE Innovyze 100 year H	WITHOUT G Return Pe: Areal Re Ho Hot St le Headloss l Sewage per Number of Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	Ch Ne ary of 1) Simul tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	ation Crite Critical for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 15 0 Number .s 0 Number	Results <u>Results</u> <u>n</u> onal Flow - DD Factor * In Person per of Storage	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures</pre>	L Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	(Ran)
Date 01/03 File SITE Ennovyze 100 year H	WITHOUT G Return Pe: Areal Re Ho Hot St le Headloss l Sewage per Number of Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	Ch Ne ary of 1) Simul tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	ation Crite Critical for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 15 0 Number .s 0 Number	Results <u>Results</u> <u>n</u> onal Flow - DD Factor * In Person per of Storage	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures</pre>	L Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	(Ran)
File SITE nnovyze 100 year B Manhol	WITHOUT G Return Pe: Areal Re Ho Hot St le Headloss l Sewage per Number of Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	Ch Ne ary of 1) Simul tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	ation Crite Critical for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 15 0 Number .s 0 Number	Results <u>n</u> onal Flow - DD Factor * In Person per of Storage	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures</pre>	um Level	(Ran)
Innovyze 100 year H Manhol	Return Pe: Areal Re Ho Hot St le Headloss l Sewage per Number o Number	riod Summ duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	Ch Ne ary of 1) Simul tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	ation Crite Critical for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 15 0 Number .s 0 Number	Results <u>n</u> onal Flow - DD Factor * In Person per of Storage	<pre>% of Total 10m³/ha St let Coeffic Day (1/per Structures</pre>	um Level Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	(Ran)
<u>100 year Manhol</u>	Areal Re Ho Hot St le Headloss l Sewage per Number o Number Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	ary of <u>1)</u> <u>Simul</u> tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	Critical for Storn ation Crite 00 Additi 0 MA 00 Flow per 00 ns 0 Number .s 0 Number	Results <u>n</u> onal Flow - DD Factor * In Person per of Storage	% of Total 10m³/ha St let Coeffie Day (1/per Structures	- Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	00 00 00
Manhol	Areal Re Ho Hot St le Headloss l Sewage per Number o Number Number	duction Fac t Start (mi art Level (Coeff (Glob hectare (1 of Input Hyd r of Online	<u>Simul</u> tor 1.0 ns) mm) al) 0.5 /s) 0.0 drograph Control	for Storn ation Crite 00 Additi 0 MA 0 00 Flow per 00 ns 0 Number .s 0 Number	<u>n</u> onal Flow - DD Factor * In Person per of Storage	% of Total 10m³/ha St let Coeffie Day (1/per Structures	- Flow 0.00 corage 2.00 ecient 0.80 c/day) 0.00	00 00 00
		infall Mode Region M5-60 (mm) for Flood R	l n Englar) isk War: nalysis	<u>c Rainfall I</u> FSF nd and Wales	Ratio CV (Summer CV (Winter 00.0 DV Fine Inerti	ne Controls R 0.432 c) 0.750 c) 0.840 D Status OF	0 0 FF	
	Return Per	Profile tion(s) (mi iod(s) (yea ate Change	ns) 15, rs)	30, 60, 120		1, 30	1440	
	/MH me Storm	Return C. Period C		First (X) Surcharge	First (Y) Flood	First (Z) Overflow		Water Level (m)
S1.000 S1.001	S1 15 Winte S2 15 Winte			30/15 Winter 30/15 Winter				9.185 9.089
PI	US/MH	urcharged F Depth v (m)		Flow / Over Cap. (1,	Pipe flow Flow (s) (l/s)	Status	Level Exceeded	
	000 S1	0.085	0.000	1.36	7.2	SURCHARGED		
S1.	001 S2	0.039	0.000	1.37	7.2	SURCHARGED		

170m2 with green roof

Elliott Wo	od Partners	hip LTD						Page	2 1
241 The Br	oadway								
London								The	
SW19 1SD								Mic	1 m
Date 01/03	/2019 13:21		Des	signed by	idel	ishai			
	WITH GREEN I	ROOF.MDX		ecked by	2	2		DIa	inage
Innovyze				work 201	8.1			0.000	
	STORM SEW	<u>er desigi</u>	N by 1	the Modif	ied R	ational	Method	<u> </u>	
		<u>Desig</u>	n Cri	teria for	Sto:	<u>rm</u>			
	P	ipe Sizes S	STANDAF	RD Manhole S	Sizes	STANDARD			
Mavimum Ti	Return Pe Maximum Rain .me of Concentr	riod (year M5-60 (m Ratio fall (mm/h	rs) m) 21. R 0. r)		Add F Min Max	'low / Clim imum Backd imum Backd	ate Char rop Heig rop Heig	ght (m) ght (m)	1.500
Maximum 11		age (l/s/h unoff Coef	a) 0. f. 0.	000 Min	Vel fo n Slop	er Auto Des De for Opti	ign only	y (m/s)	1.200 1.00 500
			-						
		<u>Time A</u>	area L	<u>iagram fo</u>	or Sto	orm			
				.me Area .ns) (ha)					
				0-4 0.000					
		Total Are	ea Cont	ributing (h	na) = (0.00			
		IOCAI AIG	ea cont	. I I D U C I II G (I	ia) – (
		Total	Pipe N	Volume (m³)	= 0.07	79			
		Network	Desi	gn Table	for S	storm			
PN Ler	gth Fall Slop	e I.Area	T.E.	Base	k	HYD DIA	Section	n Type	Auto
	m) (m) (1:2			Flow (l/s)	(mm)	SECT (mm)			Design
	000 0.050 100. 000 0.050 100.		6.00 0.00		0.600		Pipe/Co Pipe/Co		ъ ъ
		Net	work	Results 1	able				
PN	Rain T.C. (mm/hr) (mins)			Σ Base Flow (l/s)		Add Flow (1/s)	Vel ((m/s) (1	<u>-</u>	.OW /s)
		9.000 8.950	0.000	0.0	0.0	0.0	0.77 0.77		0.0 0.0
Run-off	Run-off		982-2	018 Innov	1170				
without	with Green	U		OTO TUUO/	уле				
Green Roof	Roof								
2.4 l/s	0.7l/s								
5.7 l/s	1.9I/s								
7.2 l/s	3.5l/s								

	Page 2
	Micco
Designed by jdelishaj	Desinado
Checked by	Diamaye
Network 2018.1	
	Checked by

Manhole Schedules for Storm

		(m)	Connection	Diam.,L*W (mm)	PN	Invert Level (m)	Diameter (mm)	PN	Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1 1(L0.000	1.000	Open Manhole	1050	S1.000	9.000	100				
S2 10	L0.000	1.050	Open Manhole	1050	S1.001	8.950	100	S1.000	8.950	100	
S3 10	10.000	1.100	Open Manhole	1050		OUTFALL		S1.001	8.900	100	

