69 Avenue Road LONDON BOROUGH OF CAMDEN

SURFACE WATER FLOW AND FLOOD RISK ASSESSMENT

Nicholas Goulandris

ISSUE DATE:DECEMBER 2020 PROJECT NUMBER: 18024 REVISION: FINAL

Rev A

Water Environment Limited 6 Coppergate Mews Brighton Road Surbiton London KT6 5NE

Tel: 0208 545 9720

www.WaterEnvironment.co.uk

This Surface Flow and Flood Risk Assessment was commissioned by HGH Consulting in December 2019 to investigate the risks and assess the consequences of flooding of the proposed development at 69 Avenue Road, Camden.

Prepared by:

Noah Bennett BA MEng (Environmental)

Checked by: Claire Burroughs MSc DIC MEng (Hons) MCIWEM

Reviewed by: **Guy Laister** MScEng BScEng (Civil) CEng CEnv C.WEM MCIWEM Director for and on behalf of Water Environment Limited

for and on behalf of Water Environment Limited

Copyright © 2020 Water Environment Limited

No part of this document may be distributed, copied, adapted or transmitted in any form, without prior permission from Water Environment Limited.

CIE WATER | ENVIRONMENT

Contents

Glos	ssary	L
Exe	cutive Summary	2
1 In	troduction	4
	General Information	4 4
2	Site Description	5
	Location Existing Development Proposed Development	5 5 6
3	Planning Policy and Guidance	7
	National Planning Policy Regional Planning Policy – London Plan Local Planning Policy – London Borough of Camden	7 7 9
4	Surface Flow and Flooding Assessment10	D
	Stage 1: Screening1	0
5	Potential Flooding on Site12	2
	Historic Information 1 Tidal and Fluvial Flooding 1 Flooding from Surface Water and Sewers 1 Flooding from Groundwater 1 Flooding from Reservoirs, Canals and Other Artificial Sources 2 Climate change 2 Flood Risk to Others 2	2 3 8 0 1
6	Conclusions and Recommendations23	3
Арр	endix A - Drawings2!	5
Арр	endix B –TW asset search20	5
Арр	endix C – Surface Water Calculations22	7

GE WATER | ENVIRONMENT

List of Figures

Figure 1 - Location of proposed development site	5
Figure 2 - GOV.UK flood zone map	13
Figure 3 - GOV.UK Surface Water Extent Map	14
Figure 4 - GOV.UK Medium Occurrence Risk of Flooding from Surface Water	15
Figure 5 - GOV.UK Low Occurrence Risk of Flooding from Surface Water	15
Figure 6 - Excerpt from Figure 11, Camden Geological, Hydrogeological and Hydrologi	cal Study.
Source – Barton, Lost Rivers of London	16
Figure 7 - Magic Maps Source Protection Zone Map	19

List of Tables

Table 1 - Allowances for Climate Change: Peak Rainfall intensity in small and urban	
catchments	20

List of Drawings

Drawing 1 – Topographical Survey	. 25
Drawing 2 - Proposed Drawings Ground Floor	. 25
Drawing 3- Proposed Drawings Basement Floor	. 25
Drawing 4- Proposed Drawings Roof Plan	. 25
Drawing 5- Proposed Drawings Elevation	. 25
Drawing 6- Asset Location Map	. 26

GE WATER | ENVIRONMENT

GLOSSARY

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BIA	Basement Impact Assessment
BGL	Below Ground Level
BGS	British Geological Survey
CC	Climate Change
CDA	Critical Drainage Area
CPG	Camden Planning Guidance
DEFRA	Department for Environment Food and Rural Affairs
EA	Environment Agency
FFL	Finished Floor Level
FRA	Flood Risk Assessment
LBC	London Borough of Camden
LLFA	Lead Local Flood Authority
LPA	Local Planning Authority
NPPF	National Planning Policy Framework
PFRA	Preliminary Flood Risk Assessment
PPG	Planning Practice Guidance
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage Systems
SWMP	Surface Water Management Plan

EXECUTIVE SUMMARY

The site discussed in this report is located at 69 Avenue Road within the London Borough of Camden. The site is less than 1 hectare (ha) in size and currently comprises of the building footprint and gardens. Proposals are to refurbish the building and construct a rear extension and basement to the existing development. The proposed basement extension will extend past the footprint of the existing building. Local planning policy requires the proposed basement extension to undertake the Surface Water and Flooding Screening Flowchart. As a result of this initial screening assessment, a flood risk assessment has been undertaken for the proposed development.

The Environment Agency flood zone maps indicate that the site is located within Flood Zone 1 (Low Risk). In accordance with the technical guidance document to the National Planning Policy Framework (NPPF), this zone comprises land assessed as having a less than 1 in 1000 annual probability of fluvial or tidal flooding (<0.1%). The risk of flooding from rivers and the sea is therefore low.

The GOV.UK Long Term Flood Risk maps for surface water indicate that there is a natural flow path draining down Avenue Road and that the rear garden is affected by surface water flooding. The rear garden is sunken and approximately 1m lower than the existing development on the site. Therefore, surface water collects in the rear garden. This surface water is not part of a flow route and is isolated. The proposed extension to the existing development is lower than the existing ground floor levels, however, is higher than any the 1 in 1000 year surface water flood level in the rear garden. The FFL are shy of a 300mm freeboard due to level access requirements and such the development will implement flood mitigation measures to ensure there is at least a 300mm freeboard above the 1 in 1000 year surface water flooding. As part of the basement design there is a proposed lightwell located on the side of the existing development. To mitigate against the risk of surface water flooding to the basement the lightwell is to be surrounded by retaining walls. This will ensure surface water does not enter the basement via the lightwell.

To mitigate against flood risk further, the proposed development should implement nonreturn valves on all foul outlets or a positive pumped system within the basement. This will reduce the risk of internal flooding in the event of any surcharge of the public sewer system in the road. With these two measures incorporated, the risks of surface water and sewer flooding to the site are considered to be low.

The onsite ground investigation concluded that a typical succession of Made Ground which was underlain with Claystones and London Clay Formation. Groundwater monitoring was undertaken but no groundwater was found in the location of the basement. However, groundwater was recorded in the monitoring boreholes at the front of the house. It is therefore recommended that the basement extension includes an appropriate tanked system or equivalent to prevent groundwater ingress into the basement. In addition, we advised that de-watering methods may be required during construction of the basement extension. With these mitigation measures in place, the risk of groundwater ingress to the basement is low.

Impermeable areas on the site will be increasing post development and subsequently there will be an increase in surface water runoff (ignoring the effects of climate change) from the site. The development will therefore be required to implement a sustainable urban drainage

system (SuDS) to ensure the surface water rates do not increase post development. It is proposed to implement a green roof with 10-15cm subbase which is underlain with a blue roof. This is sufficient for the development to comply to local planning requirements and the London Plan.

The proposed rear and basement extension has been shown to be at a low risk of flooding from all sources when implementing the mitigation measures proposed in this report and is considered acceptable in the context of flood risk, provided the mitigation measures detailed within this report are incorporated into the design. The proposed development does not result in any increase in the risk of flooding to the site or elsewhere due to the SuDS features proposed in this report.

1 INTRODUCTION

General Information

- 1.1 The site is located at 69 Avenue Road in the London Borough of Camden. The site is less than 1 hectare (ha) in size and currently comprises the residential house and gardens.
- 1.2 The Environment Agency flood zone maps indicate that the site is located in Flood Zone 1. This zone comprises of land assessed as having a less than 1 in 1000 annual probability of fluvial or tidal flooding (<0.1%). The site is also less than 1 ha and therefore a full Flood Risk Assessment is not normally required.
- 1.3 However, London Borough of Camden policy dictates that surface water flow and flooding is considered in this case, primarily due to the basement construction. This report has therefore been prepared to assess the risks of flooding from all potential sources including; overland flow, groundwater, artificial water bodies and underground sewers. The impact of the proposed development on surface water infrastructure is also considered, and this report will form part of the Basement Impact Assessment for submission with the planning application.

Scope of Study

- 1.4 The main objectives of this study are to:
 - Provide a surface water flow and flood risk assessment of the site, compliant with the guidelines set out in the National Planning Policy Framework (NPPF) and Camden Planning Guidance (CPG) to accompany any application for planning permission;
 - Complete the Stage 1 Surface Flow and Flooding screening assessment, using the flow chart included within CPG and carry forward to scoping stage if required;
 - Provide advice and guidance on the management of surface water runoff at the site to ensure the risk of surface water flooding on the site and on nearby sites does not increase following development; and,
 - Consider the potential future impacts of climate change over the lifetime of the proposed development.

2 SITE DESCRIPTION

Location

- 2.1 The site is situated on Avenue Road in the London Borough of Camden as shown in
- 2.2 Figure 1.
- 2.3 Primrose Hill is located to the east of the site and Hampstead Heath is located to the north of the site.

Figure 1¹ - Location of proposed development site

Existing Development

- 2.4 The existing site comprises of the existing residential building, driveway and gardens. The site is a mixture of hard and soft standing.
- 2.5 A topographic survey of the site has been carried out. It shows the finished floor levels of the property to be approximately 44.50m AOD. The driveway rises from Avenue Road to the property.

 $^{^1\, {\}ensuremath{\mathbb C}}$ Crown copyright and database rights 2020 Ordnance Survey 100049945

- CIE WATER | ENVIRONMENT
- 2.6 The rear garden is sunken compared to the driveway and the property levels. The rear garden has ground levels ranging from 43.53m-44.6m AOD.

