elliottwood

The Network Building 97 Tottenham Court Road London W1T 4TP

Outline Application: Surface Water Drainage Statement

engineering a better society

The Network Building 2170754 Surface Water Drainage Statement

elliottwood

engineering a better **society**

		Remarks:	Issued for Planning										
Revision	P1	Prepared by:	Will Hudson MEng (Hons)	Checked by:	Paul Davis BEng (Hons) MSc CEng MICE	Approved by:	Paul Davis BEng (Hons) MSc CEng MICE						
Date:	19/11/2020	Signature:	Wheel.	Signature:	TORME	Signature:	TOAL						

Contents

Appendices

А	Topographic Survey
В	Thames Water Asset Records
С	CCTV Drainage Survey
D	ABG Ltd Blue Roof Calculations
Е	Green Roof Runoff Calculations
F	Proposed Below Ground Drainage
G	London Borough of Camden Surface Water Draina

elliottwood

•••	•	•••	•	•	•••	•	•	•••	•••	•	•	• •	• •	•	•	•	•	•	•	• •	• •	 •	•	•	•	•	•	•••	•	•	•	•	• •	•••	•	•	• •	•	•	•	• •	•	• •	•••	•	• •	•••	•	1	
•••	•	•••		•	•••	•		•••		•	•	•••	•••	•	•	•	•		•	• •		 	•	•	•	•	• •		•	•	•	•	•••	•••	•	•	• •	•	•	•	•••	•	•	• •	•	•	•••	•	1	
•••	•	•••			•••			•••		•		•••			•	•	•	-	•	• •		 	•		•	•	•			•		•	• •				•••	•		•	•••	•	•	• •	•	•	•••	•	1	
•••	•	•••		•	•••	•		•••		•	•	•••	•••	•	•	•	•		•	• •		 	•	•	•	•	•		•••	•	•		•••			•	•••	•	•	•	•••	•	•	• •	•	•	•••	•	1	
•••	•	•••		•	•••	•		•••		•	•	•••	•••	•	•	•	•		•	• •		 	•	•	•	•	•		•••	•	•		•••			•	• •	•	•	•	•••	•	•	• •	•	•	•••	•	2)
•••	•	•••		•	•••	•		•••		•	•	•••	•••	•	•	•	•		•	• •		 	•	•	•	•	•		•••	•	•		•••			•	•••	•	•	•	•••	•	•	• •	•	•	•••	•	2)
•••	•	•••		•	•••	•	•	• •	•••	•	•	•••	•••	•	•	•	•		•	• •	• •		•	•	•	•	•	• •	•	•	•	•	• •	•••	•	•	• •	•	•	•	•••	•	•		•	•	•••	•	4	•
•••	•	•••		•	•••	•		•••		•	•	•••	•••	•	•	•	•		•	• •		 	•	•	•	•	• •			•	•	•	• •	•••	•	•	• •	•	•	•	•••	•	•	• •	•	•	•••	•	4	+
•••	•	•••			•••			•••		•		•••			•	•	•	-	•	• •		 	•		•	•	•			•		•	• •					•		•	•••	•	•	• •	•	•	•••	•	4	•
								•••														 					•						•••							•			•			•			4	ŀ

		Α
		В
		C
		D
		E
		F
age Pro-forma	l	G

One

Introduction

1.1

Elliott Wood Partnership Ltd have been appointed to provide a Surface Water Drainage Statement to support an outline planning application for the proposed development at The Network Building, 97 Tottenham Court Road, London W1T 4TP.

1.2

The purpose of this report is to explain the approach taken with regards to the below ground drainage strategy. It evaluates the selection of SuDS devices and highlights how the drainage disposal hierarchy has been followed.

1.3

This report has been prepared in accordance with the GOV.UK Sustainable Drainage Systems: Non-statutory Technical Standards, The New London Plan and the London Borough of Camden (LBC) Advice Note on contents of a Surface Water Drainage Statement and LBC's Strategic Flood Risk Assessment (SFRA) 2014.

1.4

This proposal seeks outline planning permission for "Demolition of the existing building and construction of a new building to provide for a maximum of 17275 sqm (GIA) of E class use floorspace along with details of access, scale and landscaping and other works incidental to the application (layout and appearance reserved)."

1.5

This Surface Water Drainage Statement is supported by an Outline Structural Engineering Report. As detailed matters of layout and appearance are reserved, further supporting documents will be required with assessing the detail of the different structural proposals and basement impact assessments.

Two

Existing Site

2.1

The development site is located within the London Borough of Camden (LBC). The site is located on the corner of Tottenham Court Road and Howland Street. The site is bound to the west by Whitfield Street, with Cyprus Place running through the centre of the site. The site sits approximately 250m northwest of Goodge Street London Underground Station. The total site area is approximately 2,070m² (0.207ha) and is considered to be 100% hardstanding drained area.

2.2

The existing building located on the site is 6-storey mixed use building, with a double height retail space fronting Tottenham Court Road with office space occupying the rest of the building.

Figure 1: Site Location

2.3

A topographical survey of the site was completed by Point 2 Surveyors Ltd in December 2017. The survey shows very little level change along the Tottenham Court Road and Whitfield Street elevations and a slight fall from west to east along Howland Street of approximately 100mm over the width of the building. The topographic survey has been included in Appendix A.

Three

Underlying Geology

Site specific investigations have not yet been carried out, however a Ground Investigation report carried out by Ove Arup & Partners Ltd (Arup) for the neighbouring 80 Charlotte Street development has been made available.

The geotechnical information indicate that the soil conditions comprise of varying depths of Made Ground underlain by River Terrace Deposits that is then underlain by London Clay.

Four

Existing Drainage

4.1

full records.

Figure 2: Extract from Thames Water sewer records

4.2

The records show a 1321x787mm combined water trunk sewer running south beneath Tottenham Court Road, 1168x787mm combined water sewer running south in Whitfield Street, and a 1549x762 combined water sewer running east in Howland Street which connects to the trunk sewer in Tottenham Court Road.

Public sewer records have been obtained from Thames Water. An extract of the asset plan is shown in Figure 2 below. Refer to Appendix B for the

4.3

A CCTV Drainage Survey has been undertaken by WJ Shirley to confirm the location, size, depth and condition of the existing network on site, and principally to the located the existing outfall positions to review the possibility for reuse.

The survey indicates that the site has two existing foul water sewer connections to the combined water sewer Howland Street and a separate surface water outfall.

Refer to Appendix C for the report prepared by WJ Shirley Ltd.

4.4

The surface water runoff rates for the existing site have been calculated using the Modified Rational Method equation below (based on CIRIA C697) and are shown in Table 1:

Q = 2.78C.i.A

Where

Q = Existing peak runoff (l/s),

C = non-dimensional runoff coefficient=1.0,

i = Rainfall intensity (see table 1) and

A = total catchment area being drained = 0.207ha

Table 1 Existing Surface Water Run-off rates

Return Period	Rainfall Intensity (mm/hr)	Existing run-off (I/s)					
1yr	33.6	19.4					
30yr	82.6	47.5					
100yr	107.5	61.9					

Note that the rainfall intensities used in the above calculations have been based on average rainfall intensities for a 15-minute storm using Micro Drainage software.

Five

Proposed Development

5.1

The proposed works involve the demolition of the existing building and construction of a new building on the site.

Please refer to the Reserved Matters documents submitted as part of the planning application for further details on the proposed development.

Six

Proposed Drainage

6.1

The surface water drainage system has been designed in accordance with the requirements of the National Planning Policy Framework (NPPF) and relevant Planning Practice Guidance (PPG) and the LBC Advice Note on contents of a Surface Water Drainage Statement. The following drainage hierarchy has therefore been considered:

- 1) Store rainwater for later use
- 2) Use infiltration techniques, such as porous surfaces in non-clay areas
- Attenuate rainwater in ponds or open water features for gradual 3) release
- attenuate rainwater by storing in tanks or sealed water features for 4) gradual release
- Discharge rainwater direct to a watercourse 5)
- Discharge rainwater to a surface water sewer/drain 6)
- 7) Discharge rainwater to the combined sewer.

6.2 Appraising the use of Rainwater Harvesting

It is not proposed to use rainwater harvesting techniques for the scheme due to the required space for an appropriately sized tank, and the additional complexity involved with the routing of mains water supply within the proposed building.

The demand on the potable water supply will be reduced as much as possible through the use of low flow appliances

6.3 Appraising the use of Infiltration Techniques

In order to comply with building regulations, infiltration techniques such as soakaways must not be installed within 5m of a building or highway. As the building occupies the entirety of the site, it is not possible to comply with this requirement from building regulations.

Due to the limited external areas, which are located above the basement slab, it will not be feasible to make use of permeable paving for the development.

6.4 Appraising the use of Open Water Feature

As the site has no associated external area at ground floor proposed as part of the development, it will not be possible to use open water features to provide attenuation

attenuation

The current proposals include a combination of green/blue roofs as indicated on the architect's drawings. This will help to improve the thermal performance of the building, reduce the urban heat island effect, reduce both the total and peak surface water discharge and enhance biodiversity in the surrounding area.

6.6

The development proposes to achieve attenuation of surface water through above ground blue roof systems only in order to avoid the need for below ground attenuation or attenuation in the basement.

6.7

The evaluation of SuDS is demonstrated in Table 2 below.

Table 2 Evaluation of SuDS techniques

SuDS Technique	Y/N	Comment							
Blue Roofs	Y	Blue roofs will be incorporated within the scheme. Refer to the architects drawings for location and details.							
Rainwater reuse	N	Rainwater reuse is not proposed for the scheme as it is proposed to reduce water usage rather than recycle rainwater.							
Open Water features	N	There is limited external space for open water features and the nature of the development makes open water features unfeasible.							
Infiltration devices (i.e. Soakaways)	N	Soakaways are not deemed feasible for this site due to restricted space on site not allowing a minimum of 5m from buildings or roads.							
Permeable surfaces	N	There are no external areas at ground floor associated with the site, therefore permeable surfaces are not possible							
Tanked systems	N	It is proposed to avoid tanked systems by utilising an above ground attenuation system via the blue roof.							

6.8

Whitfield Street.

elliottwood

6.5 Appraising the use of above and below ground

There are no nearby accessible water courses, therefore surface water generated from site areas of the development will discharge at a restricted rate to the Thames Water combined water sewers in Howland Street and

6.9

The LBC Advice Note on contents of a Surface Water Drainage Statement states that developments should aim to achieve greenfield runoff rates. The greenfield runoff for the site has been calculated using Micro Drainage and are shown in Table 3.

Table 3 Greenfield Runoff Rates (from Micro Drainage)

Return Period	Greenfield Runoff Rate (I/s)							
QBar	0.8							
1 in 1 year	0.6							
1 in 30 year	1.7							
1 in 100 year	2.4							

As can be seen, the greenfield run-off rates for the site are very low, and it is not considered feasible to restrict a site of this size to 0.8l/s due to the increased risk of blockages associated with the low flows and small orifice size required.

6.10

The LBC advice states that for sites where it is not feasible to achieve Greenfield Runoff rates, "a minimum 50% reduction in run off rate across the development is required".

It is therefore proposed to utilise a blue roof system to reduce the runoff from the proposed building. ABG Ltd have been contacted and provided calculations for the proposed blue roof systems to be located at the upper roof level and the Level 5 terrace area. The ABG Ltd Calculations have been included within Appendix D.

A total of 900m² will be routed to the blue roof system which will cover 660m² of the roof. The total runoff achieve from the blue roof has been calculated to be a peak discharge of 1.41/s for the 1 in 100-year return + 40% climate change. The peak run-off for the 1 in 1-year, 1 in 30-year and 1 in 100-year return have been shown in the Table 4 below.

Table 4 Blue Roof Runoff Rates (from ABG Ltd)

Return Period	Blue Roof Runoff Rate (I/s)						
1 in 1 year	0.6						
1 in 30 years	1.0						
1 in 100 years	1.1						
1 in 100 years + 40% Climate Change	1.4						

6.11

Due to the build-up depth available on the roof terrace areas, it is not possible to use a blue roof system in these areas. It is however proposed to use a green roof system in some of these areas. Although a green roof does not attenuate surface water, it does help reduce the peak runoff rate by slowing the rate of rainwater through the percolation through the soil and through evapotranspiration. A minimum of 529m² of green roof is proposed on Levels 08 and 09.

6.12

Using Micro Drainage, it is possible to calculate the peak runoff from the 529m² of green roof for the various storm events, as shown in the Table 5 below. Refer to Appendix E for the green roof runoff calculations.

Table 5 Green Roof Area Runoff Rates

Return Period	Unrestricted area Runoff Rate (I/s)
1 in 1 year	2.2
1 in 30 years	5.9
1 in 100 years	7.8
1 in 100 years + 40%	10.9

6.13

There is approximately 641m² that is within the red line boundary but cannot be routed to an attenuation device or used for green roof. In order to avoid the need for pumping surface water from an attenuation tank in or below the basement, it is proposed to allow this area to drain freely. Based on the rainfall profiles detailed earlier in this report (Table 1), the runoff from this area has been calculated as shown in Table 6.