Elliott	: Wood	Partne	ership	LTD						Pa	ge 3
241 The	e Broa	dway									
ondon											- Alter
W19 15										M	icro
ate 01	L/03/2	019 13	:21		Desig	ned b	y jdel	lishaj			ainag
ile SI	TE WI	TH GREE	EN ROO	F.MDX	Check	ed by				וע	anay
nnovyz	ze				Netwo	rk 20	18.1				
			P	IPELINE	SCHED	ULES	for S [.]	torm			
			_		stream						
	PN	-	iam MH mm) Nam	C.Level ne (m)	I.Leve (m)	l D.De	-	MH		AM., L*W mm)	1
							-				
	S1.00 S1.00						-	en Manhole en Manhole		1050 1050	
				Dow	nstrea	m Man	<u>hole</u>				
	PN	_	Slope 1 (1:X) Na	MH C.Lev ame (m)			-	MH Connection		IAM., L (mm)	*W
	s1.000	5.000 1	100.0	s2 10.0	00 8.	950 (0.950 C	pen Manhol	e	10	50
	S1.001	5.000 1	100.0	S3 10.0	00 8.	900 :	1.000 C	pen Manhol	е	10	50
		<u>1</u>	Free F	lowing	Outfal	l Det	ails	for Stor	<u>n</u>		
			fall Number	Outfall (Name	(m)	I. Le [.] (m)		Min D,L Level (mm)			
					()	(,		(m)	(,		
			S1 001	S3	10 000	8	900	0.000 1050) 0		
			01.001	55	10.000	0.	500	0.000 1000	, 0		
<u>1</u>	Time A	rea Dia	agram	for Gre	en Roo	fat	Pipe 1	Number Si	1.000	(Stor	<u>m)</u>
				-	3) 170	_		(2		
		Depr	ession			-		(mm/day) efficient (3).050		
		2012	0001011	boorago		20	ouj ooc	,111010110 0			
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0		0.003089			.000624	64		0.000126	96		0.000025
4		0.002529			.000511	68		0.000103	100		0.000021
8 12		0.002071			.000418	72 76		0.000084 0.000069	104 108		0.000017
16		0.001388			.000280	80		0.0000057	112		0.000011
20	24	0.001136	52		.000229	84	88	0.000046	116		0.00000
24		0.000930			.000188	88		0.000038			
28	32	0.000762	60	64 0	.000154	92	96	0.000031			
							ovyze				

41 The H				1						age 4
-	Broadwa	ау								
ondon										La la
W19 1SD									N	Micro
ate 01/0	03/2019	9 13:21			signed b		ishaj			Drainad
ile SITH	E WITH	GREEN 1	ROOF.MD	X Ch	ecked by	Y				
nnovyze				Ne	twork 20	018.1				
year Re	eturn 1	Period	Summary		<u>itical 1</u> or Storm		<u>by Max</u>	<u>imum</u>	Level	(Rank
	Are			tor 1.00	ation Crit)0 Addit	ional Fl				
	nole Head	Hot Start dloss Coe	Level (r	mm) al) 0.50)0 Flow pe		Inlet (Coeffie	ecient	0.800
		Number of	f Online	Control	s 0 Numbe s 0 Numbe s 0 Numbe	r of Time	e/Area Di	agrams	1	
		Rainfa	all Model Region	Englan	d and Wale	SR Ra es Cv (Su	atio R 0. mmmer) 0. .nter) 0.	750		
		M			21 00			040		
	M		5-60 (mm)					+118 0	FF	
		argin for Duratio	Flood R: Ar Profile(isk Warn nalysis DT (s) ns) 15,	21.00 Timestep 25 Status 30, 60, 1	300.0 Fine In ON	DVD Sta ertia Sta Summer	atus 01 and W , 960, 1, 30	FF 1440 , 100	
PN		argin for Duration	Flood R: Ar Profile(n(s) (min (s) (year Change (Return (isk Warn nalysis DT (s) ns) 15, rs) (%) Climate	ning (mm) Timestep 25 Status	300.0 Fine In ON 20, 240, First (DVD Sta ertia Sta Summer 360, 480 Y) First	and W , 960, 1, 30 0, (Z) 0	FF 1440 , 100 0, 40	Water 7 Level (m)
S1.000	Retur US/MH Name S1 (Duratio: Duratio: n Period Climate Storm	Flood R: Ar Profile(n(s) (mir (s) (year Change (Return (Period 1	isk Warn nalysis DT (s) ns) 15, rs) (%) Climate Change +0%	ning (mm) Timestep 25 Status 30, 60, 1 First (X)	300.0 Fine In ON 20, 240, First (DVD Sta ertia Sta Summer 360, 480 Y) First	and W , 960, 1, 30 0, (Z) 0	FF 1440 , 100 0, 40	<pre>r Level (m) 9.023</pre>
	Retur US/MH Name S1 (Duration Duration Duration Climate Storm	Flood R: Ar Profile(n(s) (mir (s) (year Change (Return (Period 1	isk Warn nalysis DT (s) 15, rs) (%) Climate Change	ning (mm) Timestep 25 Status 30, 60, 1 First (X)	300.0 Fine In ON 20, 240, First (DVD Sta ertia Sta Summer 360, 480 Y) First	and W , 960, 1, 30 0, (Z) 0	FF 1440 , 100 0, 40	(m)
S1.000	Retur US/MH Name S1 (Duratio: Duratio: n Period Climate Storm 50 Winter 50 Winter	Flood R: Ar Profile(n(s) (mir (s) (year Change (Return (Period 1	isk Warn nalysis DT (s) 15, (%) Climate Change +0% +0% Flooded	ning (mm) Timestep S Status 30, 60, 1. First (X) Surcharge	300.0 Fine In ON 20, 240, First (DVD Sta ertia Sta Summer 360, 480 Y) First Overf Pipe	and W , 960, 1, 30 0, (Z) O	FF 1440 , 100 0, 40 Verflow Act.	<pre>r Level (m) 9.023 8.973</pre>
S1.000	Retur US/MH Name S1 (S2 (Duratio: Duratio: n Period Climate Storm 50 Winter 50 Winter Su US/MH	Flood R: Ar Profile(n(s) (mir (s) (year Change (Return (Period 1 1 1 rcharged Depth	isk Warn nalysis DT (s) 15, (%) Climate Change +0% +0% Flooded Volume	ing (mm) Timestep S Status 30, 60, 1. First (X) Surcharge flow / C Cap.	300.0 Fine In ON 20, 240, First (First (Flood	DVD Sta ertia Sta Summer 360, 480 Y) First Overf Pipe Flow	and W , 960, 1, 30 0, (Z) O	FF 1440 , 100 0, 40 Verflow Act.	<pre>r Level (m) 9.023 8.973</pre>

41 The		artners	hip LTD							Page 5
	Broadw	ay								
london										The .
SW19 1SD										Mirm
Date 01/	03/201	9 13:21		Des	signed b	y jdel	ishaj			Drainac
Tile SIT	E WITH	I GREEN H	ROOF.MDX	Che	ecked by	7				שוחחום
[nnovyze				Net	twork 20	18.1				
<u>30 year</u>	<u>Retur</u>	<u>n Perio</u>	<u>d Summar</u>		<u>Critica</u> for Stoi		<u>ts by</u>	<u>Maxin</u>	<u>um Le</u>	vel (Ran
	hole Hea		tart (min: Level (m ff (Globa	or 1.00 s) m) 1) 0.50	0 M 0 0 Flow pe	ional Fl ADD Fact	or * 10 Inlet	m³/ha S Coeff:	Storage iecient	2.000 0.800
		umber of 1 Number of Number of	E Online C	Controls	0 Number	of Time	e/Area I	Diagram	s 1	
	М		all Model Region 5-60 (mm) Flood Ris	Englanc sk Warn alysis '	d and Wale 21.00	R Ra s Cv (Su 0 Cv (W 300.0 Fine In	DVD S).750).840 tatus (
	Retu US/MH	rn Period	Change (१	5) 15, 3 5) 5)	30, 60, 12 First (X)		360, 48	30, 960 1, 3 0,	0, 100 0, 40	Water w Level
	Name	Storm			Surcharge			rflow	Act.	(m)
PN		30 Winter		+0%						9.042
PN S1.000 S1.001		30 Winter	30	+0%						8.993
S1.000		30 Winter	rcharged I	Flooded	Flow / C Cap.	verflow (1/s)		Status	Level Exceede	

