Basement Impact Assessment 15 Lyncroft Gardens, London NW6 1LB

Hydrogeology, Land Stability and Ground Movement Assessment

21 July 2020

MAUND GEO-CONSULTING

Produced for:

Croft Structural Engineers Clock Shop Mews, Rear of 60 Saxon Road London SE25 5EH

Prepared by:

Julian Maund BSc PhD CEng MIMMM CGeol FGS UK Registered Ground Engineering Adviser

Maund Geo-Consulting Ltd 3 Coopers Square Chipping Norton OX7 5DG

T 07817018716 E julian.maund@gmail.com

MGC-BIA-19-29-V3

Report Title	Basement Impact Assessment	Site Address	15 Lyncroft Gardens, London NW6 1LB
Work Stage	Hydrogeology, Land Stability and Ground Movement Assessment	Report Date	July 2020
Brief Description of the Report Contents	Desk study and geotechnical into Impact Assessment and Ground		und and groundwater conditions, for a Basement ent

Document Control Sheet

Project Title Basement Impact Assessment

15 Lyncroft Gardens, London NW6 1LB

Report Title Hydrogeology, Land Stability and Ground Movement Assessment

Reference MGC-BIA-19-29-V3

Revision 2

Status Final

Control Date 21 July 2020

Record of Issue

Issue	Status	Date	Author	
Α	Draft	25/11/19	Julian Maund	1.1:
			BSc PhD CEng MIMMM CGeol FGS	
			UK Registered Ground Engineering Adviser	
В	Final	20/05/2020	Julian Maund	1.6
			BSc PhD CEng MIMMM Cgeol FGS	
			UK Registered Ground Engineering Adviser	
С	Final	21/07/2020	Julian Maund	1.1.
			BSc PhD CEng MIMMM Cgeol FGS	
			UK Registered Ground Engineering Adviser	

Distribution

Organisation	Contact	Copies	Date
Croft Structural Engineers	Philip Henry	1	21/07/2020
Advantage Basements	Steve Mcstea	1	21/07/2020
Campbell Reith	Christos Botsialis	1	21/07/2020

Contents

1	Non-Technical Summary	1
2	Introduction	
2.1	Terms of Reference	
2.2	Scope and Objective	
2.3	Author	
2.4		
3	Desk Study - Background Information on the Site	
3.1	Location	
3.2	Description	
3.3	Present use	
3.4	Proposed use	
3.5 3.6	Topography, geomorphology and drainage	
3.7	Geology Hydrogeology/groundwater	
3.8	Natural Hazards	
3.9	History of site	
3.10	Underground features	
3.11	Other factors e.g. contamination and archaeology	
_	5	
4 4.1	Site Investigation	
4.1	Details of laboratory tests	
5	Ground Conditions	
5.1	Stratigraphy	
5.2	Groundwater	
5.3	Consideration of the individual strata, with reference to the basement	11
6	Geotechnical Assessment of Ground Conditions	15
6.1	Introduction	
6.2	Presumed Bearing resistance	
6.3	Effect of Heave from soil excavation	
6.4	Sub –surface Concrete	19
7	Screening	21
7.1	Introduction	
7.2	Subterranean (Groundwater) flow	21
7.3	Slope / Land Stability	23
8	Scoping	26
8.1	Introduction	
9	Impact Assessment	
9.1	Groundwater	
9.2	Land Stability	
10	Ground Movement Assessment	
10.1	Introduction	
10.2	Modelling of movements due to vertical and horizontal stress changes	31
11	Damage Category Assessment	33
11.1	Introduction	
11.2	Damage Assessment Categories for neighbouring properties 13 and 17	Lyncroft
Gard	ens	33
11.3	Impact on Highway/Footway	35

11.4	Damage Assessment Categories for 15 Lyncroft Gardens	.35
12	Monitoring Strategy	.37
13	Conclusions	.38
14	References	.39
Figu	res	.40
Appe	endix A Proposed Basement Drawings	
Appe	endix B Groundsure Geo and Enviro Insight Reports	
Appe	endix C Historical Maps (Groundsure)	
Appe	endix D Ground Investigation Report	
Appe	endix E PDisp Output	

1 Non-Technical Summary

A basement impact assessment (BIA) has been undertaken for hydrogeology and land stability in general accordance with CPG4 (2018) for the site within the grounds of 15 Lyncroft Gardens, London NW6 1LB, in the London Borough of Camden.

The proposed basement is located at 15 Lyncroft Gardens, a mid-terrace house. The basement will extend an existing cellar to provide additional accommodation. The proposed basement will occupy an area of approximately 110 m².

The BIA report considered relevant information from existing sources included in the 'Guidance for subterranean development' produced for the London Borough of Camden' (November 2010) and a Groundsure Enviro/Geo insight Report with historical maps and BGS records.

A ground investigation at the site was undertaken by Maund Geo-Consulting Ltd in October 2019 which comprised one borehole and two hand dug trial pits to expose party wall footings. The borehole (BH01) was drilled to 7.95 m below ground level (bgl), while the trial pits (TP01 and TP02) were excavated to a depth of 0.4m bgl.

The ground investigation confirmed the ground conditions as a layer of Made Ground of sandy gravel composition to a depth of approximately 0.8m which overlies firm to stiff silty clay of the London Clay Formation to a depth of at least 7.95 m bgl. Groundwater was encountered as a seepage at 3.50m during the ground investigation. Subsequent monitoring indicated groundwater at 3.90 to 4.02 m bgl (approximately 65.98 to 66.10 mAOD).

An assessment of hydrogeology has shown that the strata underlying site is considered non-productive strata of very low permeability and is not designated as an aquifer within Environment Agency (EA) guidelines. Seepage of groundwater may be anticipated at a depth of 3.5 m, which would be anticipated to be below the base of the basement floor.

An assessment of land stability has been made from the excavation and construction of the basement. It has been calculated that heave in the centre of the basement is not expected to exceed 16 mm resulting from the excavation and construction. The foundation formation will be able to accommodate a maximum imposed load from the retaining wall of 296 kPa with net settlement of < 25 mm.

The maximum damage category for the adjacent properties has been calculated to be within Category 1 (slight damage). The assessment has indicated a potential movement of 2.8mm vertical and 4mm horizontal for the footway of Lyncroft Gardens. The maximum damage category for the host property has also been calculated to be within Category 1.

An appropriate monitoring regime should be adopted and maintained throughout construction to manage risk and potential damage to the neighbouring structures as construction progresses onsite.

2 Introduction

2.1 Terms of Reference

Maund Geo-Consulting Ltd was instructed on 16 September 2019 by Croft Structural Engineers Ltd (Croft) to undertake the hydrogeology and geology sections of a Basement Impact Assessment (BIA) including a Ground Movement Assessment (GMA) for a proposed development at 15 Lyncroft Gardens, London NW6 1LB. The hydrology section of the BIA is being undertaken separately by Croft.

2.2 Scope and Objective

This report has been written in general accordance with 'Camden geological, hydrogeological and hydrological study - Guidance for subterranean development' produced for the London Borough of Camden (LBC) by Arup (November 2010), hereafter referred to as the GSD. The guidance sets out the methodology for a risk-based impact assessment to be undertaken with regard to hydrology, hydrogeology and land stability in support of Local Plan Policy A5 (2017). The BIA comprises stages in which information is obtained to enable LBC to decide on the impact of the development for the planning application. The LBC Guidance CPG4 Basements (March 2018) requires a BIA to be undertaken for new basements in 5 stages:

- Screening
- 2. Scoping
- 3. Site investigation
- 4. Impact assessment
- Review and decision making (By LBC)

As a site investigation has already been undertaken as part of the BIA for 15 Lyncroft Gardens (Factual Report included in Appendix D) the screening part of the assessment has been assessed based on existing information including the site investigation, so the project has been completed in the following sequence:

- Desk Study of background information
- 2. Site Investigation including interpretation
- 3. Screening
- 4. Scoping
- 5. Impact Assessment

This report considers the hydrogeological and land stability elements of the BIA only. Hydrology is considered in a separate report by Croft Structural Engineers Ltd.

2.3 Author

This report has been prepared by Dr Julian Maund, director of Maund Geo Consulting Ltd, who is a chartered engineer and chartered geologist with over 35 years' experience. Dr Maund is a UK and Ireland Registered Ground Engineering Adviser and a member of the Association of Geotechnical Specialists.

2.4 Sources of Information

Background information has been derived from Groundsure Geo Insight and Enviro Insight reports obtained on 19/10/19 for the site (Appendix B). Geological information has been derived from on-line BGS sources (Geology of Britain Viewer) and the GSD. Mapping and aerial photography have been obtained from Google Earth. The full list of information is shown below in Table 2.1. Information is also derived from the site investigation undertaken specifically for the proposed development by Maund Geo-Consulting Ltd on 18/10/19.

The following baseline data indicated in Table 2.1 have been referenced to complete the BIA in relation to the proposed development:

Table 2.1 Information type and sources

Information Type	Source			
Site walkover and discussion with residents	During SI on 18/10/19			
Current/historical mapping	Groundsure Reports, Google Earth			
Geological mapping	GSD			
Underground tunnels	Groundsure			
Hydrogeological data	Groundsure/GSD/EA			
Current/historical hydrological data	Groundsure/GSD/EA/ LBC			
Flood risk mapping	Groundsure/GSD EA/ LBC			
Unexploded Ordnance	(http://bombsight.org)			
Ground and groundwater conditions	Site Investigation			

3 Desk Study - Background Information on the Site

3.1 Location

The site is located at 15 Lyncroft Gardens, at approximate National Grid Reference TQ 25391, 85395 and Post Code NW6 1LB in the West Hampstead area of the London Borough of Camden.

3.2 Description

The existing building comprises a three storey terraced brick mid-terrace house occupying the western side of Lyncroft Gardens, as shown on the Street View image below in Figure 2.1. The proposed basement will occupy the area below the house, extending the existing cellar.

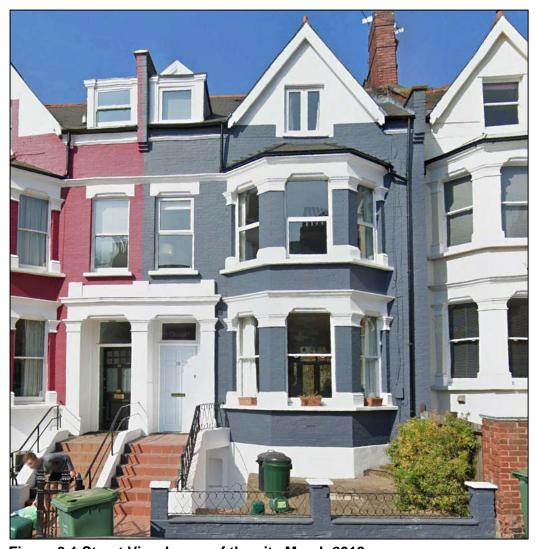


Figure 3.1 Street View Image of the site March 2018

3.3 Present use

15 Lyncroft Gardens is a residential dwelling and is currently occupied by the owner who is proposing the basement construction. The area of the proposed basement is partly occupied by a cellar, which will need to be increased in size beneath the property to make additional accommodation.

3.4 Proposed use

The proposed development relevant to this BIA is understood to comprise the extension of the existing cellar. The proposed basement measures approximately 21.5 m in an E-W direction and 6.5 m in an N - S direction including a lightwell as shown on Drawings 149206-08 dated 04/09/19 by Advantage Basements in Appendix A.

3.5 Topography, geomorphology and drainage

The ground level at the site is at approximately 70 m AOD. No detailed topographical survey is currently available. The land in the vicinity of the site slopes slightly along Lyncroft Garden from the junction with the Finchley Road (~75.00) in the north east to ~64 m AOD at Fortune Green Road in the south west.

There are no discernible geomorphological features in the vicinity of the site. There are no open watercourses within at least 500 m of the site.

The site itself is not within a Flood Zone, although the road has a low flood risk from surface water as indicated on the surface water flooding map in Figure 3.2 below.

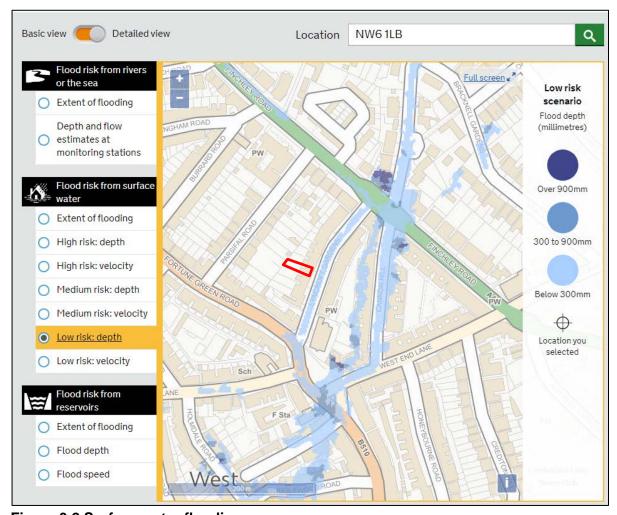


Figure 3.2 Surface water flooding

3.6 Geology

Geological information obtained from Figure 4 of the GSD at 1: 10 000 and the BGS website geological mapping at 1 50 000 scale shows the site to be directly underlain by the London Clay Formation. No superficial deposits are shown. A review of boreholes in the vicinity available from the BGS Geology of Britain Viewer indicates comparable geology.

3.7 Hydrogeology/groundwater

The property is located on the London Clay, which is classified as an unproductive stratum. Figure 8 of the GSD confirms this classification.

The site does not lie within a ground water protection zone. The closest protection zone is outside the search zone of a 500m radius.

The London Clay underlying the site is not classified as a groundwater vulnerability zone, as designated by the Environment Agency. The Groundsure Enviroinsight Report (Appendix B) indicates the nearest ground water vulnerability zone is outside the search zone of 250m.

3.8 Natural Hazards

The Groundsure report (Appendix B) findings on natural hazards are summarised in Table 3.1

Table 3.1 Natural Hazards

Natural Hazard	Risk (Stated by BGS in Groundsure report)	Comment		
Natural ground subsidence	Moderate	Not applicable to the topography of the site.		
Shrink-Swell	Moderate	The site is underlain by the London Clay Formation (LFC) which comprises potentially moderate to high plasticity clays. This material has potential shrink swell properties.		
Landslide	Very Low	Not applicable to the site geology		
Soluble Rock	Negligible	Not applicable to the site geology		
Compressible Ground	Negligible	Clay soil of the LCF is subject to consolidation from additional imposed loads, which are limited by appropriate foundation design		
Collapsible rock	Negligible	Not applicable to the site geology		
Running Sand	Very Low	Not applicable to the site geology		
Radon	Not in a Radon affected area	No Radon protection measures are necessary		

3.9 History of site

The Groundsure Insights Maps in Appendix C includes historical mapping surveys from 1871 to 2014.

The earliest record of 1865-1870 indicates the site was undeveloped agricultural land. By 1915 current house at 15 Lyncroft Gardens was constructed, as was the rest of Lyncroft Gardens and is little changed to the present day.

3.9.1 WW2 bomb sites

A record of known bomb sites is presented in Figure 3.3 from the website http://bombsight.org. While this does not claim to be a definitive record, it shows nothing recorded in the environs of the site. The lack of change of building development in the area of the site suggests no bomb related destruction occurred at the site.

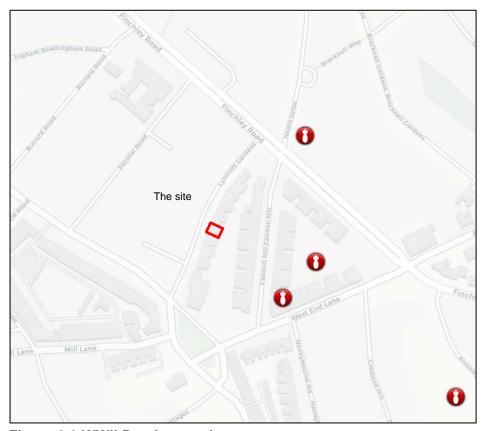


Figure 3.3 WWII Bomb record

3.10 Underground features

The Groundsure Geoinsight Report (Appendix B) has not identified any mining, underground workings or natural cavities within at least 500 m of the site.

The Groundsure Geoinsight Report (Appendix B) has not identified any tunnels or railways within 250m of the site.

3.11 Other factors e.g. contamination and archaeology

The Groundsure Enviroinsight Report (Appendix B) has not identified any 'Environmental Permits, Incidents and Registers' or 'Landfill and Other Waste Sites' within at least 500 m of the site boundary.

No specific archaeological investigation has been undertaken. The 'Groundsure' survey has not identified any known 'Environmentally Designated Sensitive Sites' within 250 m of the site (Appendix B).

4 Site Investigation

A site investigation was undertaken by Maund Geo-Consulting Ltd on 18/10/19. A report of the site investigation comprising exploratory hole records and laboratory testing is included in Appendix D.

The site investigation comprised:

- 1 No. borehole (BH01) carried out using cable percussive methods to a depth of 7.95 m bgl,
- 2 No. hand dug trial pits to expose footings,
- The in-situ strengths of the subsoil encountered were assessed by means of SPTs in BH01 at 1 m intervals,
- Disturbed soil samples were obtained from BH01 for laboratory geotechnical testing and further examination.
- A 50 mm diameter groundwater monitoring well was installed to a depth of 5.0 m in BH01

The locations of the above exploratory holes are shown in Figure 4.1 below. The exploratory hole records and laboratory test results are shown in Appendix D.

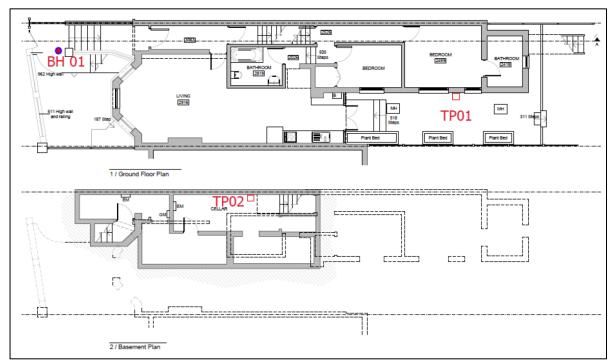


Figure 4.1 Exploratory hole locations

4.1 Details of laboratory tests

Laboratory tests to determine the geotechnical properties of the soil were scheduled by Maund Geo-Consulting Ltd and carried out by I2 Analytical Ltd generally in accordance with BS1377:1990 and BRE Special Digest 1 2005. The tests included:

- 5 moisture content and plasticity tests (BS1377:1990)
- 2 Water soluble sulphate and pH (BRE SD1)

5 Ground Conditions

5.1 Stratigraphy

The ground conditions encountered in BH01 are summarised in Table 5.1 below. For a full description refer to exploratory records in Appendix D.

Table 5.1 Summary of ground conditions

Stratum	Description	Depth at top of Strata (m)	Approx. level (m AOD)	Thickness of Strata (m bgl)
MADE GROUND	Ceramic tiles	0	70.0	0.02
MADE GROUND	Fine sandy clayey Gravel of brick and flint.	0.002	69.08	0.78
London Clay Formation	Firm to very stiff brown silty CLAY with occasional bands of fine sand and fine gravel sized selenite crystals	0.4	46.60	Proven for 7.15

5.2 Groundwater

Groundwater was encountered as a seepage during drilling at 3.50m (~66.50 m AOD).

Groundwater readings from post investigation monitoring on the site are shown in Table 5.2 indicating groundwater is present at a depth of up to 4.02m based on current readings

Table 5.2 Groundwater monitoring in BH01

Date of monitoring	Groundwater Depth (metres below ground level – Approximately 70.00 m AOD)	
28/10/19	3.90	66.10
08/11/19	4.02	65.98

5.3 Consideration of the individual strata, with reference to the basement.

The anticipated formation level of the basement floor slab will be approximately 2.5 m bgl at 67.5 m AOD, within the London Clay. An overall excavation depth of 3.00 m is assumed for a ground movement assessment.

The overall ground model is illustrated in the conceptual model in Section 6.2 below.

5.3.1 Made Ground

Below the existing concrete surface, the made ground has been described as a sandy, clayey red brown fine to coarse Gravel of brick and chert. Made ground encountered was approximately 0.8m thick. No SPT results were obtained in this material. This material is considered to represent build-up of site levels at the front of the house. Trial pits TP01 to the rear of the property had 0.4m of made ground and TP02 in the cellar showed 0.075m of made ground.

The made ground is described as an inert material with no visual or olfactory indications of contamination.

The risk of the onset of contamination leaching from the site is considered to be negligible considering the thickness of the made ground, the lack of indication of contaminants, and the impermeability of the underlying strata.

5.3.2 London Clay

The London Clay Formation (LCF) was encountered during the site investigation at a depth of 0.8 m bgl to termination of BH01 at 7.95 m bgl. A plot of SPT N values against depth is shown in Figure 5.1 which shows N values ranging between 9 and 26, with a clear pattern of N values increasing with depth.

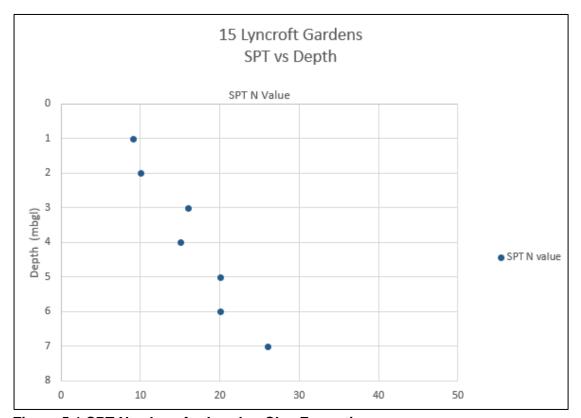


Figure 5.1 SPT N values for London Clay Formation

5 No. Atterberg Limit tests carried out on samples of London Clay showed high to very high plasticity (PI average of 38%). Given a F1 of 4.5 (Stroud and Butler 1975) the recorded SPTN values correlate to undrained strengths of 40 kPa to 117 kPa.

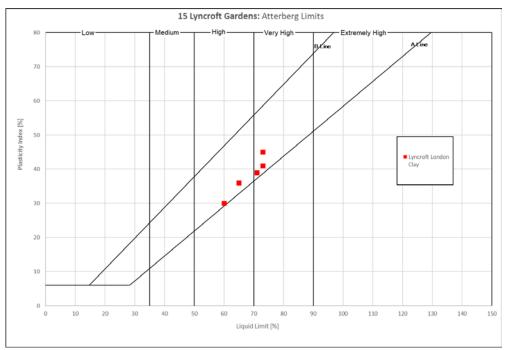


Figure 5.2 Atterberg Limits London Clay Formation

Figure 5.3 shows the undrained stiffness profile based on correlation with SPT N values.

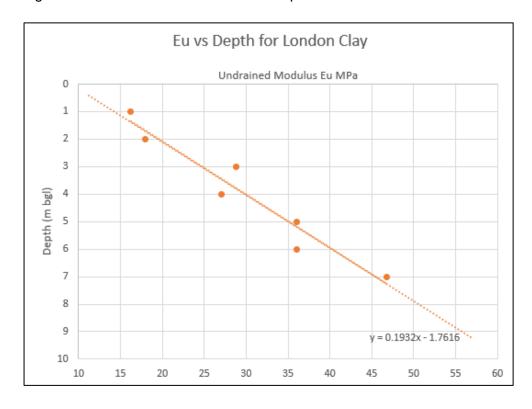


Figure 5.3 Relationship of stiffness with depth in London Clay Formation

The deformation moduli (E_u and E') of the LCF has been cautiously estimated from the relationship between undrained cohesion for an axial strain of 0.1% and plasticity of the LCF where E_u is based on a PI of 38% and an OCR >4 giving a $E_u/C_u \sim 400$ (after Jamiolkowski et al. 1979). and E' is 0.75 Eu after Burland, Standing J.R., and Jardine F.M. (eds.) (2001). Poisson Ratio is taken as $v_u = 0.5$ undrained and v' = 0.2 drained.

As there is a clear linear relationship of SPT and C_u with depth, the corresponding E_u / E' is assessed to increase linearly with depth from 15/11.25 MPa at the interface with made ground to 50.0/37.5 MPa at 8.00 m AOD as indicated in Figure 5.3, for purposes of settlement / heave modelling in Section 6.

The characteristic values of geotechnical parameters are a cautious estimate in accordance with BS EN 1997, based on the data obtained from the ground investigation (Appendix D) have been summarised in Table 5.3 as follows:

Table 5.3 Geotechnical Design Parameters

Strata	m M Design Level / (DO)	Class	A P Undrained Cohesion	Effective angle of [©] shearing resistance	NN Bulk unit weight Bulk unit weight	S Deformation Modulus Eu B (E')	Ka	Кр
London Clay Formation	0.8 (69.20)	CH/ CV	27 – 90 (32 +11.5z)	24*	20**	15 + 5z*** (11.25 +7z)	0.35	2.5

Notes:

Active and Passive pressure coefficients ka and kp from BS EN 1997-1 Annex C

The parameters in Table 5.3 are unfactored (Serviceability Limit State) and considered to be 'a cautious estimate'.

Groundwater is assumed to be below formation level, at circa 3.5 m bgl.

^{*} Burland, Standing J.R., and Jardine F.M. (eds.) (2001)

^{**}BS8004 2015

^{***}E_u is based on 400 C_u. (Jamiolkowski et al. 1979). E' based on 0.75E_u. (Burland, Standing J.R., and Jardine F.M. (eds.) 2001).

6 Geotechnical Assessment of Ground Conditions

6.1 Introduction

The information obtained from the ground investigation on the soil conditions in relation to the proposed basement construction has been assessed for impacts on existing building structures. The principle impacts are ground movements from the excavation for the basement. These movements are vertical and horizontal movements of the foundation formation level from isostatic readjustment from the excavation and possible vertical and horizontal impacts of existing structures from the basement wall construction.

6.2 Presumed Bearing resistance

The foundation formation level of the basement will be at approximately 67.00 m AOD or 3.0 m below ground level. At the formation level an undrained shear strength of approximately 59 kPa has been evaluated from the SPT profile. Wall loads provided by Croft Structural Engineers (Drawing SK01 in Appendix A) comprise the following shown in Table 6.1, based on a wall thickness of 0.35m:

Table 6.1 Wall loading

Wall No.	Combined SLS kN/m	Total kPa	Net Loading kPa	Adequacy Factor (DA1- 2)
1	100	296	225	1.09
2	60	176	116	1.76
3	30	86	26	3.29
4	60	176	116	1.76
5	100	296	225	1.09
6	30	176	116	3.29
Α	60	176	116	1.76
В	60	176	116	1.76

The net loading allows for the removal of 3m depth of soil (~60 kPa) over part of the house where full excavation is required to basement level. Where there is an existing cellar the excavation will be extended approximately 1.7m resulting in removal of a load of ~34 kPa. The wall loads will be taken by the basement floor slab which will be initially 1m wide (Drawing SK01-10 in Appendix A). Preliminary calculations show that there will be an adequacy factor (overdesign factor) of between 1.09 and 3.29 (EC7 DA1 Combination 2). This indicates the ground will accommodate the imposed load without significant (<25 mm) settlement. The actual settlement will however be determined from the net effect from the removal of soil during the basement excavation where heave is a more significant factor.

6.3 Effect of Heave from soil excavation

The proposed basement will require the excavation from the exiting ground level of approximately 70.0 m AOD to approximately 67.00 m AOD (3.0 m depth). For purposes of this assessment it is assumed the unit weight of the soil (γ_k) to be removed is 20 kN/m³ giving an overall negative load of 60 kPa in areas of full excavation and 34kPa where 1.7m of soil will be removed.

Dimensions of the excavation is based on Drawing SK-01 dated September 19, included Appendix A.

The ground model is based on the ground conditions assessment in Section 5. The effects of short term un-drained and long term drained conditions have been considered cumulatively, which is a conservative assessment as a worst case. The long and cross sections in Figures 6.1 and 6.2 have been drawing to intersect the greatest movement contours from the Pdisp plot.

The heave has been evaluated using Pdisp version 20.12, which shows a maximum heave of up to – 9.6 mm¹ under short term undrained conditions as shown in Figure 6.1 below in which location of adjacent properties 13 and 17 Lyncroft Gardens are diagrammatically indicated. Long term drained conditions are shown in Figure 6.2 where up to -6.3 mm was determined. As can be seen from Figures 6.3 and 6.4 the short term displacement becomes less than -4.0 mm and -5.2 mm at the boundary with the nearest properties of 13 and 17 Lyncroft Gardens respectively, reducing to less than 1 mm within those properties for each case. Similarly, long term movements reduce to less than +0.5 mm and -0.75 mm at the boundary (Figure 6.5 and 6.5). The combined movements are discussed further in Section 9 and 10.

_

¹ Note that heave is stated as a negative number in PDisp, but is a positive number in the Ground Movement Assessment in Section 9

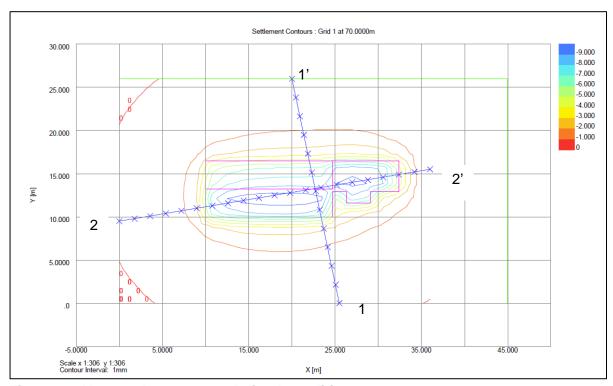


Figure 6.1 Heave- short term undrained condition

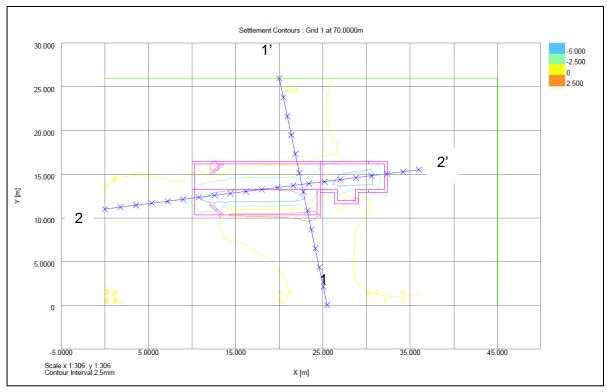


Figure 6.2 Heave- long term drained condition

Cross sections of the effects of the basement excavation and construction are shown in Figures 6.3 and 6.4, in which the boundaries with 13 and 17 Lyncroft are diagrammatically indicated. These models have been used as a basis for the ground movement assessment and damage assessment in Section 9 and 10 respectively.

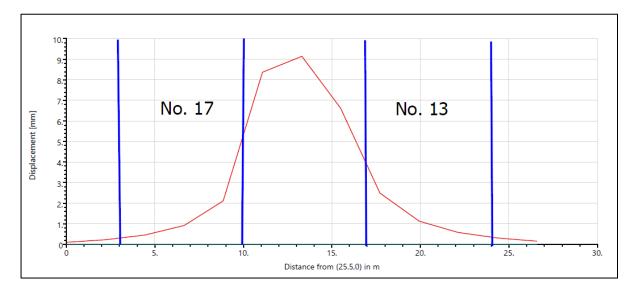


Figure 6.3 Heave- short term undrained condition in excavation- Section 1-1'

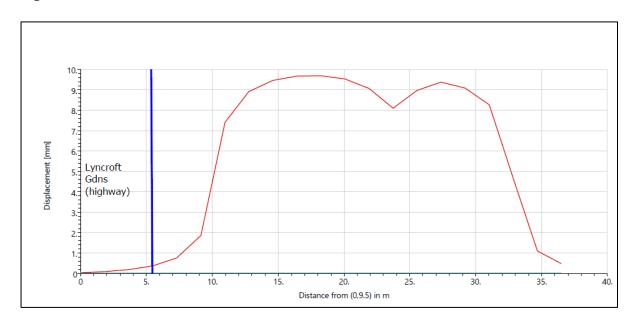


Figure 6.4 Heave- short term undrained condition in excavation- Section 2-2'

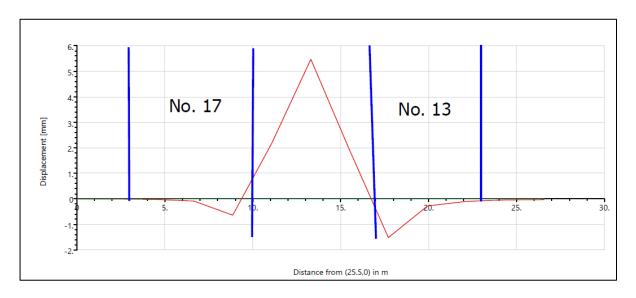


Figure 6.5 Heave- long term drained condition- Section 1-1'

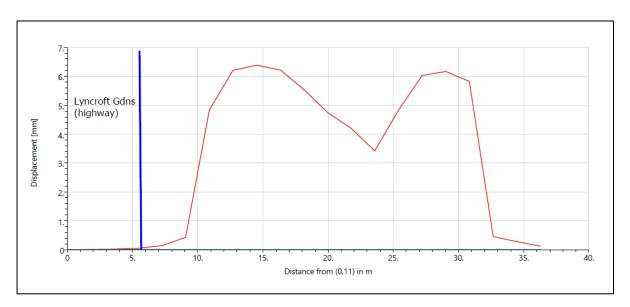


Figure 6.6 Heave- long term drained condition- Section 2-2'

Full output of the PDisp model is included in Appendix D.

6.4 Sub –surface Concrete

The results of lab testing for sulphate and pH are summarised below in Table 5.1. The full analysis is included in Appendix D.

Table 6.1 Sulphate and pH categories

Sample depth	Soil Type	Sulphate S04 2:1 extract	рН	Sulphate Class (DS)	ACEC Class
0.4	Made Ground	0.044 g/l	7.8	DS-1	AC1s
1.8	London Clay Formation	0.096 g/l	8.0	DS-1	AC1s

It is recommended that an overall design sulphate class of DS-1 and an Aggressive Chemical Environment for Concrete (ACEC) class of AC1s is adopted for the basement slab and underpinning. If a concrete piled solution is to be adopted, then DS-3 AC2s should be considered to take into account the greater presence of gypsum related minerals which occur more frequently at greater depth.

7 Screening

7.1 Introduction

Screening is undertaken as outlined in Section 6.2 of the GSD recommendations. It identifies if there are hydrogeological and land stability issues associated with the proposed development that requires detailed analysis and investigation. If there are no significant issues identified in the screening stage, then further stages are not required. The report follows the flow charts set out in CPG4 (2018) and makes reference to the GSD.

7.2 Subterranean (Groundwater) flow

This section answers questions in Figure 1 of CPG4:

The source of information for the assessment of subterranean flow is from the GSD and a site-specific Groundsure Environmental Insight Report obtained in October 2019 for 15 Lyncroft Gardens (Appendices B and C) along with the ground investigation undertaken at 15 Lyncroft Gardens on 18 October 2019 (Appendix D).

Table 7.1: Responses to Figure 1, CPG4

Question	Response	Action required
1a. Is the site located directly above an aquifer?	No. The site is underlain by the London Clay Formation. This is considered an unproductive stratum.	None
1b. Will the proposed basement extend beneath the water table surface?	struck during investigation	allowed for in the Basement

Question	Response	Action required
2. Is the site within 100m of a watercourse, well, or potential spring line?	No. There are no known wells or spring-lines within 100 m of the site ^{b,c} .	None
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No. The site is not within the catchment of the ponds b	None
4. Will the proposed basement development result in a change in the proportion of hard surfaced/paved areas?	No The basement is entirely below the existing building and concrete forecourt	None
5. As part of site drainage, will more surface water than at present be discharged to ground (e.g. via soakaways and/or SUDS)?	-	None. Due to the geology of the London Clay Formation close to ground level, soakaway drainage will not be suitable
6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond or spring lines?	No. There are no recorded local ponds or spring lines within 250 m of the site	None

- a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).
- b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).
- c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).

In summary, the site is located on the London Clay Formation. Post investigation monitoring of 1 No. boreholes drilled at the site to a depth of 7.95 m bgl indicated that groundwater was encountered between 3.9 and 4.02 bgl, or at least 0.9 m below the basement excavation.

7.3 Slope / Land Stability

This section answers questions posed by Figure 2 in CPG4.