Proposed Development

- 2.7 Proposals are to extend the existing dwelling on the site and to construct a basement under the existing development and part of the proposed extension.
- 2.8 All rooms situated within the basement level have internal access to higher floors. The basement includes one habitable room in the form of a staff living space.
- 2.9 The new extension to the property will increase the percentage of hard standing are on the site post development.
- 2.10 The proposals also include a green roof across the extension to mitigate against the increase of surface water runoff caused by the extension.

3 PLANNING POLICY AND GUIDANCE

National Planning Policy

NPPF

3.1 The revised National Planning Policy Framework (NPPF) was published in February 2019 and sets out the Governments' planning policies for England and how these are expected to be applied. In terms of flooding, the NPPF states that:

"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere."

- 3.2 In accordance with the NPPF, run-off rates and volumes should not increase from any site following development, to prevent an increase in surface water flood risk elsewhere.
- 3.3 In addition, to the NPPF, online Planning Practice Guidance (PPG) was released in March 2014 to clarify planning aspects of flood risk management. The PPG supersedes the Technical Guidance to the NPPF and clarifies which development types are considered appropriate within each flood zone.
- 3.4 The proposed residential development, according to Table 2 of the Flood Risk and Coastal Change section of the Planning Practice Guidance, is considered to be 'Highly Vulnerable' due to its inclusion of a basement dwelling on the site. The existing development is residential and therefore classified as 'More Vulnerable'. Therefore, there will be an increase in the vulnerability classification of the site as a result of the proposed development.

Sequential and Exception Test

3.5 Table 3 of PPG on Flood Risk and Coastal Changes states that 'Highly Vulnerable' uses are compatible with Flood Zone 1. Therefore, the sequential test is deemed to be passed and the exception test is not required.

Regional Planning Policy – London Plan

- 3.6 Being within a London borough, the development is subject to the requirements of the Mayor of London's strategic plan, "The London Plan²". The London Plan is the overarching spatial strategy for the Greater London Area, and provides the basic foundation for planning policy in London.
- 3.7 A draft "new London Plan" was published by the Mayor for consultation in December 2017, followed by a version of the draft Plan that includes minor suggested changes

² Mayor of London, The London Plan, The spatial development strategy for London consolidated with alterations since 2011, March 2016.

WATER | ENVIRONMENT

(August 2018), and the latest "Intend to Publish" version in December 2019³. These have been considered and there are no significant differences with the adopted London Plan from a drainage perspective, with the exception of requiring permeable surfacing unless it is shown that impermeable surfaces are unavoidable. The new London Plan is projected to be adopted in March 2020.

- 3.8 Policy 5.13 requires implementation of the drainage hierarchy, as well as a consideration of "*water use efficiency, water quality, biodiversity, amenity and recreation*". Priority is given to preventing water leaving the site, through re-use, then infiltration, followed by open water attenuation, below ground attenuation, and finally, as a last resort, uncontrolled discharge, applying the surface discharge hierarchy.
- 3.9 The promotion of SuDS is also mentioned in Policy 2.18, Green infrastructure, and it is stated that drainage should be designed in such a way as to deliver other policy objectives of the London Plan, including water efficiency, water quality, biodiversity and recreation.
- 3.10 The implementation of green roofs does not appear in the hierarchy, but has been considered in a specific Policy (Policy 5.11 "Green Roofs and Development Site Environs"). It is suggested that all major development proposals should include green roofs, green walls and site planting.
- 3.11 The London Plan Supplementary Planning Guidance⁴ states that the 'Mayor's Priority' is that "*developers should maximise all opportunities to achieve greenfield runoff rates in their developments*", with a minimum expectation to "achieve at least 50% attenuation of the site's (prior to re-development) surface water runoff at peak times."
- 3.12 Flood risk and drainage are considered in the London Plan under Chapter 5 "London's response to Climate Change", within the Climate change adaptation section, Policies 5.11 through to 5.15. Policy 5.12 sets out detailed policy regarding flood risk management and requires compliance with the NPPF and associated PPG. Policy 5.13; Sustainable Drainage states that:

"Development proposals must comply with the flood risk assessment and management requirements set out in the NPPF and the associated technical Guidance on flood risk over the lifetime of the development."

³ Mayor of London (December 2019), The London Plan – Intend to Publish version, Spatial Development Strategy for Greater London

⁴ Mayor of London (April 2014), *Sustainable Design and Construction Supplementary Planning Guidance*.

Local Planning Policy – London Borough of Camden

3.13 The London Borough of Camden has a Local Plan⁵ which was adopted in 2017. Relevant polices are CC3 Water and Flooding and A5 Basement. Key points are listed below:

CC3 Water and Flooding

'The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible. We will require development to:

a. incorporate water efficiency measures;

b. avoid harm to the water environment and improve water quality; c. consider the impact of development in areas at risk of flooding (including drainage);

d. incorporate flood resilient measures in areas prone to flooding; e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and f. not locate vulnerable development in flood-prone areas.

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.'

A5 Basement

...'The Council will require applicant to demonstrate that proposals for basements: O. avoid adversely affecting drainage and run-off or causing other damage to the water environment.'...

'The Council will not permit basement schemes which include habitable rooms and other sensitive uses in areas prone to flooding.'

- 3.14 The London Borough of Camden has strict policies with regards to basement development within the Borough, therefore they have provided guidelines for new basement developments and extensions to existing basement accommodation. Formal planning guidance has also been released, in the form of CPG Basements⁶, setting out specific criteria for assessing the impact of basement construction. As part of the Basement Impact Assessment (BIA), it is necessary to consider "*surface flow and flooding*" and "subterranean (groundwater) flow". Screening flowcharts (Drawing 3) are used to address individual sources of potential flooding, and where a risk of flooding is present; a scoping and impact assessment will need to be undertaken as appropriate. This report covers this component of the BIA.
- 3.15 In conjunction with ARUP, the London Borough of Camden produced a "*Geological, Hydrogeological and Hydrological Study*" for guidance on subterranean development⁷.

⁵ London Borough of Camden, 2017, Camden Local Plan

⁶ London Borough of Camden, March 2018, Camden Planning Guidance Basements.

⁷ ARUP Geological, Hydrogeological and Hydrological Study – Guidance for Subterranean Development, November 2010

4 SURFACE FLOW AND FLOODING ASSESSMENT

Stage 1: Screening

- 4.1 Camden Geological, Hydrogeological and Hydrological Study includes a surface flow and flooding screening flowchart, included in CPG Basements, for assessing the impact of potential sources of flooding, as well as the impact of the development on flood risk elsewhere.
- 4.2 The flow chart is set out with six questions, which are addressed with reference to the site and proposed development at 69 Avenue Road as follows:
 - **Question 1**: Is the site within the catchment of the pond chains on Hampstead Heath?

Answer: No – The site is not located within the catchment area as shown on Figure 14 of the Camden Geological, Hydrogeological and Hydrological Study. The site is approximately 2km from Hampstead Heath.

• **Question 2**: As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak runoff) be materially changed from the existing route?

Answer: No – The current proposal is for surface water flows to re-use the existing connections to the Thames Water combined public sewer located in Avenue Road.

• **Question 3**: Will the proposed basement development result in a change in the proportion of hard surfaced/paved external areas?

Answer: YES – The proposed development will increase the impermeable area post-development. Developer is required undertake a scoping stage of the Basement Impact Assessment.

• **Question 4**: Will the proposed basement result in changes to the profile of the inflows (instantaneous and long-term) of surface water being received by adjacent properties or downstream watercourse?

Answer: No – The proposed development is deemed not to affect the profile of inflows to adjacent properties.

• **Question 5**: Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?

Answer: No – The proposed basement will not result in any changes to the quality of surface water being received by adjacent properties or downstream watercourses.

4.3 According to the Camden Geological, Hydrogeological and Hydrological Study, it is necessary to carry forward to the scoping stage of the Basement Impact Assessment those matters of concern where the response is "Yes".

- 4.4 In addition:
 - **Question 6:** Is the site in an area known to be at risk from surface water flooding, such as South Hampstead, West Hampstead, Gospel Oak and King's Cross, or is it at risk from flooding, for example because the proposed basement is below the static water level of a nearby surface water feature?

Reference: The principles outlined in the NPPF should be followed to ensure that flood risk is not increased.

Answer: Yes – The site is shown to experience surface water flooding on the GOV.UK Long Term Flood Risk Maps. . **Developer is required undertake a Flood Risk Assessment in accordance with the NPPF.**

5 POTENTIAL FLOODING ON SITE

5.1 As the Surface Flow and Flooding Screening Flowchart answers "Yes" to Question 6, the development is required to undertake a Flood Risk Assessment in accordance with the NPPF. This chapter contains the Flood Risk Assessment for the site known as 69 Avenue Road for the proposed rear and basement extension.