Table 6 Unrestricted Area Runoff Rates

Return Period	Unrestricted area Runoff Rate (I/s)							
1 in 1 year	6.0							
1 in 30 years	14.7							
1 in 100 years	19.2							
1 in 100 years + 40%	25.1							

6.14

Table 7 Total proposed runoff

Return Period	Existing Runoff Rate (I/s)	Proposed Runoff Rate (I/s)	Percentage betterment (%)
1 in 1 year	19.4	8.8	54%
1 in 30 years	47.5	21.6	55%
1 in 100 years	61.9	28.1	55%
1 in 100 years + 40% Climate Change	N/A	37.4	>55%

6.15

Please refer to Appendix F for the proposed below ground drainage strategy. The London Borough of Camden Surface Water Drainage Proforma for new developments has been completed and included within Appendix G.

The total runoff from the proposed development site, and the percentage improvement over the existing runoff can be seen in Table 7.

Seven

Maintenance Requirements

7.1

All SuDS will be maintained by the building management company for the lifetime of the development in accordance with the SuDS Manual as summarised below. Maintenance requirements for the blue/green roof will be supplied by the specialist designer.

Green/Blue Roofs:

Maintenance Schedule	Required Action	Recommended Frequency
Regular inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (ie year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required	Annually (in autumn)
	(where > 5% of coverage)	
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting	Six monthly or as required

	(if appropriate) as required – clippings should be removed and not allowed to accumulate	
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Eight

Flood Risk

8.1

The existing site is located within Flood Zone 1 and is considered to be at low risk of flooding from fluvial and tidal sources. The development site area is less than 1 hectare in plan area, and not located in an area identified by the London Borough of Camden as a Local Flood Risk Zone. As a result, in accordance with Paragraph 103 footnote 20 of the NPPF, a site-specific flood risk assessment is not required for planning.

Nine

Foul Water Drainage Strategy

9.1

Foul water appliances within the new basement level will be pumped via a private packaged pumping station to a suspended above ground network (detailed by the M&E engineer). The pumping station will be specified with a dual pump arrangement (duty and standby) and installed with non-return valve, alarms and telemetry. All foul drainage from ground floor and above will be drained to the below ground drainage network by gravity

Ten

Conclusion

10.1

In summary, following the advice and guidance provided by the London Borough of Camden, a SuDS strategy has been produced for the planning application associated with The Network Building.

10.2

The SuDS Hierarchy has been followed in order to employ the most suitable and practicable SuDS techniques to improve surface water run off rates from the site. The proposed development will restrict surface water run off to the public sewer to a peak discharge of 37.4l/s for the site. This provides a betterment on existing of over 54% for the 1 in 100-year event + 40% climate change event.

10.3

A blue roof system over the main roof area and terraces at Level 05 will provide surface water attenuation above ground level and help restrict these areas of the site to a peak discharge rate of 1.4l/s for the 100 year + 40% climate change return period.

A partial green roof at level 08 and 09 will help with the reduction in peak runoff from the site and also improve the biodiversity of the site, and help reduce the urban heat island effect.

Due to the available build-up depth for the other roof terraces, it is not possible to drain all areas through the blue roof system. It is therefore proposed to allow the remaining areas to drain freely to the sewer. The site achieves an improvement of over 55% in the 1 in 100-year event + 40% climate change event, which is in line with the minimum 50% reduction stated by LBC in the guidance documents.

10.4

Through the use of SuDS techniques and following the guidance and policy provided by the London Borough of Camden, the surface water management of the proposed site will see a significant betterment from the existing case.

elliottwood

Appendices

engineering a better society

The Network Building 2170754 Surface Water Drainage Statement

A Topographic Survey

elliottwood

engineering a better **society**

A Elliott Wood Partnership Ltd

	* teet
	S [×]
Wab	
×	
27.81	
×	
27.77	
	o access
4	
S. C.	
× 27.96	
Motorbike	
stops	com
	27.98
0	
	CPS
Commence I avals are related to Ordnance Survey	
Datum via GPS Observations	K
Survey location is related to Ordnance	
Survey Grid via GPS Observations.	
All information contained in this drawing	
(including digital data) should be checked and verified prior to any fabrication or construction	
	-
Stations: STN 001 520/10 051 182015 210 27 821	
Stations: STN 001 529410.051, 182015.219, 27.831 STN 002 529331.322, 182025.990, 27.942	
Stations: STN 001 529410.051, 182015.219, 27.831 STN 002 529331.322, 182025.990, 27.942 STN 003 529363.649, 181979.221, 27.820	

					Т.
8 X 93					Gate Ht 2.4m
					Fe Ht
	27.96				
	PI ZI ↓ · % ↓ · % GV		No access on roof		
Motor stops	bike				
		27.98			
	0				
	0	CPS		52.46 ×	
	(Motorbike stops				
		^o 27.942m ^{28.0}			
		19 19 19			
		Tarmac	2.37) Soffit		
			Door holder		
					51,68
			27.95 BT	52.90	
			27.	SV ^{28.00} 97	
			73 7	CPS	
				Tarmac	
				28.91	
				27.81 G	
				H 8m S 4m G 0.15m	
				Soil 27.92	28.91
					FR
					PO
					× 27.95
					CPS
					Tarmac
					45
Sources:	Levels are re	lated to Ordnand	e Survey		K
	Survev location	on is related to C	Ordnance		
	Survey Grid	via GPS Observa	ations.		
	All information	n contained in th ital data) should	is drawing be checked an	d	
	verified prior	to any fabrication	n or constructio	n.	
Stationar	OTNI 004 COO	110 051 10001			
Stations:	STN 001 529 STN 002 529	410.051, 18201 331.322, 18202	5.219, 27.831 5.990, 27.942		
	STN 003 529	363.649, 181979	9.221, 27.820		

Network B	uilding, 90 Whitfield Stre	et	Title:	Topograp Sheet 2
SC	Scale: 1:100 @ A0	Date: December 2017	Dwg N	Io: P1618

18/T/02

Point 2 Surveyors Ltd, 3rd Floor, 17 Slingsby Place, London WC2E 9AB, 0207 836 5828

www.point2surveyors.com

The Network Building 2170754 Surface Water Drainage Statement

B Thames Water Asset Records

elliottwood

engineering a better **society**

B Elliott Wood Partnership Ltd

Asset location search

Elliott Wood Partnership LLP 241The Broadway LONDON SW19 1SD

Search address supplied

93 Tottenham Court Road London W1T 4TW

Your reference

2170754

Our reference

ALS/ALS Standard/2017_3692965

Search date

20 November 2017

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: 93, Tottenham Court Road, London, W1T 4TW

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TQ2982SE TQ2982SW TQ2981NE TQ2981NW

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

TQ2982SE TQ2982SW

TQ2981NE TQ2981NW

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8402	n/a	n/a
62DD	n/a	n/a
62DF	n/a	n/a
62DE	n/a	n/a
62DH	n/a n/a	n/a n/a
62CG	n/a	n/a
62DA	n/a	n/a
62EB	n/a	n/a
62EC 62CH	n/a n/a	n/a n/a
62BJ	n/a	n/a
62CJ	n/a	n/a
62CB	n/a n/a	n/a n/a
62DJ	n/a	n/a
62CA	n/a	n/a
62CD	n/a	n/a
62CC 7202	n/a n/a	n/a n/a
62CF	n/a	n/a
62EA	n/a	n/a
62BI	n/a	n/a
63BJ	n/a	n/a
7303	n/a	n/a
63BI	n/a	n/a
641C 7102	n/a n/a	n/a n/a
7101	n/a	n/a
61BI	n/a	n/a
61BJ	n/a	n/a
01BH 61CA	n/a n/a	n/a n/a
71DI	n/a	n/a
61BG	n/a	n/a
6103 61PE	24.85	n/a
71DH	n/a	n/a
61BE	n/a	n/a
71DG	n/a	n/a
61BA 61A I	n/a n/a	n/a n/a
61BD	n/a	n/a
6104	24.91	21.48
61AI	n/a	n/a
61AH	n/a n/a	n/a n/a
61BB	n/a	n/a
61AG	n/a	n/a
62EG	n/a n/a	n/a n/a
62EE	n/a	n/a
62DB	n/a	n/a
62DC	n/a	n/a
82DH	n/a	n/a
83BI	n/a	n/a
82DF	n/a	n/a
82DG 8203	n/a n/a	n/a n/a
8105	n/a	n/a
8304	n/a	n/a
8205	n/a	n/a
9303	n/a	n/a
9204	24.98	21.47
9201	24.8	n/a
/001 6001	26.52 n/a	20.32 n/a
7002	26.47	20.45
6002	n/a	n/a
7003	26.34	19.96
6007	∠o.∠ n/a	20.10 n/a
9005	n/a	n/a
9101	25.29	21.12
50DD 5112	n/a 24 55	n/a 23.1
501A	n/a	n/a
50CC	n/a	n/a
50BH	n/a	n/a
50EJ	n/a	n/a
50FA	n/a	n/a
50FB	n/a	n/a
50FC	n/a n/a	n/a n/a
5401	n/a	n/a
5415	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
5402	25.62	20.44
5403	25.59	20.35
6403	n/a	n/a
6405	n/a	n/a
6406	24.31	17.04
641B	n/a	n/a
641A 52BU	n/a n/a	n/a n/a
	n/a n/a	n/a
53DG	n/a	n/a
53BF	n/a	n/a
53DB	n/a	n/a
53DJ	n/a	n/a
53DF	n/a	n/a
53CA	n/a	n/a
53DA	n/a	n/a
53DE	n/a	n/a
53BG	n/a	n/a
53EA	n/a	n/a
53DC	n/a	n/a
53CJ	n/a	n/a
53DD	n/a	n/a
53EB	n/a	n/a
53AI	n/a	n/a
53AG	n/a n/a	n/a n/a
53AJ 52BD	n/a n/a	n/a n/a
53BB	n/a	n/a
53CD	n/a	n/a
53AH	n/a	n/a
53BC	n/a	n/a
53BE	n/a	n/a
53AD	n/a	n/a
5301	25.89	20.88
5116	n/a	n/a
5102	27.22	19.69
5115	n/a	n/a
5114	n/a	n/a
5202	n/a	n/a
5201	27.41	19.84
52BH	n/a	n/a
52BE	n/a n/a	n/a n/a
52BG	n/a n/a	n/a n/a
52BE	n/a	n/a
52BA	n/a	n/a
52BB	n/a	n/a
52BC	n/a	n/a
52AE	n/a	n/a
53EC	n/a	n/a
53CE	n/a	n/a
53CF	n/a	n/a
53CG	n/a	n/a
53BI	n/a	n/a
53BJ	n/a	n/a
53BA	n/a	n/a
53CH	n/a	n/a
53DH	n/a	n/a
	n/a	n/a
530B	n/a n/o	n/a n/o
5501	1Va	1Va
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pines are not		
shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position		
of mains and services must be verified and establish	ed on site before any works are undertaken.	

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4001	n/a	n/a
4101 41DC	27.16 n/a	22.29 n/a
40DJ	n/a	n/a
4005	27.38	22.77
	n/a n/a	n/a n/a
40DG 40EA	n/a	n/a
40ED	n/a	n/a
40EE	n/a	n/a
401F 401A	27.05 n/a	22.7 n/a
401D	n/a	n/a
401B	n/a	n/a
401C	n/a n/a	n/a n/a
1002	n/a	n/a
1001	27.66	25.37
1003	n/a	n/a
2101	n/a 27.93	n/a 23.95
2002	n/a	n/a
2003	n/a	n/a
3045	n/a 27.12	n/a 24 5
311B	n/a	n/a
3044	27.77	22.98
4006	n/a	n/a
3425	n/a	n/a
341A	n/a	n/a
3422	25.42	n/a
44BI 4401	n/a 25 45	n/a n/a
4403	24.14	19.78
441A	n/a	n/a
0403	27.49 28.30	24.69 25.21
0401	28.39 n/a	n/a
141A	n/a	n/a
2309	26.97	24.83
2310	27.22 n/a	25.74 n/a
241H	n/a	n/a
241G	n/a	n/a
3403 241E	27.64 n/a	n/a n/a
2411	n/a	n/a
241A	n/a	n/a
241E	n/a	n/a n/o
241C 241B	n/a	n/a
2402	n/a	n/a
2405	26.62	n/a
01FD 0134	n/a 28.09	n/a 25.32
0205	28.04	17.64
01FE	n/a	n/a
0118	n/a n/a	n/a n/a
011C	n/a	n/a
0104	27.97	24.59
0108	28.2 n/a	23.63 25.02
0207	27.63	17.81
1103	27.84	24.08
011D 011E	n/a n/a	n/a n/a
0107	27.83	24.8
011F	n/a	n/a
1106	26.79	25.34
0202	1va 27.66	1Va 25.77
0203	n/a	n/a
1204	27.64	26.83
1205	27.69 27.53	20.52 26 71
1207	27.44	26.62
1210	24.63	22.45
1302	27.54 28.15	18 23.18
311C	20.15 n/a	23.10 n/a
33DE	n/a	n/a
3306	23.78	21.81
3122 3307	21.54 26.3	23.16 25.26
3304	23.78	21.81
331A	n/a	n/a
3303	26.27 24.09	n/a 22 39
5202	27.03	ムム・リ ジ