241 The Broadway iondon iondon Date 01/03/2019 13:21 Tile SITE WITH GREEN ROOF.MDX Checked by Innovyze Network 2018.1 100 year Return Period Summary of Critical Results by Maximum Level (Rar 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mm) 0 Manbole Headlos Coeff (Global) 0.500 Flow per Person per bay (1/per/day) 0.000 Founder of Online Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Time Cantols 0 Switheric Rainfall Details Ratin FR 0.432 Region England and Walse Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Pine Inertia Status OFF DTS Status Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 366, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change Surcharge Flood 0, 0, 0, 40 St.000 Sl 30 Winter 100 +40% 9.059 Sl.001 S2 15 Winter 100 +40% 9.059 Sl.001 S2 15 Winter 100 +40% 9.059 Sl.001 S2 15 Winter 100 +40%	Elliott V			nip LTD						P	age 6
W19 1SD Pate 01/03/2019 13:21 Pate 01/03/2019 13:21 Pate 01/03/2019 13:21 Pate 01/03/2019 13:21 Pate Name (m) Designed by jdelishaj Checked by Network 2018.1 DO year Return Period Summary of Critical Results by Maximum Level (Rar 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Rot Start Level (mn) 0 MADD Factor * 10m*/has Storage 2.000 Rot Start Level (mn) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF DTS Status ON Profile(s) Summer and Winter DUTS Status ON Profile(s) Summer and Winter DTS Status ON Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter DTS Status ON Profile(s) Summer and Winter DTS Status ON Profile(s) Summer and Winter DTS Status ON Margin Status ON Profile(s) Summer and Winter DTS Status ON Profile(s) Summer and Winter PN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 30 Winter 100 +400% S1.001 S2 15 Winter 100 +400% S1.001 S2 15 Winter 100 +400% S1.000 S1 -0.041 0.000 0.66 S1.001 S2 10 MINTER 100 -0.001 0.66 S1.001 S1 -0.041 0.000 0	41 The H	Broadw	vay								
ate 01/03/2019 13:21 Designed by jdelishaj Directed by iile SITE WITH GREEN ROOF.MDX Network 2018.1 Directed by 100 year Return Period Summary of Critical Results by Maximum Level (Rar 1) for Storm Simulation Criteria Areal Reduction Fortheria Simulation Criteria Areal Reduction Fortheria Areal Reduction Fortheria Mater (mins) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start (even (m) 0 Mathematical Coefficient 0.800 Mathematical Coefficient 0.800 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0 Number of File Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Region England and Wales CV (Summer) 0.840 Margins Timestep Fine Inertia Status OFF Direction(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Region Summer and Winter Direction(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Region Change Surcharge Flood Overflow Act. (m) Summer and Winter	ondon										- Aller
act of J/03/2019 13:21 Designed by jdelishaj ile SITE WITH GREEN ROOF.MDX Designed by jdelishaj novyze Network 2018.1 100 year Return Period Summary of Critical Results by Maximum Level (Rar 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Manbel Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Manbel Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Number of Start Level (mm) 0 Manbel Reduction Factor 1.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfail Details Rainfail Model Forflie (s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Name Storm Period Change Surcharge Flood Overflow Act. Name Summer and Minter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Climate First (X) First (Y) First (Z) Overflow Act. Mame Storm Per	W19 1SD									N	<i>licco</i>
Ite offic Wink GARLEW KOUT MUX Unletked by Network 2018.1 100 year Return Period Summary of Critical Results by Maximum Level (Rer 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 MADD Factor * 10m*/na Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF Dirst Status 0N Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(a) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MH Return Climate First (X) First (X) First (Z) Overflow Act. (m) S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% Surcharged Flooded Fipe US/MH 9.059 9.010 Surcharged Flooded Fipe US/MH Surcharged Flooded Fipe US/MH Fipe Name (m) (m) Cop. (1/s) (1/s) Status Exceeded	ate 01/0	03/201	9 13:21		De	signed	by jde	lishaj			
100 year Return Period Summary of Critical Results by Maximum Level (Rar 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DD Status OFF DITS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.000 S1 30 Winter 100 +40% S1.000 S1 -0.041 0.000 0.66 3.5 OK	'ile SITH	E WITH	H GREEN H	ROOF.MD	X Ch	ecked b	ру			L	Jallay
1) for storm Simulation criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Mot Start Level (mm) 0 MADD Factor 10m ³ /ha Storage 2.000 Bot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Suthetic Rainfall Details Rainfall Model FSR Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF DTS Status DTS Status ON Name and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Proiod(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 Mater VS/ME Return Climate First (X) First (Y) First (2) Overflow Ret Mater Name Storm Period Change Surcharge Flood Overflow Act. 9,059 S1.001 S1 30 Winter 100 +40% 9,010 S1.001 S	nnovyze				Ne	twork 2	2018.1				
Areal Reduction Factor 1.000 Additional Flow - \$ of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 0 Number of Online Controls 0 Number of Storage Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0 0 Synthetic Rainfall Details Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period (s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 Yereflow Act. PN Name Storm Period Change Surcharge Flood Overflow Act. Mater S1.000 S1 30 Winter 100 +40% 9.059 9.010 S1.001 S2 15 Winter 100 +40% 9.059 9.010 S1.000 S1 30 Winter 100 40% Yeis 9.059 9.010 S1.000	<u>100 year</u>	Retu	<u>rn Perio</u>	<u>d Summa</u>	-			<u>ilts by</u>	Maxii	mum Lev	<u>vel (Ran</u>
Number of Online Controls 0 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Row Act. (m) S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 -0.041 0.000 0.66 S1.001 S1 -0.041 0.000 0.66		ole Hea	Hot S Hot Start adloss Coe	tart (min Level (n ff (Globa	tor 1.00 ns) mm) al) 0.50	00 Add: 0 0 00 Flow p	tional F MADD Fac	tor * 10 Inlet	m³/ha S Coeffi	Storage 2 Lecient (2.000 0.800
Rainfall Model FSR Ratio R 0.432 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 Water PN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 30 Winter 100 +40% S1.001 S1 -0.041 0.000 0.66 S1.001 S1 -0.041 0.000 0.66			Number of	Online	Control	s 0 Numb	er of Tim	ne/Area	Diagram	s 1	
Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40 Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 30 Winter 100 +40% S1.001 S2 15 Winter 100 +40% S1.001 S1 -0.041 0.000 0.66 S1.001 S2 5 0K				ll Model Region	1 Englan	d and Wa	FSR F les Cv (S	Ratio R Summer)	0.750		
Climate Change (%) 0, 0, 40 US/MH Return Climate First (X) First (Y) First (Z) Overflow Water Level (m) PN Name Storm Period Change Surcharge Flood Overflow Act. Mater (m) \$1.000 \$1 30 Winter 100 +40% 9.059 9.010 \$1.001 \$2 15 Winter 100 +40% Pipe Pipe Surcharged Flooded Pipe Pipe Pipe Level Name (m) (m³) Cap. (1/s) Status Exceeded \$1.000 \$1 -0.041 0.000 0.66 3.5 OK			Duration	An Profile n(s) (mir	nalysis Dī (s) ns) 15,	Timestep 28 Status	Fine I: ON	nertia S Summ	tatus (er and 80, 960	OFF Winter , 1440	
\$1.001 \$2 15 Winter 100 +40% 9.010 Surcharged Flooded Pipe US/MH Depth Volume Flow / Overflow Flow Level PN Name (m) (m³) Cap. (1/s) Status Exceeded \$1.000 \$1 -0.041 0.000 0.66 3.5 OK	PN	us/mh	Climate	Change Return	(%) Climate	-	-		0, st (Z)	0, 40 Overflow	Level
Surcharged FloodedPipeUS/MHDepthVolumeFlow / OverflowFlowLevelPNName(m)(m³)Cap.(1/s)(1/s)StatusExceeded\$1.000\$1-0.0410.0000.663.5OK	S1.000	S1	30 Winter	100	+40%						9.059
US/MH Depth Volume Flow / Overflow Flow Level PN Name (m) (m ³) Cap. (l/s) (l/s) Status Exceeded S1.000 S1 -0.041 0.000 0.66 3.5 OK	S1.001	S2				_					9.010
		PN	US/MH	Depth	Volume	Flow /		Flow	Status		L

elliottwood

engineering a better society

London 46 – 48 Foley St W1W 7TY +44 207 499 5888

Wimbledon 241 The Broadway London SW19 1SD +44 208 544 0033

Nottingham

1 Sampsons Yard Halifax Place Nottingham NG1 1QN +44 870 460 0061

www.elliottwood.co.uk

The Hall School 2190008 Structural and Civil Engineering Planning Report & Basement Impact Assessment