Historic Information

- 5.2 No records have been found of the site flooding in the past from any of the sources identified in the NPPF.
- 5.3 It is noted in the North London Strategic Flood Risk Assessment (SFRA)⁸ and the Camden SFRA⁹ that a large area in the north of Camden was affected by surface water flooding in August 2002, which was the result of heavy rainfall inundating the public sewer system. A similar region of Camden was affected by surface water/sewer flooding in 1975. In both instances, the floods that occurred are understood to have been the result of high intensity rainfall inundating the main sewer and causing manholes and gullies to surcharge. Avenue Road is recorded of being flooded in the 2002 event. There is no record of the site being affected by this flooding event.
- 5.4 The Camden SFRA shows that the site is located in the postcode area of NW8 6 which has experienced 1 internal and no external sewer flooding events up to 2014.
- 5.5 The Camden SFRA maps indicate that the site is located within the Critical drainage area (CDA) Group3_005. Critical drainage areas are defined within the London Borough of Camden Surface Water Management Plan (SWMP)¹⁰ as "a discrete geographic area (usually a hydrological catchment) where multiple and interlinked sources of flood risk (surface water, groundwater, sewer, main river and/or tidal) cause flooding in one of more Local Flood Risk Zones during severe weather thereby affecting people, property or local infrastructure." The majority of the borough is located within a CDA and therefore, whilst a specific area is not necessarily at higher risk of surface water flooding, the location of an area within a CDA indicates that it is within a catchment area that contributes to a flooding hot spot. As a result, surface water management is a particular focus for new developments in these areas.

⁸ North London Strategic Flood Risk Assessment, (August 2008)

⁹URS (July 2014) London Borough of Camden Strategic Flood Risk Assessment

¹⁰ Drain London, Surface Water Management Plan for London Borough of Camden, (June 2013)

Tidal and Fluvial Flooding

- 5.6 The latest online Environment Agency flood zone map is presented in Figure 2. This shows the risk to the site of Tidal and Fluvial flooding only.
- 5.7 The site is located in Flood Zone 1 and is approximately 6km north of the River Thames at its nearest location. As stated in the NPPF, "this zone comprises land assessed as having a less than 1 in 1000 annual probability of fluvial and tidal flooding (<0.1%)". Therefore the risk of flooding from tidal and fluvial sources is considered low.

Figure 2¹¹ - GOV.UK flood zone map

Flooding from Surface Water and Sewers

5.8 Surface water flooding is typically the result of high intensity rainfall that is unable to infiltrate into the ground or enter the drainage system, ultimately following overland flow paths. In an urban environment such as Camden, surface water runoff is disposed of almost entirely via formal drainage systems, and consequently sewer flooding and surface water flooding (overland flow) need to be considered in tandem in this instance.

 $^{^{11}}$ © Crown Copyright and database right 2020 OS 100024198. Retrieved 07/01/2020

5.9 It is reasonable to assume that adopted sewers have been designed to the 1 in 30 year return period (in accordance with Sewers for Adoption¹²). Therefore, it is not expected for there to be any sewer flooding up to and including the 30-year event.

WATER ENVIRONMENT

5.10 The North London SFRA has collected data from flooding events in 1975 and 2002 which have been used by Camden to map areas of the borough that are more susceptible to surface water flooding. The Camden SFRA shows that Avenue Road is recorded as having flooded in the 2002 event

Surface Water

- 5.11 The GOV.UK website has online mapping covering the risks of surface water flooding. These maps are a useful tool in assessing the extent and frequency of flooding in a general area but do come with a caveat that they should not be relied upon for site specific development or property level assessment. Engineering judgement is therefore required when considering the flood risk information presented.
- 5.12 The most up-to-date data available on rainfall flooding modelling is presented in Figure 3.

Figure 3 - GOV.UK Surface Water Extent Map

5.13 The dark blue shaded areas are areas of high surface water flood risk which have a 3.3% (1 in 30) chance of flooding. While the lighter blue areas are of medium risk of surface water flooding which have a 1% (1 in 100) chance and the pale blue areas are of low risk of surface water flooding has a 0.1% (1 in 1000) chance of occurring. Areas not highlighted in blue are classed at very low risk of surface water flooding with a less than 0.1% (1 in 1000) chance of occurring. The site is shown to be a 'Medium' risk of surface water flooding.

¹² WRc7 plc (August 2018) Sewers for Adoption – A Design and Construction Guide for Developers. 8th Edition.

- 5.14 Surface water flooding is generally associated with topographic depressions and natural valleys. The mapping shows that the site does experience surface water flooding in the rear garden. This flooding is shown to be isolated and not connected to any flow routes. The topographic survey shows that the rear garden to be lower than the existing property and surrounding ground levels.
- 5.15 The modelled surface water flood map indicates that there is a natural flow path draining down Avenue Road, past the site is in a south-easterly direction. The mapping indicates flooding along the length of Avenue Road.
- 5.16 A more detailed configuration of the GOV.UK surface water map shows, in Figure 4, the risk of surface water flooding up to the 1 in 100 year storm event, the medium occurrence. This mapping shows the site to experience up to 300mm of flooding in the 1 in 100 year storm event.

WATER ENVIRONMENT

Figure 4 - GOV.UK Medium Occurrence Risk of Flooding from Surface Water

Figure 5 - GOV.UK Low Occurrence Risk of Flooding from Surface Water

- 5.17 While Figure 5, shows the low occurrence surface water flood event. This is up to the 1 in 1000-year flood event and the surface water is shown to collect in the rear garden which is a sunken garden.
- 5.18 The design flood event is the 1 in 100 year plus climate change event. It is important to note that surface water maps do not allow for climate change adaption, therefore it is common practice to also evaluate the 1000-year event as sensitivity test for what might happen in the future over the lifetime of the development. In this way it is possible to draw a parallel between the worst-case scenario (1000-year event) and the design 100-year plus climate change event.
- 5.19 By comparing the extent of the 1000-year surface water flooding event with the topography of the rear garden it is clear that the surface water level does not reach higher than 44.0m AOD. Therefore, 44.0m AOD is taken as a conservative estimate for the maximum surface water level depth for the 1000-year flooding event.
- 5.20 The proposed extension has set its finished floor levels (FFL) at 44.228m AOD which is 228mm above the 1000 year surface water flood level. A freeboard of 300mm is encouraged above the floodwater level by LBC and EA, however due to the

development requiring level access from the front driveway, the FFL of 44.228m AOD was the highest level the extension could be set at.

WATER ENVIRONMENT

- 5.21 As such, the extension will implement flood boards and other flood mitigation measures as outline in the Flood Resilient Construction of New Developments document to provide at least a 300mm freeboard.
- 5.22 The proposed lightwell, in absence of any mitigation measures, would be set below the garden surface water level for the 1000-year event. To mitigate against this the lightwell is to be contained within a retaining wall which is set above the maximum surface water flooding depth of 44.0m. This will prevent surface flood water entering the basement via the lightwell, the only exterior opening to the basement.
- 5.23 The site is also located within close proximity to the original route of a tributary of the River Tyburn, one of London's "lost rivers". The precise location of the original watercourse is unknown, and the route differs slightly between historical sources, however an excerpt from "Lost Rivers of London" (Figure 6) indicates that the natural route of the river within Camden.
- 5.24 The site is shown to be located between the two tributaries of the predicted natural flow of the River Tyburn but as mentioned the exact location of the original flow path is unknown. Nearly all lost rivers within London are now incorporated into the local underground sewer network and no longer flow at the surface. Overland flow may still be following the original course of the river and its tributaries as shown in Figure 6. Based on available information it appears that the site is located outside of the area at high risk of surface water flooding. Overland flow is shown to drain along Avenue Road past the site.

Figure 6 - Excerpt from Figure 11, Camden Geological, Hydrogeological and Hydrological Study. Source – Barton, Lost Rivers of London.

5.25 The existing house and the proposed extension are at low risk of surface water flooding due to FFL being set above the design flood water level. With the mitigation measure of retaining walls for the proposed lightwell in place, the basement is also at a low risk of surface water flooding.

Sewers

- 5.26 Sewer flooding typically occurs where there is incapacity or a blockage within the surface water or combined drainage system. The SFRA records indicate that there has been one incident of a property flooding from an internal sewer within the NW8 6 postcode area. The location of this property is unknown and is not disclosed within the SFRA. No records of exterior sewer flooding were recorded for postcode NW8 6.
- 5.27 Thames Water asset plans have been obtained for the area and these confirm that the site is connected directly to the combined public sewer located in Avenue Road. This sewer is a main truck sewer (1372 x 914mm) which is brick lined and egg shaped. This sewer drains combined flows from the area in a south-easterly direction along Avenue Road.
- 5.28 There are no separate surface water sewers shown on the Thames Water asset plans. In addition, there is no separate sewer identified for the River Tyburn tributary, and therefore it is assumed that this is incorporated into the main combined sewer network. Any excess overland flow is likely to be intercepted by the combined sewer system, reducing the likely risk of surface water flooding to the site. The asset plan for the area is shown in the Appendix.
- 5.29 The nearest public manhole to the site is no. 0702; however, there is no recorded cover or invert levels within the Thames Water asset information. Ground levels from the Thames Water asset plans show that Avenue Road in a south-easterly direction (approximately 44.5m AOD to the north west of the site) to the east (approximately 42.8m AOD).
- 5.30 Following the extension of the property, the site will continue to drain to Avenue Road as per the existing connection and with a similar drainage system to the existing site. No CCTV survey of the existing drainage system has been undertaken.
- 5.31 Flows off the site without any mitigation will increase post development (ignoring climate change), as there is an increase in hard standing on the site. The site will be implementing mitigation measures to reduce surface water flows off the site post development. These mitigation measures should not change the risk of flooding from sewers.
- 5.32 Levels on site are higher than Avenue Road carriageway, and as a result, any flow which does surcharge the local drainage system is likely to be retained within the road and drain to the south-east away from the site. It is recommended that non-return valves or a positive pumped system are implemented within the proposed basement to reduce the risk of sewers surcharging into the property. However, the residual risk of a blockage in the system cannot be categorically ruled out.
- 5.33 Finished floor levels are raised above the surrounding levels. This is in accordance with CIRIA guidance¹³ where it is recommended that finished floor levels and entrance thresholds are set a minimum of 150mm above surrounding ground levels.