Manhole Reference	Manhole Cover Level	Manhole Invert Level
3334	27.3	24.02
3301	27.23	22
3305	26.07	25.01
3308	26.13	24.55
4201	n/a	n/a
4145	n/a	n/a
41DH	n/a	n/a
4304	26.7	21 99
4302	26.92	19.83
4302 42CG	n/a	n/a
4200	27	n/a
4301	21	n/a
41EA 42CA	n/a	n/a
420A	n/a	n/a
	n/a n/a	n/a
41ED	n/a	n/a
	n/a	n/a
4305	26.31	21.49
2102	27.79	23.7
211B	n/a	n/a
211A	n/a	n/a
1105	26.99	n/a
2103	n/a	n/a
1107	26.91	25.39
3210	27.3	23.75
2239	27.61	n/a
3233	27.3	23.01
1208	27.29	26.5
2202	27.29	23.84
2204	27.22	26.17
1209	24.63	22.45
2205	27.43	26.12
2206	27.5	25.5
32BB	n/a	n/a
2207	27.68	23.11
32BA	n/a	n/a
2203	n/a	n/a
32BC	n/a	n/a
2301	27 15	22.66
2302	27 65	26 37
3302	26.91	25.05
231	n/a	n/a
2317	20 5 <i>1</i>	18 /3
2303	20.54	10.45 n/o
230 4 2207	20.34	10 GA
2307	20.70 27.95	10.04
	21.00	10.10
23Uð	20.78	10.04
0001	21.11	23.03
0008	27.33	n/a
0007	n/a	n/a
0006	28.07	23.98
0002	26.3	24.21
The position of the apparatus shown on this plan	s given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
9501	25.87	20.91
9502	n/a	n/a
9503 8801	25.9 27.06	18.52 n/a
88CI	n/a	n/a
88DA	n/a	n/a
88DB	n/a	n/a
88CH	n/a	n/a
88DF	n/a	n/a
	n/a n/a	n/a n/a
88DG	n/a	n/a
8701	27.07	18.97
88DH	n/a	n/a
88CD	n/a	n/a
8805	n/a	n/a
88CF	n/a n/a	n/a n/a
8704	26.99	n/a
88CC	n/a	n/a
88CB	n/a	n/a
8807	26.91	21.22
8806	26.99	20.38
8702	26.92	n/a
9701	20.00 n/a	20.12 n/a
9603	26.91	21.2
9702	26.64	19.6
9601	26.8	18.78
9802	26.06	19.78
6506	25.67	23.97
651B	n/a n/a	n/a n/a
6504	n/a	n/a
7516	26.89	21.71
7517	26.57	n/a
7518	26.53	21.58
7501	n/a	n/a
8501	n/a n/a	n/a n/a
8502	11/a 26 54	11/a 22 4
861A	n/a	n/a
9505	26.46	21.38
78CI	n/a	n/a
7801	26.98	19.1
79BD 89AC	n/a n/a	n/a n/a
8941	n/a	n/a
8901	26.72	20.88
89AD	n/a	n/a
89AH	n/a	n/a
89AE 7902	n/a 26.85	n/a n/a
6902	26.69	21.85
89AF	n/a	n/a
791B	n/a	n/a
7904	26.63	20.58
691Δ	20.70 n/a	n/a
6901	26.95	19.11
6621	27.63	n/a
6601	27.24	22.15
6805	n/a	n/a
6701	21.04 n/a	∠1.40 n/a
7803	26.21	21.94
781A	n/a	n/a
7603	27.13	22.11
7802	26.26	22.22
7808	26.58	26.58
7801	20.10 n/a	n/a
7704	n/a	n/a
78DC	n/a	n/a
78DB	n/a	n/a
78DA	n/a	n/a
788A	n/a	n/a p/o
78BC	n/a	n/a
78CF	n/a	n/a
7601	n/a	n/a
78CG	n/a	n/a
88DC	n/a	n/a
880J	n/a n/a	n/a n/a
88DD	n/a	n/a
8706	26.06	21.66
5502	27.06	n/a
6502	25.77	23.41
551A	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
5504	n/a	n/a
551B	n/a	n/a
55BB	n/a	n/a
55BD	n/a	n/a
561A	n/a	n/a
5601	n/a	n/a
5701	n/a	n/a
5710	n/a	n/a
5722	27.69	22.16
6706	27.23	21.62
6801	27.47	21.81
5802	n/a	n/a
5803	27.92	23.62
6803	27.23	22.24
6811	n/a	n/a
5805	28.01	23.46
6903	26.76	21.51
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4504	25.23	23.05
4503 451Δ	25.7 n/a	22.83 n/a
451B	n/a	n/a
4502	26.85	22.82
4501	n/a	n/a
4619A	27.2 n/2	22.69 p/p
4000A 471B	n/a n/a	n/a n/a
471A	n/a	n/a
4801	n/a	n/a
4901	n/a	n/a
4925	27.31	n/a 22.57
4905	26.51	25.29
3501	26.87	23.82
3503	27.31	22.73
351D	n/a	n/a
351B	n/a	n/a
3502	26.65	23.99
351C	n/a	n/a
3605A	26.98	24.24
4605A 461 A	26.83 n/a	21.5/ n/a
3601A	27.73	21.4
4601	26.87	23.49
4604	26.87	23.13
3601B	n/a	n/a
3602A	11/a 27.07	11/a 21 73
4603	27.13	24.23
4602	27.13	26.21
3604B	27.04	21.83
361B 361A	n/a n/a	n/a n/a
3602B	n/a	n/a
4701A	n/a	n/a
4701B	n/a	n/a
3703	n/a 27.22	n/a n/a
4704 4805	n/a	n/a
3803	27.34	23.12
191B	n/a	n/a
1938	n/a	n/a
191A 1939	n/a n/a	n/a n/a
1937	n/a	n/a
1904	28	23.88
191C	n/a	n/a
1903 2903B	n/a 26.08	n/a 23.64
2901B	26.29	24.25
3902A	n/a	n/a
3901A	26.69	25.23
3904 4907	27.79	23.24 n/a
4906	n/a	n/a
1504	27.05	21.64
2501	27.69	23.13
2500 2502	17/a 27.66	1/a 26.64
2513	27.64	n/a
1502	27.43	20.82
2503	27.57	21.13
2504 2602	20.59 27 38	25.21 21 24
1607	n/a	n/a
1606	27.82	20.94
1605	26.34	24.36
1604 2605	26.78 n/a	24.13 n/a
2604	n/a	n/a
1603	37.39	21.37
1602	27.43	21.46
2601	27.51 n/2	21.55 n/2
1601	37.38	21.67
1701	27.04	21.93
1702	27.2	22.43
271A 2701	n/a 27.05	n/a n/a
2801A	27.00	25.7
1801	27.06	22.35
281B	n/a	n/a
281A	n/a	n/a
2803 071C	2/.15 n/a	23.84 n/a
071B	n/a	n/a
071A	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level		
0703	27.51	21.92		
0804	26.69	22.12		
0806	27.26	n/a		
0601	27.78	21.58		
0702	27.42	21.79		
0803	n/a	n/a		
0603	n/a	n/a		
0604	27.83	21.25		
0805	27.25	22.11		
081A	n/a	n/a		
0901A	26.52	22.39		
0801	26.94	22.42		
0802	26.94	22.47		
0501	27.8	22.83		
0502	27.64	23.24		
0503	27.55	23.06		
0504	n/a	n/a		
0605	27.96	24.54		
051B	n/a	n/a		
05BH	n/a	n/a		
051A	n/a	n/a		
05BI	n/a	n/a		
151A	n/a	n/a		
1503	27.52	23.51		
1501	27.85	21.03		
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.				

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- **Other Symbols** Symbols used on maps which do not fall under other general categories
- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STERE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND	
Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Valves

- O Undefined End
- Manifold
- Customer Supply
- Fire Supply

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Email: <u>admin@tpos.co.uk</u>

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

The Network Building 2170754 Surface Water Drainage Statement

C CCTV Drainage Survey

elliottwood

engineering a better **society**

C Elliott Wood Partnership Ltd

Below-ground Drainage Report

85 Great Portland Street London W1W 7LT

Inspection Date

Tuesday, 3 November 2020

Report prepared for

Elliott Wood 55 Whitfield Street London W1T 4AH

Site address

The Network Building 95-100 Tottenham Court road London W1T 4TW The Network Building, 95-100 Tottenham Court road, London, W1T 4TW

Executive Summary

Overall, the below-ground drains are in moderate condition.

There are accumulations of silt, debris and fat deposits in the below-ground drains which should be cleared to restore its full capacity. There is an oil interceptors serving the surface-water system. There are some accumulations of hard scale which we recommend are removed with a combination of a mechanical de-scaler and high pressure jetting. There is a seized and a buried inspection chamber.

An overall summary of the key findings of the inspection.

Δ

А

Fat deposits

Seized and buried inspection covers

1. Inspection

Section Contents

1.1 Method of Assessment

- 1.2 Access
- **1.3** Scope

I Method of Assessment

Inspection and assessment was carried out by desktop research, a site walkover and push-rod CCTV inspection along the below-ground drains where practicable.

→ 1.3 Access

There was good general access to the site, however there is one seized inspection cover at MH8, a buried chamber at MH19 and no access to MH 17 and MH 18 which prevented a full inspection.

We take a fair-minded and common sense view that we will attempt to inspect and assess as much of the below-ground drainage as is reasonably possible in the circumstances. We cannot usually inspect blind connections where there is no inspection access nor can we inspect drains deeper than approx. 3m without special equipment and/or Confined Spaces entry. The presence of silt or debris may hide defects until de-silting works are undertaken.

The background, scope of engagement and level of inspection.

Job No. 2492

Instruction

WJ Shirley Ltd were instructed by ELLIOTT WOOD 55 Whitfield Street London W1T 4AH

to carry out a drainage inspection at THE NETWORK BUILDING 95-100 Tottenham Court road London W1T 4TW

We understand this is in relation to a redevelopment project.

Report issue date:

6/11/20

Report prepared by:

Laueren Coupland Associate

Authorised by:

Robert Shirley BA (Hons) PhD Director, WJ Shirley Consultancy Ltd

The Network Building, 95-100 Tottenham Court road, London, W1T 4TW

2. Drainage Assets

Section Contents

- 2.1 What's there?
- 2.2 Drainage type
- 2.3 Ownership

2.4 Materials2.5 Disposal method2.6 Drainage plan

2.1 What's there?

In terms of below-ground drainage assets, there are foul manholes, surfacewater manholes, an oil interceptor, gullies and pipe sections.

?

2.2 Drainage type

Foul and surface-water drainage systems are separate, running through different pipes and manholes. Thus is unusual in Central London as the sewers are usually combined. The drains flow by gravity (are not pumped).

2.3 Ownership

Identification of the status of drains on site is beyond the scope of our inspection, however all drains detailed in our report within the site boundary are likely to be private.

What drainage assets are present, materials, sizes, ownership and disposal method.

Manholes	19
Pipe sections	54
Oil interceptors	1
Pumping chambers	0
Soakaways	0
Drainage type	Separate
Ownership	Private
Dispoal method	Mains

Total length of belowground drainage

0.3 km

The Network Building, 95-100 Tottenham Court road, London, W1T 4TW

Pipe Diameter	Pipe Materials	Inspection Chambers	Inspection Covers
100mm	Cast iron	Concrete	Concrete
150mm	Vitrified clay	Rendered, probably over brickwork	Pressed steel
300mm			

The property is believed to be on mains drainage.

2.6 Drainage Plan

3. Condition

Section Contents

- 3.1 Operation & maintenance
- 3.2 Structure & state of repair
- 3.3 Planned, preventative maintenance

Overall, the below-ground drains are moderate operational condition. We noted the following operational defects:

Occurrences	Defect
4	Scaling
3	Silt & debris
1	Fat deposits
1	Cover in a seized frame

There are accumulations of scale in 4 drains. Scale consists of hard deposits inside the drain pipes which provide a rough surface and can reduce the effective diameter and flow capacity of the pipe increasing the likelihood of blockages. We recommend they are cleared with a mechanical de-scaler in conjunction with high pressure jetting.

There are accumulations of silt and debris in the below-ground drains causing reduced flow. This usually occurs through a natural build-up of decomposing leaf litter or soil washed into the rainwater pipes and surface gullies. Silt causes a restriction to the flow, and can reduce the speed and effective capacity of the drains increasing the likelihood of further silting, blockages and even surface flooding. We recommend the silt is cleared and removed from site with a combination of a suction tanker and high pressure water jetting in order to restore the full capacity and efficiency of the system. There is the possibility that further defects will be revealed following these de-silting works.

A summary and assessment of the current structural conditions and operation of the drains.

Maintenance	£2,800
Repairs	£O

Total Costs Repairs & Maintenance

Scaling

Silt & debris

There are some accumulations of fat deposits. This causes a restriction to the flow, and can reduce the speed and effective capacity of the drains increasing the likelihood of further silting, blockages and even surface flooding. We recommend the fat is cleared and removed from site with high pressure water jetting in order to restore the full and capacity efficiency of the system.

There is a seized inspection cover at MH 8. Ideally this should be broken out and renewed to allow full maintenance and inspection access.

Fat deposits

Seized inspection cover

Overall, the below-ground drains are in good structural condition and we found no significant defects.