D Outline Structural Calculations – Basement

elliottwood engineering a better society

D Elliott Wood Partnership Ltd

elliottwood

The Hall School 23 Crossfield Road, London NW3 4NU

Structural Calculations Basement

Job number. 2190008 Revision: P1 Status: For Planning Date: 08/03/19 Structural Calculations - Basement

Document Control

		remarks:	For Planning						
revision	P1	prepared by	Suzanna Cooper	checked by:	David Dempster	approved by	James Souter		
date	March 2019	signature:		signature		signature:			

Structural Calculations - Basement

elliottwood

Contents

1.0	Introduction	page	4
2.0	Description of Site	page	4
3.0	Scope of Works	page	5
4.0	Design Aids	page	7
5.0	Design Criteria	page	7
6.0	Loads	page	8
7.0	Ground Conditions	page	10
8.0	Calculations	page	12

Structural Calculations – Basement

elliottwood

1.0 Introduction

Elliott Wood Partnership Ltd (EW) have been appointed by The Hall School to provide Structural Engineering input for the design of the proposed redevelopment of The Hall School Senior School site. The works include retaining the early school buildings but demolishing and replacing subsequent additions. The existing basement under the new development will be retained and the extent increased with the addition of a new single-story basement between the Old School and Walthen Hall.

This report includes structural calculations for the design of the new basement and checks on the existing basement, including:

- Design of the new contig pile wall acting as the retaining wall of the new basement
- Design of the new basement slab
- Checks on the existing basement retaining wall in the proposed case.


2.0 Description of Site

- 2.1 The Hall School site is located approximately 400m northeast of Swiss Cottage London Underground Station, and fronts onto Crossfield Road to the west. The site is bounded on the remaining sides by residential properties.
- 2.2 The overall Senior School site is broadly square in shape and measures approximately 50m by 50m on plan. External playing space occupies around a third of the site in the northeast corner.
- 2.3 A line of trees extends along the east site boundary and there is a large London plane tree in the centre of the site. The London plane is subject to a Tree Preservation Order (TPO), and is to be retained as part of the proposed scheme.
- 2.4 Records for the historic lost rivers known in London indicate that the site is approximately 100m away from the routes shown for two tributaries to the River Tyburn.
- 2.5 Record information suggests that there are no known underground tunnels or structures near to the site. The routes of the Jubilee and Metropolitan lines, which pass through nearby Swiss Cottage London Underground Station do not pass near to the site.
- 2.6 The existing basement, known as Wathen Hall, lies along the Southern boundary of the site.
- 2.7 On the South boundary, the external face of the basement wall is approximately 1.2m from the neighbouring buildings, which are single storey garages.
- 2.8 The basement wall on the north is approximately 1.2m from the adjacent main school building which is currently founded on shallow pad foundations. The existing building is to be demolished and the proposed building to be founded on piles, therefore mitigating any effects on the basement wall.

The Hall School

Structural Calculations - Basement

elliottwood

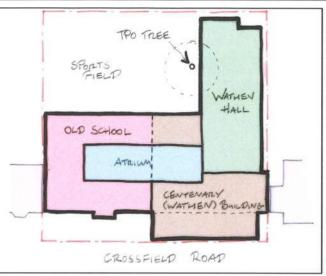


Figure 1: Site Location

Figure 2: Existing buildings

3.0 Scope of Works

The proposed development of the site can be broadly divided into three elements:

- Demolition of the Wathen Hall superstructure to be replaced with new studio and classroom space over the existing single-storey substructure
- Demolition of the Centenary (Wathen) Building, to be replaced with a new four-storey school building supported partially over the existing Wathen Hall basement, partially on a new single-storey basement next to the Old School, and partially on new piled foundations from ground level
- Refurbishment of the Old School building, including the reconstruction of the roof to the rear elevation at a higher level, and low-key alterations to the internal structure to accommodate the interface with the new school building.

Substructure Proposal:

- 3.1 It is proposed to retain the existing single-storey basement under the Wathen Hall and to create a new single-storey basement under the part of the footprint of the new building between the Old School building and the Wathen Hall.
- 3.2 The basement under the new school building is proposed using a contiguous piled retaining wall. The piles are anticipated to be 450mm diameter bored piles, designed to be propped in the permanent case by the slabs at the lower ground floor level. The internal face of the piled retaining wall will be lined with an in-situ waterproof concrete lining wall.
- 3.3 To mitigate the impact of the new basement on the foundations to the retained Old School building, the piled retaining wall will be set approximately 3m from the face of the existing masonry wall. This offset means that excavations required to form the capping beam to the piled wall will be at an adequate distance to avoid undermining the existing foundation.

elliottwood

Structural Calculations - Basement

- 3.4 The relained basement box is to be re-supported on new piled foundations in order to mitigate the potential effects of differential settlement and avoid movement joints within the basement structure
- 3.5 Cantilever ground beams are proposed to support the new vertical structure set tight against the existing masonry wall of the Old School building. Each ground beam will run continuously over a group of piles centred around 1.2m from the face of the wall; this offset is driven by the constraints of the piling equipment. The depth of the ground beams will be sized to avoid undermining the existing foundations.
- 3.6 The ground beams will also support the existing retaining wall, which will span horizontally as a deep beam between ground beams to transfer vertical loads.
- 3.7 The lower ground and basement slabs under the school building will be typically formed from a suspended flat slab construction. The internal columns will be founded on piled foundations.
- 3.8 It is proposed to retain the existing basement walls of the Wathen Hall as part of the new permanent structure. In the temporary case, horizontal propping across the basement volume will resist the lateral earth pressure. The retaining walls will act as cantilevers in the permanent case, and the reinforcement content will be confirmed on site to ensure any change in moment can be accommodated.
- 3.9 To avoid internal columns, the ground floor structure will span the clear width of the hall. This long span structure will be sensitive to vibration, particularly as the floor will be used for group activities. The structure is therefore proposed using deep, fabricated steelwork sections acting compositely with the reinforced concrete floor slab. Similar but heavier steelwork sections will act as transfer beams where the hall extends under the new school building.

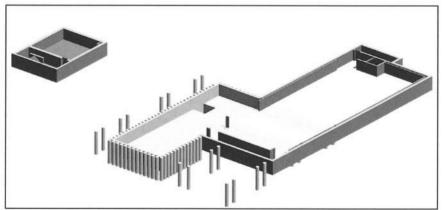


Figure 3: Basement structure: existing and proposed

Structural Calculations – Basement

elliottwood

4.0 Design Aids

4.1 Design Codes

The design of the structural elements have generally been carried out to satisfy the requirements of the British Standards and Eurocodes (and all relevant National Annexes) listed below. This is not an exhaustive list:

BS EN 1990:2002 Eurocode 0:	Basis of structural design
BS EN 1991-1-1:2002 Eurocode 1:	Actions on structures
BS EN 1993-1-1:2005 Eurocode 2:	Design of concrete structures – Part 1-1: General rules and rules for buildings
BS EN 1997-1:2004 Eurocode 7:	Geotechnical design - Part 1: General rules

All to include revisions and amendments to date with appropriate National Annexes and approved NCCIs.