¹³ CIRIA (C635), Designing for Exceedance in Urban Drainage – Good Practice, London 2006

5.34 In summary, provided that the mitigation measures are included within the design in the form of raised thresholds and non-return valves, the risk of flooding from sewers and overland flow is considered to be low.

Flooding from Groundwater

- 5.35 The online 1:50,000 BGS map indicates the site and wider area to be underlain by the London Clay formation. The mapping indicates that there are no superficial head deposits present within this area. The Environment Agency's online groundwater mapping indicates that the site is not located within a groundwater vulnerability zone. This map confirms that there are no aquifers, bedrock or superficial beneath the site.
- 5.36 DEFRA online maps show that the site is within a Source Protection Zone (SPZ). The site is shown to be Zone II, the Outer Protection Zone. This is shown in Figure 7. Source Protection Zones were defined by the Environment Agency in order to protect wells, boreholes and springs used for public drinking water supply. These zones indicate areas from which pollutants could reach the water supply, and the outer zone is defined by a 400 day travel time.
- 5.37 The SFRA shows that there have been two historical groundwater flooding events to the south of the site. These were recorded by the Environment Agency. There are no records of these events affecting property on Avenue Road.
- 5.38 Water supply for London is obtained from deep aquifers, via boreholes into the Chalk. These bedrock aquifers are found deep beneath the surface across most of London, confined beneath impermeable rock types, including the London Clay. The London Clay is an extensive layer, which the Environment Agency's "Management of the London Basin Chalk Aquifer" 2018 status report confirms is approximately 30-90m thick. The report states that "the low permeability nature of the London Clay overlying these aquifer units prevents the water table reaching the surface". It is noted that this can cause artesian pressure to build up; however, groundwater beneath London is actively managed to ensure that levels are stable.

Figure 7¹⁴ - Magic Maps Source Protection Zone Map

- 5.39 A site investigation¹⁵ was undertaken in December 2016. Three borehole and eight trial pits were tested, which revealed ground conditions to be generally consistent with geological records. The boreholes revealed a typical succession of Made Ground, ranging from 0.90m to 1.5m thickness below the existing basement level, with the Claystones and London Clay Formation found until the end of the boreholes (20m below existing ground level (BGL)).
- 5.40 The site investigation notes that seepage was encountered at depths of 9.5m and 8.6m BGL in the boreholes. Seepage was located within the claystone formation.
- 5.41 Groundwater monitoring was undertaken in standpipes which measured groundwater at depths of between 2.85m BGL and 11.75m BGL. These were in Borehole 2 and 3, located in the middle of the driveway and at the proposed extension location, respectively.
- 5.42 The site investigation states that 'the London Clay comprises predominantly clay soils, they cannot support groundwater flow and as such do not support a "water table" or continuous piezometric surface. Boreholes constructed within clays do fill with water, due to the often high water content of shallow clays or by the collection of surface water drainage, which is unable to drain through the clay; however, this is not reflective of the type of groundwater flow that would occur in a porous and permeable saturated stratum'.
- 5.43 The basement extension is to be constructed wholly within the London Clay, a typically low permeability strata with no continuous water table expected.
- 5.44 Based on available information and the results of the ground investigation, the risk of flooding as a result of groundwater emerging at the surface is considered to be low. In addition, the wider area is predominantly hard paved and therefore groundwater emerging at the surface is unlikely. Any groundwater which does emerge would drain overland and be collected by the local drainage network with surface water flows.
- 5.45 Nevertheless, it is assumed that the basement will be constructed within the London Clay. It is therefore required that the proposed basement is built and constructed using appropriate tanked construction to prevent groundwater seepage or ingress into the proposed basement. With the proposed mitigation measures to prevent the ingress of groundwater into the basement, the risk of internal groundwater flooding is low.

¹⁴ Magic Map by DEFRA <u>http://magic.defra.gov.uk/MagicMap.aspx</u> retrieved 08/01/2020

¹⁵Site Investigation and Basement Impact Assessment Report, 69 Avenue Road London NW8, Geotechnical and Environmental Associates Reference: J16224, December 2016

Flooding from Reservoirs, Canals and Other Artificial Sources

- 5.46 The Regent's Canal and Regent's Park Lake are the nearest artificial water bodies to the site (reference Figure 12 of the ARUP Study). However at both locations water is not retained above natural ground level and flooding as a result of infrastructure failure is therefore not possible.
- 5.47 Figure 14 of the ARUP study shows the Hampstead Heath Surface Water Catchments and Drainage including the pond chains, in greater detail. The site is not located within the catchment of the pond chains on Hampstead Heath.
- 5.48 The risk of flooding from artificial water bodies is therefore considered low.

Climate change

- 5.49 The current best practice for climate change allowance is the National Planning Policy Framework (NPPF), which defers to the PPG¹⁶ to specify climate change allowances. The Environment Agency recommends an increase in river flows and rainfall intensity depending on which river basin district the site lies in and the type of development.
- 5.50 The range of allowances is based on percentiles. A percentile is a measure used in statistics to describe the proportion of possible scenarios that fall below an allowance level. The 50th percentile is the point at which half of the possible scenarios for peak flows fall below it and half fall above it. The central allowance is based on the 50th percentile, the higher central is based on the 70th percentile and the upper end is based on the 90th percentile.
- 5.51 In this context, the Environment Agency anticipated changes in extreme rainfall intensity in small and urban catchments, which are shown in:

Table 1 – Allowances for Climate Change: Peak Rainfall intensity in small and urban catchments

Applies across all of England	Total potential change anticipated for the `2020s' (2015 to 2039)	Total potential change anticipated for the `2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper End	10%	20%	40%
Central	5%	10%	20%

¹⁶ https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances

5.52 The planned lifetime for the proposed development is assumed to be 100 years, in accordance with the PPG¹⁷ for Flood Risk and Coastal Change.

🚺 💳 WATER | ENVIRONMENT

5.53 The proposed development is classified as 'Highly vulnerable' and therefore it is recommended that the 'Upper End' allowance should be used to assess the future impacts of climate change on peak rainfall intensity. A 40% increase in peak rainfall intensities has been adopted as the allowance for climate change in the design calculations, which is considered to be a precautionary approach.

Flood Risk to Others/SuDS

- 5.54 In accordance with the NPPF, surface water runoff rates and volumes should not increase as a result of development. The London Plan and associated guidance documents require sites in London to reduce surface water rates by 50%.
- 5.55 The existing site is mostly impermeable with about 1000m² of permeable surfaces. There are no formal SuDS on the site.
- 5.56 Post development, the site will be increasing the development footprint by approximately 200m². This will increase surface water runoff post development and therefore surface water will be managed through the implementation of SuDS.
- 5.57 Design rainfall intensities have been calculated using the Wallingford Procedure¹⁸ and the resulting runoff was calculated using the Modified Rational Method. Calculation sheets are provided in the Appendix.
- 5.58 A 100-year, 5.0 minute critical storm (M5-60 of 20mm and an 'R' value of 0.4) has been applied to arrive at a rainfall intensity of 169.1 mm/h. The resulting runoff rate from the existing site prior to redevelopment has been calculated to be 58.06 l/s for the 1 in 100 annual probability rainfall event.
- 5.59 Post development, considering the increase of inpermeable areas on the site, a 1% AEP, 5-minute critical storm (M5-60 of 20mm and an 'R' value of 0.4) has been applied to arrive at a rainfall intensity 169.1 mm/h. The resulting runoff rate from the post development case has been calculated to be 67.0 l/s for the 1 in 100 year annual probability rainfall event.
- 5.60 An increase of 40% in the rainfall intensity to make allowance for climate change has been applied to the post-development state, this results in a runoff rate of 93.78 l/s.
- 5.61 To mitigate against this increase of surface water runoff, the development proposes to implement greens roofs on the proposed extension. Adding a green roof with a subbase of 10-15cm with 100% runoff reduces the runoff rate to 86.54/s for the 1 in 100 year plus climate change storm event.

¹⁷http://planningguidance.communities.gov.uk/blog/guidance/flood-risk-and-coastal-change/the-exceptiontest/what-is-considered-to-be-the-lifetime-of-development-in-terms-of-flood-risk-and-coastal-change/ Retrieved 08/02/2019

¹⁸ HR Wallingford (2000) The Wallingford Procedure for Europe – Best Practice Guide to urban drainage modelling (CD)

- 5.62 The additional permeability of the green roof does reduce rates however it is not sufficient to comply to the NPPF or London Plan. In order to reduce existing runoff rates by 50% in the post-developed state including an allowance for climate change (in accordance with the London Plan) a minimum of 15.0m³ of storage will be required.
- 5.63 A blue roof of at least 7.5cm across the proposed extension is sufficient to ensure that surface water rates can be restricted to 50% of the existing site. A blue-green roof configuration is shown in Appendix A
- 5.64 Calculations undertaken in this assessment are located within the Appendix B of this FRA.
- 5.65 It is recommended that any proposed new hard standing utilises permeable pavers and tarmac to further reduce surface water runoff.
- 5.66 The detailed surface water system should be designed in accordance with local planning policy and will be designed such that runoff from the 1% AEP rainfall event plus climate change allowance is fully retained on the site and discharged at the controlled rate. Full drainage design will be undertaken at the detailed design stage.

