Garden as a series of rooms

Camden Road itself is a busy Red Route thoroughfare with several bus routes (including night buses). Consequently it suffers from very poor air quality and noise disturbance. The existing trees provide some relief from both, but clearly any new development on the site will need to address the considerable threat to public health presented by traffic.

In contrast the gardens to the rear of the homes along Camden Road are relatively peaceful, shielded from the worst of the noise and some of the pollution by the large mass of the buildings themselves. The gardens, although in most cases small, provide an invaluable sanctuary away from the busy street.

The pattern of development which has emerged along Camden Road and Camden Mews appears to have involved the later construction of new homes on the rear gardens of the larger houses along Camden Road. Thus these gardens are small in proportion to the size of the houses themselves (although many of these properties have subsequently been divided up into flats). Although at first the gardens appear as a green band running between Camden Road and Camden Mews, in actual fact most of these space comprise small courtyard gardens separated by high fences.

In contrast the existing garden to the rear of the 248-250 Camden Road comprises a large area of open lawn, with a rubber play area and overgrowth towards the rear boundary. Due to the size of the garden, the sense of exposure and the lack of variety of the space, it is seldom used by residents.

We propose creating a series of "garden rooms" through the introduction of singlestorey pavilions within the rear garden. These spaces will provide shelter, variety and privacy with shared accommodation, such as residents' lounge, opening onto them. These courtyards are also framed around the existing trees to provide additional shelter. The sequence of diagrams below show how the design for the rear garden has developed from a large, open space to modest courtyards which are more sympathetic in scale with the neighbouring properties. These rooms will be formed by the introduction of new single-storey garden pavilions which contain a variety of uses including accommodation and communal space. Because of the sunken level described above, these buildings will have no impact on neighbours, and each will have a green roof so that when viewed from the upper floors of neighbouring buildings their visual impact is reduced.

Summary

- of new rooms of appropriate quality
- from neighbouring gardens

Above Existing pattern of development with large rear garden to 248-250 Camden Road

Above Proposed breaking down of this garden space to smaller, intimate "rooms"

Above Introduction of green roofs to garden pavilions reinforces patchwork character and scale of adjacent gardens

• Retention and extension of existing building could not offer sufficient number

• A choice must be made between retaining existing trees and reestablishing the prevailing building line. We consider that the trees should take precedence. Consolidation of site to a single level helps create an accessible landscape and provides the opportunity to conceal from view new structure in the garden

• Existing garden is large and rarely used, and unlike neighbouring gardens which are compact and intensely used. The introduction of a similar pattern allows the introduction of "rooms" within a landscaped courtyard.

Design Development

In response to the constraints and opportunities outlined above we explored a series of options for the potential development of the site. These are explained on the following pages.

Double-stached corridor

This option proposes a single replacement block with a central corridor accessed via a single core in the middle of the plan, providing eight apartments per floor.

Whilst the arrangement is reasonably efficient, all of the apartments would be single aspect which would limit the penetration of natural daylight (particular on the northwest elevation facing the trees) and cross-ventilation. Those apartments facing Camden Road would suffer from noise and pollution from the road, and opportunities for engagement between residents would be limited. The long central corridor would be an unpleasant space to inhabit, with limited natural daylight except at the two ends.

The block would need to be deeper than existing building, and to avoid blocking the windows to adjacent homes would need to be pushed further back into the site, and into the roof protection area of the neighbouring tree in the rear garden of 246 Camden Road.

Staggered blocks

Adopting a similar arrangement as the previous option, shifting one half of the main block closer to the street. Whilst this would help articulate the larger mass of the building to a scale similar to that of neighbouring homes, many of the apartments would still be single aspect and therefore suffer from the problems raised previously.

The building would also encroach into the tree protection areas of the trees at the front and within the rear garden of 246 Camden Road, and block the side windows of 252 Camden Road.

This arrangement would also introduce additional complexity in construction which would increase cost and compromise financial viability.

Gallery access

A simple arrangement of dual-aspect apartments accessed from a gallery would enable a modest reduction in the depth of the new block, allowing all apartments to be dual-aspect. This is an efficient layout which lends itself to modular construction. The shallow depth avoids the root protection areas of front and rear trees and avoids obscuring neighbouring windows.

The gallery access arrangement encourages social interaction between residents and makes the building feel less 'bulky' at the rear, reducing the perceived size of the footprint.

This is the option which we believe is the best for the site and the one which has been further developed for the purposes of this document.

Gallery access

We have previously deployed a gallery access arrangement within a specialist housing scheme in Seaford, East Sussex. These modest apartments are all dual-aspect, allowing the penetration of daylight deep into the plan and long views through the home, as well as providing the opportunity for cross-ventilation (above left). These apartments open onto a shared gallery which provides a space for informal meeting and social interaction between neighbours (above right).

This project was recipient of 2019 Housing Design Award.

Proposed Massing

There are two competing objectives with regards to the position of the front of the replacement building: the presence of several large, mature trees; and the prevailing building line established by adjacent Victorian villas. It is not possible to position the new building in line with its neighbours without removing the trees. Our priority has therefore been to retain as many of the trees as possible and to align the new building with the existing structure (this also may allow some reuse of existing foundations, an option which is currently being explored by our engineer). The proposed massing is located generally on the footprint of the existing building, with both front and rear elevations pushing very slightly forward towards Camden Road.

The established set-back provides an opportunity to create a taller building than its neighbours: given that the site is typically viewed from an oblique angle from either direction along Camden Road, the set-back allows additional height to be achieved without significantly compromising the prevailing height of the street (in fact, the large numbers of dormer windows within the roofs, and the dominant chimney stacks of the Victorian villas create an undulating and inconsistent roofline). The large trees at the front of the site reinforce the prominance of the site within the streetscape.

Our proposal is for a six storey building (ground plus five floors) with the top floor inset from either side. The side set-backs are assymmetrical, responding to adjacent windows and large trees to the front. Although we have not yet designed the elevations in detail, we propose that the facade treatment will emphasise the central volume, which has a similar proportion to the adjacent villas.

Whilst gaps between buildings is identified as a positive characteristic of the street, our proposed scheme fills the width of the site to maximise the number of new rooms delivered. This is justified by the existing set-back wing of 252 Camden Road which already provides this gap, and between the application site and 246 Camden Road where there is already considerable difference between the front plane of the two buildings and the fact that no gap currently exists. This has a secondary benefit of allowing the site to be fully secured with no means of access to the rear garden and the circulation spaces without passing through a secure area.

Streetscape

The chimneys of the existing vilas along Camden Road are a dominant feature of the skyline, especially when viewed obliquely from either direction. From these positions the scale of the proposed development appears appropriate and commensurate with its location within the street.

Above Composite sketch showing proposed massing within streetscape, when viewed from Camden Road looking north east

Front Elevation

- The existing building appears similar in height to the adjacent villas when viewed in elevation, however, when viewed obliquely it appears far lower.
- A taller building in this location, set back from the prevailing building line, is appropriate when viewed from along the street.
- The proportion of the central part of the elevation is similar to that of the adjacent villas, and reintroduces a vertical emphasis missing from the existing building on the site.

Above Long elevation of street in existing condition

 $\ensuremath{\textbf{Above}}$ Long elevation of street in proposed condition with the outline of the existing building shown dotted

Accommodation

Learning from the work that has been undertaken by Bell Phillips at Chester Road we have developed a standardised apartment type which enables an efficient dualaspect apartment to be accessed from a gallery overlooking the rear garden. We have previously described the benefits of a dual-aspect arrangement, and the efficiencies which this arrangement presents.

With this arrangement a typical apartment is approximately 8 metres deep and just over 3 metres wide. An apartment such as this allows for a family of three people to be housed. The front door opens into a small kitchen and dining area, with storage for a buggy behind the door. The centre of the plan is occupied by a shower room and storage. Beyond that is a sleeping area with space for three beds. This can be screened off from the rest of the apartment, allowing adults to leave and enter the apartment, watch television, and so on, whilst children are asleep. This arrangement also allows for a clear view from the front door through to the windows at the far end.

This layout follows a similar arrangement to those proposed at the forthcoming Chester Road site to create further efficiencies for construction and ongoing maintenance.

Above Typical upper floor plan showing extent of single apartment unit

Ground Floor

- The ground floor layout is conceived as a series of internal and external 'rooms' within a landscaped setting. We have appointed a landscape architect, Camlins, to develop the proposals for the external areas.
- A single entry/exit point from the building improves management of the hostel and creates a protected garden space. Safeguarding is of upmost importance, so providing a place of sanctuary and security is an importance priority. A central staff area provides views throughout the ground floor, ensuring security.
- The existing garden is currently underused due to its large size and relative inaccessibility from the rest of the accommodation. By creating actively used spaces across the rear, the residents will more easily engage with this valuable amenity.
- Each of these 'rooms' will have different character, engaging with varying levels and uses, whether for play, engaging in growing or quiet respite.
- By consolidating the level of the site so that level access is achieved from the hostel entrance to individual front doors, the garden buildings become nestled behind the existing garden walls.
- Bikes will be stored in secure shelter within the front garden.
- Bin storage needs to be accessible from the secure part of the site so that residents can access this without leaving. Waste can be collected by operatives from the front elevation without having to come through the secure line.
- The stair and lift provide convenient access to the rear garden without having to leave the secure part of the site.

Key Studio (26 sqm) Communal Area Staff Area

Utilities

(B.B) cander poad \bigotimes 43.0

RCKa | 29-31 Cowper Street, London, EC2A 4AT | T 020 7831 7002 | www.rcka.co.uk

Upper Floors (Storeys 1-3)

- The upper storeys follow a simple arrangement of paired apartments. Eight studios per floor are accessed via a rear gallery.
- The gallery, stair and lift enclosure will be formed from lightweight materials to reduce the visual mass.
- Green roofs to the accommodation to the rear space will maintain the appearance of the garden when viewed from above.

Carroler post \otimes Window at Lower Ground only Windows from Lower Ground to Third Floor Window at Ground Floor only

Key

Roof

Fourth Floor

• The fourth floor plan follows a similar rhythm to the lower floors, but is set back from either side to provide relief to the windows within dormers of the adjacent roof and to create a more interesting front elevation with a vertical emphasis.

Dormer

Key Studio (26m2) Roof

RCKa | 29-31 Cowper Street, London, EC2A 4AT | T 020 7831 7002 | www.rcka.co.uk

Fifth Floor

• The top floor consists of two pairs of studio apartments

Key

Studio (26m2) Roof

Section A-A

- This section shows how by lowering the level of the garden, structures can be hidden behind the neighbouring garden walls.
- The elevation of the properties on Camden Road in the background show how new structures will have minimal impact on exsisting windows.

252 Camden Rd _____ 248-250 Camden Rd _____ 246 Camden Rd

- Buildings on Camden Mews

- Existing wall height

Section B-B

- This section further shows the minimal impact of the addition of structures within the garden.
- The main building is located broadly on top of the existing footprint. The gallery access breaks down the massing to the rear, minimising the impact of the building.

248-250 Camden Rd 99 Camden Mews

Key Studio (26m2) Communal Area

252 Camden Mews

Existing garden wall

Window to neighbouring property on Camden Mews

CAMDEN MEWS

Next Steps

- Design Review Panel 22 November 2019
- Facade studies
- Exploration of materials •
- Fire engineering
- Coordinated design development
- Landscape design
- Home Quality Mark pre-assessment
- Pre-application submission no. 3 9 January 2020
- Planning application end of January

Notes

KO

LB

LC

MH

LΡ

Kerb Outlet

Lamp Column Lamp Post Manhole

Litter Bin

The survey has been oriented to Ordnance Survey (OS) National Grid (OSGB36) using Industry Standard Network RTK GPS equipment utilising the OS Active Network (OS Net). A true OSGB36 coordinate has been established on site using the OSTN15 (transformation) & OSGB15 (geoid) models. The survey detail has been correlated to this point and a further one (or more) OSGB36 points established to produce a true OS bearing for angle orientation.

Vegetation

Vent Pipe

Water Meter Water Valve

Water Key Hole

WKH

WM W∨

Scale factor 1.0 has been applied therefore the survey coordinates are shown on a pseudo OS grid.

All levels are in metres unless otherwise specified All heights are in millimetres unless otherwise specified

D Deduced

5	-	-	-	-							
4	-	-	-	-							
3	-	-	-	-							
2	MW	MW	Utility Services Survey Added	27/06/2019							
1	JW	AM	lines of Surrounding Buildings Added 25/06/20								
0	JW	AM	First Complete Issue	17/06/2019							
Prelim	JW	AM	Preliminary - Not Complete	17/06/2019							
Rev	Svyr	QA Check	Description	Date							
© (C Copyright Warner Surveys Drawn in BricsCAD – www.bricsys.com part of www.hexagon.com										

	1										
WARNER SURVEYS Land and Engineering Surveying Since 1979											
Jnit 22, Theale Lakes Bus. Pk, Moulden Way READING. RG7 4GB T +44 (0)118 930 3314 G.3 Bedford House, 69-79 Fulham High St LONDON. SW6 3JW T +44 (0)203 651 7549 5th Floor 1 Temple Way BRISTOL. BS2 0BY T +44 (0)117 301 8137 Jnit G9, The Arch, 48-52 Floodgate St BIRMINGHAM. B5 5SL T +44(0)121 752 1220 Queens Court, 9-17 Eastern Road ROMFORD. RM1 3NH T +44(0)121 752 1220											
WWW.Warnersurveys.com Topographic, Utility, Measured Building & UAV Surveys Construction, Site Engineering & 3D Laser Scanning Oil, Gas & Industrial Surveying & Dimensional Control											
SURVEYED	JW										
DRAWN	KJA	ARCHITYPE L.T.D.									
SCALE	1:200										
248 — 250 CAMDEN ROAD											
TOPOGRAPHICAL SURVEY											
	JOB No	DRAWING NUMBER									
LT319/	0532	LT319/0532/P0001									

Appendix II – Calculations

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

Sam Lee

Camden Road

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the basis for setting consents for the drainage of surface water runoff from sites.

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

Calculated by:

Site name:

be

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	51.54714° N
Longitude:	0.13108° W
Reference:	1776275198
Date:	Apr 30 2020 17:26

Runoff estimation app	IH124								
Site characteristics				Notes					
Total site area (ha):		0.1286		(1) IS $Q_{BAD} < 2.0 \text{ I/s/ha}$?					
Methodology									
Q _{BAR} estimation method:	m SPR and	SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.						
SPR estimation method:	Calculate from	m SOIL typ	е						
Soil characteristics									
SOIL type:	ſ		Edited	(2) Are flow rates < 5.0 l/s?					
HOST class:		N/A	N/A	Where flow rates are less than 5.0 1/2 sensent for discharge is					
SPR/SPRHOST:		0.47	0.47	usually set at 5.0 l/s if blockage from vegetation and other					
Hydrological characte	eristics	Default	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.					
SAAR (mm):		629	629						
Hydrological region:		6	6	(3) is SPR/SPRIUS 1 ≤ 0.3 ?					
Growth curve factor 1 year:		0.85	0.85	Where groundwater levels are low enough the use of soakaways					
Growth curve factor 30 years:		2.3	2.3	to avoid discharge offsite would normally be preferred for disposal of surface water runoff					
Growth curve factor 100 ye	3.19	3.19							
Growth curve factor 200 ye	ars:	3.74	3.74						

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	0.55	0.55
1 in 1 year (l/s):	0.47	0.47
1 in 30 years (l/s):	1.26	1.26
1 in 100 year (l/s):	1.75	1.75
1 in 200 years (l/s):	2.05	2.05

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

AEA - Ambiental						Page 1
Science Park Square						
Brighton						
East Sussex						Micco
Date 10/11/2020 13:17	Desi	Igned 1	oy Seba	astian	-W	Dcainage
File BROWNFIELD.SRCX	Cheo	cked b	У			Drainaye
XP Solutions	Sour	cce Co	ntrol 2	2018.1		I
<u>Summary of Resu</u>	<u>lts fo</u>	or 100	<u>year R</u>	eturn	Period	
Other way	M				C b a b a b a b a b a b a b a b a b a b a b a b a b a b	
Event	Max Level	Max Depth (Max Control	Max Volume	Status	
	(m)	(m)	(1/s)	(m ³)		
15	40.040	0 040	22.2	0 1	0.17	
15 min Summer 30 min Summer	49.249	0.249	33.3 29 0	0.4	OK	
60 min Summer	49.187	0.187	20.9	0.3	0 K	
120 min Summer	49.138	0.138	13.4	0.2	ОК	
180 min Summer	49.120	0.120	10.2	0.2	ОК	
240 min Summer	49.109	0.109	8.2	0.2	ОК	
360 min Summer	49.093	0.093	6.0	0.1	O K	
480 min Summer	49.082	0.082	4.8	0.1	0 K	
600 min Summer	49.075	0.075	4.0	0.1	O K	
720 min Summer	49.070	0.070	3.5	0.1	ОК	
960 min Summer	49.062	0.062	2.8	0.1	0 K	
1440 min Summer	49.053	0.053	2.0	0.1	ΟK	
2160 min Summer	49.045	0.045	1.5	0.1	ΟK	
2880 min Summer	49.040	0.040	1.2	0.0	ОК	
4320 min Summer	49.034	0.034	0.8	0.0	OK	
5/60 min Summer	49.029	0.029	0.7	0.0	O K	
R640 min Summer	49.UZ6 19 021	0.020	0.0	0.0	O K	
10080 min Summer	49.024	0.029	0.3	0.0	0 K	
15 min Winter	49.250	0.250	33.6	0.4	O K	
30 min Winter	49.208	0.208	25.1	0.4	ОК	
Storm	Rain	Floode	d Discha	arge Ti	me-Peak	
Event	(mm/hr)	Volum	e Volu	me	(mins)	
		(m³)	(m³)		
15 min Summer	98.681	0.	0	13.0	9	
30 min Summer	64.789	0.	0	17.0	17	
60 min Summer	40.510	0.	0	21.3	32	
120 min Summer	24.461	0.	0	25.7	62	
180 min Summer	17.964	0.	0 2	28.3	92	
240 min Summer	14.342	0.	0	30.1	122	
360 min Summer	10.418	0.	0	32.8	182	
480 min Summer	8.302	0.	0	34.9	244	
600 min Summer	6.956	0.	0	36.5	300	
720 min Summer	6.017	0.	0	37.9	360	
960 min Summer	4.784	0.	0 4	40.2	482	
1440 min Summer	3.456	0.	0 4	43.5	712	
2160 min Summer	2.493	0.	0 4	4/.1	1400	
2880 min Summer	1.975	0.	0	49.8 52 7	1428	
4320 min Summer	⊥.4∠⊥ 1 104	υ.	0	ン ろ・ / ちん ん	22U4 2000	
7200 min Summer	1.124	0.	0	50.0 59 N	2000 2622	
8640 min Summer	0.930	0.	0	59.0 60 9	2032 1210	
10080 min Summer	0.000	0.	0	62 6	4952	
15 min Winter	98 681	0.	0	14.5	10	
30 min Winter	64.789	0.	0	19.0	17	
	000.07	10 -				
©1	.982-20	18 Inr	novyze			

AEA - Ambienta	1						Page 2
Science Park S	Square						
Brighton							and the second second
East Sussex							Micco
Date 10/11/202	20 13:17	Des	igned b	y Sebas	tian-	-W	
File BROWNFIEI	D.SRCX	Cheo	cked by	-			Dialhagi
XP Solutions		Soui	cce Con	trol 20	18.1		
	Summary of Resu	ults fo	or 100	vear Ret	turn	Period	
	<u>ouninary or noor</u>		2 200	<u>1002 1101</u>	04211	101104	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth C	ontrol Vo	olume		
		(m)	(m)	(1/s)	(m³)		
	60 min Winter	49.159	0.159	16.4	0.3	ОК	
	120 min Winter	49.119	0.119	10.1	0.2	0 K	
	180 min Winter	49.105	0.105	7.4	0.2	ОК	
	240 min Winter	49.093	0.093	6.0	0.1	ОК	
	360 min Winter	49.078	0.078	4.3	0.1	ΟK	
	480 min Winter	49.070	0.070	3.5	0.1	0 K	
	600 min Winter	49.064	0.064	2.9	0.1	0 K	
	720 min Winter	49.059	0.059	2.5	0.1	O K	
	960 min Winter	49.053	0.053	2.0	0.1	0 K	
	1440 min Winter	49.045	0.045	1.5	0.1	0 K	
	2160 min Winter	49.038	0.038	1.1	0.0	0 K	
	2880 min Winter	49.034	0.034	0.8	0.0	0 K	
	4320 min Winter	49.027	0.027	0.6	0.0	ОК	
	5760 min Winter	49.024	0.024	0.5	0.0	OK	
	7200 min Winter 8640 min Winter	49.022	0.022	0.4	0.0	OK	
	10080 min Winter	49.020	0.020	0.4	0.0	O K O K	
	Storm	Rain	Flooded	l Dischar	ge Ti	me-Peak	
	Event	(mm/nr)	(m ³)	(m ³)	3	(mins)	
				. ,			
	60 min Winter	40.510	0.0) 23	.8	32	
	120 min Winter	24.461	0.0) 28	.8	60	
	180 min Winter	1/.964	0.0) 33) 31	• /	94 122	
	240 MILLI WILLER 360 min Winter	10 /10	0.0	, 33) 36	• ′	19/	
	480 min Winter	8 302	0.0	,	.1	242	
	600 min Winter	6.956	0.0) 40	.9	300	
	720 min Winter	6.017	0.0) 42	.5	366	
	960 min Winter	4.784	0.0) 45	.0	498	
	1440 min Winter	3.456	0.0) 48	.8	714	
	2160 min Winter	2.493	0.0) 52	.8	1092	
	2880 min Winter	1.975	0.0) 55	.8	1432	
	4320 min Winter	1.421	0.0) 60	.2	2180	
	5760 min Winter	1.124	0.0) 63	.4	2832	
	7200 min Winter	0.936	0.0) 66	.1	3624	
	8640 min Winter	0.806	0.0) 68	.3	4296	
	10080 min Winter	0.710	0.0	J 70	• 2	5248	
	©1	982-20	ιιχ Τηρι				

Science Park Square Brighton Bast Sussex Date 10/11/2020 13:17 File BROWNFIELD.SRCX Source Control 2013.1 Eanfall Model FGR Winter Storms Yes Return Period (years) 100 CY (Sumer) 0.750 Return Period Science England and Wales CY (Winter) 0.840 MS-60 (wm) 20.000 Shortest Storm (mins) 105 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.070 Time Area Diagram Total Area (ha) 0.070 Time Area Diagram Total Area (ha) 0.000 Summer Storms To: (ha) 0 4 0.000	AEA - Ambiental	Page 3
Brighton Bast Sussex Date 10/11/2020 13:17 File BROWNFIELD.SRCX VF Solutions Source Control 2018.1	Science Park Square	
East Sussex Designed by Sebastian-W Checked by Checked	Brighton	
Date 10/11/2020 13:17 File BROWNFIELD.SRCX WR Solutions Source Control 2018.1 Checked by Source Control 2018.1 Checked by Source Control 2018.1 Checked by Source Control 2018.1 Sation Confail Details Section England and Wales CV (Winner) 0.840 Source Storms 20.000 Shortes Storm (mina) 10080 Station 0.400 Shortes Storm (mina) 10080 Summer Storms 0.400 Shortes Storm (mina) 10080 Summer Storms Tro: (ha)	East Sussex	Mirro
File BROWNFIELD.SRCX Checked by Source Control 2018.1 General Control 2018.0 Bainfall Model Cycers Control 2018.0 Bainfall Model Cycers Control 2018.0 Bainfall Model Cycers Control Control Control 2018.1 Control Control Control 2018.1 Control Control Control 2018.1 Control Control Control 2018.1 Control Control Control 2018.0 Control Control Control Control Control 2018.1 Control Cont	Date 10/11/2020 13:17	Designed by Sebastian-W
XP Solutions Source Control 2018.1 Eainfall Model FSR Winter Storms Yes Region England and Wales CV (Winner) 0.840 MS-60 (mm) 20.000 Shortest Storm (mins) 15 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.070 Time Area Diagram O 4 0.070 Time Area Diagram O 4 0.070 Time (mins) Area From: To: (ha) O 4 0.070	File BROWNFIELD.SRCX	Checked by
<section-header><section-header><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	XP Solutions	Source Control 2018.1
Rainfall Model FSR Winter Storms Yes Region England and Males Cv (Gunner) 0.540 NS-60 (mm) 20.000 Shortest Storm (mins) 1008 Summer Storms Yes Climate Change S +0 Dimer Storm (mins) 1008 Summer Storms Yes Climate Change S Dimer Storm (mins) 1008 Summer Storms Yes Climate Change S Ottal Area Diagram Ottal Area (ha) 0.070 Dime Area Diagram Ottal Area (ha) 0.000 Dime Area Diagram Ottal Area (ha) 0.000 Dime Meas Total Area (ha) 0.000 Dime Meas Ottal Area (ha) 0.000 Ottal Area (ha) 0.000 Ottal Area (ha) 0.000 Dime Meas Ottal Area (ha) 0.000	<u>R</u>	ainfall Details
Time Area Diagram Total Area (ha) 0.070 Time (mins) Area From: To: (ha) 0 4 0.070 Time Area Diagram Total Area (ha) 0.000 Time (mins) Area From: To: (ha) 0 4 0.000	Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 land and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080 Yes Climate Change % +0
Total Area (ha) 0.070 Time (mine) Tro: 0 4 0 1 <t< td=""><td><u></u></td><td>ime Area Diagram</td></t<>	<u></u>	ime Area Diagram
Time (mins) Area From: To: (ha) 0 4 0.070 Time Area Diagram Total Area (ha) 0.000 Time (mins) Area From: To: (ha) 0 4 0.000	То	tal Area (ha) 0.070
0 4 0.070 Time Area Diagram Total Area (ha) 0.000 0 4 0.000 0 4 0.000	F	Time (mins) Area Yrom: To: (ha)
Time Area Diagram Total Area (ha) 0.000 Time (mins) Area Trom: To: (ha) 0 4 0.000		0 4 0.070
Total Area (ha) 0.000 Time (mins) Area From: To: (ha) 0 4 0.000	<u><u>T</u>:</u>	ime Area Diagram
Time (mins) Area From: To: (ha) 0 4 0 4 0 4 0 10	То	tal Area (ha) 0.000
0 4 0.000	F	Time (mins) Area Trom: To: (ha)
©1982-2018 Innovvze		0 4 0.000
01982-2018 Innovyze		
©1982-2018 Innovuze		
©1982-2018 Innovvze		
©1982-2018 Innovvze		
01982-2018 Innovvze		
©1982-2018 Innovyze		
	<u></u>	982-2018 Innovyze

AEA - Ambiental		Page 4
Science Park Square		
Brighton		
East Sussex		Micro
Date 10/11/2020 13:17	Designed by Sebastian-W	Dcainago
File BROWNFIELD.SRCX	Checked by	Diamage
XP Solutions	Source Control 2018.1	

Model Details

Storage is Online Cover Level (m) 50.000

<u>Pipe Structure</u>

Diameter (m) 0.225 Length (m) 5.000 Slope (1:X) 80.000 Invert Level (m) 49.000

Pipe Outflow Control

Diameter (m) 0.225 Entry Loss Coefficient 0.500 Slope (1:X) 80.0 Coefficient of Contraction 0.600 Length (m) 5.000 Upstream Invert Level (m) 49.000 Roughness k (mm) 0.600 Ambiental Environmental

File: minusblueroofs.pfdPage 1Network: Storm Network5356Sam Lee01/06/2020

Design Settings

Return Period (years)100Maximum Rainfall (mm/hr)50.0Additional Flow (%)40Minimum Velocity (m/s)1.00FSR RegionEngland and WalesConnection TypeLevel SoffitsM5-60 (mm)20.000Minimum Backdron Height (m)0.500	
Additional Flow (%) 40 Minimum Velocity (m/s) 1.00 FSR Region England and Wales Connection Type Level Soffits M5-60 (mm) 20.000 Minimum Backdron Height (m) 0.500	
FSR Region England and Wales Connection Type Level Soffits	
M5-60 (mm) 20 000 Minimum Backdron Height (m) 0 500	5
Ratio-R 0.400 Preferred Cover Depth (m) 0.600	
CV 0.750 Include Intermediate Ground \checkmark	
Time of Entry (mins)4.00Enforce best practice design rules \checkmark	

<u>Circular Link Type</u>

ShapeCircularBarrels1Auto Increment (mm)75Follow Groundx

Available Diameters (mm)

100 150

<u>Nodes</u>

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Depth (m)
\checkmark	3			43.500	Manhole	Adoptable	1200	0.919
\checkmark	Underground Tank			43.250	Junction			1.850
\checkmark	External Paved Areas	0.099	4.00	43.500	Manhole	Adoptable	1200	0.500
\checkmark	2			43.000	Manhole	Adoptable	1200	1.700