Table 7.2: Responses to Figure 2, CPG4

Question	Response	Action required
1. Does the site include slopes, natural or man-made, greater than about 1 in 8?	No. The site is on very slightly sloping ground of 1 in 20 or less along Lyncroft Gardens	None
2. Will the proposed re-profiling of the landscaping at site change slopes at the property boundary to greater than about 1 in 8?	No.	None
3. Does the development neighbour's land including railway cuttings and the like with a slope greater than about 1 in 8?	No railway is present with 500m of the site	None.
4. Is the site within a wider hillside setting in which the general slope is greater than about 1 in 8?	No.	None
5. Is the London Clay the shallowest stratum on site?	Yes. Below a layer (<0.8m) of made ground, the site bears directly onto London Clay.	Determine heave and ground movement from the excavation of the clay and construction of basement walls.

Question	Response	Action required
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained?	No trees will be felled.	None
7. Is there a history of shrink/swell subsidence in the local area and/or evidence of such at the site.	No records.	None
8. Is the site within 100 m of a watercourse or a potential spring line?	No ^{a,b} .	None
9. Is the site within an area of previously worked ground?	No. Natural soil occurs less than 0.8 m below the surface of the site. Historical mapping shows no change in land use from at least 1882 to the present day.	None

Question	Response	Action required
10. Is the site within an aquifer?	No. The site is underlain by the London Clay. This is considered an unproductive stratum in EA classifications.	None
11. Is the site within 50m of the Hampstead Heath Ponds?	No.	None
12. Is the site within 5 m of a highway or pedestrian right of way?	Yes The basement lightwell will be 2.5 m from the pedestrian walkway and 4.25 m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	No Both No. 13 and No. 17 have cellars and or basements	A ground movement assessment will be undertaken to assess impact (Burland Damage Assessment) as a precaution
14. Is the site over (or within the exclusion zone of) any tunnels?	No.	None.

- a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).
- b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).
- c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).
- d. Groundsure Report (Appendix C) September 2016

In summary, the proposed basement is located on level ground and will be founded within the London Clay Formation, which is present from 0.8 m depth below the site surface.

8 Scoping

8.1 Introduction

This section considers the output from the screening survey where further actions are required. It considers the scope of information required in addressing these actions and what the potential impacts are of the basement construction. The existing ground conditions and the location of the basement can be summarised in a conceptual site model as indicated in Figure 8.1.

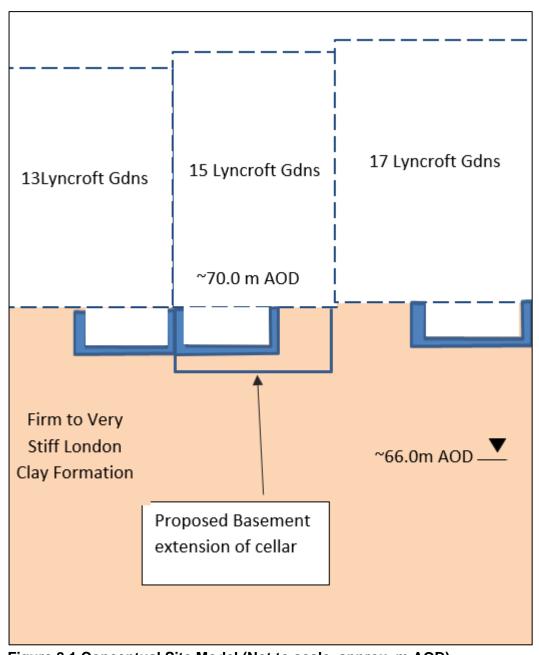


Figure 8.1 Conceptual Site Model (Not to scale, approx. m AOD)

There does not appear to be any requirement for groundwater mitigation measures for groundwater due to the depth of groundwater, as summarised in Table 8.1

Table 8.1 Summary of Scoping Requirements - Hydrogeology

Screening questions of concern - Hydrogeology	Potential Impact	Mitigation
1b. Will the proposed basement extend beneath the water table surface?	Monitoring indicates the basement level is 1.4 m above the recorded water level.	It is recommended that groundwater seepage is allowed for in the Basement Method Statement

The land stability issue relates to the ground movements resulting from the excavation within the London Clay Formation which will be addressed by a ground movement analysis as summarised in Table 8.2

Table 8.2 Summary of Scoping Requirements - Land Stability

Screening questions of concern – Land Stability	Potential Impact	Mitigation
5. Is the London Clay the shallowest stratum on site?	Yes. Below a layer (≤0.8m) of made ground, the site bears directly onto London Clay.	Determine heave and ground movement from the excavation of the clay and construction of basement walls.
12. Is the site within 5 m of a highway or pedestrian right of way?	Yes The basement lightwell will be 2.5 m from the pedestrian walkway and 4.25 m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.

9 Impact Assessment

9.1 Groundwater

9.1.1 Groundwater level

The screening process has shown from borehole information that groundwater occurs at a depth of between 3.9 and 4.02m bgl, or approximately 65.98 to 66.10m AOD². At this level groundwater will be 0.9 to 1.02 m below the excavation depth of 3.0 m or 67.00 m AOD (this assumes total excavation allowing for blinding and basement floor slab).

It is proposed that pumping to deal with seepage in the low permeability London Clay Formation is included in the Basement Method Statement.

9.1.2 Impact on groundwater by any contamination from the made ground
The made ground encountered on the site is described as an inert material with no visual or olfactory indications of contamination.

The natural strata underlying the site is of very low permeability and classified as non-water bearing. The risk of leaching into ground water is therefore considered negligible.

9.2 Land Stability

The screening process has identified three issues which require an impact assessment listed below from Tables 7.2 and 8.2.

- Presence of London Clay as the shallowest stratum (excepting a thin layer of granular made ground of < 0.4m);
- Proximity to the highway and
- Proximity of an adjacent structure with differential depth of foundations.

9.2.1 Presence of the London Clay Formation at the surface

The ground investigation indicates that the soil can be readily excavated using conventional plant appropriate for the access constraints imposed by the location of the property. Groundwater is not anticipated to be encountered, based on monitoring records from the site investigation for the full depth of the excavation, although allowance for seepage is recommended.

The impact of the excavation on ground heave has been assessed in Section 6 of this report, which concludes that total heave will be less than 16 mm, which is considered within normal construction tolerance. For evaluation of all ground movements both short term during excavation and long term after construction it was considered necessary to undertake a Ground Movement Assessment, which is included in Section 10 of this report.

-

² Levels are approximate and subject to a site topographical survey.

The ground movement assessment evaluates ground movement in relation to neighbouring properties No. 13 and 17 Lyndhurst Gardens, the footway/highway and the host property.

9.2.2 Stability of Temporary Excavations

It is proposed that the basement retaining walls will be constructed using a hit and miss underpinning technique, with temporary propping supporting the excavation, which is set out in the Basement Method Statement issued by Croft and indicated in Drawing No. SK01 included in Appendix A.

9.2.3 Groundwater Control

As discussed in Section 8.1.1 groundwater is not anticipated to affect the construction works. If localised seepages are encountered of groundwater that is likely to impact the works, groundwater could be controlled by pumping to a tank prior to disposal by tanker to an approved facility. Alternatively discharge of the groundwater could be made to the sewer subject to an agreement at detailed design stage from the local water company in terms of water quality, flow rate and quantity.

9.2.4 Monitoring of groundwater and ground movements

Groundwater levels should be monitored before the works as a precaution. Monitoring of adjacent structures and the highway should be carried out before, during and after construction.

10 Ground Movement Assessment

10.1 Introduction

This section provides an assessment of ground movement that may result from the construction of the basement and to determine how these may affect the adjacent building structures, the highway and host property.

The proposed construction sequence for the basement is summarised as:

Phase 1: Excavate in 1m width max. and install props and trench sheets as excavation progresses

Phase 2: Cast retaining wall and base. Remove props after concrete has gained sufficient strength

Phase 3: Excavate and cast remainder of base slab. Install full length props while central soil mass is being removed. Proceed with above ground construction.

The full details of the construction are included in the Basement Method Statement by Croft. The sequence of casting the retaining walls sections is shown in Drawing SK-01 in Appendix A.

Ground movements resulting from underpinning are not well documented and there is no specific method for assessing their magnitude. It should be noted that CIRIA C760 (2017), which is often used as a reference for ground movement assessments, is for embedded retaining walls and not concrete underpins.

When underpinning is carried out in a well-controlled manner, movements are typically small. A widely accepted movement from the installation of underpins is for 5mm of horizontal and vertical movement for a single stage underpining, in addition to the global movements from excavation and subsequent settlement from the imposed loads acting on the underpins.

The ground conditions at 15 Lyncroft Gardens are predominantly London Clay, which will display heave from excavation and long term settlement from the imposed loads.

The following ground movements have been assessed:

- Short term vertical heave / settlement movements: London Clay and is susceptible
 to short term heave and time dependent swelling on unloading, which will occur
 because of basement excavation, generating upward ground movements. Short term
 heave has been analysed by Pdisp in the undrained condition.
- Long term vertical ground movement in the drained condition: The net loading / unloading on formation soils will generate ground movement, which could affect adjacent foundations which will happen over a period after construction. This has

been modelled with Pdisp. This takes into account existing stress conditions, and the weight of soil removed and the load from the new basement.

 Vertical and horizontal movement from underpin installation: Underpins act as stiff concrete retaining walls, which limits the potential for wall deflection. However, deflections that do occur may generate surface settlements, which could impact adjacent properties.

From experience within in the industry, at least 5mm of additional ground movement (both vertical and horizontal) is typically anticipated for the proposed single stage underpinning.

10.2 Modelling of movements due to vertical and horizontal stress changes

The predicted ground response due to vertical unloading of the ground through excavation for the proposed basement has been modelled using the OASYS program PDisp version 20.12.

PDisp assumes a linear elastic behaviour of the soil and a flexible structure. The finite stiffness of the structures will tend to redistribute or smooth out the movements, when compared to those predicted by PDisp. The settlement calculations therefore represent free field movements unaffected by the stiffness of the structures and are likely to be conservative (i.e. the distortions of the structure would be less than those obtained from the predicted movements).

The analysis was undertaken for the combination of short-term undrained movements and long-term drained movements. The 'hard layer' base to the analysis was taken as 25 m below ground level. In addition, it has been assumed for ground modelling that the soil mass is removed in its entirety before the underpins and are placed, when in reality this is an incremental process. When the overall mass of the soil removed relative to the load of the re-imposed structure is considered onto a cohesive soil this presents a reasonable scenario.

10.2.1 Vertical Movements due to excavation (Undrained/short term)

The excavation level was assumed at 3.0 m below ground level where full excavation is required or 1.7 where the existing cellar is to be extended. Demolition and excavation of up to 3.0 m of soil will therefore produce an unload at new formation level of - 60 kPa or 34Kpa below the cellar. Poisson's Ratio for London Clay as $v_u = 0.5$.

A short term (undrained) analysis was undertaken using parameters in Table 5.3 above to determine the heave movements likely to arise as a result of the excavation (i.e., the movements likely to occur prior to the construction of the new structural elements and the consequential vertical loading of the soil). The analysis indicated a maximum heave of 9.2 mm occurring centrally within the excavation (Figure 6.1, 6.3 & 6.4), with 4.0 mm at the boundary with 13 Lyncroft Gardens, and 5.2 mm at 17 Lyncroft Gardens.

10.2.2 Vertical movements following construction of the new basement (drained/long-term) The movements of the ground following construction are assessed for the long term (drained) case using parameters in Table 5.3 above.

The PDisp assessment indicates that peak heave movements in the long term again occur under the centre of the basement, with a magnitude of 6.3 mm occurring centrally within the excavation (Figure 6.2, 6.5 & 6.6), with -0.5 mm at the boundary with 13 Lyncroft Gardens, and 0.75 mm at 13 Lyncroft Gardens.

10.2.3 Vertical deflection from underpin installation

As indicated above in Section 10.1, 5mm of vertical movement is assumed for installation. The distance behind the wall to which negligible movement occurs has been assumed at 3.5 times the wall height.

10.2.4 Horizontal deflection from underpin installation

As indicated above in Section 10.1, 5mm of horizontal movement (δ_{max}) at the basement wall is assumed for installation. The distance behind the wall to which negligible movement occurs is assumed to be 4 times the height of the underpin of 3m. δ_h is the difference between δ_{max} and the movement of the far wall of the neighbouring property.

It should be reiterated that the movements due to vertical and horizontal stress changes do not occur in isolation to the other movements resulting from the basement construction process and the actual ground movements, particularly around and beyond the perimeter of the proposed basement, will be from the quality of workmanship during excavation and installation.

11 Damage Category Assessment

11.1 Introduction

The calculated ground movements have been used to assess potential 'damage categories' that may apply to neighbouring properties, the highway footway and host property due to the proposed basement construction. The methodology proposed by Burland and Wroth and later supplemented by the work of Boscardin and Cording has been used, as described in *CIRIA Special Publication 200* and *CIRIA C760*. General damage categories are summarised in Table 11.1 below:

Table 11.1: Classification of damage visible to walls (reproduction of Table 6.4, CIRIA C760)

Category	Description		Limiting tensile Strain (ε _{lim})
0 (Negligible)	Negligible – hairline cracks	<0.1	0.0 – 0.05
1 (Very slight)	Fine cracks that can easily be treated during normal decoration	<1	0.05 – 0.075
2 (Slight)	Cracks easily filled; redecoration probably required. Some repointing may be required externally.	<5	0.075 – 0.15
3 (Moderate)	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced.	number of	0.15 – 0.3
4 (Severe)	Extensive repair work involving breaking- out and replacing sections of walls, especially over doors and windows.	15-25 but also depends on number of cracks	> 0.3
5 (Very Severe)	This requires a major repair involving partial or complete re-building.	> 25 but also depends on number of cracks	

11.2 Damage Assessment Categories for neighbouring properties 13 and 17

Lyncroft Gardens

Vertical ground movement for a section through 13 and 17 Lyncroft Gardens are shown in Figure 11.1 and 11.2 respectively. For these wall sections, the combined impact of short-term

heave and long-term settlement/ heave and installation has been shown. The location of the sections is shown diagrammatically in Figures 6.1/6.2. The difference in actual values between 13 and 17 Lyncroft Gardens reflects the deeper excavation on the party wall with No.17, due to the presence of an existing cellar against the party wall with 13 Lyncroft Gardens.

Table 11.2 incorporates superimposed horizontal and vertical movements derived from the wall deflection and heave/settlement due to excavation as outlined in Section 10. The assessment is based on the assumption of stiff clays. While the base of the excavation has an undrained cohesion of 67.5 kPa or 'firm' the clay increases steadily in strength below the excavation therefore an overall category of 'stiff' (75 kPa and greater) is considered appropriate. The assessment has been based on the limiting tensile strain for Category 1 of a strain of 0.075 %.

Table 11.2: Summary of ground movements and corresponding damage category 13 & 17 Lyncroft Gardens

Adjacent Property	13 Lyncroft	17 Lyncroft
Building width - L (m)	6.5	6.5
Building height - H (m)	11	11
L/H = 0.6 (approximated for plotting)	0.5	0.5
max deflection (Δ) in metres (from Fig 11.1/11.2)	0.0021	0.0028
Δ/L (%)	0.032	0.043
εlim	0.075	0.075
Δ/L/εlim	0.43	0.57
length to negligible horizontal movement - 4x wall height (m)	12	12
δh _{max} (m)	0.005	0.005
δh (m)	0.0026	0.026
$\delta h/L$ (%) = ϵh	0.040	0.040
Damage Category	1	1

11.3 Impact on Highway/Footway

The ground movement assessment has been undertaken for the footway pavement of Lyncroft Gardens, which is approximately 2.5m from the lightwell. Figure 11.3 indicates that a combined vertical movement of 2.8mm and a horizontal movement of 5mm (a maximum movement assuming no attenuation in the distance from the lightwell). It should be noted that from a utilities search (Croft BIA ref: 190906 Appendix C) only a power cable was identified within the footway. Therefore, it is not considered this ground movement will have a significant impact on the footway or the highway.

11.4 Damage Assessment Categories for 15 Lyncroft Gardens

The Damage Assessment Category for the host property No. 15 Lyndhurst Gardens has been considered. The key factor in considering the damage assessment is the differential movements which might be generated. It is recognised that within the centre of the basement there will be heave of up to 11mm. However, this will act on the basement floor slab only and not on the structure above. It is common practice to install void former below the basement slab to account for heave and the value of 11mm is well within normal construction tolerance. Due to the different depth of excavation on either side of the property differential movements could arise, in the order of 2.5mm, creating a vertical movement strain as indicated in Figure 11.4. Additionally, horizontal strains may be generated. The maximum horizontal strain has been modelled as 5mm for the wall being installed. The overall damage assessment category for 15 Lyncroft Gardens is 1, as indicated in Figure 11.5 and 11.6, as indicated in Table 11.3

Table 11.3: Summary of ground movements and corresponding damage category 15 Lyncroft Gardens

Property	15 Lyncroft
Building width - L (m)	6.5
Building height - H (m)	11
L/H = 0.6 (approximated for plotting)	0.5
max deflection (Δ) in metres (from Fig 11.4)	0.0025
Δ/L (%)	0.038
εlim	0.075
Δ/L/εlim	0.51
length to negligible horizontal movement - 4x wall height (m)	12

Property	15 Lyncroft
δh _{max} (m)	0.005
δh (m)	0.0026
$\delta h/L$ (%) = ϵh	0.04
Damage Category	1

12 **Monitoring Strategy**

The results of the ground movement analysis show that with good construction control, damage to adjacent structures generated by the assumed construction methods and sequence can be controlled to be within Category 1 'slight' damage. A formal monitoring strategy should be implemented on site in order to observe and control ground movements during construction.

The system should operate broadly in accordance with the 'Observational Method' as defined in CIRIA Report 185. Monitoring can be undertaken by installing survey targets to the top of the wall and face of the adjacent building. Baseline values should be established prior to commencement of works. Monitoring of these targets should be carried out at regular time intervals and the results should be analysed to determine if any horizontal translation of the wall or tilt/settlement of the neighbouring structure is occurring. Regular monitoring of these targets will allow ground movement trends to be detected early and a mitigation strategy can be implemented to control further movement. Monitoring data should be checked against predefined trigger limits and can also be further analysed to assess and manage the damage category of the adjacent buildings as construction progresses.

It is recommended that a condition survey is undertaken on all adjacent property facades prior to the works commencing and ideally when monitoring baseline values are established. Existing cracks or structural defects should be carefully recorded, documented and regularly inspected as construction progresses.

13 Conclusions

The results of this Basement Impact Assessment are supported by site investigation data and outline construction methods and sequence provided by the structural engineer.

The maximum damage category for the adjacent properties has been calculated to be within Category 1 (slight damage). The assessment has indicated a potential movement of 2.8 vertical and 4mm horizontal for the footway of Lyncroft Gardens. The maximum damage category for the host property has also been calculated to be within Category 1.

An appropriate monitoring regime should be adopted and maintained throughout construction to manage risk and potential damage to the neighbouring structures as construction progresses onsite.

14 References

Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE, 115 (1); pp 1-21

Burland, J.B., and Wroth, C.P. (1974). *Settlement of buildings and associated damage*, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London, pp611-654

Burland, J. B. (2008) The assessment of the risk of damage to buildings due to tunnelling and excavations. Jornada Tecnica de Movimientos de Edificios Inducidos por Excavaciones, Barcelona 16/12/2008.

BS 1377:1990. British Standard Methods of test for soils for Civil engineering purposes. British Standards Institution.

BS 5930: 2015. Code of practice for Ground Investigation. British Standards Institution.

BS EN 1997-1 Eurocode 7 Geotech Design Part1 General Rules- inc. corrigendum Feb 2009

BS EN 1997-2 Eurocode 7 Geotechnical Design Part 2 Ground Investigation and Testing – inc. corrigendum 2010

BS 8002: 2015 Earth Retaining Structures

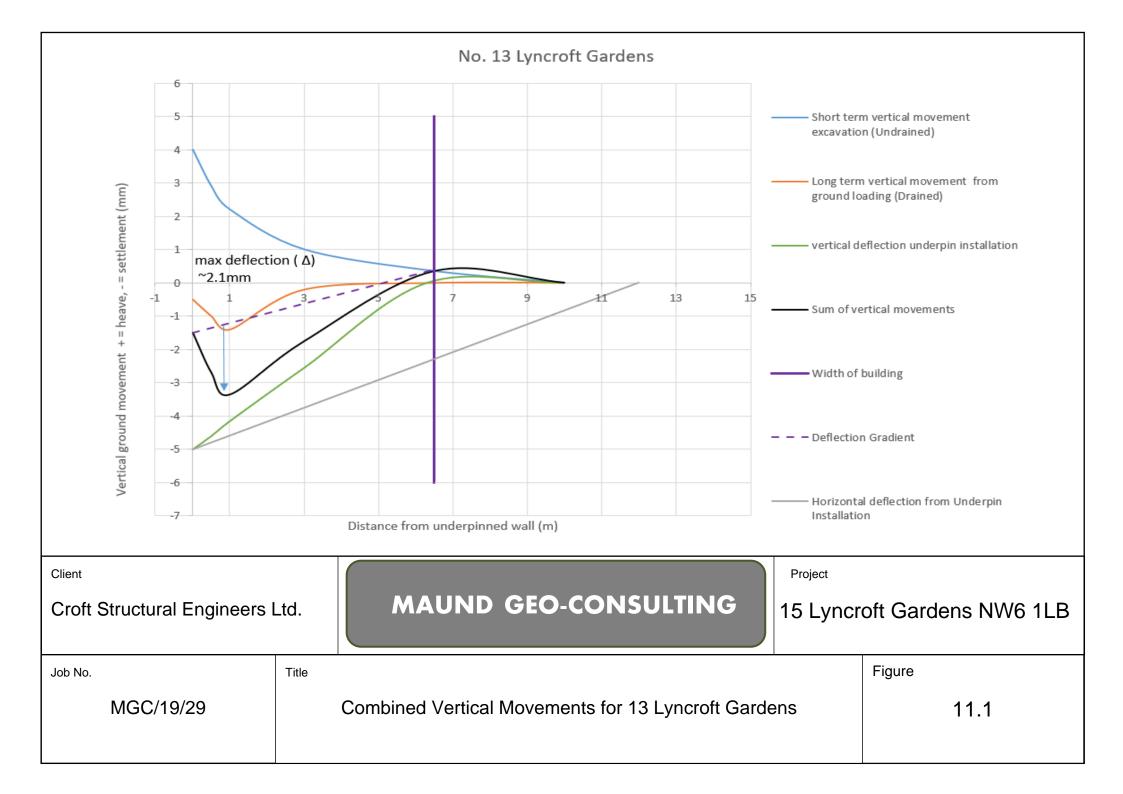
BS 8004: 2015 Code of practice for Foundations

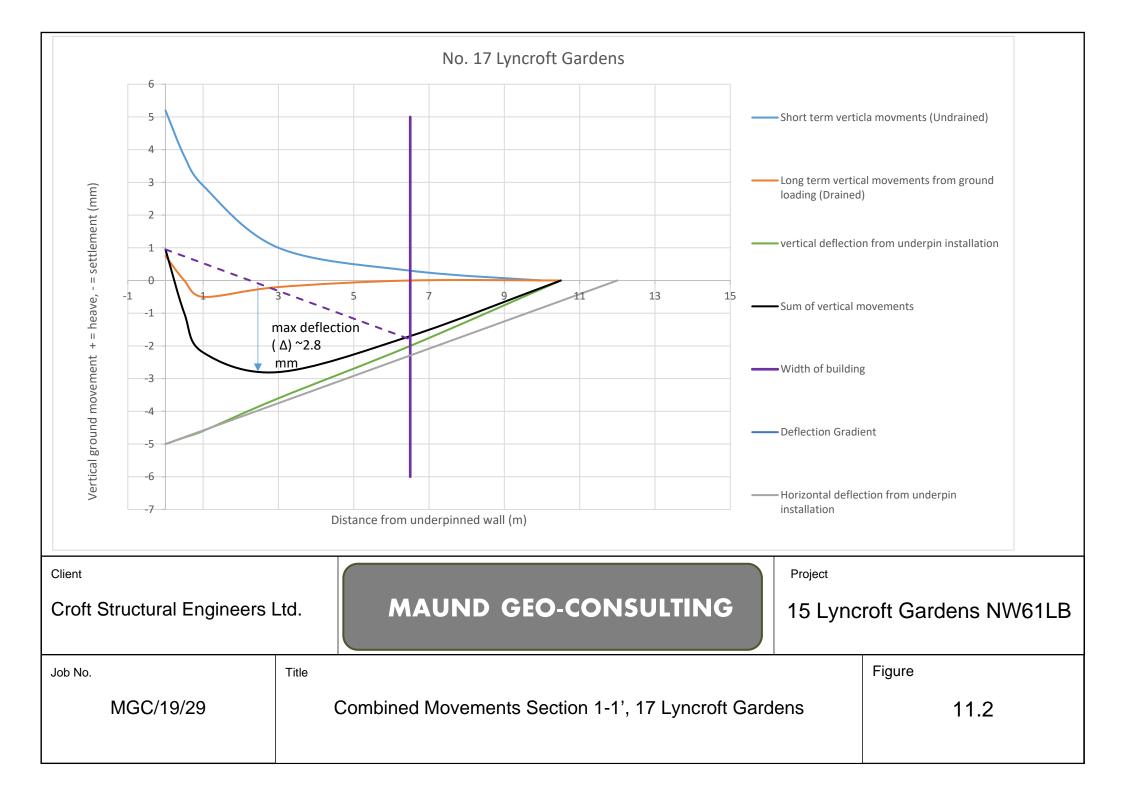
BGS Geology of Britain Viewer

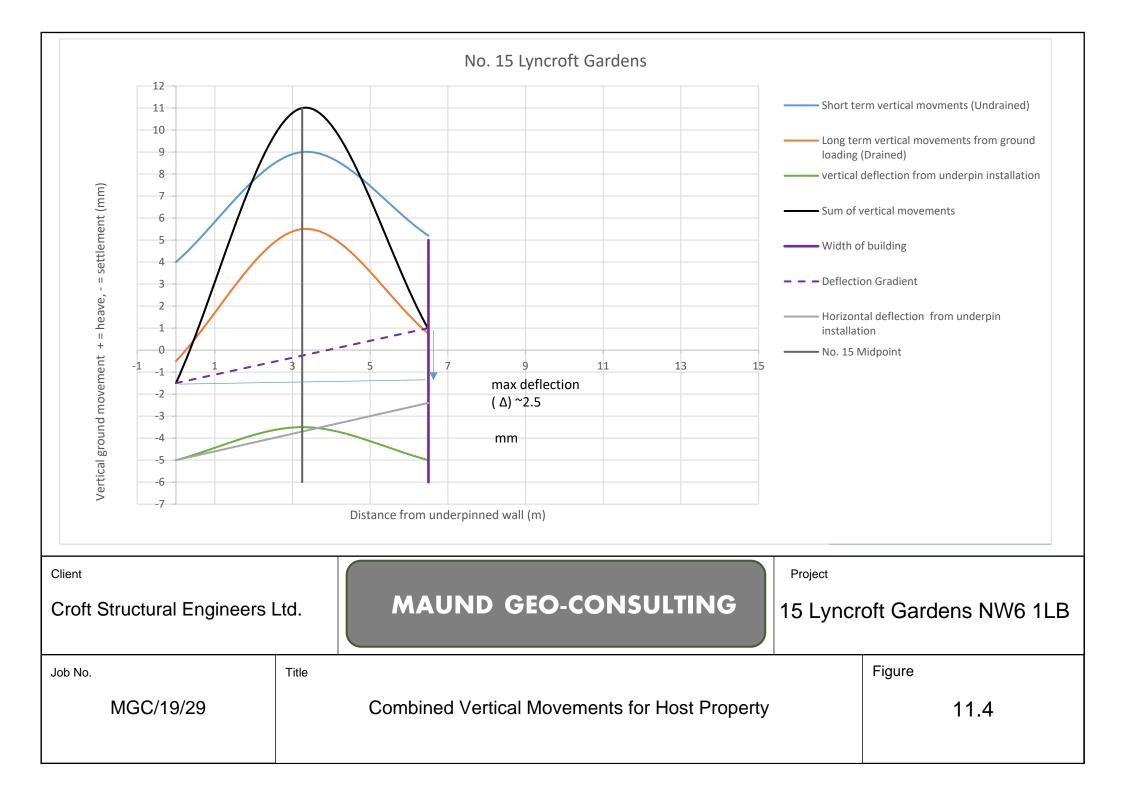
http://mapapps.bgs.ac.uk/geologyofbritain/home.html

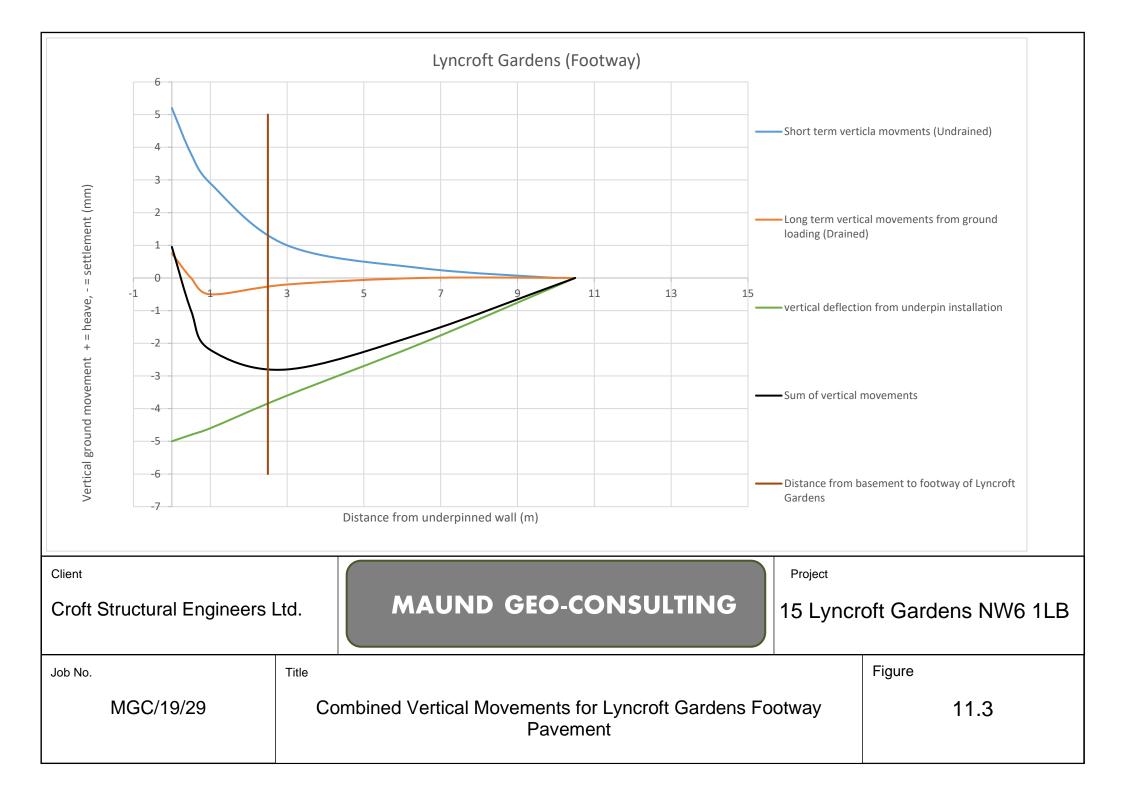
Camden Development Policy DP27 - Basement development.