3.3 Planned, preventative maintenance

It is generally considered that good asset management involves an optimal amount of planned preventative maintenance. As a general rule we recommend a CCTV inspection every 5 years so that any developing structural defects can be addressed before they deteriorate too far, annual de-silting, annual pump maintenance (if present) and annual oil interceptor maintenance (if present). Time intervals on specific sites can be tweaked depending on local circumstances or conditions. A suggested site-specific 5-year maintenance plan in is available free of charge on request.

4. Suitability

Section Contents

4.1 Capacity 4.2 Access 4.3 Materials

A full assessment of drainage capacity would require accurate surveyed levels or a topographic survey and flow modelling calculations to be undertaken, however we found no evidence to suggest that the drains are under-sized.

There is adequate general maintenance access to the drainage system, with the exception of the seized and buried inspection covers.

Inspection covers, chambers are pipe sections are in suitable materials.

An assessment of the suitability of the drainage design, materials present and opportunity for maintenance access.

Capacity	Ø
Access	0
Materials	Ø

The Network Building, 95-100 Tottenham Court road, London, W1T 4TW

5. Environmental

Section Contents

• Not included

25.1 Background

An assessment of the environmental risk presented by the drainage system was not part of our inspection.

An assessment of the environmental risk presented by the drainage systems.

Oil interceptors	1
Waste & material storage	Х
Re-fuelling facilities	Х
Sustainability	Х

Costs associated with environmental best-practice

£0

The Network Building, 95-100 Tottenham Court road, London, W1T 4TW

6. Legal Compliance

Section Contents

- 6.1 Mis-connections
- 6.2 Oil interceptors
- 6.3 Pressure washers
- **6.4** Trade Effluent Consents**6.5** Environmental Permits

We found no evidence of mis-connections, e.g foul connected illegally to surfacewater drainage etc.

6.2 Oil interceptors

There is usually no legal requirement to fit oil interceptors (unless under the conditions of an Environmental Permit, Trade Effluent Consent or planning consent.

6.3 Pressure washers

We found no wash-down areas on site and thus there are no implications for drainage regarding this matter. However, if pressure washers are used, it is a legal requirement to route any effluent to the foul drains with prior permission from the sewer provider and a Trade Effluent consent¹

Mis-connections	Ø
Oil interceptors	0
Pressure washers	X
Trade Effluent Consents	X
Environmental Permits	X

Do the drains

comply with

legislation?

relevant

Cost associated with Legal Compliance

6.4 Trade effluent consents

Although beyond the scope of our inspection, we found no practices on site which are likely to require a Trade Effluent Consent.

6.5 Environmental permits

Although beyond the scope of our inspection, we found no practices on site which are likely to require an Environmental Permit.

¹ The preferred method is to pass through a settlement tank and recycle wash-water but other methods include containment in a tank for periodic emptying by a registered waste carrier.

7. Costs

Section Contents

- 7.1 Reason for spend
- 7.2 Type of spend
- 7.3 Spend timeline
- 7.4 Cost details
- 7.5 Complete total

Estimated budget costs for our recommendations. A firm price can be obtained on request

8. Action plan

Section Contents

- 8.1 Action plan
- 6.2 Oil interceptors
- 6.3 Pressure washers

6.4 Trade Effluent Consents**6.5** Environmental Permits

Recommended action plan or repairs & maintenance

The table below summarises our recommendations.

Drainage Repair & Maintenance Programme

Year	Ву	Asse	et	Defect	Recommendation	Cost
	May 2021	MH 2	D 9	Silt, moderate	Clear with high pressure water jetting	£200
	May 2021	MH 3	D 8	Blockage	Clear with high pressure water jetting	£200
	May 2021	MH 7	D 2	Scale, moderate	De-scale	£300
	May 2021	MH 7	D 3	Silt, moderate	Clear with high pressure water jetting	£200
	May 2021	MH 8	D 1	Cover seized in frame	Break out and renew cover and frame	£800
1	May 2021	MH 9	D 4	Scale, moderate	De-scale	£300
I	May 2021	MH 13	D 7	Scale, moderate	De-scale	£300
	May 2021	MH 14	D 5	Fat deposits, moderate	Clear with high pressure water jetting	£200
	May 2021	MH 14	D 6	Scale, moderate	De-scale	£300
	May 2021	MH 2	D 9	Silt, moderate	Clear with high pressure water jetting	£200
	May 2021	MH 3	D 8	Blockage	Clear with high pressure water jetting	£200
	May 2021	MH 7	D 2	Scale, moderate	De-scale	£300
					TOTAL	£3,500

Approx. 10% professional fees *

* Professional fees - what are these? They are included to give an overall total cost, for example if a Project Manager is involved and are not charged by us

£3,900

£400

8.2 Repair & maintenance techniques

We have recommended various repair and maintenance techniques in this report. Below is a short summary of what is involved.

Technique	Notes
Buried chamber	A CCTV camera with a sonde transmitter is pushed along the below-ground drains to the buried manhole. The sonde is located on the service with a CAT scanner and the cover exposed. If the cover is seized or needs renewing, the frame is broken out and a new cover and frame fitted.
New inspection cover	The cover surround is broken out with an angle grinder and a new cover and frame fitted by bedding in concrete and surfaced as necessary.
De-silting works & fat removal	High pressure water jetting is used in conjunction with a lorry-based suction tanker to loosen and remove silt, debris and wash-water from the drains. The silt and debris is removed from site and disposed of at a Waste Transfer station.
De-scaling works	High pressure water jetting in conjunction with a mechanical de-scaler grinds the scale off the pipe, washes it clean and the debris removed from site.

Drainage Assets

Details of the drainage infrastructure inspected including, where appropriate, an note and assessment of any defects.

MH 1Surface-water inspection chamberNo Budget Costs

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5224, -0.1368	730	Concrete section	Close

Cover

Size	Material	Description	Inspection
1200 x 800	Pressed steel		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 15	150	Vitrified clay	16.8	CCTV
SW 16	100	Vitrified clay	11.8	CCTV
SW 18	100	Vitrified clay	9.0	CCTV
SW 20	150	Vitrified	4.2	CCTV

Defects & recommendations

No defects

Photos

MH 1 chamber

Section SW 15

Section SW 16

Section SW 18

MH 2 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5224, -0.1368	900	Concrete section	Close

Cover

Size	Material	Description	Inspection
1200 x 800	Pressed steel		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 13	150	Vitrified clay	4.0	CCTV
SW 14	150	Vitrified clay	2.9	CCTV
SW 3	150	Vitrified clay	31.0	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 9	Silt	Clear with high pressure water jetting	Moderate	£200

Photos

MH 2 chamber

Defects

Silt

Section SW 13

MH 3 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5225, -0.1368	820	Concrete section	Close

Cover

Size	Material	Description	Inspection
1200 x 800	Pressed steel		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 23	150	Vitrified clay	11.3	CCTV
FW 25	100	Cast iron	13.7	CCTV
FW 26	100	Cast iron	9.4	CCTV
FW 27	100	Vitrified clay	8.9	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 8	Blockage	Clear with high pressure water jetting	Moderate	£200

Photos

Defects

Blockage Section FW 23

Section FW 26

MH 4 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5225, -0.1369	1120	Concrete	Close

Cover

Size	Material	Description	Inspection
800 x 800	Pressed steel		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 15	150	Vitrified clay	16.8	CCTV
SW 4	300	Vitrified clay	11.6	CCTV
SW 6	150	Vitrified clay	5.7	CCTV

Defects & recommendations

No defects

Photos

MH 4 chamber

Section SW 15

Section SW 4

MH 5 Oil interceptor

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5221, -0.1365	1540	Concrete section	Close

Cover

Size	Material	Description	Inspection
800 x 0	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 12	100	Cast iron	1.8	CCTV

Defects & recommendations

No defects

Photos

MH 5 chamber

MH 6 Oil interceptor

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5221, -0.1366	1500	Concrete section	Close

Cover

Size	Material	Description	Inspection
800 x 0	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 11	100	Cast iron	1.8	CCTV
SW 12	100	Cast iron	1.8	CCTV

Defects & recommendations

No defects

Photos

MH 6 chamber

MH 7 Oil interceptor

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5220, -0.1366	700	Concrete section	Close

Cover

Size	Material	Description	Inspection
800 x 0	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
SW 10	100	Cast iron	2.0	CCTV
SW 11	100	Cast iron	1.8	CCTV
SW 7	100	Cast iron	2.0	CCTV
SW 8	100	Cast iron	25.4	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 2	Scale	De-scale	Moderate	£300
D 3	Silt	Clear with high pressure water jetting	Moderate	£200

Photos

MH 7 chamber

Scale Section SW 10

Section SW 11

1

MH 8 -None Selected-

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5220, -0.1367	0	-None Selected-	Close

Cover

Size	Material	Description	Inspection
900 x 750	Concrete		Close

Pipe sections

No data

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 1	Cover seized in frame	Break out and renew cover and frame	Moderate	£800

Photos

MH 8 chamber

Cover seized in frame None

MH 9 Foul inspection chamber

Budget Costs £300

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5221, -0.1365	750	Rendered, probably over brickwork	Close

Cover

Size	Material	Description	Inspection
1050 x 1050	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 1	150	Cast	7.5	CCTV
FW 2	100	Cast iron	2.6	CCTV
FW 3	100	Cast iron	2.6	CCTV
FW 4	150	Cast iron	18.8	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 4	Scale	De-scale	Moderate	£300

Photos

Scale

MH 10 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5222, -0.1366	0	-None Selected-	Distant/partial

Cover

Size	Material	Description	Inspection
0 x 0	-None Selected-		Distant/partial

Pipe sections

No data

Defects & recommendations

No defects

Photos

MH 10 chamber None

MH 11 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5222, -0.1367	700	Concrete	Close

Cover

Size	Material	Description	Inspection
750 x 750	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 10	100	Cast iron	2.2	CCTV
FW 11	100	Cast iron	2.2	CCTV
FW 4	150	Cast iron	18.8	CCTV
FW 8	100	Vitrified clay	4.0	CCTV
FW 9	100	Cast iron	3.2	CCTV

Defects & recommendations

No defects

Photos

MH 11 chamber

Section FW 11

MH 12 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5222, -0.1367	640	Concrete	Close

Cover

Size	Material	Description	Inspection
750 x 750	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 20	100	Cast iron	1.0	CCTV
FW 21	100	Cast iron	1.9	CCTV
FW 22	100	Cast iron	2.4	CCTV
FW 8	100	Vitrified clay	4.0	CCTV

Defects & recommendations

No defects

Photos

MH 12 chamber

Section FW 20

MH 13 Foul inspection chamber

Chamber

51.5223, -0.1366 550 Concrete section Close	Location (Lat,Lon)	Depth mm	Construction	Inspection
	51.5223, -0.1366	550	Concrete section	Close

Cover

Size	Material	Description	Inspection
750 x 600	-None Selected-		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 14	150	Cast iron	4.4	CCTV
FW 17	100	Cast iron	1.0	CCTV
FW 18	150	Cast iron	1.7	CCTV
FW 19	100	Cast iron	1.2	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 7	Scale	De-scale	Moderate	£300

Photos

MH 13 chamber

Scale

Section FW 14

Section FW 17

Section FW 18

MH 14 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5223, -0.1365	560	Concrete section	Close

Cover

Size	Material	Description	Inspection
750 x 600	Concrete		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 12	150	Cast iron	15.8	CCTV
FW 13	0	Cast iron	2.4	CCTV
FW 14	150	Cast iron	4.4	CCTV
FW 15	100	Cast iron	2.7	CCTV
FW 16	100	Cast iron	2.0	CCTV

Defects & recommendations

Location	Defect	Recommendation	Urgency	Cost
D 5	Fat deposits	Clear with high pressure water jetting	Moderate	£200
D 6	Scale	De-scale	Moderate	£300

Photos

MH 14 chamber

Defects

Section FW 16

Fat deposits Section FW 12

Section FW 14

MH 15 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5223, -0.1366	0	-None Selected-	Not inspected

Cover

Size	Material	Description	Inspection
0 x 0	-None Selected-		Not inspected

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 18	150	Cast iron	1.7	CCTV
FW 34	0		4.3	CCTV

Defects & recommendations

No defects

Photos

MH 15 chamber Section FW 18

MH 16 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5226, -0.1369	1300	Concrete section	Close

Cover

Size	Material	Description	Inspection
1200 x 800	Pressed steel		Close

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 23	150	Vitrified clay	11.3	CCTV
FW 28	100	Vitrified clay	6.8	CCTV
FW 29	150	Vitrified clay	8.0	CCTV
FW 30	0	Vitrified clay	5.9	CCTV
FW 31	100	Vitrified clay	9.3	CCTV
FW 32	100	Cast iron	10.0	CCTV
FW 33	100	Cast iron	3.0	CCTV

Defects & recommendations

No defects

Photos

MH 16 chamber

Section FW 23

Section FW 31

Section FW 32

Section FW 28

Section FW 33

Section FW 29

MH 17 Foul inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5221, -0.1364	0	-None Selected-	Not inspected

Cover

Size	Material	Description	Inspection
0 x 0	-None Selected-		Not inspected

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 12	150	Cast iron	15.8	CCTV

Defects & recommendations

No defects

Photos

MH 17 chamber

MH 18 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5221, -0.1364	0	-None Selected-	Not inspected

Cover

Size	Material	Description	Inspection
0 x 0	-None Selected-		Not inspected

Pipe sections

No data

Defects & recommendations

No defects

Photos

MH 18 chamber None

MH 19 Surface-water inspection chamber

Chamber

Location (Lat,Lon)	Depth mm	Construction	Inspection
51.5223, -0.1366	0	-None Selected-	Not inspected

Cover

Size	Material	Description	Inspection
0 x 0	-None Selected-		Not inspected

Pipe sections

Section	Diameter mm	Material	Length m	Inspection
FW 34	0		4.3	CCTV

Defects & recommendations

No defects

Photos

MH 19 chamber
The Network Building 2170754 Surface Water Drainage Statement

D ABG Ltd Blue Roof Calculations

elliottwood

engineering a better **society**

D Elliott Wood Partnership Ltd

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	The Network Building, London, W1T 4TW - Plant Area (Level 08) - 1-in-1yr. +0% CC - Option		
Prepared for:	Elliott Wood, London		
Date:	05/11/2020		
ABG Project ID:	21907	Calculator version:	1.29
Prepared by:	Andrew Keer, andrew@abgltd.com, 07525-808700		
Notes/description:	Plant area - pavers on pedestals or ballasted - TBC. Plant support method TBC with ABG		
	& structural engineer. Maintenance access only - TBC. 'Higher strength', 'blue roof'		

system to be utilised. Inverted roof, construction, with zero falls - TBC. 'Option 2' = additional catchment area from lift/stair cores.