CAUS	SEWAY					Network Sam Lee 01/06/2	<: Storm N 020	Vetwork		53	856		
					<u>Lir</u>	<u>nks</u>							
Nam ? 1.00 ? 1.00 ? 1.00	ne US Node 11 3 20 External Paved An 22 Underground Tar	DS Node Underground Tank reas 3 Ik 2	Length k (m) 5.000 5.000 5.000	s (mm) / n 0.600 0.600 0.600	V Ec Colebr Colebr Colebr	elocity quation rook-Whit rook-Whit rook-Whit	US I (m) e 42.58 e 43.00 e 41.40	L DS IL (m) 31 42.519 00 42.581 00 41.300	Fall (m) 0.062 0.419 0.100	Slope D (1:X) (m 80.0 2 11.9 2 50.0 2	ia Lin m) Ty 225 Circ 225 Circ 225 Circ	nk T of pe (mins ular 4.0 ular 4.0 ular 4.1	C Rain s) (mm/hr) 18 50.0 12 50.0 12 50.0
	Name US Nod	DS le Node	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Minimum Depth	Maximun Depth	n ΣArea (ha)	Σ Add Inflow	Pro Depth	Pro /elocity
? ? ?	1.001 3 1.000 External Pay 1.002 Undergrour	Underground ved Areas 3 nd Tank 2	Tank 1.463 3.808 1.854	58.2 151.4 73.7	18.8 18.8 18.8	0.694 0.275 1.625	(m) 0.506 0.694 1.475	(m) 0.506 0.275 1.475	0.694 0.694 1.625	4 0.099 4 0.099 5 0.099	(1/s) 0.0 0.0 0.0	87 53 77	1.306 2.613 1.552
				<u>Sir</u>	mulatio	n Settings	<u>i</u>						
	R	ainfall Methodology FSF FSR Region Eng M5-60 (mm) 20. Ratio-R 0.4	R gland and Wa 000 00	iles Si	Sun W Analys kip Stea	nmer CV 'inter CV is Speed dy State	0.750 0.840 Normal x	Drair Additio Cheo Cheol	n Down Tim nal Storage k Discharge k Discharge	e (mins) e (m³/ha) e Rate(s) Volume	1440 0.0 x x		
		15 30 60	120	S 180 2	Storm D 40	urations 360	480	600 720	960	1440			
	Return Period (years)	Climate Change Additic (CC %) (A	onal Area A \ %)	dditional (Q %)	Flow	Return (ye	Period ars)	Climate Ch (CC %)	ange Ado	ditional Ar (A %)	ea Addi	itional Flow (Q %)	,
	1 30	0 0	0 0		0 0		100 100		0 40		0 0	0 0	1
			Node Und	lerground	Tank O	nline Hvd	ro-Brake [@]	[®] Control					
		F 1					(1 /_)						
		Downstrea Downstrea Replaces Downstrea Invert Le	m Link 1.00 m Link √ vel (m) 41.4	02 400	F	Obj Obj Sump Ava Product Ni	iective ailable umber	1.4 (HE) Minimi √ CTL-SHE-005	se upstrear 50-1400-16	n storage 00-1400			
		Design Dep	oth (m) 1.60	00 N	1in Outl	et Diamet	er (m)	0.075					

Node Underground Tank Online Hydro-Brake[®] Control

Min Node Diameter (mm) 1200

Node Underground Tank Depth/Area Storage Structure

Base Inf Coefficier Side Inf Coefficier	nt (m/hr nt (m/hr) 0.00000) 0.00000	Safe	ty Facto Porosit	or 2.0 y 0.95	Time to h	Invert nalf emp	Level (m) oty (mins)	41.400 344	
Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)		
0.000	40.0	0.0	1.600	40.0	0.0	1.601	0.0	0.0		

<u>Rainfall</u>

Event	Event Peak Averag		Event	Peak	Average
	Intensity	Intensity		Intensity	Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
1 year 15 minute summer	109.521	30.991	1 year 720 minute winter	5.513	2.199
1 year 15 minute winter	76.857	30.991	1 year 960 minute summer	6.768	1.782
1 year 30 minute summer	71.439	20.215	1 year 960 minute winter	4.483	1.782
1 year 30 minute winter	50.133	20.215	1 year 1440 minute summer	4.949	1.326
1 year 60 minute summer	48.435	12.800	1 year 1440 minute winter	3.326	1.326
1 year 60 minute winter	32.179	12.800	30 year 15 minute summer	268.706	76.035
1 year 120 minute summer	30.053	7.942	30 year 15 minute winter	188.566	76.035
1 year 120 minute winter	19.966	7.942	30 year 30 minute summer	174.929	49.499
1 year 180 minute summer	23.233	5.979	30 year 30 minute winter	122.757	49.499
1 year 180 minute winter	15.102	5.979	30 year 60 minute summer	116.589	30.811
1 year 240 minute summer	18.475	4.882	30 year 60 minute winter	77.459	30.811
1 year 240 minute winter	12.274	4.882	30 year 120 minute summer	70.438	18.615
1 year 360 minute summer	14.169	3.646	30 year 120 minute winter	46.797	18.615
1 year 360 minute winter	9.210	3.646	30 year 180 minute summer	53.298	13.715
1 year 480 minute summer	11.185	2.956	30 year 180 minute winter	34.645	13.715
1 year 480 minute winter	7.431	2.956	30 year 240 minute summer	41.604	10.995
1 year 600 minute summer	9.182	2.511	30 year 240 minute winter	27.641	10.995
1 year 600 minute winter	6.274	2.511	30 year 360 minute summer	31.221	8.034
1 year 720 minute summer	8.203	2.199	30 year 360 minute winter	20.295	8.034

Page 4 5356

<u>Rainfall</u>

Event	Peak	Average	Event	Peak	Average	
	Intensity	Intensity		Intensity	Intensity	
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)	
30 year 480 minute summer	24.324	6.428	100 year 720 minute winter	15.089	6.017	
30 year 480 minute winter	16.160	6.428	100 year 960 minute summer	18.166	4.784	
30 year 600 minute summer	19.756	5.404	100 year 960 minute winter	12.033	4.784	
30 year 600 minute winter	13.498	5.404	100 year 1440 minute summer	12.896	3.456	
30 year 720 minute summer	17.490	4.687	100 year 1440 minute winter	8.667	3.456	
30 year 720 minute winter	11.754	4.687	100 year +40% CC 15 minute summer	488.233	138.153	
30 year 960 minute summer	14.215	3.743	100 year +40% CC 15 minute winter	342.620	138.153	
30 year 960 minute winter	9.416	3.743	100 year +40% CC 30 minute summer	320.551	90.705	
30 year 1440 minute summer	10.161	2.723	100 year +40% CC 30 minute winter	224.948	90.705	
30 year 1440 minute winter	6.829	2.723	100 year +40% CC 60 minute summer	214.603	56.713	
100 year 15 minute summer	348.738	98.681	100 year +40% CC 60 minute winter	142.577	56.713	
100 year 15 minute winter	244.728	98.681	100 year +40% CC 120 minute summer	129.587	34.246	
100 year 30 minute summer	228.965	64.789	100 year +40% CC 120 minute winter	86.094	34.246	
100 year 30 minute winter	160.677	64.789	100 year +40% CC 180 minute summer	97.729	25.149	
100 year 60 minute summer	153.288	40.510	100 year +40% CC 180 minute winter	63.526	25.149	
100 year 60 minute winter	101.841	40.510	100 year +40% CC 240 minute summer	75.977	20.078	
100 year 120 minute summer	92.562	24.461	100 year +40% CC 240 minute winter	50.477	20.078	
100 year 120 minute winter	61.496	24.461	100 year +40% CC 360 minute summer	56.677	14.585	
100 year 180 minute summer	69.806	17.964	100 year +40% CC 360 minute winter	36.841	14.585	
100 year 180 minute winter	45.376	17.964	100 year +40% CC 480 minute summer	43.979	11.622	
100 year 240 minute summer	54.269	14.342	100 year +40% CC 480 minute winter	29.219	11.622	
100 year 240 minute winter	36.055	14.342	100 year +40% CC 600 minute summer	35.604	9.738	
100 year 360 minute summer	40.484	10.418	100 year +40% CC 600 minute winter	24.327	9.738	
100 year 360 minute winter	26.315	10.418	100 year +40% CC 720 minute summer	31.433	8.424	
100 year 480 minute summer	31.414	8.302	100 year +40% CC 720 minute winter	21.125	8.424	
100 year 480 minute winter	20.871	8.302	100 year +40% CC 960 minute summer	25.432	6.697	
100 year 600 minute summer	25.431	6.956	100 year +40% CC 960 minute winter	16.847	6.697	
100 year 600 minute winter	17.376	6.956	100 year +40% CC 1440 minute summer	18.055	4.839	
100 year 720 minute summer	22.452	6.017	100 year +40% CC 1440 minute winter	12.134	4.839	

Results for 1 year Critical Storm Duration. Lowest mass balance: 100.00%

Node	Event	US Noc	S de	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status	
15 minute	e winter	3		10	42.663	0.082	14.8	0.0929	0.0000	ОК		
120 minute winter Undergrour		nd Tank	96	41.631	0.231	4.6	8.7671	0.0000	SUR	CHARGED		
15 minute	e summer	External Pa	ved Areas	10	43.047	0.047	14.8	0.0536	0.0000	ОК		
15 minute	e summer	2		1	41.300	0.000	0.9	0.0000	0.0000	ОК		
Link Event	,	US	Link		DS		Outflow	Velocity	Flow/C	Сар	Link	Discharge
(Upstream Depth)	N	ode			Node	9	(I/s)	(m/s)		-	Vol (m³)	Vol (m ³)
15 minute winter	3		1.001	U	ndergrour	nd Tank	14.8	1.179	0.2	254	0.0628	
120 minute winter	Undergro	und Tank	Hydro-Brak	ke® 2	_		1.0					13.2
15 minute summer	External F	Paved Areas	1.000	3			14.8	1.575	0.0	98	0.0479	

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node	Event	US	5 de	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status	
15 minute summer 3				10	, c	42.721	0.140	36.2	0.1582	0.0000	ОК	(
180 minute winter Underground		nd Tank	176	6	42.086	0.686	8.0	26.0549	0.0000	SU	RCHARGED		
15 minute summer External Pay		ved Areas	ç	Э	43.081	0.081	36.2	0.0912	0.0000	ОК	(
15 minute	e summer	2		-	1	41.300	0.000	1.0	0.0000	0.0000	OK	(
Link Event	,	US	Link			DS		Outflow	Velocity	Flow/C	Сар	Link	Discharge
(Upstream Depth)	N	ode				Node		(I/s)	(m/s)		-	Vol (m³)	Vol (m ³)
15 minute summer	3		1.001		Und	dergroun	d Tank	36.2	1.472	0.6	522	0.1230	
180 minute winter	Undergro	und Tank	Hydro-Bra	ke®	2			1.0					34.2
15 minute summer	External F	Paved Areas	1.000		3			36.2	1.877	0.2	239	0.0967	

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node	e Event	U: No	S	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m ³)	Status	
15 minut	te winter	3		10	42.749	0.168	47.0	0.1904	0.0000	ОК	
240 minute winter Undergrou		Undergrou	nd Tank	232	42.337	0.937	8.3	35.6122	0.0000	SURCHARGE)
15 minute winter External Pa		ved Areas	9	43.096	0.096	47.0	0.1087	0.0000	ОК		
15 minut	te summer	2		1	41.300	0.000	1.0	0.0000	0.0000	ОК	
Link Event	I	US	Link		DS		Outflow	Velocity	Flow/Ca	ap Link	Discharge
(Upstream Depth)	N	ode			Node		(I/s)	(m/s)		Vol (m³)	Vol (m ³)
15 minute winter	3		1.001	Ur	ndergroun	d Tank	47.0	1.554	0.80	0.1511	
240 minute winter	Undergro	und Tank	Hydro-Brak	ke® 2			1.1				47.7
15 minute winter	External F	Paved Areas	1.000	3			47.0	1.946	0.31	LO 0.1200	

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node	Event	U: No	S de	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
15 minut	15 minute winter 3			10	42.848	0.267	65.8	0.3017	0.0000	SURCHARGE)
240 minu	240 minute winter Undergrou		nd Tank	232	42.781	1.381	11.7	52.4611	0.0000	SURCHARGE)
15 minut	15 minute winter External Pav		ved Areas	10	43.131	0.131	65.8	0.1477	0.0000	ОК	
15 minut	e summer	2		1	41.300	0.000	1.0	0.0000	0.0000	ОК	
Link Event	I	US	Link		DS		Outflow	Velocity	Flow/C	ap Link	Discharge
(Upstream Depth)	N	ode			Node	•	(I/s)	(m/s)	-	Vol (m³)	Vol (m ³)
15 minute winter	3		1.001	Ur	ndergroun	d Tank	65.8	1.655	1.1	31 0.1947	
240 minute winter	Undergro	und Tank	Hydro-Brak	e® 2	-		1.3				66.8
15 minute winter	External F	Paved Areas	1.000	3			65.8	1.979	0.4	35 0.1591	

Appendix III – Proposed Drawing

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

- THIS DRAWING IS NOT TO BE SCALED, WORK TO FIGURED DIMENSIONS ONLY, CONFIRMED ON SITE. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT
- ARCHITECTURAL DRAWINGS, DETAILED SPECIFICATIONS WHERE APPLICABLE AND ALL ASSOCIATED DRAWINGS IN THIS SERIES. ANY DISCREPANCY ON THIS DRAWING IS TO BE REPORTED IMMEDIATELY TO THE PARTNERSHIP FOR CLARIFICATION. THE CONTRACTOR IS RESPONSIBLE FOR ALL TEMPORARY WORKS AND FOR
- THE STABILITY OF THE WORKS IN PROGRESS. CDM REGULATIONS 2015. ALL CURRENT DRAWINGS AND SPECIFICATIONS MUST BE READ IN CONJUNCTION WITH THE DESIGNER'S HAZARD RISK AND ENVIRONMENT ASSESSMENT RECORD. DESIGN HAS BEEN PRODUCED BASED ON INFORMATION PROVIDED BY THE CLIENT/PRINCIPLE DESIGNER AVAILABLE AT TIME OF ISSUE. CONTRACTOR TO REVIEW DRAWING AND SPECIFICATION IN CONTEXT WITH THE WIDER SITE AND SPECIFIC SITE INVESTIGATION, CONTAMINATION ASSESSMENT, ASBESTOS SURVEY, ENVIRONMENTAL SURVEY, UXO SURVEY AND ANY OTHER RELEVANT INFORMATION AND MANAGE RISKS RELATING TO THE WORKS OUTLINED IN THE DRAWINGS AND SPECIFICATION. PRINCIPLE CONTRACTOR TO MAKE DESIGNER AND CLIENT AWARE OF SITE SPECIFIC RISKS THAT MAY AFFECT
- THE DRAWING AND SPECIFICATION. CDM REGULATIONS 2015. FOR GENERIC MAINTENANCE AND MANAGEMENT RISKS REFER TO CHAPTER 36 OF CIRIA 752 SUDS MANUAL. FOR PROPRIETARY SYSTEMS SEE MANUFACTURER'S MANAGEMENT AND MAINTENANCE DETAILS AND RISK ASSESSMENT WITH REGARDS TO MAINTENANCE OF PROPRIETARY SYSTEMS.
- CONSTRUCTION NOTE THE MAIN CONTRACTOR IS RESPONSIBLE FOR THE DESIGN OF ALL
- TEMPORARY WORKS, AND IS ALSO RESPONSIBLE FOR THE SAFE MAINTENANCE AND STABILITY OF EXISTING BUILDINGS AT ALL TIMES.
- THE MAIN CONTRACTOR IS RESPONSIBLE FOR ALL OCCURRENCES OF GROUND WATER DURING THE CONSTRUCTION PERIOD. ANY INFORMATION GIVEN REGARDING EXISTING UNDERGROUND SERVICES IS GIVEN IN GOOD FAITH AFTER CONSULTATION WITH THE RELEVANT
- AUTHORITY, HOWEVER ACCURACY IS NOT CERTAIN. THE MAIN CONTRACTOR IS RESPONSIBLE FOR CHECKING ALL INFORMATION ON SITE PRIOR TO WORK COMMENCING AND TAKING DUE CARE AND ATTENTION WHILST UNDERTAKING THE WORKS. THE CONTRACTOR MUST COMPLY WITH ALL CURRENT LEGISLATION RELATING
- TO HEALTH & SAFETY. ALL PRODUCTS SPECIFIED SHALL BE INSTALLED IN STRICT ACCORDANCE WITH
- THE MANUFACTURERS RECOMMENDATIONS AND INSTRUCTIONS. IF THERE ARE DISCREPANCIES BETWEEN THAT INFORMATION AND THE DETAILS ON
- ANY AMBIENTAL DRAWINGS, THE MANUFACTURERS INSTRUCTIONS MUST BE USED
- BELOW GROUND DRAINAGE PIPEWORK TO BE UPVC-U PIPES TO BS 4660 : 2000 AND INSPECTION CHAMBERS TO BS 7158 : 2001.
- ALL ADOPTABLE DRAINAGE TO BE CONSTRUCTED IN ACCORDANCE WITH DESIGN GUIDE.

- 'SEWERS FOR ADOPTION' 7TH EDITION AND THE RELEVANT COUNCIL ALL PRIVATE SURFACE WATER SEWERS TO BE LAID AT 1 IN 100 UNLESS
- OTHERWISE STATED ON THE DRAWING.

- PIPE RUNS AND 1 IN 80 ELSEWHERE UNLESS OTHERWISE STATED.
- ALL PRIVATE FOUL WATER SEWERS TO BE LAID AT 1 IN 40 AT THE HEAD OF ALL PRIVATE FOUL SEWER PIPES TO BE 150MM DIAMETER UNLESS
- OTHERWISE STATED ON THE DRAWING. ALL PRIVATE SURFACE WATER

- SEWER PIPES TO BE 100MM DIAMETER FROM DOWNPIPES AND 150MM DIAMETER ELSEWHERE UNLESS OTHERWISE STATED ON THE DRAWING.

- ALLOW FOR RODDING ACCESS ABOVE GROUND WHERE RAINWATER DOWNPIPES DO NOT HAVE A DIRECT CONNECTION TO AN INSPECTION CHAMBER. EXISTING SEWER PIPE TO BE RE-USED TO BE SURVEYED AND
- LEVELLED PRIOR TO COMMENCEMENT OF THE DRAINAGE WORKS AND REFURBISHED IF NECESSARY. CONNECTIONS TO AN ADOPTED SEWER ONLY TO BE MADE FOLLOWING
- APPROVAL FROM THE RELEVANT ADOPTING AUTHORITY. ALL DRAINS, SEWER PIPES AND MANHOLES TO BE CLEANED AND TESTED FOR
- WATER TIGHTNESS ON COMPLETION OF CONSTRUCTION.
- MANHOLE COVERS AND FRAMES
- MANHOLE COVERS TO BE CLASS D400 IN HIGHWAYS, CLASS B125 IN FOOTWAYS AND VERGES, CLASS A15 IN NON-TRAFFICKED AREAS.
- MANHOLE COVER AND FRAME TO BE BEDDED AND SURROUNDED IN 1:3

- MORTAR.

TREE RPA

RAIN WATER PIPE

ATTENUATION SYSTEM

TYPE 4 INSPECTION CHAMBER

OVERLAND FLOW

BOTTLE GULLY

EXISTING MANHOLE

TYPE 3 INSPECTION CHAMBER

 \bigcirc

 \bigcirc

• _{RWP}

 \boxtimes

 \bigcirc

XX.XX.XX

REV DATE BY CKD APPDDESCRIPTION

AMBIENTAL

ENVIRONMENTAL ASSESSMENT

a company of Royal HaskoningDHV

SURFACE WATER DRAINAGE STRATEGY

Date: 01/05/2020

Revisior

А

- PRELIMINARY DRAWING FOR INFORMATION ONLY. NOT FOR CONSTRUCTION.
- RCKa Architects

248-250 CAMDEN ROAD

GROUND FLOOR LAYOUT

Drawing Scale: 1:100 @ A1 0 1m 2m 3m 4m 5m

LONDON NW1 9HE

rawn by: SL rawing No.

5356_DR02

Appendix IV – Thames Water Sewer Asset Plan

Asset location search

Ambiental Sussex Innovation Centre Science Park Square BRIGHTON BN1 9SB

Search address supplied 248-25 Camd Londo

248-250 Camden Road London NW1 9HE

Your reference

5356

Our reference

ALS/ALS Standard/2020_4182760

Search date

20 April 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: 248-250, Camden Road, London, NW1 9HE

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>
Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater.propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

NB. Levels quoted in	n metres Ordnance New	yn Datum. The value -9999.00 indicates	that no survey information is available
----------------------	-----------------------	--	---

Manhole Reference	Manhole Cover Level	Manhole Invert Level
6901	43.68	n/a
681A	n/a	n/a
671B	n/a	n/a
67BE	n/a	n/a
6704	41.74	n/a
67BD	n/a	n/a
67BC	n/a	n/a
67AG	n/a	n/a
67AH	n/a	n/a
77AH	n/a	n/a
771A	n/a	n/a
7820	n/a	15.75
7701	45.43	42
781B	n/a	n/a
7802	45.68	41.73
7702	46.92	42.98
78DA	n/a	n/a
7801	45.85	42.88
7703	47.12	43.49
781A	n/a	n/a
78CD	n/a	n/a
78CC	n/a	n/a
The position of the apparatus shown on this plan i	s given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not

shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- **Other Symbols** Symbols used on maps which do not fall under other general categories
- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

Valves

- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STRE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND		
Up to 300mm (12")	900mm (3')		
300mm - 600mm (12" - 24")	1100mm (3' 8")		
600mm and bigger (24" plus)	1200mm (4')		

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Æ

Manifold

Fire Supply

Customer Supply

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd ' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix V – Thames Water Sewer Capacity Check

Mr Max Brambani Ambiental max.brambani@rhdhv.com

Wastewater pre-planning Our ref DS6078800-DTS 66860

25 November 2020

Pre-planning enquiry: 248-250 Camden Road Hostel, Camden Road, London, NW1 9HE - Confirmation of sufficient capacity

Dear Max,

Thank you for providing information on your development and proposed drainage strategy: Redevelopment of the site to include demolition of existing 27 bed hostel. Construction of 30 bed hostel, 28 Studio flats and 2x 1bed flat. Surface water (1000sqm impervious) restricted to 1.3I/s (currently unrestricted). All flows to be discharged by gravity using existing connection into combined sewer in Camden Rd.

We have completed the assessment of the foul and surface water flows based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

When developing a site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SuDS/Storage to reduce the surface water discharge from the site as much as possible.

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1. store rainwater for later use.
- 2. use infiltration techniques where possible.
- 3. attenuate rainwater in ponds or open water features for gradual release.
- 4. attenuate rainwater by storing in tanks or sealed water features for gradual release.
- 5. discharge rainwater direct to a watercourse.
- 6. discharge rainwater to a surface water sewer/drain.
- 7. discharge rainwater to the combined sewer.
- 8. discharge rainwater to the foul sewer

Where connection to the public sewerage network is still required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 1.3 l/s then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on the number in the signature.

Yours sincerely

Jose Varela

Developer Services – Adoptions Engineer

Mobile 0756 424 7625

jose.varela@thameswater.co.uk

Get advice on making your sewer connection correctly at connectright.org.uk

Please send all emails to <u>developer.services@thameswater.co.uk</u> quoting the application reference and full site address

Clearwater Court, Vastern Road, Reading, RG1 8DB

Find us online at <u>developers.thameswater.co.uk</u>

Appendix VI – Supplementary Document

Geotechnical Survey Report

FSI Ref: Issue Date: 20269 December 2019

Risk Address:

248-250 Camden Road Camden London NW1 9HE

Rodrigues Associates

Engineer:

Carl Bauer

Company:

Managing Director: Finance Director:

Geotechnical Compliance & Logistics Supervisor:

Laboratory Supervisor:

Assistant Geologists:

Martin Rush MSc FGS Louise Ayres BSc (Hons)

Perry Martin MCIHT

Jade McLellan

George Baron BSc (Hons) FGS Scott Parker BSc (Hons) FGS

248-250 Camden Road, Camden, London NW1 9HE

1.0 INTRODUCTION

In accordance with instructions by Rodrigues Associates, 24/10/2019, we visited the site occupied by 248-250 Camden Road, Camden, London NW1 9HE, on 25/10/2019-27/10/2019. The purpose of our visit was to carry out an investigation into the ground conditions, with a view to foundation design for a proposed development. It is our understanding that the existing four-story unit on site is to be demolished and a new six-story commercial/residential property with basement is proposed to be developed in its place.

The exploratory holes carried out during the fieldwork, which investigate only a small volume of the ground in relation to the size of the site, can only provide general indication of site conditions. The comments and opinions expressed within this report are based on the ground conditions revealed by the site works, together with information contained within the desk study provided and of laboratory test results. There may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which therefore have not been taken into account in this report.

All ground water readings relate to short term observations and do not allow for variations due to seasonal or other effects. Monitoring wells have been installed, to allow for groundwater samples and also to assess groundwater levels.

All depths stated within this report and on the borehole logs are depths below the ground level surrounding the borehole locations.

2.0 SITE SETTING

i. Location

The site is located at approximate grid reference 529700 184800, the site is situated in Camden on the South-Eastern side of Camden Road, approximately 50m South of the junction between Camden Park Road, Torriano Avenue and Camden Road. The site slopes downwards from South-East to North-West towards the front of the property and Camden Road, and lies approximately 46-47m above sea level.

ii. Description

The area of the whole site is approximately 0.11ha and is currently occupied by a detached, four-story hostel. There is a tarmac/soft landscape garden area to the South-East (rear) of the site, with a tarmac pavement and soft landscape planter located immediately to the North-West (front), which leads directly onto Camden Road. The North-East, South-East and South-West boundaries are made up of neighbouring residential properties. The majority of the surrounding area is residential housing although a parade of commercial units is noted on York Way approximately 190m to the North-East. There is also an Esso petrol garage and railway line running to the North-West and 200m South-West respectively.

iii. Geology

Reference to the 1:50,000 scale geological map of the area (Sheet No.256, North London) shows the site to be underlain by the London Clay Formation. The London Clay Formation is a sedimentary bedrock comprised of Clay, Silt and Sand which formed approximately 48 to 56 million years ago in the Palaeogene Period, in a local environment previously dominated by deep seas. The London Clay Formation here is not noted to be overlain by a superficial deposit.

iv. Hydrogeology

The hydrogeology of the area is not dealt with within the Desk Study and as such we have no information on the likely depth of the water table beneath the site. The boreholes on site were taken to a maximum depth of 15.00m and no groundwater was noted within any of the three boreholes carried out. The groundwater table is therefore assumed to be located at a depth greater than 15.00m. The site is not located within a groundwater source protection zone as defined within the Environment Agency website. It is also not noted to be situated above an aquifer within the London Clay bedrock.

v. Hydrology

There are no water courses located within close proximity of the site. The nearest watercourse on the relevant 1:25,000 OS map is shown to be Regents Canal noted approximately 0.80km to the South-West of the site. According to the Environment Agency Website the likelihood of flooding in this area is 1 in 1000 or less, this is based on current best information on the extent of the extreme flood from rivers or the sea that would occur without the presence of flood defences.

The risk of flooding due to surface water is also noted to be Very Low. Very low risk means that each year this area has a chance of flooding of less than 0.1%. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

3.0 FIELDWORK

The site investigation work was carried out on 25/10/2019-27/10/2019 and comprised of the digging of 8No. trial pits and drilling of 3No. boreholes across the site to a maximum depth of 15.00m. Monitoring wells were also installed within boreholes 1 and 3 to provide groundwater readings. The locations of the boreholes carried out are marked on the site plan within Appendix 1 and the borehole logs included as Appendix 2.

Within the boreholes, disturbed samples were taken at 0.50m and 1.00m intervals. Insitu strength tests, in the form of SPT-tests were also performed within the Sub soil at appropriate intervals. The results of all insitu strength tests are recorded on the borehole logs within Appendix 2.

4.0 TRIAL PIT FINDINGS

i. Foundation Details

Trial pit 1 notes two different foundation constructions; the Boundary Wall foundations are shown to be Concrete foundations seated into Brick/Concrete Rubble FILL at a depth of 1.60m. The top of the Concrete footing is noted at 1.50m and attains a thickness of 100mm with a projection of 160mm. The top of the Front Projection foundations is noted at a depth of 1.70m, it was however not possible to locate the underside due to excessive depth of footings and the presence of Brick/Concrete Rubble FILL to depth.

The foundations of trial pit 2, are shown to be Concrete foundations seated into MADE GROUND at a depth of 0.36m. The top of the Concrete footing is noted at 0.16m and attains a thickness of 200mm with a projection of 180mm.

The foundations of trial pit 3, are shown to be Brick and Concrete foundations seated into Silty CLAY at a depth of 0.50m. The top of the Concrete footing is noted at 0.16m and attains a thickness of 160mm and a projection of 220mm onto Brick, 200mm thick with no further projection.