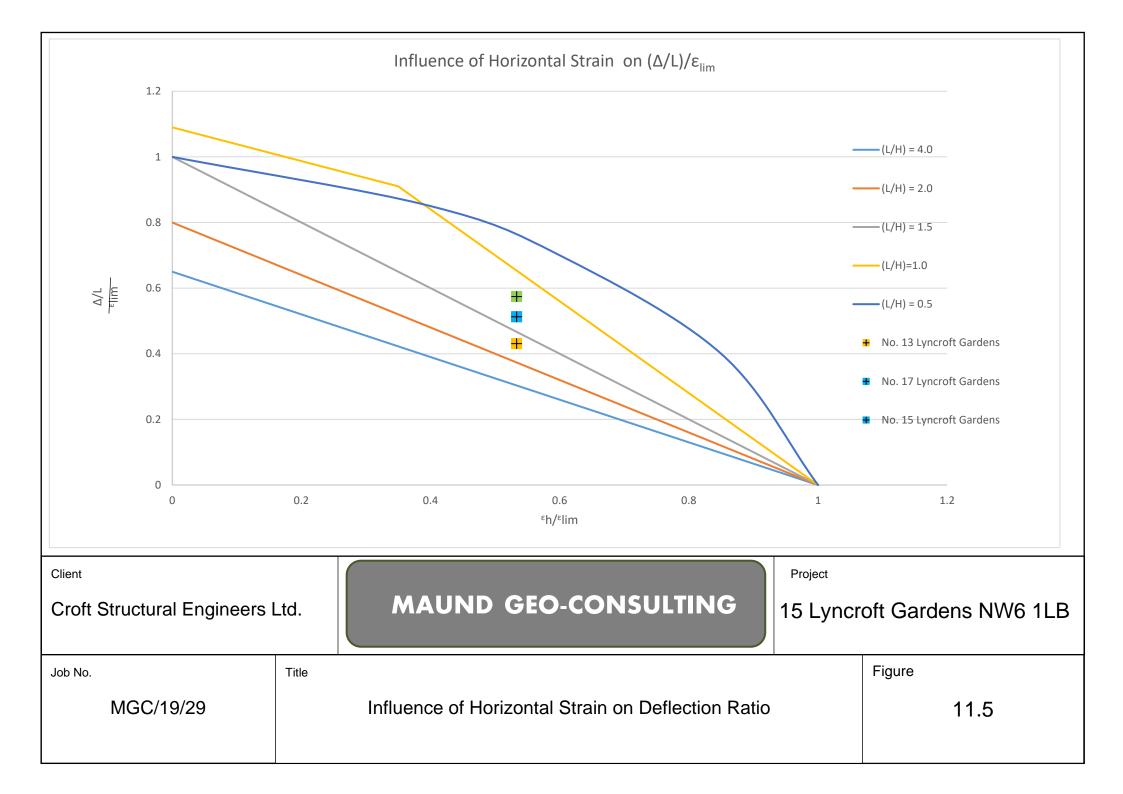
Camden Planning Guidance – Basements and Lightwells CPG4 July 2015

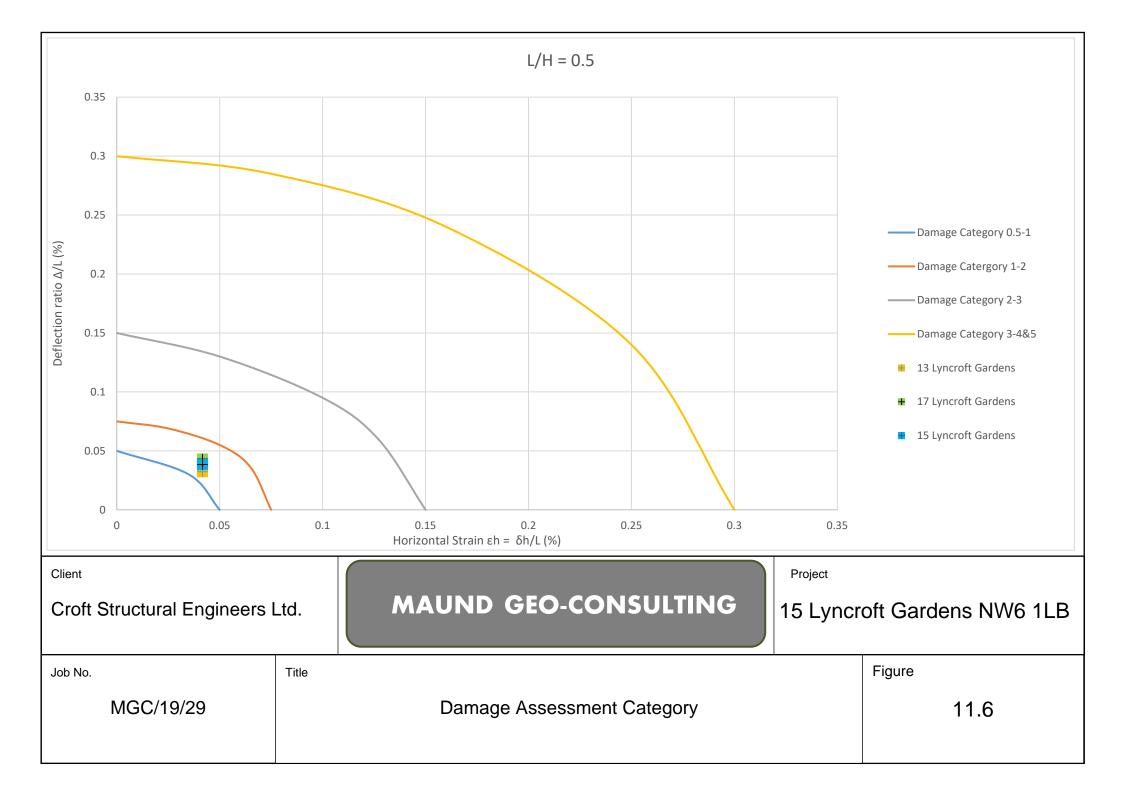

Camden geological, hydrogeological and hydrological study – Guidance for subterranean development. Arup November 2010

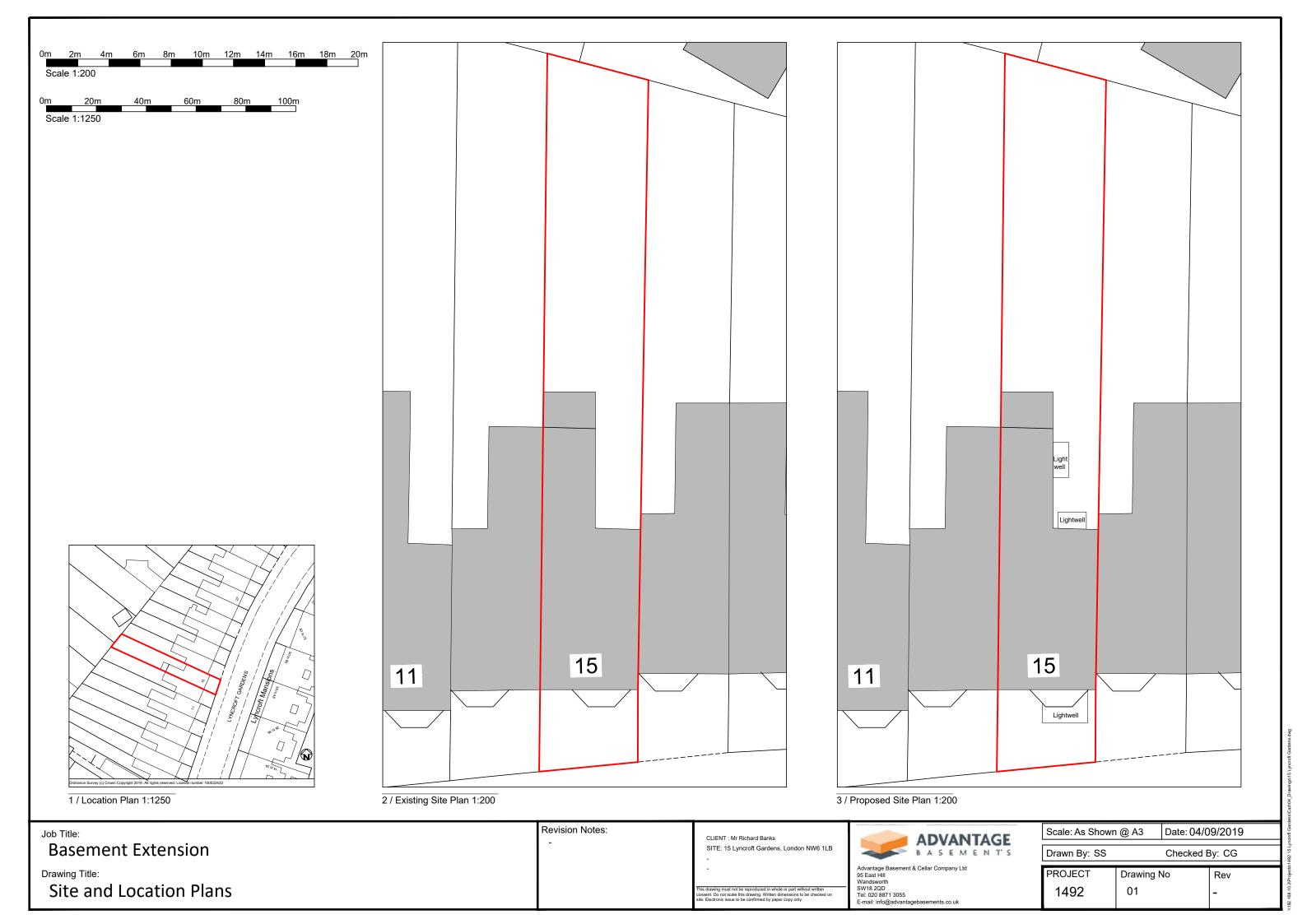

CIRIA SP200 (2001) Building response to tunnelling. Case studies from the Jubilee Line Extension, London

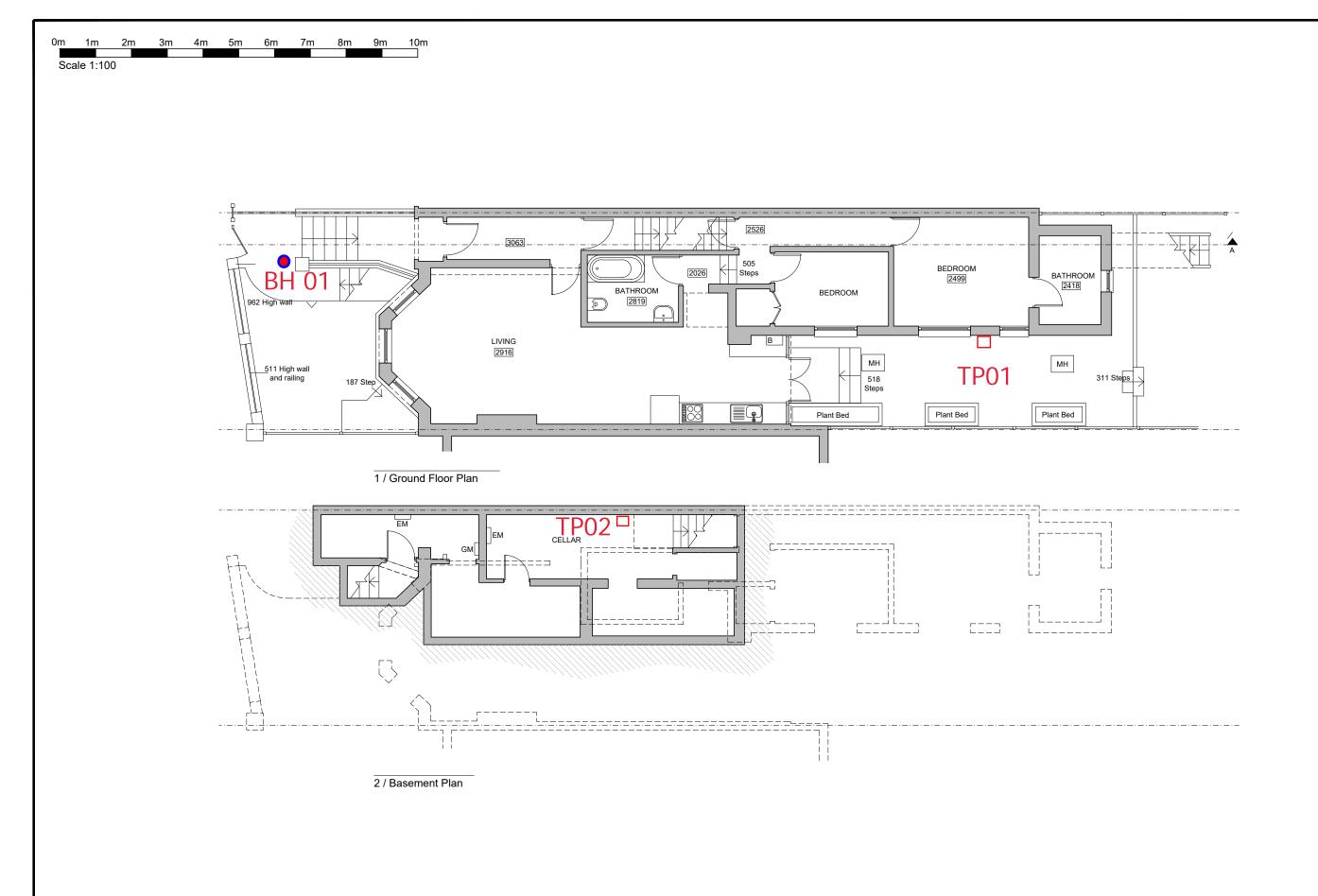

CIRIA C760 Guidance on Embedded retaining wall design 2017

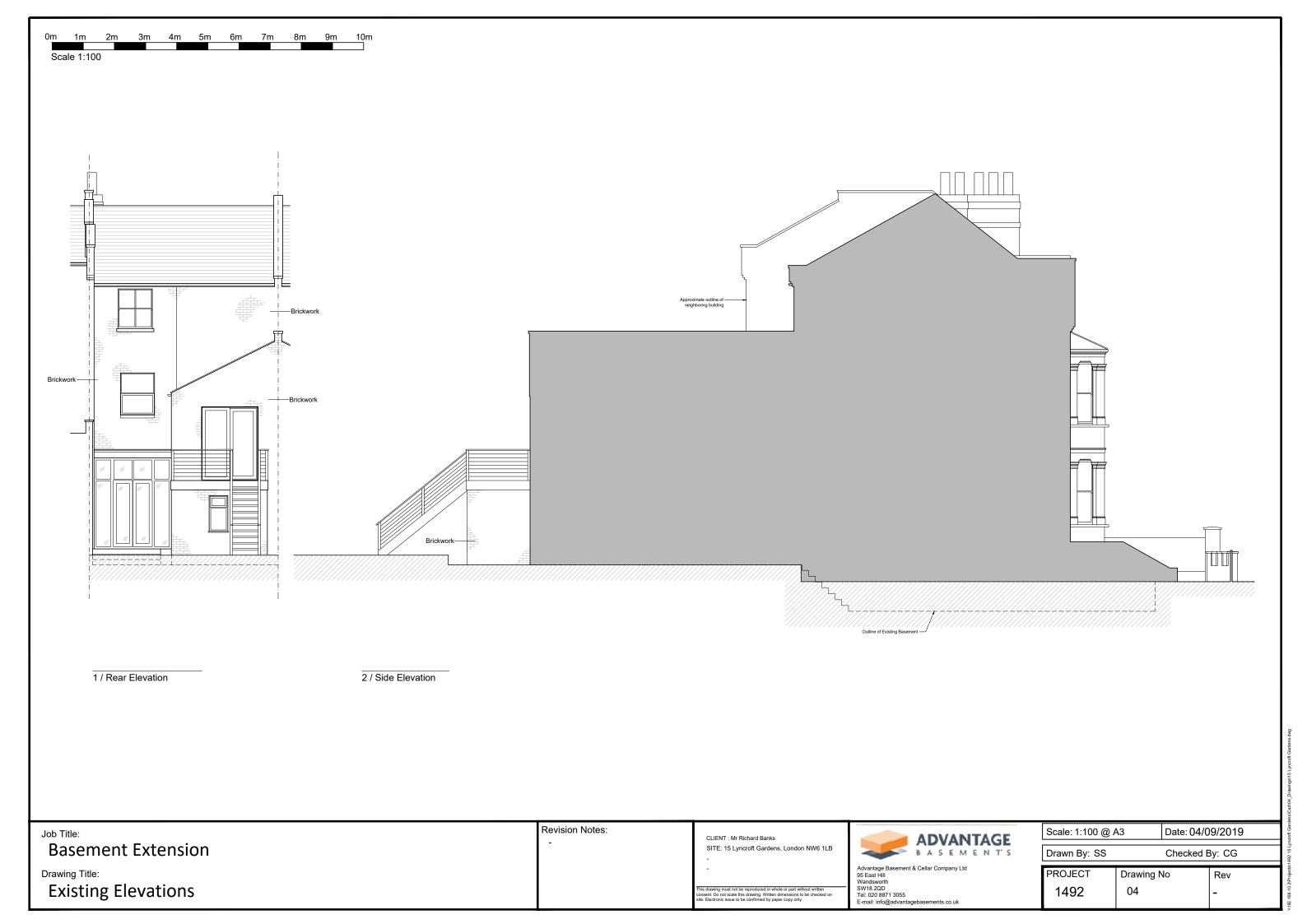

Jamiolkowski et al. 1979). Proc. 7th European Conf. on soil mechanics and foundation engineering 5 pp 27-57

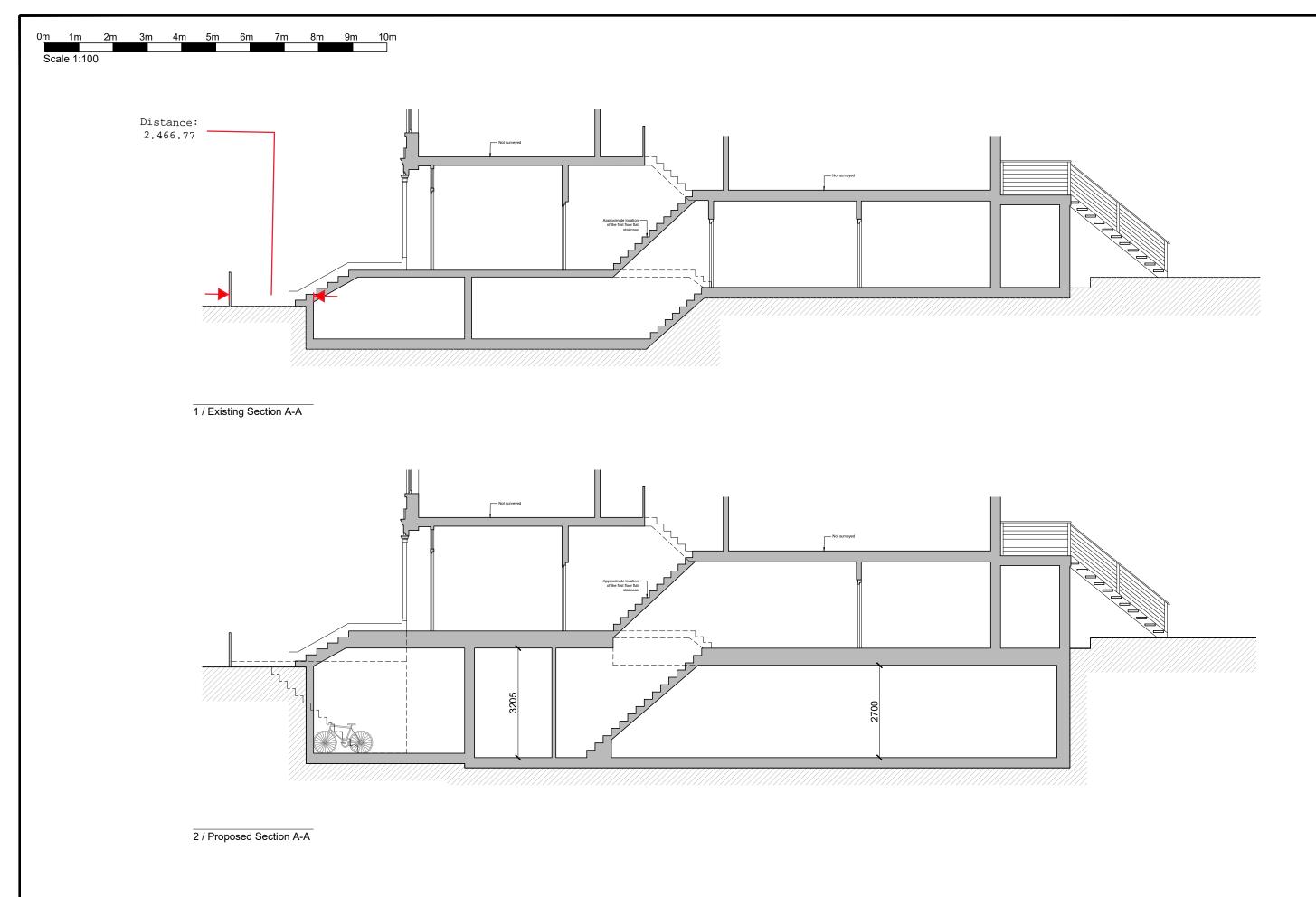

Figures







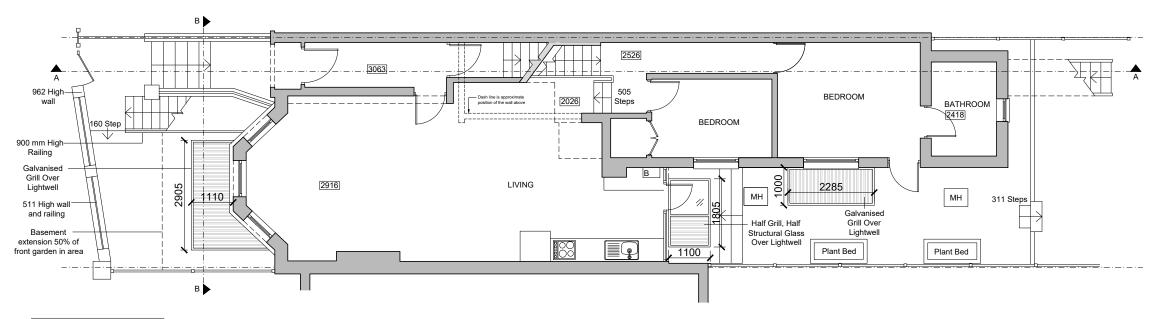

Appendix A Proposed Basement Drawings



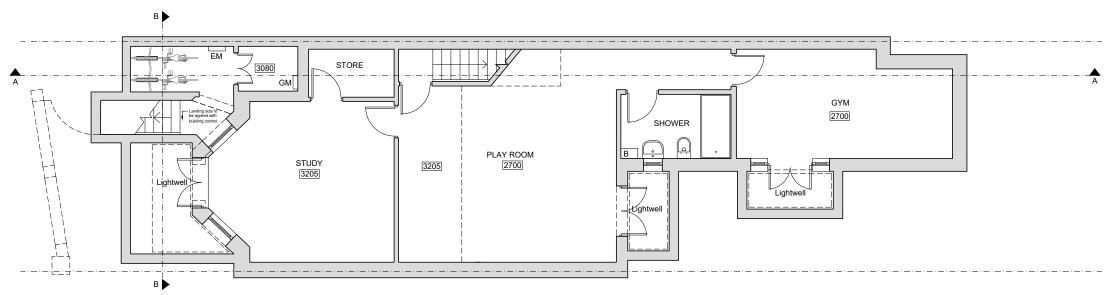
Revision Notes: Scale: 1:100 @ A3 Date: 04/09/2019 Job Title: **ADVANTAGE Basement Extension** SITE: 15 Lyncroft Gardens, London NW6 1LB Drawn By: SS Checked By: CG Drawing Title: PROJECT Drawing No Rev Wandsworth SW18 2QD Tel: 020 8871 3055 E-mail: info@advantageba **Existing Floor Plans** 02 1492

Basement Extension Drawing Title: **Existing and Proposed Sections** **Revision Notes:**


SITE: 15 Lyncroft Gardens, London NW6 1LB

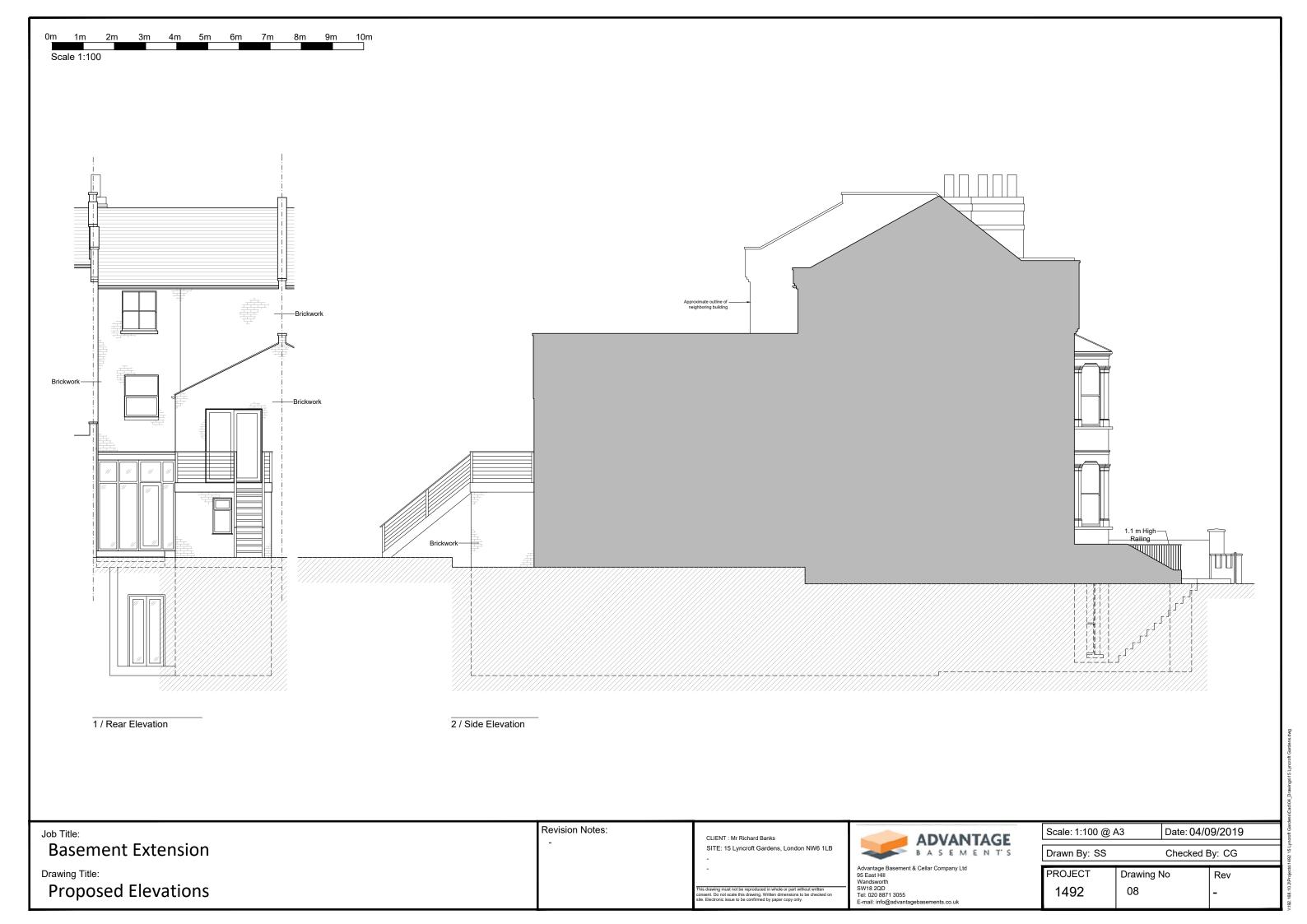

Wandsworth SW18 2QD Tel: 020 8871 3055 E-mail: info@advanta

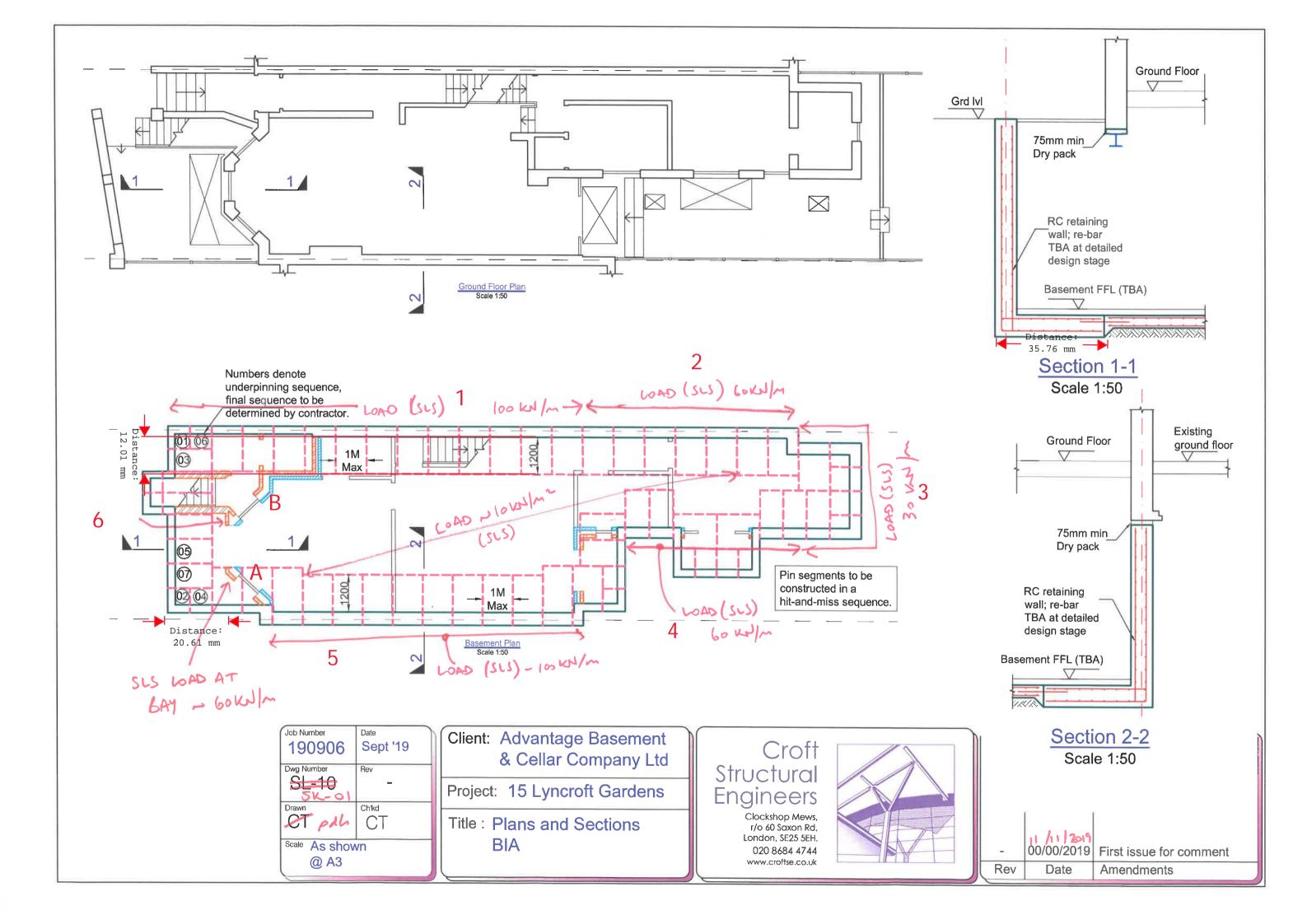
Dr PF

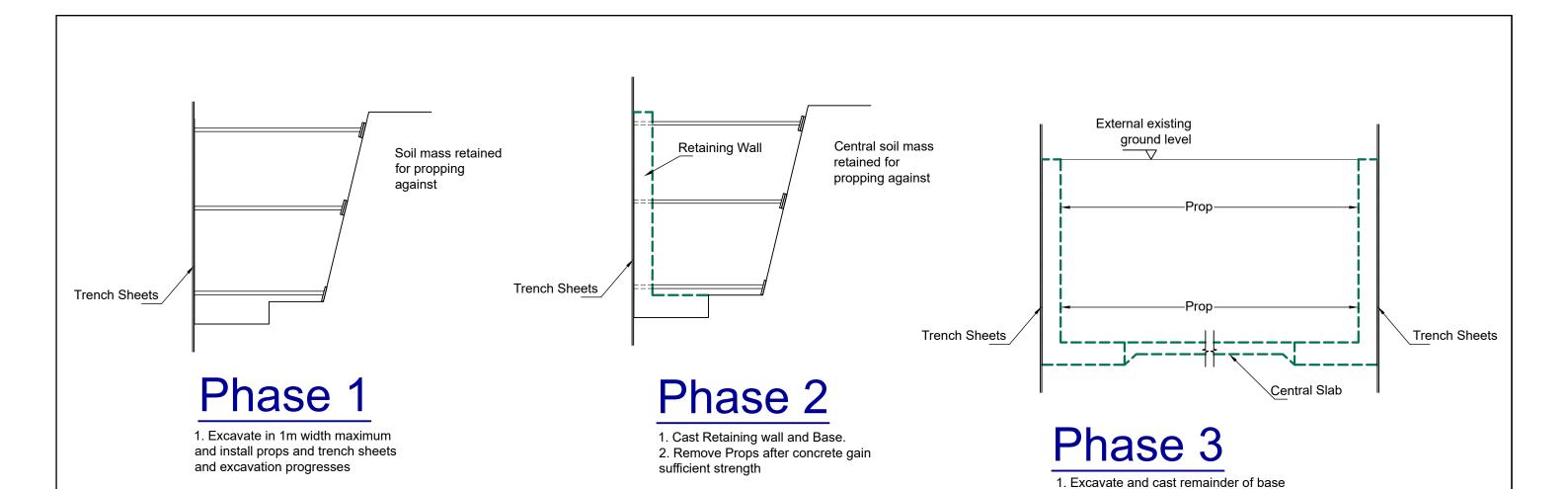

9		Date: 04/0	9/2019	
		<u> </u>		l
Drawn By: SS		Checked E	By: CG	l
PROJECT	Drawing N	Jo.	Rev	
	Diawing	10	Kev	l
1492	05		-	l

Scale 1:100

1 / Ground Floor Plan




2 / Basement Plan


Job Title:	Revision Notes:	CLIENT : Mr Richard Banks	ADVANTAGE	Scale: 1:100 @	A3 Date: 04,	/09/2019
Basement Extension		SITE: 15 Lyncroft Gardens, London NW6 1LB -	BASEMENTS	Drawn By: SS	Checked	By: CG
Drawing Title:		-	Advantage Basement & Cellar Company Ltd 95 East Hill Wandsworth	PROJECT	Drawing No	Rev
Proposed Floor Plans		This drawing must not be reproduced in whole or part without written consent. Do not scale this drawing. Written dimensions to be checked on site. Electronic issue to be confirmed by paper copy only.	SW18 2QD Tel: 020 8871 3055 E-mail: info@advantagebasements.co.uk	1492	06	-

oft Gardens\Cad\04 Drawings\15 Lyncroft Gardens.dwg

| Date | Nov '19 | | Date |

Scale As shown

@ A3

Client: Advantage Basement & Cellar Company Ltd

Project: 15 Lyncroft Gardens

Title : Temporary works propping

Croft Structural Engineers

Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

slab. Install full length props while central

soil mass is getting removed
2. Proceed with above ground

construction

-	27/11/2019	First issue for comment
Rev	Date	Amendments

Appendix B Groundsure Geo and Enviro Insight Reports

LOCATION INTELLIGENCE

Maund Geo- Consulting Ltd

20, Mortlake Avenue, Worcester, WR5 IQD

Groundsure Reference:

HMD-6410190

Your Reference: MGC_19-29

Report Date

19 Oct 2019

Report Delivery Email - pdf

Method:

Enviro Insight

Address: 15, LYNCROFT GARDENS, LONDON, NW6 1LB

Dear Sir/ Madam,

Thank you for placing your order with Groundsure. Please find enclosed the **Groundsure Enviro Insight** as requested.

If you need any further assistance, please do not hesitate to contact our helpline on 08444 159000 quoting the above Groundsure reference number.

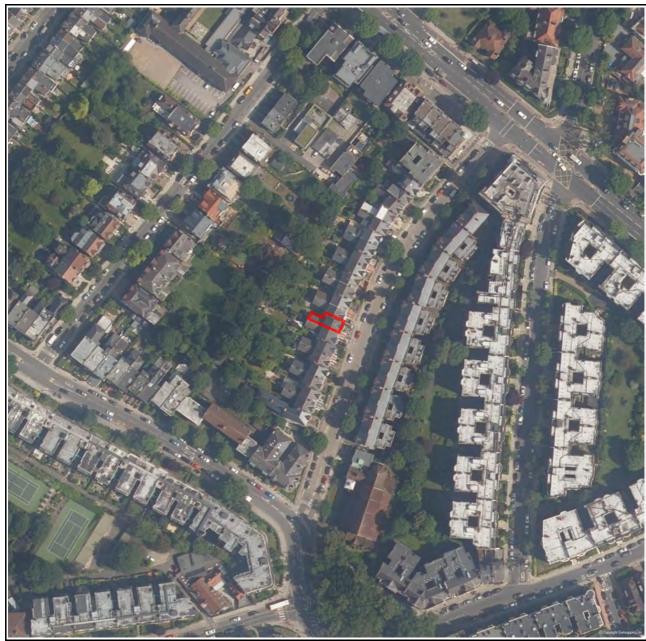
Yours faithfully,

Managing Director **Groundsure Limited**

Enc.

Groundsure Enviroinsight

Groundsure Enviro Insight


Address: 15, LYNCROFT GARDENS, LONDON, NW6 1LB

19 Oct 2019 Date:

Reference: HMD-6410190

Client: Maund Geo- Consulting Ltd

NW NE

Aerial Photograph Capture date: 12-Aug-2016

Grid Reference: 525391,185395

Site Size: 0.0087ha

Report Reference: HMD-6410190 Client Reference: MGC_19-29

SW

2

SE

Contents Page

Contents Page	3
Overview of Findings	6
Using this report	10
1. Historical Land Use	11
1. Historical Industrial Sites	12
1.1 Potentially Contaminative Uses identified from 1:10,000 scale Mapping	
1.2 Additional Information – Historical Tank Database	
1.3 Additional Information – Historical Energy Features Database	
1.4 Additional Information – Historical Petrol and Fuel Site Database	
1.5 Additional Information – Historical Garage and Motor Vehicle Repair Database	14
1.6 Historical military sites	16
1.7 Potentially Infilled Land	16
2. Environmental Permits, Incidents and Registers Map	18
2. Environmental Permits, Incidents and Registers	19
2.1 Industrial Sites Holding Licences and/or Authorisations	19
2.1.1 Records of historic IPC Authorisations within 500m of the study site:	19
2.1.2 Records of Part A(1) and IPPC Authorised Activities within 500m of the study site:	
2.1.3 Records of Red List Discharge Consents (potentially harmful discharges to controlled waters) within 500m	
study site:	
2.1.5 Records of List 1 Dangerous Substance Inventory Sites within 500m of the study site:	
2.1.6 Records of Part A(2) and Part B Activities and Enforcements within 500m of the study site:	
2.1.7 Records of Category 3 or 4 Radioactive Substances Authorisations:	
2.1.8 Records of Licensed Discharge Consents within 500m of the study site:	
2.1.9 Records of Water Industry Referrals (potentially harmful discharges to the public sewer) within 500m	
study site:	
2.1.10 Records of Planning Hazardous Substance Consents and Enforcements within 500m of the study site:	
2.2 Dangerous or Hazardous Sites 2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents	
2.3.1 Records of National Incidents Recording System, List 2 within 500m of the study site:	
2.3.2 Records of National Incidents Recording System, List 1 within 500m of the study site:	
2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990	
3. Landfill and Other Waste Sites Map	23
3. Landfill and Other Waste Sites	24
3.1 Landfill Sites	
3.1.1 Records from Environment Agency/Natural Resources Wales landfill data within 1000m of the study site: .	
3.1.2 Records of Environment Agency/Natural Resources Wales historic landfill sites within 1500m of the studies	
	24
3.1.3 Records of BGS/DoE non-operational landfill sites within 1500m of the study site:	
3.1.4 Records of Landfills from Local Authority and Historical Mapping Records within 1500m of the study site:	
3.2 Other Waste Sites	
3.2.1 Records of waste treatment, transfer or disposal sites within 500m of the study site:	
3.2.2 Records of Environment Agency/Natural Resources Wales licensed waste sites within 1500m of the study	-
4. Current Land Use Map	26
4. Current Land Uses	27
4.1 Current Industrial Data	
4.7 Current industrial Data	
4.3 National Grid High Voltage Underground Electricity Transmission Cables	
4.4 National Grid High Pressure Gas Transmission Pipelines	

5.1 Artificial Ground and Made Ground	29
5.2 Superficial Ground and Drift Geology	29
3.2 Superficial Ground and Drift Geology	29
5.3 Bedrock and Solid Geology	29
6 Hydrogeology and Hydrology	30
6a. Aquifer Within Superficial Geology	30
6b. Aquifer Within Bedrock Geology and Abstraction Licences	31
6c. Hydrogeology – Source Protection Zones and Potable Water Abstraction Licences	32
6d. Hydrogeology – Source Protection Zones within confined aquifer	33
6e. Hydrology – Watercourse Network and River Quality	34
6.Hydrogeology and Hydrology	35
6.1 Aquifer within Superficial Deposits	
6.2 Aquifer within Bedrock Deposits	
6.3 Groundwater Abstraction Licences	
6.4 Surface Water Abstraction Licences	36
6.5 Potable Water Abstraction Licences	36
6.6 Source Protection Zones	37
6.7 Source Protection Zones within Confined Aquifer	37
6.8 Groundwater Vulnerability and Soil Leaching Potential	37
6.9 River Quality	
6.9.1 Biological Quality:	
6.9.2 Chemical Quality:	
6.10 Ordnance Survey MasterMap Water Network	
6.11 Surface Water Features	
7b. Environment Agency/Natural Resources Wales Risk of Flooding from Rivers and the S Map	ea (RoFRaS) 40
7 Flooding	
	41
7.1 River and Coastal Zone 2 Flooding	
7.1 River and Coastal Zone 2 Flooding	41
	41 41
7.2 River and Coastal Zone 3 Flooding	41 41 41
7.2 River and Coastal Zone 3 Flooding	41 41 41
7.2 River and Coastal Zone 3 Flooding	41 41 41 41 41
7.2 River and Coastal Zone 3 Flooding	41 41 41 41 42
7.2 River and Coastal Zone 3 Flooding	414141414142
7.2 River and Coastal Zone 3 Flooding	41 41 41 41 42
7.2 River and Coastal Zone 3 Flooding	414141414142
7.2 River and Coastal Zone 3 Flooding	4141414142424243
7.2 River and Coastal Zone 3 Flooding	414141414242424344
7.2 River and Coastal Zone 3 Flooding	41414141424242434444
7.2 River and Coastal Zone 3 Flooding	41414141424243444444
7.2 River and Coastal Zone 3 Flooding	4141414142424244444444
7.2 River and Coastal Zone 3 Flooding	414141414242434444444444
7.2 River and Coastal Zone 3 Flooding	4141414142424344444444444444
7.2 River and Coastal Zone 3 Flooding	414141414242434444444444444444
7.2 River and Coastal Zone 3 Flooding	4141414142424243444444444545
7.2 River and Coastal Zone 3 Flooding	414141414242434444444444454545
7.2 River and Coastal Zone 3 Flooding	414141414242434444444444454545
7.2 River and Coastal Zone 3 Flooding	414141414242434444444445454545

	LOCATION INTELLIGENCE
8.14 Records of Green Belt land within 2000m of the study site:	46
9. Natural Hazards Findings	47
9.1 Detailed BGS GeoSure Data	47
9.1.1 Shrink Swell	47
9.1.2 Landslides	47
9.1.3 Soluble Rocks	47
9.1.4 Compressible Ground	48
9.1.5 Collapsible Rocks	48
9.1.6 Running Sand	48
9.2 Radon	49
9.2.1 Radon Affected Areas	49
9.2.2 Radon Protection	49
10. Mining	50
10.1 Coal Mining	50
10.2 Non-Coal Mining	
10.3 Brine Affected Areas	50
Contact Details	51
Standard Terms and Conditions	53

Overview of Findings

For further details on each dataset, please refer to each individual section in the main report as listed. Where the database has been searched a numerical result will be recorded. Where the database has not been searched '-' will be recorded.