Input Parameters - Rainfall Information (Flood Studies Report 1975)					
Return period:	1 year	As supplied by Client			
Allowance for Climate Change:	0 %	As supplied by Client			
Location selected for FSR data:	London (Central)				
Input Parameters - Roof Information					
Total catchment area:	900 m ²	As supplied by Client			
Attenuation area:	660 m ²	As supplied by Client			
Maximum allowable runoff:	1.4 l/s	As supplied by Client			

creative geosynthetic engineering

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	0 hours and 20 minutes	0.2
30 mins	1 hour and 10 minutes	0.3
1 hour	2 hours and 30 minutes	0.4
2 hours	4 hours and 10 minutes	0.5
4 hours	4 hours and 50 minutes	0.6
6 hours	4 hours and 50 minutes	0.6
10 hours	3 hours and 50 minutes	0.5
24 hours	0 hours and 40 minutes	0.2
48 hours	#VALUE!	#VALUE!
#VALUE! m ³		

#VALUE! #VALUE!

Output - Recommended Blue Roo	f System
System Name:	ABG blueroof VF HD+ 108mm
Description:	Areas of soft landscaping may require locally, an additional 25mm deep, reservoir board ('ABG Roofdrain 25'). Additional 'tell-tale'/overflow positions may be included by the architect, within the roofing design. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis.
Total attenuation capacity:	64.0 m^3

Number of Blue Roof outlets:

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

3

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	The Network Build	ing, London, W1T 4TW - Plant Ar	rea (Level 08) - 1-in-	30yr. +0% CC - Optior
Prepared for:	Elliott Wood, Lond	on		
Date:	05/11/2020			
ABG Project ID:	21907	Calculator version:	1.29	
Prepared by:	Andrew Keer, andr	Andrew Keer, andrew@abgltd.com, 07525-808700		
Notes/description:	Plant area - pavers	Plant area - pavers on pedestals or ballasted - TBC. Plant support method TBC with ABG		
	& structural engine	& structural engineer. Maintenance access only - TBC. 'Higher strength', 'blue roof'		
	system to be utilise	system to be utilised. Inverted roof, construction, with zero falls - TBC. 'Option 2' =		

additional catchment area from lift/stair cores.

Input Parameters - Rainfall Information	(Flood Studies Report 1975)			
Return period:	30 years	As supplied by Client		
Allowance for Climate Change:	0 %	As supplied by Client		
Location selected for FSR data: London (Central)				
Input Parameters - Roof Information				
Total catchment area:	900 m ²	As supplied by Client		
Attenuation area:	660 m ²	As supplied by Client		
Maximum allowable runoff:	1.4 l/s	As supplied by Client		

slue Roof Estimat			
slue Roof Estima			
slue Roof Estim			
slue Roof Estir			
slue Roof Esti			
slue Roof Es	7		
slue Roof E			
slue Roof I			
slue Roof			
slue Roo			
slue Ro			
slue R			
Slue			
Slue			

creative geosynthetic engineering

Location selected for FSR data:	London (Central)		
Input Parameters - Roof Information			
Total catchment area:	900 m ²	As supplied b	y Client
Attenuation area:	660 m ²	As supplied b	y Client
Maximum allowable runoff:	1.4 l/s	As supplied b	y Client
Output - Rainfall Calculation			
Duration	Ti	me to Empty	Restricted Outflow (I/s)
15 mins	7 hou	rs and 30 minutes	0.7
30 mins	9 hou	rs and 10 minutes	0.9
1 hour	10 hot	urs and 30 minutes	0.9
2 hours	11 ho	urs and 20 minutes	1.0
4 hours	11 hot	urs and 40 minutes	1.0
6 hours	11 hot	urs and 20 minutes	1.0
10 hours	10 hoi	urs and 20 minutes	0.9

Total attenuation required: 35.3 m³ Half empty time: 1 hours and 0 minutes.

Output - Recommended Blue Roo	f System
System Name:	ABG blueroof VF HD+ 108mm
Description:	Areas of soft landscaping may require locally, an additional 25mm deep, reservoir board ('ABG Roofdrain 25'). Additional 'tell-tale'/overflow positions may be included by the architect, within the roofing design. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis.
Total attenuation capacity:	64.0 m ³
Number of Blue Roof outlets:	3

5 hours and 40 minutes

0 hours and 10 minutes

Notes:

24 hours

48 hours

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

0.6

0.2

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	The Network Buildi	ing, London, W1T 4TW - Plant Ar	ea (Level 08) - 1-in-100yr. +0	% CC - Option
Prepared for:	Elliott Wood, Londe	on		
Date:	05/11/2020			
ABG Project ID:	21907	Calculator version:	1.29	
Prepared by:	Andrew Keer, andre	ew@abgltd.com, 07525-808700		
Notes/description:	Plant area - pavers	on pedestals or ballasted - TBC.	Plant support method TBC w	ith ABG
	& structural engine	er. Maintenance access only - TI	BC. 'Higher strength', 'blue ro	oof'
	system to be utilise	ed. Inverted roof, construction, w	vith zero falls - TBC. 'Option 2	<u>'</u> =

system to be utilised. Inverted roof, construction, with zero falls - TB additional catchment area from lift/stair cores.

Input Parameters - Rainfall Information (Flood Studies Report 1975)					
Return period:	100 years	As supplied by Client			
Allowance for Climate Change:	0 %	As supplied by Client			
Location selected for FSR data: London (Central)					
Input Parameters - Roof Information					
Total catchment area:	900 m ²	As supplied by Client			
Attenuation area:	660 m ²	As supplied by Client			
Maximum allowable runoff:	1.4 l/s	As supplied by Client			

creative geosynthetic engineering

Output - Rainfall Calculation		
Duration	Time to Empty	Restricted Outflow (I/s)
15 mins	9 hours and 10 minutes	0.9
30 mins	11 hours and 10 minutes	1.0
1 hour	12 hours and 40 minutes	1.1
2 hours	13 hours and 30 minutes	1.1
4 hours	14 hours and 0 minutes	1.1
6 hours	13 hours and 40 minutes	1.1
10 hours	12 hours and 50 minutes	1.1
24 hours	7 hours and 50 minutes	0.8
48 hours	1 hour and 10 minutes	0.3

Total attenuation required: 44.7 m³ Half empty time: 3 hours and 20 minutes.

Output - Recommended Blue Roof System									
System Name:	ABG blueroof VF HD+ 108mm								
Description:	Areas of soft landscaping may require locally, an additional 25mm deep, reservoir board ('ABG Roofdrain 25'). Additional 'tell-tale'/overflow positions may be included by the architect, within the roofing design. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis.								
Total attenuation capacity:	64.0 m ³								
Number of Blue Roof outlets:	3								

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	The Network Building, London, W1T 4TW - Plant Area (Level 08) - Option 2							
Prepared for:	Elliott Wood, London	Elliott Wood, London						
Date:	05/11/2020							
ABG Project ID:	21907	Calculator version:	1.29					
Prepared by:	Andrew Keer, andrew@a	bgltd.com, 07525-808700						
Notes/description:	Plant area - pavers on pedestals or ballasted - TBC. Plant support method TBC with ABG							
	. 'Higher strength', 'blue roof'							
	system to be utilized invested reaf construction with zero falls. TBC (Option 2) -							

system to be utilised. Inverted roof, construction, with zero falls - TBC. 'Option 2' = additional catchment area from lift/stair cores.

Input Parameters - Rainfall Information (Flood Studies Report 1975)										
Return period:	100 years	As supplied by Client								
Allowance for Climate Change:	40 %	As supplied by Client								
Location selected for FSR data:	London (Central)									
Input Parameters - Roof Information										
Total catchment area:	900 m ²	As supplied by Client								
Attenuation area:	660 m ²	As supplied by Client								
Maximum allowable runoff:	1.4 l/s	As supplied by Client								
Output - Painfall Calculation										

creative geosynthetic engineering

Dutput - Rainfall Calculation										
Time to Empty	Restricted Outflow (I/s)									
12 hours and 0 minutes	1.0									
14 hours and 20 minutes	1.2									
16 hours and 0 minutes	1.3									
17 hours and 10 minutes	1.3									
18 hours and 0 minutes	1.4									
17 hours and 40 minutes	1.4									
17 hours and 0 minutes	1.3									
12 hours and 10 minutes	1.0									
4 hours and 0 minutes	0.5									
	Time to Empty 12 hours and 0 minutes 14 hours and 20 minutes 16 hours and 0 minutes 17 hours and 10 minutes 18 hours and 0 minutes 17 hours and 40 minutes 17 hours and 0 minutes 12 hours and 10 minutes 4 hours and 0 minutes									

Total attenuation required: 63.4 m³ Half empty time: 7 hours and 20 minutes.

Output - Recommended Blue Roof System								
System Name:	ABG blueroof VF HD+ 108mm							
Description:	Areas of soft landscaping may require locally, an additional 25mm deep, reservoir board ('ABG Roofdrain 25'). Additional 'tell-tale'/overflow positions may be included by the architect, within the roofing design. No.of control positions TBC by design team, and also with the structural engineer's deflection analysis.							
Total attenuation capacity:	64.0 m ³							
Number of Blue Roof outlets:	3							

Notes:

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

1. DEFINITIONS

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser. or such other sum as may be expressly stated in the Consultant's proposal, and further but without prejudice to the aforesaid limit of liability any such liability of the Consultant shall be limited to such sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for them to pay having regard to their responsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to the Client for such loss or damage in any way which may be prejudicial to the Consultant's liability under this clause. Nothing in this clause shall operate to exclude or limit the Consultant's liability for death or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client. 8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur.

ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this

Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has

been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in

adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement.

Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the UNCITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference. **11. COMPLIANCE WITH LAWS**

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as

part of the appointment process prior to ABG Geosynthetics commencing work.