The top of the foundations within trial pit 4 are noted at a depth of 1.40m with a projection of 340mm, it was however not possible to locate the underside due to the excessive depth of footings.

The foundations of trial pit 5, are shown to be Concrete foundations seated into Silty CLAY at a depth of 0.50m. The top of the Concrete footing is noted at 0.10m and attains a thickness of 400mm with a projection of 70mm.

The foundations of trial pit 6, are shown to be Concrete foundations seated into Silty CLAY at a depth of 0.32m. The top of the Concrete footing is noted at 0.27m and attains a thickness of 50mm with a projection of 230mm.

Trial pit 7 notes two different foundation constructions; the Boundary Wall foundations are shown to be Concrete foundations seated into MADE GROUND at a depth of 1.00m. The top of the Concrete footing is noted at 0.60m and attains a thickness of 400mm with a projection of 220mm. The top of the Rear Projection foundations is noted at a depth of 1.80m, it was however not possible to locate the underside due to excessive depth of footings and the presence of MADE GROUND containing Brick/Concrete Rubble fill to depth.

The foundations of trial pit 8, are shown to be Concrete foundations seated into Silty CLAY at a depth of 0.82m. The top of the Concrete footing is noted at 0.07m and contains two step-outs attaining thicknesses of 250mm & 500mm; with projections of 0mm & 110mm respectively.

Locations of the trial pits can be seen on the site plan in appendix 1 and the trial pit logs can be seen in appendix 2.

5.0 BOREHOLE FINDINGS

i. Overview

Three boreholes were carried out on site, to establish the geology across the site as a whole. The boreholes were drilled to a maximum depth of 15.00m and all encountered very similar profiles which matched the expected underlying geology of London Clay bedrock with no superficial deposits. All boreholes were drilled utilising a shell and auger drilling rig to provide details on the geology beneath the site and also allowed monitoring wells to be installed within boreholes 1 & 3.

The strata encountered within each of the boreholes drilled, along with their depth is recorded below:

Stratum	BH1	BH2	BH3
TARMAC onto Type 1 FILL	G.L. – 0.20m	G.L. – 0.20m	_
Grass onto Topsoil/MADE GROUND	_	_	G.L. – 0.50m
Brick/Concrete FILL	0.20m – 2.10m	0.20m – 2.00m	_
Silty CLAY	2.10m – 12.50m	2.00m – 12.00m	0.50m – 13.00m
Blue/Grey CLAY	12.50m – 15.00m	12.00 – 15.00m	13.00m – 15.00m

ii. Made Ground/Topsoil

Made Ground was encountered to a maximum depth of 2.10m within boreholes 1 & 2 and consisted of Brick/Concrete FILL. The area from which boreholes 1 & 2 were drilled was covered with Tarmac onto Type 1 FILL noted to be 0.20m thick. Within borehole 3, Grass onto Topsoil/MADE GROUND containing Brick was observed to 0.50m, with no further fill material beneath.

iii. Silty CLAY

Below the MADE GROUND, Mid Brown Silty CLAY was recorded; this stratum was proved to a depth of 13.00m and is recognised as the weathered upper London Clay bedrock. Within borehole 3, two claystone horizons were also noted from 6.40m-7.00m and 11.50m-12.00m.

Insitu SPT testing within this stratum found it to be Firm-Stiff to Stiff (N Value = 14-22).

iv. Blue/Grey CLAY

Blue/Grey CLAY was noted to the base of all boreholes, a maximum depth of 15.00m and is recognised as a continuation of the London Clay bedrock.

Insitu SPT testing within this stratum found it to be Stiff (N Value = 22-24).

v. Insitu testing

Insitu strength tests, in the form of Standard Penetration Tests (SPTs), were carried out at appropriate intervals throughout the boreholes. The results of all insitu strength tests are recorded on the borehole logs within Appendix 2.

The Standard Penetration Test measures the number of blows taken to drive a probe 300mm into the soil using the drop of a 63.5kg hammer over a distance of 0.76m. The SPT-test gives an indication of soil density.

vi. Root Activity

No roots below grass level were observed within any of the boreholes.

vii. Groundwater

None of the boreholes encountered water strikes during drilling, in the short term this suggests that the groundwater lies at a depth greater than 15.00m below ground level. Monitoring wells were installed in boreholes 1 to 3 to allow groundwater levels to be monitored. During a revisit on 16/01/2020 the monitoring wells were still noted to be dry showing that there is no elevated groundwater.

It should be noted that comments on groundwater conditions are based on observations made at the time of the investigation (October 2019) and that changes in groundwater levels are likely to arise due to seasonal affects and changes in drainage conditions.

6.0 GEOTECHNICAL TESTING

All samples were tested in accordance with BS 1377 1990: method of test of soils for Civil Engineering purposes, the results of which are discussed within Chapter 7 and recorded as test sheets and summaries within Appendix 3.

The laboratory testing conducted on the samples taken during this investigation comprised of, natural moisture contents (39No.), classification testing using Atterberg limits testing to determine the plasticity of the fine soils encountered (14No.), Triaxial testing (6No.), odometer testing (2No.), Waste Acceptance Criteria (WAC) testing (3No.) and sulphate content and pH (6No.).

7.0 GEOTECHNICAL TEST RESULTS

i. Moisture Contents and Atterberg Limit Tests

Atterberg Limits Testing found that the London Clay falls into soil class CV and CH of the British Soil Classification System. The results show the samples to be high-very high plasticity. The plastic indices were found to range from 32-54%, this indicates that the Clay is of generally intermediate to high susceptibility to shrinkage and swelling with changes in moisture content.

Borehole	Depth	MC	LL	PL	PI	CLASS
BH1	3.00m	28.9	76	28	48	CV
	3.50m	29.0	76	26	50	CV
	5.00m	28.8	75	28	47	CV
	7.00m	28.5	71	27	44	CV
BH2	1.20m	29.0	60	24	36	СН
	2.00m	25.9	56	24	32	СН
	2.50m	29.9	75	28	47	CV
	4.00m	30.7	75	32	43	CV
	5.50m	28.4	73	29	44	CV
	8.00m	27.9	72	28	44	CV
BH3	3.00m	26.0	82	28	54	CV
	3.50m	29.8	72	27	45	CV
	5.50m	30.5	69	31	38	СН
	7.50m	30.0	70	28	42	CH/CV

ii. Sulphate and pH Tests

Six soil samples were tested for sulphate and pH from the area in which the new commercial/residential unit is proposed to be built. The soil samples tested gave water soluble sulphate 2:1 results ranging from a minimum of 0.09g/l to a maximum of 2.67g/l. The samples ranged from a pH of 8.1 to a pH of 10.2. Using the BRE digest SD1 (2005) - concrete in Aggressive Ground, the design sulphate class for this site is DS-3, with an ACEC class of AC-3 (Natural Soil - Mobile Water).

iii. Triaxial Tests

Triaxial testing was carried out on six samples, these samples were from borehole 1 at 2.23m, 4.10m & 6.08m and borehole 3 at 2.10m, 4.07m and 6.05m. The results can be seen in the table below and in appendix 3.

Triaxial test results: Lowest shear stress taken from each test of three

Depth (m)	BH1	BH2
~2.00	100kPa	180kPa
~4.00	85kPa	79kPa
~6.00	127Kpa	105kPa

iv. CBR Tests

CBR tests were carried out at three locations across the site at a depth of 0.45m. These tests were carried out to test the strength of the substrata beneath the proposed pavement area. CBR tests 1 and 3 had values of 2.9% and 1.4% respectively. The results of test 3 had a value of 29%. The following table gives guidance on what the CBR values mean.

This table is only for guidance, you should refer to a design document for specific information.

CBR VALUE	SUBGRADE STRENGTH	COMMENTS
3% and less	Poor	" Capping " is required
3% - 5%	Normal	Widely encountered CBR range capping considered according to road category
5% - 15%	Good	"Capping" normally unnecessary except on very heavily trafficked roads.

The results can be seen in appendix 3 and the test locations are marked on the site plan in appendix 1.

8.0 GEOTECHNICAL RECOMMENDATIONS AND CONCLUSIONS

i. Subsoil Profile

The subsoil profile encountered across the site was generally consistent with the geological survey map of the area, which suggested the site to be underlain by London Clay bedrock, with no superficial deposits. Made Ground was encountered across the site to a maximum depth of approximately 2.10m with Silty CLAY underlying the Made Ground.

ii. Foundation Options

It is understood that the proposed development is for the demolition of the existing four-story unit on site and the construction of a new six-story commercial/residential property with basement in its place. We would note that we have no information regarding the construction of these buildings or possible loadings and therefore, our comments are general comments based on assumed 'normally' loaded residential building, with no significant point loadings.

The main factors which will control the type of foundation used on this site will be the thickness of Made Ground present across this site and the bearing capacity of the underlying London Clay. Made Ground is an inherently variable material and foundations should not be based in this material as the composition of the soil may vary wildly across the site. The Made Ground was encountered to a maximum depth of 2.10m, and foundations should be taken at least 300mm past this to ensure natural ground is encountered, which means a minimum depth of 2.40m.

The underlying London Clay Deposits were found to be reasonably competent and would normally be adequate to support normal strip foundations. However, the main economical factor will be the depth at which any strip footings would have to be based to remove the risk of any movements, associated with clay shrinkage or heave, causing future damage to the new development. Seasonal variations in moisture content can cause significant movements over time, therefore it would be prudent to found the new building at a depth which would not be affected by any shrinkage or heave of the clay. A useful guide to foundation depths is given by the NHBC Guidelines – Chapter 4.2: building near trees, which provides suggested founding depths based on type, size and distance of trees within either a low, moderate or highly shrinkable soil. In addition to this, allowances will need to be made over any new planting, which may affect foundations in the future.

Therefore, in summary, we would suggest that conventional strip foundations could be utilised but are likely to be economically unviable due to shoring and health & safety risks. Therefore the most suitable alternative foundation for this site would be a piled foundation taken down further into the London Clay, this will also mitigate any risk of differential settlement between the basement and groundfloor footings. The borehole data contained within this report will be sufficient for a piling contractor to carry out a pile design.

As fill material was noted to a depth of 2.10m below ground level, as well as the existing foundations requiring removal for the new construction; we would recommend that a suspended groundfloor slab would be most suitable for this site.

iii. Bearing Capacity Assessment

For preliminary design purposes, BS8004 gives presumed bearing values which are the pressures which would normally result in an adequate factor of safety against shear failure for particular soil types, but without consideration of settlement.

These values are as follows:

Category	Types of rocks and soils	Presumed bearing value		
Non-cohesive soils	Dense gravel or dense sand and gravel	>600 kN/m²		
	Medium dense gravel, or medium dense sand and gravel	<200 to 600 kN/m ²		
	Loose gravel, or loose sand and gravel	<200 kN/m ²		
	Compact sand	>300 kN/m ²		
	Medium dense sand	100 to 300 kN/m ²		
	Loose sand	<100 kN/m ² depends on degree of looseness		

Cohesive soils	Very stiff bolder clays & hard clays	300 to 600 kN/m ²
	Stiff clays	150 to 300 kN/m ²
	Firm clay	75 to 150 kN/m ²
	Soft clays and silts	< 75 kN/m²
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

Within the boreholes at 2.50m-5.50m depth, the ground was found to be Silty CLAY with an SPT reading of N=15-18, indicating the material at 2.50m to 5.50m to be Stiff with a bearing capacity of 150-300 kN/m².

For calculation of the bearing capacities available at 2.50m to 5.50m, we have used the lowest SPT reading at each depth. Based on Hansen (1968) and Tomlinson (2001), which assumes groundwater will not impact upon the foundations (i.e. groundwater will not be present within the width of the foundation below the foundation) the bearing capacities for each depth are shown below. The calculated bearing capacities allow for settlements up to 25mm.

Depth	2.50m	3.50m	4.00m	5.50m
N-Value	N = 15	N = 15	N = 16	N = 17
Bearing capacity	213kN/m²	233kN/m²	238kN/m²	243kN/m²

Soil properties for the Silty CLAY soil are as follows:

The shearing angle is 20° Coefficient of compressibility Mv – 0.10-0.30 Stiffness Modulus E - 150MPa Poisson's Ratio – 0.10-0.30

iv. Ground Conditions & Construction

The three boreholes drilled on this site were all found to be dry on completion of drilling, but water monitoring standpipes were installed to assess long term groundwater levels. However, in the short term this would indicate that excavations on this site are likely to be unaffected by water inflows, with the groundwater levels likely to be at a depth greater than 15.00m.

The material encountered on this site was found to be of a generally cohesive nature, which would indicate that sides of excavations are likely to be self-supporting, certainly in the short term. However, temporary support should be considered for all excavations where collapse is to be avoided, with heavy duty closed shoring in excavations below 1.20m where construction workers access is required.

With regard to desiccation, Driscoll (1983) gives two fairly crude guidelines relating to highly plastic clays at shallow depths (3.00m). The first of these is that desiccation is significant when the natural moisture content is less than or equal to 0.40 times the liquid limit. The second indicates that desiccation is significant when the moisture content is equal to or less than the plastic limit plus 2%. Driscoll's relationships can be used to give guidance on the presence of significantly desiccated clay. These relationships can sometimes give spurious results, especially when applied to clays of lower plasticity as the relationships were devised for highly plastic clays. Therefore, we would recommend that they should be used in conjunction with moisture content profiles, shear strength profiles and field descriptions. The moisture content profiles of the boreholes highlighted desiccation of the underlying clay sub soil at 3.00m, 3.50m & 5.00m in BH1, 2.50m, 4.00m, 5.50m & 8.00m in BH2 and 3.00m & 5.50m in BH3. This desiccation is likely natural due to overburden pressures compressing the clay. Due to desiccation at depth there is likely to be heave when the overburden is removed, therefore we would recommend heave protection when the basement is constructed.

9.0 SOAK AWAY TESTING

Two soakaway tests were carried out on this site, one at the front of the property and one at the rear of the property. The test pits were 300mm x 300mm and 1000mm deep. Soakaway test pit 1 (SW1) shows that the water drained from 75% full to 25% full in approximately 20,000 seconds. Using this time, a soil infiltration rate of 32.61 x 10^{-7} m/s is calculated for this location. Soakaway test pit 2 (SW2) shows that the water drained from 75% full to 25% full in approximately 16,000 seconds. Using this time, a soil infiltration rate of 40.76 x 10^{-7} m/s is calculated for this location. Given the slow rate of infiltration within the London Clay we would suggest that this site is not suitable for a soakaway system. The calculation can be seen in appendix 3 and the test pit locations can be seen on the site plan in appendix 1.

10.0 CERTIFICATION

Although the boreholes were positioned to give a spread across the site, it is impossible to give total coverage across a site, especially one which contains buildings, hard standings and obstructions. Therefore, areas exist on the site where investigations were not carried out. Such areas are generally only exposed during the construction stage. Should any areas of potential contamination be identified during construction, further testing may be required.

Responsibility cannot be accepted for variation in ground conditions between and around exploratory points not revealed by the data or at the time of the investigation. The report may suggest an opinion on the nature of the strata or conditions between exploratory points and below the maximum depth of investigation. However, this is for guidance only and no liability can be accepted for its accuracy.

The conclusions and recommendations given within this report are based upon the stated development plans for the site. If the site is to be developed for a more or less sensitive use then a different interpretation may be appropriate. This report relies upon the co-operation of other organisations and the free availability of information and total access. No responsibility can therefore, be accepted for conditions arising from information, which was not available to the investigation team as a result of information being withheld or access prevented.

This report is for the sole use of "the client" and/or their professional advisors. It must not be reproduced or transferred to any third party without prior written permission of the author. We will consider the reissue of the report in its original form to a third party for an administrative fee (currently £100). We reserve the right to refuse copies of the report to any third party (other than those named above). We reserve the right to amend our pinions in the event that additional information is made available. If any unauthorised third party makes use of the report they do so at their own risk and Fastrack[™] Site Investigations Limited owes them no duty of care or skill.

We hope that this is satisfactory for your requirements. If you have any queries, please do not hesitate from contacting us.

Yours faithfully

George Baron For and on behalf of FASTRACK SITE INVESTIGATIONS LTD

APPENDIX I Site Plan

Telephone: 0844 3358908 Fax: 0844 3358907

Appendix No:

1

APPENDIX II Trial Pit and Borehole Findings

		Fastrac	k Site Inve	stigations Ltd			Boreh	ole No.		
	FAS		CK	Southend Road			Borehole Log		B	H1
								Sheet	t 1 of 1	
Project	Name:	248-250	Camden R	load	Projec 20269	t No.	Site Date:	25/10/2019	Hole	Iype 3H
Locatior	ו:	Camde	n. London	NW1 9H	IE				Sc	cale
									1: Logg	:75 Ied By
Client:		Rodrigu	ies Associa	ates					S	E1
Water	Samp	ole and li	n Situ Test	ing	Depth	Legend		Stratum Description		
Suikes	Depth (m)	Туре	Res	ults	0.10		TARMAC			
					0.20		Type 1 FILL Brick/Concrete FIL	L		
	1 00									1 -
	1.20	D	N -	17						
		551	N -	17						-
	2.00	U			2.10		Mid Brown Silty Cl	AV containing Blue Mottling		2 -
	3.00									2
	5.00									3
	3.50	D SPT	N =	15						
	4.00	U								4 -
	E 00									_
	5.00									5 -
	5.50	D SPT	N =	17		××				
	6.00	U				<u> </u>				6 -
						× <u> </u>				
	7.00					××				
	7.00									7 -
	7.50	D SPT	N =	18						
										8 -
	8.50	D								
	0.00									
	9.00	SPT	N =	19						9 -
	10.00	D				<u></u>				10 -
	10.50	D				××				
		SPT	N =	20						
										11 -
	11.50	D								
	12.00	D	NI —	21						12 -
		571	IN =	21	12.50		Blue/Grov CLAV			
	13.00						Dide/Orey OLAT			10 -
	10.00					F===]				13 -
	13.50	D SPT	N =	22						
	44.05									14 -
	14.25 14.55	ם ם								
		SPT	N =	23	15.00					15
Kov" P	Dicturbed	Somela	\/ Insit:	Vana Ta		Mackintest	Droho Taat	End of Borehole at 15.000m	ı	10
rey: D Remarl		e closed	v - insitu	vane les	ine install	- iviackintosh ed to 10 00p	n n			
nur	Borehole	e noted	to be dry o	on comp	letion. No	Roots noted	 I.			GS

				Fastrack	Site Inve	stigations Ltd	Borehole Log			Borehole No. BH2 Sheet 1 of 1		
	FAS	TRA	CK	Unit S	9, Tyndal Southend	les Farm Road						
				Ma	aldon CM	9 6TQ						
Project Name: 248-250 Camden R				oad Project No.			Site Date:	Site Date: 26/10/2019			Hole Type BH	
Location: Camden London				NI/A/1 QUE						Scale		
									1:75			
Client:		Rodrigu	ues Associa	tes						SE1		
Water	Samp	n Situ Testi	ng	Depth	Legend	Stratum Description						
Strikes	Depth (m)	Туре	Resi	ults	(m)	Ĵ	TARMAC		•		<u> </u>	
					0.20		Type 1 FILL Brick/Concrete FILL				1	
								-				
	1.20	D	N -	11								
		351	N -								-	
	2.00	D			2.00		Mid Brown Silty CL	AY containing Blue M	ottling		- 2 -	
	2.50	D									-	
		501	N =	15							3 -	
	3 50											
	0.00					× <u>×</u> ×						
	4.00	SPT	N =	16		<u>× </u>					4 -	
											-	
	5.00	D									5 -	
	5.50	D				××					-	
		SPT	N = 1	18							6 -	
	6 50					× <u>×</u> ×						
	0.50					× <u>×</u> ×						
	7.00	D SPT	N =	17							7 -	
											-	
	8.00	D				××					8 -	
	8.50	D									-	
		SPT	N =	19		× <u>×</u>					9 -	
	9.50					<u> </u>						
	9.50											
	10.00	D SPT	N =	19							10 -	
											-	
	11.00	D									11 -	
	11.50	D				××					-	
		SPT	N = :	20	12.00	××					12 -	
	10 E0						Blue/Grey CLAY					
	12.30											
	13.00	D SPT	N = :	22							13 -	
											-	
	14.00	D									14 -	
	14.55	D									-	
		SPT	N = 2	22	15 00				45.005		- 15 -	
Kev: D	- Disturbed 9	Sample	V - Ineitu	Vane Test	.0.00	- Mackintosh	Prohe Test	End of Borehole at	15.000m			
Remark	s: Borehole	e closed	at 15.00m			Maakiiittasii						
	Borehole	e noted	to be dry c	on comple	tion. No	Roots noted	ł.			AG	S	

FASTRACK					k Site Inves it 9, Tyndal Southend I Maldon CM	stigations Ltd es Farm Road 9 6TQ	Borehole Log		Borehole No. BH3		
					Projec	t No.	Cita Data:	07/40/2040	Sheet 1 of Hole Type	Sheet 1 of 1 Hole Type	
Projecti	Project Name: 248-250 Camden Ro			load	20269		Sile Dale:	27/10/2019	BH		
Locatior	Location: Camden,			n, London NW1 9HE					1:75		
Client: Rodrigues Associates				ates						Logged By	
	0		- O'	• • •			SE1				
Water Strikes	Depth (m) Type Results			ults	Depth (m)	Legend		Stratum Description			
	()	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Grass onto Dark I	Brown Silty Topsoil/MADE GROUND c	ontaining Brick		
					0.50		Mid Brown Silty C	CLAY		-	
	1.00	D								1 -	
	1.20	SPT	N =	14							
	2.00										
	2.00										
	3.00	D								3 -	
	3.50	D				xx					
	0.00	SPT	N =	15		××					
	4.00	U				××				4 -	
						<u>xx</u>					
	5.00	D				× <u>×</u>				5 -	
	E E0					<u>x </u>					
	5.50	SPT	N =	18							
	6.00	U								6 -	
					6.40	× ···· ···×	CLAYSTONE				
	7 00	D			7 00					7 -	
							Mid Brown Silty C	CLAY			
	7.50	D SPT	N =	19							
										8 -	
	8.50	D									
	9.00									0 -	
	5.00	SPT	N =	20							
						xx					
	10.00	D				<u> </u>				10 -	
	10.50	D				<u> </u>					
		SPT	N =	21		<u>xx</u>					
										11 -	
	11.50	D			11.50		CLAYSTONE			-	
	12.00	D		22	12.00	_ <u>×</u> _ ,	Mid Brown Silty C	CLAY		12 -	
		SPI	N =	22			, -				
	40.00				40.00						
	13.00	ט			13.00		Blue/Grey CLAY			13 -	
	13.50	D SPT	N =	24		<u> </u>					
				- '						14 -	
	14.25	D									
	14.55	ט SPT	N =	24		F====					
								End of Borehole at 15.000m		15 -	
Key: D	- Disturbed S	Sample	V - Insitu	Vane Tes	st MP	Mackintosh	Probe Test				
Remark	s: Borehole	e closed	at 15.00m	n. Standp	ipe installe	ed to 10.00n Roots poted	۱.			2	
	DOLGHOR	e noted	to be ury (опсотр	ietion. NO	noots noted	•		AUN	2	

D1 @ F.L. (0.50m) V = 70-72kPa Founding strata: Mid Brown Silty CLAY

D1 @ (1.60m) V = 88-94kPa Founding strata: Mid Brown Silty CLAY containing Grey Mottling

D1 @ F.L. (0.82m) V = 80-82kPa Founding strata: Mid Brown Silty CLAY

Soil Infiltration Rate (BRE Digest 365)

0.00m – Decorative SHINGLE

0.20m – Dark Brown Sandy Clayey Topsoil/MADE GROUND containing Full Brick/Hardcore Rubble Fill

0.60m – Mid-Light Brown Silty Sandy Clayey MADE GROUND containing Brick/Hardcore Fill and Gravel

SOAK AWAY TEST NO: 1

Length of Trial Pit I
trial =**0.30m**Width of Trial Pit b
trial =**0.30m**Depth of Trial Pit d
trial =**1.00m**Free Volume (if fill used) V
trial =35%

75% depth of pit: d_{75} : $(d_{trial} x 0.75) =$ 0.75m50% depth of pit: d_{50} : $(d_{trial} x 0.50) =$ 0.50m25% depth of pit: d_{25} : $(d_{trial} x 0.25) =$ 0.25m

Test 1 – time to fall from 75% depth to 25% depth = T1 = 20,000 Seconds

Longest time to fall from 75% depth to 25% depth = T_{lg} = Max(T1, T2, T3) = **20,000 Seconds**

Storage Volume from 75% depth to 25% depth = $V_{p75_{25}}$ = ($I_{trial} \times b_{trial} \times (d_{75} - d_{25})$) x V_{trial} = 0.045m³

Internal surface area to 50% depth = $A_{p50} = ((I_{trial} \times b_{trial}) + (I_{trial} + b_{trial}) \times 2 \times d_{50}) = 0.69m^2$

Surface area of soakaway to 50% storage depth $A_{s50} = 2 \times (I_{trial} + b_{trial}) \times d_{trial} / 2 = 0.60 m^2$

Soil infiltration rate = F = $V_{p75_25} / (A_{p50} \times T_{lg}) = 32.61 \times 10^{-7} \text{ m/s}$

Soil Infiltration Rate (BRE Digest 365)

0.00m - Grass onto Dark Brown Silty TOPSOIL

0.10m – Dark Brown Sandy Clayey Topsoil/MADE GROUND containing Full Brick/Hardcore Rubble Fill

0.40m – Dark Brown Silty Clayey MADE GROUND containing Brick and Gravel

0.60m - Mid-Dark Brown Silty CLAY

SOAK AWAY TEST NO: 2

Length of Trial Pit I
trial =**0.30m**Width of Trial Pit b
trial =**0.30m**Depth of Trial Pit d
trial =**1.00m**Free Volume (if fill used) V
trial =35%

75% depth of pit: d_{75} : $(d_{trial} \times 0.75) =$ 0.75m50% depth of pit: d_{50} : $(d_{trial} \times 0.50) =$ 0.50m25% depth of pit: d_{25} : $(d_{trial} \times 0.25) =$ 0.25m

Test 1 – time to fall from 75% depth to 25% depth = T1 = 16,000 Seconds

Longest time to fall from 75% depth to 25% depth = T_{lg} = Max(T1, T2, T3) = **16,000 Seconds**

Storage Volume from 75% depth to 25% depth = $V_{p75_{25}}$ = ($I_{trial} \times b_{trial} \times (d_{75} - d_{25})$) x V_{trial} = 0.045m³

Internal surface area to 50% depth = $A_{p50} = ((I_{trial} \times b_{trial}) + (I_{trial} + b_{trial}) \times 2 \times d_{50}) = 0.69m^2$

Surface area of soakaway to 50% storage depth $A_{s50} = 2 \times (I_{trial} + b_{trial}) \times d_{trial} / 2 = 0.60 m^2$

Soil infiltration rate = F = $V_{p75_25} / (A_{p50} \times T_{lg}) = 40.76 \times 10^{-7} \text{ m/s}$

APPENDIX III Geotechnical Test Results

Tyndales Farm, Southend Road, Woodham Mortimer,

Maldon, Essex, CM9 6TQ

Tel: 01245 223033

Fax: 0844 3358907

248-250 Camden Road, Camden, London, London, NW1 9HE

FSI Ref:

3 20269

LABORATORY RESULTS

Property Address: Client Claim Ref:

N/A

Rodrigues Associates Client:

SAI	MPLE DETAILS	ANAL	YSIS R	EQUESTED	
			_		
Investigation date:	25-24/10/2019	Moisture Content	~	PSD	
Sample details:	Bags as received	Liquid Limit	1	Soil Suction	
Samples received:	04/12/2019	Plastic Limit	1	Shear Strength	
Schedule recieved:	04/12/2019	Plasticity Index	1	Contamination	
Samples tested:	04/12/19-17/12/19	Root ID		Root/Tree DNA	
Results reported:	17/12/2019	Other (please state)			

TEST DETAILS

General

Sample descriptions were written in accordance with BS 5930:1999.

Samples were prepared in accordance with BS 1377: Part 1: 1990, section 7

Samples from this contract will be retained for 1 calender month following the issue of this report unless otherwise notified

Written approval is required from Fastrack Site Investigations Limited to reproduce report in full. The results shown within this report only relate to the samples tested

Moisture Content

Samples were tested in accordance with BS 1377: Part 2: 1990, section 3.2 (Oven drying method)

In accordance with Note 1 to paragraph 3.2.4 of BS 1377 Part 2 1990; these moisture contents have been corrected to give the equivalent moisture content of the fraction passing the 425µm sieve, to enable comparison with the liquid & plastic limits. (If condition of test is 'natural' the retained percentage is an estimated value, if condition is 'washed' the percentage is a measured value).