Section 1: Historical Industrial Sites	On-site	0-50	51-250	251-500
1.1 Potentially Contaminative Uses identified from 1:10,000 scale mapping	0	0	8	13
1.2 Additional Information – Historical Tank Database	0	0	1	4
1.3 Additional Information – Historical Energy Features Database	0	4	18	27
1.4 Additional Information – Historical Petrol and Fuel Site Database	0	0	0	0
1.5 Additional Information – Historical Garage and Motor Vehicle Repair Database	0	0	27	20
1.6 Historical military sites	0	0	0	0
1.7 Potentially Infilled Land	0	0	3	30
Section 2: Environmental Permits, Incidents and Registers	On-site	0-50m	51-250	251-500
2.1 Industrial Sites Holding Environmental Permits and/or Authorisations				
2.1.1 Records of historic IPC Authorisations	0	0	0	0
2.1.2 Records of Part A(1) and IPPC Authorised Activities	0	0	0	0
2.1.3 Records of Red List Discharge Consents	0	0	0	0
2.1.4 Records of List 1 Dangerous Substances Inventory sites	0	0	0	0
2.1.5 Records of List 2 Dangerous Substances Inventory sites	0	0	0	0
2.1.6 Records of Part A(2) and Part B Activities and Enforcements	0	0	8	5
2.1.7 Records of Category 3 or 4 Radioactive Substances Authorisations	0	0	0	0
2.1.8 Records of Licensed Discharge Consents	0	0	0	0
2.1.9 Records of Water Industry Referrals	0	0	0	0
2.1.10 Records of Planning Hazardous Substance Consents and Enforcements within 500m of the study site	0	0	0	0
2.2 Records of COMAH and NIHHS sites	0	0	0	0
2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents				
2.3.1 National Incidents Recording System, List 2	0	0	0	0
2.3.2 National Incidents Recording System, List 1	0	0	0	0
2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990	0	0	0	0

				LOCATION INTE	ELLIGENCE
On-site	0-50m	51-250	251-500	501-1000	1000- 1500
0	0	0	0	0	Not searched
0	0	0	0	1	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	Not searched	Not searched
0	0	0	0	0	0
On-site	Э	0-50m	51-25	0 2	51-500
0		1	14	No	ot searched
0		0	0		2
0		0	0		0
0		0	0		0
		None ic	dentified		
		0-50	00m		
		None ic	dentified		
		Iden	tified		
			-		
On-site	0-50m	51-250	251-500	501-1000	1000- 2000
On-site 0	0-50m 0	51-250 0	251-500	501-1000	
					2000
0	0	0	0	0	2000
0	0	0	0	0	2000 4 0
0 0	0 0	0 0	0 0	0 0	2000 4 0 Not searche
	0 0 0 0 On-site 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	On-site 0-50m 51-250 251-500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Section 6: Hydrogeology and Hydrology	0-500m					
	On-site	0-50m	51-250	251-500	501-1000	1000- 1500
6.9 Environment Agency/Natural Resources Wales information on river quality within 1500m of the study site	No	No	No	No	No	No
6.10 Ordnance Survey MasterMap Water Network entries within 500m of the site	0	0	0	0	Not searched	Not searched
6.11 Surface water features within 250m of the study site	No	No	No	Not searched	Not searched	Not searched
Section 7: Flooding						
7.1 Enviroment Agency Zone 2 floodplains within 250m of the study site	None identified					
7.2 Environment Agency/Natural Resources Wales Zone 3 floodplains within 250m of the study site	None identified					
7.3 Risk of flooding from Rivers and the Sea (RoFRaS) rating for the study site	Very Low					
7.4 Flood Defences within 250m of the study site	None identified					
7.5 Areas benefiting from Flood Defences within 250m of the study site	None identified					
7.6 Areas used for Flood Storage within 250m of the study site	None identified					
7.7 Maximum BGS Groundwater Flooding susceptibility within 50m of the study site	Not Prone					
7.8 BGS confidence rating for the Groundwater Flooding susceptibility areas	Not Applicable					
Section 8: Designated Environmentally Sensitive Sites	On-site	0-50m	51-250	251-500	501-1000	1000- 2000
8.1 Records of Sites of Special Scientific Interest (SSSI)	0	0	0	0	0	0
8.2 Records of National Nature Reserves (NNR)	0	0	0	0	0	0
8.3 Records of Special Areas of Conservation (SAC)	0	0	0	0	0	0
8.4 Records of Special Protection Areas (SPA)	0	0	0	0	0	0
8.5 Records of Ramsar sites	0	0	0	0	0	0
8.6 Records of Ancient Woodlands	0	0	0	0	0	1
8.7 Records of Local Nature Reserves (LNR)	0	0	0	0	2	0
8.8 Records of World Heritage Sites	0	0	0	0	0	0
8.9 Records of Environmentally Sensitive Areas	0	0	0	0	0	0

Section 8: Designated Environmentally Sensitive Sites	On-site	0-50m	51-250	251-500	501-1000	1000- 2000
8.10 Records of Areas of Outstanding Natural Beauty (AONB)	0	0	0	0	0	0
8.11 Records of National Parks	0	0	0	0	0	0
8.12 Records of Nitrate Sensitive Areas	0	0	0	0	0	0
8.13 Records of Nitrate Vulnerable Zones	0	0	0	0	0	0
8.14 Records of Green Belt land	0	0	0	0	0	0

Section 9: Natural Hazards

9.1 Maximum risk of natural ground subsidence	Moderate
9.1.1 Maximum Shrink-Swell hazard rating identified on the study site	Moderate
9.1.2 Maximum Landslides hazard rating identified on the study site	Very Low
9.1.3 Maximum Soluble Rocks hazard rating identified on the study site	Negligible
9.1.4 Maximum Compressible Ground hazard rating identified on the study site	Negligible
9.1.5 Maximum Collapsible Rocks hazard rating identified on the study site	Very Low
9.1.6 Maximum Running Sand hazard rating identified on the study site	Very Low

9.2 Radon

9.2.1 Is the property in a Radon Affected Area as defined by the Health Protection Agency (HPA) and if so what percentage of homes are above the Action Level?

9.2.2 Is the property in an area where Radon Protection are required for new properties or extensions to existing ones as described in publication BR211 by the Building Research Establishment?

The site is not in a Radon Affected Area, as less than 1% of properties are above the Action Level.

No radon protective measures are necessary.

Section 10: Mining

10.1 Coal mining areas within 75m of the study site	None identified
10.2 Non-Coal Mining areas within 50m of the study site boundary	None identified
10.3 Brine affected areas within 75m of the study site	None identified

Using this report

The following report is designed by Environmental Consultants for Environmental Professionals bringing together the most up-to-date market leading environmental data. This report is provided under and subject to the Terms & Conditions agreed between Groundsure and the Client. The document contains the following sections:

1. Historical Industrial Sites

Provides information on past land uses that may pose a risk to the study site in terms of potential contamination from activities or processes. Potentially Infilled Land features are also included. This search is conducted using radii of up to 500m.

2. Environmental Permits, Incidents and Registers

Provides information on Regulated Industrial Activities and Pollution Incidents as recorded by Regulatory Authorities, and sites determined as Contaminated Land. This search is conducted using radii up to 500m.

3. Landfills and Other Waste Sites

Provides information on landfills and other waste sites that may pose a risk to the study site. This search is conducted using radii up to 1500m.

4. Current Land Uses

Provides information on current land uses that may pose a risk to the study site in terms of potential contamination from activities or processes. These searches are conducted using radii of up to 500m. This includes information on potentially contaminative industrial sites, petrol stations and fuel sites as well as high pressure gas pipelines and underground electricity transmission lines.

5. Geology

Provides information on artificial and superficial deposits and bedrock beneath the study site.

6. Hydrogeology and Hydrology

Provides information on productive strata within the bedrock and superficial geological layers, abstraction licences, Source Protection Zones (SPZs) and river quality. These searches are conducted using radii of up to 2000m.

7. Flooding

Provides information on river and coastal flooding, flood defences, flood storage areas and groundwater flood areas. This search is conducted using radii of up to 250m.

8. Designated Environmentally Sensitive Sites

Provides information on the Sites of Special Scientific Interest (SSSI), National Nature Reserves (NNR), Special Areas of Conservation (SAC), Special Protection Areas (SPA), Ramsar sites, Local Nature Reserves (LNR), Areas of Outstanding Natural Beauty (AONB), National Parks (NP), Environmentally Sensitive Areas, Nitrate Sensitive Areas, Nitrate Vulnerable Zones and World Heritage Sites and Scheduled Ancient Woodland. These searches are conducted using radii of up to 2000m.

9. Natural Hazards

Provides information on a range of natural hazards that may pose a risk to the study site. These factors include natural ground subsidence and radon..

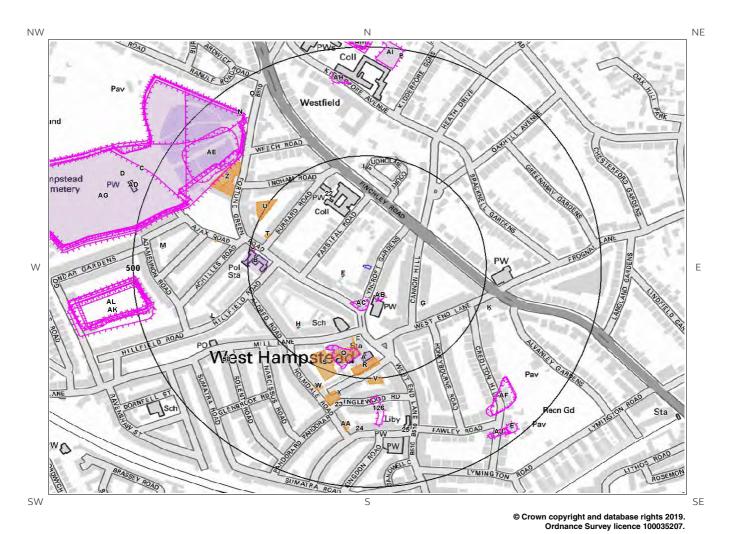
10. Mining

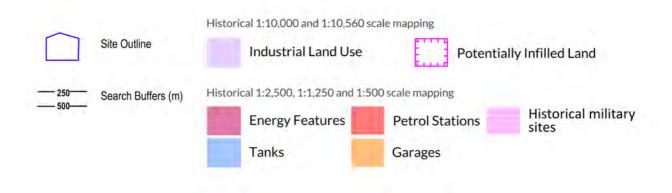
Provides information on areas of coal and non-coal mining and brine affected areas.

11. Contacts

This section of the report provides contact points for statutory bodies and data providers that may be able to provide further information on issues raised within this report. Alternatively, Groundsure provide a free Technical Helpline (08444 159000) for further information and guidance.

Note: Maps


Only certain features are placed on the maps within the report. All features represented on maps found within this search are given an identification number. This number identifies the feature on the mapping and correlates it to the additional information provided below. This identification number precedes all other information and takes the following format -Id: 1, Id: 2, etc. Where numerous features on the same map are in such close proximity that the numbers would obscure each other a letter identifier is used instead to represent the features. (e.g. Three features which overlap may be given the identifier "A" on the map and would be identified separately as features 1A, 3A, 10A on the data tables provided).


Where a feature is reported in the data tables to a distance greater than the map area, it is noted in the data table as "Not Shown".

All distances given in this report are in Metres (m). Directions are given as compass headings such as N: North, E: East, NE: North East from the nearest point of the study site boundary.

1. Historical Land Use

1. Historical Industrial Sites

1.1 Potentially Contaminative Uses identified from 1:10,000 scale Mapping

The systematic analysis of data extracted from standard 1:10,560 and 1:10,000 scale historical maps provides the following information:

Records of sites with a potentially contaminative past land use within 500m of the search boundary:

ID	Distance [m]	Direction	Use	Date
1AB	58	S	S Gravel Pit	
2AC	69	S	S Gravel Pits 1873	
3Q	183	S	Gravel Pit	1873
4A	187	S	Fire Station	1974
5A	187	S	Fire Station	1996
6A	187	S	Fire Station	1965
7B	203	W	Police Station	1974
8B	203	W	Police Station	1996
9C	365	NW	Cemetery	1920
10AD	365	NW	Cemetery	1911
11AE	366	NW	Cemetery	1949
12C	371	NW	Cemetery	1938
13C	372	NW	Cemetery	1938
14AG	404	W	Cemetery	1894
15D	411	W	Cemetery	1949
16D	411	W	Cemetery	1966
17D	411	W	Cemetery	1976
18D	411	W	Cemetery	1993
19AH	418	N	Gravel Pit	1873
20AI	455	N	Unspecified Ground Workings	1938
21E	466	SE	Unspecified Heap	1894

1.2 Additional Information - Historical Tank Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical tanks within 500m of the search boundary:

ID	Distance (m)	Direction	Use	Date
22	173	NW	Unspecified Tank	1971
23	319	S	Unspecified Tank	1871

Report Reference: HMD-6410190 Client Reference: MGC_19-29

12

5

				LOCATION INTELLIGENCE
24	368	S	Unspecified Tank	1871
25	379	S	Unspecified Tank	1871
26E	474	SE	Unspecified Tank	1871

1.3 Additional Information - Historical Energy Features Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical energy features within 500m of the search boundary:

49

ID	Distance (m)	Direction	Use	Date
27F	45	SW	Electricity Substation	1973
28F	45	SW	SW Electricity Substation 1991	
29F	46	SW Electricity Substation 199		1992
30F	46	SW	Electricity Substation	1994
31G	140	SE	Electricity Substation	1995
32G	140	SE	Electricity Substation	1991
33G	140	SE	Electricity Substation	1979
34G	140	SE	Electricity Substation	1971
35H	191	SW	Electricity Substation	1991
36H	192	SW	Electricity Substation	1953
37H	192	SW	Electricity Substation	1953
38H	192	SW	Electricity Substation	1953
39H	192	SW	Electricity Substation	1973
40H	192	SW	Electricity Substation	1994
41H	192	SW	Electricity Substation	1992
421	220	N	Electricity Substation	1994
431	221	N	Electricity Substation	1991
441	224	N	Electricity Substation	1979
45J	237	W	Electricity Substation	1991
46J	241	W	Electricity Substation	1992
47J	241	W	<u> </u>	
48J	241	W	Electricity Substation	1973
49K	271	E	Electricity Substation	1995
50K	271	E	Electricity Substation	1971
51K	271	Е	Electricity Substation	1979
52K	271	E	Electricity Substation	1991
53X	292	S	Electricity Substation	1973
54L	345	W	Electricity Substation	1973
55L	345	W	Electricity Substation	1992
56L	345	W	Electricity Substation	1994
57L	345	W	Electricity Substation	1991
58	365	SW	Electricity Substation	1973

			LOC	AHON INTELLIGENCE
59M	434	W	Electricity Substation	1953
60M	434	W	Electricity Substation	1991
61M	434	W	Electricity Substation	1991
62M	435	W	Electricity Substation	1974
63M	435	W	Electricity Substation	1953
64N	436	NW	Electricity Substation	1991
65N	437	NW	Electricity Substation	1994
66N	437	NW	Electricity Substation	1979
67N	437	NW	Electricity Substation	1971
680	455	NW	Electricity Substation	1991
690	455	NW	Electricity Substation	1994
700	456	NW	Electricity Substation	1971
710	456	NW	Electricity Substation	1979
72P	478	N	Electricity Substation	1991
73P	478	N	Electricity Substation	1979
74P	478	N	Electricity Substation	1971
75P	479	N	Electricity Substation	1994

1.4 Additional Information - Historical Petrol and Fuel Site Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical petrol stations and fuel sites within 500m of the search boundary:

0

47

Database searched and no data found.

1.5 Additional Information - Historical Garage and Motor Vehicle Repair Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical garage and motor vehicle repair sites within 500m of the search boundary:

ID	Distance (m)	Direction	Use	Date
76Q	157	S	S Garage 1953	
77Q	158	S	S Garage	
78Q	158	S Garage		1953
79R	201	S	Garage 1991	
80R	201	S	Garage 1953	
81R	201	S	S Garage 1953	
82R	201	S	S Garage 1953	
83R	201	S Garage 197		1973
84R	202	S	S Garage 1992	

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
202	S	Garage	1994
209	SW	Post Office Garage	1953
209	SW	SW Post Office Garage	
209	SW	Post Office Garage	1953
213	W	Garages	1953
214	W	Garages	1953
214	W	Garages	1953
240	NW	Garage	1953
240	NW	Garage	1953
240	NW	Garage	1971
240	NW	Garage	1953
240	NW	Garage	1979
240	NW	Garage	1962
240	NW	Garage	1994
242	NW	Garage	1991
245	S	Garages	1953
245	S	Garages	1953
246	S	Garages	1953
284	S	Garages	1953
284	S	Garages	1953
285	S	Garages	1953
287	S	Garages	1953
287	S	Garages	1953
288	S	Garages	1953
322	W	Garages	1953
322	W	Garages	1953
322	W	Garages	1953
327	NW	Garage	1971
327	NW	Garage	1953
327	NW	Garage	1979
327	NW	Garage	1962
327	NW	Garage	1994
342	NW	Garage	1953
342	NW	Garage	1953
343	NW	Garage	1991
351	S	Garages	1953
351	S	Garages	1953
353	S	Garages	1953
	209 209 209 213 214 214 214 240 240 240 240 240 240 240 245 245 245 245 245 245 247 288 322 327 327 327 327 327 327 327 327 327	209 SW 209 SW 213 W 214 W 214 W 240 NW 240 NW 240 NW 240 NW 240 NW 240 NW 241 NW 242 NW 245 S 246 S 284 S 284 S 285 S 287 S 288 S 322 W 322 W 327 NW 327 NW 327 NW 342 NW 343 NW 343 NW 351 S	202 S Garage 209 SW Post Office Garage 209 SW Post Office Garage 209 SW Post Office Garage 213 W Garages 214 W Garages 240 NW Garage 241 NW Garage 242 NW Garage 243 S Garages 244 S Garages 245 S Garages

1.6 Historical military sites

Certain military installations were not noted on historic mapping for security reasons. Whilst not all military land is necessarily of concern, Groundsure has researched and digitised a number of Ordnance Factories and other military industrial features (e.g. Ordnance Depots, Munitions Testing Grounds) which may be of contaminative concern. This research was drawn from a number of different sources, and should not be regarded as a definitive or exhaustive database of potentially contaminative military installations. The boundaries of sites within this database have been estimated from the best evidence available to Groundsure at the time of compilation.

Records of historical military sites within 500m of the search boundary:

0

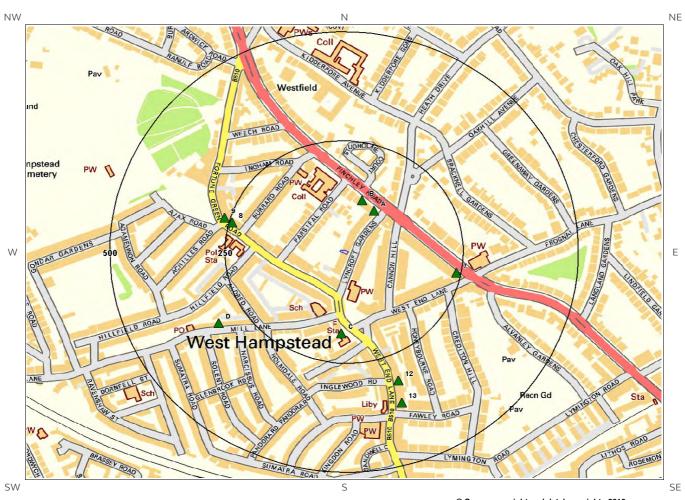
Database searched and no data found.

1.7 Potentially Infilled Land

Records of Potentially Infilled Features from 1:10,000 scale mapping within 500m of the study site:

33

The following Historical Potentially Infilled Features derived from the Historical Mapping information is provided by Groundsure:


ID	Distance(m)	Direction	Use	Date
123AB	58	S	Gravel Pit	1873
124AC	69	S	S Gravel Pits 1873	
125Q	183	S	S Gravel Pit 1873	
126	293	S	Pond	1866
127C	365	NW	Cemetery	1920
128AD	365	NW	Cemetery	1911
129AE	366	NW	Cemetery	1949
130C	371	NW	Cemetery	1938
131C	372	NW	Cemetery	1938
132AF	381	SE	Pond	1866
133AF	384	SE	Pond	1894
134AG	404	W	Cemetery 1894	
135D	411	W	Cemetery 1949	
136D	411	W	Cemetery 1993	
137D	411	W	Cemetery 1976	
138D	411	W	Cemetery 1966	
139AH	418	N	Gravel Pit 1873	
140AI	455	N	Unspecified Ground 1938 Workings	
141AJ	458	SE	Pond	1894
142AJ	459	SE	Pond	1866
143AK	463	W	Reservoir	1911
144AJ	466	SE	E Unspecified Heap 1894	
145AL	466	W	W Reservoir 1938	
146AK	472	W	W Covered Reservoir 1894	
147AL	475	W	Reservoir	1938
148AL	476	W	Covered Reservoir	1993

149AL	476	W	Covered Reservoir	1976
150AK	476	W	Reservoir	1920
151AL	478	W	Reservoir	1949
152AM	485	N	Reservoir	1920
153AM	493	N	Reservoir	1938
154AM	494	N	Reservoir	1938
155AM	495	N	Reservoir	1949

2. Environmental Permits, Incidents and Registers Map

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

2. Environmental Permits, **Incidents and Registers**

2.1 Industrial Sites Holding Licences and/or Authorisations

Searches of information provided by the Environment Agency/Natural Resources Wales ar Authorities reveal the following information:	nd Local
2.1.1 Records of historic IPC Authorisations within 500m of the study site:	
	0
Database searched and no data found.	
2.1.2 Records of Part A(1) and IPPC Authorised Activities within 500m of the study site:	
	0
Database searched and no data found.	
2.1.3 Records of Red List Discharge Consents (potentially harmful discharges to controlled waters 500m of the study site:	s) within
	0
Database searched and no data found.	
2.1.4 Records of List 1 Dangerous Substances Inventory Sites within 500m of the study site:	
	0
Database searched and no data found.	
2.1.5 Records of List 2 Dangerous Substance Inventory Sites within 500m of the study site:	
	0
Database searched and no data found.	

2.1.6 Records of Part A(2) and Part B Activities and Enforcements within 500m of the study site:

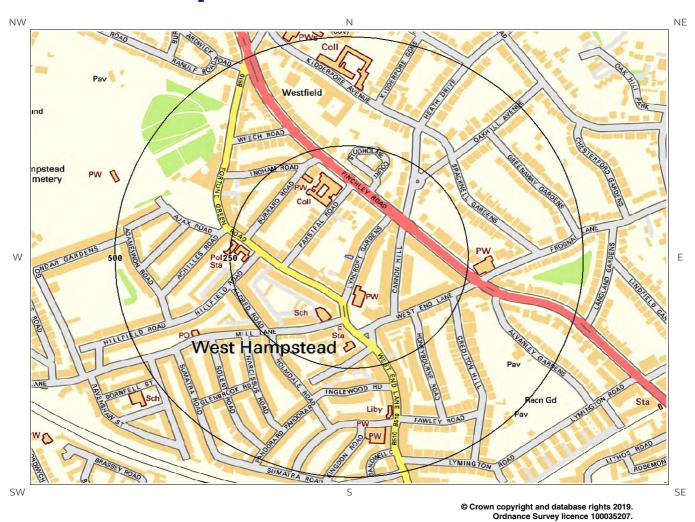
13

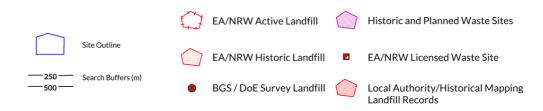
The following Part A(2) and Part B Activities are represented as points on the Environmental Permits, Incidents and Registers Map:

ID	Distance (m)	Direction	NGR	De	tails
1A	108	NE	525457 185487	Address: Cottontail Cleaners, 509 Finchley Road, Hamstead, NW3 7BB Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
2A	108	NE	525457 185487	Address: Cottontail Cleaners, 509 Finchley Road, NW3 7BB Process: Dry Cleaning Status: Historical Permit Permit Type: Part B	Enforcement: Enforcement Notified Date of Enforcement: 19/01/2009 Comment: Non - payment of the annual subsistence fee.
3В	118	N	525431 185510	Address: The London Dry Cleaning Company, 519A Finchley Road, NW3 7BB Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
4B	118	N	525431 185510	Address: The London Dry Cleaning Company, 519A Finchley Road, NW3 7BB Process: Dry Cleaning Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
5C	184	S	525386 185205	Address: Sparkle Dry Cleaning , 329 West End Lane, NW6 1RS Process: Dry Cleaning Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
6C	184	S	525386 185205	Address: Sparkle Dry Cleaning, 329 West End Lane, NW6 1RS Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
7	240	E	525636 185344	Address: J D Dry Cleaners, 469 Finchley Road, NW3 6HP Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
8	243	W	525149 185460	Address: Texaco 63 Fortune Green, London, NW6 1DR Process: Unloading of Petrol into Storage at Service Stations Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
9	262	W	525133 185471	Address: D&D Dry Cleaners, 68 Fortune Green Rd, NW6 1DS Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
10D	312	SW	525120 185229	Address: Cotton Club Dry Cleaners, 57 Mill Lane, NW6 1NB Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified

ID	Distance (m)	Direction	NGR	Det	ails
11D	312	SW	525120 185229	Address: Cotton Club Dry Cleaners, 57 Mill Lane, NW6 1NB Process: Dry Cleaning Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
12	312	S	525510 185097	Address: Shamrock Express Cleaners, 210 West End Lane, NW6 1UU Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
13	362	S	525518 185047	Address: Shamrock, 210 West End Lane, NW6 1UU Process: Dry Cleaning Status: Revoked Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified

11D	312	SW	525120 185229	Process: Dry Cleaning Status: Historical Permit Permit Type: Part B	Date of Enforcement: No Enforce Notified Comment: No Enforcement Not	
12	312	S	525510 185097	Address: Shamrock Express Cleaners, 210 West End Lane, NW6 1UU Process: Dry Cleaning Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement No Date of Enforcement: No Enforce Notified Comment: No Enforcement Not	men
13	362	S	525518 185047	Address: Shamrock, 210 West End Lane, NW6 1UU Process: Dry Cleaning Status: Revoked Permit Type: Part B	Enforcement: No Enforcement No Date of Enforcement: No Enforce Notified Comment: No Enforcement Not	men
2.1.7 R	ecords of	Category 3	3 or 4 Radioact	tive Substances Authorisations:		
						0
			Databa	se searched and no data found.		
2.1.8 R	ecords of	Licensed D	ischarge Cons	ents within 500m of the study site	:	
			Dataha	se searched and no data found.		0
			Databa	se searched and no data round.		
	ecords of of the stud		ustry Referrals	s (potentially harmful discharges to	the public sewer) within	
						0
			Databa	se searched and no data found.		
2.1.10 site:	Records o	f Planning	Hazardous Su	bstance Consents and Enforcemer	nts within 500m of the study	
						0
			Databa	se searched and no data found.		




2.2 Dangerous or Hazardous Sites

Records of COMAH & NIHHS sites within 500m of the study site:	0
Database searched and no data found.	
2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents	
2.3.1 Records of National Incidents Recording System, List 2 within 500m of the study site:	
Database searched and no data found.	0
2.3.2 Records of National Incidents Recording System, List 1 within 500m of the study site:	
Database searched and no data found.	0
2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990	
Records of sites determined as contaminated land under Section 78R of the Environmental Protection Ad 1990 are there within 500m of the study site	ct 0
Database searched and no data found.	

3. Landfill and Other Waste Sites Map

3. Landfill and Other Waste Sites

5 4			
3.1	Land	ITILI	l Sites

3.1.1 Records from	Environment	Agency/Natural	Resources	Wales lan	ıdfill data v	vithin 100)0m of th	າe study
site:								

0

Database searched and no data found.

3.1.2 Records of Environment Agency/Natural Resources Wales historic landfill sites within 1500m of the study site:

1

The following landfill records are represented as either points or polygons on the Landfill and Other Waste Sites map:

ID	Distance (m)	Direction	NGR	Details	
Not shown	857	SE		Site Address: Canfield Place, London NW6 Waste Licence: - Site Reference: DON009 Waste Type: - Environmental Permitting Regulations (Waste) Reference: -	Licence Issue: Licence Surrendered: Licence Holder Address: - Operator: - Licence Holder: - First Recorded: - Last Recorded: -

3.1.3 Records of BGS/DoE non-op	erational landfill sites within	1500m of the study	y site:
---------------------------------	---------------------------------	--------------------	---------

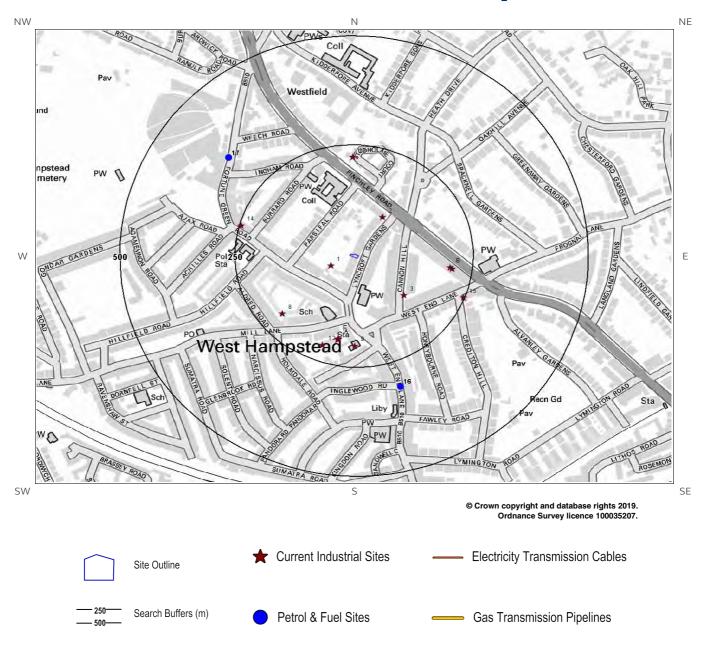
0

Database searched and no data found.

3.1.4 Records of Landfills from Local Authority and Historical Mapping Records within 1500m of the study site:

0

Database searched and no data found.



3.2 Other Waste Sites

3.2.1 Records of waste treatment, transfer or disposal sites within 500m of the study site:	
	0
Database searched and no data found.	
3.2.2 Records of Environment Agency/Natural Resources Wales licensed waste sites within 1500m of the study site:	е
	0
Database searched and no data found.	

4. Current Land Use Map

4. Current Land Uses

4.1 Current Industrial Data

Records of potentially contaminative industrial sites within 250m of the study site:

15

The following records are represented as points on the Current Land Uses map.

ID	Distance (m)	Directio n	Company	NGR	Address	Activity	Category
1	48	SW	Electricity Sub Station	525342 185373	Greater London, NW6	Electrical Features	Infrastructure and Facilities
2	103	NE	Curtains & Blinds	525454 185483	509, Finchley Road, Hampstead, London, Greater London, NW3 7BB	Curtains and Blinds	Consumer Products
3	132	SE	Electricity Sub Station	525501 185305	Greater London, NW6	Electrical Features	Infrastructure and Facilities
4A	188	S	First Aid Wheels	525358 185206	174, Mill Lane, West Hampstead, London, Greater London, NW6 1TB	Vehicle Repair, Testing and Servicing	Repair and Servicing
5A	190	S	Mac Daddy I T Ltd	525357 185204	West Heath Yard 174, Mill Lane, London, Greater London, NW6 1TB	Electrical Equipment Repair and Servicing	Repair and Servicing
6A	190	S	Woodstock Motors	525357 185204	West Heath Yard 174, Mill Lane, London, Greater London, NW6 1TB	Vehicle Repair, Testing and Servicing	Repair and Servicing
7A	190	S	First Aid Wheels	525358 185204	West Heath Yard, 174 Mill Lane, London, Greater London, NW6 1TB	Special Purpose Machinery and Equipment	Industrial Products
8	199	SW	Electricity Sub Station	525236 185263	Greater London, NW6	Electrical Features	Infrastructure and Facilities
9	200	S	West Hampstead Fire Station	525394 185189	West Hampstead Fire Station 325, West End Lane, London, Greater London, NW6 1RR	Fire Brigade Stations	Central and Local Government
10B	201	E	Stone of London	525601 185368	485, Finchley Road, London, Greater London, NW3 6HS	Stone Quarrying and Preparation	Extractive Industries
11B	206	E	Chessams Upholsterers	525605 185365	483a, Finchley Road, London, Greater London, NW3 6HS	Furniture	Consumer Products
12	212	S	Works	525324 185191	Greater London, NW6	Unspecified Works Or Factories	Industrial Features
13	223	Ν	Electricity Sub Station	525389 185622	Greater London, NW3	Electrical Features	Infrastructure and Facilities
14	246	W	Cromwell Security & Fire Services Ltd	525147 185465	64, Fortune Green Road, London, Greater London, NW6 1DT	Electronic Equipment	Industrial Products
15	248	SE	Carmel Garage	525630 185299	322, West End Lane, London, Greater London, NW6 1LN	Vehicle Repair, Testing and Servicing	Repair and Servicing

4.2 Petrol and Fuel Sites

Records of petrol or fuel sites within 500m of the study site:

2

The following petrol or fuel site records provided by Catalist are represented as points on the Current Land Use map:

ID	Distance (m)	Directio n	NGR	Company	Address	LPG	Status
16	308	S	525493 185095	OBSOLETE	West End Lane, London, Inner London, NW6 1XF	Not Applicable	Obsolete
17	345	NW	525120 185620	TEXACO	63-65, Fortune Green Road, Fortune Green, London, Inner London, NW6 1DR	Not Applicable	Obsolete

4.3 National Grid High Voltage Underground Electricity Transmission Cables

This dataset identifies the high voltage electricity transmission lines running between generating power plants and electricity substations. The dataset does not include the electricity distribution network (smaller, lower voltage cables distributing power from substations to the local user network). This information has been extracted from databases held by National Grid and is provided for information only with no guarantee as to its completeness or accuracy. National Grid do not offer any warranty as to the accuracy of the available data and are excluded from any liability for any such inaccuracies or errors.