6 CONCLUSIONS AND RECOMMENDATIONS

- 6.1 The site is located at 69 Avenue Road in the London Borough of Camden and is currently occupied by the development on the site. Proposals are to extend the building above ground and create a basement. The basement will be extended downwards and extend a small amount outside the existing footprint of the building to the rear.
- 6.2 In accordance with local planning policy and following the London Borough of Camden Surface Flow and Flooding flowchart, a screening assessment has been undertaken. As a result, the site was required to undertake a flood risk assessment in accordance with the NPPF.
- 6.3 The Environment Agency flood zone maps indicate that the site is located in Flood Zone 1 (Low Risk). In accordance with the technical guidance document to the National Planning Policy Framework (NPPF), this zone comprises land assessed as having a less than 1 in 1000 annual probability of fluvial or tidal flooding (<0.1%). There is therefore no risk of flooding to the site from rivers or the sea.
- 6.4 The site is located close to the original route of a tributary of the River Tyburn; one of London's "lost rivers". This watercourse is now incorporated into the local sewer network and any overland flow will follow natural drainage routes. No evidence of any open channel or specific drainage infrastructure associated with this lost river was found onsite during site investigation. It is therefore considered unlikely that there is any additional risk to the site.
- 6.5 The GOV.UK Long Term Flood Risk maps for surface water indicate that there is a natural flow path draining down Avenue Road and that the rear garden is affected by surface water. The site and development are located sufficiently high enough to not be affected by this flow within Avenue Road. The rear garden is approximately 1m lower than the existing dwelling and therefore collects surface water in high return periods. As the existing house and proposed extension are setting FFL higher than the surface water flood level and will include flood mitigation measures to at least 300mm above the 1 in 1000 year surface water flood event, the risk of surface water ingress to the development is low.
- 6.6 The proposed new basement has an exterior opening, in the form of a lightwell, which puts the basement at risk of surface water flooding. To mitigate against this risk the development is implementing retaining walls to stop the ingress of surface water into the proposed basement via the lightwell.
- 6.7 An on-site ground investigation concluded that the geology below the existing basement comprised of made ground over the London Clay Formation. The site investigation notes that seepage was encountered at depths of 9.5m and 8.6m bgl in the boreholes. Groundwater monitoring was also undertaken which measured groundwater at a depth of 2.85m bgl and 11.75m bgl. The site investigation concluded that '*due to the often high water content of shallow clays or by the collection of surface water drainage, which is unable to drain through the clay; however, this is not reflective of the type of groundwater flow that would occur in a porous and permeable saturated stratum*'.

- 6.8 It is recommended that the basement extension is designed and constructed with appropriate tanked system to prevent groundwater ingress into the proposed basement. With these proposed mitigation measures the risk of groundwater ingress is low. In addition, it is recommended that the basement foul outlets have a non-return valves incorporated into the system to prevent internal flooding of the basement in the event of a blockage in the public sewer system. Therefore the risk of surface water and sewer flooding to the site are considered to be low.
- 6.9 There is an increase in impermeable area on site following development, which subsequently means there is an increase in the rate of runoff from the site (ignoring any increases as a result of climate change). The development will mitigate this increased runoff by implementing a green and blue roof to ensure a 50% decrease in surface water runoff rates.
- 6.10 All other sources of flooding have been assessed in accordance with the NPPF and are considered, with the mitigation measures proposed, to pose a low risk to the site.

APPENDIX A - DRAWINGS

Drawing 1 – Topographical Survey Foundation Architecture Ltd Job Number 522 Drawing 001

Drawing 2 - Proposed Drawings Ground Floor KSR Architects and Interior Designers Drawing Num: 18030-P100 REV A

Drawing 3- Proposed Drawings Basement Floor KSR Architects and Interior Designers Drawing Num: 18030-P090

Drawing 4- Proposed Drawings Roof Plan KSR Architects and Interior Designers Drawing Num: 18030-P130

Drawing 5- Proposed Drawings Elevation KSR Architects and Interior Designers Drawing Num: 18030-P202 REV A

Drawing 6- Proposed Drawings Elevation KSR Architects and Interior Designers Drawing Num: 18030-P203 REV A

Drawing 7- Proposed Drawings Elevation KSR Architects and Interior Designers Drawing Num: 18030-P201 REV A

SHT_AIL

SHT_A1L

*Scale is 1:? at A3

Grand Barry

Understanding of the particles in the application of internal concernments and the foregoing of the particles. The application of the theory of theory of the theory of theory of the theory of theory of the the the the theory

Sem 110 (04)

General Notes

Centeral Notes This drawing is copyright of KSF conjunction with the Designer's relevant documentation and dra KSR architecta cocpt no liability whatsoever nature and however drawing or ith the execution of the referred to Ihern and their appro Areas are based on unchecked from this drawing or the digital d from this drawing or the digital from the arvey and are approximate only. Do not scale ta, only figured dimensions are to be used. tance. e prior to carrying out any works and advise any

/ KSR ARCHITECTS & NORMARIAS STATEMENT DESIGNERS Project: 69 Avenue Road Drawing Title: Ground Floor Plan Date of first issue 31/01/20 scale: 1:100 @A1 / 1:200 @A3 Drawn By: MF Checked By: DC © KSR Architects

Planning

Key Dise

0 1 2 Scale 1:100 @A1

18030-P100

Α

30/11/20 DC Date By

Grand Barry

The device a subject of the subject is the subject water and the subject is the s

18030-P130

h.,

			Drawing Title:		
venue Road			Section B		
irst issue:	Drawn By:	Checked By:	Drawing No:		Rev:
/20	Author	Checker	18030-P201		
rchitects				DRAFT	20/01/2020
	venue Road inst issue: //20 wchitects	venue Road irst issue: Drawn By: //20 Author vichitects	Venue Road int issue: Drawn By, Checked By, //20 Author Checker victuateds	venue Road Section B inst issue: Dream By: Checked By: Dreaming No: //20 Author Checker 18030-P201 uchalleds Instance Instance 18030-P201	venue Road Section B inst issue: Drawn By: Checked By: 1/20 Author Checker 18030-P201 ventues: Drawn By: Checker Drawn By: 18030-P201 DRAFT

Reference should be made to the Flood Risk Assessment by Water Environment for more information on flood water levels

	Status: Scate:			KSR ARCHITECTS & KSR ArchitectsLP KSR Architects LP KSR Architects Com London NWI OND KSR Architects Com	IGNERS
	Project:			Drawing Title:	
	69 Avenue Road			Section B	
	Date of first issue:	Drawn By:	Checked By:	Drawing No:	Rev:
30/11/20 DC	05/18/20	Author	Checker	18030-P201	Α
Date By	© KSR Architects				

1 Section C

GENERAL NOTES: This drawing is copyright of XSR architects. This drawing much be read in conjunction with the belogner's Risk Assessment, specification and all conjunctions with the belogner's Risk Assessment, specification and all conjunctions with the belogner's Risk Assessment, specification and all conjunctions with the observer ating from any variation masks to the drawing. We draw the specification and all conjunctions with the observer ating from any variation masks to the drawing of the Reference should be made to the Flood Risk Assessment by Water Environment for more information on flood water levels

	Status: Scale:			KSR ARCHITECTS KSR ARCHITECTS A Greeting A Control of the Control	& SIGNERS
	Project:			Drawing Title:	
	69 Avenue Road			Section C	
	Date of first issue:	Drawn By:	Checked By:	Drawing No:	Rev:
30/11/20 DC	11/30/20	Author	Checker	18030-P202	Α
Date By	© KSR Architects				

Reference should be made to the Flood Risk Assessment by Water Environment for more information on flood water levels

		Status: Scale: 1:100 @A3			KSR Architects LP KSR Architects LP KSR Architects LP London IWI (NK) KSR Architects.com	S & ESIGNERS
		Project:			Drawing Title:	
		69 Avenue Road			Section D	
		Date of first issue:	Drawn By:	Checked By:	Drawing No:	Rev:
30/11	/20 DC	11/30/20	Author	Checker	18030-P203	Α
Da	te By	© KSR Architects				

APPENDIX B –TW ASSET SEARCH

Drawing 8- Asset Location Map

Thames Water, Ref No. 2018 3807954

This map shows the Thames Water asset locations near the site.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
071C	42.76	40.86
071E	42.69	39.54
071B	42.78	n/a
071A	42.73	40.86
071D	43.64	41.23
9801	44.68	39.4
981A	n/a	n/a
981B	n/a	n/a
9604	45.06	42.3
9606	n/a	n/a
0701	43.42	40.37
0702	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve Dam Chase Fitting

≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Other Symbols

Symbols used on maps which do not fall under other general categories

- ****/ **** Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

APPENDIX C – SURFACE WATER CALCULATIONS

Surface Water Calculations

WATER ENVIRONMENT

D21 RUNOFF CALCULATIONS		COVER SHEET		
Job No. Job Name	18024 69 Avenue Roa	ad		I
Engineer Checked By Date	Noah Bennett Claire Burroug 21/02/2020	hs	NB CB	
Site Characteristics				
Site Area (ha)	0.23 Over	rall	Disc	harging from site
Existing Pervious Surfaces (ha) Existing Impervious Surfaces (ha) Total:	0.1 0.13 0.23	43% 57% Total:	0 0.13 0.13	β 0% α 100%
Proposed Pervious Surfaces (ha) Proposed Impervious Surfaces (ha) Proposed Green Roof Total:	Over 0.08 0.13 0.02 : 0.23	rall 35% 57% 9% Total:	Disc 0 0.13 0.02 0.15	harging from site $egin{array}{ccc} & & 0\% \\ & & 100\% \\ & & \gamma & 100\% \end{array}$
Green Roof Type: Construction Depth: Peak Rate of Runoff	sedum-herbac 100-150mm	eius-grass pla Gradient:	ants of up t	>10-15 cm Course Depth to 15°,
Existing Site Detailed Modelling Used? Runoff Calculation Method (Existing) Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy	BROWNFIELD No Wallingford/M Wallingford/M To 2115 UE Attenuated on	e.g. Microdra odified Ratior odified Ratior 40% Site	ainage, Hydr nal nal	oCAD, Multiple Catchments Calculation Sheets Attached Calculation Sheets Attached
Existing Discharge Rate IoH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: including allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required Volume of Runoff	1yr 19.5 0.8 19.5 20.7 29.0 19.5 9.7 9.7 9.7 4.5	30yr 45.9 2.1 45.9 48.8 68.4 45.9 22.9 22.9 22.9 11.5	100yr 58.1 2.9 58.1 61.8 86.5 58.1 29.0 29.0 15.0	I/s I/s I/s I/s I/s I/s I/s Bespoke Rate m ³
Additional Volume (above Greenfield) of Runo	ff Generated			
Existing Site Proposed Site (unmitigated) Rainwater retained on-site for re-use (where limited) Long Term Storage Required	-2.5 10.2 0.0 12.7	m ³ m ³ m ³ m ³		
Proposed Site (including soakaways/infiltration SUDS) Off-site discharge must be restricted and storag Justification for not using infiltration or preventing disc	4.2 e provided harge:	m ³ Gro	ound conditio	ons not suitable
Limiting discharge rates:	1yr 19.5	Qbar 0.92	2 l/s/ha 0.46	Min Flow* 2 (I/s)
Preferred Limiting Discharge Rate:	2.0	l/s		Design and model outputs attached

GE WATER ENVIRONMENT

B Gappenpale Meeter 163 Bioglicus Planch Sachlicus Landar • 878 SNE Tak 620 8545 9750 Encil: contoctMeathersundernacious • web: www.acheresintement.co.uk

	18024	69 Ave	nue Road
IH124 : Greenfield Peak Runoff	Calculations By: NB	Checked By: CB	Date: 21/02/2020
Catchment Area Drained Area Standard average annual rainfall 1941 - 1970 Soil Index (from FSR or Wallingford Procedure WRAP maps)*	AREA AREA SAAR SOIL	ha ha mm	0.23 0.13 597 0.47
*SOIL is the SPR for the soil type, and for larger sites is a weighted sum the site, where: SOIL = $0.1ASOIL1 + 0.3ASOIL2 + 0.37ASOIL3 + 0.47ASOIL5 + 0.53ASAREAFor smaller sites, use the SPR for the local soil type, as follows:SOIL TYPE 1 2 3 4AREA 0 0 0 0 0.23SPR 0.1 0.3 0.37 0.47$	n of the individual so SOIL5 5 0 0.53	SOIL: 0.47	
QBAR = 0.00108 . (0.01AREA) ^{0.89} . SAAR ^{1.17} . SOIL ^{2.17} * The site area is less than 50ha. Since the IoH124 methodology is not calibrated for sites less than 50ha in area, the calculation should be undertaken based on a 50ha site area and proportionately adjusted	QBAR _{50ha} QBAR/ha	l/s l/s/ha	200.38 4.01
based on the ratio of the site size to 50ha.	drological Area	fig 4.2	6
	Return Period G (years)	rowth Factor (table 4.3)	Discharge rate
	1 2 10	0.85 0.88 1.62	0.44 0.46 0.84
	30	2.3	1.20
	100	3.19	1.66
Figures and table references from CIRIA C753 The SUDS Manual © CIRIA 2015			

Suppose the second structure of the second se

			18024	69 AV	enue Road	
Wallingford Procedure	e : Existing Peak R	Runoff	Calculations By: NB	Checked By: CB	Date: 21/02/2020	
Site Characteristics						
Site Area			AREA	ha	0.23	
Drained Catchment Area	a		AREA	ha	0.13	
Approximate Longest D	rainage Path		L	m	35	
Difference in Ground Le	vels		ΔH	m	0.3	
Slope			Slope (S)		1: 117	
					00/	
Permeable Surfaces (Ra		cient = 0.4)	na	0%	
Impermeable Surfaces (Rational Method runoff coe	fficient = C).95)	ha	100%	
	Area Weighted Rational N	Method Rur	noff Coefficient		0.950	
Site parameters from Th drainage modelling, HR	ne Wallingford Procedure fo Wallingford, July 2000 (CD	r Europe: E)	Best Practice Guide	e to urban		
					20	
60minute, 5 year return	period rainfall		M5-60	mm	20	
Ratio of M5-60 to 2day,	5 year return period rainfa	II	r	-	0.40	
Time of Concentration	n					
Recommended Tc Meth	od: SC	S: Sheet F	low		_	
Tc Method Choice:	SC	S: Sheet F	low			
	Sheet Flo	W				
Surface Description			Conc	crete (smooth)		
Slope				Shallow		
Roughness Coefficient	(Manning's n)			0.017		
Flow Length, L				m 35		
M2-24hr			m	ım 37.70		
Land Slope			m/	m 0.00857		
Тс				hr 0.07		
Time of Concentration			-		10	
	(maining, una [min	4 .0	
Critical Storm Duration ((minimum 5min)		I crit	min	5.0	
Critical Storm Rainfall	and Runoff				_	
71 0.20	*Wallingford Procedure Figure	36				
	maningrora i roccuure rigure	5.0			Discharge Date	
MS-I _{crit} 7.7					Discharge Rate	
C 0.950					$\mathbf{Q} = \mathbf{2.78CiA}$	
	Return Period	Z2*	Depth	Intensity	Discharge Rate	
	(years)		(mm)	, (mm/hr)	l/s	
	1	0.62	4.7	56.7	19.46	
	2	0.79	6.1	72.7	24.95	
	10	1.20	9.2	110.6	37.97	
	30	1.45	11.1	133.6	45.86	
	50	1.60	12.2	146.8	50.41	
	100	1.84	14.1	169.1	58.06	
		Nallingford 5	Procedure Table 2.2			
	*Wallingford Procedure Table 3.2					

B Gappenpale Meeter 163 Bioglicus Planch Sachlicus Landar • 878 SNE Tak 620 8545 9750 Encil: contoctMeathersundernacious • web: www.acheresintement.co.uk

Wallin.	aford Drag	adura i Dai	رمامهم	d Dool	Dunoff	18024	69 A	venue Road
wanng	giora Proc	cedure : Dev	/elope	и реак	RUNOII	Calculations By: N	B Checked By: CB	Date: 21/02/2020
	Site Charact	eristics						
	Site Area					AREA	ha	0.23
	Drained Catch	nment Area				AREA	ha	0.15
	Approximate	Longest Drainage	e Path			L	m	35
	Difference in	Ground Levels				ΔH	m	0.3
	Slope					Slope (S)		1: 117
	Permeable Su	Irfaces (Rational	Method I	runoff coe	fficient = 0.4)	1	ha	0%
	Impermeable	Surfaces (Ration	al Metho	od runoff o	coefficient = 0	.95)	ha	87%
	Green Roof of	f gradient	of up to	15°,	and depth of	100-150mm ,	c= 0.4 *	13%
		Area	Weight	ed Rationa	al Method Run	off Coefficient		0.88
	*in line with Ta	ble 10.1 of CIRIA C	644					
	Site paramete	ers from The Wall	ingford I	Procedure	for Europe: B	lest Practice Guid	de to urban	
	drainage mod	lelling, HR Walling	gford, Ju	ıly 2000 (0	CD)			
	60minute, 5 y	ear return perioc	l rainfall			M5-60	mm	20
	Ratio of M5-6	0 to 2day, 5 year	r return	period rair	nfall	r	-	0.40
	Time of Con	centration						
	Recommende	d Tc Method:			SCS: Sheet F	low		
	Tc Method Ch	ioice:		5	SCS: Sheet F	low		
				Charles				
				Sheet	FIOW			
	Surface L	escription				Cor	icrete (smooth)	
		Slope					Shallow	
	Roughness	Coefficient (Manning	j's n)			0.017	
	Flow	Length, L					m 35	
		M2-24hr					mm 37.70	
	L	and Slope				n	n/m 0.00857	
		Tc					hr 0.07	
						_		
	Time of Conce	entration				Т _с	min	4.0
	Critical Storm	Duration (minim	um 5mir	ı)		T _{crit}	min	5.0
	Critical Storr	n Rainfall and F	Runoff					
			,					
	$∠1_{TC}$	0.38 *Wallir	ngford Pro	cedure Fig	ure 3.6			
	M5-T _{crit}	7.7						Discharge Rate
	С	0.877						Q = 2.78CiA
	_							
		Return F	Period	Z2*	Depth	Intensity	Discharge Ra	te Future Rate
	_	()	/ears)		(mm)	(mm/hr)	l/s	l/s
	_		1	0.62	4.7	56.7	20.72	29.00
			2	0.79	6.1	72.7	26.57	37.20
	_		10	1.20	9.2	110.6	40.43	56.60
	_		30	1.45	11.1	133.6	48.83	68.37
	_		50	1.60	12.2	146.8	53.68	75.15
	_		100	1.84	14.1	169.1	61.82	86.54
					*Wallingford P	rocedure Table 3.2		

B Gappenpale Meeter 163 Bioglicus Planch Sachlicus Landar • 878 SNE Tak 620 8545 9750 Encil: contoctMeathersundernacious • web: www.acheresintement.co.uk