Samples are dried at 105-110°C unless otherwise stated.

Atterberg Limits

Samples were tested in accordance with BS 1377: Part 2: 1990, section 4.3 (4 drop LL), 4.4 (1 drop LL), 5.3 (PL) and 5.4 (PI) Test results on samples with a sand content, may show less accurate results. If condition of test is 'washed' results relate to the fraction passing the 425µm sieve only.

Driscoll's rules deem the soil to be desicated where the moisture content is less than the value calculated using driscoll's rule 1 and/or 2

Particle Size Distribution

Samples were tested in accordance with BS 1377: Part 2: 1990 section 9.2 (Wet sieving method)

Undrained Shear Stength

Samples were prepared in accordance with BS 1377: Part 7: 1990 section 8.3 and testing in accordance with BS 1377: Part 7: 1990: section 8.4 (undrained shear strength in triaxial compression without measurement of pore pressure (UU))

Soil Suction

Samples were prepared and tested based on the BRE digest No:IP4/93 (Corrected). 'A method of determining the state of desiccation in clay soils.' (Filter paper method).

Test results on samples with a sand or silt content, may show less accurate results. Deviation to standard procedure - Polythene bags are not used from weighing filter papers.

Page 2 of 4

Signed: J McLellan

÷ .																
12.00							- 50									
14.00							10									
e:00			<u></u>				0	ML	MI	мн	MV	(ME)				
÷ 0	0.2	0.4 Soil	0.6 Suction (k	0.8 Pa)	1	1.2	Liquid Limit (%)									
Comments:	Sar	nples tes	sted in 7	5º oven c	Jue to the	e preseno	ce of gyps	um								
lssued by:	~	Jade McI	Lellan (Labo	oratory Mar	nager)											
		(Laborat	ory Technic	cian)					Signed: J	McLella	n					
						- Page	3 of 4									

16.00 0 0 0.2 0.4 0.6 0.8 1.2 0 20 40 60 80 100 120 1 Liquid Limit (%) Soil Suction (kPa) Comments: Samples tested in 75° oven due to the presence of gypsum Issued by: Jade McLellan (Laboratory Manager) (Laboratory Technician) Signed: J McLellan

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

19-26156
1
13/12/2019
Martin Rush
Fastrack Site Investigations Ltd Unit 9 Tyndales Farm Southend Road Woodham Mortimer EssexCM9 6TQ
Q19-01629
5000/20269
20269
10/12/2019
13/12/2019
248-250 Camden Road, Camden, London, NW1 9HE
e Va

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 19-26156, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
191875	BH1 1.20 - 1.65	25/10/2019	10/12/2019	Sandy silty loam	fg
191876	BH1 3.00	25/10/2019	10/12/2019	Silty clayey loam	fg
191877	BH2 1.20 - 1.65	25/10/2019	10/12/2019	Silty clayey loam	fg
191878	BH2 4.00 - 4.45	25/10/2019	10/12/2019	Clayey loam	fg
191879	BH3 3.00	25/10/2019	10/12/2019	Silty clayey loam	fg
191880	BH3 5.00	25/10/2019	10/12/2019	Silty clayey loam	fg

Results Summary

Report No.: 19-26156, issue number 1

		ELAB	Reference	191875	191876	191877	191878	191879
	C	Customer	Reference					
		5	Sample ID					
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	e Location	BH1	BH1	BH2	BH2	BH3
		Sample	Depth (m)	1.20 - 1.65	3.00	1.20 - 1.65	4.00 - 4.45	3.00
		Sam	pling Date	25/10/2019	25/10/2019	25/10/2019	25/10/2019	25/10/2019
Determinand	Codes	Units	LOD					
Soil sample preparation paramet	ers							
Material removed	N	%	0.1	38.7	< 0.1	29.3	< 0.1	< 0.1
Description of Inert material removed	N		0	Stones,Brick	None	Stones	None	None
Anions								
Water Soluble Sulphate	M	g/l	0.02	fg 0.90	fg 2.67	fg 0.28	fg 0.10	fg 0.09
Miscellaneous								
pH	M	pH units	0.1	fg 10.2	fg 8.3	fg 8.3	fg 8.5	fg 8.1

Results Summary

Report No.: 19-26156, issue number 1

		ELAB	Reference	191880
	C	Customer	Reference	
		:	Sample ID	
		Sa	mple Type	SOIL
		Sampl	e Location	BH3
		Sample	Depth (m)	5.00
		Sam	pling Date	25/10/2019
Determinand	Codes	Units	LOD	
Soil sample preparation paramet	ers			
Material removed	N	%	0.1	< 0.1
Description of Inert material removed	N		0	None
Anions				
Water Soluble Sulphate	М	g/l	0.02	fg 0.48
Miscellaneous				
рН	M	pH units	0.1	fg 8.2

Method Summary Report No.: 19-26156, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
рН	М	Air dried sample	13/12/2019	113	Electromeric
Water soluble anions	М	Air dried sample	11/12/2019	172	Ion Chromatography

Report Information

Report No.: 19-26156, issue number 1

Key

Rey	
U	hold UKAS accreditation
Μ	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results
Deviation	Codes
а	No date of sampling supplied
h	No time of compliant curplicad (Materia Only)

- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	248-260 Camden R	oad, Camden, I	ondon, NW1 9H	łE					
Serial No.	36274								
Client: Fastrack	Site Investigations Li	mited S	oil Prop	perty T	Testing Ltd				
Unit 9 Ty Southen Woodha Maldon Essex CM9 6TC	rndales Farm d Road m Mortimer ฉ	1 S C I We	15, 16, 18 Halcyo Stukeley Meadow Cambridgeshire, Tel: 01480 45 Email: <u>enquiries@</u> bsite: <u>www.soilp</u>	on Court, St ws, Hunting PE29 6DG 5579 @soilpropert propertytesti	Margaret's Way, gdon, <u>ytesting.com</u> <u>ng.com</u>				
Samples Submitte Fastrack Samples Labelled 248-260 London	ed By: < Site Investigations Li :) Camden Road, Camo , NW1 9HE	Appr nited	Approved Signatories: J.C. Garner B.Eng (Hons) FGS Technical Director & Quality Manager S.P. Townend FGS Chairman W. Johnstone Materials Lab Manager Materials Lab Manager D. Sabnis Operations Manager Difference						
Date Received:	11/12/2019	Samples Test	ed Between:	11/12/2019	and 20/12/2019				
Remarks: For the Your Re	attention of Martin R ference No: 20269	ısh							
Notes: 1	All remaining samples of unless we are notified t	r remnants from t the contrary.	his contract will be	disposed of a	fter 21 days from today,				
2	 (a) UKAS - United Kir (b) Opinions and inte 	gdom Accreditation	on Service. ssed herein are outs	side the scope	e of UKAS accreditation.				
4	This test report may no issuing laboratory.	S ACCREDITED" in laboratory. be reproduced o	ther than in full exce	e not included ept with the p	in the UKAS Accreditation prior written approval of the				

ISSUED BY SOIL PROPERTY TESTING LTD

Contra	act		248-26	0 Ca	amo	den	Ro	oad, C	Carr	ıde	n, L	ond	on,	NW	'1 9I	HE					
Serial	No.		36274														Т	arg	et Da	ite	23/12/2019
Sched	uled	Ву	Fastrac	k Si	te l	nve	esti	gatio	ns l	_im	ited										
								SCH	IED	UL	ΕO	FLA	BO	RA	TOR	r Y 1	ΓES	TS			
Sched	ule R	emarks																			
Bore Hole No.	Туре	Sample Ref.	Top Depth	/~	itiaxia)	rest	mensie	Ina Const	olidatif	<u>s</u> r	/										Sample Remarks
BH1	U	-	2.00	1	1	Í				Τ		1									
BH1	U	-	4.00	1	1																
BH1	U	-	6.00	1																	
BH3	U	-	2.00	1																	
BH3	U	-	4.00	1																	
BH3	U	-	6.00	1																	
		Totals		6	2																End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD

Contrac	t	248-2	260 Camd	en Road	l, Camd	en, Lon	don, NV	/1 9HE				
Serial N	0	3627	4									
	DETERN	INAT	ION OF C		(, WAT	ER COI	NTENT A		DRAINE	ED SHE	AR STR RESSUR	ENGTH IN TRIAXIAL
Borehole	Depth	Turne	Deference	Water Content	Bulk Density	Dry Density	Lateral Pressure	Deviator Stress	Shear Stress	Mohrs	s Circle	Description
/Pit No.	(m)	Туре	Reference	(%)	(Mg/m ³)	(Mg/m ³)	(kPa)	(kPa)	(kPa)	Cu (kPa)	Ø degrees	Description
BH1	2.23	U	-	30.2	1.98	1.52	41	200	100			Stiff (high strength) fissured orangish brown CLAY with occasional reddish yellow mottling, rare grey mottling, and orange fine sand pockets.
BH1	4.10	U	-	27.1	1.99	1.57	78	170	85			Stiff (high strength) fissured reddish yellow CLAY with rare grey mottling, and selenite crystals.
BH1	6.08	U	-	27.0	2.02	1.59	119	254	127			Stiff (high strength) slightly fissured yellowish brown CLAY with occasional selenite crystals, and rare shell fragments.
BH3	2.10	U	-	21.9	1.95	1.60	41	359	180			Very stiff (very high strength) yellowish brown CLAY with rare orange silt pockets.
BH3	4.07	U	-	28.2	2.00	1.56	82	157	79			Stiff (high strength) slightly fissured yellowish brown CLAY with rare selenite crystals.
внз	6.05	U	-	26.4	1.97	1.56	118	209	105			Stiff (high strength) slightly fissured yellowish brown CLAY with rare selenite crystals.
Method of Method of Type of Sar	Preparation Test: nple Key:	:	BS 1377: Par BS 1377: Par Strenth, 9 M U = Undistur	t 1: 1990: 7 t 2: 1990:3 Iultistage Lo rbed, B = Bi	7.4.2 & 8, I Determin oading ulk, D = Di:	Part 2: 199 ation of M sturbed, J)0: 7.2, Part 1oisture Con = Jar, W = W	7: 1990: 8.3 itent, Part2: /ater, SPT =	} 1990:7 De Split Spoor	terminatio Sample, C	n of Densi C = Core Cu	ty, Part 7: 1990: 8 Undrained Shear utter
Comments: Remarks to	Include:		Sample distu	urbance, los	ss of moist	ure, variat	tion from te	st procedur	e, location	and origin	of test spe	cimen within original sample, oven

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE** Borehole Depth (m) Type Reference Description Remarks /Pit No. Stiff (high strength) fissured orangish brown CLAY with occasional BH1 2.00 U reddish yellow mottling, rare grey mottling, and orange fine sand pockets. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density** Dry Density Depth of (Mg/m³) (Mg/m³) (mm) (mm) (g) (%) Top of Specimen 153.7 102.7 2520 30.2 1.98 1.52 (m) 2.23 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm 250 Measured Deviator Stress (kPa) 200 150 100 50 0 2 0 4 6 8 10 12 14 16 18 20 Strain (%) Stress Corrections (kPa) Mohrs Circle Analysis Corrected Max. Measured Cell Shear Stress Cu, Specimen at failure Strain at Failure Pressure, σ3 Deviator Stress, ½(σ1-σ3)f Rubber Cu PHI (%) **Piston Friction** (σ1-σ3)f (kPa) (kPa) (kPa) Membrane (kPa) (degrees) 9.7 100 41 0.6 ١ 200 Method of Preparation: BS 1377: Part 1: 1990 BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading Method of Test: Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: **Tested in Vertical Condition** UKAS Calibration - loads from 0.2 to 10kN Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE** Borehole Depth (m) Type Reference Description Remarks /Pit No. Stiff (high strength) slightly fissured yellowish brown CLAY with Specimen oven dried at 80°C due to the BH1 6.00 U occasional selenite crystals, and rare shell fragments. presence of selenite. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density** Dry Density Depth of (Mg/m³) (mm) (mm) (g) (%) (Mg/m³) Top of Specimen 199.4 101.1 3233 27.0 2.02 1.59 (m) 6.08 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm 300 250 Measured Deviator Stress (kPa) 200 150 100 50 0 2 0 4 6 8 10 12 14 16 18 20 Strain (%) Stress Corrections (kPa) Mohrs Circle Analysis Corrected Max. Measured Cell Shear Stress Cu, Specimen at failure Strain at Failure Pressure, σ3 Deviator Stress, ½(σ1-σ3)f Rubber Cu PHI (%) **Piston Friction** (σ1-σ3)f (kPa) (kPa) (kPa) Membrane (kPa) (degrees) 119 9.3 0.6 ١ 254 127 Method of Preparation: BS 1377: Part 1: 1990 BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading Method of Test: Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: **Tested in Vertical Condition** UKAS Calibration - loads from 0.2 to 10kN Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE** Borehole Depth (m) Type Reference Description Remarks /Pit No. Very stiff (very high strength) yellowish brown CLAY with rare orange BH3 2.00 U silt pockets. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density** Dry Density Depth of (Mg/m³) (Mg/m³) (mm) (mm) (g) (%) Top of Specimen 199.4 102.5 3213 21.9 1.95 1.60 (m) 2.10 TEST INFORMATION Rate of Strain 0.9 % per Min **Rubber Membrane Thickness** 0.3 mm 400 350 Measured Deviator Stress (kPa) 300 250 200 150 100 50 0 2 8 0 4 6 10 12 14 16 18 20 Strain (%) Stress Corrections (kPa) Mohrs Circle Analysis Corrected Max. Measured Cell Shear Stress Cu, Specimen at failure Strain at Failure Pressure, σ3 Deviator Stress, ½(σ1-σ3)f Rubber Cu PHI (%) **Piston Friction** (σ1-σ3)f (kPa) (kPa) (kPa) Membrane (kPa) (degrees) 41 5.1 0.4 ١ 359 180 Method of Preparation: BS 1377: Part 1: 1990 BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading Method of Test: Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: **Tested in Vertical Condition** UKAS Calibration - loads from 0.2 to 10kN Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE** Borehole Depth (m) Type Reference Description Remarks /Pit No. Stiff (high strength) slightly fissured yellowish brown CLAY with rare Specimen oven dried at 80°C due to the BH3 4.00 U selenite crystals. presence of selenite. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density** Dry Density Depth of (Mg/m³) (mm) (mm) (g) (%) (Mg/m³) Top of Specimen 199.5 101.8 3252 28.2 2.00 1.56 (m) 4.07 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm 180 160 Measured Deviator Stress (kPa) 140 120 100 80 60 40 20 0 2 0 4 6 8 10 12 14 16 18 20 Strain (%) Stress Corrections (kPa) Mohrs Circle Analysis Corrected Max. Measured Cell Shear Stress Cu, Specimen at failure Strain at Failure Pressure, σ3 Deviator Stress, ½(σ1-σ3)f Rubber Cu PHI (%) **Piston Friction** (σ1-σ3)f (kPa) (kPa) (kPa) Membrane (kPa) (degrees) 82 13.3 0.8 ١ 157 79 Method of Preparation: BS 1377: Part 1: 1990 BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading Method of Test: Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: **Tested in Vertical Condition** UKAS Calibration - loads from 0.2 to 10kN Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE** Borehole Depth (m) Type Reference Description Remarks /Pit No. Short sample recovery - short specimen Stiff (high strength) slightly fissured yellowish brown CLAY with rare BH3 6.00 U tested. Specimen oven dried at 80°C due selenite crystals. to the presence of selenite. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density** Dry Density Depth of (Mg/m³) (mm) (mm) (g) (%) (Mg/m³) Top of Specimen 150.6 102.0 2420 26.4 1.97 1.56 (m) 6.05 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm 250 Measured Deviator Stress (kPa) 200 150 100 50 0 2 0 4 6 8 10 12 14 16 18 20 Strain (%) Stress Corrections (kPa) Mohrs Circle Analysis Corrected Max. Measured Cell Shear Stress Cu, Specimen at failure Strain at Failure Pressure, σ3 Deviator Stress, ½(σ1-σ3)f Rubber Cu PHI (%) **Piston Friction** (σ1-σ3)f (kPa) (kPa) (kPa) Membrane (kPa) (degrees) 10.7 118 0.7 ١ 209 105 Method of Preparation: BS 1377: Part 1: 1990 BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading Method of Test: Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: **Tested in Vertical Condition** UKAS Calibration - loads from 0.2 to 10kN Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Specimen Water Borehole/ Depth Remarks Ref. Depth (m) and Content Description Туре Pit No. (m) Orientation (%) Stiff (high strength) fissured orangish brown CLAY 2.00 2.20 BH1 U 28.6 with occasional reddish yellow mottling, rare grey mottling, and orange fine sand pockets. Horizontal Change in Μv Increment Void Cv Temp Corrected Load **Initial Conditions** Height (kN/m^2) Ratio (m^2/yr) (m^2/MN) No. (°C) Cv (mm) Height 18.79 0.808 22 mm 1 95 0.047 Diameter mm 74.99 2 200 0.313 0.782 0.21 0.14 22 0.20 Wet Weight 164.86 3 400 0.799 0.735 0.15 0.13 22 0.14 g Water Content 28.6 % 4 800 1.404 0.677 0.14 0.08 22 0.13 **Bulk Density** 1.99 5 1600 2.085 0.05 Mg/m³ 0.611 0.14 22 0.13 Particle Density Assumed 2.80 6 95 0.875 0.728 0.05 22 Voids Ratio 0.812 Degree of Saturation 99 % Swelling Pressure kN/m² 95 Dry Density 1.55 Mg/m³ 0.850 eo 0.800 0.750 Voids Ratio 0.700 0.650 0.600 0.550 10 100 1000 10000 1 Log of Pressure (kN/m²) Method of Preparation: BS 1377: Part 5: 1990: 3.3 & 3.4 Method of Test: BS 1377: Part 5: 1990: 3.5 Method of Time Fitting Used: Square root Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: Remarks to Include: Sample disturbance, loss of water, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110 °C.

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 20/12/2019

Contract 248-260 Camden Road, Camden, London, NW1 9HE Serial No. 36274 DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Specimen Water Borehole/ Depth Remarks Ref. Depth (m) and Content Description Туре Pit No. (m) Orientation (%) Stiff (high strength) fissured reddish yellow CLAY Specimen dried at 80°C due to the 4.07 29.1 BH1 4.00 U with rare grey mottling, and selenite crystals. presence of selenite. Horizontal Change in Μv Increment Load Void Cv Temp Corrected **Initial Conditions** Height (kN/m^2) Ratio (m^2/yr) (m^2/MN) No. (°C) Cv (mm) Height 18.93 75 0.856 22 mm 1 0.078 Diameter mm 75.02 2 200 0.472 0.818 0.50 0.17 22 0.47 Wet Weight 161.03 3 400 0.910 0.775 0.50 0.12 22 0.47 g Water Content 29.1 % 4 800 1.421 0.724 0.38 0.07 22 0.36 **Bulk Density** 1.92 5 1600 2.049 0.05 0.29 Mg/m³ 0.662 0.31 22 Particle Density Assumed 2.78 6 75 0.867 0.779 0.05 22 Voids Ratio 0.864 Degree of Saturation 94 % Swelling Pressure kN/m² 75 Dry Density 1.49 Mg/m³ 0.900 e 0.850 0.800 Voids Ratio 0.750 0.700 0.650 0.600 10 100 1000 10000 1 Log of Pressure (kN/m²) Method of Preparation: BS 1377: Part 5: 1990: 3.3 & 3.4 Method of Test: BS 1377: Part 5: 1990: 3.5 Method of Time Fitting Used: Square root Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter Comments: Remarks to Include: Sample disturbance, loss of water, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110 °C.