Records of National Grid high voltage underground electricity transmission cables within 500m of the study site:

0

Database searched and no data found.

4.4 National Grid High Pressure Gas Transmission Pipelines

This dataset identifies high-pressure, large diameter pipelines which carry gas between gas terminals, power stations, compressors and storage facilities. The dataset does not include the Local Transmission System (LTS) which supplies gas directly into homes and businesses. This information has been extracted from databases held by National Grid and is provided for information only with no guarantee as to its completeness or accuracy. National Grid do not offer any warranty as to the accuracy of the available data and are excluded from any liability for any such inaccuracies or errors.

Records of National Grid high pressure gas transmission pipelines within 500m of the study site:

0

Database searched and no data found.

5. Geology

5.1 Artificial Ground and Made Ground

Database searched and no data found.

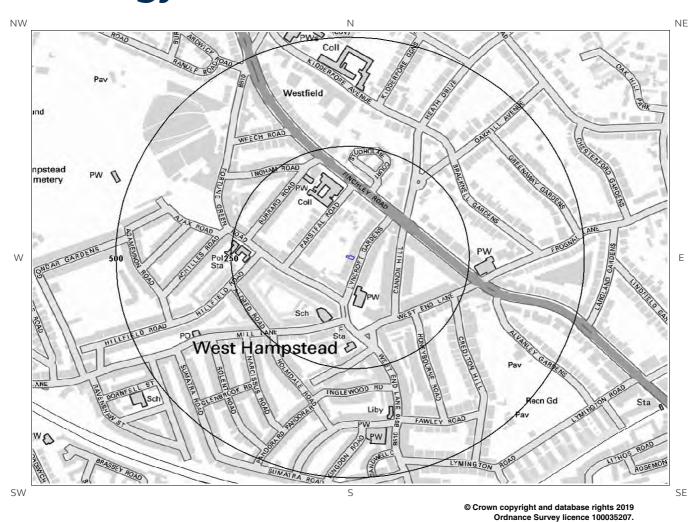
The database has been searched on site, including a 50m buffer.

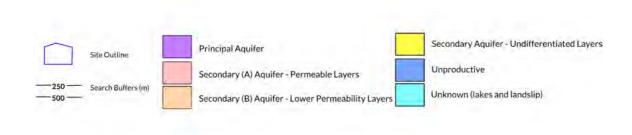
5.2 Superficial Ground and Drift Geology

Database searched and no data found.

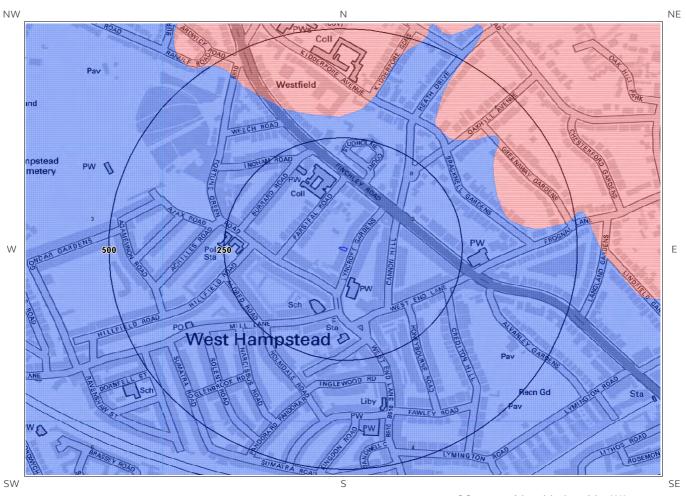
The database has been searched on site, including a 50m buffer.

5.3 Bedrock and Solid Geology

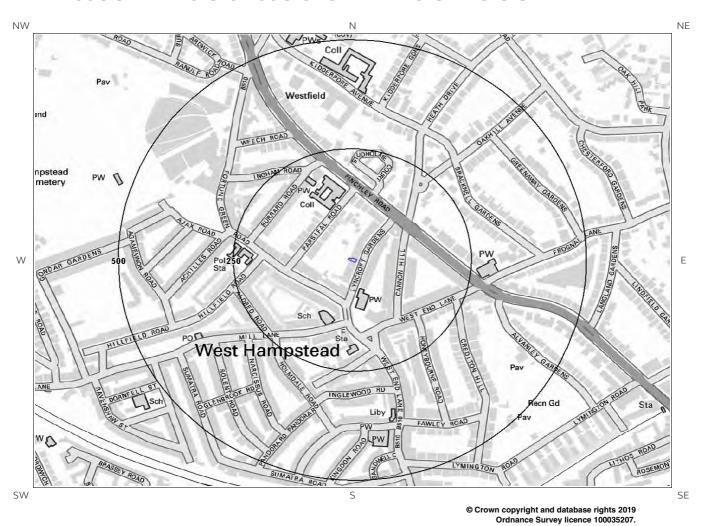

The database has been searched on site, including a 50m buffer.


Lex Code	Description	Rock Type
LC-XCZS	LONDON CLAY FORMATION	CLAY, SILT AND SAND

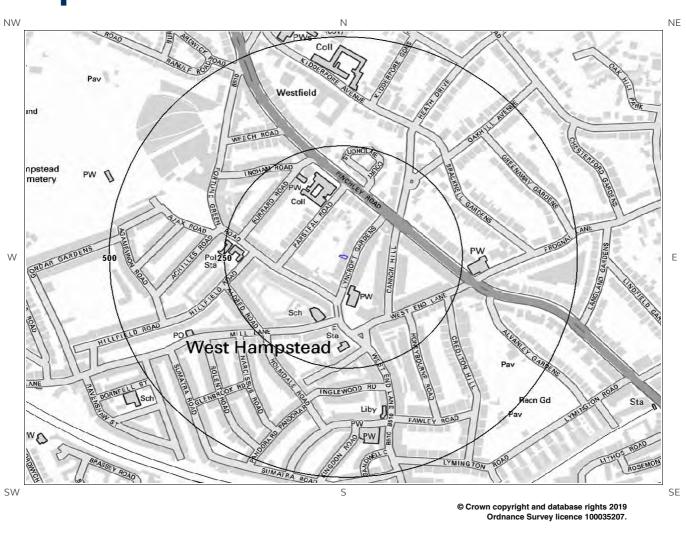
(Derived from the BGS 1:50,000 Digital Geological Map of Great Britain)

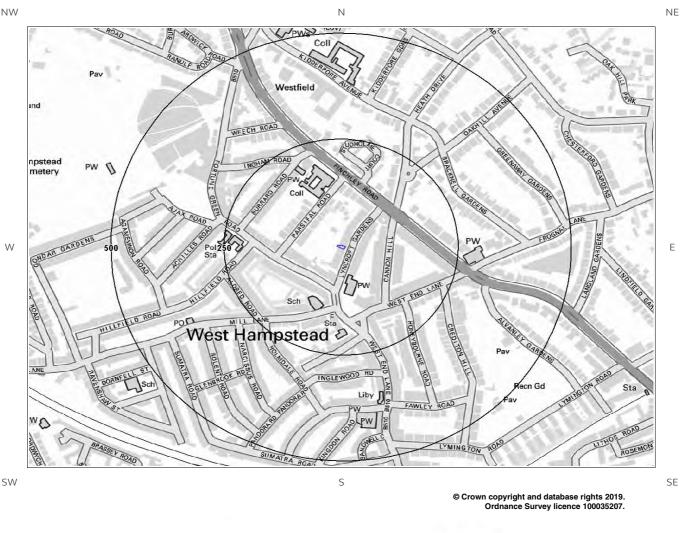

6 Hydrogeology and Hydrology 6a. Aquifer Within Superficial Geology

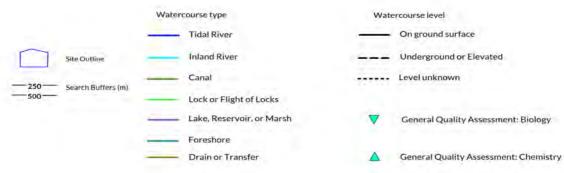
6b. Aquifer Within Bedrock Geology and Abstraction Licences




© Crown copyright and database rights 2019 Ordnance Survey licence 100035207.


6c. Hydrogeology – Source Protection Zones and Potable Water Abstraction Licences


6d. Hydrogeology – Source Protection Zones within confined aquifer



6e. Hydrology – Watercourse Network and River Quality

6. Hydrogeology and Hydrology

6.1 Aquifer within Superficial Deposits

Records of strata classification within the superficial geology at or in proximity to the property

No

Database searched and no data found.

From 1 April 2010, the Environment Agency/Natural Resources Wales's Groundwater Protection Policy has been using aquifer designations consistent with the Water Framework Directive. For further details on the designation and interpretation of this information, please refer to the Groundsure Enviro Insight User Guide.

6.2 Aquifer within Bedrock Deposits

Records of strata classification within the bedrock geology at or in proximity to the property

Yes

From 1 April 2010, the Environment Agency/Natural Resources Wales's Groundwater Protection Policy has been using aquifer designations consistent with the Water Framework Directive. For further details on the designation and interpretation of this information, please refer to the Groundsure Enviro Insight User Guide.

The following aquifer records are shown on the Aquifer within Bedrock Geology Map (6b):

Permeable layers capable of supporting water supplies at a local rather the strategic scale, and in some cases forming an important source of base flow to These are generally aquifers formerly classified as minor aquifers These are rock layers or drift deposits with low permeability that have neglications in the supplies of supporting water supplies at a local rather the strategic scale, and in some cases forming an important source of base flow to These are generally aquifers formerly classified as minor aquifers These are rock layers or drift deposits with low permeability that have neglicated as minor aquifers or water supply or river base flow to These are rock layers or drift deposits with low permeability that have neglicated as minor aquifers or drift deposits with low permeability that have neglicated as minor adviced by the supplies of the supplies at a local rather the strategic scale, and in some cases forming an important source of base flow to the supplies at a local rather the strategic scale, and in some cases forming an important source of base flow to the supplies at a local rather the supplies at a local rathe	ID	Distanc e (m)	Direction	Designation	Description
1 298 N Secondary A strategic scale, and in some cases forming an important source of base flow to These are generally aquifers formerly classified as minor aquifers 3 384 W Unproductive These are rock layers or drift deposits with low permeability that have neglically significance for water supply or river base flow These are rock layers or drift deposits with low permeability that have neglically significance for water supply or river base flow	2	0	On Site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
3 384 W Unproductive significance for water supply or river base flow These are rock layers or drift deposits with low permeability that have negli	1	298	N	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
/ 389 C Inproductive	3	384	W	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
significance for water supply of fiver base flow	4	389	S	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow

6.3 Groundwater Abstraction Licences

Groundwater Abstraction Licences within 2000m of the study site

Identified

The following Abstraction Licences records are represented as points, lines and regions on the Aquifer within Bedrock Geology Map (6b):

ID	Distance (m)	Direction	NGR	Details		
Not show n	1760	SE	526750 184261	Status: Active Licence No: TH/039/0039/087 Details: Spray Irrigation - Direct Direct Source: THAMES GROUNDWATER Point: SWISS COTTAGE OPEN SPACE- BOREHOLE Data Type: Point Name: LONDON BOROUGH OF CAMDEN	Annual Volume (m³): 10,512 Max Daily Volume (m³): 29 Original Application No: - Original Start Date: Expiry Date: Issue No: Version Start Date: 05/12/2013 Version End Date:	
Not show n	1760	SE	526750 184261	Status: Active Licence No: TH/039/0039/087 Details: Lake & Pond Throughflow Direct Source: THAMES GROUNDWATER Point: SWISS COTTAGE OPEN SPACE- BOREHOLE Data Type: Point Name: LONDON BOROUGH OF CAMDEN	Annual Volume (m³): 10,512 Max Daily Volume (m³): 29 Original Application No: - Original Start Date: Expiry Date: Issue No: Version Start Date: 05/12/2013 Version End Date:	
Not show n	1760	SE	526750 184261	Status: Active Licence No: TH/039/0039/087 Details: General Washing/Process Washing Direct Source: THAMES GROUNDWATER Point: SWISS COTTAGE OPEN SPACE- BOREHOLE Data Type: Point Name: LONDON BOROUGH OF CAMDEN	Annual Volume (m³): 10,512 Max Daily Volume (m³): 29 Original Application No: - Original Start Date: Expiry Date: Issue No: Version Start Date: 05/12/2013 Version End Date:	
Not show n	1787	SE	526800 184280	Status: Historical Licence No: 28/39/39/0219 Details: Spray Irrigation - Direct Direct Source: THAMES GROUNDWATER Point: SWISS COTTAGE OPEN SPACE- BOREHOLE Data Type: Point Name: LONDON BOROUGH OF CAMDEN	Annual Volume (m³): 10,512 Max Daily Volume (m³): 29 Original Application No: - Original Start Date: Expiry Date: Issue No: Version Start Date: 01/04/2008 Version End Date:	

6.4 Surface Water Abstraction Licences

Surface Water Abstraction Licences within 2000m of the study site

None identified

Database searched and no data found.

6.5 Potable Water Abstraction Licences

Potable Water Abstraction Licences within 2000m of the study site

None identified

Database searched and no data found.

6.6 Source Protection Zones

Source Protection Zones within 500m of the study site

None identified

Database searched and no data found.

6.7 Source Protection Zones within Confined Aquifer

Source Protection Zones within the Confined Aguifer within 500m of the study site

None identified

Historically, Source Protection Zone maps have been focused on regulation of activities which occur at or near the ground surface, such as prevention of point source pollution and bacterial contamination of water supplies. Sources in confined aquifers were often considered to be protected from these surface pressures due to the presence of a low permeability confining layer (e.g. glacial till, clay). The increased interest in subsurface activities such as onshore oil and gas exploration, ground source heating and cooling requires protection zones for confined sources to be marked on SPZ maps where this has not already been done.

Database searched and no data found.

6.8 Groundwater Vulnerability and Soil Leaching Potential

Environment Agency/Natural Resources Wales information on groundwater vulnerability and soil leaching potential within 500m of the study site

Identified

Distance (m)	Direction	Classification	Soil Vulnerability Category	Description
284	NE	Minor Aquifer/High Leaching Potential	HU	Soil information for urban areas and restored mineral workings. These soils are therefore assumed to be highly permeable in the absence of site-specific information.

6.9 River Quality

Environment Agency/Natural Resources Wales information on river quality within 1500m of the study site

None identified

6.9.1 Biological Quality:

Database searched and no data found.

6.9.2 Chemical Quality:

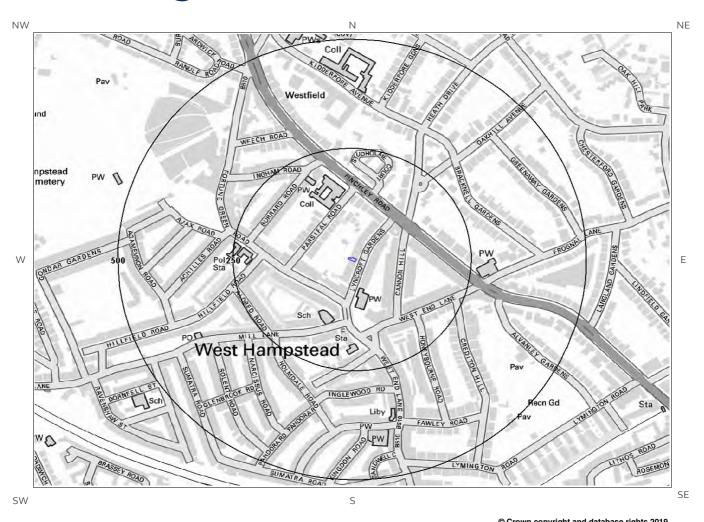
Database searched and no data found.

6.10 Ordnance Survey MasterMap Water Network

Ordnance Survey MasterMap Water Network entries within 500m of the study site

Database searched and no data found.

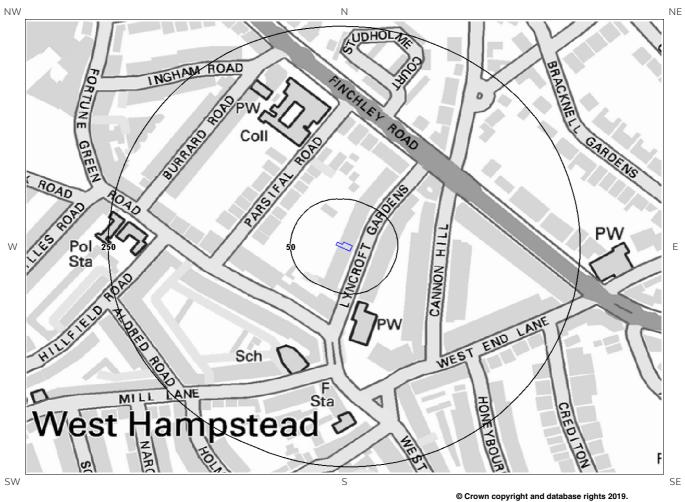
6.11 Surface Water Features


Surface water features within 250m of the study site

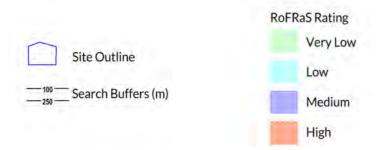
None identified

Database searched and no data found.

7a. Environment Agency/Natural Resources Wales Flood Map for Planning (from rivers and the sea)



© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.



7b. Environment Agency/Natural Resources Wales Risk of Flooding from Rivers and the Sea (RoFRaS) Map

© Crown copyright and database rights 2019.
Ordnance Survey licence 100035207.

7 Flooding

7.1 River and Coastal Zone 2 Flooding

Environment Agency/Natural Resources Wales Zone 2 floodplain within 250m

None identified

Environment Agency/Natural Resources Wales Zone 2 floodplains estimate the annual probability of flooding as between 1 in 1000 (0.1%) and 1 in 100 (1%) from rivers and between 1 in 1000 (0.1%) and 1 in 200 (0.5%) from the sea. Any relevant data is represented on Map 7a – Flood Map for Planning:

Database searched and no data found.

7.2 River and Coastal Zone 3 Flooding

Environment Agency/Natural Resources Wales Zone 3 floodplain within 250m

None identified

Zone 3 shows the extent of a river flood with a 1 in 100 (1%) or greater chance of occurring in any year or a sea flood with a 1 in 200 (0.5%) or greater chance of occurring in any year. Any relevant data is represented on Map 7a - Flood Map for Planning.

Database searched and no data found.

7.3 Risk of Flooding from Rivers and the Sea (RoFRaS) Flood Rating

Highest risk of flooding onsite

Very Low

The Environment Agency/Natural Resources Wales RoFRaS database provides an indication of river and coastal flood risk at a national level on a 50m grid with the flood rating at the centre of the grid calculated and given above. The data considers the probability that the flood defences will overtop or breach by considering their location, type, condition and standard of protection.

RoFRaS data for the study site indicates the property is in an area with a Very Low (less than 1 in 1000) chance of flooding in any given year.

7.4 Flood Defences

Flood Defences within 250m of the study site

None identified

Database searched and no data found.

7.5 Areas benefiting from Flood Defences

Areas benefiting from Flood Defences within 250m of the study site

None identified

7.6 Areas benefiting from Flood Storage

Areas used for Flood Storage within 250m of the study site

None identified

7.7 Groundwater Flooding Susceptibility Areas

7.7.1 British Geological Survey groundwater flooding susceptibility areas within 50m of the boundary of the study site

None identified

Notes: Groundwater flooding may either be associated with shallow unconsolidated sedimentary aquifers which overlie unproductive aquifers (Superficial Deposits Flooding), or with unconfined aquifers (Clearwater Flooding).

7.7.2 Highest susceptibility to groundwater flooding in the search area based on the underlying geological conditions

Not Prone

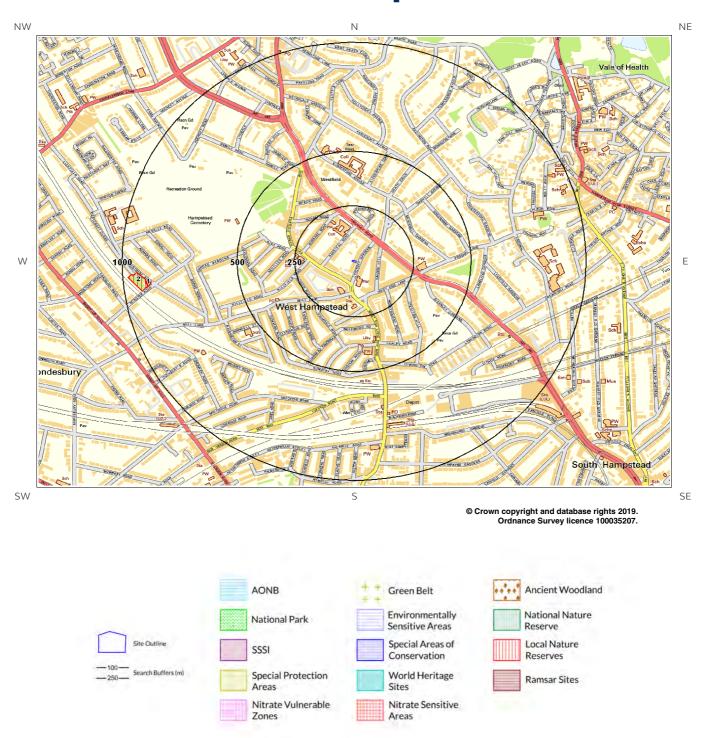
The area is not considered to be prone to groundwater flooding based on rock type.

7.8 Groundwater Flooding Confidence Areas

British Geological Survey confidence rating in this result

Not Applicable

Notes: Groundwater flooding is defined as the emergence of groundwater at the ground surface or the rising of groundwater into man-made ground under conditions where the normal range of groundwater levels is exceeded.


The confidence rating is on a threefold scale - Low, Moderate and High. This provides a relative indication of the BGS confidence in the accuracy of the susceptibility result for groundwater flooding. This is based on the amount and precision of the information used in the assessment. In areas with a relatively lower level of confidence the susceptibility result should be treated with more caution. In other areas with higher levels of confidence the susceptibility result can be used with more confidence.

Report Reference: HMD-6410190 Client Reference: MGC_19-29

42

8. Designated Environmentally Sensitive Sites Map

8. Designated Environmentally Sensitive Sites

Designated Environmentally Sensitive Sites within 2000m of the study site	Identified
8.1 Records of Sites of Special Scientific Interest (SSSI) within 2000m of the site:	- tudy
	0
Database searched and no data found.	
8.2 Records of National Nature Reserves (NNR) within 2000m of the study sit	- e:
	0
Database searched and no data found.	
8.3 Records of Special Areas of Conservation (SAC) within 2000m of the study	- / site:
Database searched and no data found.	O
8.4 Records of Special Protection Areas (SPA) within 2000m of the study site:	_
	0
Database searched and no data found.	
8.5 Records of Ramsar sites within 2000m of the study site:	_
Database searched and no data found.	C
	_

8.6 Records of Ancient Woodland within 2000m of the study site:

1

The following records of Designated Ancient Woodland provided by Natural England/Natural Resources Wales are represented as polygons on the Designated Environmentally Sensitive Sites Map:

ID	Distance (m)	Direction	Ancient Woodland Name	Data Source
Not shown	1481	NE	BISHOPS WOOD	Ancient & Semi-Natural Woodland

8.7 Records of Local Nature Reserves (LNR) within 2000m of the study site:

2

The following Local Nature Reserve (LNR) records provided by Natural England/Natural Resources Wales are represented as polygons on the Designated Environmentally Sensitive Sites Map:

ID	Distance (m)	Direction	LNR Name	Data Source
1	880	W	Westbere Copse	Natural England
2	899	W	Westbere Copse	Natural England

8.8 Records of World Heritage Sites within 2000m of the study site:

0

Database searched and no data found.

8.9 Records of Environmentally Sensitive Areas within 2000m of the study site:

0

Database searched and no data found.

8.10 Records of Areas of Outstanding Natural Beauty (AONB) within 2000m of the study site:

0

Database searched and no data found.

8.11 Records of National Parks (NP) within 2000m of the study site:

	Database searched and no data found.
3.12 Records of Nit	rate Sensitive Areas within 2000m of the study site:
	Database searched and no data found.
8.13 Records of Nit	trate Vulnerable Zones within 2000m of the study site:
	Database searched and no data found.
8.14 Records of Gre	een Belt land within 2000m of the study site:
	Database searched and no data found.

9. Natural Hazards Findings

9.1 Detailed BGS GeoSure Data

BGS GeoSure Data has been searched to 50m. The data is included in tabular format. If you require further information on geology and ground stability, please obtain a **Groundsure Geo Insight**, available from **our website**. The following information has been found:

9.1.1 Shrink Swell

Maximum Shrink-Swell** hazard rating identified on the study site

Moderate

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Ground conditions predominantly high plasticity. Do not plant or remove trees or shrubs near to buildings without expert advice about their effect and management. For new build, consideration should be given to advice published by the National House Building Council (NHBC) and the Building Research Establishment (BRE). There is a probable increase in construction cost to reduce potential shrink-swell problems. For existing property, there is a probable increase in insurance risk during droughts or where vegetation with high moisture demands is present.

9.1.2 Landslides

Maximum Landslide* hazard rating identified on the study site

Very Low

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Slope instability problems are unlikely to be present. No special actions required to avoid problems due to landslides. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.

9.1.3 Soluble Rocks

Maximum Soluble Rocks* hazard rating identified on the study site

Negligible

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Soluble rocks are present, but unlikely to cause problems except under exceptional conditions. No special actions required to avoid problems due to soluble rocks. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with soluble rocks.

 ^{*} This indicates an automatically generated 50m buffer and site.

9.1.4 Compressible Ground

Maximum Compressible Ground* hazard rating identified on the study site

Negligible

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

No indicators for compressible deposits identified. No special actions required to avoid problems due to compressible deposits. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with compressible deposits.

9.1.5 Collapsible Rocks

Maximum Collapsible Rocks* hazard rating identified on the study site

Very Low

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Deposits with potential to collapse when loaded and saturated are unlikely to be present. No special ground investigation required or increased construction costs or increased financial risk due to potential problems with collapsible deposits.

9.1.6 Running Sand

Maximum Running Sand** hazard rating identified on the study site

Very Low

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Very low potential for running sand problems if water table rises or if sandy strata are exposed to water. No special actions required, to avoid problems due to running sand. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with running sand.

Report Reference: HMD-6410190 Client Reference: MGC_19-29

48

^{*} This indicates an automatically generated 50m buffer and site.

9.2 Radon

9.2.1 Radon Affected Areas

Is the property in a Radon Affected Area as defined by the Health Protection Agency (HPA) and if so what percentage of homes are above the Action Level? The site is not in a Radon Affected Area, as less than 1% of properties are above the Action Level.

The radon data in this report is supplied by the BGS/Public Health England and is the definitive map of Radon Affected Areas in Great Britain and Northern Ireland. The dataset was created using long-term radon measurements in over 479,000 homes across Great Britain and 23,000 homes across Northern Ireland, combined with geological data. The dataset is considered accurate to 50m to allow for the margin of error in geological lines, and the findings of this report supercede any answer given in the less accurate Indicative Atlas of Radon in Great Britain, which simplifies the data to give the highest risk within any given 1km grid square. As such, the radon atlas is considered indicative, whereas the data given in this report is considered definitive.

9.2.2 Radon Protection

Is the property in an area where Radon Protection are required for new properties or extensions to existing

ones as described in publication BR211 by the Building Research Establishment? No rad

No radon protective measures are necessary.

10. Mining

10.1 Coal Mining

Coal mining areas within 75m of the study site

None identified

Database searched and no data found.

10.2 Non-Coal Mining

Non-Coal Mining areas within 50m of the study site boundary

None identified

Database searched and no data found.

10.3 Brine Affected Areas

Brine affected areas within 75m of the study site Guidance: No Guidance Required.

None identified

Contact Details

Groundsure Helpline

Telephone: 08444 159 000 info@groundsure.com

British Geological Survey Enquiries

Kingsley Dunham Centre Keyworth, Nottingham NG12 5GG Tel: 0115 936 3143. Fax: 0115 936 3276. Email:

Web:www.bgs.ac.uk

BGS Geological Hazards Reports and general geological enquiries:

enquiries@bgs.ac.uk

Environment Agency

National Customer Contact Centre, PO Box 544 Rotherham, S60 1BY Tel: 03708 506 506

Web: $\frac{www.environment-agency.gov.uk}{\text{Email: enquiries@environment-agency.gov.uk}}$

Public Health England

Public information access office Public Health England, Wellington House 133-155 Waterloo Road, London, SE1 8UG www.gov.uk/phe

Email:enquiries@phe.gov.uk
Main switchboard: 020 7654 8000

The Coal Authority

200 Lichfield Lane Mansfield Notts NG18 4RG Tel: 0345 7626 848 DX 716176 Mansfield 5

www.coal.gov.uk

Ordnance Survey

Adanac Drive, Southampton SO16 0AS Tel: 08456 050505

Local Authority

Authority: London Borough of Camden Phone: 020 7974 4444 Web: http://www.camden.gov.uk/ Address: Camden Town Hall, Judd Street, London, WC1H 9JE

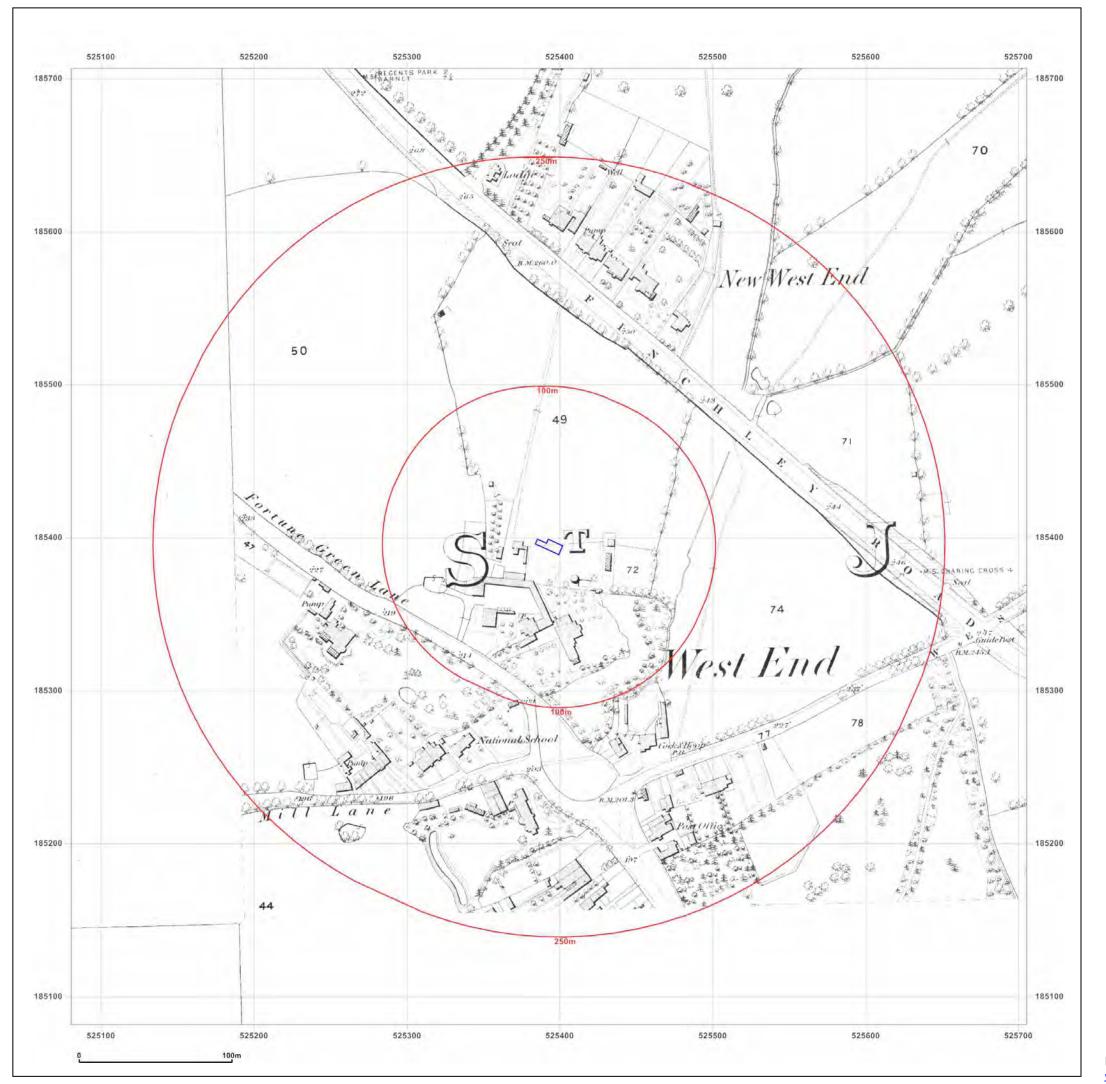
Gemapping PLC

Virginia Villas, High Street, Hartley Witney, Hampshire RG27 8NW Tel: 01252 845444

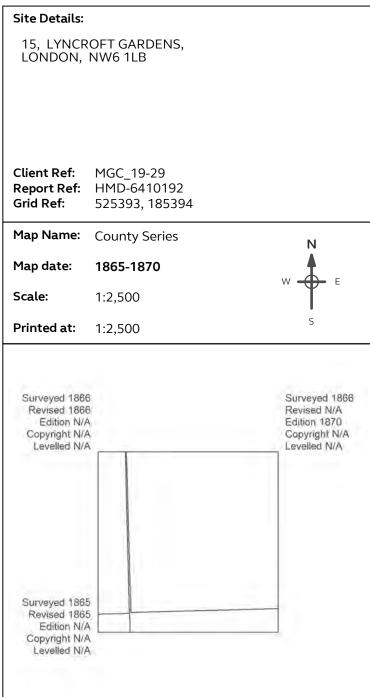
NATURAL ENVIRONMENT RESEARCH COUNCIL

Acknowledgements: Site of Special Scientific Interest, National Nature Reserve, Ramsar Site, Special Protection Area, Special Area of Conservation data is provided by, and used with the permission of, Natural England/Natural Resources Wales who retain the Copyright and Intellectual Property Rights for the data.

PointX © Database Right/Copyright, Thomson Directories Limited © Copyright Link Interchange Network Limited © Database Right/Copyright and Ordnance Survey © Crown Copyright and/or Database Right. All Rights Reserved. Licence Number [03421028]. This report has been prepared in accordance with the Groundsure Ltd standard Terms and Conditions of business for work of this nature.