5.0 Design Criteria

5.1 Load Combinations

The following combinations have been used throughout the calculations:

Partial safety Factors to Eurocodes	Perma	Permanent Lead		variable	Accompanying variable	
	Unfavourable	Favourable	Unfavourable	Favourable	Unfavourable	Favourable
ULS (Strength)	1.35	1.00	1.50	0	Y _{0,i} 1.50	0
ULS (Equilibrium)	1.10	0.90	1.50	0	Y _{o,i} 1.50	0
SLS (Characteristic)	1.00	1.00	1.00	0	Y _{0,i} 1.00	0

Where $Y_{0,i} = 0.7$

5.2 Material Data

Concrete Reinforcement Bars Grade C32/40 U.N.O Grade f_y=500 N/mm² to BS 4449 U.N.O Structural Calculations – Basement

elliottwood

5.3 Acceptance Criteria

Vertical Deflections

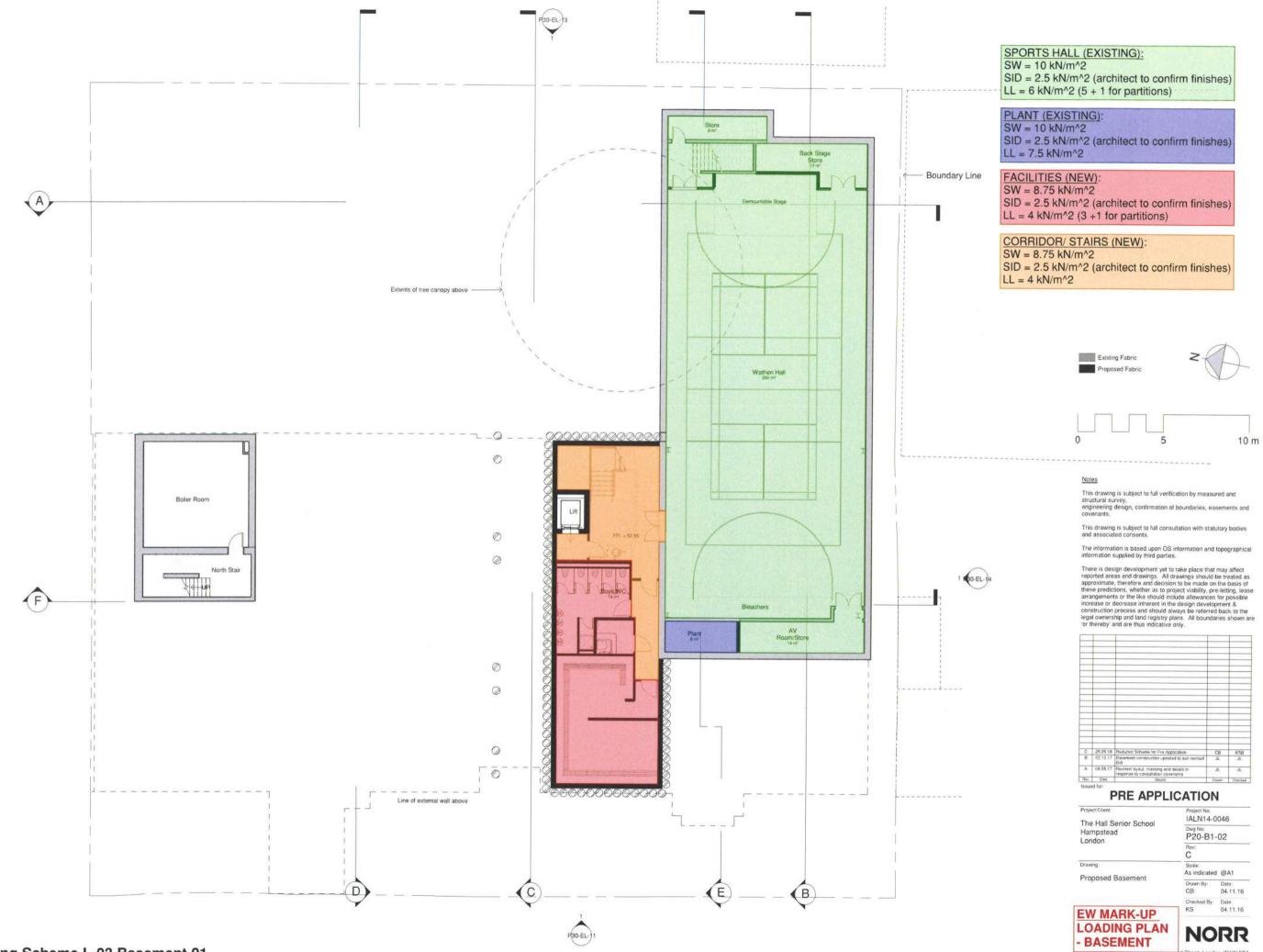
The following vertical deflection limits will be used in the design of all new structural members:

Element	Deflection Type	Limit
Reinforced Concrete Beams and Slab	Long term deflection due to dead and imposed loads (including long term creep effects of sustained loading)	L/250
	Incremental deflection due to dead and imposed loads occurring after construction of finishes and partitions (including long term creep effects of sustained loading)	L/500

Note: L=distance between supports for span considered. For cantilevers, L is equivalent to twice cantilever length.

Lateral deflections

Analysis and design of the lateral load resisting system is based on the following allowable drift criteria: Maximum Total Drift: H/500 (under service load conditions) Maximum Interstorey Drift: h/500 (under service load conditions)


Where H = Total building height, h = Storey height under consideration

6.0 Loads

The following tables give values for the proposed design load allowances for the basement areas.

	Finishes (kN/m2)	Live (kN/m2)	Partitions (kN/m2)
Studio/Gymnasia	2.5	5.0	1.0
Facilities	2.5	3.0	1.0
Corridors, stairways	2.5	4.0	-
Plantroom	2.5	7.5	÷

See over for Basement loading plan.

Planning Scheme L-03 Basement 01 1:100

_				
			-	-
_				-
_				-
				-
_			-	-
-			-	-
-				
-				
				-
-			_	
				-
-	-			-
-			_	
-			_	
C	25.05.18	Reduced Scheme for Pre Application	CB	KSB
B	02.10.17	Basement construction updated to suit revised	JL	L
(T.)		BIA	a fa	
A	08.05.17	Revised layout, massing and details in response to consultation comments	JL	JL
Tel	Date	Decale	Drown	Checked

IALN14-0046
Dwg No:
P20-B1-02

Street, London, W1W 5PA T: +44 (0)207 5800 400 www.norr.com

tors must work only to figured dmenations which are to be checked on site ¹⁵NORRECORSULTANTS LIMITED. An ingenium International Company.