www.soilpropertytesting.com

Image: Second		In Situ	ı Calif	ornia R	oarin	a Pa	tio (C	BD)	Job Ref			27	485	
Site Name 248-250 Candan Road, London NW1 9HE Depth m 0.45 Project No. - Client FASTRACK Date of Test 27/11/2019 Soil Description Greykish brown sandy gravely CLAY with accessional Im brick fragments (gravel is fmc and sub-angular to sub-rounded) 1 Test Method DB1377: Part 9: 1990, clause 4.3 CBR Test Number 1 Note: Test only applicable when maximum parkiele size beneath the planger does not exceed 20mr Email: Statistical Sta	Soils				carin				CBR No).		CE	3R1	
Project No. - Client FASTRACK Date of Test 27/11/2019 Soil Description Greylesh brown sandy gravelly CLAY with accessional fm brick fragments (gravel is fine and sub-angular to sub-rounded) Test Method BS1377: Part 9 : 1980, datume 4.3 CBR Tast Number 1 Note: Test only applicable when maximum particle size beneath the plunger does not exceed 20mm Test Method 0.43 Note: Test only applicable when maximum particle size beneath the plunger does not exceed 20mm Rate of Strain 1.000 mm/min Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Readings 1.000 mm/min Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Readings 1.000 mm/min Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Readings 1.000 mm m/min Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Test when barboard Readings 1.000 mm m/min Test year only applicable when maximum particle size beneath the plunger does not exceed 20mm Test year only applicable when maximum particle size beneton the waterem	Site Name	248-250 Camo	en Road,	London N	IW1 9⊦	ΙE			Depth r	n		0	.45	
Sail Description Creyteh brown sandy gravely CLAV with accessionit in brick fragments (gravel is fine and sub-angular to sub-rounded) Test Method BS1377: Part 9: 1980, cloues 4.3 CBR Test Number 1 Carter for the particle size beneath the plurger does not exceed 20mm Rate if Strain 100 nmmmin Temperature 100 0 Proving Ring Factor 100 nmmmin Temperature 100 0 0 Notice 153 100 0.43 Ndv Temperature 100 0 0 Proving Ring Factor 100 0.43 Ndv Temperature 100 0	Project No.	-		Client			FASTRA	ACK	Date of	Test		27/11/2019		
Test Method \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	Soil Description	Greyish brow	n sandy g	gravelly CL	AY wit	h occa	sional fm	brick fragm	ents (grave	l is fmc and	d sub-an	igular to	sub-rounded)	
Ret: Test only applicable when maximum particle size beneates the plurger does not exceed 20ml Ret ei I Strain Mess of Surcharge 100 0.3 nm/min 0.3 100 0.5 100 0.5 Reting 100 0.5 100 0.5 100 0.5 100 0.5 100 0.5 New Important Divioning Ris Factors Important Divioning Ris Factors Important Divioning Ris Factors Important Divioning Ris Factors New Important Reading the Read	Test Method	BS1377 : Part	9 : 1990,	clause 4.3	3				CBR Te	st Number	-		1	
Rate if Strain Mess of Succharge Priving Rig Factor Imminin by 0.03 Temperature biological conditions Imminin Detector with statutes Reserve Force on Plunger Plunger Detector with statutes Detector with statutes Reserve Force on Plunger Plunger Detector with statutes Detector with statutes Reserve Force on Plunger Plunger Detector with statutes Detector with statutes 100 Detector with statutes Detector with statutes Detector with statutes 100 Detector with statutes Detector with statutes Detector with statutes Results Detector with statutes Detector with statutes Detector with statutes Results Detector with statutes Detector with statutes Detector with statutes Results Detector with statutes Detector with statutes Detector with statutes Notice Detector with statutes Detector with statutes Detector with statutes Results Detector with statutes Detector with statutes Detector with statutes Notice Detector with statutes Detector with statutes Detector with statutes State Detector with statutes Detector with statutes	Note: Test only applica	able when maxii	mum parti	icle size be	eneath	the plu	nger does	s not excee	d 20mm					
Mess of Surcharge Proving Ring Factor Netw Dividuality Dividuality Dividuality Readings 0.43 Netw Dividuality Dividuality Dividuality Readings 127 0.06 0.03 Dividuality Dividuality 1.00 127 0.06 0.03 Dividuality Dividuality Dividuality 1.00 127 0.06 0.03 Dividuality Dividuality Dividuality 1.00 127 0.06 0.03 Dividuality Dividuality Dividuality 2.00 127 0.04 Dividuality Dividuality Dividuality Dividuality 3.00 144 0.04 Dividuality Dividuality Dividuality Dividuality 3.00 1183 0.05 Dividuality Dividuality Dividuality Dividuality 5.00 1183 0.05 Dividuality Dividuality Dividua	Rate if Strain	1.00 mn	n/min			Tempe	rature	11 Overeast with	0C			1		
Provide registree Loss Force versus Penetration of Force on Plunger Plunger To and the registree of the registree o	Mass of Surcharge	0.43 N/c	liv			Conditi	ons		ui silaweis					
Force versus Penetration Plot Penetration of mm Force versus Penetration Plot Penetration of 0.25 Force versus Penetration Plot 0.05 0.075 1.00 0.25 60 0.03 0.75 217 0.06 1.00 334 0.17 1.25 618 0.22 1.75 688 0.33 2.00 742 0.34 2.00 742 0.32 2.05 873 0.38 3.25 948 0.41 3.50 1002 0.44 4.25 1062 0.46 5.00 1097 0.47 2.25 1112 0.48 5.25 1124 0.48 5.25 1131 0.48 6.25 1181 0.51 7.30 1222 0.53 Results Correction Correction Content 2.5mm Content 5.95 7.30 1222 0.42		0.40						L				1		
Perior Dial Reading Dial Reading <thdial reading<="" th=""> Dial Reading</thdial>	Readings	Eorco on	Plungor					Force v	ersus Pe	netratio	n Plot			
mm Dia Reading KN 0.00 0 0.00 0.00 0.00 0.50 127 0.05 0.03 0.00 0.00 0.00 1.00 394 0.17 0.09 0.00	Penetration of Plunger	Diel Deeding	Loa	ıd	0.	60 —								
0.000 0 0.000 0.000 0.50 127 0.060 0.75 217 0.060 1.00 394 0.17 1.26 619 0.27 1.26 619 0.27 1.26 619 0.27 1.26 619 0.27 2.20 791 0.36 2.20 791 0.36 2.20 791 0.36 2.20 791 0.36 2.20 791 0.36 2.20 791 0.36 2.25 943 0.41 0.30 0.41 0.39 3.25 944 0.41 3.50 1002 0.43 0.00 1023 4.5 6 5.50 1124 0.48 6.75 1196 0.51 7.50 1222 0.53 Remarks Correction Correction 0.725 121	mm	Diai Reading	k N	1										
0.20 0.02 0.03 0.75 217 0.09 1.00 394 0.17 1.25 519 0.22 1.50 618 0.27 1.75 688 0.30 2.25 791 0.34 2.50 837 0.38 3.00 914 0.39 3.25 944 0.41 3.50 974 0.42 3.00 914 0.39 0.00 12 3 4 4.00 1022 0.44 4.55 1062 0.46 4.75 1073 0.42 5.50 1124 0.48 5.50 1134 0.48 5.75 1141 0.49 6.00 1153 0.50 6.23 1167 0.52 7.50 1222 0.53 Kesuits Curve 2.9	0.00	0	0.0	0	0.	50 -							***	
0.75 217 0.00 1.25 519 0.22 1.50 618 0.27 1.75 668 0.30 2.200 7.42 0.32 2.25 731 0.34 2.25 731 0.34 2.25 731 0.34 2.25 731 0.34 2.25 731 0.34 3.00 914 0.39 3.25 948 0.41 3.50 974 0.42 3.75 1002 0.44 4.25 1043 0.46 4.75 1078 0.46 4.75 1078 0.46 4.50 1062 0.44 6.50 1181 0.51 7.50 1222 0.53 7.50 1222 0.53 7.50 1222 0.53 7.50 1222 0.53 7.50 1222 0.53	0.25	127	0.0	5		*-			+			Ĩ		
$\frac{1.00}{1.25} \frac{394}{519} \frac{0.17}{0.27}$ $\frac{1.75}{1.50} \frac{688}{0.32} \frac{0.27}{1.75} \frac{1.75}{0.688} \frac{0.23}{0.32}$ $\frac{2.25}{2.25} \frac{791}{791} \frac{0.44}{0.44}$ $\frac{2.50}{2.25} \frac{114}{10.26} \frac{0.44}{0.44}$ $\frac{3.75}{1.002} \frac{10.44}{0.44}$ $\frac{4.25}{1.043} \frac{10.45}{0.45}$ $\frac{4.25}{1.043} \frac{10.46}{0.44}$ $\frac{4.25}{1.043} \frac{10.46}{0.44}$ $\frac{4.25}{1.043} \frac{10.46}{0.44}$ $\frac{4.25}{1.043} \frac{10.46}{0.44}$ $\frac{5.50}{1.124} \frac{10.42}{0.44}$ $\frac{6.25}{1.112} \frac{11.2}{0.44}$ $\frac{6.25}{1.112} \frac{11.2}{0.44}$ $\frac{6.25}{1.112} \frac{11.2}{0.44}$ $\frac{6.25}{1.122} \frac{11.2}{0.53}$ $\frac{6.25}{1.124} \frac{10.43}{0.50}$ $\frac{6.25}{1.222} \frac{11.24}{0.52}$ $\frac{6.53}{1.122} \frac{10.27}{0.52}$ $\frac{6.53}{1.122} \frac{10.27}{0.52}$ $\frac{11.2}{2.5mn} \frac{11.2}{1.222} \frac{10.53}{0.53}$ $\frac{6.53}{1.122} \frac{10.27}{0.52}$ $\frac{10.2}{1.222} \frac{10.23}{0.53}$ $\frac{10.2}{1.222} \frac{10.23}{0.53}$ $\frac{10.2}{1.222} \frac{10.2}{0.53}$ $\frac{10.2}{1.22} \frac{10.2}{0.53}$ 10.2	0.75	217	0.0	9										
1.23 319 0.22 1.75 688 0.30 2.00 742 0.32 2.75 878 0.38 3.00 914 0.39 3.25 948 0.44 4.25 1043 0.44 4.25 1043 0.44 4.25 1043 0.44 4.25 1043 0.44 4.25 1043 0.44 4.50 1062 0.44 4.50 1062 0.44 4.55 1112 0.48 5.50 1124 0.48 5.50 1124 0.48 6.00 1153 0.50 6.55 1181 0.51 7.75 1222 0.53 Remarks Correction Penetration mm Correction Penetration mm ves 2.9 2.4 2.9 26 Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Maiture Ves 2.9 2.4 2.9	1.00	394	0.1	7	0.4	40 🛓			-*					
175 688 0.30 2.00 742 0.32 2.25 791 0.34 2.50 837 0.36 2.75 878 0.38 3.25 948 0.41 3.50 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.55 1062 0.46 5.00 1097 0.47 5.50 1124 0.48 5.50 1124 0.48 5.50 1124 0.48 5.50 1181 0.51 7.00 1227 0.53 Remarks Curve CBR Values, % Correction Penetration applied 2.9 2.4 2.9 26 Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU 11438 JP Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU <th>1.25</th> <th>618</th> <th>0.2</th> <th>2 7</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ł</th> <th></th> <th></th>	1.25	618	0.2	2 7							ł			
2.00 742 0.32 2.55 771 0.36 2.75 878 0.36 3.00 914 0.39 3.25 948 0.41 3.350 974 0.42 3.75 1002 0.44 4.25 1043 0.45 4.50 1062 0.46 4.75 1076 0.46 5.50 1124 0.48 5.50 1124 0.48 5.50 1124 0.48 5.75 1167 0.50 6.00 1135 0.51 7.75 1222 0.53 Test Report by K4 SOLS LABORATORY Checked and Approved watord Hers WD18 9RU 1tals: Test Report by K4 SOLS LABORATORY Checked and Approved Init 3 do ds Close Olds Approach Watord Hers WD18 9RU Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watord Hers WD18 9RU Te	1.75	688	0.3	0 <u>Z</u>				X						
2.25 731 0.34 2.75 878 0.38 3.00 914 0.39 3.25 948 0.41 3.50 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.25 1043 0.46 5.00 1062 0.46 5.00 1070 0.46 5.25 1112 0.48 5.50 1124 0.48 6.00 1153 0.50 6.50 1181 0.51 7.25 1221 0.52 7.25 1214 0.52 7.25 1222 0.53 Kesuits Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: Lei 1923 711 288 Date: 2.9 2.4 Lei 1923 711 288 Date: 2.9 2.6	2.00	742	0.3	2 0	0.3	30 -								
2.75 837 0.30 3.25 948 0.41 3.50 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.25 1043 0.45 4.50 1062 0.46 4.75 1078 0.46 5.25 1112 0.48 5.50 124 0.48 5.50 1124 0.48 6.50 1181 0.51 6.75 1181 0.52 7.25 1221 0.53 Results Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tei: 0123 711 288 Date: 29/11/201	2.25	791	0.3	4 eildo				/			İ			
3.00 914 0.39 3.25 948 0.41 3.350 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.25 1043 0.46 4.75 1078 0.46 4.75 1078 0.46 5.50 1124 0.48 5.75 1141 0.49 6.00 1153 0.50 6.25 1187 0.50 6.50 1181 0.51 7.00 1222 0.53 Remarks Curve Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach % Ves 2.9 2.4 2.9 26	2.30	878	0.3	e A	0.4	20								
3.25 948 0.41 3.50 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.25 1043 0.45 4.50 1062 0.46 4.75 1078 0.46 5.00 1097 0.47 5.25 1112 0.48 5.75 1124 0.48 6.20 1183 0.50 6.25 1167 0.50 6.25 1124 0.52 7.50 1222 0.53 Results Curve EBR Values. % Moisture Orientian pplied 2.5mm 5mm 4.29 7.50 1222 0.53 Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watord Herts WD18 9RU Te: 01923 711 288 Email: James @k4solis.com Te: 01923 711 288 Email: James @k4solis.com Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	3.00	914	0.3	9 0	0	20								
3.50 974 0.42 3.75 1002 0.43 4.00 1026 0.44 4.25 1043 0.45 4.50 1002 0.46 4.75 1078 0.46 5.00 1097 0.47 5.25 1112 0.48 5.50 1124 0.48 5.75 1141 0.49 6.00 1153 0.50 6.50 1181 0.51 7.75 1222 0.53 7.50 1222 0.53 Results Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach National Watford Herts WD18 9RU Initials: J.P Te: 01923 711 288 Email: James @kdsoils.com	3.25	948	0.4	1			1							
3.73 1002 0.43 4.00 1026 0.44 4.25 1043 0.46 4.75 1078 0.46 5.00 1097 0.47 5.25 1112 0.48 5.75 1141 0.49 6.25 1167 0.50 6.25 1167 0.50 6.50 1181 0.51 7.00 1207 0.52 7.50 1222 0.53 Kesults Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: Jetter: 01923 711 288 Email: James@k4soils.com Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) <th>3.50</th> <th>974</th> <th>0.4</th> <th>2</th> <th>0.</th> <th>10 -</th> <th>_/ _</th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th>	3.50	974	0.4	2	0.	10 -	_/ _		<u> </u>					
$\frac{4.25}{4.50} = 1043 0.46 \\ 4.50 = 1062 0.46 \\ 4.75 = 1078 0.46 \\ 5.00 = 1097 0.47 \\ 5.25 = 1112 0.48 \\ 5.75 = 1144 0.49 \\ 6.00 = 1124 0.48 \\ 5.75 = 1144 0.49 \\ 6.00 = 1133 0.50 \\ 6.50 = 1181 0.51 \\ \hline 7.00 = 1207 0.52 \\ \hline 7.25 = 1214 0.52 \\ \hline 7.50 = 1222 0.53 \\ \hline \hline \hline \hline \\ \hline $	3.75	1002	0.4	3										
4.50 1062 0.46 4.75 1078 0.46 5.00 1097 0.47 5.25 1112 0.48 5.75 1141 0.49 6.00 1153 0.50 6.25 1167 0.50 6.75 1181 0.51 7.50 1222 0.53 Results Test Report by K4 SOLS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Yes 2.9 Yes: 29/11/201 Tel: 01923 711 288 Email: James@k4soils.com Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	4.25	1043	0.4	5		×	1				İ			
4.75 1078 0.46 0 1 2 3 4 5 6 7 8 5.00 1097 0.47 0.47 Penetration mm Penetration mm Penetration mm Penetration mm Penetration mm Correction S.50 1124 0.48 Penetration mm Correction Remarks Correction S.50 S.	4.50	1062	0.4	6	0.0	00 🖌			*		*	1		
5.00 1097 0.47 Penetration mm 5.25 1112 0.48	4.75	1078	0.4	6		0	1	2	3	4 5)	6	7 8	
5.50 1124 0.48 5.75 1141 0.49 6.00 1153 0.50 6.25 1167 0.50 6.50 1181 0.51 6.75 1224 0.52 7.25 1214 0.52 7.50 1222 0.53 Results Curve CBR Values, % Moisture Content applied 2.5mm 5mm CBR Value % Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Date: 29/11/201 Tel: 01923 711 288 Enail: James @k4soils.com Enail: James @k4soils.com Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R	5.00	1097	0.4	8					Penetra	ation mm				
5.75 1141 0.49 6.00 1153 0.50 6.25 1167 0.50 6.50 1181 0.51 6.75 1196 0.51 7.70 1207 0.52 7.50 1222 0.53 Results Curve Correction Penetration 2.5mm CBR Value Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Checked and Approved Initials: J.P Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Date: 29/11/201 Tel: 01923 711 288 Date: 29/11/201 Email: James @k4soils.com MSF-S-R 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-S-R	5.50	1124	0.4	8		* — D	ata	* • 2.5mi	m * -	-• 5.0mm		— Corre	ection	
6.00 1153 0.50 6.25 1167 0.50 6.50 1181 0.51 6.75 1196 0.51 7.00 1207 0.52 7.25 1214 0.52 7.50 1222 0.53 Results Curve ©BR Values, % Moisture Correction Penetration ©CBR Value % Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Date: 29/11/201 Email: James@k4soils.com 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R	5.75	1141	0.4	9										
6.25 11167 0.30 6.50 1181 0.51 6.75 1196 0.51 7.00 1207 0.52 7.25 1214 0.52 7.50 1222 0.53 Results Curve CBR Values, % Moisture Content applied 2.5mm 5mm CBR Value Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Test Report by K4 SOILS LABORATORY Checked and Approved Initials: J.P Test Report by K4 SOILS LABORATORY Checked and Approved Initials: J.P Date: 29/11/201 Tel: 01923 711 288 Date: 29/11/201 Email: James@k4soils.com Mark Solits.com	6.00	1153	0.5	0	Rema	ırks								
6.75 1196 0.51 7.00 1207 0.52 7.25 1214 0.52 7.50 1222 0.53 Results Curve CBR Values, % Moisture Content 2.5mm 5mm CBR Value Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Initials: J.P Tel: 01923 711 288 Date: 29/11/201 Email: James@k4soils.com MSF-s-R:	6.25	1167	0.5	1										
T.00 1207 0.52 T.25 1214 0.52 T.50 1222 0.53 Results Curve correction applied CBR Values, % Moisture Content Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Initials: J.P Watford Herts WD18 9RU Date: 29/11/201 Tel: 01923 711 288 Date: 29/11/201 Email: James@k4soils.com 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R:	6.75	1196	0.5	1										
7.25 1214 0.52 7.50 1222 0.53 Results Curve CBR Values, % Moisture Content applied 2.5mm 5mm CBR Value % Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Tel: 01923 711 288 Date: 29/11/201 Email: James@k4soils.com 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R*	7.00	1207	0.5	2										
Image: Note of the second state in	7.25	1214	0.5	2										
Results Moisture CBR Values, % Moisture Content Penetration CBR Value Moisture Content applied 2.5mm 5mm CBR Value Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Initials: J.P Unit 8 Olds Close Olds Approach Date: 29/11/201 Email: James@k4soils.com Date: 29/11/201 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R:	1.50	1222	0.5	5										
Correction Penetration CBR Value Content applied 2.5mm 5mm CBR Value % Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Initials: J.P Tel: 01923 711 288 Date: 29/11/201 Email: James@k4soils.com MSF-5-R:	Results		Curve	С	BR Val	lues, %	6	Moisture	1					
applied 2.5mm 5mm 5mm % Yes 2.9 2.4 2.9 26 Yes 2.9 2.4 2.9 26 Image: Strain Strai		со	rrection	Pene	tration		BR Value	Content						
Yes 2.9 2.4 2.9 26 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Initials: J.P Watford Herts WD18 9RU Initials: J.P Tel: 01923 711 288 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R:		а	pplied	2.5mm	5m	im C		%						
Test Z.9 Z.4 Z.9 Z0 Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Tel: 01923 711 288 Estitive Date: 29/11/201 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R:			Vaa	2.0	2	4	2.0	26						
Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Checked and Approved Initials: J.P Tel: 01923 711 288 Estitive Date: 29/11/201 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R:		L	162	2.9	Z.	7	2.9	20						
Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Initials: Watford Herts WD18 9RU Initials: Tel: 01923 711 288 Date: 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	·					011 0 1		0.0.1			-			
Watford Herts WD18 9RUInitials:J.PUKAS TESTINGTel: 01923 711 288 Email: James@k4soils.comDate:29/11/2012519Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)MSF-5-R:			lest U	Report by nit 8 Olds	Close	OILS L	ABORAT Approact	υκτ			Cł	necked a	and Approve	
Tel: 01923 711 288Date:29/11/201UKAS TESTINGEmail: James@k4soils.com2519Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)MSF-5-R:			•	Watfor	d Hert	s WD1	8 9RU				Initia	lls:	J.P	
2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R				Tel Email	: 01923 James (3 711 2 @k4so	88 ils.com				Date	:	29/11/2	
	2519 Approved	Signatories: K.I	Phaure (T	ech.Mgr)	J.Phau	re (Lab	.Mgr)						MSF-	

4	In Situ (Californ	ia Beari	ng Ratio	(CBR)	Job Ref			27485
Soils		Gamon				CBR No.			CBR2
Site Name	248-250 Camden Road, London NW1 9HE Depth m								0.45
Project No.	-	Clie	ent	FAS	STRACK	Date of Test		27	7/11/2019
Soil Description		Brown	slightly cla	yey sandy GI	RAVEL (gravel o	consists of fmc br	ick frag	ments)	
Test Method	BS1377 : Part 9 :	: 1990, clau	se 4.3			CBR Test Nu	mber		2
Note: Test only applica	able when maximu	ım particle s	size beneati	h the plunger	does not excee	d 20mm			
Rate if Strain	1.00 mm/r	nin		Temperatur	e <u>11</u>	0C		1	
Mass of Surcharge	kg			Environmer Conditions	Ital Overcast wi	th shawers			
Proving Ring Factor	7.13 N/div			Conditiono					
Readings			1		Force v	ersus Penetr	ation	Plot	
Penetration of	Force on Pl	unger	6	6.00 T					
mm	Dial Reading	kN							
0.00	0	0.00	·					×	
0.25	92	0.66	5	5.00				\times	
0.50	168	1.20	-						
0.75	253 282	2.01				×			
1.25	313	2.23	 	*		*			
1.50	347	2.47	1						
1.75	376	2.68	Z × 3	3.00					
2.00	428	3.05	eq						
2.23	538	3.44	ildq						
2.75	575	4.10	e z	2.00					
3.00	621	4.43			X				
3.25	649	4.63							
3.50	694	4.95	1	.00					
3.75	744	5.30	-						
4.00			1						
4.50			с	0.00 🖌		*			*
4.75				0	1	2	3	4	5
5.00						Penetration	mm		
5.25					-	m * .50)mm	<u> </u>	prrection
5.50			4	·· Data	· 2.5m	····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		incetion .
6.00			Rem	arks					
6.25									
6.50									
6.75					Maximu	um kentledge rea	ched		
7.00									
7.50									
Results	Cu corre app N	rve ection lied 2.5	CBR V Penetration mm 5 29	alues, % n CBR \ mm CBR \	Alue Moisture Content % 21				
ch		Test Rep	ort by K4 \$	SOILS LABO	RATORY			Checke	d and Approved
		Unit 8 V	Olds Clos	e Olds Appr rts WD18 9R	oach U			Initials:	J.P
			Tel: 0192	23 711 288				Date:	29/11/201
2519 Approved	ignatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)								MSF-5-R

	In Site		rnia P	oorlin		atia (C		Job R	lef		27485
Soils	CBR No.									CBR3	
Site Name	248-250 Camder	amden Road, London NW1 9HE Depth m								0.45	
Project No.	-		Client			FASTR	ACK	Date	of Test	2	27/11/2019
Soil Description	Bro	Brown slightly gravelly slightly sandy silty CLAY (gravel is fm and sub-angular to sub-rounded)									nded)
Test Method	BS1377 : Part 9	: 1990, c	lause 4.3	3				CBR	Test Number		3
Note: Test only applica	able when maximu	um partic	le size b	eneath	the p	lunger doe	s not excee	d 20mm			
Rate if Strain	1.00 mm/r	min			Temp	perature	11 Overcast w	00	C		
Mass of Surcharge	kg	,			Cond	itions	overeast w		,		
Proving King Factor	0.43 N/div	,					L				
Readings	Faras an D	lunger					Force v	ersus F	Penetratio	n Plot	
Penetration of	Force on P		_	0.3	35 —				<u> </u>		
mm	Dial Reading		<u>'</u>								
0.00	0	0.00		0.3	30 -						*
0.25	73	0.03		0.	*•						
0.50	100	0.04									
0.75	128	0.06	_	0.2	25 🕂			_			
1.00	151	0.06	_								
1.25	202	0.08	_	0.4	20						
1.75	247	0.00	- z	0.	20 T			\mathbf{V}			
2.00	287	0.12						Λ			
2.25	322	0.14	olie	0.	15 📥		/	<u> </u>			
2.50	356	0.15	Api								
2.75	383	0.16	<u> </u>								
3.00	423	0.18	<u> </u>	0.1	10 +						
3.50	403 518	0.20	_								
3.75	557	0.24		0.0	05 -	$ \land $					
4.00	582	0.25				¥					
4.25	603	0.26				/					
4.50	626	0.27		0.0	00 🐇		<u> </u>		<u> </u>		
4.75	645	0.28	_		0	1	2	3	4 5	6	7 8
5.00	669	0.28	_					Pene	tration mm		
5.50	681	0.29	_		* [Data	• * • 2.5m	m	« • 5.0mm	<u> </u>	orrection
5.75	693	0.30									
6.00	702	0.30		Rema	arks						
6.25	715	0.31									
6.50	728	0.31		1							
6./5 7.00	/42 757	0.32	_								
7.00	765	0.33	_								
7.50	773	0.33									
		•		<u>.</u>							-
Results	Cu	irve	С	BR Va	lues,	%	Moisture	٦			
	corre	ection	Pene	tration			Content				
	app	olied	2.5mm	5m	nm		%				
	١	No	1.2	1.	4	1.4	39				
							1				
prince		Test R	eport by	/ K4 S	OILS	LABORAT	ORY			Check	ed and Approved
		Un	it 8 Olds Watfor	s Close d Hert	e Olds s WD	s Approac 18 9RU	h			Initials:	J.P
			Tel	: 01923	3 711	288				Date:	29/11/201
U K A S TESTING			Email:	James	@k4s	oils.com					
2519 Approved	Signatories: K.Ph	aure (Te	ch.Mgr)	J.Phau	re (La	b.Mgr)					MSF-5-R

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	19-25967
Issue:	1
Date of Issue:	04/12/2019
Contact:	Peter George
Customer Details:	GO Contaminated Land Solutions Ltd 4 De Frene Road Sydenham London SE26 4AB
Quotation No:	Q14-00029
Order No:	1772
Customer Reference:	1772
Date Received:	27/11/2019
Date Approved:	04/12/2019
Details:	Camden Road
Approved by:	J. WHAT

John Wilson, Quality Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 19-25967, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
190782	TP1 0.50	25/11/2019	27/11/2019	Loamy sand	
190783	TP5 0.50	25/11/2019	27/11/2019	Sandy silty loam	
190784	BH3 2.00	25/11/2019	27/11/2019	Silty clayey loam	

Results Summary

Report No.: 19-25967, issue number 1

	ELAB Reference								
	Customer Reference								
	Sample I								
		Sa	mple Type	SOIL	SOIL	SOIL			
		Sampl	e Location	TP1	TP5	BH3			
		Sample	Depth (m)	0.50	0.50	2.00			
		Sam	pling Date	25/11/2019	25/11/2019	25/11/2019			
Determinand	Codes	Units	LOD						
Soil sample preparation paramet									
Material removed	N	%	0.1	38.0	11.3	< 0.1			
Description of Inert material removed	N		0	Stones	Stones	None			
Miscellaneous									
Acid Neutralisation Capacity	N	mol/kg	0.1	< 0.1	< 0.1	< 0.1			
Loss On Ignition (450°C)	М	%	0.01	2.98	7.34	4.04			
рН	М	pH units	0.1	9.6	9.2	8.6			
Total Organic Carbon	N	%	0.01	1.2	1.7	0.39			
Polyaromatic hydrocarbons									
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	5	< 2	< 2			
BTEX									
Total BTEX	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01			
Total Petroleum Hydrocarbons									
Mineral Oil	М	mg/kg	5	^ 48	^ < 5	^ 13			
PCB (ICES 7 congeners)									
PCB (Total of 7 Congeners)	М	mg/kg	0.03	< 0.03	< 0.03	< 0.03			

Results Summary 2683 Report No.: 19-25967, issue number 1

WAC Analysis										
Flah Ref [.]	190784					Landf	ceptance			
	100101					Criteria Limits*		its*		
Sample Date:	25/11/201	9							Stable Non-	
Sample ID:	BH3						reactive			
Depth (m)	2					Inert Waste	Hazardous	Hazardous		
Site:		(Camden F	Road		Landfill	waste in non-	Waste Landfill		
							Landfill			
Determinand		Code	Units							
Total Organic Carbon		N	%		0.39	3	5	6		
Loss on Ignition		М	%		4.0			10		
Total BTEX		М	mg/kg		< 0.01	6				
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1				
TPH Total WAC		М	mg/kg		13	500				
Total (of 17) PAHs		N	mg/kg		< 2	100				
рН		М			8.6		>6			
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate		
Eluate Analysis			10:1		10:1	Limit values	s for complian	ce leaching test		
			mg/l		mg/kg	using B	S EN 12457-2 a	at L/S 10 l/kg		
Arsenic		Ν	< 0.005		< 0.05	0.5	2	25		
Barium		Ν	< 0.005		< 0.05	20	100	300		
Cadmium		Ν	< 0.001		< 0.01	0.04	1	5		
Chromium		Ν	< 0.005		< 0.05	0.5	10	70		
Copper		Ν	< 0.005		< 0.05	2	50	100		
Mercury		Ν	< 0.005		< 0.01	0.01	0.2	2		
Molybdenum		Ν	< 0.005		< 0.05	0.5	10	30		
Nickel		Ν	< 0.001		< 0.05	0.4	10	40		
Lead		Ν	< 0.001		< 0.05	0.5	10	50		
Antimony		Ν	< 0.005		< 0.05	0.06	0.7	5		
Selenium		Ν	< 0.005		< 0.05	0.1	0.5	7		
Zinc		Ν	< 0.005		< 0.05	4	50	200		
Chloride		Ν	6		58.00	800	15000	25000		
Fluoride		Ν	< 5		16.00	10	150	500		
Sulphate		Ν	33		331.00	1000	20000	50000		
Total Dissolved Solids		Ν	109		1090.00	4000	60000	100000		
Phenol Index		Ν	< 0.01		< 0.10	1	-	-		
Dissolved Organic Carbon		Ν	9.570		96.00	500	800	1000		
Leach Test Information	า									
рН		Ν	7.7							
Conductivity (uS/cm)		N	163							
Dry mass of test portion (g)			101.000							
Dry Matter (%)			83							
Moisture (%)			21							
Eluent Volume (ml)			966							

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Results Summary 2683 Report No.: 19-25967, issue number 1

WAC Analysis										
Flab Ref [.]	190783					Landf	ceptance			
	100100						Criteria Lim	its*		
Sample Date:	25/11/201	9							Stable Non-	
Sample ID:	TP5						reactive			
Depth (m)	0.5					Inert Waste	Hazardous	Hazardous		
Site:		(Camden F	Road		Landfill	waste in non-	Waste Landfill		
							Landfill			
Determinand		Code	Units							
Total Organic Carbon		N	%		1.70	3	5	6		
Loss on Ignition		М	%		7.3			10		
Total BTEX		М	mg/kg		< 0.01	6				
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1				
TPH Total WAC		М	mg/kg		< 5	500				
Total (of 17) PAHs		N	mg/kg		< 2	100				
рН		М			9.2		>6			
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate		
Eluate Analysis			10:1		10:1	Limit values	s for complian	ce leaching test		
			mg/l		mg/kg	using BS EN 12457-2 at L/S 10 I/				
Arsenic		Ν	0.008		0.08	0.5	2	25		
Barium		Ν	0.010		0.10	20	100	300		
Cadmium		Ν	< 0.001		< 0.01	0.04	1	5		
Chromium		Ν	0.015		0.15	0.5	10	70		
Copper		Ν	0.023		0.23	2	50	100		
Mercury		Ν	< 0.005		< 0.01	0.01	0.2	2		
Molybdenum		Ν	0.011		0.11	0.5	10	30		
Nickel		Ν	0.003		< 0.05	0.4	10	40		
Lead		Ν	0.041		0.41	0.5	10	50		
Antimony		Ν	< 0.005		< 0.05	0.06	0.7	5		
Selenium		Ν	< 0.005		< 0.05	0.1	0.5	7		
Zinc		Ν	0.013		0.13	4	50	200		
Chloride		Ν	10		98.00	800	15000	25000		
Fluoride		Ν	< 5		12.00	10	150	500		
Sulphate		Ν	54		540.00	1000	20000	50000		
Total Dissolved Solids		Ν	117		1170.00	4000	60000	100000		
Phenol Index		Ν	< 0.01		< 0.10	1	-	-		
Dissolved Organic Carbon		Ν	22.100		221.00	500	800	1000		
Leach Test Information	า									
рН		Ν	7.5							
Conductivity (uS/cm)		N	175							
Dry mass of test portion (g)			101.000							
Dry Matter (%)			76							
Moisture (%)			32							
Eluent Volume (ml)			941							

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Results Summary 2683 Report No.: 19-25967, issue number 1

WAC Analysis									
Flah Rof	190782					Landfill Waste Acceptance			
	100702					Criteria Limits*			
Sample Date:	25/11/201	9					Stable Non-		
Sample ID:	TP1						reactive		
Depth (m)	0.5					Inert Waste	Hazardous	Hazardous	
Site:		(Camden F	Road		Landfill	waste in non-	Waste Landfill	
							Landfill		
Determinand		Code	Units						
Total Organic Carbon		Ν	%		1.20	3	5	6	
Loss on Ignition		М	%		3.0			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		48	500			
Total (of 17) PAHs		Ν	mg/kg		5.0	100			
рН		М			9.6		>6		
Acid Neutralisation Capacity		Ν	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis			10:1		10:1	Limit values	s for complian	ce leaching test	
			mg/l		mg/kg	using BS EN 12457-2 at L/S 10 I/			
Arsenic		Ν	< 0.005		< 0.05	0.5	2	25	
Barium		Ν	0.027		0.27	20	100	300	
Cadmium		Ν	< 0.001		< 0.01	0.04	1	5	
Chromium		Ν	0.007		0.07	0.5	10	70	
Copper		Ν	0.008		0.08	2	50	100	
Mercury		Ν	< 0.005		< 0.01	0.01	0.2	2	
Molybdenum		Ν	< 0.005		< 0.05	0.5	10	30	
Nickel		Ν	0.001		< 0.05	0.4	10	40	
Lead		Ν	0.012		0.12	0.5	10	50	
Antimony		Ν	< 0.005		< 0.05	0.06	0.7	5	
Selenium		Ν	< 0.005		< 0.05	0.1	0.5	7	
Zinc		Ν	0.007		0.07	4	50	200	
Chloride		Ν	< 5		< 50	800	15000	25000	
Fluoride		Ν	< 5		< 10	10	150	500	
Sulphate		Ν	14		137.00	1000	20000	50000	
Total Dissolved Solids		Ν	75		748.00	4000	60000	100000	
Phenol Index		Ν	< 0.01		< 0.10	1	-	-	
Dissolved Organic Carbon		Ν	6.600		66.00	500	800	1000	
Leach Test Information	ì				-				
pН		Ν	7.9						
Conductivity (uS/cm)		N	112						
Dry mass of test portion (g)			104.000						
Dry Matter (%)			81						
Moisture (%)			23						
Eluent Volume (ml)			989						

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Method Summary Report No.: 19-25967, issue number 1

Parameter	Codes	Analysis Undertaken	Date	Method	Technique	
			Tested	Number		
Leachate						
Arsenic	N		03/12/2019	101	ICPMS	
Cadmium	N		03/12/2019	101	ICPMS	
Chromium	N		03/12/2019	101	ICPMS	
Lead	N		03/12/2019	101	ICPMS	
Nickel	N		03/12/2019	101	ICPMS	
Copper	N		03/12/2019	101	ICPMS	
Zinc	N		03/12/2019	101	ICPMS	
Mercury	N		03/12/2019	101	ICPMS	
Selenium	N		03/12/2019	101	ICPMS	
Antimony	N		03/12/2019	101	ICPMS	
Barium	N		03/12/2019	101	ICPMS	
Molybdenum	N		03/12/2019	101	ICPMS	
pH Value	N		03/12/2019	113	Electrometric	
Electrical Conductivity	N		03/12/2019	136	Probe	
Dissolved Organic Carbon	N		03/12/2019	102	TOC analyser	
Chloride	N		03/12/2019	131	Ion Chromatography	
Fluoride	N		03/12/2019	131	Ion Chromatography	
Sulphate	N		03/12/2019	131	Ion Chromatography	
Total Dissolved Solids	N		03/12/2019	144	Gravimetric	
Phenol index	N		03/12/2019	121	HPLC	
WAC Solids analysis	N					
pH Value	M	Air dried sample	02/12/2019	113	Electrometric	
Total Organic Carbon	N	Air dried sample	02/12/2019	210	IR	
Loss on Ignition	М	Air dried sample	29/11/2019	129	Gravimetric	
Acid Neutralization Capacity to pH 7	N	Air dried sample	02/12/2019	NEN 737	Electrometric	
Total BTEX	N	As submitted sample	02/12/2019	181	GCMS	
Mineral Oil	M	As submitted sample	29/11/2019	117	GCFID	
Total PCBs (7 congeners)	М	Air dried sample	29/11/2019	120	GCMS	
Total PAH (17)	N	As submitted sample	04/12/2019	133	GCFID	