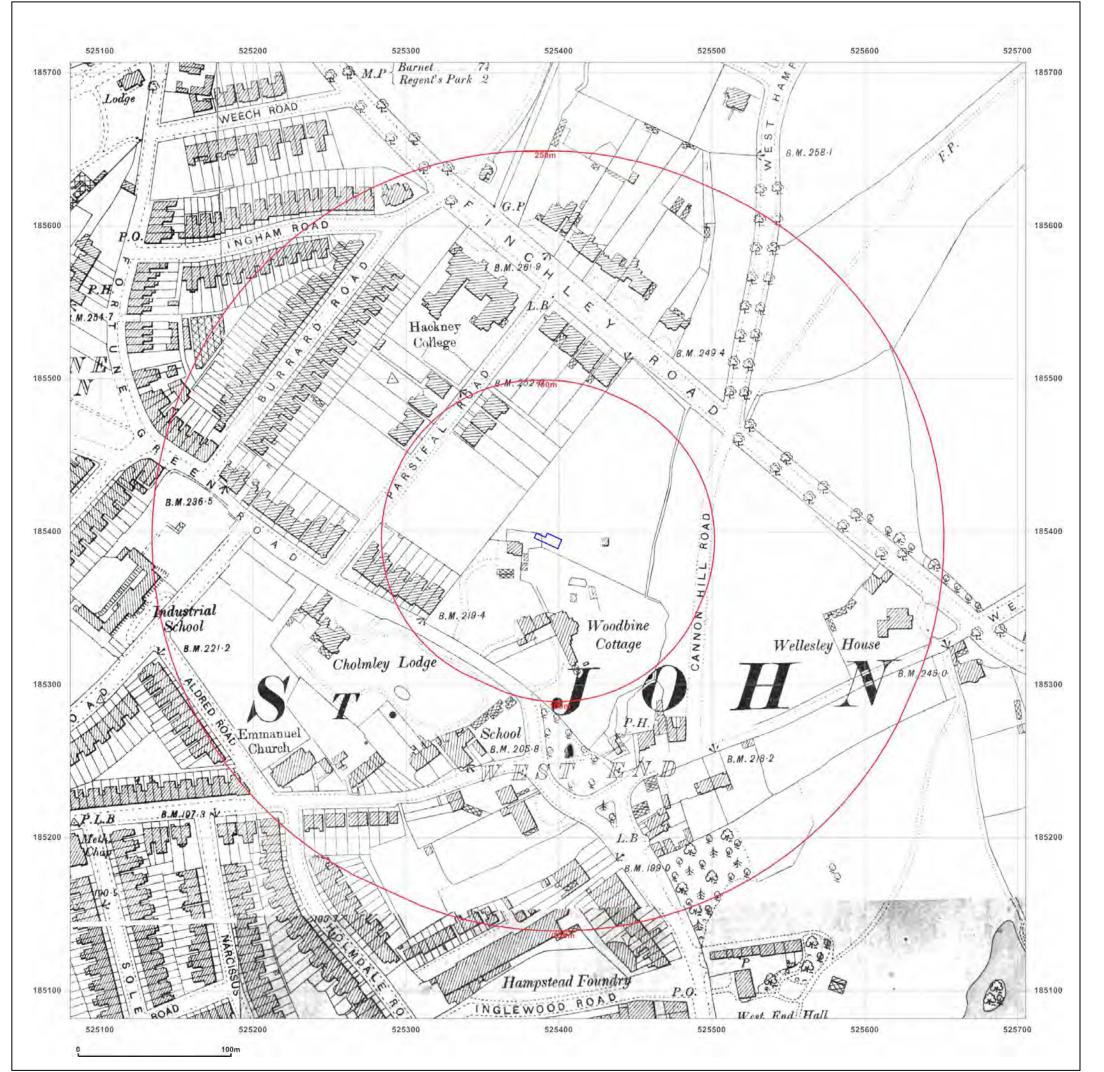


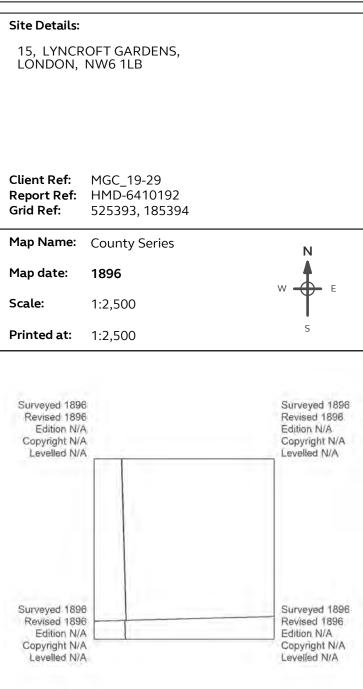
Standard Terms and Conditions


Groundsure's Terms and Conditions can be viewed online at this link:

https://www.groundsure.com/terms-and-conditions-feb11-2019

Appendix C Historical Maps (Groundsure)

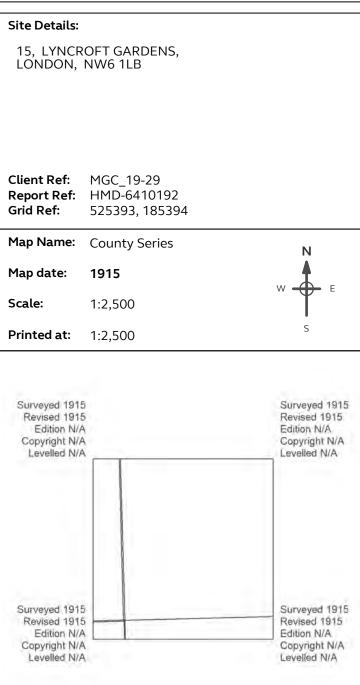



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 19 October 2019

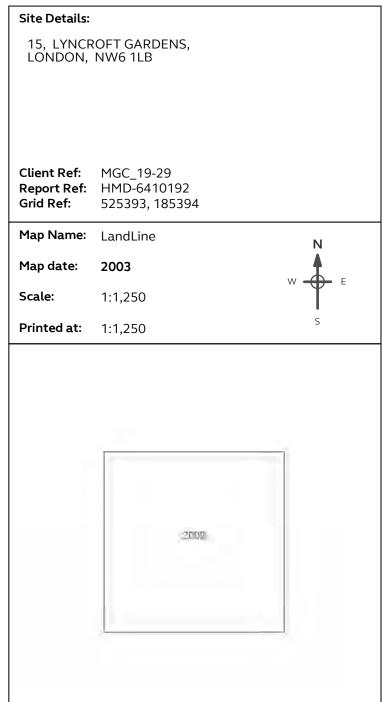
Map legend available at:




© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 19 October 2019

Map legend available at:


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 19 October 2019

Map legend available at:

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 19 October 2019

Map legend available at:

Appendix D Ground Investigation Report

Site Investigation 15 Lyncroft Gdns, London NW6 1LB

Geotechnical Factual Report

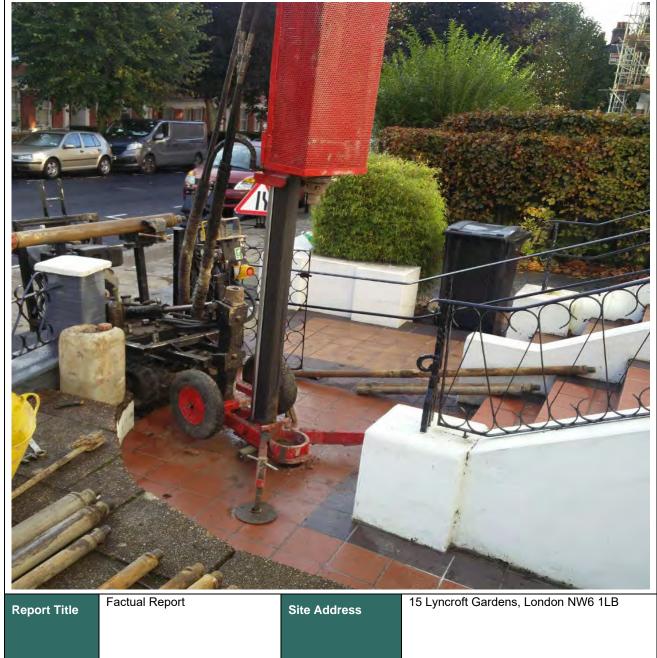
8 November 2019

MAUND GEO-CONSULTING

Produced for:

Richard Banks 15 Lyncroft Gardens London NW6 1LB

Prepared by:


Julian Maund BSc PhD CEng MIMMM CGeol FGS UK Registered Ground Engineering Adviser

Maund Geo-Consulting Ltd 3 Coopers Square Chipping Norton OX7 5DG

T 07817018716
E julian.maund@gmail.com

T 07817 018716 E julian.maund@gmail.com

MGC-FR-19-29-V1

Report Title	Factual Report	Site Address	15 Lyncroft Gardens, London NW6 1LB
Work Stage	Site Investigation	Report Date	November 2019
Brief Description of	Factual report on a geotechnical Impact Assessment for the Lond	· ·	ertaken in October 2019 as part of a Basement

Contents

Document Control Sheet

Project Title Basement Impact Assessment

15 Lyncroft Gardens NW6 1LB

Report Title Ground Investigation Factual Report

Reference MGC-FGR-19-29-V1

Revision 1

Status Final

Control Date 8 November 2019

Record of Issue

Issue	Status	Date	Author	
Α	Final	08/11/19	Julian Maund	Jan M.
				-

Distribution

Organisation	Contact	Copies	Date
	Richard Banks	1	08/11/19
Croft Structural Engineers	Philip Henry	1	08/11/19

Contents

1	Introduction	.1
1.1	Terms of Reference	
	Limitations.	
2	The Site	
2.1	Location	. 2
2.2	Geology	. 2
	•	
3	Ground Investigation	. 3
3.1	General	. 3
3.1	Service Clearance and survey	. 3
3.2	Drilling depths	
3.3	Insitu Testing	
3.4	Sampling	. 3
3.5	Installation	. 3
4	Laboratory Testing	
4.1	General	
4.2	Geotechnical Testing on soil	. 4
5	Groundwater Monitoring	. 5
App	endix A Exploratory Location Plan and Hole Records	
App	endix B Geotechnical Laboratory Test Report	

1 Introduction

1.1 Terms of Reference

Maund Geo-Consulting Ltd (MGC) was instructed on 16 September 2019 by Croft Structural Engineers Ltd on behalf of Richard Banks to undertake a ground investigation at 15 Lyncroft Gardens to provide information on the ground conditions to support a Basement Impact Assessment to satisfy planning requirements for a basement extension.

1.2 Limitations

Notwithstanding anything to the contrary contained in the report, Maund Geo Consulting Limited (MGC) has exercised reasonable skill, care and diligence in the performance of the services required by Richard Banks and MGC shall not be liable except to the extent that it has failed to exercise reasonable skill, care and diligence and this report shall be read and construed accordingly. Information provided by third parties has been used in good faith and is taken at face value; however, MGC cannot guarantee its accuracy or completeness. The inherent variation of ground conditions allows only definition of the actual conditions at the locations and depths at the time of the investigation. At intermediate locations, conditions can only be inferred.

2 The Site

2.1 Location

The property is located at 15 Lyncroft Gardens NW6 1LB, National Grid Reference TQ253853, which is within the London Borough of Camden, shown in Figure 2.1

2.2 Geology

Information obtained from the British Geological Survey website viewer http://mapapps.bgs.ac.uk/geologyofbritain/home.html indicates that the site is located on The London Clay Formation.

3 **Ground Investigation**

3.1 General

A ground investigation was undertaken on 18 October 2019. The investigation was carried out by PM Sampling Ltd which comprised one borehole and two hand dug trial pits to expose party wall footings. The borehole was undertaken using a specialist Archway Trent rig suitable for areas of limited space. The sample was recovered in plastic tubular liners with 95+% recovery. The location of the exploratory holes is shown in Drawing MGC-19-29-001 in Appendix A. The exploratory hole records are also included in Appendix A

3.1 Service Clearance and survey

The borehole and trial pit locations were checked for service clearance by available drawings and an inspection pit for the borehole. The location of the borehole and trial pits was referenced to existing features.

3.2 Drilling depths

Borehole BH01 was drilled to 7.95 m. The trial pits were excavated to approximately 0.5 to 0.75 m depth.

3.3 Insitu Testing

Insitu Standard Penetration Tests were undertaken at regular intervals as shown on borehole records included in Appendix B.

3.4 Sampling

Disturbed samples were taken in the borehole from the split sampler at all SPT depths from the borehole. A bulk sample was taken from made ground in the borehole inspection pit.

3.5 Installation

A groundwater monitoring standpipe was installed in BH01 to a depth of 6 m. Details of the installation are included in the borehole records in Appendix B.

4 Laboratory Testing

4.1 General

Selected samples were sent to i2 Laboratories Ltd for geotechnical testing.

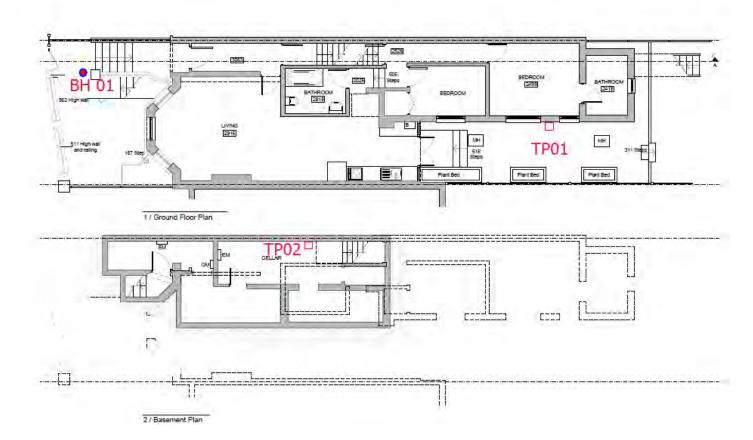
4.2 Geotechnical Testing on soil

The following tests were undertaken in accordance with BS1377:1990. The test results with methodologies are included in Appendix B.

Test type	No. of tests	Test Method
Moisture Content	5	BS1377:1990
Plasticity Index - 1 point Liquid Limit	5	BS1377:1990
pH, and water-soluble sulphate,	2	BRE SD1

5 **Groundwater Monitoring**

Groundwater levels in the borehole installation in BH01 was monitored while on site on 18/10/19 and then on 28/10/19 and 08/11/19. The results are provided in Table 5.1.


Table 5.1

Date of Monitoring	Groundwater (depth metres below ground level)
18/10/19	Dry
28/10/19	4.02
08/11/19	3.90

Appendix A

Exploratory Location Plan and Exploratory Hole Records

Client:
Richard Banks

Title:
Exploratory Hole Location Plan

Date:

November 2019

MAUND GEO-CONSULTING
Julian Maund BSc PhD MIMMM CEng FGS
Registered Ground Engineering Adviser

Project:

15 Lyncroft Gardens, NW6 1BL

Drawing Number:

MGC-19-29-001

PDXQG#THROFRQVXOWIQJ Mxddq#Pdxqg#Vf#skG#PIPPF#Hqj#JV#Jhro

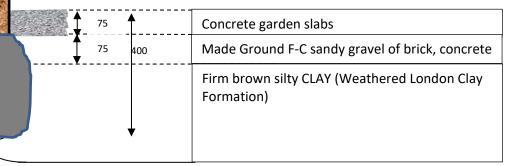
Maund Geo-Consulting Ltd 3 Coopers Square Chipping Norton OX7 5DG

Borehole No. BH01

				/f#skG#PIPPP#Hqj#J' Jurxqg#Hqjbqhhulqj#Dgy			OX7	5DG maund@gmail.com		
	Managa		45 1	C NIMO 41 F	,	Project	40.00	Co -ords 525404, 185388	Sheet 1 of 1 Hole Type:	
oject	Name:	No: 19-29 No:		PM Trent lined Hole Diameter:						
Loca	ition:	Bottom	of front	steps, 15 Lyncroft Gard	ens NW6	1LB		(Approx.)		
Clie	ent:	Richard Banks			I		Date Drilled: 18/10/19 Logged By: JGM			
ell	Water	Sa	ampling	and Insitu Testing	Depth	Level	Lagand	Ctratum Dec	aviation	
BII	Strikes	Depth (m)	Туре	Results	(m)	(m AOD)	Legend	Stratum Des	cription	
					0.07	69.93		Made Ground: Terracotta tile over cor		ł
					0.17	69.83		Made Ground: Sandy, clayey, red bro GRAVEL of brick, and chert		
		0.4-0.6	D1		0.80	69.2		Made Ground: Soft to firm brown grey medium gravel sized gragments of re		
		1.00		N=9 (1/1,2,2,2,3)			×			1
								Firm yellow-brown silty CLAY with a t (London Clay Formation)	race of line brown sand	
		1.80 2.00	D2	N=10 (2/1,2,3,2,3)				rootlets noted at 1.80		
		2.00		(2, 1, 2, 0, 2, 0)						
							<u> </u>			
		3.00	D3	N= 16 (2/2,4,3,5,4)			<u>x</u>	becoming firm to stiff mottled bro	own and grev with fine	
		0.00	50	10 (2/2, 1,0,0,1)				sandy partings and coarse sand s		:
	3.50					66.50	_x_	cobble sized claystone at 3.50 with	groundwater	
		3.90 4.00	D4	N= 15 (2/2,3,4,3,5)			x			
		4.00		13 (2/2,3,4,3,3)			~_~_×	becoming firm to stiff mottled brow		
							<u>-x-</u>	sandy partings and coarse sand sized at 4.0 m	l selenite crystals moist	
		5.00		N= 20 (3/4,4,5,5,6)						
		5.00		N- 20 (3/4,4,5,5,0)			<u>x</u>			
		5.75	D5				-X-	yellow sandy, posibly fine gravelly	partings at 5.75	
				N- 00 (4/4 5 4 5 C)						
		6.00		N= 20 (4/4,5,4,5,6)			<u>x</u>			
							X			
		6.95	D6				X			
										-
		7.50		N=26 (4,4,5,6,7,8)						
				(, , , , , , , , ,	7.95	62.05	<u></u>			
2013					7.33	02.00	v	Porobala assertate et 7.05		١
\dashv								Borehole complete at 7.95) III	
\dashv										
\dashv										,
\dashv										
-										١.
\dashv										
arks										L

Terracota tile cored. Inspection pit to 0.8 m.

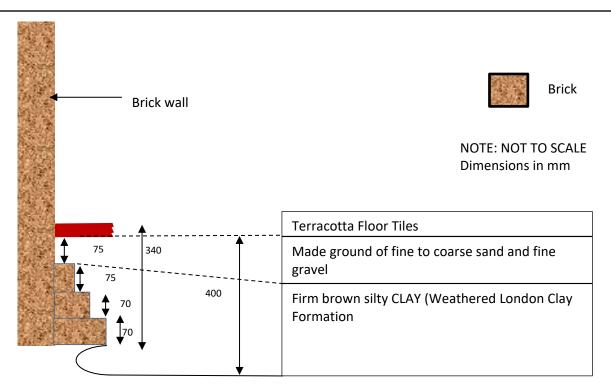
Borehole dry on completion.
Standpipe Piezomter installed to depth of 5 m. Bentonite seal from 1.0 to 0.3 m. Gas bung and flat cover



Concrete

Brick

NOTE: NOT TO SCALE Dimensions in mm



External painted brick wall

The foundation comprises a rubble of brick and clinker to a depth of 400mm below top of slab.

Client: Richard Banks	Date: November 2019	Project: 15 Lyncroft Gardens, NW6 1BL
Title: Foundation Exposure TP01	MAUND GEO-CONSULTING Julian Maund BSc PhD MIMMM CEng FGS Registered Ground Engineering Adviser	Drawing Number: MGC-19-29-002

The foundation comprises brick corbels extending 150mm from the wall to a depth of 340mm below top of tiles.

Client: Richard Banks	Date: November 2019	Project: 15 Lyncroft Gardens NW6 1LB
Foundation Exposure TP02	MAUND GEO-CONSULTING Julian Maund BSc PhD MIMMM CEng FGS Registered Ground Engineering Adviser	Drawing Number: MGC 19-29-003

Appendix C Geotechnical Laboratory Test Report

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 19-67613

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Maund GeoConsulting Ltd

Client Address:

20 Mortlake Avenue, Worcester, WR5 1QT

Contact: Julian Maund

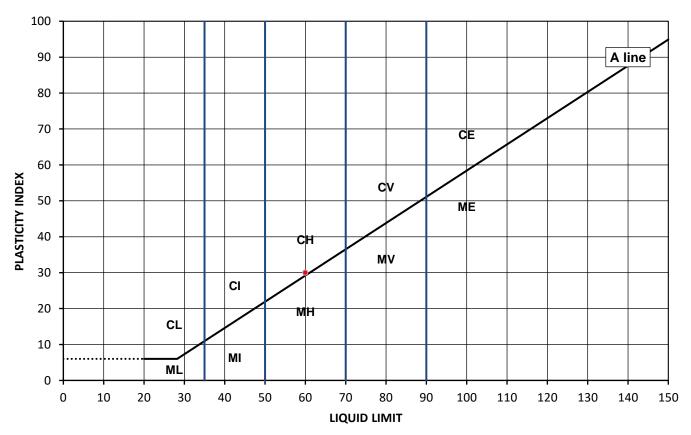
Site Name: 15 Lyndcroft Gardens, London NW6 1LB

Site Address: Not Given

Job Number: 19-67613 Date Sampled: 18/10/2019 Date Received: 21/10/2019

Date Tested: 28/10/2019 Sampled By: Not Given

One / tagless.


Test Results:

Laboratory Reference:1339838Depth Top [m]: 0.40Hole No.:BH01-DO1Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Soil Description: Brown slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
34	60	30	30	97

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt ı Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 19-67613

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Maund GeoConsulting Ltd Client:

Client Address: 20 Mortlake Avenue, Worcester,

WR5 1QT

Contact: Julian Maund

15 Lyndcroft Gardens, London NW6 1LB Site Name:

Not Given Site Address:

Job Number: 19-67613 Date Sampled: 18/10/2019 Date Received: 21/10/2019

Date Tested: 28/10/2019 Sampled By: Not Given

Depth Base [m]: Not Given

Depth Top [m]: 1.80

Sample Type: D

Test Results:

Laboratory Reference: 1339839 BH01-DO2 Hole No.: Sample Reference: Not Given

Soil Description: Brown mottled grey CLAY

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
31	73	28	45	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt ı Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 19-67613

Job Number: 19-67613

Date Sampled: 18/10/2019

Date Received: 21/10/2019

Date Tested: 28/10/2019

Sampled By: Not Given

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Maund GeoConsulting Ltd

Client Address:

20 Mortlake Avenue, Worcester,

WR5 1QT

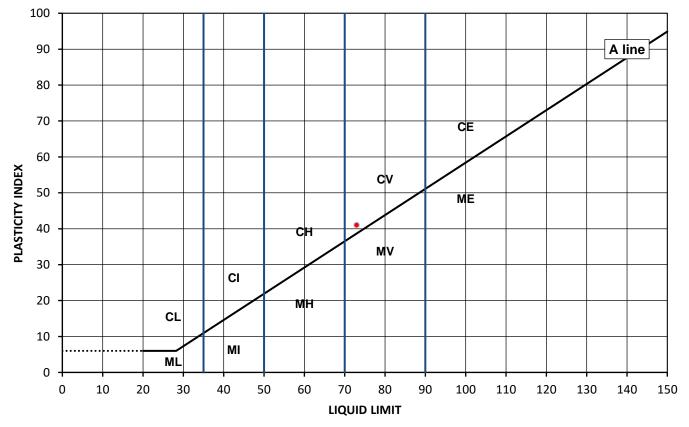
Contact: Julian Maund

Site Name: 15 Lyndcroft Gardens, London NW6 1LB

Site Address: Not Given

Test Results:

Laboratory Reference: 1339840
Hole No.: BH01-DO3
Sample Reference: Not Given


Soil Description: Brown CLAY

Depth Top [m]: 3.00 Depth Base [m]: Not Given

Sample Type: D

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
28	73	32	41	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt ı Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 19-67613

Job Number: 19-67613

Date Sampled: 18/10/2019

Date Received: 21/10/2019

Date Tested: 28/10/2019

Sampled By: Not Given

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Maund GeoConsulting Ltd Client:

Client Address:

20 Mortlake Avenue, Worcester,

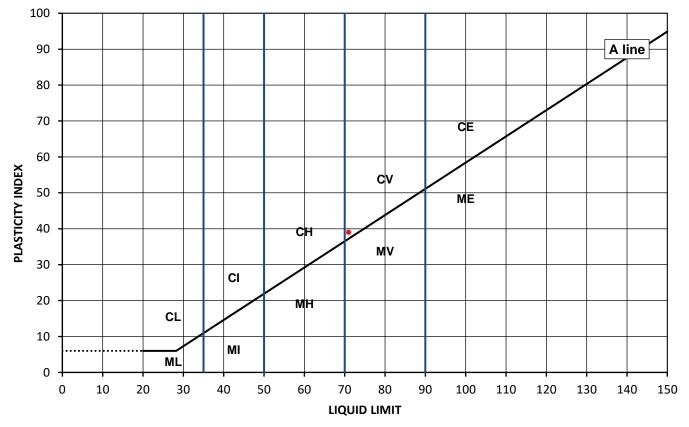
WR5 1QT

Contact: Julian Maund

15 Lyndcroft Gardens, London NW6 1LB Site Name:

Not Given Site Address:

Test Results:


Laboratory Reference: 1339841 Depth Top [m]: 3.90

BH01-DO4 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: **Brown CLAY**

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	71	32	39	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt ı Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

append to classification for organic material (eg CHO) Organic

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Maund GeoConsulting Ltd

Client Address: 20 Mortlake Avenue, Worcester,

WR5 1QT

Contact: Julian Maund

Site Name: 15 Lyndcroft Gardens, London NW6 1LB

Site Address: Not Given

Client Reference: 19-67613

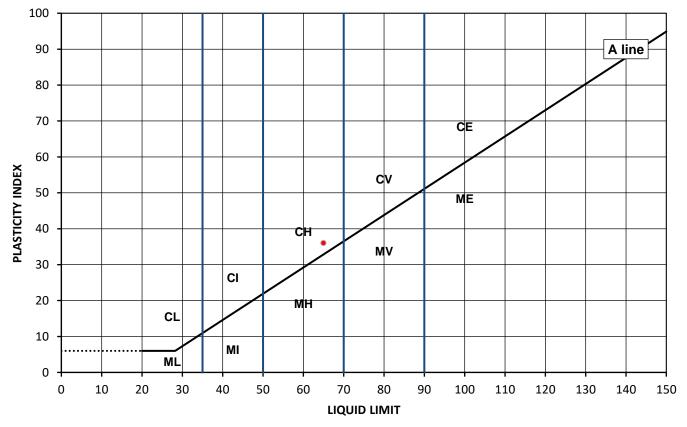
Job Number: 19-67613 Date Sampled: 18/10/2019

Date Received: 21/10/2019 Date Tested: 28/10/2019

Sampled By: Not Given

Test Results:

Laboratory Reference: 1339842
Hole No.: BH01-DO5
Sample Reference: Not Given


Soil Description: Brown CLAY

Depth Top [m]: 5.75 Depth Base [m]: Not Given

Sample Type: D

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm				
Content [%]	[%]	[%]	[%]	BS Test Sieve				
29	65	29	36	100				

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Μ Silt ı Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

Summary of Classification Test Results

Tested in Accordance with:

Maund GeoConsulting Ltd

MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990:

Clause 8.2

Client Address:

20 Mortlake Avenue, Worcester,

WR5 1QT

Contact:

15 Lyndcroft Gardens, London NW6 1LB Site Name:

Julian Maund

Site Address: Not Given

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: 19-67613

Job Number: 19-67613

Date Sampled: 18/10/2019 Date Received: 21/10/2019

Date Tested: 28/10/2019

Sampled By: Not Given

Test results

	Sample								Atterberg			Density			#			
Laboratory Reference	, Deptil Deptil _ Description Remarks		МС	wc	% Passing 425um	LL	PL	PI	bulk	dry	PD	Total Porosity#						
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	<u> </u>
1339838	BH01-DO1	Not Given	0.40	Not Given	D	Brown slightly gravelly CLAY	Atterberg 1 Point	34		97	60	30	30					
1339839	BH01-DO2	Not Given	1.80	Not Given	D	Brown mottled grey CLAY	Atterberg 1 Point	31		100	73	28	45					
1339840	BH01-DO3	Not Given	3.00	Not Given	D	Brown CLAY	Atterberg 1 Point	28		100	73	32	41					
1339841	BH01-DO4	Not Given	3.90	Not Given	D	Brown CLAY	Atterberg 1 Point	27		100	71	32	39					
1339842	BH01-DO5	Not Given	5.75	Not Given	D	Brown CLAY	Atterberg 1 Point	29		100	65	29	36					

Note: # Non accredited; NP - Non plastic

Comments:

Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported:

04/11/2019

Signed:

Darren Berrill

Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

GF 234.7

Julian MaundMaund GeoConsulting Ltd
20 Mortlake Avenue
Worcester

WR5 1QT

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: julian.maund@gmail.com

Analytical Report Number: 19-67616

Project / Site name: 15 Lyndcroft Gardens, London NW6 1LB Samples received on: 21/10/2019

Your job number: Samples instructed on: 21/10/2019

Your order number: Analysis completed by: 04/11/2019

Report Issue Number: 1 Report issued on: 04/11/2019

Samples Analysed: 2 soil samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 19-67616

Project / Site name: 15 Lyndcroft Gardens, London NW6 1LB

Lab Sample Number				1339846	1339847		
Sample Reference	BH01-DO1	BH01-DO2					
Sample Number	None Supplied	None Supplied					
Depth (m)	0.40	1.80					
Date Sampled	18/10/2019	18/10/2019					
Time Taken					None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	23	20		
Total mass of sample received	kg	0.001	NONE	0.50	0.24		

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.8	8.0		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	g/l	0.00125	MCERTS	0.044	0.096		

Analytical Report Number: 19-67616

Project / Site name: 15 Lyndcroft Gardens, London NW6 1LB

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1339846	BH01-DO1	None Supplied	0.40	Light brown clay with brick.
1339847	BH01-DO2	None Supplied	1.80	Brown clay.

Analytical Report Number: 19-67616

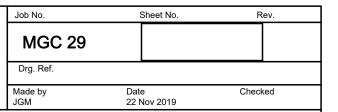
Project / Site name: 15 Lyndcroft Gardens, London NW6 1LB

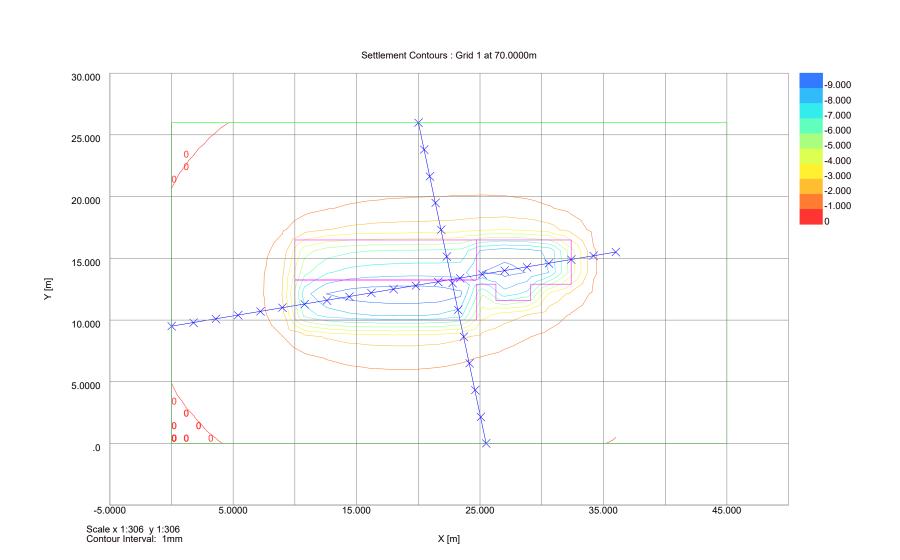
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

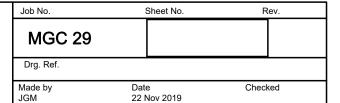
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Appendix E PDisp Output


Excavation

MAUND GEO-CONSULTING LTD

15 Lyncroft Gardens

Excavation

Titles

Job No.: Job Title: Sub-title: Calculation Heading: MGC 29 15 Lyncroft Gardens Excavation

Initials: Checker: Date Saved: Date Checked: Notes: File Name: File Path:

Lyncoft excavation.pdd P:\OneDrive\Documents\Croft Structural Engineers\15 Lyncroft Gardens NW6 1LB\07-GIR Lyncroft\PDISP

History

Date	Time	By			Notes
19-Jul-2019	13:04	Maund	Geo	Consulting	New
19-Jul-2019	14:55	Maund	Geo	Consulting	
19-Jul-2019	15:12	Maund	Geo	Consulting	
19-Jul-2019	15:37	Maund	Geo	Consulting	
25-Jul-2019	13:07	Maund	Geo	Consulting	
25-Jul-2019	13:53	Maund	Geo	Consulting	
25-Jul-2019	14:21	Maund	Geo	Consulting	
02-Aug-2019	11:01	Maund	Geo	Consulting	
20-Nov-2019	21:02	Maund	Geo	Consulting	
20-Nov-2019	21:56	Maund	Geo	Consulting	
21-Nov-2019	20:35	Maund	Geo	Consulting	
22-Nov-2019	11:50	Maund	Geo	Consulting	
23-Nov-2019	14:25	Maund	Geo	Consulting	
23-Nov-2019	16:46	Maund	Geo	Consulting	Open

Analysis Options

Global Poisson's ratio: 0.20
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: 45.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic

Elastic: Yes
Analysis: Boussinesq
Stiffness for horizontal displacement calculations: Weighted average
Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

yer ef.	Name	Level at top		Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
		[mOD]		[kN/m ²]	[kN/m ²]		
1	london clay	70.000	25	15000	140000	0.50000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Soil Zones

Zone	Nam	e X	min X	max ?	Y min	Y max	Profile		
		[[m]	[m]	[m]	[m]			
1	zone	1	0.0	45.000	0.0	26.000	Soil I	rofile	1

Polygonal Load Data

Load ref.		Name	Position : Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangles : Rect. tolerance	Value : Normal (local z)
			[m]	[m]	[%]	[kN/m ²]
	1 excavation	full	70.00000	(10,10) (24.7,10) (24.7,12.9)	10.000 4	-60.000
				(26.3,12.9) (26.3,11.6) (29.1,11.6) (29.1,12.9) (32.4,12.9) (32.4,16.5) (24.7,16.5) (24.7,13.3) (10,13.3) (10,10)		
	2 excavation	below cellar	70.00000	(10,13.3) (24.7,13.3) (24.7,16.5) (10,16.5) (10,13.3)	10.000 1	-34.000

Polygonal Loads' Rectangles No. Centre: Centre: Angle of Width x Depth y x y local x

		У	from global X		
	[m]	[m]	[Degrees]	[m]	[m]
Load :	1 : excava	ation ful	1		
	1 optima:				
1	17.35000	11.62500	0.0	14.700	3.2500
2	25.50000	14.70000	0.0	1.6000	3.6000
3	27.70000	14.05000	0.0	2.8000	4.9000
4	30.75000	14.70000	0.0	3.3000	3.6000
Load :	2 : excava	ation bel	ow cellar		
(Edge	1 optima:	1)			

Displacement Lines

Name	X1	Y1	Z1	Z1 X2 Y		Y2 Z2 1		Intervals Calculate	
	[m]	[m]	[m]	[m]	[m]	[m]	[No.]		
Long section	0.00000	9.50000	70.00000	36.00000	15.50000	70.00000	20	Yes	Yes
Cross Section	25.50000	0.00000	70.00000	20.00000	26.00000	70.00000	12	Yes	Yes

Displacement Grids

Name Extrusion: X1 Y1 Z1 X2 Y2 Z2 Intervals Extrusion: Extrusion: Calculate Detailed

Date 22 Nov 2019 Checked

Made by JGM

15 Lyncroft Gardens
Excavation

Results: Immediate: Load Centres: Polygonal

Ref.		Name	e x y z		δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain	
			[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
	1	excavation full	21.74929	12.73088	70.00000	-9.49667	69.710	-59.286	-126.38	-0.0015686
	2	excavation below cellar	17.35000	14.87500	70.00000	-6.76119	69.710	-33.988	-77.411	-748.20E-6

Results : Consolidation : Load Centres : Polygonal

None

Results : Total : Load Centres : Polygonal

None

Results: Immediate: Displacement Data: Lines

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
	Long section	0.00000	9.50000	70.00000	-0.03138		-72.081E-6	-0.13594	4.1360E-6
	Long section	1.80000	9.80000	70.00000	-0.08792		-154.00E-6	-0.20382	6.1970E-6
	Long section	3.60000	10.10000	70.00000	-0.18662		-391.32E-6	-0.33238	10.093E-6
	Long section	5.40000	10.40000	70.00000	-0.36958		-0.0013215	-0.61994	18.771E-6
	Long section	7.20000	10.70000	70.00000	-0.75448		-0.0078339	-1.4933	44.788E-6
	Long section	9.00000	11.00000	70.00000	-1.86057	69.710	-0.24382	-7.4232	203.92E-6
	Long section	10.80000	11.30000	70.00000	-7.41763	69.710	-59.359		-0.0017989
1	Long section	12.60000	11.60000	70.00000	-8.91285	69.710	-59.885		-0.0015489
	Long section	14.40000	11.90000	70.00000	-9.45885	69.710	-59.900		-0.0015034
	Long section	16.20000	12.20000	70.00000	-9.67713	69.710	-59.862		-0.0014997
1	Long section	18.00000	12.50000	70.00000	-9.69537	69.710	-59.707	-129.10	-0.0015245
1	Long section	19.80000	12.80000	70.00000	-9.53339	69.710	-59.012	-125.47	-0.0015716
1	Long section	21.60000	13.10000	70.00000	-9.07375	69.710	-54.310		-0.0014529
1	Long section	23.40000	13.40000	70.00000	-8.09772	69.710	-39.655	-96.125	-696.07E-6
1	Long section	25.20000	13.70000	70.00000	-8.96480	69.710	-58.971	-122.42	-0.0016606
1	Long section	27.00000	14.00000	70.00000	-9.37962	69.710	-59.914	-130.49	-0.0015008
1	Long section	28.80000	14.30000	70.00000	-9.08245	69.710	-59.916		-0.0015162
1	Long section	30.60000	14.60000	70.00000	-8.26742	69.710	-59.861		-0.0016055
	Long section	32.40000	14.90000	70.00000	-4.64505	69.710	-29.945		-763.33E-6
1	Long section	34.20000	15.20000	70.00000	-1.09877	69.710	-0.038442	-3.0331	88.913E-6
1	Long section	36.00000	15.50000	70.00000	-0.47803	69.710	-0.0031720	-0.88826	26.778E-6
2	Cross Secton	25.50000	0.00000	70.00000	-0.10203		-124.00E-6	-0.22412	6.8184E-6
	Cross Secton	25.04167	2.16667	70.00000	-0.22688		-296.63E-6	-0.36477	11.089E-6
	Cross Secton	24.58333	4.33333	70.00000	-0.45615		-898.54E-6	-0.66140	20.073E-6
2	Cross Secton	24.12500	6.50000	70.00000	-0.91697	69.710	-0.0044317	-1.4655	44.255E-6
2	Cross Secton	23.66667	8.66667	70.00000	-2.11729	69.710	-0.10392	-5.9058	170.47E-6
	Cross Secton	23.20833	10.83333	70.00000	-8.36372	69.710	-59.462		-0.0017171
2	Cross Secton	22.75000	13.00000	70.00000	-9.13787	69.710	-56.955	-119.38	-0.0015689
2	Cross Secton	22.29167	15.16667	70.00000	-6.62193	69.710	-33.950	-76.396	-775.67E-6
2	Cross Secton	21.83333	17.33333	70.00000	-2.48919	69.710	-0.26749	-8.1977	225.36E-6
2	Cross Secton	21.37500	19.50000	70.00000	-1.12681	69.710	-0.0068106	-1.8634	56.163E-6
2	Cross Secton	20.91667	21.66667	70.00000	-0.58309		-0.0013104	-0.83348	25.279E-6
2	Cross Secton	20.45833	23.83333	70.00000	-0.30486	69.710	-422.43E-6	-0.45515	13.831E-6
2	Cross Secton	20.00000	26.00000	70.00000	-0.14989	69.710	-173.23E-6	-0.27638	8.4064E-6