The Network Building 2170754 Surface Water Drainage Statement

E Green Roof Runoff Calculations

elliottwood

engineering a better **society**

E Elliott Wood Partnership Ltd

Elliott Wood Partnership LTD	Page 1								
241 The Broadway	The Network Building								
London	Gree	n Roo							
SW19 1SD						Micco			
Date 06/11/2020 09:16	Desi	aned	by W	H11					
File Green Boof Bunoff Check	Chec	ked b	v			Urainage			
	Sour		ntro	1 207	10 1				
111100 y2e	JOUL			1 20.	1.7.1				
Summary of Resul	riod								
<u></u>	<u> </u>								
Storm	Max	Max	Max	Max	Status				
Event	Level (m)	Depth C (m)	ontrol (1/s)	Volume (m³)					
15 1 0		0.000	0.5	0.0	0.77				
15 min Summer 30 min Summer	99.028 99.047	0.028	0.5	0.0	ОК				
60 min Summer	99.054	0.054	1.7	0.1	O K				
120 min Summer 180 min Summer	99.054	0.054	1.7	0.1	ОК				
240 min Summer	99.052	0.052	1.6	0.1	O K				
480 min Summer 480 min Summer	99.047 99.043	0.04/	1.3	0.1	0 K				
600 min Summer	99.040	0.040	0.9	0.0	ОК				
/20 min Summer 960 min Summer	99.03/ 99.034	0.037	0.8 0.7	U.U 0.0	ОК				
1440 min Summer	99.030	0.030	0.5	0.0	ОК				
2160 min Summer 2880 min Summer	99.025 99.023	U.025 0.023	0.4 0.3	0.0	ОК				
4320 min Summer	99.019	0.019	0.2	0.0	0 K				
5760 min Summer 7200 min Summer	99.016	0.016	0.2	0.0	O K				
8640 min Summer	99.013	0.014	0.1	0.0	0 K				
10080 min Summer	99.013	0.013	0.1	0.0	O K				
30 min Winter	99.037 99.054	0.054	1.7	0.0	0 K				
60 min Winter	99.062	0.062	2.2	0.1	OK				
120 min Winter 180 min Winter	99.061 99.052	0.052	1.6	0.1	0 K				
240 min Winter	99.048	0.048	1.3	0.1	ОК				
480 min Winter	99.042 99.038	0.042	0.9	0.0	0 K				
600 min Winter	99.035	0.035	0.7	0.0	ОК				
720 min Winter 960 min Winter	99.033 99.030	0.033	0.7	0.0	O K				
1440 min Winter	99.025	0.025	0.4	0.0	0 K				
Storm	Rain	Flooded	Discha	arge Ti	me-Peak				
Event	(1111)	(m ³)	(m ³)	(1115)				
15 min Summer	33.632	0.0		0.6	4.3				
30 min Summer	21.704	0.0		1.5	37				
60 min Summer 120 min Summer	13.524	0.0		2.6	48 74				
180 min Summer	6.141	0.0		4.4	102				
240 min Summer 360 min Summer	4.975	0.0		4.9 5.6	128 194				
480 min Summer	2.954	0.0		6.1	252				
600 min Summer	2.495	0.0		6.5	310				
960 min Summer	1.748	0.0		7.3	498				
1440 min Summer	1.286	0.0		8.0	730				
2880 min Summer	0.762	0.0		8.7	1464				
4320 min Summer	0.560	0.0		8.6	2184				
7200 min Summer	0.380	0.0		8.0	3680				
8640 min Summer	0.331	0.0		7.8	4312				
15 min Winter	33.632	0.0		1.0	35				
30 min Winter	21.704	0.0		2.0	34				
120 min Winter	8.246	0.0		4.5	40 72				
180 min Winter	6.141	0.0		5.3	96 139				
240 Min Winter 360 min Winter	3.671	0.0		5.9 6.7	194				
480 min Winter	2.954	0.0		7.3	254				
720 min Winter	2.495	0.0		8.1	368				
960 min Winter	1.748	0.0		8.7	502				
1440 MIN WINTER	1.200	0.0 10 T	n	J.J	/40				
©1982-2019 Innovyze									

Elliott Wood Partnership LTD	Page 2	
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Micro
Date 06/11/2020 09:16	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamade
Innovyze	Source Control 2019.1	1

Summary of Results for 1 year Return Period

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
2160 2880 4320	min min min	Winter Winter Winter	99.021 99.018 99.015	0.021 0.018 0.015	0.3 0.2 0.2	0.0 0.0 0.0	ок ок
5760 7200 8640	min min min min	Winter Winter Winter Winter	99.013 99.012 99.011 99.011	0.013 0.012 0.011 0.011	0.1 0.1 0.1	0.0 0.0 0.0	0 K 0 K 0 K

	Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
2160	min Winter	0.947	0.0	10.2	1092
2880	min Winter	0.762	0.0	10.5	1468
4320	min Winter	0.560	0.0	10.7	2152
5760	min Winter	0.450	0.0	10.5	2712
7200	min Winter	0.380	0.0	10.1	3672
8640	min Winter	0.331	0.0	9.7	3984
10080	min Winter	0.295	0.0	9.4	5088

Elliott Wood Partnership LTD	Page 3	
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:16	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Ratio R	0.439	Cv (Winter)	0.840
Return Period (years)	1	Summer Storms	Yes	Shortest Storm (mins)	15
Region	England and Wales	Winter Storms	Yes	Longest Storm (mins)	10080
M5-60 (mm)	21.000	Cv (Summer)	0.750	Climate Change %	+0

<u>Green Roof</u>

Area (m³) 529 Depression Storage (mm) 5 Evaporation (mm/day) 3 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)												
0	4	0.009613	24	28	0.002895	48	52	0.000872	72	76	0.000263	96	100	0.000079
4	8	0.007870	28	32	0.002371	52	56	0.000714	76	80	0.000215	100	104	0.000065
8	12	0.006444	32	36	0.001941	56	60	0.000585	80	84	0.000176	104	108	0.000053
12	16	0.005276	36	40	0.001589	60	64	0.000479	84	88	0.000144	108	112	0.000043
16	20	0.004319	40	44	0.001301	64	68	0.000392	88	92	0.000118	112	116	0.000036
20	24	0.003536	44	48	0.001065	68	72	0.000321	92	96	0.000097	116	120	0.000029

©1982-2019 Innovyze

Elliott Wood Partnership LTD					
241 The Broadway	The Network Building				
London	Green Roof Runoff				
SW19 1SD		Mirro			
Date 06/11/2020 09:16	Designed by WHu				
File Green Roof Runoff Check	Checked by	Diamage			
Innovyze	Source Control 2019.1				

Model Details

Storage is Online Cover Level (m) 100.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Slope (1:X) 100.000 Length (m) 10.000 Invert Level (m) 99.000

Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 99.000

Elliott Wood Par	rtnership LTD						Page 1
241 The Broadway	4	The	Netwo	ork B	uild	ing	
London		Gree	n Roc	of Ru	noff		
SW19 1SD							Micco
Date 06/11/2020	09:17	Desi	gned	by W	Hu		
File Green Roof	Runoff Check	Chec	ked b	- vy			Digiliada
Innovyze		Sour	ce Co	- ntro	1 201	19.1	
-							
	Summary of Resul	ts fo	or 30	year	Ret	urn Per	tiod
	Storm Event	Max Level	Max Depth C	Max Control	Max Volume	Status	
		(m)	(m)	(1/s)	(m³)		
	15 min Summer	99.088	0.088	4.6	0.1	0 K	
	30 min Summer 60 min Summer	99.097 99.105	0.097	5.2 5.9	0.1	ОК	
	120 min Summer	99.087	0.087	4.4	0.1	ОК	
	180 min Summer	99.081	0.081	3.8	0.1	O K	
	240 min Summer 360 min Summer	99.071	0.070	3.3 2.8	0.1	0 K	
	480 min Summer	99.064	0.064	2.3	0.1	ΟK	
	600 min Summer	99.059	0.059	2.0	0.1	O K	
	960 min Summer	99.050 99.051	0.050	1.8 1.5	0.1	0 K	
	1440 min Summer	99.043	0.043	1.1	0.1	O K	
	2160 min Summer	99.037	0.037	0.8	0.0	O K	
	4320 min Summer	99.033 99.028	0.033	0.5	0.0	0 K	
	5760 min Summer	99.025	0.025	0.4	0.0	O K	
	7200 min Summer 8640 min Summer	99.022	0.022	0.3	0.0	O K	
	10080 min Summer	99.018	0.018	0.2	0.0	0 K	
	15 min Winter	99.098	0.098	5.4	0.1	ОК	
	30 min Winter 60 min Winter	99.105 99.099	0.105	5.9	0.2	OK	
	120 min Winter	99.086	0.086	4.3	0.1	0 K	
	180 min Winter	99.078	0.078	3.5	0.1	O K	
	360 min Winter	99.073 99.064	0.064	2.3	0.1	0 K	
	480 min Winter	99.057	0.057	1.9	0.1	O K	
	600 min Winter 720 min Winter	99.053 99.049	0.053	1.6	0.1	O K	
	960 min Winter	99.044	0.044	1.1	0.1	0 K	
	1440 min Winter	99.037	0.037	0.8	0.0	0 K	
	Storm	Rain	Flooded	l Disch	arge Ti	me-Peak	
	Event	(mm/hr)	Volume (m³)	Volu (m ³	ime ')	(mins)	
	15 min Summor	82 613	0 0)	5.4	17	
	30 min Summer	52.928	0.0	,)	7.7	23	
	60 min Summer	32.372	0.0) :	10.0	36	
	120 min Summer 180 min Summer	19.209 14.010	0.0)	12.4 13.7	70 104	
	240 min Summer	11.153	0.0)	14.7	134	
	360 min Summer	8.081	0.0)	16.1	190	
	400 min Summer 600 min Summer	0.4∠4 5.374	0.0)	⊥/.⊥ 17.9	∠⊃4 318	
	720 min Summer	4.643	0.0)	18.6	372	
	960 min Summer 1440 min Summer	3.685	0.0)	19.6 21.0	490 736	
	2160 min Summer	1.915	0.0)	22.3	1100	
	2880 min Summer	1.517	0.0) :	23.0	1464 2169	
	5760 min Summer	0.863	0.0	,)	23.9	2928	
	7200 min Summer	0.720	0.0)	23.7	3656	
	8640 min Summer 10080 min Summer	U.620 0.547	U.C 0.C)	∠3.3 22.7	4384 5008	
	15 min Winter	82.613	0.0)	6.4	16	
	30 min Winter	52.928	0.0)	9.0	22 3.8	
	120 min Winter	19.209	0.0	,)	14.2	72	
	180 min Winter	14.010	0.0)	15.7	108	
	240 min Winter 360 min Winter	±1.153 8.081	U.C 0.C)	10.8 18.4	132	
	480 min Winter	6.424	0.0)	19.6	260	
	600 min Winter 720 min Winter	5.374	0.0) :	20.5	310	
	960 min Winter	3.685	0.0)	22.5	494	
	1440 min Winter	2.658	0.0)	24.1	740	
	©198	82-20	19 In	novy:	ze		

Elliott Wood Partnership LTD		Page 2
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Micro
Date 06/11/2020 09:17	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diginarie
Innovyze	Source Control 2019.1	L

Summary of Results for 30 year Return Period

(m) (m) (1/5/	(m³)	
2160 min Winter 99.032 0.032 2880 min Winter 99.028 0.028 4320 min Winter 99.024 0.024 5760 min Winter 99.020 0.020 7200 min Winter 99.018 0.018 8640 min Winter 99.016 0.016	0.6 0.5 0.3 0.2 0.2	0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K

	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
2160 2880 4320 5760 7200	min Winter min Winter min Winter min Winter min Winter	1.915 1.517 1.091 0.863 0.720	0.0 0.0 0.0 0.0	25.6 26.6 27.6 28.0 28.0	1084 1444 2172 2984 3568
8640 10080	min Winter min Winter	0.620 0.547	0.0	27.8 27.4	4272 4864

Elliott Wood Partnership LTD	Page 3	
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:17	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Ratio R	0.439	Cv (Winter)	0.840
Return Period (years)	30	Summer Storms	Yes	Shortest Storm (mins)	15
Region	England and Wales	Winter Storms	Yes	Longest Storm (mins)	10080
M5-60 (mm)	21.000	Cv (Summer)	0.750	Climate Change %	+0

<u>Green Roof</u>

Area (m³) 529 Depression Storage (mm) 5 Evaporation (mm/day) 3 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)												
0	4	0.009613	24	28	0.002895	48	52	0.000872	72	76	0.000263	96	100	0.000079
4	8	0.007870	28	32	0.002371	52	56	0.000714	76	80	0.000215	100	104	0.000065
8	12	0.006444	32	36	0.001941	56	60	0.000585	80	84	0.000176	104	108	0.000053
12	16	0.005276	36	40	0.001589	60	64	0.000479	84	88	0.000144	108	112	0.000043
16	20	0.004319	40	44	0.001301	64	68	0.000392	88	92	0.000118	112	116	0.000036
20	24	0.003536	44	48	0.001065	68	72	0.000321	92	96	0.000097	116	120	0.000029

Elliott Wood Partnership LTD					
241 The Broadway	The Network Building				
London	Green Roof Runoff				
SW19 1SD		Micro			
Date 06/11/2020 09:17	Designed by WHu				
File Green Roof Runoff Check	Checked by	Diamage			
Innovyze	Source Control 2019.1				

Model Details

Storage is Online Cover Level (m) 100.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Slope (1:X) 100.000 Length (m) 10.000 Invert Level (m) 99.000

Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 99.000

Elliott Wood Partnership LTD						Page 1
241 The Broadway	The	Netwo	rk B	uild	ing	
London	Gree	n Roo	f Ru	noff		
SW19 1SD						Micco
Date 06/11/2020 09:19	Desi	aned	bv W	Hu		
File Green Roof Runoff Check	Chec	ked b	v			Urainage
Innovyze	Sour		ntro	1 20	191	
	bour		IICLO	1 20	17.1	
Summary of Resul	ts fo	r 100	vea	r Rei	turn P	reriod
	00 10	1 100	<u>y</u> cu.			<u>eriou</u>
Storm	Max	Max	Max	Max	Status	
Event	Level (m)	Depth Co (m)	ontrol (1/s)	Volume (m ³)	I	
15 min Summer 30 min Summer	99.113 99.120	0.113 0.120	6.5 7.1	0.2	ОК	
60 min Summer 120 min Summer	99.118	0.118	6.9 5 9	0.2	O K	
120 min Summer 180 min Summer	99.094	0.094	5.0	0.1	ОК	
240 min Summer 260 min Summer	99.086	0.086	4.4	0.1	ОК	
480 min Summer 480 min Summer	99.078 99.073	0.078	3.5	0.1	O K	
600 min Summer	99.069	0.069	2.6	0.1	ОК	
720 min Summer 960 min Summer	99.064 99.057	U.U64 0.057	2.3	0.1 0.1	ОК	
1440 min Summer	99.049	0.049	1.4	0.1	0 K	
2160 min Summer 2880 min Summer	99.042 99.037	0.042 0.037	1.0 0.8	0.1	ОК	
4320 min Summer	99.032	0.032	0.6	0.0	ОК	
5760 min Summer 7200 min Summer	99.028 99.025	0.028	0.5	0.0	0 K	
8640 min Summer	99.023	0.023	0.3	0.0	0 K	
10080 min Summer	99.021	0.021	0.3	0.0	O K	
30 min Winter	99.126	0.126	7.8	0.2	O K	
60 min Winter 120 min Winter	99.121 99.102	0.121	7.2	0.2	ОК	
120 min Winter 180 min Winter	99.089	0.089	4.7	0.1	0 K	
240 min Winter 360 min Winter	99.082	0.082	3.9	0.1	O K	
480 min Winter	99.066	0.066	2.4	0.1	0 K	
600 min Winter 720 min Winter	99.060 99.056	0.060	2.1	0.1	ОК	
960 min Winter	99.050	0.050	1.4	0.1	0 K	
1440 min Winter	99.042	0.042	1.0	0.0	0 K	
Storm Event	Rain (mm/hr)	Flooded Volume	Disch Volu	arge T. ume	ıme-Peak (mins)	
		(m³)	(m ³	3)		
15 min Summer	107.525	0.0		7.9	15	
30 min Summer	69.398 42 570	0.0		11.0 14 1	21	
120 min Summer	25.224	0.0		17.1	70	
180 min Summer 240 min Summer	18.329 14 532	0.0		18.9 20.1	102	
360 min Summer	10.474	0.0		21.8	198	
480 min Summer 600 min Summer	8.297	0.0		23.1 24 1	250 318	
720 min Summer	5.965	0.0		24.9	374	
960 min Summer	4.715	0.0		26.2 27 9	492	
2160 min Summer	2.420	0.0		29.5	1096	
2880 min Summer 4320 min Summer	1.907	0.0		30.5 31.5	1464 2168	
5760 min Summer	1.072	0.0		31.8	2920	
7200 min Summer 8640 min Summer	0.890	0.0		31.8 31.5	3560 4400	
10080 min Summer	0.672	0.0		31.0	5000	
15 min Winter 30 min Winter	107.525 69.398	0.0		9.2 12.6	15 21	
60 min Winter	42.578	0.0		16.1	40	
120 min Winter 180 min Winter	25.224	0.0		19.5 21.5	74 100	
240 min Winter	14.532	0.0		22.8	138	
360 min Winter 480 min Winter	10.474 8 297	0.0		24.8 26.3	198 252	
600 min Winter	6.921	0.0		27.4	318	
720 min Winter 960 min Winter	5.965 4.715	0.0		28.3 29.8	378 498	
1440 min Winter	3.380	0.0		31.8	720	
©19	82-20	19 In:	novy	ze		

Elliott Wood Partnership LTD					
241 The Broadway	The Network Building				
London	Green Roof Runoff				
SW19 1SD		Micro			
Date 06/11/2020 09:19	Designed by WHu				
File Green Roof Runoff Check	Checked by	Diamage			
Innovyze	Source Control 2019.1	1			

Summary of Results for 100 year Return Period

	Storm Event		n Max 2 Level (m)		Max Control (1/s)	Max Volume (m³)	Status
2160 2880 4320 5760 7200	min min min min min	Winter Winter Winter Winter Winter	99.036 99.032 99.026 99.024 99.021	0.036 0.032 0.026 0.024 0.021	0.8 0.6 0.4 0.3 0.3	0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K
8640 10080	min min	Winter Winter	99.019 99.017	0.019	0.2	0.0	ок ок

St Ev	orm ent	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
2160 mi	in Winter	2.420	0.0	33.7	1120
2880 mi	in Winter	1.907	0.0	34.9	1416
4320 mi	in Winter	1.362	0.0	36.2	2228
5760 mi	in Winter	1.072	0.0	36.9	2936
7200 mi	in Winter	0.890	0.0	37.0	3528
8640 mi	In Winter	0.764	0.0	37.0	4264
10080 mi	In Winter	0.672	0.0	36.7	4856

Elliott Wood Partnership LTD		Page 3
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:19	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Ratio R	0.439	Cv (Winter)	0.840
Return Period (years)	100	Summer Storms	Yes	Shortest Storm (mins)	15
Region	England and Wales	Winter Storms	Yes	Longest Storm (mins)	10080
M5-60 (mm)	21.000	Cv (Summer)	0.750	Climate Change %	+0

<u>Green Roof</u>

Area (m³) 529 Depression Storage (mm) 5 Evaporation (mm/day) 3 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)												
0	4	0.009613	24	28	0.002895	48	52	0.000872	72	76	0.000263	96	100	0.000079
4	8	0.007870	28	32	0.002371	52	56	0.000714	76	80	0.000215	100	104	0.000065
8	12	0.006444	32	36	0.001941	56	60	0.000585	80	84	0.000176	104	108	0.000053
12	16	0.005276	36	40	0.001589	60	64	0.000479	84	88	0.000144	108	112	0.000043
16	20	0.004319	40	44	0.001301	64	68	0.000392	88	92	0.000118	112	116	0.000036
20	24	0.003536	44	48	0.001065	68	72	0.000321	92	96	0.000097	116	120	0.000029

©1982-2019 Innovyze

Elliott Wood Partnership LTD		Page 4
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:19	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 100.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Slope (1:X) 100.000 Length (m) 10.000 Invert Level (m) 99.000

Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 99.000

							1	
Elliott Wood Partnership LTD							Page 2	1
241 The Broadway	The	Netwo	rk B	uild	ing			
London	Gree	n Roo	f Ru	noff				
SW19 1SD							Mico	
Date 06/11/2020 09:20	Desi	gned	by W	Hu				
File Green Roof Runoff Check	Chec	ked b	y				DIdll	laria
Innovyze	Sour	ce Co	ntro	1 20	19.1			
Summary of Results f	or 10)0 vea	ar Re	turn	Period	(+40%)		
<u>-</u>						·		
Storm	Max	Max	Max	Max	Status			
Event	Level (m)	Depth Co (m)	ontrol (1/s)	Volume (m ³)				
	00.140	0 140	0.0	0.0	0.77			
30 min Summer	99.140 99.149	0.140	9.3 10.2	0.3	0 K			
60 min Summer 120 min Summer	99.144 99.130	0.144	9.6	0.3	O K			
180 min Summer	99.119	0.119	7.0	0.2	0 K			
240 min Summer 360 min Summer	99.108 99.093	0.108	6.1 4.9	0.2	O K O K			
480 min Summer	99.085	0.085	4.2	0.1	0 K			
600 min Summer 720 min Summer	99.079 99.075	0.079 0.075	3.7 3.2	0.1 0.1	о к о к			
960 min Summer	99.069	0.069	2.6	0.1	ОК			
1440 min Summer 2160 min Summer	99.059 99.050	0.059	2.0	0.1	O K			
2880 min Summer	99.044	0.044	1.1	0.1	O K			
4320 min Summer 5760 min Summer	99.037 99.033	0.037	0.8	0.0	0 K			
7200 min Summer	99.030	0.030	0.5	0.0	ОК			
8640 min Summer 10080 min Summer	99.028 99.026	0.028	0.5	0.0	0 K			
15 min Winter	99.151	0.151	10.4	0.3	ОК			
60 min Winter	99.147	0.147	10.0	0.3	0 K			
120 min Winter 180 min Winter	99.128 99.113	0.128	8.0	0.2	O K			
240 min Winter	99.100	0.100	5.5	0.2	0 K			
360 min Winter 480 min Winter	99.085 99.077	0.085	4.3 3.4	0.1	O K O K			
600 min Winter	99.072	0.072	2.9	0.1	0 K			
/20 min Winter 960 min Winter	99.068 99.060	0.068	2.5	0.1	O K			
1440 min Winter	99.050	0.050	1.5	0.1	0 K			
Storm	Rain	Flooded	Disch	arge Ti	me-Peak			
Event	(mm/hr)	Volume	Volu (m ³	ume	(mins)			
		((m)	,				
15 min Summer	150.535 97 157	0.0		12.1 16.5	13 19			
60 min Summer	59.609	0.0		20.8	38			
120 min Summer 180 min Summer	35.314 25.660	0.0		25.1 27.6	68 100			
240 min Summer	20.345	0.0		29.3	134			
360 min Summer 480 min Summer	14.664 11.616	0.0		31.8 33.6	194 250			
600 min Summer	9.689	0.0		35.1	310			
/20 min Summer 960 min Summer	8.351 6.601	0.0		30.2 38.1	370 502			
1440 min Summer	4.732	0.0		40.8	738			
2160 min Summer 2880 min Summer	3.388 2.670	0.0		45.0	1452			
4320 min Summer	1.907	0.0		47.0 48.2	2188 2880			
7200 min Summer	1.246	0.0		48.7	3680			
8640 min Summer 10080 min Summer	1.070 0.940	0.0		48.9 48.9	4328 5080			
15 min Winter	150.535	0.0		13.9	13			
30 min Winter 60 min Winter	97.157 59.609	0.0		10.8 23.7	∠⊥ 40			
120 min Winter	35.314	0.0		28.5	74			
240 min Winter	20.345	0.0		33.2	134			
360 min Winter 480 min Winter	14.664 11 616	0.0		36.0 38.0	200 254			
600 min Winter	9.689	0.0		39.7	320			
720 min Winter 960 min Winter	8.351 6.601	0.0		41.0 43.2	374 490			
1440 min Winter	4.732	0.0		46.2	730			
©198	32-20	19 In	novy	ze				

Elliott Wood Partnership LTD	E	Page 2					
241 The Broadway	The	Netw	[
London	Gree	n Ro					
SW19 1SD							Micco
Date 06/11/2020 09:20	Desi	gned	by W	Hu			
File Green Roof Runoff Check	Chec	ked i	by				Dialitaye
Innovyze	Sour	ce C	ontro	1 2	019.1		
<u>Summary of Results f</u>	or 10)0 ye	ar Re	etur	<u>n Period</u>	(+40%)	
Storm	Max	May	Max	Maw	Status		
Event	Level	Depth	Control	Volum	e		
	(m)	(m)	(1/s)	(m³)			
2160 min Winter	99.043	0.043	1.1	0.	1 ОК		
2880 min Winter 4320 min Winter	99.038 99.032	0.038	0.8	0.	0 OK		
5760 min Winter	99.028	0.028	0.5	0.	0 0 K		
7200 min Winter	99.025	0.025	0.4	0.	0 ОК		
8640 min Winter	99.023	0.023	0.3	0.	0 OK		
Storm	Rain	Floode	d Disch	arge	Time-Peak		
Event	(mm/hr)	Volum	e Vol	ume	(mins)		
		(m³)	(m	3)			
2160 min Winter	3.388	0.	0	49.2	1148		
2880 min Winter	2.670	0.	0	51.1	1428		
4320 min Winter 5760 min Winter	1.501	0.	0	55.1	2240		
7200 min Winter	1.246	0.	0	56.0	3656		
8640 min Winter	1.070	0.	0	56.5	4392		
10080 min Winter	0.940	0.	0	56.7	5032		

Elliott Wood Partnership LTD		Page 3
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:20	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

<u>Rainfall Details</u>

	Rainfal	l Model		FSR	Ratio R	0.439	Cv (Winter)	0.840
Return	Period	(years)		100	Summer Storms	Yes	Shortest Storm (mins)	15
		Region	England	and Wales	Winter Storms	Yes	Longest Storm (mins)	10080
	M5-	60 (mm)		21.000	Cv (Summer)	0.750	Climate Change %	+40

<u>Green Roof</u>

Area (m³) 529 Depression Storage (mm) 5 Evaporation (mm/day) 3 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)												
0	4	0.009613	24	28	0.002895	48	52	0.000872	72	76	0.000263	96	100	0.000079
4	8	0.007870	28	32	0.002371	52	56	0.000714	76	80	0.000215	100	104	0.000065
8	12	0.006444	32	36	0.001941	56	60	0.000585	80	84	0.000176	104	108	0.000053
12	16	0.005276	36	40	0.001589	60	64	0.000479	84	88	0.000144	108	112	0.000043
16	20	0.004319	40	44	0.001301	64	68	0.000392	88	92	0.000118	112	116	0.000036
20	24	0.003536	44	48	0.001065	68	72	0.000321	92	96	0.000097	116	120	0.000029

©1982-2019 Innovyze

Elliott Wood Partnership LTD		Page 4
241 The Broadway	The Network Building	
London	Green Roof Runoff	
SW19 1SD		Mirro
Date 06/11/2020 09:20	Designed by WHu	
File Green Roof Runoff Check	Checked by	Diamage
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 100.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Slope (1:X) 100.000 Length (m) 10.000 Invert Level (m) 99.000

Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 99.000

The Network Building 2170754 Surface Water Drainage Statement

F Proposed Below Ground Drainage

elliottwood

engineering a better **society**

F Elliott Wood Partnership Ltd

BELOW GROUND DRAINAGE NOTES

- 1. THE LOCATION AND LEVEL OF EXISTING DRAINAGE CONNECTIONS AND EXISTING SERVICES IS TO BE CHECKED PRIOR TO COMMENCEMENT OF DRAINAGE WORKS. ANY VARIANCE TO THE DETAILS ON THIS DRAWING AND THE SCHEDULE IS TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
- 2. THE DESIGN IS BASED ON THE INFORMATION AVAILABLE ON THE DATE OF ISSUE FROM OTHER PARTIES (EG. ARCHITECT AND M & E ENGINEER). IT IS SUBJECT TO CHANGE RESULTING FROM UPDATES TO THE AVAILABLE INFORMATION FROM OTHERS.
- 3. THE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE NBS SPECIFICATIONS, ASSOCIATED MANHOLE SCHEDULE AND STANDARD DRAINAGE DETAIL DRAWINGS WHERE APPLICABLE.
- 4. THE POSITIONS OF FOUL AND SURFACE WATER DRAINAGE POINTS ARE INDICATIVE ONLY, REFER TO THE ARCHITECTS DRAWINGS FOR SETTING OUT DETAILS.
- 5. PRIVATE FOUL AND SURFACE WATER DRAINAGE IS TO BE CONSTRUCTED IN ACCORDANCE WITH BUILDING REGULATIONS PART H, BS EN752 AND BS EN12056.
- 6. DRAINS AT BASEMENT LEVEL ARE TO BE CONSTRUCTED USING CAST IRON (ENSIGN OR EQUIVALENT) AND FLEXIBLY JOINTED TO BS 437.
- 7. DRAINS AT GROUND LEVEL ARE TO BE CONSTRUCTED USING VITRIFIED CLAY PIPES TO BS EN 295-1 SUPER STRENGTH SPECIFICATION (HEPWORTH SUPERSLEVE) OR SIMILAR APPROVED.
- 8. ALL SOIL CONNECTIONS UNDER BUILDINGS TO BE 100mm DIA LAID AT A MINIMUM GRADIENT OF 1/40 UNLESS NOTED OTHERWISE.
- 9. ALL SURFACE WATER CONNECTIONS TO BE 150mm DIAMETER AND TO BE LAID AT A MINIMUM GRADIENT OF 1/80 UNLESS NOTED OTHERWISE .
- 10. ALL SOIL CONNECTIONS AND RAINWATER PIPES SHOULD BE RODDABLE FROM GROUND LEVEL.
- 11. RAINWATER DOWN PIPES ARE TO CONNECT TO A DRAIN VIA A REST BEND. WHERE DRAINAGE IS COMBINED A 'P' TRAP MUST ALSO BE PROVIDED.
- 12. IN CASES OF IN SITU CONCRETE FLOOR SLABS, DRAINS ARE TO BE CAST INTEGRAL WITH THE SLAB WHERE PIPE COVER TO THE CROWN IS LESS THAN 300mm. - NOTE SPECIAL PROVISIONS APPLY TO BASEMENT FLOOR SLABS - SEE DETAILED DRAINAGE AND STRUCTURAL DRAWINGS. CONCRETE ENCASEMENT TO BE REINFORCED AS PER DRAINAGE DETAIL.
- 13. IN CASES OF SUSPENDED FLOORS WHERE A VOID OF 300mm OR MORE EXISTS BELOW FLOOR DRAINS ARE TO BE SUSPENDED USING A PROPRIETARY HANGER SYSTEM OR CAST INTEGRAL WITH THE FLOOR.
- 14. WHERE DRAINS PASS THROUGH FOUNDATIONS OR OTHER RIGID STRUCTURES A LINTEL OR SLEEVE IS TO BE USED AND PROVISION FOR FLEXIBILITY IS TO BE MADE USING ROCKER PIPES.
- 15. BACKFILLING OF DRAIN TRENCHES ADJACENT TO BUILDING OR OTHER STRUCTURES IS TO BE IN ACCORDANCE WITH DIAGRAM 8 OF THE BUILDING REGULATIONS.
- 16. ANY PIPE OR GULLY OR OTHER FITTING OR DUCT PENETRATING THE BASEMENT SLAB OR WALL IS TO BE WATERPROOFED USING HYDROPHILIC STRIPS OR PUDDLE FLANGES TO ENSURE A WATER TIGHT JOINT. CONCRETE SURROUND TO DRAINAGE PIPES AND FITTINGS MAY BE REQUIRED IN CERTAIN CASES - REFER TO DETAILED DRAINAGE DRAWINGS AND RELEVANT STRUCTURAL DETAILS.
- 17. EXISTING FOUNDATIONS AND RETAINING WALLS MUST NOT BE UNDERMINED BY NEW DRAINAGE RUNS UNLESS AGREED IN WRITING WITH THE STRUCTURAL ENGINEER. CONTRACTOR TO SUBMIT METHOD STATEMENTS AND TEMPORARY WORKS PROPOSALS TO THE STRUCTURAL ENGINEER FOR COMMENT PRIOR TO COMMENCEMENT OF WORKS.
- 18. ALL DRAINAGE EXCAVATIONS SHOULD BE RISK ASSESSED BY THE CONTRACTOR TO ENSURE TRENCH SAFETY / STABILISATION MEASURES ARE CONSIDERED DURING THE CONSTRUCTION PERIOD. ANY EXCAVATIONS LEFT EXPOSED SHOULD BE INSPECTED BY A COMPETENT PERSON ON A DAILY BASIS. GROUND CONDITIONS SHOULD BE MONITORED AND TOOL BOX TALKS SHOULD INCLUDE SITE INVESTIGATION INFORMATION TO AID THE CONTRACTORS ONGOING RISK ASSESSMENT AND METHOD OF EXCAVATION. ALL EXCAVATIONS SHOULD BE ASSESSED BY A COMPETENT PERSON FOR CONFINED SPACES REQUIREMENTS.
- 19. THE CONTRACTOR IS TO CONSIDER PHASING OF THE DRAINAGE INSTALLATION AND ARE TO PROVIDE TEMPORARY DRAINAGE MEASURES THEY DETERMINE ARE REQUIRED.
- 20. SuDS ARE TO BE INSTALLED IN ACCORDANCE WITH THE RECOMMENDATIONS MADE WITHIN THE CIRIA SUDS MANUAL C753 (WITH PARTICULAR ATTENTION DRAWN TO CHAPTER 31) AND CIRIA GUIDANCE ON THE CONSTRUCTION OF SuDS C768. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONSIDER CONSTRUCTION PROGRAMME OF SuDS.
- 21. DETAILED DESIGN OF GEOCELLULAR ATTENUATION CRATES IS A CDP ITEM AND SHOULD BE BASED ON LEVEL, LAYOUT AND VOLUME DETAILS SHOWN. DETAILED DESIGN INFORMATION SHOULD BE PROVIDED TO THE CIVIL ENGINEER TO PASS COMMENT.

This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.

Do not scale from this drawing.

LEGEND

 EXISTING COMBINED WATER
 PROPOSED COMBINED WATER
BLUE ROOF AREA
GREEN ROOF AREA
EXISTING BUILDING

OPOSED COMBINED WATER UE ROOF AREA EEN ROOF AREA ISTING BUILDING PROPOSED BUILDING

NOT FOR CONSTRUCTION

P1 S2 06.11.20 WHu PDa Issued for planning rev sc date by chk description

engineering a better society

Elliott Wood Partnership Ltd Central London • Wimbledon • Nottingham Consulting Structural and Civil Engineers (020) 7499 5888 • elliottwood.co.uk

The Network Building London W1T 4TP

Drawing title Proposed Below Ground Drainage Strategy - Ground Floor

Scale (s)		Date				Drawn
1:100@ A1; 1:200	@ A3	Nove	ember 20	020		WHu
Drawing status					Status	Revision
Prelimina	ry				S2	P1
Project no.	Originator	Zone	Level	Туре	Role	drg no.
2170754-	-EWP	-ZZ-	- 00-	DR	- C-	1000

The Network Building 2170754 Surface Water Drainage Statement

> G London Borough of Camden Surface Water Drainage Pro-forma

elliottwood

engineering a better **society**

G Elliott Wood Partnership Ltd

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	The Network Building
Address & post code or LPA reference	97 Tottenham Court Road, London, W1T 4TP
Grid reference	529369E , 182018N
Is the existing site developed or Greenfield?	Developed
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	No
Total Site Area served by drainage system (excluding open space) (Ha)*	0.207

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)	0.207	0.207	0	If the proposed amount of impermeable surface is greater, then runoff rates and volumes will increase. Section 6 must be filled in. If proposed impermeability is equal or less than existing, then section 6 can be skipped and section 7 filled in.
Drainage Method (infiltration/sewer/watercourse)	sewer	sewer	N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed				Please provide MicroDrainage calculations of existing and proposed run-off rates and
MicroDrainage calculations				volumes in accordance with a recognised methodology or the results of a full infiltration test
_				(see line below) if infiltration is proposed.
Infiltration		х		e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse		Х		e.g. Is there a watercourse nearby?
To surface water sewer		х		Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above		Х		e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal	\mathbf{v}			Evidence must be provided to demonstrate that the proposed Sustainable Drainage
had regard to the SuDS	X			strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
hierarchy?				
Layout plan showing where	X			Please provide plan reference numbers showing the details of the site layout showing
the sustainable drainage	~			where the sustainable drainage infrastructure will be located on the site. If the development
infrastructure will be				is to be constructed in phases this should be shown on a separate plan and confirmation
located on site.				should be provided that the sustainable drainage proposal for each phase can be
				constructed and can operate independently and is not reliant on any later phase of
				development.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers
Greenfield QBAR	0.8	N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1	19.4	8.8	-10.6	54	Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30	47.5	21.6	-25.9	55	for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100	61.9	28.1	-33.8	55	by 50% from the existing sites for all corresponding rainfall events.
1 in 100 plus climate change	N/A	37.4	NA	>55	The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

5. Calculate additional volumes for storage – The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield	Existing	Proposed	Difference (m ³) (Proposed Existing)	Notes for developers
	(m ³)	volume (m.)	volume (m.)	(Proposed-Existing)	
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any
					increase in volume increases flood risk elsewhere. Where volumes are increased section 6
					must be filled in.
1 in 100 6 hour plus					The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as
climate change					is reasonably practicable to the greenfield runoff volume wherever practicable. As a
_					minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from
					site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases
					under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

		Notes for developers
Storage Attenuation volume (Flow rate control) required to	160	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m [°])	100	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	04	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	04	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	71.0	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as	/1.3	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)		previously developed sites, runoff rates should not be more than three times the
		calculated greenfield rate. Can't be used where discharge volumes are
		increasing
Storage Attenuation volume (Flow rate control) required to	0	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)	0	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	100	Percentage of attenuation volume which will be held above ground in
	100	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

			Notes for developers
	State the Site's Geology and known Source		Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration	Protection Zones (SPZ)		and refer to Environment Agency website to identify and source
			protection zones (SPZ)
	Are infiltration rates suitable?	No	Infiltration rates should be no lower than 1×10^{-6} m/s.
	State the distance between a proposed infiltration		Need 1m (min) between the base of the infiltration device & the water
	device base and the ground water (GW) level		table to protect Groundwater quality & ensure GW doesn't enter
			infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	No	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.		Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	No	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

		Notes for developers
Please confirm what option has been chosen and how much storage is required on site.	simple	The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requirements are on site and how it will be achieved.

8. Please confirm

		Notes for developers
Which Drainage Systems measures have been used, including green roofs?	Blue Roof	SUDS can be adapted for most situations even where infiltration isn't feasible e.g. impermeable liners beneath some SUDS devices allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event without flooding	Yes	This a requirement for sewers for adoption & is good practice even where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm event? If no please demonstrate how buildings and utility plants will be protected.	Yes	National standards require that the drainage system is designed so that flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate change storm events will be safely contained on site.	No	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.
How will exceedance events be catered on site without increasing flood risks (both on site and outside the development)?	Surface Water dealt with at roof level	 Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased. Exceedance events are defined as those larger than the 1 in 100 +CC event.
How are rates being restricted (vortex control, orifice etc)	Blue Roof control orifices	Detail of how the flow control systems have been designed to avoid pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage systems throughout the development. Please list all the owners.	The system will be owned by the property management company	If these are multiple owners then a drawing illustrating exactly what features will be within each owner's remit must be submitted with this Proforma.
How is the entire drainage system to be maintained?	In line with the CIRIA SuDS Manual Guidance	If the features are to be maintained directly by the owners as stated in answer to the above question please answer yes to this question and submit the relevant maintenance schedule for each feature. If it is to be maintained by others than above please give details of each feature and the maintenance schedule. Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section	Document reference where details quoted above are taken from	Page Number			
Section 2	Section 4	1			
Section 3	Section 6	2			
Section 4		3			
Section 5		3			
Section 6		3			
Section 7		3			
Section 8		3			
The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with. This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.					
Form Completed By Will Hudson Qualification of person responsible for signing off this pro-forma Meng (hons)					
Company On behalf of (Client Date: 06/11/2020	Partnership t's details) ^{Blackburn & Co}				

engineering a better **society**

London 55 Whitfield Street Fitzrovia W1T 4AH +44 207 499 5888

Wimbledon 241 The Broadway London SW19 1SD +44 208 544 0033

Nottingham 1 Sampsons Yard Halifax Place Nottingham NG1 1QN +44 870 460 0061

www.elliottwood.co.uk