Tests marked N are not UKAS accredited

Report Information

Report No.: 19-25967, issue number 1

Kov

ney	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation) Codes
а	No date of sampling supplied
h	No time of compling supplied (Waters Ophy)

- No time of sampling supplied (Waters Only) b С
- Sample not received in appropriate containers d
- Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Appendix VII – SuDS Proforma

GREATERLONDONAUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	248-250 Camden Road Hostel	
	Address & post code	248-250 Camden Road Hostel NW1 9HE	
	OS Crid rof (Fasting Northing)	E 529703	
	US Grid rei. (Easting, Northing)	N 184808	
tails	LPA reference (if applicable)		
1. Project & Site Deta	Brief description of proposed work	Demolition of existing hostel building and erection of new 4-6 storey plus basement hostel building.	
	Total site Area	1569 m ²	
	Total existing impervious area	700 m ²	
	Total proposed impervious area	987 m ²	
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No	
	Existing drainage connection type and location	Combined sewer on site	
	Designer Name	Sam Lee	
	Designer Position	Flood risk & drainage engineer	
	Designer Company	Ambiental Environmental Assessment	

	2a. Infiltration Feasibility					
	Superficial geology classification		N/A			
	Bedrock geology classification		London Clay			
	Site infiltration rate	32.61*10	-7 m/s			
	Depth to groundwater level	N/A	m belov	w ground level		
	Is infiltration feasible?		No			
	2b. Drainage Hierarchy					
rge Arrangements		Feasible (Y/N)	Proposed (Y/N)			
	1 store rainwater for later use	Ν	Ν			
	2 use infiltration techniques, such a surfaces in non-clay areas	И	Ν			
d Discha	3 attenuate rainwater in ponds or o features for gradual release	Ν	Ν			
ropose	4 attenuate rainwater by storing in sealed water features for gradual re	Ν	Ν			
2. P	5 discharge rainwater direct to a w	Ν	Ν			
	6 discharge rainwater to a surface sewer/drain	water	Ν	Ν		
	7 discharge rainwater to the combined sewer.		Y	Y		
	2c. Proposed Discharge Details					
	Proposed discharge location Exist		ting drainage on site			
	Has the owner/regulator of the discharge location been consulted?		Y			

GREATERLONDONAUTHORITY

3a. Discharge Rates & Required Storage						
	Greenfield (GF) runoff rate (l/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)		
Qbar	0.42	\searrow	\searrow	$>\!$		
1 in 1	0.37		N/A	1		
1 in 30	0.98		N/A	1		
1 in 100	1.36	33.6	N/A	1.1		
1 in 100 + CC		\ge	N/A	1.3		
Climate change o	allowance used	40%				
3b. Principal Me ⁻ Control	thod of Flow	Hydrobrake				
3c. Proposed Su	DS Measures					
		Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)		
Rainwater harvesting		0	$\left \right\rangle$	0		
Infiltration syste	ms	0	\sim	0		
Green roofs		0	0	0		
Blue roofs		0	0	0		
Filter strips		0	0	0		
Filter drains		0	0	0		
Bioretention / tr	ee pits	0	0	0		
Pervious paveme	Pervious pavements		0	0		
Swales		0	0	0		
Basins/ponds		0	0	0		
Attenuation tank	(S	987	>	52.5		
Total		987	0	52.5		

	4a. Discharge & Drainage Strategy	Page/section of drainage report	
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Appendix V - Supplementary Doc	
rting Information	Drainage hierarchy (2b)	23	
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	23 / Appendix IV	
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Appendix II	
	Proposed SuDS measures & specifications (3b)	Appendix III	
por	4b. Other Supporting Details	Page/section of drainage report	
Sup	Detailed Development Layout	Appendix I	
4.	Detailed drainage design drawings, including exceedance flow routes	Appendix III	
	Detailed landscaping plans	Appendix I	
	Maintenance strategy	28	
	Demonstration of how the proposed SuDS measures improve:		
	a) water quality of the runoff?	27	
	b) biodiversity?	N/A	
	c) amenity?	N/A	

APPENDIX E

Construction methodology and engineering statement drawings and calculations

I OF CAMDEN RE, KINGS CROSSDRAWING TITLEJOB TITLE CAMDEN ROAD HOSTELPROPOSED BASEMENT PLAN248-250 CAMDEN ROAD LONDON, NW1 9HE	rodriguesasso 1 Amwell Street London EC1R 1 020-7837-1133 (Phor www.rodriguesassociates
--	---

P29 PILE 10m DEEP		P30 PILE DEE	_10n ⊃]	
P20 PILE 15m DEEP		P24 PILE DEEP	10m		
P19 PILE 15m DEEP		P23 PILE DEEP	-10m		
P18 PILE 15m DEEP		P22 PILE DEEP	-10m		
P17 PILE 15m DEEP		P21 PILE DEEP	10m		
8	B A – Rev	9 06.11.20 30.04.20 21.04.20 Date	CB CB IG By	CELLCORE ADDED CORE LAYOUT CHAN INITIAL DRAFT Rev	NGE
	DATE 17– JOB	·04-202 No.	20	SCALE A1 - 1:50 A3 - 1:100 DRG No.	DRAWN IG CHECKED CB REVISION
, com	1	858		02	В

E 1 OF CAMDEN RE, KINGS CROSS G	drawing title PROPOSED GROUND FLOOR PLAN	JOB TITLE CAMDEN ROAD HOSTEL 248–250 CAMDEN ROAD LONDON, NW1 9HE	rodriguesasso 1 Amwell Street London EC1R 10 020-7837-1133 (Phone www.rodriguesassociates

E 1 OF CAMDEN RE, KINGS CROSS S	DRAWING TITLE PROPOSED GROUND FLOOR PLAN COMMUNITY & WHEELCHAIR ACCESSIBLE BUILDING	JOB TITLE CAMDEN ROAD HOSTEL 248–250 CAMDEN ROAD LONDON, NW1 9HE	rodriguesasso 1 Amwell Street London EC1R 10 020-7837-1133 (Phon- www.rodriguesassociates

OF CAMDEN RE, KINGS CROSS	drawing title STRUCTURAL METHODOLOGY HOSTEL BUILDING	job title CAMDEN ROAD HOSTEL 248–250 CAMDEN ROAD LONDON, NW1 9HE	rodriguesasso 1 Amwell Street London EC1R 1 020-7837-1133 (Phor www.rodriguesassociates
------------------------------	--	---	---

g ND INING	No. 97 CAMDEN ROAD MEWS	—ALONG BOUNDARY WALL age 1 to 2 until wheelchair accessible building side vel of soil to front of retaining wall to formation subsoil and blinding, crete has gained sufficient strength build up supers	WALL TO BOUNDARY IS COMPLETED; LEVEL AND CAST GROUND SLAB AFTER PREPARING STRUCTURES OVER RETAINING WALLS AND SLAB.		
SCAPE AROUND FOUNDATION SITE DATUM +43.00	SITE DATUM +	43.00	BOUNDARY WALL WITH No.246	A 06.11.20 CB - 23.10.20 AB Rev Date By	SEQUENCE MODIFIED SCHEME Rev
E H OF CAMDEN RE, KINGS CROSS G	DRAWING TITLE STRUCTURAL METHODOLOGY WHEELCHAIR ACCESSIBLE BUILDING	JOB TITLE CAMDEN ROAD HOSTEL 248–250 CAMDEN ROAD LONDON, NW1 9HE	rodriguesassociates 1 Amwell Street London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.com	date 17−04−2020 job n₀. 1858	SCALE A1 - 1:50 A3 - 1:100 DRG No. ST3 A BREVISION

 COMMENCE REDUCTION OF PUDDLE TO APPROX 1.2m ABOVE BASE SLAB – INSTALL WALING BEAMS AND PROPS AT THIS LEVEL – REMOVE REMAINDER OF CENTRAL PUDDLE AND CAST CENTRAL PORTION OF BASE SLAB REMOVE PROPS AND WALING BEAMS

REPEAT STAGE 1&2 PROPPING ACROSS TO CENTRAL PUDDLE OF EARTH AFTER EACH

FOUNDATION NOT SURVEYED. FULL EARTHWORKS-----SUPPORT TO ACCESS PIT SITE DATUM +43.00

– REMOVE LOWER ROWS OF PROPS AND CAST RETAINING WALL INSERTING HORIZONTAL BARS

- WHEN CONCRETE HAS GAINED SUFFICIENT STRENGTH REMOVE FORMWORKS AND PROVIDE NEW

LATERALLY TO ALLOW CONNECTION WITH SUBSEQUENT PIN RETAINING WALL;

STAGE 2

HORIZONTAL PROPS TO WALL.

Ν	0	Т	E	S
_	_	_	_	_

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- 2. DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- 3. ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

key plan

No. 97 CAMDEN ROAD MEWS

Structural Stage 3 Planning report

for

Camden Road Hostel

rodriguesassociates

1 Amwell Street London EC1R 1UL Telephone 020 7837 1133 www.rodriguesassociates.com November 2020 Structural Stage 3 Report

for

Camden Road Hostel

for

Camden council

Job No 1858

Rev	Date	Notes
1	06.11.20	Planning issue

By Carl Bauer CEng MICE MIStructE. for RODRIGUES ASSOCIATES

Introduction

This report sets out the structural scheme for the project at RIBA Stage 3 and outlines the structural considerations for the detailed design stage of the project.

This report should be read with drawings 1858-02 to 50.

Structure Summary

Maximum plan dimensions	30x12m and 5x5m stair/lift core
Stories	6 and 1 basement level
Maximum height	20m
Foundations	Piles and ground beams + bsmt
Floor structure	Steel joists for modules + RC deck
Vertical structure	Steel columns in modules
Lateral stabililty	Diagonal bracing in party walls
	Offset K bracing in front elevation.
	Floor plates provide diaphragm action

Imposed loads

Domestic and residential	1.5 kN/m ² UDL and 1.4 kN point load
(All residential units all floors)	
Communal areas	3 kN/m ² UDL and 4.5 kN point load
(Ground floor, access decks)	

Roof plant loading will be calculated based on the plant and access required.

All internal non-load bearing partitions are assumed to be light weight stud partitions and an allowance of 1.0kN/m² UDL should be made for these.

Wind loads are calculated to BS EN 1991-1-4 + UK NA

Robustness

The Building Regulations have the following requirement:

Disproportionate Collapse

A3. The building shall be constructed so that in the event of an accident the building will not suffer collapse to an extent disproportionate to the cause.

The Building Regulations Approved Document A – Structure 2010 edition, classifies the building as a Class 2B building and gives the following guidance for compliance with the Building Regulations.

For Class 2B buildings – Provide effective horizontal ties, as described in the Codes and Standards listed under paragraph 5.2 for framed and load-bearing wall construction (the latter being defined in paragraph 5.3 below), together

with effective vertical ties, as defined in the Codes and Standards listed under paragraph 5.2, in all supporting columns and walls.

Site Geology

A Geotechnical Survey Report has been produced by Fastrack (Ref 20269 Dec 19). The contents of this can be summarised as follows.

The site is underlain by London Clay, with no superficial deposits. Made Ground was encountered across the site to a maximum depth of approximately 2.10m with Silty CLAY underlying the Made Ground to considerable depth.

The London Clay falls into soil class CV and CH of the British Soil Classification System. The results show the samples to be high-very high plasticity. The plastic indices were found to range from 32-54%, this indicates that the Clay is of generally intermediate to high susceptibility to shrinkage and swelling with changes in moisture content.

The design sulphate class for buried concrete for this site is DS-3, with an ACEC class of AC-3.

For the main building conventional strip foundations could be utilised but are likely to be economically unviable due to size, shoring and health & safety risks. Therefore, a piled foundation taken down further into the London Clay is proposed. This will also mitigate any risk of differential settlement between the basement and ground floor. The borehole data contained within the Fastrack report is sufficient for a piling contractor to carry out a pile design.

Excavations on this site are likely to be unaffected by water inflows, with the groundwater levels likely to be at a depth greater than 15.00m.

The material encountered on this site was found to be of a generally cohesive nature, which would indicate that sides of excavations are likely to be self-supporting, certainly in the short term. However, temporary support should be considered for all excavations where collapse is to be avoided, with heavy duty closed shoring in excavations below 1.20m where construction workers access is required.

CBR tests were carried out at three locations across the site at a depth of 0.45m. Two tests came out at less than 3% suggesting poor quality subgrade should be allowed for in designing the base to any trafficked areas.

Soakaway tests showed a slow rate of infiltration within the London Clay. Therefore, the site is not considered suitable for a soakaway system.

Superstructure Main Building

In order to access the benefits of offsite construction in terms of cost, programme and quality, the brief is to design for volumetric modular construction. This allows for maximum offsite construction. In order to access the benefits of economy of scale, this project is one of two seeking to use the same offsite modular manufacturer.

To this end, the client and design team have been in contact with an offsite modular manufacturer to ensure that the design is appropriate for volumetric modular construction.

Any flammable materials for external walls are precluded because of current concerns from the client side over managing fire risks. Therefore, prefabricated timber or CLT based modules are not being considered. Steel is considered suitable as the main material in external walls.

Due to the number of stories the modular manufacturers have advised that hot rolled steel columns will be incorporated within the volumetric modules as the main load bearing elements. Between these steel columns there will be infill panels of light gauge steel studs and diagonal bracing to the main structure. We have assumed two internal columns along the party wall lines as this suits the locations of possible columns at ground floor level in the communal and office areas and allows column sizes to be minimised. It would be possible to use a single column in the centre of the party wall lines but beam sizes between columns would increase and column sizes and transfer structure might be required at first floor level to accommodate the communal and office area layouts.

The typical floor construction of the modules will be light gauge steel joists with boarding spanning between party walls at approximately 3.5m centres. Each volumetric module would also have a similar construction for its ceiling thereby providing a double layer of structure between modules.

The flat roof occurs at several levels as the building steps along its length. This would be of the same construction as the floors and this would need to allow for plant loading and maintenance access. Green roof and solar PV panel loads and fixings would also need to be allowed for in the ceiling structure of the top modules. The top modules would need to allow for windpost extensions to provide stability for the parapets.

Cladding is brick at ground floor level and this will be supported directly off the foundations. From first floor level up the cladding will be a rainscreen cladding supported from the superstructure at each level.

Superstructure Stair/Lift Core and Deck

This structure is not enclosed and therefore unheated. Drainage of the access deck will also need to be considered.

The lift core consists of 200mm thick reinforced concrete walls. This structure provides the lateral stability for the whole access core. Due to the limited length of the connection of the core landing to the deck of the main structure it may not be feasible to use the lift core to provide stability to the main structure. There is a

possible alternative construction of the lift core using a braced steel frame instead of reinforced concrete construction. The frame would then require cladding so exposed reinforced concrete is considered simpler.

The stairs above ground level will be a lightweight steel stair with flat plate strings supporting steel plate treads and landings. The stair wraps around the concrete core and takes support from this. It would then cantilever out from this core to support landings and flights. This allows the exterior of the staircase structure to be limited to lightweight balustrading taking only horizontal loads.

The main landing and access deck consist of a 100mm thick RC slab on Comflor 51 metal decking. This is supported by steel beams. For the main landing these steel beams are supported by the concrete lift core. For the access deck they are supported by slender steel columns externally and they need to be supported back to the modular units internally. This connection will need to be designed to minimise thermal bridging using a thermal break. The modular manufacturers have expressed a preference for an independent internal line of vertical deck support against the façade. This would affect the MVHR cupboards and external benches but may be possible.

There will be a significant amount of balustrading surrounding the landings and access deck and the details of this will need to be carefully coordinated with the architecture as this will all be visible. It is envisaged that the main balustrade rail spans horizontally between columns with infill panels spanning vertically from the deck up to the balustrade rail. Much of the steelwork in this area will be exposed and so corrosion protection and maintenance need to be carefully considered in the detailing.

Substructure Main Building

The foundations of the existing building are likely to require removal or at least cutting down to below the level of any new structure as enabling works. Trial pits to a max depth of 1.7m were unable to encounter the base of these foundations. The foundations are unlikely to be much deeper than the level of the insitu ground at approx. 2m but this demolition of foundations is a project cost risk as the quantity and depth of existing foundations is unknown.

The party wall loads have been assessed to be of the order of 140kN/m. This would require significant width strip footings of the order of 1.4m. The presence of trees means that these footings may need to bear at depths of 1.5-2.5m to avoid problems with seasonal movements. Therefore, strip or pad footings are unlikely to be economical and piles will be required. We have assumed CFA piles will be used of 300 to 450mm diameter with depths of 10-15m. The majority of load will be on the party wall and gable wall lines so the piles would be placed under reinforced concrete capping beams on these lines.

For modular construction, the ground floor modules will have their own floor structure so a ground floor slab is not generally required, and the modular units will

sit on a grillage of ground beams which double as pile caps. However, it is assumed that the basement will require a 200mm thick concrete slab over to provide more robust separation of the basement plant area from the ground floor modular units as well as propping the head of the basement walls.

The access deck external columns land on individual pile caps.

The basement is formed with a contiguous pile wall to minimise excavation required outside the basement zone for access and working space. Once the piles are installed and the capping beam cast, excavation can commence with temporary propping of the capping beam. Piles would also be required for internal columns in the basement which would terminate at basement level. A basement slab is designed as suspended and will have a collapsible material under it to allow for heave. This would span from external walls to internal pile caps (see basement slab calculation in appendices). Internally the contiguous piles are faced with sprayed concrete and the basement can be waterproofed with a drained cavity and a block finish. For the lift to access the basement level a lift pit approx. 1100mm deep is required. This will also require piles for support.

The slab over the basement requires downstand beams to transfer loads from superstructure columns to the basement perimeter capping beam and internal RC columns.

Lateral Stability to Main Building

In the East–West direction which is from the front to back of the building, the party and gable walls can be used to provide lateral stability. The party walls consist of double layers of structure with a wall from each modular unit adjacent to the next unit. These walls consist of hot rolled steel hollow section columns with light gauge steel infill. The infill between hot rolled steel columns will also need to accommodate bracing. This could possibly be in the form of flat plate cross bracing with only braces in tension actively contributing stiffness to the system. As there are double skin party walls at 3.5m centres, it may not be necessary to brace every bay in every wall.

Consideration also needs to be given to openings to the party wall lines. At ground floor there are two grid lines which require mostly open walls for the communal areas and therefore these can not contain bracing. The client has also expressed a desire to allow for potential future openings to allow for units to be combined. Therefore, it would be an advantage to have no more than 50% of the length of any party wall containing bracing. The location of this will need to be agreed at detailed design stage.

In the North-South direction which is along the length of the building, there is a long rear wall and front wall. The rear wall consists mostly of openings with windows, doors and side panes to each unit leaving little wall to provide any lateral bracing. Therefore, bracing will be assumed to be entirely in the front elevation wall with resulting torsion due to the off centre lateral stiffness being taken out in the East-West wall bracing. Even the front elevation has significant window openings so

diagonal bracing will not be possible. Even K bracing would interrupt openings as currently proposed so some form of offset K bracing, or moment stability frames will be required in this elevation.

The floor plates will need to act as diaphragms. This means that there will need to be continuity of the diaphragm provided by the connection between the modules at each floor level. The walkway access deck relies on the main structure for its stability and so will require some form of connection back to the main structure to take lateral loads back whether or not an additional line of vertical support for the deck is provided against the façade.

Communal Building and Wheelchair Accessible Units

These buildings are isolated buildings in the landscape, partially sunk into the surrounding ground to be at the same level as the main building ground floor. They will therefore need to be surrounded on three sides by retaining walls.

As they are already partially sunk into the ground and loads are minimal from a single lightweight story, a ground bearing concrete raft is being considered as a foundation solution. The base slab and retaining walls consist of 250mm thick reinforced concrete with the base slab acting as a raft slab. The base slab will be designed to accommodate heave of the clay beneath. The Ground Movement Assessment has provided figures for expected heave which are within acceptable limits considering 50% of the heave will occur immediately in the excavation and the remaining heave will occur over a longer period. See appendices for typical retaining wall calculations for these buildings. The Arborocultural report identifies trees near or within the footprint of the building some of which are removed. Hence a calculation has been carried out to show that the proposed foundations are deeper than the zone of influence of those trees.

The remaining superstructure for this building could also be in light gauge metal framing either installed as volumetric modules, panels or stick built on site as there is a limited amount of wall. The roofs will again need to accommodate green roof loadings and maintenance access.

External Works

There are some retaining walls to deal with excavated areas of the garden. These can be formed in 200mm thick reinforced concrete walls with toes. Alternatives would be gabion walls or some form of planted modular precast concrete wall. These would have the advantage of being more permeable for rainwater drainage.

Any bases to paved and trafficked areas need to be carefully dealt with, especially in root protection zones. For the front paved area most of this area is covered by root protection zones so any trafficked areas here may need special treatment which is likely to raise levels slightly to accommodate load spreading bases. The poor quality subbase also needs to be taken into account. For the rear courtyard there is already a significant amount of dig so any base required can be accommodated. It would be possible to use the area under this courtyard for detention of rainwater. This could be done with a liner and a 300mm layer of type 3 open graded stone under a permeable paving. Alternatively, discreet rainwater tanks could be installed under the courtyard taking into account the RPAs of nearby trees.

Drainage

This section should be read in conjunction with the separate "Flood Risk Assessment and Surface Water Drainage Strategy" by Ambiental.

There is an existing manhole approximately 3m deep in the front of the site which takes combined foul and rainwater drainage to the public sewer in Camden Road. Most of the proposed foul and rainwater can drain to this with new drain runs. Foul and rainwater would be kept separate up to this manhole where they will combine. It is anticipated that all new foul and rainwater will run in 100 or 150 diameter plastic drain pipes in appropriate bedding.

Ambiental have recommended that a non-return valve be fitted to the outlet to the main drain to prevent flooding from backflow from the surcharged sewer main.

The condition of the existing drainage from this manhole to the main sewer will need to be assessed by CCTV survey. It will be difficult to do any works involving trenching along this line because of the damage this would do to protected tree roots from the mature trees on the front.

The proposed basement would need to have pumped drainage. It will need a cavity drain sump and potentially a sump for any plant drainage required. The drainage from the open staircase well to access the basement can possibly be combined with the cavity drainage.

There is a requirement not to increase peak rainwater runoff from the site. As the proposed impermeable area of the site is increased from the current, this will mean that some form of detention is likely to be required. This can be in the form of tanks or in the form of open graded stone or cellular crates under paved areas with a restricted outflow. Permeability tests carried out during the site investigation showed a slow rate of infiltration making the soil unsuitable for soakaways. This means that considerable detention capacity may be required in order to limit peak runoff without flooding the site. This is dealt with in detail in the Ambiental report.

APPENDIX – BASEMENT PRELIMINARY STRUCTURAL CALCULATIONS

The following calculations are for the permanent works to the basement structures proposed.

1 – Foundations near trees

The main hostel building basement is not affected by trees as it has deep piled foundations bearing below the zone of influence of any tree roots.

The other 2 buildings are potentially affected by the trees, both those removed and those remaining in place. Trees have been referenced to the Arborocultural report by Sharon Hosegood Associates. Generally this shows that the depths of foundations are deeper than the zone of influence of tree roots. Where the depth of influence exceeds the depth of foundation slightly, additional excavation and fill with hardcore would be required.

2 – Reinforced Concrete Retaining walls

The main hostel building basement walls consist of contiguous pile walls which will be designed by the piling designer for both bearing and retaining using the soil parameters provided in the Site Investigation report.

The design of the retaining wall for the other 2 buildings is included here. The minimum toe required to resist overturning is shown. However, the walls are considered propped at their toes because in the final state the rest of the building base slab will provide more than adequate resistance to sliding and in the temporary case the walls are propped as shown in the sequence drawings.

3 - Main hostel building basement slab

This is a suspended slab to allow for heave of the clay from unloading during excavation. Compressible Cellcore provides the void to allow for this heave. The slab still needs to be designed for both gravity permanent and variably loads and for potential hydrostatic pressure in the accidental case of external flooding. These loadcases have been allowed for in the design.