Results: Consolidation: Displacement Data: Lines

None

Results: Total: Displacement Data: Lines

None

Results: Immediate: Displacement Data: Grids

Ref.	Name	x	y	z	δz	Stress:	Stress:	Stress:	Vert.
						Calc.	Vertical	Sum Princ.	Strain
1						Level			
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
	Grid	0.00000	0.00000	70.00000	0.02856		-17.018E-6	-0.063715	1.9401E-6
1	Grid	1.80000	0.00000	70.00000	0.01879	69.710	-24.321E-6	-0.078185	2.3804E-6
1	Grid	3.60000	0.00000	70.00000	0.00538	69.710	-34.743E-6	-0.096049	2.9238E-6
	Grid	5.40000	0.00000	70.00000	-0.01188	69.710	-49.094E-6	-0.11756	3.5778E-6
1	Grid	7.20000	0.00000	70.00000	-0.03264	69.710	-67.687E-6	-0.14241	4.3336E-6
	Grid	9.00000	0.00000	70.00000	-0.05578		-89.694E-6	-0.16948	5.1565E-6
	Grid	10.80000	0.00000	70.00000	-0.07944		-112.86E-6	-0.19675	5.9854E-6
1	Grid	12.60000	0.00000	70.00000	-0.10139	69.710	-134.13E-6	-0.22175	6.7451E-6
1	Grid	14.40000	0.00000	70.00000	-0.11952	69.710	-150.91E-6	-0.24221	7.3672E-6
	Grid	16.20000	0.00000	70.00000	-0.13231		-161.81E-6	-0.25659	7.8044E-6
	Grid	18.00000	0.00000	70.00000	-0.13889		-166.41E-6	-0.26407	8.0321E-6
	Grid	19.80000	0.00000	70.00000	-0.13898		-164.72E-6	-0.26443	8.0430E-6
	Grid	21.60000	0.00000	70.00000	-0.13282		-156.98E-6	-0.25787	7.8439E-6
	Grid	23.40000	0.00000	70.00000	-0.12112		-143.92E-6	-0.24513	7.4567E-6
1	Grid	25.20000	0.00000	70.00000	-0.10504	69.710	-127.04E-6	-0.22744	6.9192E-6
	Grid	27.00000	0.00000	70.00000	-0.08605		-108.41E-6	-0.20642	6.2804E-6
	Grid	28.80000	0.00000	70.00000	-0.06566		-89.875E-6	-0.18368	5.5891E-6
	Grid	30.60000	0.00000	70.00000	-0.04522		-72.613E-6	-0.16058	4.8869E-6
	Grid	32.40000	0.00000	70.00000	-0.02585		-57.242E-6	-0.13821	4.2064E-6
	Grid	34.20000	0.00000	70.00000	-0.00841		-44.085E-6	-0.11737	3.5726E-6
	Grid	36.00000	0.00000	70.00000	0.00652		-33.265E-6	-0.098637	3.0028E-6
	Grid	0.00000	1.73333	70.00000	0.02021		-23.078E-6	-0.074939	2.2815E-6
	Grid	1.80000	1.73333	70.00000	0.00543		-34.831E-6	-0.094543	2.8779E-6
	Grid	3.60000	1.73333	70.00000	-0.01519		-53.039E-6	-0.11997	3.6512E-6
	Grid	5.40000	1.73333	70.00000	-0.04239		-80.480E-6	-0.15229	4.6333E-6
	Grid	7.20000	1.73333	70.00000	-0.07599		-119.32E-6	-0.19167	5.8300E-6
	Grid	9.00000	1.73333	70.00000	-0.11430		-168.64E-6	-0.23647	7.1906E-6
	Grid	10.80000	1.73333	70.00000	-0.15396		-222.31E-6	-0.28270	8.5946E-6
	Grid	12.60000	1.73333	70.00000	-0.19069		-271.07E-6	-0.32509	9.8819E-6
	Grid	14.40000	1.73333	70.00000	-0.22067		-307.84E-6	-0.35914	10.916E-6
	Grid	16.20000	1.73333	70.00000	-0.24143		-330.29E-6	-0.38230	11.620E-6
	Grid	18.00000	1.73333	70.00000	-0.25182		-338.78E-6	-0.39365	11.965E-6
	Grid	19.80000	1.73333	70.00000	-0.25158		-333.80E-6	-0.39307	11.948E-6
	Grid	21.60000	1.73333	70.00000	-0.24107		-315.26E-6	-0.38086	11.577E-6
	Grid	23.40000	1.73333	70.00000	-0.22142		-284.00E-6	-0.35815	10.888E-6
	Grid	25.20000	1.73333	70.00000	-0.19466		-243.92E-6	-0.32734	9.9529E-6
	Grid	27.00000	1.73333	70.00000	-0.16344		-201.32E-6	-0.29177	8.8728E-6
1	Grid	28.80000	1.73333	70.00000	-0.13039	69.710	-161.29E-6	-0.25452	7.7413E-6
I									