The Hall School

Structural Calculations – Basement

elliottwood

7.0 Ground Conditions

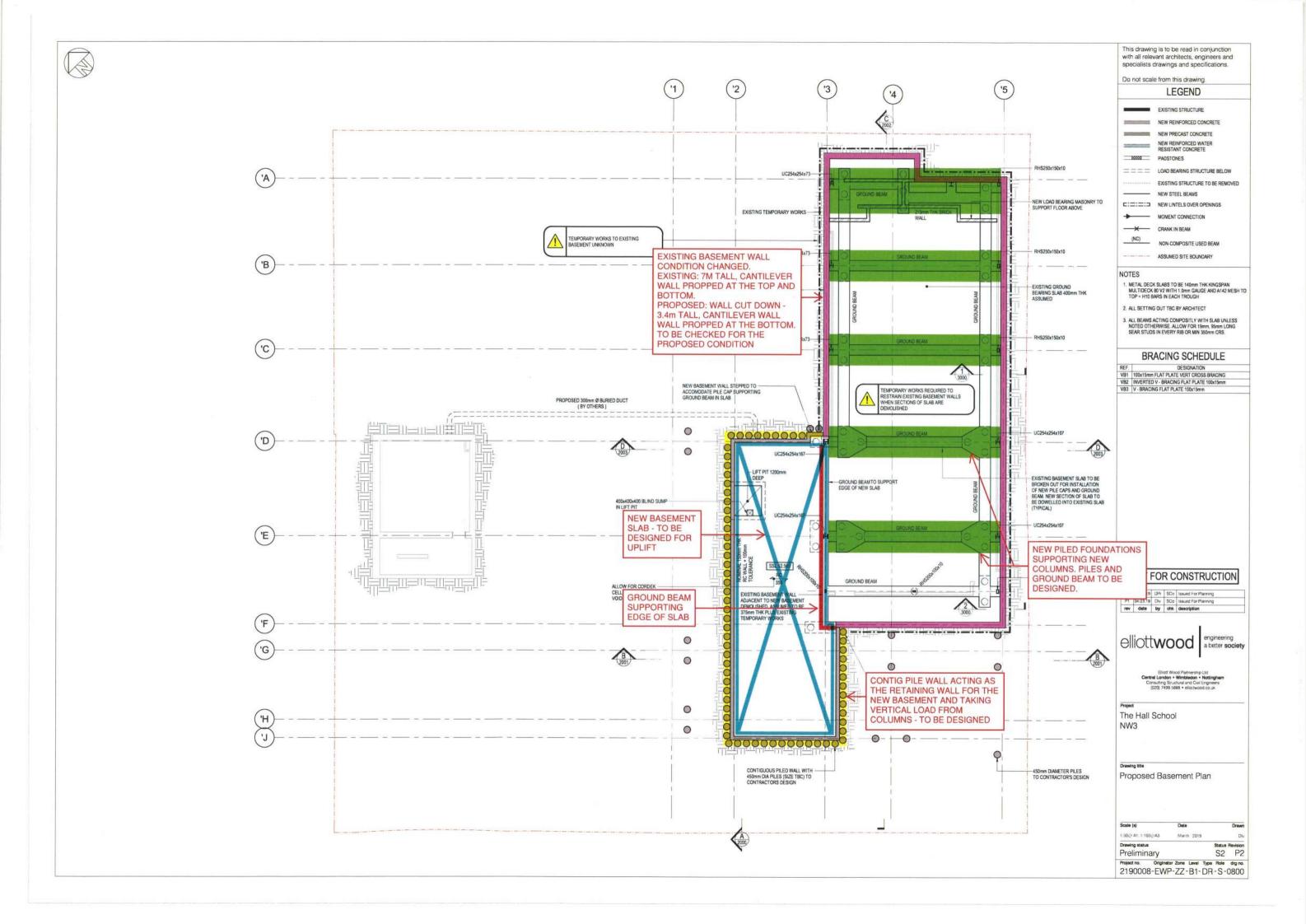
roject number:	Sheet: Revision:			Revision	:	Onio	ttwood	a better :
ate:		Enginee	er:	Checked	t:			
GROUN	p co	NOIDO	SUC					
							TED WHI	СН
PARAM	ETERS	SED HAVE	THE SI	TAKEN	FROM	THE FOU	INVESTIG	ATLO
REPORT							10 02 0	
ER	om (GE LE	VEC (56.87)				
				,				
	MADE	GROUN	m Oc	PEEP	17 KeN	1m3 9	= 27	
	LOND	ON LIG	ay Im	- DEPTH	2014	J/m3 0	=24	~
17				, i i			1	
							TIVELY C	
	LOWE	er Grou	NO FL	OOK LEY	IEL (5)	5,84)		/
	LGF							
NATER	100 C				/			
EVEL	Z	RAN	4		(
EVEL			MADE	GROUND	<>	ka = 11-5	Contraction of the local division of the loc	
EVEL	1.00m		MADE X	GROUND	5	Management of the local division of the loca	(112 d) SINØ)	
EVEL			MADE X	GROUND	<->	(1+	Contraction of the local division of the loc	42
EVEL			MADE X	GROUND	<>	(1+	(24) = 0.	42
EVEL			MADE X	GROUND	<>	(1 + = 1- SIN	(24) = 0.	42
EVEL			* MADE			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
EVEL			*			$\frac{1+}{1+Sin}$	(24) = 0.	
EVEL			MADE X CLAY			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
EVEL			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
EVEL			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
EVEL			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
EVEL			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
			*			$\frac{1+}{1+Sin}$	S(24) = 0. (24) = 0.	
	1.00 m.		X CLA7		BEAR INC	PRESSURE	SINØ) (24) = 0. (24) = 150 KN/M	°√
FC	1.00 m.		X CLAY Y		SEAR INC	CEA SITE	S(24) = 0. (24) = 0.	°√
FC	1.00 m.		X CLAY Y		SEAR INC	PRESSURE	SINØ) (24) = 0. (24) = 150 KN/M	°√

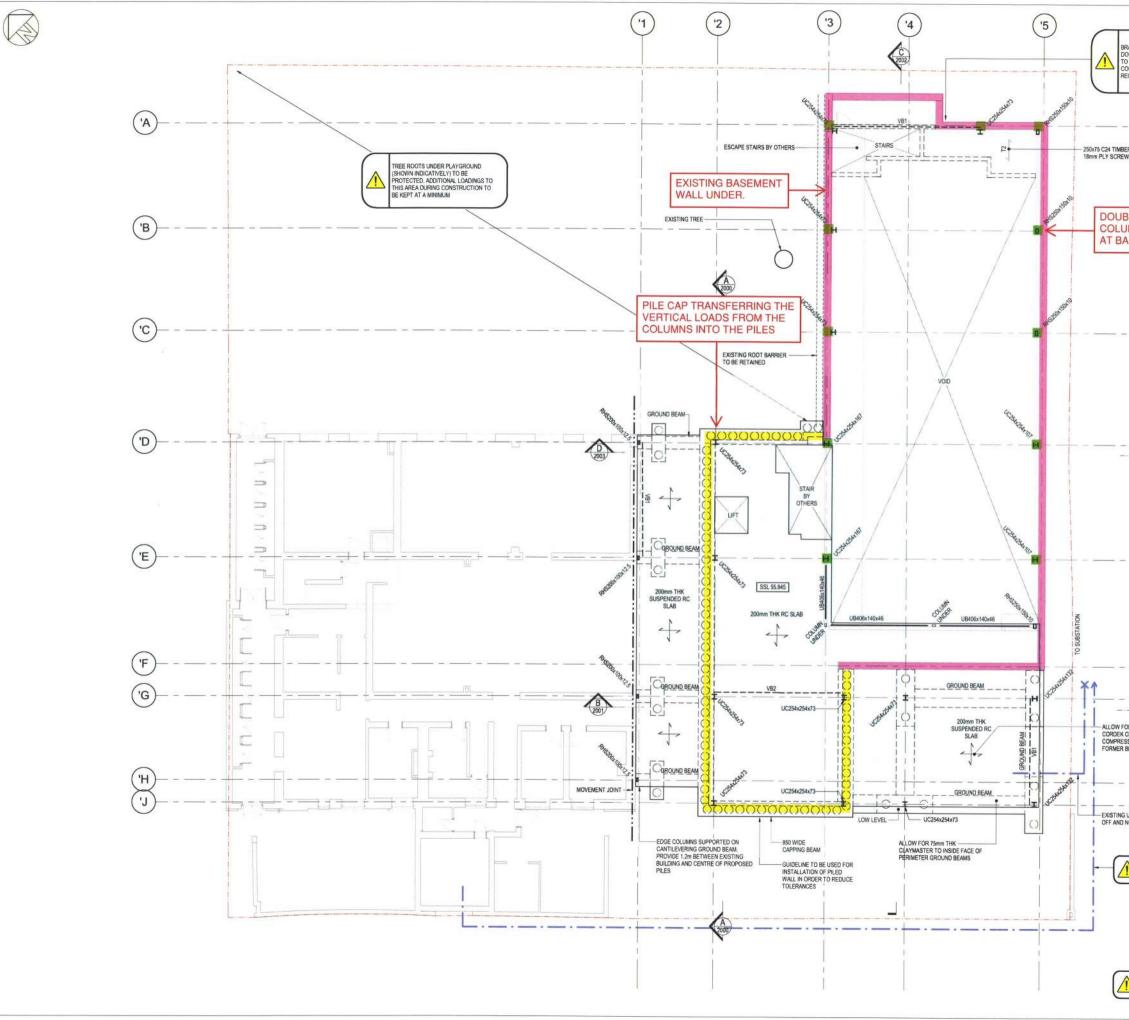
Project name:

1

Structural Calculations – Basement

elliottwood


8.0 Calculations

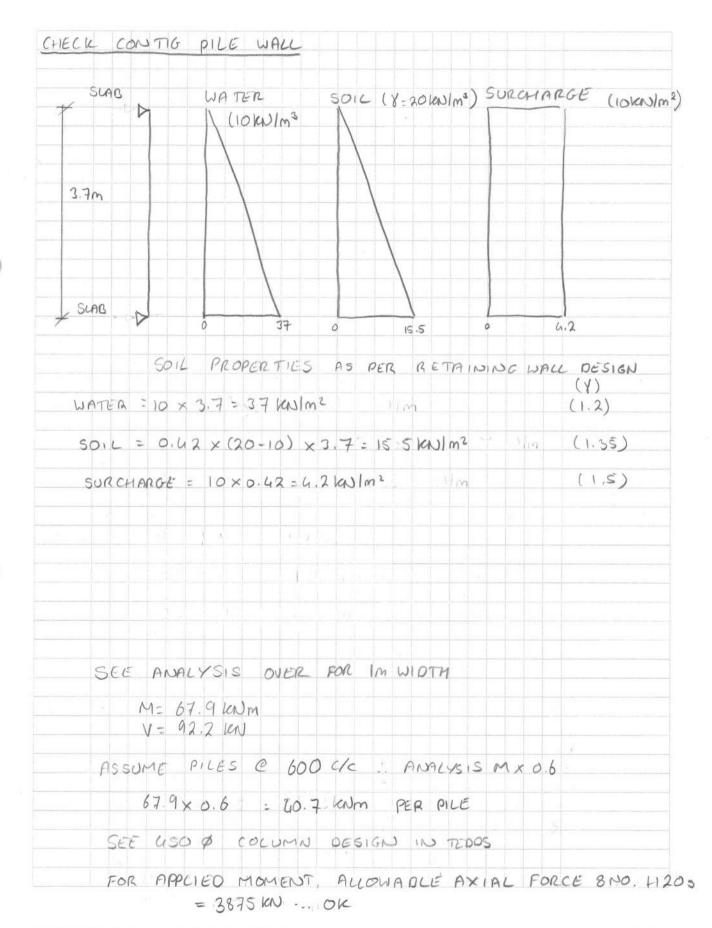

The page over highlights the locations of the different basement elements included in the calculations.

()

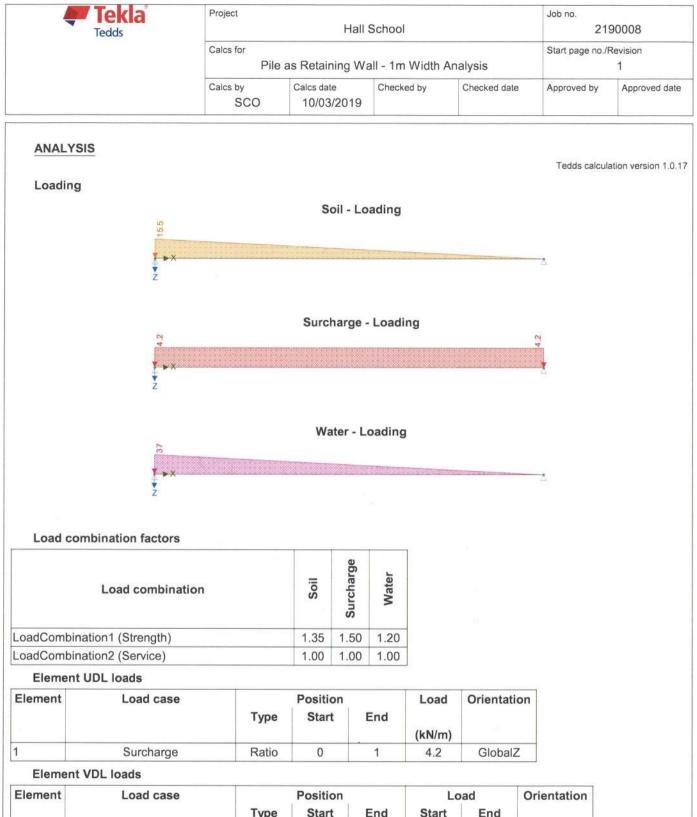
Project name:			elliottwood	engineering
Project number:	Sheet:	Revision:	emotivoou	a better society
Date:	Engineer:	Checked:		

ALCU	CAS	no	NS	> 1	-01	2	TH.	Ŀ	N	EN	1	E	XT	G	DA:	se	ME	NT	s	ipi	CL	De	5 :		
0	NEW	10	00	TU	6	PI (1=	U	211		AS	T	M	Pa	00	a.	1	B	PET	7 M	er	SAN	17		
	RET								1		Audea Co														
0	BAS	SEA	1Ē	N-	T	50	no	ſ	DES	16	2	FOR	Z	UPL	. (<i>F</i> -	T								1977-1-11	
	050	1.0		-	-		- 1					2.00		4			~	0			0.5			-	_
	WIS											SEAT	Μ.	+ 1	PIC	E	_Cr	IPS	3	50(1)	-01	111	0G	COL	UM
,	CHE														11	د	PR	op c	DS e	B	CA	SE	AC	TN	G
	115	r)w			per	JFF			11	51	140		Ì												
						-			_		_		-					_							
													-							-					
						-	-	-			+		-			_				-					
												-						1							
			_	-																					
				+	+	-						÷	-						+						
					_						_		-					_	_						_
					-				-	-			-												
																				_					
											-														-
				_	-	-					-	-		-											_
											+	+					+		-						
					-					-	+	-		_	_										
												_				_	_								

	This drawing is to be read in conjunction with all relevant architects, engineers and
)	specialists drawings and specifications.
ACING IN ABEYANCE. CLASHES WITH DORS AND WINDOWS CAN BE ADAPTED O VOR INVERTED V BRACING TO SUIT. DORDINATION WITH ARCHITECT	Do not scale from this drawing.
QUIRED	EXISTING STRUCTURE
	NEW REINFORCED CONCRETE
	NEW PRECAST CONCRETE
	NEW REINFORCED WATER
	RESISTANT CONCRETE
R JOISTS AT 400 C/C WITH ED TO TOP	PADSTONES
	\equiv \equiv \equiv \equiv LOAD BEARING STRUCTURE BELOW
	EXISTING STRUCTURE TO BE REMOVED
	NEW STEEL BEAMS
	C::::::::: NEW LINTELS OVER OPENINGS
LE HEIGHT	MOMENT CONNECTION
MNS SUPPORTED	CRANK IN BEAM
SEMENT LEVEL	(NC)
	NON-COMPOSITE USED BEAM
	ASSUMED SITE BOUNDARY
	NOTES
	NOTES 1. METAL DECK SLABS TO BE 140mm THK KINGSPAN MULTIDECK 80 V2 WITH 1.0mm GAUGE AND A142 MESH TO TOP + H10 BARS IN EACH TROUGH
	2. ALL SETTING OUT TBC BY ARCHITECT
	 ALL BEAMS ACTING COMPOSITLY WITH SLAB UNLESS NOTED OTHERWISE. ALLOW FOR 19mm, 95mm LONG SEAR STUDS IN EVERY RIB OR MIN 350mm CRS.
	BRACING SCHEDULE
	REF. DESIGNATION
	VB1 100x15mm FLAT PLATE VERT CROSS BRACING VB2 INVERTED V - BRACING FLAT PLATE 100x15mm
	VB2 INVERTED V - BRACING FLAT PLATE 100x15mm VB3 V - BRACING FLAT PLATE 100x15mm
_	
B	P2 11.03.19 DP SCo Issued For Planning P1 04.03.19 DN SCo Issued For Planning rev date by dtk description
R 250mm THK ELLCORE BIBLE VOID ELOW SLAB	elliottwood a better society
-	Eliott Wood Partnership Ltd Central London - Wimbledon - Notlingham Consulting Structural and Cell Engineers (020) 7499 5888 • eliottwood.co.uk
JKPN CABLE CAPPED O LONGER LIVE	Project The Hall School NW3
UKPN CABLES REMAIN LIVE	Drewing title Proposed Lower Ground Floor Plan
BUILD-UP OF FLOORS AND WALLS TBC	Scale (s) Date Drawn
BY ARCHITECT	150@VAI: 1:100@VA3 March: 2019 Div Drewing status Status Revision Preliminary S2 P2 Project no. Originator Zone Level Type Role dig no.
BY ARCHITECT	Drawing status Bevision Preliminary S2 P2