Tokla Todda	Project		Job no.			
		248-250 Camd		1858		
Rodrigues Associates	Calcs for				Start page no./Revision	
1 Amwell St		Community	building trees		1	l. 1
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date
FOUNDATIONS NEAR TREES	B of NHBC Par	rt 4: Foundatio	ns - Chapter 4.	2	Tedds calcula	tion version 2.0.02
Sito Dotails						
Site location		London				
Beduction donth due to elimete	veriationa Fig					
Reduction depth due to climate	variations - Fig.	$13 Z_c = 0.00 \text{ fr}$	1			
Soil Details						
Plasticity index from lab tests		I _p = 50 %				
Percentage of particles < 425 μ I	m	p ₄₂₅ = 100 S	%			
Modified plasticity index - cl. D5	i(b)	$I'_p = I_p \times p_{42}$	₅ / 100 % = 50 %	%		
Volume change potential - Table	e 1	High				
	- ·					
Details for Tree - 1 : 13 Pear-	removed		_			
Species of tree		Broad leaf	- Pear	<i></i>	.	
The tree is to be removed from	the site, and H _{ac}	_{ct} is greater than	or equal to 50%	% of H_m , with no	o further plantir	ng allowed.
Water demand of tree - Table 1	2	Moderate				
Mature height of tree - Table 12		H _{m1} = 12.00) m			
Influence radius - Table 2		r _{inf1} = 0.75 :	≺ H _{m1} = 9.00 m			
Measured height of tree		H _{act1} = 12.0	0 m			
Distance from centre of tree to f	ace of foundatio	ons D ₁ = 1.00 n	า			
Effective height of tree - Fig. 1		H _{eff1} = 12.0	0 m			
с с	 4 0.00 m 					
	(Influence R	adius)				
H H H H H H H H H H H H H H H H H H H	224 m	Foundati	on Depth Profile 1.00 m ↑ (Min. Fnd. Dep	th)		
(Four	→ _E ndati⊛ Location)					
Minimum foundation depth - Ta	ble 5	Z _{min} = 1.00	m			
Look up value for foundation de	pth - Chart 1 S	oils with HIGH \	olume change	potential		
		$Z_{\text{LookUp1}} = 2$. 24 m			
Required foundation depth		$Z_{req1} = Z_{Look}$	_{Up1} - Z _c = 2.24 n	n		

Minimum foundation depth - Table 5 $Z_{min} = 1.00$ mLook up value for foundation depth - Chart 1 Soils with HIGH volume change potential

Required foundation depth

 $Z_{LookUp2}$ = **1.63** m Z_{req2} = $Z_{LookUp2}$ - Z_c = **1.63** m

Required foundation depth

Z_{LookUp3} = **2.09** m Z_{reg3} = Z_{LookUp3} - Z_c = **2.09** m

Look up value for foundation depth - Chart 1 Soils with HIGH volume change potential

Required foundation depth

Z_{LookUp4} = **2.24** m $Z_{req4} = Z_{LookUp4} - Z_{c} = 2.24 m$

Tekla Tedds	Project 248-250 Camden Road Hostel				Job no. 1858	
Rodrigues Associates 1 Amwell St London EC1R 1UL	Calcs for Community building trees			Start page no./Revision 1. 5		
	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Summary Table

Tree	Description	Name	Distance (m)	Measured Height (m)	Effective Height (m)	Tree to be removed	Required Foundation Depth (m)
1	T3 Pear- removed	Pear	1.0	12.0	12.0	Yes	2.24
2	T5 Cherry	Wild Cherry	7.0	18.0	17.0	No	1.63
3	T2 Cherry - removed	Wild Cherry	1.0	6.0	6.0	Yes	2.09
4	T8 Rowan	Whitebeam	1.0	8.0	12.0	Yes	2.24

Tekla Tedds Rodrigues Associates 1 Amwell St London EC1R 1UL	Project 248-250 Camden Road Hostel				Job no. 1858	
	Calcs for Community building retaining wall			Start page no./Revision 2. 1		
	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.11

Analysis summary

Description	Unit	Capacity	Applied	FoS	Result
Bearing pressure	kN/m ²	150	107.5	1.395	PASS

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Stem p0 rear face - Flexural reinforcement	mm²/m	565.5	361.3	0.64	PASS
Stem p0 - Shear resistance	kN/m	105.2	40.0	0.38	PASS
Base top face - Flexural reinforcement	mm²/m	392.7	293.7	0.75	PASS
Base bottom face - Flexural reinforcement	mm²/m	1005.3	547.2	0.54	PASS
Base - Shear resistance	kN/m	105.2	29.8	0.28	PASS
Transverse stem reinforcement	mm²/m	392.7	250.0	0.64	PASS
Transverse base reinforcement	mm²/m	392.7	201.1	0.51	PASS

Retaining wall details

Stem type	Cantilever
Stem height	h _{stem} = 2050 mm
Stem thickness	t _{stem} = 250 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length	I _{toe} = 1600 mm
Base thickness	t _{base} = 250 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 2050 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 1500 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Firm clay
Moist density	γ _{mr} = 18 kN/m ³
Saturated density	γ _{sr} = 18 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 20 deg
Characteristic wall friction angle	δ _{r.k} = 10 deg
Base soil properties	
Soil type	Firm clay
Soil density	γ _b = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 20 deg
Characteristic wall friction angle	δ _{b.k} = 10 deg
Characteristic base friction angle	δ _{bb.k} = 12 deg
Presumed bearing capacity	P _{bearing} = 150 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 2 kN/m ²
Variable surcharge load	Surcharge _Q = 5 kN/m ²

Tekla. Tedds	Project 248-250 Camden Road Hostel				Job no. 1858		
Rodrigues Associates 1 Amwell St London	Calcs for	Community build	ling retaining w	all	Start page no./Re 2.	Start page no./Revision 2. 3	
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date	
Total		F _{total_v} = F _{ste}	em + F _{base} + F _{wate}	_{⊮_v} = 24.4 kN/m			
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A *$	$\cos(\delta_{r.k}) * (Sur$	charge _G + Surcha	arge _Q) * h _{eff} = 7	7 .1 kN/m	
Saturated retained soil		F _{sat_h} = K _A *	$\cos(\delta_{r.k}) * (\gamma_{sr} - $	γ_w) * (h _{sat} + h _{base})	/² / 2 = 5.5 kN/r	n	
Water		$F_{water_h} = \gamma_w$	* (h_{water} + d_{cover}	+ h _{base}) ² / 2 = 15	kN/m		
Moist retained soil		F _{moist_h} = K _≜	、* cos(δ _{r.k}) * γ _{mr}	* ((h _{eff} - h _{sat} - h _{bas}	_{se})² / 2 + (h _{eff} - I	n _{sat} - h _{base}) *	
		(h _{sat} + h _{base}))) = 8.8 kN/m				
Base soil	$F_{pass_h} = -K_P * \cos(\delta_{b.k}) * \gamma_b * (d_{cover} + h_{base})^2 / 2 = -1.5 \text{ kN/m}$				I		
Total		F _{total_h} = F _{su}	_{r_h} + F _{sat_h} + F _{wa}	_{ter_h} + F _{moist_h} + F _p	_{pass_h} = 35 kN/r	n	
Moments on wall							
Wall stem		M _{stem} = F _{ster}	m * X _{stem} = 22.1 k	۸m/m			
Wall base		$M_{\text{base}} = F_{\text{bas}}$	_{ie} * x _{base} = 10.7 k	<nm m<="" td=""><td></td><td></td></nm>			
Surcharge load		$M_{sur} = -F_{sur}$	_h * x _{sur_h} = -8.1	≺Nm/m			
Saturated retained soil		$M_{sat} = -F_{sat}$	h * x _{sat_h} = -3.2 k	Nm/m،			
Water		$M_{water} = -F_{water}$	ater_h * Xwater_h = -	• 8.8 kNm/m			
Moist retained soil		$M_{moist} = -F_{mos}$	$oist_h * \mathbf{x}_{moist_h} = -$	9 kNm/m			
Total		M _{total} = M _{ster}	m + M _{base} + M _{sur}	+ M _{sat} + M _{water} + I	M _{moist} = 3.7 kN	m/m	
Check bearing pressure							
Propping force		F _{prop_base} = I	F _{total_h} = 35 kN/n	n			
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}}$ /	F _{total_v} = 151 mn	n			
Eccentricity of reaction		$e = \overline{x} - I_{base}$	₀ / 2 = -774 mm				
Loaded length of base		$I_{load} = 3 * x$. = 454 mm				
Bearing pressure at toe		$q_{toe} = 2 * F_{to}$	$_{\text{otal}_v} / I_{\text{load}} = 107$.5 kN/m²			
Bearing pressure at heel		q _{heel} = 0 kN	/m²				
Factor of safety		$FoS_{bp} = P_{be}$	_{earing} / max(q _{toe} , o	վ _{heel}) = 1.395			
	PASS - A	llowable bearin	g pressure exc	eeds maximum:	applied bear	ing pressure	

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.11

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C30/37
Characteristic compressive cylinder strength	f _{ck} = 30 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 37 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32837 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 17.0 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Ultimate strain - Table 3.1	ε _{cu2} = 0.0035
Shortening strain - Table 3.1	ε _{cu3} = 0.0035
Effective compression zone height factor	$\lambda = 0.80$

Tekla Tedds	Project	248-250 Camo	Job no. 1858			
Rodrigues Associates 1 Amwell St	Calcs for	Community buil	ding retaining v	wall	Start page no./I	Revision 2. 4
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date
Effective strength factor		η = 1.00				
Bending coefficient k ₁		K ₁ = 0.40				
Bending coefficient k ₂		K ₂ = 1.00 *	(0.6 + 0.0014/	έ _{cu2}) = 1.00		
Bending coefficient k ₃		K3 =0.40				
Bending coefficient k4		K ₄ = 1.00 *	(0.6 + 0.0014/	έ _{εu2}) =1.00		
Reinforcement details						
Characteristic yield strength of	reinforcement	f _{vk} = 500 N	/mm²			
Modulus of elasticity of reinforce	ement	Es = 20000)0 N/mm²			
Partial factor for reinforcing stee	el - Table 2.1N	γs = 1.15				
Design yield strength of reinford	cement	f _{yd} = f _{yk} / γs	= 435 N/mm ²			
Cover to reinforcement						
Front face of stem		C _{ef} = 40 mr	n			
Rear face of stem		c _{sr} = 50 mr	n			
Top face of base		c _{bt} = 50 mr	n			
Bottom face of base		c _{bb} = 75 m	m			
Loading details - Combination No.1 - kN/m	Shear force -	Combination No.1 - kN/m		Bending moment - Com	bination No.1 - kNm/m	
	3.39					
	5.88					
	5.88					
	Stem					
4	4	29.8				
	5 3 388 7			-40		29
122 Toe						37.7
-						01.1

29.8 00 **\$38**7

-40

Tekla Tedds Rodrigues Associates 1 Amwell St London EC1R 1UL	Project 248-250 Camden Road Hostel				Job no. 1858	
	Calcs for	Start page no./Revision 2. 5				
	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Check stem design at base of stem	
Depth of section	h = 250 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 29 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - ϕ_{sr} / 2 = 194 mm
	$K = M / (d^2 \times f_{ck}) = 0.026$
	$K' = (2 * \eta * \alpha_{cc} / \gamma_{C})^{*} (1 - \lambda * (\delta - K_{1}) / (2 * K_{2}))^{*} (\lambda * (\delta - K_{1}) / (2 * K_{2}))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 * (1 - 2 * K / (η * α _{cc} / γc)) ^{0.5} , 0.95) * d = 184 mm
Depth of neutral axis	x = 2.5 × (d – z) = 24 mm
Area of tension reinforcement required	$A_{sr.req} = M / (f_{yd} \times z) = 361 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sr.prov} = \pi * \phi_{sr}^2 / (4 * s_{sr}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	A _{sr.min} = max(0.26 * f _{ctm} / f _{yk} , 0.0013) * d = 292 mm²/m
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sr.max} = 0.04 * h = 10000 mm ² /m
	max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.639
PASS - Area of re	einforcement provided is greater than area of reinforcement required
	Library item: Rectangular single output
Deflection control - Section 7.4	

Reference reinforcement ratio	ρ ₀ = √(f _{ck} / 1 N/mm²) / 1000 = 0.005
Required tension reinforcement ratio	ρ = A _{sr.req} / d = 0.002
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 0.4
Reinforcement factor - exp.7.17	Ks = min(500 N/mm ² / (fyk * Asr.req / Asr.prov), 1.5) = 1.5
Limiting span to depth ratio - exp.7.16.a	min(Ks * Kb * [11 + 1.5 * $\sqrt{(f_{ck} / 1 N/mm^2)}$ * ρ_0 / ρ + 3.2 * $\sqrt{(f_{ck} / 1 N/mm^2)}$
	* (ρ ₀ / ρ - 1) ^{3/2}], 40 * K _b) = 16
Actual span to depth ratio	h _{stem} / d = 10.6
	PASS - Span to depth ratio is less than deflection control limit

		1									
	Tekla Tedds	Project Job no.					858				
	Rodrigues Associates		240-250 Came	1000							
	1 Amwell St	Calcs for	Community build	dina retainina v	vall	Start page no./Revision					
	London										
	EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date				
L											
	Crack control - Section 7.3										
	Limiting crack width		w _{max} = 0.3	mm							
	Variable load factor - EN1990 –	Table A1.1	ψ2 = 0.6								
	Serviceability bending moment		M _{sls} = 19.1	M _{sts} = 19.1 kNm/m							
	Tensile stress in reinforcement		$\sigma_{\rm s}$ = M _{sls} / ($\sigma_{s} = M_{sis} / (A_{sr, prov} * z) = 183.1 \text{ N/mm}^{2}$							
	Load duration		Long term	Long term							
	Load duration factor		k _t = 0.4								
	Effective area of concrete in ten	ision	A _{c.eff} = min((2.5 * (h - d), (h	n - x) / 3, h / 2)						
			A _{c.eff} = 752	50 mm²/m							
	Mean value of concrete tensile	strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²							
	Reinforcement ratio		$\rho_{p.eff} = A_{sr.pr}$	ov / A _{c.eff} = 0.00)8						
	Modular ratio		α_{e} = E _s / E _c	m = 6.091							
	Bond property coefficient		k ₁ = 0.8								
	Strain distribution coefficient		k ₂ = 0.5	k ₂ = 0.5							
			k ₃ = 3.4	k ₃ = 3.4							
			k ₄ = 0.425								
	Maximum crack spacing - exp.7	.11	$s_{r.max} = k_3 * c_{sr} + k_1 * k_2 * k_4 * \phi_{sr} / \rho_{p.eff} = 441 \text{ mm}$								
	Maximum crack width - exp.7.8		w _k = s _{r.max} >	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$							
		w _k = 0.243	w _k = 0.243 mm								
		$w_k / w_{max} =$	w _k / w _{max} = 0.808								
			PASS	- Maximum c	rack width is les	ss than limitin	g crack width				
	Rectangular section in shear	- Section 6.2									
	Design shear force		V = 40 kN/	m							
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120								
			k = min(1 +	- √(200 mm / d), 2) = 2.000						
	Longitudinal reinforcement ratio)	ρι = min(A _{si}	ρ _l = min(A _{sr.prov} / d, 0.02) = 0.003							
			v_{min} = 0.035 N ^{1/2} /mm * k ^{3/2} * f _{ck} ^{0.5} = 0.542 N/mm ²								
	Design shear resistance - exp.6	5.2a & 6.2b	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{\text{ck}})^{1/3}$, v_{min}) × d								
			V _{Rd.c} = 105	V _{Rd.c} = 105.2 kN/m							
			$V / V_{Rd.c} = 0$	V / V _{Rd.c} = 0.380							
		PASS - Design shear resistance exceeds design shear force									
	Horizontal reinforcement para	allel to face of s	tem - Section 9	9.6							
	Minimum area of reinforcement	- cl.9.6.3(1)	A _{sx.req} = ma	x(0.25 * A _{sr.prov}	∕, 0.001 * t _{stem}) = 2	250 mm²/m					
	Maximum spacing of reinforcem	nent – cl.9.6.3(2)	s _{sx_max} = 40	0 mm							
	Transverse reinforcement provi	ded	10 dia.bars	s @ 200 c/c	_						
	Area of transverse reinforcement	nt provided	$A_{sx.prov} = \pi$	$(4 * s_{sx})^{*} + (4 * s_{sx})^{*}$	= 393 mm ² /m						
		PASS - Area of	reinforcement	t provided is g	greater than area	a of reinforce	ment required				
	Check base design at toe										
	Depth of section		h = 250 mr	n							
	Rectangular section in flexure	e - Section 6.1									
	Design bending moment combined	M = 37.7 kNm/m									
	Depth to tension reinforcement		$d = h - c_{bb} - \phi_{bb} / 2 = 167 mm$								
			K = M / (d ²	× f _{ck}) = 0.045							
			K' = (2 * η	K' = $(2 * η * α_{cc}/\gamma_c)*(1 - λ * (δ - K_1)/(2 * K_2))*(λ * (δ - K_1)/(2 * K_2))$							
		K' = 0.207									
				K' > K -	No compression	n reinforceme	ent is required				
- 1											

Tekla Tedds	Project	Job no.							
		248-250 Camo	1858						
1 Amwell St	Calcs for Community building retaining wall				Start page no./Revision				
London									
EC1R 1UL	Calcs by	09/11/2020	Checked by	Checked date	Approved by	Approved date			
					·				
Lever arm		z = min(0.5)	6 + 0.5 * (1 - 2 *	Κ / (η * α _{cc} / γc)) ^υ	[.] °, 0.95) * d = ′	159 mm			
Depth of neutral axis		$x = 2.5 \times (d)$	l – z) = 21 mm	24					
Area of tension reinforcement re	equired	$A_{bb,req} = M$	(f _{yd} × z) = 547 i	mm²/m					
l ension reinforcement provided		16 dia.bars	@ 200 c/c	4005					
Area of tension reinforcement p		$A_{bb,prov} = \pi$	$A_{bb,prov} = \pi * \phi_{bb}^2 / (4 * s_{bb}) = 1005 \text{ mm}^2/\text{m}$						
Minimum area of reinforcement	- exp.9.1N	$A_{bb.min} = ma$	aX(U.26 ^ Totm / Tyk	k, 0.0013) ^ d = 2 mm²/m	52 mm²/m				
Maximum area of reinforcement	- 01.9.2.1.1(3)	$A_{bb,max} = 0.0$	(04 II - 10000 II)	- 0 544					
	PASS - Area o	f reinforcement	provided is a	e = 0.544 reater than area	of reinforcen	nent required			
	Acc Arcu c		provided to gr	Lik	orary item: Rectang	gular single output			
Crack control - Section 7.3									
Limiting crack width		w _{max} = 0.3 I	mm						
Variable load factor - EN1990 –	Table A1.1	ψ2 = 0.6							
Serviceability bending moment		M _{sls} = 27.3	kNm/m						
Tensile stress in reinforcement		$\sigma_{\rm s}$ = M _{sls} / (A _{bb.prov} * z) = 17	1.3 N/mm ²					
Load duration		Long term	Long term						
Load duration factor		k _t = 0.4	$k_t = 0.4$						
Effective area of concrete in tension		A _{c.eff} = min($A_{c.eff} = min(2.5^{\circ}(h - d), (h - x) / 3, h / 2)$						
		$A_{c.eff} = 7637$	75 mm²/m						
Mean value of concrete tensile strength		$T_{ct.eff} = T_{ctm} =$	2.9 N/mm ²	,					
		$\rho_{p.eff} = A_{bb.p}$	$rov / A_{c.eff} = 0.01$	5					
		$\alpha_e = E_s / E_c$	m = 6.091						
Strain distribution coefficient		$k_1 = 0.8$							
Strain distribution coemcient		k ₃ = 3.4							
		k ₄ = 0.425							
Maximum crack spacing - exp.7	.11	s _{r.max} = k ₃ *	$c_{bb} + k_1 * k_2 * k_4$	* φ _{bb} / ρ _{p.eff} = 46 2	2 mm				
Maximum crack width - exp.7.8		W _k = S _{r.max} >	$\propto \max(\sigma_s - k_t \times f)$	$f_{ct.eff} / \rho_{p.eff} \times (1 +$	$\alpha_{e} \times \rho_{p.eff}$), 0.6	$5 \times \sigma_s) / E_s$			
		w _k = 0.237	mm		1. 7.	,			
		$w_k / w_{max} =$	0.791						
		PASS	- Maximum cra	ack width is less	s than limiting	g crack width			
Rectangular section in shear	Section 6.2								
Design shear force		V = 29.8 kM	N/m						
		$C_{Rd,c} = 0.18$	3 / γc = 0.120						
		k = min(1 +	· √(200 mm / d),	2) = 2.000					
Longitudinal reinforcement ratio		ρ _l = min(A _{bb.prov} / d, 0.02) = 0.006							
		v _{min} = 0.035	5 N ^{1/2} /mm * k ^{3/2} *	* f _{ck} ^{0.5} = 0.542 N/	mm ²				
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (100))$	$0 \text{ N}^2/\text{mm}^4 \times \rho_1 \times f_0$	$(k)^{1/3}, V_{min}) \times d$				
		V _{Rd.c} = 105.2 kN/m							
	V / V _{Rd.c} = 0.284								
		PAS	S - Design she	ar resistance ex	ceeds desig	n shear force			
Check base design at toe									
Depth of section		h = 250 mr	n						
Rectangular section in flexure	- Section 6.1								
Design bending moment combin	nation 2	M = 8 kNm	/m						
Depth to tension reinforcement		$d = h - c_{bt} - c_$	φ _{bt} / 2 = 195 mr	n					

-					1				
Tekla Tedds	Project 248-250 Camden Road Hostel				Job no. 1858				
Rodrigues Associates	Calcs for		Start page no /Revision						
1 Amwell St London	Community building retaining wall			2.8					
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date			
		$K = M / (d^2)$	× f) = 0 007		•				
		K = M/(d)	$(1 - 1) \times (1 -$	* (\$ K.)//2 * K.));	*() * (S K.)/()	* (/_))			
		K - (2 1)	α/γc) (1 - λ	$(0 - K_1)/(2 K_2))$	$(\lambda (0 - K_1))/(2$	N2))			
		K - 0.207	K'>K-	No comprossion	, roinforcomo	nt is roquirod			
Lever arm		z = min(0.5	5 + 0.5 * (1 - 2 [*]	* Κ / (η * α _{cc} / γc))	^{0.5} , 0.95) * d =	185 mm			
Depth of neutral axis		$x = 2.5 \times (c$	l – z) = 24 mm						
Area of tension reinforcement re	auired	$A_{bt reg} = M/$	(f _{vd} × z) = 99 n	nm²/m					
Tension reinforcement provided	4	10 dia.bars	@ 200 c/c						
Area of tension reinforcement p	rovided	$A_{bt prov} = \pi^{*}$	$\frac{1}{6} \frac{1}{2} \frac{1}{4} \frac{1}{5} \frac{1}$	= 393 mm²/m					
Minimum area of reinforcement	- exp 9 1N	$A_{bt,min} = ma$	$(0.26 * f_{otm} / f_{v})$	∞ 0 0013) * d = 2	94 mm ² /m				
Maximum area of reinforcement	- cl 9 2 1 1(3)	$A_{bt,max} = 0$ (0.4 * h = 10000	mm ² /m					
	01012111(0)	max(Abt reg.	Abt min) / Abt prov	= 0.748					
	PASS - Area of	reinforcement	t provided is a	ireater than area	of reinforcen	nent reauired			
				L	ibrary item: Rectan	gular single output			
Crack control - Section 7.3									
Limiting crack width		w _{max} = 0.3	mm						
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6							
Serviceability bending moment		M _{sls} = 0 kN	m/m						
Tensile stress in reinforcement		$\sigma_{\rm s}$ = M _{sls} / (A _{bt.prov} * z) = 0	N/mm²					
Load duration		Long term							
Load duration factor		k _t = 0.4	k _t = 0.4						
Effective area of concrete in ten	sion	A _{c.eff} = min	A _{c.eff} = min(2.5 * (h - d), (h - x) / 3, h / 2)						
		A _{c.eff} = 752	08 mm²/m						
Mean value of concrete tensile s	strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$							
Reinforcement ratio		$\rho_{p.eff} = A_{bt,prov} / A_{c.eff} = 0.005$							
Modular ratio		$\alpha_{\rm e} = E_{\rm s} / E_{\rm cm} = 6.091$							
Bond property coefficient		k ₁ = 0.8							
Strain distribution coefficient		k ₂ = 0.5							
		k ₃ = 3.4							
		k ₄ = 0.425							
Maximum crack spacing - exp.7	.11	s r.max = k ₃ *	$c_{bt} + k_1 * k_2 * k_2$	4 * φ _{bt} / ρ _{p.eff} = 496	6 mm				
Maximum crack width - exp.7.8		$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$							
		w _k = 0 mm							
		$w_k / w_{max} =$	0						
		PASS	- Maximum ci	rack width is les	s than limiting	g crack width			
Secondary transverse reinford	ement to base	- Section 9.3							
Minimum area of reinforcement	– cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	2 * A _{bb.prov} = 20 1	l mm²/m					
Maximum spacing of reinforcem	ent – cl.9.3.1.1(3	(3) $s_{bx_{max}} = 450 \text{ mm}$							
Iransverse reinforcement provid	led	10 dia.bars @ 200 c/c							
Area of transverse reinforcemen	t provided	$A_{bx,prov} = \pi * \phi_{bx^2} / (4 * s_{bx}) = 393 \text{ mm}^2/\text{m}$							
	PASS - Area of	reinforcement	t provided is g	reater than area	of reinforcen	nent required			

Tekla Tedds Rodrigues Associates 1 Amwell St London EC1R 1UL	Project 248-250 Camden Road Hostel				Job no. 1858	
	Calcs for	Start page no./Revision 2. 9				
	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Reinforcement details

Tekla Tedds	Project	040.050.0	D 111 11		Job no.	
	248-250 Camden Road Hostel				1858	
Rodrigues Associates	Calcs for				Start page no./Re	vision
1 Amwell St London	Hostel bsmt slab (2 span beam)				3. 2	
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Member Loads				
Member	Load case	Load Type	Orientation	Description
Beam	Permanent	UDL	GlobalZ	2.5 kN/m
Beam	Imposed	UDL	GlobalZ	5 kN/m
Beam	Hydro	UDL	GlobalZ	-28 kN/m

Results

Forces

Concrete details - Table 3.1. Strength and deformation characteristics for concrete

Concrete strength class	C30/37
Aggregate type	Quartzite
Aggregate adjustment factor - cl.3.1.3(2)	AAF = 1.0
Characteristic compressive cylinder strength	f _{ck} = 30 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	f _{ctm} = 0.3 N/mm ² * (f _{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² *(f _{cm} / 10 N/mm ²) ^{0.3} * AAF = 32837 N/mm ²
Ultimate strain - Table 3.1	ε _{cu2} = 0.0035
Shortening strain - Table 3.1	ε _{cu3} = 0.0035
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00
Coefficient k ₁	k ₁ = 0.40
Coefficient k ₂	k ₂ = 1.0 * (0.6 + 0.0014 / ε _{cu2}) = 1.00
Coefficient k ₃	k ₃ = 0.40
Coefficient k ₄	$k_4 = 1.0 * (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Partial factor for concrete -Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_C = 17.0 \text{ N/mm}^2$

Tekla Tedds	Project 248-250 Camden Road Hostel				Job no. 1858					
1 Amwell St London	Calcs for	Hostel bsmt sla	b (2 span bear	m)	Start page no./R 3	Start page no./Revision 3. 3				
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date				
Compressive strength coefficien Design compressive concrete st Maximum aggregate size	Compressive strength coefficient - cl.3.1.6(1) Design compressive concrete strength - exp.3.15 Maximum aggregate size				$\alpha_{ccw} = 1.00$ $f_{cwd} = \alpha_{ccw} * f_{ck} / \gamma_{C} = 20.0 \text{ N/mm}^{2}$ $h_{agg} = 20 \text{ mm}$					
Density of reinforced concrete Monolithic simple support mome	ent factor	ρ = 2500 kg β1 = 0.25	g/m³							
Reinforcement details Characteristic yield strength of r Partial factor for reinforcing stee Design yield strength of reinforc	Reinforcement details Characteristic yield strength of reinforcement Partial factor for reinforcing steel - Table 2.1N Design yield strength of reinforcement			$f_{yk} = 500 \text{ N/mm}^2$ $\gamma_S = 1.15$ $f_{vd} = f_{vk} / \gamma_S = 435 \text{ N/mm}^2$						
Nominal cover to reinforceme Nominal cover to top reinforcem Nominal cover to bottom reinforcer Nominal cover to side reinforcer	Nominal cover to reinforcement Nominal cover to top reinforcement Nominal cover to bottom reinforcement Nominal cover to side reinforcement			c _{nom_t} = 35 mm c _{nom_b} = 35 mm c _{nom_s} = 35 mm						
Fire resistance Standard fire resistance period Number of sides exposed to fire Minimum width of beam - EN199	R = 60 min 3 5 b _{min} = 120 r	R = 60 min 3 b _{min} = 120 mm								
Beam - Span 1										
Rectangular section details Section width Section depth		b = 1000 m h = 300 mn	m 1							
			PASS - M	inimum dimens	ions for fire re	sistance met				

Tekla Tedds	Project Job no. 248-250 Camden Road Hostel 1858					858
Rodrigues Associates	Calcs for				Start page no./	Revision
1 Amwell St	н	Hostel bsmt slab (2 span beam)				3. 4
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date
A - A	B - B		C - C			
r • • •		• •		• • •		
5×16ф		5×16¢		5×16ф		
⊳A		⊳B		⊳c		
	X		,			
	`			/		
		B		⊳ C		
$5 \times 16 \phi$		5×16φ		$5 \times 16\phi$		
Zone 1 (0 mm - 825 mm) Posit	tive moment - se	ction 6.1				
Design bending moment		M = max(β	3 ₁ * abs(M _{m1_s1_n}	nin_red), abs(M _{m1_s1}	_z1_max_red)) = '	14.2 kNm
Effective depth of tension reinfo	rcement	d = 249 m	m			
Redistribution ratio		$\delta = \min(M)$	pos_red_z1 / Mpos_z1	, 1) = 1.000		
		K = M / (b	* d ² * f _{ck}) = 0.00	8		
		K' = (2 * η	* α _{cc} / γc) * (1 -	λ * (δ - k ₁) / (2 * k	2)) * (λ * (δ - k	(1) / (2 * k ₂)) =
		0.207	KINK	No comprossion	roinforcom	nt is required
Lever arm		z = min(0)	7 - 7 - 7 2 - 1) + 1] * 6 * 5	$2 \times K / (n \times a_{1}) / (n \times a_{2})$))0.51 0 05 * d	= 237 mm
Dopth of poutral axis		z = 1111(0)	-7)() = 31 mm))*], 0.95 u) – 237 mm
Area of tension reinforcement re	auired	A = M	・2) / ん = 31 mm	nm ²		
Tension reinforcement provided	equileu	As,req - IVI /	(lyd 2) - 130 l			
Area of tension reinforcement p	rovided	$\Delta_{a \ brow} = 10$	05 mm ²			
Minimum area of reinforcement	- exp.9.1N	$A_{s,min} = ma$	ax(0.26 * f _{ctm} / f _{vk}	. 0.0013) * b * d =	= 375 mm ²	
Maximum area of reinforcement	t - cl.9.2.1.1(3)	$A_{s,max} = 0.0$	04 * b * h = 120	00 mm ²		
	PASS - Area of r	einforcemen	t provided is g	reater than area	of reinforce	ment required
Crack control - Section 7.3						
Maximum crack width		w _k = 0.3 m	ım			
Design value modulus of elastic	ity reinf – 3.2.7(4)	E _s = 2000	00 N/mm²			
Mean value of concrete tensile	strength	$f_{ct,eff} = f_{ctm} = 2.9 \text{ N/mm}^2$				
Stress distribution coefficient		k _c = 0.4				
Non-uniform self-equilibrating s	tress coefficient	k = min(max(1 + (300 mm - min(h, b)) * 0.35 / 500 mm, 0.65), 1) = 1.00				
Actual tension bar spacing		$s_{bar} = (b - (2 * (c_{nom_s} + \phi_{m1_s1_z1_v}) + \phi_{m1_s1_z1_b_L1} * N_{m1_s1_z1_b_L1})) /$				
		(Nm1_s1_z1_l	+ φ m1_s1	_{_z1_b_L1} = 224.5 mr	n	
Maximum stress permitted - Tal	ole 7.3N	σs = 220 Ν	l/mm²			
Steel to concrete modulus of ela	ast. ratio	$\alpha_{cr} = E_s / E_s$	E _{cm} = 6.09			
Distance of the Elastic NA from	bottom of beam	y = (b * h ²	/ 2 + A _{s,prov} * (αα	_{cr} - 1) * (h - d)) / (b	o * h + A _{s,prov} *	(α _{cr} - 1)) =
		148 mm	- 4 40000 0			
Area or concrete in the tensile z		$A_{ct} = D^{\circ} y$	- 148339 mm ²	~ - 7 90 mm ²		
	Area of tonsion	Asc,min = Kc	K Ict,eff "Act /	os – 100 mm²	required for	crack control
Cuasi-permanent moment			$(\beta_1 * abs(M_{12}))$		Mm1 of -1	(ack control of action control of action control of a c
Permanent load ratio		$R_{pl} = M_{ab}$	M = 0.55	ו_22_neg_quasi <i>]</i> , מטא(ו	wm1_s1_z1_pos_q	
Service stress in reinforcement		$\sigma_{\rm sr} = f_{\rm vd} * A$,	e⊨ 33 N/mm²		
Maximum bar spacing - Tables	7.3N	$S_{bar.max} = 3$	00 mm			
	PASS	- Maximum I	bar spacing ex	ceeds actual bai	r spacing for	crack control