MPM 100 year Event Storage Calculator	18024	69 Ave	nue Road
MRM 100 year Lyent Storage Calculator	Calculations By: NB	Checked By: CB	Date: 21/02/2020
Site Parameters			_
Drained Catchmont Area		ha	0.15
		m	35
Difference in Ground Levels		m	0.3
Slone	Slope (S)		1: 117
	0.000 (0)		
Permeable Surfaces (Rational Method runoff coefficient = 0.4)	ha	0%
Impermeable Surfaces (Rational Method runoff coefficient = 0).95)	ha	87%
Green Roof of gradient of up to 15°, and depth of	f 100-150mm, C=	0.4 *	13%
Area Weighted Rational Method Rur	noff Coefficient		0.88
*in line with the FLL Guidelines on Planning, Execution and Upkeep of	Green Roof Sites, 2002	2	
Site parameters from The Wallingford Procedure for Europe: I	Best Practice Guide t	o urban	
arainage modelling, HK Wallingford, July 2000 (CD)	ME 60	mm	20
Ratio of M5-60 to 2day. 5 year return period rainfall	00-כויו י	-	20 0 40
Time of Concentration	, т	min	4 0
	۰c		
Maximum Storm Runoff Storage Volume (modified ratio	nal method)		
5			
T _d 10.0 min			
Z1 _{TD} 0.51 *Wallingford Procedure Figure 3.6			
M5-T _d 10.2 mm			
C 0.88			
Z2 ₁₀₀ 1.91 *Wallingford Procedure Table 3.2			
M100-T _d 19.5 mm			
Intensity 117.1 mm/hr			
Q _d 42.8 I/s			
Q _{d,climate change} 59.9 I/s			
Qlimiting discharge 29.0 I/s			
Maximum st	orage required	m ³	15.0
Storage Requirements			
16.0			
14.0 4			
e 10.0			
		_	
କ୍ଷ 6.0			
	 	720	
0 60 120 180 240 300 360 420 480 Storm Duration (mins)	0 240 000 060	720	

B Gappengale Meeter 103 Billiphice Road-Sachilice-Landar 109 SNE Tail 520 8545 9750 Excit: contoctMeathemiceConterf.co.uk / web: www.acdevenieriest.co.uk

DM 30 Maar	Event Storage Calculator		18024	69 Aver	nue Road
KM 50 year			Calculations By: NB	Checked By: CB	Date: 21/02/2020
Sito Doromotor	~				
Sile Parameter	5				-
Drained Catchm	ent Area		AREA	ha	0.15
Approximate Lor	ngest Drainage Path		L	m	35
Difference in Gro	ound Levels		ΔH	m	0.3
Slope			Slope (S)		1: 11/
Permeable Surfa	ces (Rational Method runoff coefficient :	= 0.4))	ha	0%
Impermeable Su	Irfaces (Rational Method runoff coefficien	nt = 0	,).95)	ha	87%
Green Roof of g	radient of up to 15°, and de	pth of	100-150mm , C=	0.4 *	13%
	Area Weighted Rational Metho	od Run	noff Coefficient		0.88
*in line with the Fl	L Guidelines on Planning, Execution and Upk	eep of	Green Roof Sites, 2002	2	
drainage modell	ing, HR Wallingford, July 2000 (CD)	ope: E	sest practice guide to	o urban	
60minute 5 vea	r return period rainfall		M5-60	mm	20
Ratio of M5-60 t	o 2day, 5 year return period rainfall		r	-	0.40
Time of Concent	ration		T _c	min	4.0
Maximum Stor	m Punoff Storage Volume (modified	ratio	nal method)		
	in Kullon Storage Volume (modilled	Tatio	na method)		-
T _d	10.0 min				
Z1 _{TD}	0.51 *Wallingford Procedure Figure 3.6				
M5-T _d	10.2 mm				
С	0.88				
Z2 ₃₀	1.49 *Wallingford Procedure Table 3.2				
M30-T _d	15.2 mm				
Intensity	91.3 mm/hr				
Q _d	33.4 l/s				
Qd,climate change	46.7 I/s				
Qlimiting discharge	22.9 I/S	um cta	orage required	m ³	11 5
			orage required	111	11.5
	Storage Requirements				
14.0					
12.0					
ິ 10.0					
) au (
/olur					
6.0					
200 4.0					
2.0					
0.0	60 120 180 240 300 360 420	480	-	720	
0	Storm Duration (mir	ns)	510 000 000	720	
				<u> </u>	

B Gappenpale Meeter 163 Bioglicus Planch Sachlicus Landar • 878 SNE Tak 620 8545 9750 Encil: contoctMeathersundernacious • web: www.acheresintement.co.uk

Priver 1 year Event Storage Calculator Calculations By: NB Checked By: CB Site Parameters Site Parameters AREA ha Drained Catchment Area AREA ha Approximate Longest Drainage Path L m Difference in Ground Levels ΔH m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm , c= 0.4 * Area Weighted Rational Method Runoff Coefficient ************************************	Date: 21/0: 0.15 35 0.3 1: 117 0% 87% 13% 0.88 20 0.40 4.0
Site Parameters Drained Catchment Area AREA ha Approximate Longest Drainage Path L m Difference in Ground Levels ΔH m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient - - - - *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Maximum Storm Runoff Storage Volume (modified rational method) Tc min - - Trip 0.51 *Wallingford Procedure Figure 3.6 M5-Td 10.2 mm C 0.88 Z21 0.61 *Wallingford Procedure Table 3.2 M1-Td 6.2 mm <	 0.15 35 0.3 1: 117 0% 87% 13% 0.88 20 0.40 4.0
Drained Catchment Area AREA ha Approximate Longest Drainage Path L m Difference in Ground Levels ΔH m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient ************************************	
Drained Catchment Area AREA ha Approximate Longest Drainage Path L m Difference in Ground Levels ΔH m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm , c= 0.4 * Area Weighted Rational Method Runoff Coefficient ************************************	0.15 35 0.3 1: 117 0% 87% 13% 0.88 20 0.40 4.0
Approximate Longest Drainage Path L m Difference in Ground Levels ΔH m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient * * *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Z1 _{TD} 0.51 *Wallingford Procedure Figure 3.6 M5-7 _d 10.2 M5-T _d 10.2 mm C 0.88 Z2 ₁ 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 mm/hr Q 13.7 I/s	35 0.3 1: 117 0% 87% 13% 0.88 20 0.40 4.0
Difference in Ground Levels Δh m Slope Slope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient <u>of up to 15°, and depth of 100-150mm, c= 0.4 *</u> <u>Area Weighted Rational Method Runoff Coefficient</u> *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T_c min Maximum Storm Runoff Storage Volume (modified rational method) T_d 10.0 min $Z1_{TD}$ 0.51 *Wallingford Procedure Figure 3.6 M5-T_d 10.2 mm C 0.88 $Z2_1$ 0.61 *Wallingford Procedure Table 3.2 M1-T_d 6.2 mm Intensity 37.4 mm/hr Q_d 13.7 I/s	0.3 1: 117 0% 87% 13% 0.88 20 0.40 4.0
Stope Stope (S) Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient * *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Maximum Storm Runoff Storage Volume (modified rational method) T _d 10.0 min C 0.88 Z2 ₁ 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 mm/hr Q _d 13.7 I/s O 10.1 I/s	1: 117 0% 87% 13% 0.88 20 0.40 4.0
Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient * *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Z1 _{TD} 0.51 *Wallingford Procedure Figure 3.6 M5-T _d 10.2 mm C 0.88 Z21 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 mm/hr Qd 13.7 I/s 0 0 0 0	0% 87% 13% 0.88 20 0.40 4.0
Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient of up to 15°, and depth of 100-150mm, c= 0.4 * Area Weighted Rational Method Runoff Coefficient *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 Ratio of M5-60 to 2day, 5 year return period rainfall r Time of Concentration T _c Maximum Storm Runoff Storage Volume (modified rational method) Td 10.0 Td 0.51 *Wallingford Procedure Figure 3.6 M5-T _d 0.2 M1-T _d 6.2 M1-T _d 10.1 Wallingford Procedure Table 3.2	87% <u>13%</u> 0.88 20 0.40 4.0
Green Roof of gradient of up to 15°, and depth of 100-150mm , c= 0.4 * Area Weighted Rational Method Runoff Coefficient *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Maximum Storm Runoff Storage Volume (modified rational method) Td Td 10.0 min Z1 _{TD} 0.51 *Wallingford Procedure Figure 3.6 M5-Td 10.2 mm C 0.88 221 Qd 13.7 I/s O 13.7 I/s O 13.7 I/s	13% 0.88 20 0.40 4.0
Area Weighted Rational Method Runoff Coefficient *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Z1 _{TD} 0.51 *Wallingford Procedure Figure 3.6 M5-T _d 10.2 mm C 0.88 221 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 Intensity 37.4 mm/hr Qd 13.7	20 0.40 4.0
Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Maximum Storm Runoff Storage Volume (modified rational method) T _c min T ₁ 0.51 *Wallingford Procedure Figure 3.6 M5-T _d 10.2 mm C 0.88 221 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 mm/hr V/s N/s N/s N/s	20 0.40 4.0
Site parameters norm the walkingford Procedure for Europe: best Proceeder to discurd to discurd drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Maximum Storm Runoff Storage Volume (modified rational method) T _c min T _d 10.0 min 21 _{TD} 0.51 *Wallingford Procedure Figure 3.6 M5-T _d 10.2 mm C 0.88 22 ₁ 0.61 *Wallingford Procedure Table 3.2 M1-T _d 6.2 mm Intensity 37.4 mm/hr Qd 13.7 I/s 0	20 0.40 4.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 0.40 4.0
Nonindee, 5 year return period raintain Initial Initial Ratio of M5-60 to 2day, 5 year return period rainfall r - Time of Concentration T _c min Maximum Storm Runoff Storage Volume (modified rational method) T _c min T _d 10.0 min	0.40 4.0
Time of ConcentrationTime of ConcentrationminZ1 TD0.51 *Wallingford Procedure Figure 3.6M5-Td10.2mmC0.88Z21 O0.61 *Wallingford Procedure Table 3.2M1-Td6.2mmIntensity37.4Mn/hr Qd13.7I/s0	4.0
Maximum Storm Runoff Storage Volume (modified rational method) T_d 10.0 min $Z1_{TD}$ 0.51 *Wallingford Procedure Figure 3.6 M5- T_d 10.2 mm C 0.88 Z2_1 0.61 *Wallingford Procedure Table 3.2 M1- T_d 6.2 mm Intensity 37.4 mm/hr Q_d 13.7 1/s O 10.1 1/s	
Maximum Storm Runoff Storage Volume (modified rational method) T_d 10.0min $Z1_{TD}$ 0.51 *Wallingford Procedure Figure 3.6M5- T_d 10.2mmC0.88Z2_10.61 *Wallingford Procedure Table 3.2M1- T_d 6.2mmIntensity37.4mm/hrQ_d13.7I/sO10.1V/s	_
Qd,climate change 19.1 I/S	
Qlimiting discharge 9.7 I/s	
maximum storage required in	4.5
Storage Requirements	
5.000	
4.000	
6 1.500	
δ, 1.000	
0.500	
0.000	
0.000 <u>http:///////////////////////////////////</u>	