The Hall School

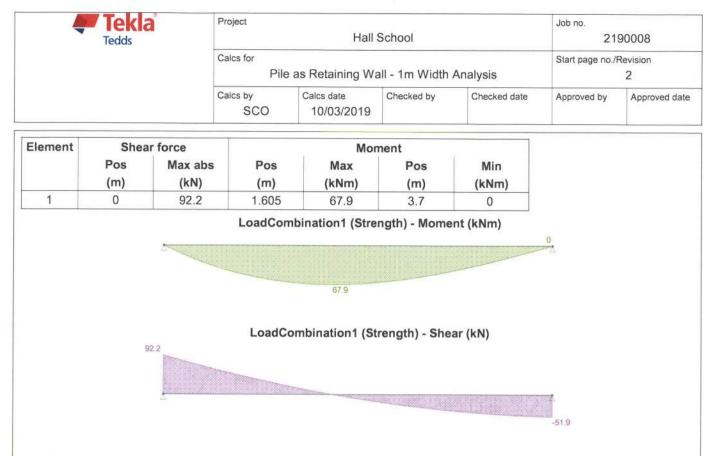
Structural Calculations – Basement


elliottwood

8.1 New contig pile wall deign

Project name:			elliottwood	engineering
Project number:	Sheet:	Revision:	emolitivoou	a better society
Date:	Engineer:	Checked:		

Elliott Wood Partnership Ltd - Consulting Structural and Civil Engineers


THE TY CONTINUES ON THE C		Туре	Start	End	Start (kN/m)	End (kN/m)	
1	Soil	Ratio	0	1	15.5	0	GlobalZ
1	Water	Ratio	0	1	37	0	GlobalZ

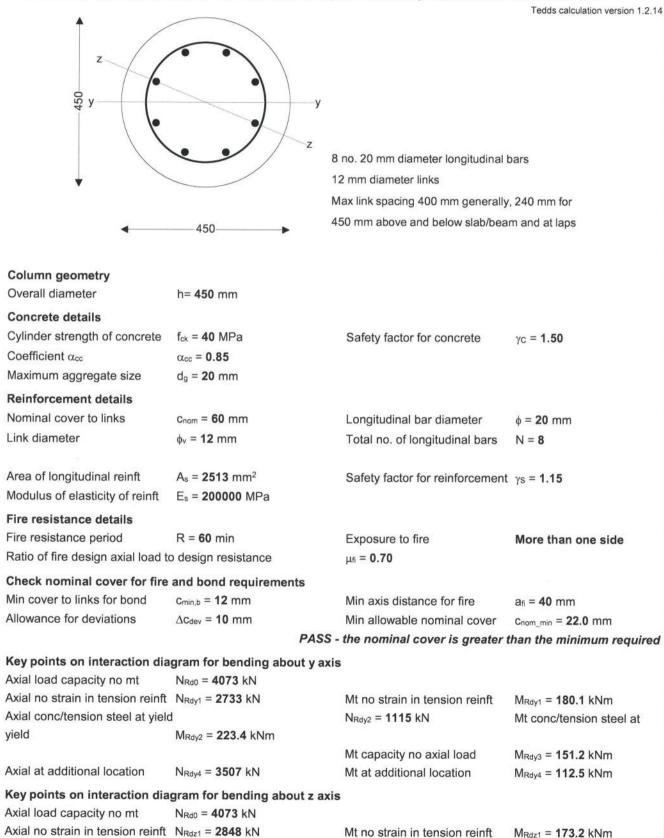
Results

Forces

Element results

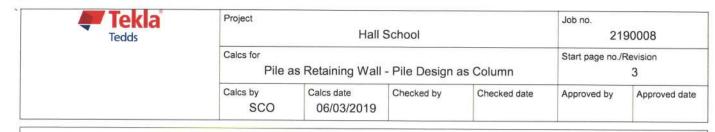
Envelope - Strength combinations

Element results

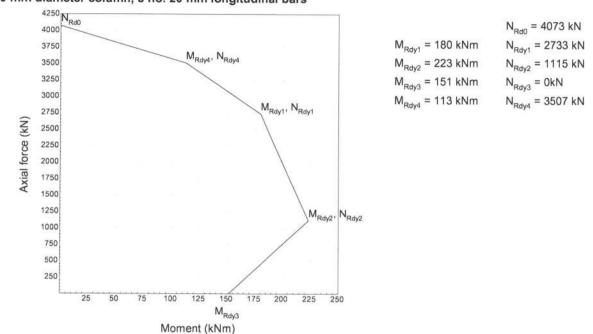

Load combination: LoadCombination1 (Strength)

Element	Shea	ar force		Mom	nent	
	Pos (m)	Max abs (kN)	Pos (m)	Max (kNm)	Pos (m)	Min (kNm)
1	0	92.2	1.605	67.9	3.7	0

Project	Job no. 2190008				
Calcs for Pile a	as Retaining Wall	- Pile Design	as Column	Start page no./F	Revision 1
Calcs by SCO	Calcs date 06/03/2019	Checked by	Checked date	Approved by	Approved date


RC COLUMN DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum January 2008 and the UK national annex


Tekla Tedds	Project	Project Hall School					
ieuus	Calcs for			2.1	Start page no./		
	Calcs by	s Retaining Wall Calcs date	- Pile Design as Checked by	Checked date	Approved by	2 Approved dat	
	SCO	06/03/2019					
Axial conc/tension steel at yie yield	M _{Rdz2} = 222.8	٨Nm	N _{Rdz2} = 1219 kl	Ν	Mt conc/tens	ion steel at	
Axial at additional location	N _{Rdz4} = 3587 k	N	Mt capacity no Mt at additiona		M _{Rdz3} = 154. M _{Rdz4} = 99.6		
					11111124 00.0		

•

Interaction diagram for bending about y axis

450 mm diameter column, 8 no. 20 mm longitudinal bars

Interaction diagram for bending about z axis

450 mm diameter column, 8 no. 20 mm longitudinal bars

The Hall School

Structural Calculations – Basement

elliottwood

8.2 Basement slab design

The Hall School

Structural Calculations – Basement

elliottwood

8.2 Basement slab design

Project name:			
Project number:	Sheet:	Revision:	
Date:	Engineer:	Checked:	

liottwood engineering a better society

OFSLAG

BASEMENT SLAD - UPLIFT

BUDY ANCY:

WATER LEVEL TO BE TAKEN CONSERVATIVELY & LOWER FLOOR LEVEL (55.870)

PARTIAL FACTOR OF 1.1 TO BE TAKEN FOR UPLIFT FORCE (WATER)

PARTIAL FACTOR OF 0.9 TO DETAKEN FOR SELF-WEIGHT

VATER = 10 KD/m3

FIERVE !

LONG - TERM TO BE TAKEN AS 60% OF WEIGHT OF SOIL REMOVED

OSM OF MADE GROUND C 17 KN/m3

UNDERLYING CLAY TO DEPTH @ 19,5 KAJAM3

	FAIL LOAD OF CELLCORE
	HX S HEAVE PROTECTION
UNDERSIDE OF NEW SLAD = 52.11	218 KNYM2 (SEE OVER)
	. HEAVE PRESSURE ON SLAB
DEPTH BELOW LOWER GROUND = 3.76m	REDUCED TO =186NIMZ
	the second se

HEAVE PRESSORE = (0.5 × 17 + 3.26 × 19.5) × 0.6 = 43.2 KN/m2 [WITHOUT VOID FORMER]

BUOYANCY PRESSORE = 10 × 3.76 = 37.6 KN/m2

UPL = (1.1 × 18.0)+(1.1 × 37.6)= 61.2 KN/m2

CINE LOAD ON BASEMENT WALLS = B1.2 × 3.7 -= 226.4 KN/m

TOTAL UPLIFT PRESSURE = 61.2×20.1×7.4 = 9102.9.KN