Tekla Tedds Rodrigues Associates 1 Amwell St London EC1R 1UL	Project	248-250 Camo	Job no. 1858			
	Calcs for Hostel bsmt slab (2 span beam)				Start page no./Revision 3. 5	
	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Zone 1 (0 mm - 825 mm) Negative moment - sec	ction 6.1
Design bending moment	$M = max(\beta_1 * abs(M_{m1_s1_max_red}), abs(M_{m1_s1_z1_min_red})) = 14.3 \text{ kNm}$
Effective depth of tension reinforcement	d = 249 mm
Redistribution ratio	$\delta = min(M_{neg_{red_{z1}}} / M_{neg_{z1}}, 1) = 1.000$
	K = M / (b * d ² * f _{ck}) = 0.008
	$K' = (2 * \eta * \alpha_{cc} / \gamma_{C}) * (1 - \lambda * (\delta - k_{1}) / (2 * k_{2})) * (\lambda * (\delta - k_{1}) / (2 * k_{2})) =$
	0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 * d * [1 + (1 - 2 * K / (η * α_{cc} / γ_{C})) ^{0.5}], 0.95 * d) = 237 mm
Depth of neutral axis	x = 2 * (d - z) / λ = 31 mm
Area of tension reinforcement required	A _{s,req} = M / (f _{yd} * z) = 139 mm ²
Tension reinforcement provided	5 * 16 φ
Area of tension reinforcement provided	A _{s,prov} = 1005 mm ²
Minimum area of reinforcement - exp.9.1N	A _{s,min} = max(0.26 * f _{ctm} / f _{yk} , 0.0013) * b * d = 375 mm ²
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{s,max} = 0.04 * b * h = 12000 mm ²
PASS - Area of re	inforcement provided is greater than area of reinforcement required
Crack control - Section 7.3	
Maximum crack width	w _k = 0.3 mm
Design value modulus of elasticity reinf – 3.2.7(4)	E _s = 200000 N/mm ²
Mean value of concrete tensile strength	$f_{ct,eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Stress distribution coefficient	k _c = 0.4
Non-uniform self-equilibrating stress coefficient	k = min(max(1 + (300 mm - min(h, b)) * 0.35 / 500 mm, 0.65), 1) = 1.00
Actual tension bar spacing	$s_{bar} = (b - (2 * (c_{nom_s} + \phi_{m1_s1_z1_v}) + \phi_{m1_s1_z1_tL1} * N_{m1_s1_z1_tL1})) /$
	$(N_{m1_s1_z1_t_L1} - 1) + \phi_{m1_s1_z1_t_L1} = 224.5 \text{ mm}$
Maximum stress permitted - Table 7.3N	σs = 220 N/mm ²
Steel to concrete modulus of elast. ratio	$\alpha_{cr} = E_s / E_{cm} = 6.09$
Distance of the Elastic NA from bottom of beam	y = (b * h ² / 2 + A _{s,prov} * (α_{cr} - 1) * (h - d)) / (b * h + A _{s,prov} * (α_{cr} - 1)) =
	148 mm
Area of concrete in the tensile zone	A _{ct} = b * y = 148339 mm ²
Minimum area of reinforcement required - exp.7.1	$A_{sc,min}$ = $k_c * k * f_{ct,eff} * A_{ct} / \sigma_s$ = 780 mm ²
PASS - Area of tension r	einforcement provided exceeds minimum required for crack control
Quasi-permanent moment	$M_{QP} = max(\beta_1 * abs(M_{m1_s1_z2_pos_quasi}), abs(M_{m1_s1_z1_neg_quasi})) = 2.2kNm$
Permanent load ratio	$R_{PL} = M_{QP} / M = 0.15$
Service stress in reinforcement	σ_{sr} = f _{yd} * A _{s,req} / A _{s,prov} * R _{PL} = 9 N/mm ²
Maximum bar spacing - Tables 7.3N	s _{bar,max} = 300 mm
PASS -	Maximum bar spacing exceeds actual bar spacing for crack control
Minimum bar spacing (Section 8.2)	
Top bar spacing	S _{top} = (b - (2 * (C _{nom s} + φ _{m1 s1 z1 v}) + φ _{m1 s1 z1 t L1} * N _{m1 s1 z1 t L1}))/
	$(N_{m1 s1 z1 t L1} - 1) = 208.5 \text{ mm}$
Minimum allowable top bar spacing	$s_{top,min} = max(\phi_{m1 s1 z1 t L1} * k_{s1}, h_{agg} + k_{s2}, 20mm) = 25.0 mm$
	PASS - Actual bar spacing exceeds minimum allowable
Bottom bar spacing	$s_{bot} = (b - (2 * (c_{nom s} + \phi_{m1 s1 z1 v}) + \phi_{m1 s1 z1 b L1} * N_{m1 s1 z1 b L1})) /$
	(N _{m1 s1 z1 b L1} - 1) = 208.5 mm
Minimum allowable bottom bar spacing	s _{bot,min} = max($\phi_{m1_s1_z1_b_L1}$ * k _{s1} , h _{agg} + k _{s2} , 20mm) = 25.0 mm
	PASS - Actual bar spacing exceeds minimum allowable
	,

Tekla Tedds Rodrigues Associates 1 Amwell St London	Project 248-250 Camden Road Hostel				Job no. 1858	
	Calcs for	Start page no./Revision 3. 6				
EC1R 1UL	Calcs by CB	Calcs date 09/11/2020	Checked by	Checked date	Approved by	Approved date

Zone 2 (825 mm - 2475 mm) Positive moment -	section 6.1
Design bending moment	M = abs(M _{m1_s1_z2_max_red}) = 16.0 kNm
Effective depth of tension reinforcement	d = 249 mm
Redistribution ratio	$\delta = \min(M_{\text{pos}_{red}_{22}} / M_{\text{pos}_{22}}, 1) = 1.000$
	K = M / (b * d ² * f _{ck}) = 0.009
	$K' = (2 * \eta * \alpha_{cc} / \gamma_c) * (1 - \lambda * (\delta - k_1) / (2 * k_2)) * (\lambda * (\delta - k_1) / (2 * k_2)) =$
	0.207
	K' > K - No compression reinforcement is required
Lever arm	$z = min(0.5 * d * [1 + (1 - 2 * K / (\eta * \alpha_{cc} / \gamma_{c}))^{0.5}], 0.95 * d) = 237 mm$
Depth of neutral axis	$x = 2 * (d - z) / \lambda = 31 mm$
Area of tension reinforcement required	A _{s,req} = M / (f _{yd} * z) = 155 mm ²
Tension reinforcement provided	5 * 16 φ
Area of tension reinforcement provided	A _{s,prov} = 1005 mm ²
Minimum area of reinforcement - exp.9.1N	A _{s,min} = max(0.26 * f _{ctm} / f _{yk} , 0.0013) * b * d = 375 mm ²
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{s,max} = 0.04 * b * h = 12000 mm ²
PASS - Area of re	inforcement provided is greater than area of reinforcement required
Crack control - Section 7.3	
Maximum crack width	w _k = 0.3 mm
Design value modulus of elasticity reinf $-3.2.7(4)$	E _s = 200000 N/mm ²
Mean value of concrete tensile strength	$f_{ct,eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Stress distribution coefficient	k _c = 0.4
Non-uniform self-equilibrating stress coefficient	k = min(max(1 + (300 mm - min(h, b)) * 0.35 / 500 mm, 0.65), 1) = 1.00
Actual tension bar spacing	$s_{bar} = (b - (2 * (c_{nom_s} + \phi_{m1_s1_z2_v}) + \phi_{m1_s1_z2_b_L1} * N_{m1_s1_z2_b_L1} + $
	$\phi_{m1_s1_z1_b_L1} * N_{m1_s1_z1_b_L1})) / ((N_{m1_s1_z2_b_L1} + N_{m1_s1_z1_b_L1}) - 1) +$
	φ _{m1_s1_z2_b_L1} = 224.5 mm
Maximum stress permitted - Table 7.3N	σs = 220 N/mm ²
Steel to concrete modulus of elast. ratio	$\alpha_{\rm cr} = E_{\rm s} / E_{\rm cm} = 6.09$
Distance of the Elastic NA from bottom of beam	y = (b * h ² / 2 + A _{s,prov} * (α_{cr} - 1) * (h - d)) / (b * h + A _{s,prov} * (α_{cr} - 1)) =
	148 mm
Area of concrete in the tensile zone	A _{ct} = b * γ = 148339 mm ²
Minimum area of reinforcement required - exp.7.1	$A_{sc,min} = K_c * k * f_{ct,eff} * A_{ct} / \sigma_s = 780 \text{ mm}^2$
PASS - Area of tension r	einforcement provided exceeds minimum required for crack control
Quasi-permanent moment	M _{QP} = abs(M _{m1_s1_z2_pos_guasi}) = 8.7 kNm
Permanent load ratio	$R_{PL} = M_{QP} / M = 0.55$
Service stress in reinforcement	$\sigma_{sr} = f_{Vd} * A_{s,reg} / A_{s,prov} * R_{PL} = 37 \text{ N/mm}^2$
Maximum bar spacing - Tables 7.3N	s _{bar.max} = 300 mm
PASS -	Maximum bar spacing exceeds actual bar spacing for crack control
Deflection control - Section 7.4	
Reference reinforcement ratio	ρ _{m0} = (f _{ck} / 1 N/mm ²) ^{0.5} / 1000 = 0.00548
Required tension reinforcement ratio	$\rho_{m} = A_{sreg} / (b^{*} d) = 0.00062$
Required compression reinforcement ratio	$n'_{m} = A_{n2} rm ((b^* d) = 0.00000)$
Structural system factor - Table 7 AN	$F_{\rm h} = 10$
Basic allowable span to depth ratio	span to depthence = $K_{\rm h} * [11 + 15 * (f_{\rm st} / 1 \text{N}/\text{mm}^2)^{0.5} * \alpha_{\rm span} / \alpha_{\rm span} + 3.2 *$
Dasie allowable spart to deput ratio	$(f_{1} / 1 N/mm^{2}) = 10 $ $(1 + 1.5) $ $(1 + 1.5) $ $(1 + 1.5) $ $(1 + 1.5) $ $(1 + 1.5) $ $(1 + 1.5) $
Poinforcoment factor over 7 17	$(100 \text{ (100 / 100 / pm - 1)^{-1}}] = 402.120$
Elenge width factor	$r_s = 11111(A_{s,prov} / A_{s,req} = 500 N/11111^2 / I_{yk}, 1.5) = 1.500$
Flange width factor	F = 1 = 1.000

Tokla Todds	Project				Job no.			
		248-250 Camden Road Hostel			18	58		
Rodrigues Associates	Calcs for				Start page no./Re	evision		
London		Hostel bsmt slab	(2 span beam	ı)	3.	7		
EC1R 1UL	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	СВ	09/11/2020						
l ong span supporting brittle pa	tition factor	F2 = 1 = 1 0	00					
Allowable span to depth ratio		span to de	othallow = min(s	nan to denth _{basis}	* K_ * F1 * F2	40 * K _b) =		
		40.000			, 113 1 1 1 2	, 10 10)		
Actual span to depth ratio		span to de	oth _{actual} = L _{m1 s}	1 / d = 13.253				
		PASS	Actual span	to depth ratio is	within the al	lowable limit		
Zana 2 /925 mm - 2475 mm) N	agativa momon	t agation 6 1						
Design bending moment	egative momen	$\frac{1 - \text{Section 6.1}}{M = abs(M_{m})}$	= (16 1 kNm				
Effective depth of tension reinfo	rcement	d = 249 mm	I_s1_z2_min_red) -					
Redistribution ratio	reement	$\delta = \min(M_{\rm eff})$		1) - 1 000				
Redistribution fatto		K = M / (b *)	_red_zz / Wineg_zz	() – 1.000 A				
		K' = (2 * m * 1)	$r (w_{c}) * (1)$	*(\$ k.)/(2 * k.)) * () * (S k.)/(2*k-))-		
		R = (2 1)	α _{cc} /γC) (I-/	$(0 - K_1) / (2 K_2)$	$(\lambda (0 - K_1))$)/(Z K ₂))-		
		0.207	K' > K - N	lo compression	reinforceme	nt is required		
l ever arm		$z = min(0.5)^{3}$	n - n - n - n	* K / $(n * \alpha - / \gamma c)$)) ^{0.5} 1 0 95 * d)	= 237 mm		
Depth of neutral axis		z = 1 m (0.0)/) – 31 mm		,)], 0.00 u)	207 11111		
Area of tension reinforcement r	auired	$A = 2 (\mathbf{u} - \mathbf{z})$	() / / = 31 mm (u * −) = 157 m	m ²				
Tonsion reinforcement provided	equileu	As,req - W17 (1	$r_{s,req} = \frac{1}{12} \frac{1}{12} \frac{1}{11111}$					
Area of tansion reinforcement provided	rovidod	ο 10φ	$A_{a regu} = 1005 \text{ mm}^2$					
Minimum area of reinforcement		$A_{s,prov} = mov$	$A_{smin} = max(0.26 * f_{ctm} / f_{w} = 0.0013) * h * d = 375 mm^2$					
Maximum area of reinforcement	- c 9 2 1 1(3)	$A_{s,min} = 0.04$	$A_{\text{s,min}} = (104 \text{ s} + 1000 \text{ mm}^2)$					
	PASS - Area of	reinforcement	provided is a	reater than area	of reinforcen	nent required		
Creak control Section 7.2		,						
Maximum crack width		$w_{\rm e} = 0.3 \rm mm$						
Design value modulus of elastic	$vit_V round = 3.2.7$	$W_{\rm k} = 0.3$ mm	N/mm ²					
Mean value of concrete tensile	strength	$f_{\text{fot off}} = f_{\text{otm}} = f_{\text{fotm}}$	2 9 N/mm ²					
Stress distribution coefficient	Strongth	k _o = 0.4	$k_{c} = 0.4$					
Non-uniform self-equilibrating s	tress coefficient	k = min(max)	$k = \min(\max(1 + (300 \text{ mm} - \min(b + b)) * 0.35 / 500 \text{ mm} + 0.65) (1) = 1.00$					
Actual tension bar spacing		$s_{bar} = (b - (2))$	Shar = $(b - (2 * (C_{nom} + \phi_{m1} + 1 - 2 + y) + \phi_{m1} + 1 - 2 + 1 + N_{m1} + N_{m1} + 1 - 2 + 1 + N_{m1} + N_{m1$					
, locadi teriolori bal opaoling		(Nm1 o1 72 t L	$(N_{m1} \circ 1 \circ 2 \circ 1 \circ 1 - 1) + \phi_{m1} \circ 1 \circ 2 \circ 1 \circ 1 = 224.5 \text{ mm}$					
Maximum stress permitted - Tal	0 9 7 3N	σ ₋ = 220 N/n	nm ²	2_(_L) = 224.0 mm				
Steel to concrete modulus of el	ast ratio	$\alpha = E_{1}/E_{1}$	= 6 09					
Distance of the Electic NA from	bottom of boom	$u_{cr} = L_s / L_{cr}$	A = 0.03	1) * (b)) / (b)	* • • • * •	(~ 1)) –		
Distance of the Elastic NA from	bollom of beam	y = (D 11-72	$y = (D " n^{2} / 2 + A_{s,prov} " (\alpha_{cr} - 1) " (n - \alpha)) / (D " n + A_{s,prov} " (\alpha_{cr} - 1))$					
Area of concrete in the tensile z	one	$A_{++} = b * y = b$	148339 mm ²					
Minimum area of reinforcement	required - evp 7	$A_{ct} = D y =$ 1 $\Delta_{ct} = k_c *$	κ * f _{***} * Δ _{**} / ε	. = 780 mm ²				
PASS.	Area of tension	n reinforcement	nrovided ex	ceeds minimum	required for (rack control		
Quasi-permanent moment		$M_{OP} = abs(M)$		$a_i) = 0.0$ kNm	required for (
Permanent load ratio		$R_{Pl} = M_{OP} / I$	M = 0.00	,				
Service stress in reinforcement		$\sigma_{\rm sr} = f_{\rm vd} * A_{\rm su}$		= 0 N/mm ²				
Maximum bar spacing - Tables	7 3N	Shar may = 300	mm					
maxima in or opaoing rabios	PASS	S - Maximum ba	r spacing exc	eeds actual bar	spacing for o	crack control		
Deflection control - Section 7	4							
Reference reinforcement ratio		$Omo = (f_{ak} / 1)$	N/mm ²) ^{0.5} / 10	00 = 0 00548				
Required tension roinforcoment	ratio		h * d) = 0.000	00 – 0.00040				
	mont ratio	pm - As,req / ((h * d) = 0.0000	30				
Structural avatam factor Table		μm – As2,req /	$p_{m} - A_{s2,req} / (D^{m} \alpha) = 0.00000$					
Suuciural System lactor - Table	1.41N	ND - 1.U						

	Tekla Tedds	Project				Job no.			
	Rodrigues Associates	248-250 Camden Road Hostel				1	858		
	1 Amwell St	Calcs for			m)	Start page no./Revision			
	London	Calas hu			Chasked data	Approved by	Approved data		
	EC1R 1UL		09/11/2020	Спескеа ру		Approved by	Approved date		
	Basic allowable span to depth ra	atio	span_to_d	epth _{basic} = K _b *	[11 + 1.5 * (f _{ck} / 1	N/mm²) ^{0.5} * ρ	_{m0} / pm + 3.2 *		
			(f _{ck} / 1 N/m	m²) ^{0.5} * (ρ _{m0} / ρ _r	m - 1) ^{1.5}] = 457.92	24			
	Reinforcement factor - exp.7.17		K _s = min(A	_{s,prov} / A _{s,req} * 50	0 N/mm² / f _{yk} , 1.	5) = 1.500			
	Flange width factor		F1 = 1 = 1 .	000					
	Long span supporting brittle par	tition factor	F2 = 1 = 1 .	000		* * * • • * • •	0.40.44		
	Allowable span to depth ratio		span_to_d 40.000	epth _{allow} = min(s	span_to_depthbas	sic * Ks * F1 * F	2, 40 * K _b) =		
	Actual span to depth ratio		span to d	epth _{actual} = L _{m1}	₅₁ / d = 13.253				
			PASS	- Actual span	to depth ratio	is within the a	allowable limit		
	Minimum bar spacing (Section	n 8.2)							
	Top bar spacing		s _{top} = (b - (2	2 * (C _{nom_s} + φ _{m1}	_s1_z2_v) + φm1_s1_z	2_t_L1 * N _{m1_s1_2}	_{22_t_L1})) /		
			(N _{m1_s1_z2_t}	1 - 1) = 208.5	mm				
	Minimum allowable top bar space	cing	s _{top,min} = ma	ΑΧ(φm1_s1_z2_t_L1 [*]	* k _{s1} , h _{agg} + k _{s2} , 2	20mm) = 25.0 i	mm		
				PASS - Actua	l bar spacing e	xceeds minin	num allowable		
	Bottom bar spacing		$s_{bot} = (b - (b - b))$	2 * (c _{nom_s} + φ _{m1}	_s1_z2_v) +	z2_b_L1 * Nm1_s1_	z2_b_L1 +		
			φm1_s1_z1_b_L	.1 * N _{m1_s1_z1_b_L}	1)) / ((N _{m1_s1_z2_b_}	L1 + N _{m1_s1_z1_b}	_L1) - 1) =		
	Minimum allowable bottom bor	nacina	208.5 mm		* 4 6 1 4 4	20mm) - 25 0			
		spacing	Sbot,min - 111	PASS - Actual bar spacing exceeds minimum allowable					
				7 700 - 7000	i bui spucing c				
	Zone 3 (2475 mm - 3300 mm)	Positive momer	nt - section 6.1		- 29 2 kNm				
	Effective denth of tension reinfo	rcement	d = 249 mm	m1_s1_z3_max_red <i>) =</i> m	- 20.3 KINIII				
	Redistribution ratio		$\delta = \min(M_{\text{pos} \text{ red } z3} / M_{\text{pos} z3}, 1) = 1.000$						
			K = M / (b	* d ² * f _{ck}) = 0.01	5				
			K' = (2 * η	* α _{cc} / γ _c) * (1 -	λ * (δ - k ₁) / (2 * l	k2)) * (λ * (δ - k	(1) / (2 * k ₂)) =		
			0.207						
				K' > K -	No compressio	n reinforceme	ent is required		
	Lever arm		z = min(0.5	5 * d * [1 + (1 - 2	2 * Κ / (η * α _{cc} / γ	c)) ^{0.5}], 0.95 * d) = 237 mm		
	Depth of neutral axis		x = 2 * (d -	z) / λ = 31 mm					
	Area of tension reinforcement re	equired	$A_{s,req} = M /$	(f _{yd} * z) = 276 n	nm²				
	Tension reinforcement provided		5 * 16¢	0					
	Area of tension reinforcement p	rovided	A _{s,prov} = 10	$A_{s,prov} = 1005 \text{ mm}^2$					
	Minimum area of reinforcement	- exp.9.1N	$A_{s,min} = max(0.26 \circ T_{ctm} / T_{yk}, 0.0013) \circ b \circ d = 375 mm^2$						
		PASS - Area of	reinforcemen	tprovided is a	reater than area	a of reinforce	ment reauired		
	Crack control - Section 7.3						· · · · ·		
	Maximum crack width		w _k = 0.3 m	m					
	Design value modulus of elastic	ity reinf – 3.2.7(4	l) E _s = 20000	0 N/mm ²					
	Mean value of concrete tensile	strength	f _{ct,eff} = f _{ctm} =	2.9 N/mm ²					
	Stress distribution coefficient		k _c = 0.4						
	Non-uniform self-equilibrating st	k = min(max(1 + (300 mm - min(h, b)) * 0.35 / 500 mm, 0.65), 1) = 1.00							
	Actual tension bar spacing	$s_{bar} = (b - (2 * (c_{nom_s} + \phi_{m1_s1_z3_v}) + \phi_{m1_s1_z3_b_L1} * N_{m1_s1_z3_b_L1})) /$							
			$(N_{m1_s1_z3_b_L1} - 1) + \phi_{m1_s1_z3_b_L1} = 224.5 \text{ mm}$						
	Maximum stress permitted - Tak	ble 7.3N	$\sigma_s = 220 \text{ N/mm}^2$						
	Steel to concrete modulus of ela	ast. ratio	α_{cr} = E _s / E	_{cm} = 6.09					
1									

	Project Job no.							
	248-250 Camden Road Hostel				1	858		
Rodrigues Associates	Calcs for		Start page no./Revision					
1 Amwell St		Hostel bsmt sla	ıb (2 span bean	n)	3. 9			
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
EC1R 10L	CB	09/11/2020			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, pp. or ou duto		
						•		
Distance of the Elastic NA from	bottom of beam	$v = (b * h^2)$	$2 + A_{s prov} * (\alpha_c)$	r - 1) * (h - d)) / (b	$h + A_{s prov} *$	$(\alpha_{cr} - 1)) =$		
		148 mm	-, (- ,	(**** //		
Area of concrete in the tensile z	one	$A_{ct} = b * v =$	= 148339 mm ²					
Minimum area of reinforcement	required - exp 7	$1 A_{sc min} = k_c$	* k * f _{ct eff} * A _{ct} / g	$\sigma_{\rm s} = 780 {\rm mm}^2$				
PASS -	Area of tension	n reinforceme	nt provided ex	ceeds minimum	required for	crack control		
Quasi-permanent moment		Mo _P = abs(a) = 0 1 kNm	required for			
Permanent load ratio			M = 0.00					
Service stress in reinforcement		$\sigma_{\rm m} = f_{\rm ml} * \Delta$	· · · · · · · · · · · · · · · · · · ·	$= 0 \text{ N/mm}^2$				
Maximum bar spacing - Tables	7 3NI							
Maximum bar spacing - Tables	PASS	Sbar,max – 50 S - Maximum h	or spacing ev	coods actual ha	r snacing for	crack control		
	7 450		an spacing ext		spacing for	crack control		
Zone 3 (2475 mm - 3300 mm)	Negative mome	nt - section 6.	<u>1</u>					
Design bending moment		M = abs(M	m1_s1_z3_min_red) =	28.2 kNm				
Effective depth of tension reinfo	rcement	d = 249 mr	n					
Redistribution ratio		$\delta = \min(M_n)$	eg_red_z3 / Mneg_z3	, 1) = 1.000				
		K = M / (b '	* d ² * f _{ck}) = 0.01	5				
		K' = (2 * η	$K' = (2 * \eta * \alpha_{cc} / \gamma_{C}) * (1 - \lambda * (\delta - k_1) / (2 * k_2)) * (\lambda * (\delta - k_1) / (2 * k_2)) =$					
		0.207	0.207					
			K' > K - I	No compression	reinforceme	nt is required		
Lever arm		z = min(0.5	5 * d * [1 + (1 - 2	2 * Κ / (η * α _{cc} / γ _C	;)) ^{0.5}], 0.95 * d)	= 237 mm		
Depth of neutral axis		x = 2 * (d -	x = 2 * (d - z) / λ = 31 mm					
Area of tension reinforcement re	quired	$A_{s,req} = M /$	(f _{yd} * z) = 274 m	1m²				
Tension reinforcement provided		5 * 16 φ						
Area of tension reinforcement p	rovided	A _{s,prov} = 1005 mm ²						
Minimum area of reinforcement	- exp.9.1N	A _{s,min} = ma	A _{s,min} = max(0.26 * f _{ctm} / f _{yk} , 0.0013) * b * d = 375 mm ²					
Maximum area of reinforcement	- cl.9.2.1.1(3)	A _{s,max} = 0.04 * b * h = 12000 mm ²						
	PASS - Area of	reinforcement	einforcement provided is greater than area of reinforcement required					
Crack control - Section 7.3								
Maximum crack width		w _k = 0.3 m	m					
Design value modulus of elastic	itv reinf – 3.2.7(4	$F_s = 20000$	0 N/mm ²					
Mean value of concrete tensile	strenath	$f_{ct.eff} = f_{ctm} =$	$f_{\text{ct eff}} = f_{\text{ctm}} = 2.9 \text{ N/mm}^2$					
Stress distribution coefficient	5	k _c = 0.4	$k_c = 0.4$					
Non-uniform self-equilibrating st	ress coefficient	k = min(ma	ax(1 + (300 mm	- min(h, b)) * 0.3	5 / 500 mm, 0	.65), 1) = 1.00		
Actual tension bar spacing		s _{bar} = (b - (2	2 * (Cnom s + φm1	s1 z3 v) + \$\\$m1 s1 z3	3 t L1 * N m1 s1 z	3 t L1)) /		
		(Nm1 s1 z3 t	11 - 1) + φm1 s1 z	3 t l 1 = 224.5 mm	 1	//		
Maximum stress permitted - Tak	le 7.3N	$\sigma_{\rm c} = 220 \rm N$	/mm ²					
Stool to concrete modulus of el		$\alpha = E / E$	- 6 09					
Distance of the Electic NA from	bettern of been	$u_{cr} - E_s / E$	cm - 0.03	4) * /bd)) / /b	* • • • *	(. 1)) -		
Distance of the Elastic NA from	bollom of beam	y = (b = 1-7	$2 + A_{s,prov}$ (α_c	r - 1) (n - a))/(r	D II + As,prov	$(\alpha_{cr} - 1)) -$		
Anno of concerts in the tensile -		148 mm	- 440220					
Area or concrete in the tensile z		$A_{ct} = D " Y =$	- 140339 MM ²	 700 mm ²				
winimum area of reinforcement	requirea - exp./.	$I A_{sc,min} = K_c$	K Ict,eff Act /	$\sigma_s = 180 \text{ mm}^2$				
PASS -	Area of tension	n reinforcemei	nt provided ex	ceeas minimum	requirea for	Crack control		
			IVIm1_s1_z3_neg_qua	si) = 1 3.4 KINM				
		$\kappa_{PL} = MQP /$	/ IVI = U.55					
	7 0.1	$\sigma_{sr} = f_{yd} * A_{s,req} / A_{s,prov} * R_{PL} = 65 \text{ N/mm}^2$						
Maximum bar spacing - Tables	(.3N	Sbar,max = 30	JU mm					
	PASS	s - iviaximum b	ar spacing exe	ceeas actual bai	r spacing for	crack control		