SLIDS Manual	Volumo Ca	laulation (Existin	a)	18024	69 Av	enue Road
	volume ca		9)	Calculations By: NB	Checked By: CB	Date: 21/02/2020
Site Characteristics						
						_
Site Area				AREA	ha	0.23
Permeable Surfa	aces (Existing Cas	se)				43%
Proportion disch	arging to sewer i	network or local watercour	rses	β		0%
*zero if all runo	ff collected from	unpaved surfaces is retain	ed on s	site or discharged to	o ground	
Impermeable Su	urfaces (Existing (Case)		PIMP		57%
Proportion disch	narging to sewer i	network or local watercour	rses	α		100%
*zero if all runo	ff from paved su	irfaces remains on site or i	s collec	ted and discharged	l to ground	
Soil Index (from	FSR or Wallingfo	ord Procedure WRAP mans	:)*	SOTI		0.47
			<i>,</i>)	SOIL		0.17
*SOIL is the SPR for the	e soil type, and fo	or larger sites is a weighte	d sum o	of the individual so	il classes for	
SOIL = $0.1A_{SOIL1} + 0.3A$	A _{SOIL2} + 0.37A _{SOIL}	_{.3} + 0.47A _{SOIL4} + 0.53A _{SOIL}	.5			
		AREA				
For smaller sites, use th	ne SPR for the loc	cal soil type, as follows:				
SOIL TYPE	1	2 3	4	5		
AREA	0	0 0	0.23	0	SOIL:	
SPR	0.1	0.3 0.37	0.47	0.53	0.47	
Site parameters	from The Walling	gford Procedure for Europe ord July 2000 (CD)	e: Best	Practice Guide to u	ırban	
dramage model	ing, nit wainigit	514, 541y 2000 (CD)				
60minute, 5 yea	ar return period ra	ainfall		M5-60	mm	20
Ratio of M5-601	to Zday, 5 year re	eturn period rainfall		r	-	0.40
Volume Calculation fo	or the 100 year	return period 6hr storm)			_
Z1 _{6hr}		1.55 *Wallingford Proced	ure Figu	re 3.6		
M5-6hr		31.1				
Z2 _{100yr}		1.97 *Wallingford Proced	ure Tabl	e 3.2		
M100-6hr		61.2				
Additional volume (m	³) of existing si	te runoff over Greenfiel	d runo	ff:		
<i>Vol</i> ="M100-6hr". <i>Al</i>	- REA.10[PIMP/	$(100 (0.8\alpha) + (1 - PIM))$	P/100	$SOIL \cdot \beta - SOIL$		
* EQ24.10 CIRIA C753 Th	e SUDS Manual © (CIRIA 2015				
	Additional Ve	olume of Runoff (above	e Greei	nfield state):	m³	-2.5

B Gappenpale Meeter 163 Bioglicus Planch Sachlicus Landar • 878 SNE Tak 620 8545 9750 Encil: contoctMeathersunternit.co.uk • web: www.acheresinternet.co.uk

SLIDS Manual Volume Cal	culation (Proposed)	18024	69 Ave	nue Road
SODS Manual Volume Cal		Calculations By: NB	Checked By: CB	Date: 21/02/2020
Site Characteristics				
				-
Site Area		AREA	ha	0.23
Permeable Surfaces (Proposed C	Case)	Q		35%
*zero if all runoff collected from	unnaved surfaces is retained on	site or discharged to	around	0%
		site of discharged to	ground	
Impermeable Surfaces (Proposed	d Case)	PIMP		65%
Proportion discharging to sewer	network or local watercourses	α		100%
*zero if all runoff from paved su	irfaces remains on site or is colle	ected and discharged	to ground	
Soil Index (from FSR or Wallingfo	ord Procedure WRAP maps)*	SOIL		0.47
*SOIL is the SPR for the soil type, and fo	r larger sites is a weighted sum	of the individual soil	classes for	
the site, where: SOIL = 0.14 source ± 0.34 source ± 0.374 source	+ 0 47Δ ₀₀ , + 0 53Δ ₀₀ , -			
$A = \frac{0.1750111 + 0.5750122 + 0.57750113}{A}$	AREA			
For smaller sites, use the SPR for the loca	al soil type, as follows:			
		T 1		
SOIL TYPE 1	2 3 4	5	6011	
SPR 01	0 0 0.23	0.53	0.47	
		0100		
Site parameters from The Walling	gford Procedure for Europe: Bes	t Practice Guide to u	rban	
	ord, July 2000 (CD)			
60minute, 5 year return period r	ainfall	M5-60	mm	20
Ratio of M5-60 to 2day, 5 year r	eturn period rainfall	r	-	0.40
Volume Calculation for the 100 years	return period 6hr storm			
Volume calculation for the 100 years				-
Z1 _{6hr}	1.55 *Wallingford Procedure Figu	ıre 3.6		
M5-6hr	31.1			
Z2 _{100yr}	1.97 *Wallingford Procedure Tab	le 3.2		
M100-6hr	61.2			
With Climate Change	85.7 40%			
Additional volume (m ³) of developme	ent runoff over Greenfield rur	off:		
$Vol = M100-6hr. AREA. 10 \left[\frac{PIMI}{100} \right]$ * EQ24.10 CIRIA C753 The SUDS Manual © C	$\frac{P}{-}(0.8\alpha) + \left(1 - \frac{PIMP}{100}\right)SOI$	$L \cdot \beta - SOIL$		
Additional Rainfall Volume (above	e Greenfield state) for the de	veloped site:	m³	10.2

8 Gepengute Moren 103 Stription Risch Serbiton Landon 105 SMC Tel: 520 SMM 9750 Emol: contect/Restaurantectual mate analosian international

SLIDS Manual Volume Calculation (Developed)	18024	69 Aver	nue Road
	Calculations By: NB	Checked By: CB	Date: 21/02/2020
Site Characteristics			
			-
Catchment Area	AREA	ha	0.23
Permeable Surfaces (Proposed Case)	PGF		35%
Areas discharging to soakaway or prevented from leaving site via	mitigation	ha	0
	β		0%
Impermeable Surfaces (Proposed Case)	PIMP		57%
Areas discharging to soakaway or prevented from leaving site via	mitigation	ha	0
	α		100%
Green Roof Area (Proposed Case)	PGR Dep	oth of Green Roof	9%
Annual coefficient of discharge*	Ψa	>10-15 cm	0.45
*Inline with Table 3 of the FLL Planning, Execution and Upkeep	of Green-roof sites, 2	2002	
Soil Index (from FSR or Wallingford Procedure WRAP maps)*	SOIL		0.47
Solar is the one of the solar is the site is the one of the solar is the site is of the order solar is the site is of the order solar is the site is of the solar is the so	t Practice Guide to un M5-60 r	SOIL: 0.47 ban mm	20 0.40
Z1_{6hr1.55 *Wallingford Procedure FigureM5-6hr31.1Z2_{100yr}1.97 *Wallingford Procedure TableM100-6hr61.2With Climate Change85.740%	ıre 3.6 Ie 3.2		
Additional volume (m ³) of development runoff over Greenfield ru	noff:		
<i>Vol</i> ="M100-6hr". <i>AREA</i> .10[<i>PIMP</i> /100 (0.8α)+(PGF/100) <i>SO</i>	$IL \cdot \beta + (PGR/100)$	0). Ψa <i>—SOIL</i>]	
* Modified from EQ24.10 CIRIA C753 The SUDS Manual \odot CIRIA 2015			
Additional Volume of Runoff (above Greenfield state) Rainwater harvesting or other re-use scheme commi Additional Volume of Runoff (above Greenfield state) lea	eaving the site: tted volumes: ving the site:	m ³ m ³ m³	4.2 0 4.2