Job No.	Sheet No.	Rev.
MGC 29		
Drg. Ref.		
Made by	Date	Checked

15 Lyncroft Gardens
Excavation

The color The										
Cold	Ref.	Name	x	У	z	δz	Calc. Level			
1	1	Grid								
1	1	Grid	32.40000	1.73333	70.00000	-0.06683	69.710	-95.698E-6	-0.18312	5.5717E-6
1	1	Grid	36.00000	1.73333	70.00000	-0.01589	69.710	-51.091E-6	-0.12418	3.7796E-6
1 1 1 1 1 1 1 1 1 1										
1	1	Grid	3.60000	3.46667	70.00000	-0.04234	69.710	-82.867E-6	-0.15108	4.5962E-6
1	1	Grid Grid	5.40000 7.20000	3.46667	70.00000	-0.08454	69.710 69.710	-138.60E-6 -228.75E-6	-0.20116 -0.26711	6.1175E-6 8.1188E-6
1					70.00000		69.710 69.710			
1	1	Grid	12.60000	3.46667	70.00000	-0.33432	69.710	-634.24E-6	-0.51084	15.509E-6
1	1	Grid	16.20000	3.46667	70.00000	-0.41783	69.710	-773.12E-6	-0.60956	18.505E-6
1 Did								-789.34E-6		
1	1	Grid	21.60000	3.46667	70.00000	-0.41447	69.710	-726.56E-6	-0.60003	18.218E-6
1 Grid 28,8000 3,4667 70,0000 -0,2244 97,000 20,0000 -0,2467 -0,2477 -0,0000 -0,00	1	Grid	25.20000	3.46667	70.00000	-0.33484	69.710	-526.76E-6	-0.49761	15.116E-6
1 Oried									-0.43254 -0.36778	13.143E-6 11.179E-6
1 Grid 34,2000 3,4667 70,0000 -0,0014 -0,000 -0,0014 -0,0000 -0,00					70.00000		69.710		-0.30645	9.3171E-6
1 Grid	1	Grid	34.20000	3.46667	70.00000	-0.08343	69.710	-120.19E-6	-0.20073	6.1060E-6
1 Grid 1 1,0000 5,0000 70,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,00000 0,00000 0,00000 0,000000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,0										
1 Grid							69.710			
1 Grid 1 9.00000 5.20000 70.00000 - 0.428991 69.713 - 0.001239 1 0.6878-6 1 1 Grid 1 1.40000 5.20000 70.00000 - 0.57918 69.713 6.71022 - 0.828962 2.0885-6 1 1 Grid 1 1.40000 5.20000 70.00000 - 0.57918 69.713 - 0.001239 1.0001 50.526-6 1 1 Grid 1 1.40000 5.20000 70.00000 - 0.462514 69.713 - 0.001239 1.0001 50.526-6 1 1 Grid 1 1.40000 5.20000 70.00000 - 0.4714 69.713 - 0.001239 1.0001 50.526-6 1 1 Grid 1 1.40000 5.20000 70.00000 - 0.4714 69.713 - 0.001239 1.0001 50.526-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.4714 69.713 - 0.002330 1.0001 33.1085-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.4421 69.713 - 0.002330 1.0001 33.1085-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.4421 69.713 - 0.002330 1.0001 33.1085-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.4421 69.713 - 0.0012644 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.0012644 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.0012644 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.0012644 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.0012644 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.501264 - 0.81916 24.8445-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.501264 - 0.8916 1 1.70126-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.45213 69.713 - 0.501264 - 0.8916 1 1.70126-6 1 1 Grid 1 1.500000 5.20000 70.00000 - 0.4513 69.713 - 0.50126 69.713	1	Grid	5.40000	5.20000	70.00000	-0.14096	69.710	-250.92E-6	-0.27075	8.2278E-6
1 Grid 1.2.6000 5.2000 70.00000 -0.27991 69.710 -0.0016762 -0.89466 27.0866-6 1 Grid 1.4.0000 7.2000 70.00000 -0.74104 69.710 -0.0027722 -1.1023 33.1856-6 1 Grid 1.8.00000 5.20000 70.00000 -0.74104 69.710 -0.0027723 -1.1023 33.1856-6 1 Grid 1.8.00000 5.20000 70.00000 -0.74104 69.710 -0.0027723 -1.1023 33.1856-6 1 Grid 1.8.00000 5.20000 70.00000 -0.74104 69.710 -0.0027723 -1.1023 33.1856-6 1 Grid 1.8.00000 5.20000 70.00000 -0.74104 69.710 -0.0027723 -1.1023 33.1856-6 1 Grid 1.8.00000 5.20000 70.00000 -0.46123 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.46123 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.46123 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.46123 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.46123 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.2883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.0883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.0883 69.710 -0.00164 -0.80000 5.20000 70.00000 -0.0883 69.710 -0.00164 -0.80000 5.710 -0.0000 5.710	1	Grid	9.00000	5.20000	70.00000	-0.34299	69.710	-908.38E-6	-0.55031	16.687E-6
1 Grid 1.4.4000 5.2000 70.0000 0.71540 69.710 0.0021299 1.0081 30.52556 1 Grid 1.5.2000 70.0000 0.71540 69.710 0.002330 1.10931 33.52556 1 Grid 1.5.2000 70.0000 0.70520 69.710 0.002330 1.10931 33.52556 1 Grid 1.5.2000 70.0000 0.70520 69.710 0.002330 1.00931 33.52556 1 Grid 1.5.2000 70.0000 0.70520 69.710 0.002330 1.00931 33.52556 1 Grid 1.5.2000 70.0000 0.70520 69.710 0.002330 1.00931 33.52556 1 Grid 1.5.2000 70.0000 0.70520 69.710 0.001564 0.61936 24.6445 1 Grid 25.2000 70.0000 0.6649 69.730 70.0000 0.61931 24.6445 1 Grid 30.60000 5.2000 70.0000 0.64934 69.730 79.52556 0.69531 20.001564 0.61936 24.6445 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 37.5256 0.69531 17.78156 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 37.5256 0.69531 17.78156 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 37.5256 0.69531 17.78156 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 37.5256 0.69531 17.78156 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 31.5266 0.16931 1.78156 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 31.5266 0.16931 3.55266 1 Grid 30.60000 5.20000 70.00000 0.16939 69.730 31.5266 0.16931 3.55266 0.16931			12.60000						-0.89446	27.086E-6
1 Grid 1, 9.00000 5, 20000 70, 00000 - 0.74104 69, 710 - 0.022722 - 1.1023 33, 1985-6 1 Grid 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1	Grid	14.40000	5.20000	70.00000	-0.66251	69.710	-0.0021259	-1.0081	30.526E-6
1 Grid 21.0000 5.20000 70.0000 -0.070520 6.770 -0.002019 -1.0436 11.600-6 1 Grid 23.00000 70.0000 -0.46994 6.7710 -9.002941 -0.9587 28.7872-6 1 Grid 27.00000 5.20000 70.0000 -0.46994 6.710 -974.535-6 -0.66481 20.7805-6 1 Grid 27.00000 5.20000 70.0000 -0.46994 6.710 -974.535-6 -0.66481 20.7805-6 1 Grid 28.00000 5.20000 70.0000 -0.37676 6.710 -974.535-6 -0.66481 20.7805-6 1 Grid 31.00000 5.20000 70.0000 -0.37676 6.710 -974.535-6 -0.66481 20.7805-6 1 Grid 31.00000 5.20000 70.0000 -0.21489 6.710 -974.535-6 -0.66481 20.7805-6 1 Grid 31.00000 5.20000 70.0000 -0.21489 6.710 -974.535-6 -0.5667 10.8885-6 1 Grid 31.00000 6.79333 70.0000 -0.21489 6.710 -937.988-6 -0.35667 10.8885-6 1 Grid 31.00000 6.79333 70.0000 -0.01474 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.79333 70.0000 -0.01474 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.93333 70.0000 -0.01474 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -93.8015-6 -0.11672 3.55487-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -0.003741 -0.9840 28.8015-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -0.003741 -0.9840 28.8015-6 1 Grid 3.00000 6.93333 70.0000 -0.12489 69.710 -0.003741 -0.9840 28.8015-6 1 Grid 3.00000 6.93333 70.0000 -0.12849 69.710 -0.008740 -2.11676 69.710 -0.0087	1	Grid	18.00000	5.20000	70.00000	-0.74104	69.710	-0.0022722	-1.1023	33.382E-6
Grid 23,0000 5,20000 70,0000 -0.64420 89.710 -0.001564 -0.54353 24.844.6	1	Grid	21.60000	5.20000	70.00000	-0.70520	69.710	-0.0020919	-1.0436	31.610E-6
Grid 27,0000 5,2000 70,0000 -0.46994 69,720 -974,535-6 -0.66841 20,780.76 10,780.7	1	Grid	23.40000	5.20000	70.00000	-0.64420	69.710	-0.0017941	-0.94873	28.747E-6
Grid 30,0000 5,20000 70,0000 -0,2938 69,710 -95,2856 -0,48371 17,7815 18,781	1	Grid	27.00000	5.20000	70.00000	-0.46994	69.710	-974.53E-6	-0.68481	20.780E-6
1 Grid	1	Grid	30.60000	5.20000	70.00000	-0.29383	69.710	-495.28E-6	-0.45371	13.781E-6
Grid 0.00000 6.39333 70.00000 0.08983 69.710 -138.245-6 -0.2076 6.3143E-6 1 Grid 0.00000 6.39333 70.00000 -0.11610 69.710 -205.765-6 -0.12972 1.3518E-6 -0.12972 1.3										10.838E-6 8.3323E-6
Cried 1.80000 6.39333 70.00000 -0.05417 69.710 -100.648-6 -0.16564 4.97768-6 1.074							69.710			
Grid 5.40000 6.39333 70.00000 -0.21266 65.710 -469.148-6 -0.36968 11.1828-6 11.182	1	Grid	1.80000	6.93333	70.00000	-0.05417	69.710	-100.64E-6	-0.16364	4.9776E-6
Grid 9.0000 6.39333 70.0000 -0.57229 69.710 -0.0031751 -0.9840 29.830E-6 1 Grid 14.40000 6.39333 70.00000 -1.18137 69.710 -0.0084185 -1.4976 45.00166 1 Grid 14.40000 6.39333 70.00000 -1.18137 69.710 -0.009840 -2.1363 64.2428-6 1 Grid 18.00000 6.39333 70.00000 -1.2844 69.710 -0.009840 -2.1363 64.2428-6 1 Grid 19.00000 6.39333 70.00000 -1.2844 69.710 -0.009840 -2.2377 67.766-6 1 Grid 19.00000 6.39333 70.00000 -1.2844 69.710 -0.0097818 -2.2577 67.766-6 69.0018-6 1 Grid 23.0000 6.39333 70.0000 -1.1894 69.710 -0.0097816 -2.2777 68.4716-6 1 Grid 23.0000 6.39333 70.0000 -1.1994 69.710 -0.0077316 -1.9217 97.8538-6 1 Grid 25.20000 6.39333 70.00000 -0.77729 69.710 -0.0077316 -1.9217 97.8538-6 1 Grid 27.0000 6.39333 70.00000 -0.77729 69.710 -0.007248 -1.1938 36.1194-6 1 Grid 27.0000 6.39333 70.00000 -0.77729 69.710 -0.002428 -1.1938 36.1194-6 1 Grid 30.60000 6.39333 70.00000 -0.77729 69.710 -0.002428 -1.1938 36.1194-6 1 Grid 30.60000 6.39333 70.00000 -0.3769 69.710 -0.002428 -1.1938 36.1194-6 1 Grid 34.20000 6.39333 70.00000 -0.3769 69.710 -770.046-6 -0.54070 16.4078-6 1 Grid 34.20000 8.66667 70.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.00000 -0.000000 -0.00000 -0.00000 -0.000000 -0	1	Grid	5.40000	6.93333	70.00000	-0.21266	69.710	-469.14E-6	-0.36836	11.182E-6
Grid 10,8000 6,9333 70,0000 -0,82114 69,710 - 0,006415 -1,4956 57,2272-6 1 1 1 1 1 1 1 1 1										
1 Grid	1	Grid			70.00000	-0.82114	69.710		-1.4976	45.051E-6
1 Grid	1	Grid	14.40000	6.93333	70.00000	-1.18137	69.710	-0.0093840	-2.1363	64.242E-6
1							69.710 69.710			
1 Grid 23,40000 6.93333 70.00000 -0.95033 69.710 -0.0097316 -1.9217 57.9538-6 1 Grid 25,20000 6.93333 70.00000 -0.77722 69.710 -0.0028428 -1.1938 56.1976-6 1 Grid 30.60000 6.93333 70.00000 -0.77722 69.710 -0.0028428 -1.1938 56.1976-6 1 Grid 30.60000 6.93333 70.00000 -0.47876 69.710 -0.012333 -0.05777 22.0038-6 1 Grid 34.20000 6.93333 70.00000 -0.23574 69.710 -0.012333 -0.27777 22.0038-6 1 Grid 34.20000 6.93333 70.00000 -0.23574 69.710 -0.07236 -0.27760 84.8552-6 1 Grid 34.20000 8.66667 70.00000 -0.18721 69.710 -30.777.048-6 -0.27760 84.8552-6 1 Grid 3.60000 8.66667 70.00000 -0.18721 69.710 -30.5818-6 -0.18970 1 Grid 5.40000 8.66667 70.00000 -0.15721 69.710 -30.5818-6 -0.29528 8.8798-6 1 Grid 5.40000 8.66667 70.00000 -0.15721 69.710 -30.5818-6 -0.19328 1 Grid 5.40000 8.66667 70.00000 -0.15721 69.710 -30.5818-6 -0.9528 8.8798-6 1 Grid 1.80000 8.66667 70.00000 -0.15721 69.710 -30.5818-6 -0.9528 8.8798-6 1 Grid 1.80000 8.66667 70.00000 -0.15721 69.710 -30.9768 -0.19324 8.27528-6 1 Grid 1.80000 8.66667 70.00000 -2.15676 69.710 -0.1032460 -0.95245 28.7288-6 1 Grid 1.80000 8.66667 70.00000 -2.15544 69.710 -0.1032460 -0.95245 28.7288-6 1 Grid 1.80000 8.66667 70.00000 -2.15544 69.710 -0.1032460 -0.95245 28.7288-6 1 Grid 1.80000 8.66667 70.00000 -2.15544 69.710 -0.1032460 -0.95245 28.7288-6 1 Grid 1.80000 8.66667 70.00000 -2.15544 69.710 -0.10328 -0.15388 -0.71046 -0.71047 -0.71	1	Grid Grid	19.80000	6.93333	70.00000	-1.29548 -1.23822	69.710 69.710	-0.0096173 -0.0091676	-2.2744 -2.1677	68.431E-6 65.218E-6
1 Grid 27.00000 6.93333 70.00000 -0.77729 69.710 -0.0028428 -1.1938 36.198-6 1 Grid 28.80000 6.93333 70.00000 -0.62242 69.710 -0.0012395 -0.72377 22.0367-6 1 Grid 34.20000 6.93333 70.00000 -0.47678 69.710 -0.0012395 -0.72377 22.0367-6 1 Grid 34.20000 6.93333 70.00000 -0.23574 69.710 -2.049.278-6 -0.02760 1.8588-6 1 Grid 0.00000 8.66667 70.00000 -0.02555 69.710 -2.49.278-6 -0.02760 8.43658-6 1 Grid 0.00000 8.66667 70.00000 -0.02555 69.710 -2.49.278-6 -0.10393 57.5648-6 1 Grid 3.60000 8.66667 70.00000 -0.07586 69.710 -2.49.278-6 -0.10393 57.5648-6 1 Grid 3.60000 8.66667 70.00000 -0.15464 69.710 -0.023246 -0.95245 28.288-6 1 Grid 3.60000 8.66667 70.00000 -0.55688 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 9.00000 8.66667 70.00000 -0.58618 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 1.80000 8.66667 70.00000 -0.58618 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 12.60000 8.66667 70.00000 -2.16576 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 12.60000 8.66667 70.00000 -2.16576 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 12.60000 8.66667 70.00000 -2.16576 69.710 -0.0032460 -0.95245 28.288-6 1 Grid 12.60000 8.66667 70.00000 -2.16576 69.710 -0.12188 -7.1566 207.288-6 1 Grid 18.00000 8.66667 70.00000 -2.16576 69.710 -0.12188 -7.1566 207.288-6 1 Grid 18.00000 8.66667 70.00000 -2.152340 69.710 -0.12188 -7.1566 207.288-6 1 Grid 21.60000 8.66667 70.00000 -2.152340 69.710 -0.12178 -7.1932 208.078-6 1 Grid 21.60000 8.66667 70.00000 -2.152340 69.710 -0.12178 -7.1932 208.078-6 1 Grid 21.60000 8.66667 70.00000 -2.152340 69.710 -0.12178 -7.1932 208.078-6 1 Grid 21.60000 8.66667 70.00000 -2.15358 69.710 -0.12178 -7.1932 208.078-6 1 Grid 21.60000 8.66667 70.0000	1	Grid	23.40000	6.93333	70.00000	-1.11994	69.710	-0.0077316	-1.9217	57.853E-6
1 Crid 30.60000 6.93333 70.00000 -0.47876 69.710 -70.0012393 -0.72577 22.00326-6 1 Crid 31.20000 6.93333 70.00000 -0.33679 69.710 -70.048-6 -0.53070 16.4078-6 1 Crid 30.0000 3.66667 70.00000 -0.23579 69.710 -70.048-748-6 -0.39048 11.858-6 1 Crid 30.0000 8.66667 70.00000 -0.07586 69.710 -48.748-6 -0.39048 11.858-6 1 Crid 3.60000 8.66667 70.00000 -0.07586 69.710 -33.598-6 -0.18930 5.75648-6 1 Crid 3.60000 8.66667 70.00000 -0.15721 69.710 -35.818-6 -0.2258 3.96628-6 1 Crid 3.60000 8.66667 70.00000 -0.15861 69.710 -35.818-6 -0.2258 3.96628-6 1 Crid 3.60000 8.66667 70.00000 -0.38131 69.710 -35.818-6 -0.2258 3.96628-6 1 Crid 3.60000 8.66667 70.00000 -0.38131 69.710 -35.818-6 -0.2258 3.96628-6 1 Crid 3.60000 8.66667 70.00000 -0.38131 69.710 -0.089748 -5.0137 144.036-6 1 Crid 12.60000 8.66667 70.00000 -2.25564 69.710 -0.11288 -6.97128 16.508-6 1 Crid 16.20000 8.66667 70.00000 -2.25564 69.710 -0.12128 -6.9718 20.378-6 1 Crid 16.20000 8.66667 70.00000 -2.25564 69.710 -0.12128 -7.9712 20.0278-6 20.0278-6 1 Crid 16.20000 8.66667 70.00000 -2.253564 69.710 -0.12128 -7.9712 20.0278-6 1 Crid 16.2000 8.66667 70.00000 -2.253564 69.710 -0.12128 -7.9712 20.0278-6 1 Crid 3.60000 8.66667 70.00000 -2.25358 69.710 -0.12178 -7.1932 208.078-6 1 Crid 21.6000 8.66667 70.00000 -2.25358 69.710 -0.12178 -7.1932 208.078-6 1 Crid 23.40000 8.66667 70.00000 -2.25358 69.710 -0.12178 -7.1932 208.078-6 1 Crid 3.60000 8.66667 70.00000 -2.25358 69.710 -0.12178 -7.1932 208.078-6 1 Crid 3.60000 8.66667 70.00000 -2.25358 69.710 -0.10307 69.710 -0.00337 -0.12178 -7.1932 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.00378 -0.0	1	Grid	27.00000	6.93333	70.00000	-0.77729	69.710	-0.0028428	-1.1938	36.119E-6
1 Grid 34,20000 6,93333 70,00000 -0,23574 69,710 -448.74E-6 -0,39048 11,85E-6 1 Grid 36,00000 6,93333 70,00000 -0,14720 69,710 -248.27E-6 -0,7760 8,4365E-6 1 Grid 3,60000 8,66667 70,00000 -0,02655 69,710 -66,522E-6 -0,13035 3,656E-7 -0,10000 -0,15721 -0,1000000 -0,15721 -0,100000 -0,100000 -0,100000 -0,100000 -0,100000 -0,100000 -0,100000 -0,100000 -0,1000000 -0,1000000 -0,1000000 -0,1000000 -0,1000000 -0,1000000 -0,1000000 -0,1000000 -0,100000000000000000000000000000000000					70.00000	-0.62242 -0.47876	69.710 69.710	-0.0018744 -0.0012393	-0.93974 -0.72577	28.466E-6 22.003E-6
1 Grid 36,00000 6,93333 70,00000 -0,14720 69,710 -249,278-6 -0,27760 8,4858-6 1 Grid 0,00000 8,66667 70,00000 -0,07586 69,710 -6,5238-6 -0,13393 3,96628-6 1 Grid 3,60000 8,66667 70,00000 -0,07586 69,710 -03,538-6 -0,18930 5,75648-6 1 Grid 3,60000 8,66667 70,00000 -0,15721 69,710 -0,002460 -0,95248 8,8798-6 1 Grid 9,00000 8,66667 70,00000 -0,53688 69,710 -0,002460 -0,95248 2,8798-6 1 Grid 10,80000 8,66667 70,00000 -1,63673 69,710 -0,005748 -5,0137 144,038-6 1 Grid 12,60000 8,66667 70,00000 -1,63673 69,710 -0,055748 -5,0137 144,038-6 1 Grid 16,20000 8,66667 70,00000 -2,15564 69,710 -0,11288 -6,752 186,508-6 1 Grid 16,20000 8,66667 70,00000 -2,15554 69,710 -0,12188 -6,4752 186,508-6 1 Grid 16,20000 8,66667 70,00000 -2,15554 69,710 -0,12188 -6,9718 20,1378-6 1 Grid 16,20000 8,66667 70,00000 -2,25356 69,710 -0,12188 -6,9718 20,1378-6 1 Grid 12,60000 8,66667 70,00000 -2,25340 69,710 -0,12188 -7,1332 208,078-6 1 Grid 21,60000 8,66667 70,00000 -2,25340 69,710 -0,12188 -7,1332 208,078-6 1 Grid 21,60000 8,66667 70,00000 -2,25340 69,710 -0,10278 -7,1332 208,078-6 1 Grid 25,20000 8,66667 70,00000 -2,15588 69,710 -0,10278 -7,1332 208,078-6 1 Grid 25,20000 8,66667 70,00000 -1,7138 69,710 -0,10278 -7,1332 208,078-6 1 Grid 28,80000 8,66667 70,00000 -1,7138 69,710 -0,10278 -7,1332 208,078-6 1 Grid 28,80000 8,66667 70,00000 -1,7138 69,710 -0,101074 -2,4264 72,818-6 1 Grid 28,80000 8,66667 70,00000 -1,7138 69,710 -0,101074 -2,4264 72,818-6 1 Grid 34,20000 8,66667 70,00000 -1,7138 69,710 -0,101074 -2,4264 72,818-6 1 Grid 34,20000 8,66667 70,00000 -1,7138 69,710 -0,101074 -2,4264 72,818-6 1 Grid 34,20000 8,66667 70,00000 -1,7138 69,710 -0,101074										
1 Grid	1	Grid	36.00000	6.93333	70.00000	-0.14720	69.710	-249.27E-6	-0.27760	8.4365E-6
1 Grid	1	Grid	1.80000	8.66667	70.00000	-0.07586	69.710	-133.59E-6	-0.18930	5.7564E-6
1 Grid										
1 Grid 10.80000							69.710			
1 Grid	1	Grid	10.80000	8.66667	70.00000	-1.63673	69.710	-0.095748	-5.0137	144.03E-6
1 Grid 19.00000 8.66667 70.00000 -2.53490 69.710 -0.12199 -7.2008 209.198-6 1 Grid 19.80000 8.66667 70.00000 -2.42808 69.710 -0.12037 -6.7200 201.468-6 1 Grid 21.60000 8.66667 70.00000 -2.42808 69.710 -0.10037 -6.1485 177.398-6 1 Grid 22.20000 8.66667 70.00000 -1.70138 69.710 -0.041102 -3.4037 113.378-6 1 Grid 27.00008 8.66667 70.00000 -1.70138 69.710 -0.041102 -3.4037 113.378-6 1 Grid 27.00008 8.66667 70.00000 -1.70138 69.710 -0.041102 -3.4037 113.378-6 1 Grid 28.80000 8.66667 70.00000 -1.04717 69.710 -0.0075387 -1.4225 51.4728-6 1 Grid 30.60000 8.66667 70.00000 -1.04717 69.710 -0.0075387 -1.4225 51.4728-6 1 Grid 31.60000 8.66667 70.00000 -0.5508 69.710 -0.002219 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 40.0328-6 -1.2263 -1.2263 40.0328-6 -1.2263 40.03	1	Grid	14.40000	8.66667	70.00000	-2.35564	69.710	-0.12128	-6.9718	201.37E-6
1 Grid 19.80000 8.66667 70.00000 -2.52340 69.710 -0.12278 -7.1932 208.078-6 1 Grid 21.60000 8.66667 70.00000 -2.17558 69.710 -0.12037 -6.9720 201.465-6 1 Grid 23.40000 8.66667 70.00000 -1.71588 69.710 -0.011012 -3.8437 113.378-6 1 Grid 27.00000 8.66667 70.00000 -1.31651 69.710 -0.011704 -3.8437 113.378-6 1 Grid 28.80000 8.66667 70.00000 -1.31651 69.710 -0.017538 -1.8429 55.4728-6 1 Grid 23.40000 8.66667 70.00000 -0.79008 69.710 -0.0075387 -1.8429 55.4728-6 1 Grid 30.60000 8.66667 70.00000 -0.79008 69.710 -0.0042190 -1.3263 40.0328-6 1 Grid 34.20000 8.66667 70.00000 -0.35519 69.710 -0.002156 -0.90518 27.3818-6 1 Grid 34.20000 8.66667 70.00000 -0.35519 69.710 -0.002156 -0.90518 27.3818-6 1 Grid 34.20000 8.66667 70.00000 -0.35519 69.710 -0.002156 -0.90518 27.3818-6 1 Grid 36.0000 10.40000 70.00000 -0.3555 69.710 -0.002156 -0.95128 17.3208-6 1 Grid 1.80000 10.40000 70.00000 -0.03515 69.710 -0.002166 -0.39393 10.3048-6 1 Grid 3.60000 10.40000 70.00000 -0.3555 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 5.40000 10.40000 70.00000 -0.36958 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 7.20000 10.40000 70.00000 -0.36958 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 7.20000 10.40000 70.00000 -0.36958 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 10.80000 10.40000 70.00000 -0.36958 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 12.60000 10.40000 70.00000 -0.36958 69.710 -0.003215 -0.61994 18.7712-6 1 Grid 12.60000 10.40000 70.00000 -0.36958 69.710 -0.19548 -0.3666 172.188-6 1 Grid 12.60000 10.40000 70.00000 -0.36958 69.710 -0.19548 -0.3666 172.188-6 1 Grid 12.60000 10.40000 70.00000 -0.36958 69.710 -0.19548 -0.3666 172.188-6							69.710		-7.2308	
1 Grid 23,40000 8.66667 70.00000 -2.17558 69,710 -0.010907 -6.1485 177,392-6 1 Grid 25,20000 8.66667 70.00000 -1.31651 69,710 -0.011704 -2.4264 72.8718-6 1 Grid 28.80000 8.66667 70.00000 -1.31651 69,710 -0.011704 -2.4264 72.8718-6 1 Grid 30.60000 8.66667 70.00000 -0.79008 69,710 -0.0042190 -1.3263 40.0328-6 1 Grid 31.40000 8.66667 70.00000 -0.79008 69,710 -0.0042190 -1.3263 40.0328-6 1 Grid 34.20000 8.66667 70.00000 -0.35510 69,710 -0.0012156 -0.95112 27.3818-6 1 Grid 34.20000 8.66667 70.00000 -0.35510 69,710 -0.0012156 -0.95112 71.8028-6 1 Grid 34.20000 8.66667 70.00000 -0.35510 69,710 -0.0012156 -0.95112 71.8028-6 1 Grid 34.20000 8.66667 70.00000 -0.35510 69,710 -0.0012156 -0.95112 71.8028-6 1 Grid 36.0000 10.40000 70.00000 -0.03551 69,710 -0.001216 -0.59126 71.8028-6 1 Grid 36.0000 10.40000 70.00000 -0.03551 69,710 -0.001216 -0.59126 71.8028-6 1 Grid 5.40000 10.40000 70.00000 -0.3555 69,710 -0.001215 -0.61994 18.7718-6 1 Grid 5.40000 10.40000 70.00000 -0.3555 69,710 -0.0013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -0.3555 69,710 -0.0013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -0.36558 69,710 -0.0013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -0.166240 69,710 -0.19548 -0.2666 712.188-6 1 Grid 12.60000 10.40000 70.00000 -0.74999 69,710 -57,008 -111.03 -0.0018568 1 Grid 12.60000 10.40000 70.00000 -7.44939 69,710 -57,008 -111.03 -0.0018206 1 Grid 14.40000 10.40000 70.00000 -8.00170 69,710 -57,086 -111.50 -0.0018210 1 Grid 19.80000 10.40000 70.00000 -8.00170 69,710 -57,086 -111.50 -0.0018210 1 Grid 19.80000 10.40000 70.00000 -8.00170 69,710 -57,086 -111.50 -0.001			19.80000	8.66667	70.00000	-2.52340	69.710	-0.12178	-7.1932	208.07E-6
Grid 27.00000 8.66667 70.00000 -1.31651 69.710 -0.011704 -2.4264 72.871E-6	1	Grid	23.40000	8.66667	70.00000	-2.17558	69.710	-0.10907	-6.1485	177.39E-6
1 Grid 30,60000 8,66667 70.00000 -0,79008 69,710 -0,0021296 -0,3634 40.0328-6 1 Grid 34,20000 8,66667 70.00000 -0,36510 69,710 -0,0021216 -0,90518 27,3818-6 1 Grid 34,20000 8,66667 70.00000 -0,36510 69,710 -0,0010716 -0,59126 17,9208-6 1 Grid 36,00000 8,66667 70.00000 -0,3555 69,710 -485,698-6 -0,38093 11,5648-6 1 Grid 1.80000 10,40000 70.00000 -0,03555 69,710 -475,1548-6 -0,41090 4,28658-6 1 Grid 1.80000 10,40000 70.00000 -0,03555 69,710 -77,1548-6 -0,21017 6,33968-6 1 Grid 3,60000 10,40000 70.00000 -0,13168 69,710 -0,0013215 -0,61994 4,28658-6 1 Grid 5,40000 10,40000 70.00000 -0,13168 69,710 -0,0013215 -0,61994 18,7718-6 1 Grid 5,40000 10,40000 70.00000 -0,72740 69,710 -0,0073215 -0,61994 4,28658-6 1 Grid 10,80000 10,40000 70.00000 -0,72740 69,710 -0,0073215 -0,61994 4,27678-6 1 Grid 12,60000 10,40000 70.00000 -7,44939 69,710 -57,078 -110,30 -0,001856 1 Grid 14,40000 10,40000 70.00000 -7,44939 69,710 -57,086 -111,50 -0,0018296 1 Grid 16,20000 10,40000 70.00000 -8,00170 69,710 -57,086 -111,50 -0,0018210 1 Grid 19,80000 10,40000 70.00000 -8,00170 69,710 -57,086 -111,50 -0,0018210 1 Grid 19,80000 10,40000 70.00000 -8,0003 69,710 -57,086 -111,50 -0,0018210 1 Grid 21,60000 10,40000 70.00000 -7,44794 69,710 -57,087 -111,50 -0,0018210 1 Grid 23,40000 10,40000 70.00000 -7,44794 69,710 -57,086 -111,50 -0,0018210 1 Grid 23,40000 10,40000 70.00000 -3,0003 69,710 -57,086 -111,50 -0,0018210 1 Grid 23,40000 10,40000 70.00000 -3,0003 69,710 -57,086 -111,50 -0,0018210 1 Grid 23,40000 10,40000 70.00000 -3,0003 69,710 -57,087 -111,55 -0,0018180 1 Grid 23,40000 10,40000 70.00000 -3,0003 69,710 -57,087 -111,55 -0,00181	1	Grid	27.00000	8.66667	70.00000	-1.31651	69.710	-0.011704	-2.4264	72.871E-6
1 Grid 32,40000 8.66667 70.00000 -0.55709 69,710 -0.002156 -0.99518 27,3818-6 1 Grid 34,20000 8.66667 70.00000 -0.536510 69,710 -0.0010716 -0.59126 17,9208-6 1 Grid 36,00000 8.66667 70.00000 -0.22239 69,710 -0.885.698-6 -0.38093 11.5648-6 1 Grid 36,00000 10.40000 70.00000 -0.03556 69,710 -71.548-6 -0.14090 4.28658-6 1 Grid 3.60000 10.40000 70.00000 -0.09315 69,710 -71.652.68-6 -0.21017 6.38968-6 1 Grid 3.60000 10.40000 70.00000 -0.09315 69,710 -407.008-6 -0.38935 10.3048-6 1 Grid 5.40000 10.40000 70.00000 -0.36958 69,710 -0.0013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -1.66240 69,710 -0.013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -1.66240 69,710 -0.19548 -6.266 172.188-6 1 Grid 10.80000 10.40000 70.00000 -7.44939 69,710 -5.703 -103.62 -0.0020262 1 Grid 12.60000 10.40000 70.00000 -7.44939 69,710 -5.703 -103.62 -0.0020262 1 Grid 14.40000 10.40000 70.00000 -7.44939 69,710 -5.708 -111.20 -0.018286 1 Grid 14.40000 10.40000 70.00000 -7.44939 69,710 -5.708 -111.20 -0.018286 1 Grid 12.60000 10.40000 70.00000 -7.80944 69,710 -5.708 -111.20 -0.018286 1 Grid 12.60000 10.40000 70.00000 -7.93471 69,710 -5.708 -111.20 -0.018286 1 Grid 21.60000 10.40000 70.00000 -7.93471 69,710 -5.70.86 -111.55 -0.018189 1 Grid 21.60000 10.40000 70.00000 -7.93471 69,710 -5.70.86 -111.20 -0.018283 1 Grid 21.60000 10.40000 70.00000 -7.93471 69,710 -5.70.66 -111.55 -0.018189 1 Grid 22.40000 10.40000 70.00000 -7.93471 69,710 -5.70.66 -111.55 -0.018189 1 Grid 23.40000 10.40000 70.00000 -7.93471 69,710 -0.10948 -5.7656 165.558-6 1 Grid 32.40000 10.40000 70.00000 -7.93471 69,710 -0.10948 -5.7656 155.558-6 1 Grid 32.40000 10.40000 70.00000										
1 Grid 36,00000 8.66667 70.00000 -0.22239 69,710 -487.59E-6 -0.34993 11.564E-6 1 Grid 0.00000 10.40000 70.00000 -0.03555 69,710 -77.54E-6 -0.14090 4.2865E-6 1 Grid 3.60000 10.40000 70.00000 -0.09315 69,710 -77.54E-6 -0.34993 10.304E-6 1 Grid 3.60000 10.40000 70.00000 -0.19168 69,710 -407.00E-6 -0.33935 10.304E-6 1 Grid 5.40000 10.40000 70.00000 -0.36958 69,710 -0.0013215 -0.61994 18.771E-6 1 Grid 7.20000 10.40000 70.00000 -1.66240 69,710 -0.0013215 -0.61994 18.771E-6 1 Grid 9.0000 10.40000 70.00000 -1.66240 69,710 -0.01934 -1.4220 42.6765E-6 1 Grid 10.80000 10.40000 70.00000 -1.66240 69,710 -0.19548 -6.2366 172.18E-6 1 Grid 10.80000 10.40000 70.00000 -7.44939 69,710 -5.703 -103.627 -0.0020262 1 Grid 11.80000 10.40000 70.00000 -7.44939 69,710 -5.703 -103.627 -0.0020262 1 Grid 14.40000 10.40000 70.00000 -8.00170 69,710 -5.7085 -111.22 -0.0018296 1 Grid 16.2000 10.40000 70.00000 -8.00170 69,710 -5.7085 -111.22 -0.0018296 1 Grid 18.0000 10.40000 70.00000 -8.00170 69,710 -5.7086 -111.50 -0.0018210 1 Grid 18.0000 10.40000 70.00000 -8.00170 69,710 -5.7086 -111.50 -0.0018210 1 Grid 18.0000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.94471 69,710 -5.7086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.9471 69,710 -0.70888 69,710 -5.7088 69,710 -0.108.64 -0.001900 1 Grid 21.40000 10.40000 70.00000 -7.94474 69,710 -0.10948 69,710 -0.108.64 -0.001900 1 Grid 21.40000 10.40000 70.00000 -1.98061 69,710 -0.010259 69,710 -0.108.64 -0.001900 69,700 69,710 -0.00000 69,700 69,710 -0.00000 69,700 69,710 -0.00000 69,700 69,710 -0.00000 69,700 69,710 -0.00000 69,700 69,710 -0.00000 69,700 69,710	1	Grid	32.40000	8.66667	70.00000	-0.55709	69.710	-0.0022156	-0.90518	27.381E-6
1 Grid 1.80000 10.40000 70.00000 -0.09315 69.710 -467.0826 -0.21017 6.38986-6 1 Grid 3.60000 10.40000 70.00000 -0.36958 69.710 -407.0826 -0.33935 10.3048-6 1 Grid 7.20000 10.40000 70.00000 -0.36958 69.710 -0.0013215 -0.61994 18.7718-6 1 Grid 7.20000 10.40000 70.00000 -1.66240 69.710 -0.0013215 -0.61994 18.7718-6 1 Grid 10.80000 10.40000 70.00000 -1.66240 69.710 -0.019548 -6.2366 172.188-6 1 Grid 10.80000 10.40000 70.00000 -1.63238 69.710 -5.703 -103.62 -0.0020262 1 Grid 12.60000 10.40000 70.00000 -7.44939 69.710 -5.703 -103.62 -0.0020262 1 Grid 14.40000 10.40000 70.00000 -7.44939 69.710 -5.708 -111.29 -0.0018568 1 Grid 14.40000 10.40000 70.00000 -8.00170 69.710 -5.7085 -111.22 -0.0018296 1 Grid 16.20000 10.40000 70.00000 -8.00170 69.710 -5.7086 -111.25 -0.0018210 1 Grid 18.00000 10.40000 70.00000 -8.00176 69.710 -5.7086 -111.50 -0.0018210 1 Grid 19.80000 10.40000 70.00000 -8.00808 69.710 -5.7088 -111.50 -0.001813 1 Grid 21.60000 10.40000 70.00000 -8.00808 69.710 -5.7088 -111.55 -0.0018183 1 Grid 21.60000 10.40000 70.00000 -8.00808 69.710 -5.7088 -111.55 -0.0018183 1 Grid 21.60000 10.40000 70.00000 -8.00808 69.710 -5.7088 -111.55 -0.0018183 1 Grid 21.60000 10.40000 70.00000 -3.32795 69.710 -1.4530 -111.59 -0.0018180 1 Grid 22.00000 10.40000 70.00000 -3.32795 69.710 -0.14530 -111.25 -0.0018180 1 Grid 23.80000 10.40000 70.00000 -3.32795 69.710 -0.14530 -112.22 -7.2508 207.965-6 1 Grid 27.00000 10.40000 70.00000 -1.98061 69.710 -0.010948 -3.1217 29.8338-6 1 Grid 32.40000 10.40000 70.00000 -1.98061 69.710 -0.010948 -3.1217 29.8338-6 1 Grid 32.40000 10.40000 70.00000 -0.92045 69.710 -0.010948 -3.7656 155.555-6 155.555-6 1 Grid 33.00000 10.40000 70.00000 -0.92045 69.710 -0.0010956 -0.98195 29.6218-6 1 Grid 36.00000 10.40000 70.00000 -0.92045 69.710 -0.0010956 -0.98195 29.6218-6 1 Grid 36.00000 12.13333 70.00000 -0.0002 69.710 -0.001056 -0.98185 29.6218-6 1 Grid 36.00000 12.13333 70.00000 -0.0002 69.710 -0.001056 -0.98185 29.6218-6 1 Grid 3.60000 12.13333 70.00000 -0.0002 69.710 -0.001056 -0.98185 -0.00114337 1 Grid 12	1	Grid	36.00000	8.66667	70.00000	-0.22239	69.710	-485.69E-6	-0.38093	11.564E-6
1 Grid 5,4000 10,40000 70,00000 -0,36958 69,710 -0,0013215 -0,61994 18,771E-6 1 Grid 7,20000 10,40000 70,00000 -1,66240 69,710 -0,0013215 -0,61994 21,6765-6 1 Grid 10,80000 10,40000 70,00000 -1,66240 69,710 -0,19548 -6,2366 172,188-6 1 Grid 10,80000 10,40000 70,00000 -1,63728 69,710 -5,703 -103,62 -0,0020262 1 Grid 12,60000 10,40000 70,00000 -7,44939 69,710 -5,708 -111,03 -0,0018568 1 Grid 14,40000 10,40000 70,00000 -7,44939 69,710 -5,7085 -111,22 -0,0018296 1 Grid 16,20000 10,40000 70,00000 -8,00170 69,710 -5,7085 -111,25 -0,0018210 1 Grid 18,00000 10,40000 70,00000 -8,00170 69,710 -5,7087 -111,59 -0,0018210 1 Grid 19,80000 10,40000 70,00000 -8,00170 69,710 -5,7087 -111,59 -0,0018210 1 Grid 21,60000 10,40000 70,00000 -8,00183 69,710 -5,7087 -111,59 -0,0018183 1 Grid 21,60000 10,40000 70,00000 -7,44791 69,710 -5,7085 -111,25 -0,0018196 1 Grid 23,40000 10,40000 70,00000 -7,44794 69,710 -5,7083 -111,25 -0,0018196 1 Grid 23,40000 10,40000 70,00000 -7,44794 69,710 -5,7083 -111,25 -0,0018196 1 Grid 28,80000 10,40000 70,00000 -7,44794 69,710 -5,7083 -111,25 -0,0018196 1 Grid 28,80000 10,40000 70,00000 -3,27878 69,710 -0,11094 -5,7556 155,555-6 1 Grid 30,60000 10,40000 70,00000 -1,9606 69,710 -0,11094 -3,7556 155,555-6 1 Grid 30,60000 10,40000 70,00000 -0,92045 69,710 -0,010259 -3,831 54,9238-6 1 Grid 36,00000 10,40000 70,00000 -0,92045 69,710 -0,001259 -3,831 54,9238-6 1 Grid 36,00000 10,40000 70,00000 -0,92045 69,710 -0,001259 -0,8331 54,9238-6 1 Grid 36,00000 10,40000 70,00000 -0,92045 69,710 -0,001256 -0,69111 20,9155-6 1 Grid 36,00000 12,13333 70,00000 -0,00025 69,710 -0,001256 -0,69111 20,9155-6 1 Grid 36,00000 12,13333 70,00000 -0	1	Grid	1.80000	10.40000	70.00000	-0.09315	69.710	-163.26E-6	-0.21017	6.3896E-6
1 Grid 7.20000 10.40000 70.00000 -0.72705 69.710 -0.019548 -6.2366 172.18E-6 1 Grid 9.00000 10.40000 70.00000 -1.62420 69.710 -0.19548 -6.2366 172.18E-6 1 Grid 10.80000 10.40000 70.00000 -6.37238 69.710 -56.703 -103.62 -0.0020262 1 Grid 12.60000 10.40000 70.00000 -7.82994 69.710 -57.078 -110.30 -0.0018568 1 Grid 14.40000 10.40000 70.00000 -7.82994 69.710 -57.085 -111.53 -0.0018296 1 Grid 16.20000 10.40000 70.00000 -8.00706 69.710 -57.086 -111.50 -0.0018210 1 Grid 18.00000 10.40000 70.00000 -8.00706 69.710 -57.086 -111.50 -0.0018210 1 Grid 18.00000 10.40000 70.00000 -8.00706 69.710 -57.086 -111.50 -0.0018210 1 Grid 21.40000 10.40000 70.00000 -7.44794 69.710 -57.086 -111.50 -0.0018230 1 Grid 21.40000 10.40000 70.00000 -7.44794 69.710 -57.086 -111.50 -0.0018230 1 Grid 22.40000 10.40000 70.00000 -7.44794 69.710 -57.006 -16.64 -0.0019008 1 Grid 25.20000 10.40000 70.00000 -7.44794 69.710 -57.006 -16.64 -0.0019008 1 Grid 25.20000 10.40000 70.00000 -2.42778 69.710 -0.14222 -7.508 207.96E-6 1 Grid 23.40000 10.40000 70.00000 -2.42778 69.710 -0.14222 -7.508 207.96E-6 1 Grid 30.60000 10.40000 70.00000 -1.38841 69.710 -0.10229 -1.8313 54.9238-6 1 Grid 34.20000 10.40000 70.00000 -0.55541 69.710 -0.00259 -1.8313 54.9238-6 1 Grid 34.20000 10.40000 70.00000 -0.55541 69.710 -0.00259 -1.8313 54.9238-6 1 Grid 36.00000 12.13333 70.00000 -0.55541 69.710 -0.003364 -0.98195 29.6218-6 1 Grid 36.00000 12.13333 70.00000 -0.4309 69.710 -0.003364 -0.98195 29.6218-6 1 Grid 36.00000 12.13333 70.00000 -0.4309 69.710 -0.003564 -0.98195 29.6218-6 1 Grid 36.00000 12.13333 70.00000 -0.4309 69.710 -0.905564 -0.28195 -0.2015564 -0.2015564 -0.2015564 -0.2015564 -0.201556	1	Grid	5.40000	10.40000	70.00000	-0.36958	69.710	-0.0013215	-0.61994	18.771E-6
1 Grid 10,80000 10,40000 70,00000 -6,37238 69,710 -56,703 -103,62 -0.0020262 1 Grid 14,40000 10,40000 70,00000 -7,82994 69,710 -57,078 -110,30 -0.0018568 1 Grid 14,40000 10,40000 70,00000 -8,00706 69,710 -57,086 -111,59 -0.0018296 1 Grid 18,00000 10,40000 70,00000 -8,07076 69,710 -57,086 -111,59 -0.0018210 1 Grid 19,80000 10,40000 70,00000 -8,07076 69,710 -57,086 -111,59 -0.0018183 1 Grid 19,80000 10,40000 70,00000 -8,07076 69,710 -57,086 -111,59 -0.0018183 1 Grid 21,60000 10,40000 70,00000 -7,93471 69,710 -57,086 -111,59 -0.0018180 1 Grid 22,40000 10,40000 70,00000 -7,93471 69,710 -57,086 -111,59 -0.0018180 1 Grid 25,20000 10,40000 70,00000 -3,32795 69,710 -1,4530 -16,921 382,805-6 1 Grid 27,00000 10,40000 70,00000 -3,32795 69,710 -1,4530 -16,921 382,805-6 1 Grid 28,80000 10,40000 70,00000 -1,88061 69,710 -0,14222 -7,2508 207,965-6 1 Grid 30,60000 10,40000 70,00000 -1,8861 69,710 -0,11094 -3,1279 2,8538-6 1 Grid 32,40000 10,40000 70,00000 -0,92045 69,710 -0,00259 -1,8331 54,9238-6 1 Grid 36,00000 10,40000 70,00000 -0,35541 69,710 -0,00259 -1,8331 54,9238-6 1 Grid 36,00000 12,13333 70,00000 -0,31593 69,710 -0,000146 -0,53342 16,1628-6 1 Grid 1,80000 12,13333 70,00000 -0,1008 69,710 -10,8666 -0,14635 4,4528-6 1 Grid 3,60000 12,13333 70,00000 -0,1008 69,710 -0,001366 -0,14635	1	Grid	7.20000	10.40000	70.00000	-0.72705	69.710	-0.0071934	-1.4220	42.676E-6
Grid 14,40000 10,40000 70,00000 -7,82994 69,710 -57,085 -111,22 -0.0018296	1	Grid	10.80000	10.40000	70.00000	-6.37238	69.710	-56.703	-103.62	-0.0020262
Grid 19.0000 10.40000 70.00000 -8.07076 69.710 -57.087 -111.59 -0.0018183	1	Grid	14.40000	10.40000	70.00000	-7.82994	69.710	-57.085	-111.22	-0.0018296
1 Grid 21.80000 10.40000 70.00000 -8.06083 69.710 -57.086 -111.55 -0.0018196 1 Grid 21.60000 10.40000 70.00000 -7.44794 69.710 -57.083 -111.20 -0.0018300 1 Grid 23.40000 10.40000 70.00000 -7.44794 69.710 -57.006 108.64 -0.0019008 1 Grid 25.20000 10.40000 70.00000 -3.32795 69.710 -1.4530 -16.921 382.808-6 1 Grid 27.00000 10.40000 70.00000 -2.42778 69.710 -0.14222 -7.2508 207.968-6 1 Grid 28.80000 10.40000 70.00000 -1.38841 69.710 -0.14222 -7.2508 207.968-6 1 Grid 30.60000 10.40000 70.00000 -1.38841 69.710 -0.024886 -3.1217 92.8538-6 1 Grid 31.40000 10.40000 70.00000 -0.90045 69.710 -0.00259 -1.8313 54.9238-6 1 Grid 31.40000 10.40000 70.00000 -0.55541 69.710 -0.003366-0.98195 23.6218-6 1 Grid 31.40000 10.40000 70.00000 -0.55541 69.710 -0.003366-0.98195 23.6218-6 1 Grid 31.40000 12.13333 70.00000 -0.55541 69.710 -0.003368-6 -0.98195 23.6218-6 1 Grid 31.40000 12.13333 70.00000 -0.10216 69.710 -1.79.888-6 -0.14635 44.5238-6 1 Grid 3.60000 12.13333 70.00000 -0.10216 69.710 -1.079.888-6 -0.36485 11.0768-6 1 Grid 5.40000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.89111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.9865 -1.6910 50.6708-6 1 Grid 10.80000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 Grid 14.40000 12.13333 70.00000 -9.02355 69.710 -59.875 -130.18 -0.001690 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.0017689 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001690 1 Grid 19.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001690 1 Grid 19.80000 12.13333 70.00000 -9.67979 69.710 -59.877 -130.61 -0.001690 1 Grid 19.80000 12.13333 70.0	1	Grid Grid	18.00000	10.40000	70.00000	-8.07076	69.710	-57.086 -57.087	-111.50 -111.59	-0.0018210 -0.0018183
1 Grid 22,40000 10.40000 70.00000 -7.44794 69.710 -57.006 -108.64 -0.0019008 1 Grid 25.20000 10.40000 70.00000 -3.23795 69.710 -1.4530 -16.921 382.808-6 1 Grid 27.00000 10.40000 70.00000 -2.42778 69.710 -1.4522 -7.208 207.968-6 1 Grid 28.80000 10.40000 70.00000 -1.98061 69.710 -0.14222 -7.208 207.968-6 1 Grid 30.60000 10.40000 70.00000 -1.3884 69.710 -0.14222 -7.208 207.968-6 1 Grid 30.60000 10.40000 70.00000 -1.3884 69.710 -0.024886 -3.1217 92.8538-6 1 Grid 31.40000 10.40000 70.00000 -0.55541 69.710 -0.0024886 -3.1217 92.8538-6 1 Grid 31.40000 10.40000 70.00000 -0.55541 69.710 -0.0033064 -0.98195 23.6218-6 1 Grid 31.40000 10.40000 70.00000 -0.55541 69.710 -0.0033064 -0.98195 23.6218-6 1 Grid 31.80000 12.13333 70.00000 -0.04322 69.710 -10.0033064 -0.98195 23.6218-6 1 Grid 3.60000 12.13333 70.00000 -0.010216 69.710 -179.888-6 -0.14635 81.0768-6 1 Grid 3.60000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.005964 -0.69111 20.9158-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.98605 -1.6910 50.6708-6 1 Grid 10.80000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 Grid 14.40000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 Grid 14.40000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.0017689 1 Grid 18.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001960 1 Grid 19.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001960 1 Grid 19.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001608 1 Grid 19.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001960 1 Grid 27.00000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.001990 1 Grid 27.00000 12.13333 70.00000	1	Grid	19.80000	10.40000	70.00000	-8.06083	69.710	-57.086	-111.55	-0.0018196
1 Grid 28.80000 10.40000 70.00000 -2.42778 69.710 -0.14222 -7.2508 207.965-6 1 Grid 28.80000 10.40000 70.00000 -1.38861 69.710 -0.11294 -5.7656 165.555-6 1 Grid 30.60000 10.40000 70.00000 -1.38861 69.710 -0.024886 -165.555-6 1 Grid 30.60000 10.40000 70.00000 -0.2045 69.710 -0.00259 -1.8313 54.9238-6 1 Grid 34.20000 10.40000 70.00000 -0.55541 69.710 -0.003364 -0.93195 29.6218-6 1 Grid 34.20000 10.40000 70.00000 -0.55541 69.710 -0.003364 -0.53342 61.6288-6 1 Grid 36.0000 10.40000 70.00000 -0.55541 69.710 -0.003364 -0.53342 61.6288-6 1 Grid 36.0000 12.13333 70.00000 -0.101216 69.710 -0.003164 -0.53342 61.6288-6 1 Grid 36.0000 12.13333 70.00000 -0.101216 69.710 -1.00144 -0.53425 61.0768-6 1 Grid 36.0000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -2.03021 69.710 -0.004166 -1.6910 50.6708-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -0.26025 -8.1485 224.528-6 1 Grid 10.80000 12.13333 70.00000 -2.03021 69.710 -59.885 -129.02 -0.0015411 1 Grid 11.80000 12.13333 70.00000 -9.02355 69.710 -59.885 -129.02 -0.0015411 1 Grid 14.40000 12.13333 70.00000 -9.67972 69.710 -59.887 -130.18 -0.001568 1 Grid 16.20000 12.13333 70.00000 -9.67972 69.710 -59.887 -130.18 -0.001568 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.887 -130.18 -0.001568 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.0017689 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001568 1 Grid 19.80000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.61 -0.001568 1 Grid 19.80000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.001568 1 Grid 19.80000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.001568 1 Grid 21.60000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.001568 1 Grid 23.40000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.0016970 1 Grid 23.40000 12.13333 70.00000 -9.67973 69.710 -59.877 -130.61 -0.0016970 1 Grid 32.40000 12.13333 70.00000 -9.67973 69.7	1	Grid	23.40000	10.40000	70.00000	-7.44794	69.710	-57.006	-108.64	-0.0019008
Grid 30,60000 10,40000 70,00000 -1,38841 69,710 -0,042886 -3,1217 92,8538-6 Grid 32,40000 10,40000 70,00000 -0,29045 69,710 -0,001259 -1,8331 54,9238-6 Grid 34,20000 10,40000 70,00000 -0,55541 69,710 -0,0013064 -0,98195 29,6218-6 Grid 36,00000 10,40000 70,00000 -0,15594 69,710 -0,0013064 -0,53342 16,1628-6 Grid 0,00000 12,13333 70,00000 -0,04032 69,710 -0,0013064 -0,53342 16,1628-6 Grid 1,80000 12,13333 70,00000 -0,001216 69,710 -79,588-6 -0,22121 6,72458-6 Grid 5,40000 12,13333 70,00000 -0,1008 69,710 -464,558-6 -0,22121 6,72458-6 Grid 5,40000 12,13333 70,00000 -0,1008 69,710 -40,64,558-6 -0,22121 10,09158-6 Grid 7,20000 12,13333 70,00000 -0,83454 69,710 -0,00194156 -1,6910 50,6708-6 Grid 9,00000 12,13333 70,00000 -7,63486 69,710 -9,5885 -129,02 -0,0015411 Grid 10,80000 12,13333 70,00000 -9,48071 69,710 -59,815 -129,02 -0,0015611 Grid 14,40000 12,13333 70,00000 -9,48071 69,710 -59,875 -130,18 -0,001568 Grid 16,00000 12,13333 70,00000 -9,76309 69,710 -59,877 -130,63 -0,0014931 Grid 16,00000 12,13333 70,00000 -9,76309 69,710 -59,877 -130,63 -0,0014931 Grid 18,00000 12,13333 70,00000 -9,66739 69,710 -59,877 -130,63 -0,0014931 Grid 19,80000 12,13333 70,00000 -9,66739 69,710 -59,874 -130,32 -0,0015023 Grid 21,60000 12,13333 70,00000 -9,66739 69,710 -59,874 -130,32 -0,0015023 Grid 23,40000 12,13333 70,00000 -9,66739 69,710 -59,874 -130,32 -0,0015023 Grid 23,40000 12,13333 70,00000 -6,7592 69,710 -59,875 -130,03 -0,001607 Grid 23,40000 12,13333 70,00000 -6,73593 69,710 -59,874 -130,32 -0,0015023 Grid 23,40000 12,13333 70,00000 -6,67359 69,710 -59,875 -130,03 -0,001607 Grid 23,40000 12,13333 70,000	1	Grid	27.00000	10.40000	70.00000	-2.42778	69.710	-0.14222	-7.2508	207.96E-6
1 Grid 32.40000 10.40000 70.00000 -0.92045 69.710 -0.001259 -1.8331 54.9238-6 1 Grid 34.20000 10.40000 70.00000 -0.55541 69.710 -0.0033064 -0.98195 29.6218-6 1 Grid 36.00000 10.40000 70.00000 -0.31593 69.710 -0.0010146 -0.53342 16.1628-6 1 Grid 0.00000 12.13333 70.00000 -0.0032 69.710 -0.0010146 -0.53342 16.1628-6 1 Grid 3.60000 12.13333 70.00000 -0.10216 69.710 -179.588-6 -0.2121 6.72458-6 1 Grid 3.60000 12.13333 70.00000 -0.10216 69.710 -179.588-6 -0.26185 11.0768-6 1 Grid 5.40000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.69111 20.9158-6 1 Grid 7.20000 12.13333 70.00000 -0.203021 69.710 -0.02605 -1.6910 50.6708-6 1 Grid 10.80000 12.13333 70.00000 -7.03646 69.710 -5.9655 -1.8918 224.528-6 1 Grid 10.80000 12.13333 70.00000 -7.0355 69.710 -59.865 -1.99.02 -0.0015411 1 Grid 11.40000 12.13333 70.00000 -9.02355 69.710 -59.865 -1.99.02 -0.0015411 1 Grid 14.4000 12.13333 70.00000 -9.67971 69.710 -59.865 -1.30.18 -0.0016968 1 Grid 14.4000 12.13333 70.00000 -9.67971 69.710 -59.875 -130.18 -0.0016968 1 Grid 14.4000 12.13333 70.00000 -9.67971 69.710 -59.875 -130.18 -0.0016968 1 Grid 14.4000 12.13333 70.00000 -9.67970 69.710 -59.875 -130.18 -0.0016968 1 Grid 14.4000 12.13333 70.00000 -9.67970 69.710 -59.877 -130.18 -0.0015968 1 Grid 21.60000 12.13333 70.00000 -9.6799 69.710 -59.877 -130.18 -0.0015968 1 Grid 21.60000 12.13333 70.00000 -9.76790 69.710 -59.877 -130.18 -0.0015972 1 Grid 21.60000 12.13333 70.00000 -9.6739 69.710 -59.877 -130.18 -0.001592 1 Grid 21.60000 12.13333 70.00000 -9.6739 69.710 -59.877 -130.18 -79.598-6 1 Grid 32.40000 12.13333 70.00000 -6.75993 69.710 -59.771 -11.12.1 -0.00190687 1 Grid 32.40000 12.13333 70.00000 -6.75993 69.710 -59.771 -11.21.2 -7.97.996 199.538-6 1 Grid 32.40000 12.13333 70.00000 -7.8886 69.710 -59.791 -11.21.2 -7.996 199.538-6					70.00000	-1.98061				165.55E-6
1 Grid 36,00000 10,40000 70,00000 -0,31593 69,710 -0,0010146 -0,53342 16.1628-6 1 Grid 0.00000 12,13333 70,00000 -0,10216 69,710 -82,826E-6 -0.14635 4.45238-6 1 Grid 1.80000 12,13333 70,00000 -0,10216 69,710 -179,58E-6 -0.26212 6.7245E-6 1 Grid 3.60000 12,13333 70,00000 -0,41079 69,710 -0,0015964 -0,69111 20,915E-6 1 Grid 7.20000 12,13333 70,00000 -0,41079 69,710 -0,0015964 -0,69111 20,915E-6 1 Grid 7.20000 12,13333 70,00000 -0,41079 69,710 -0,0015964 -0,69111 20,915E-6 1 Grid 9,00000 12,13333 70,00000 -2,03021 69,710 -0,026025 -1,6910 50,670E-6 1 Grid 10,80000 12,13333 70,00000 -7,03656 69,710 -59,865 -1,6910 -0,0017689 1 Grid 12,60000 12,13333 70,00000 -9,02355 69,710 -59,865 -129,02 -0,0015411 1 Grid 14,40000 12,13333 70,00000 -9,67972 69,710 -59,875 -130,18 -0,0015068 1 Grid 16,20000 12,13333 70,00000 -9,67972 69,710 -59,875 -130,18 -0,0016969 1 Grid 16,20000 12,13333 70,00000 -9,67972 69,710 -59,877 -130,52 -0,0014965 1 Grid 18,0000 12,13333 70,00000 -9,67972 69,710 -59,877 -130,52 -0,0015961 1 Grid 18,0000 12,13333 70,00000 -9,67972 69,710 -59,877 -130,52 -0,0015972 1 Grid 21,40000 12,13333 70,00000 -9,6719 69,710 -59,874 -110,32 -0,0015023 1 Grid 22,40000 12,13333 70,00000 -9,6719 69,710 -59,874 -110,32 -0,0015023 1 Grid 22,40000 12,13333 70,00000 -9,6719 69,710 -59,874 -110,32 -0,0015023 1 Grid 23,40000 12,13333 70,00000 -9,6719 69,710 -59,874 -110,32 -0,0015023 1 Grid 21,40000 12,13333 70,00000 -9,6719 69,710 -59,711 -11,21,7 -7,900 19,958-6 1 Grid 32,40000 12,13333 70,00000 -6,73593 69,710 -59,771 -11,210,33 -0,001627 1 Grid 32,40000 12,13333 70,00000 -6,73593 69,710 -59,791 -7,939 -0,001627 1 Grid 32,40000 12,13333 70,00000 -7,8686 69,710 -50,9743 -7,996 199,538-6	1	Grid	32.40000	10.40000	70.00000	-0.92045	69.710	-0.010259	-1.8331	54.923E-6
1 Grid 1.80000 12.13333 70.00000 -0.10216 69.710 -179.58E-6 -0.22121 6.7245E-6 1 Grid 3.60000 12.13333 70.00000 -0.12108 69.710 -169.570 -646.55E-6 -0.36485 11.076E-6 1 Grid 5.40000 12.13333 70.00000 -0.41079 69.710 -0.0015964 -0.69111 20.915E-6 1 Grid 7.20000 12.13333 70.00000 -0.43054 69.710 -0.00915964 -0.69111 20.915E-6 1 Grid 9.00000 12.13333 70.00000 -2.03021 69.710 -0.26025 -8.1485 224.52E-6 1 Grid 10.80000 12.13333 70.00000 -7.63486 69.710 -5.9865 -1.29.02 -0.0015491 1 Grid 12.60000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 1 Grid 14.40000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 1 Grid 16.20000 12.13333 70.00000 -9.67972 69.710 -59.875 -130.18 -0.001568 1 Grid 16.20000 12.13333 70.00000 -9.67972 69.710 -59.875 -130.18 -0.0014955 1 Grid 18.00000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.63 -0.0014951 1 Grid 19.80000 12.13333 70.00000 -9.767972 69.710 -59.877 -130.63 -0.0014951 1 Grid 20.0000 12.13333 70.00000 -9.76793 69.710 -59.877 -130.63 -0.0014951 1 Grid 20.0000 12.13333 70.00000 -9.76793 69.710 -59.877 -130.63 -0.0014951 1 Grid 22.20000 12.13333 70.00000 -9.50255 69.710 -59.877 -130.63 -0.0014951 1 Grid 22.20000 12.13333 70.00000 -9.50255 69.710 -59.877 -130.63 -0.0014951 1 Grid 22.20000 12.13333 70.00000 -9.50255 69.710 -59.877 -130.53 -0.0014951 1 Grid 23.80000 12.13333 70.00000 -9.50255 69.710 -59.879 1 127.85 -0.0015702 1 Grid 27.00000 12.13333 70.00000 -6.73593 69.710 -59.915 -97.33 -0.0016927 1 Grid 32.40000 12.13333 70.00000 -6.73593 69.710 -59.915 -97.33 -0.001627 1 Grid 32.40000 12.13333 70.00000 -6.73593 69.710 -59.915 -97.33 -0.001627 1 Grid 32.40000 12.13333 70.00000 -7.8886 69.710 -59.9343 -7.0966 19.5826 64.3000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.780000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 65.43000 -1.78000 -1.78000 65.43000 -1.78000 -1.78000 65.43000 -1.78000 -1.78000 65.43000 -1.78000 -1.78000 65.43000 -1.78000 -	1	Grid	36.00000	10.40000	70.00000	-0.31593	69.710	-0.0010146	-0.53342	16.162E-6
1 Grid 3.60000 12.13333 70.00000 -0.21008 69.710 -0.64.558-6 -0.36485 11.0765-6 1 Grid 5.40000 12.13333 70.00000 -0.81459 69.710 -0.0015964 -0.69111 20.9155-6 1 Grid 7.20000 12.13333 70.00000 -0.83454 69.710 -0.0094156 -1.6910 50.6708-6 1 Grid 9.00000 12.13333 70.00000 -2.03021 69.710 -0.26025 -8.1485 224.528-6 1 Grid 10.80000 12.13333 70.00000 -7.63486 69.710 -59.381 -120.10 -0.0017689 1 Grid 12.60000 12.13333 70.00000 -9.48071 69.710 -59.815 -129.02 -0.0015411 1 Grid 14.40000 12.13333 70.00000 -9.48071 69.710 -59.875 -130.18 -0.0015068 1 Grid 16.20000 12.13333 70.00000 -9.48071 69.710 -59.875 -130.18 -0.0015068 1 Grid 18.00000 12.13333 70.00000 -9.76309 69.710 -59.877 -130.63 -0.0014931 1 Grid 19.80000 12.13333 70.00000 -9.76309 69.710 -59.877 -130.63 -0.0014931 1 Grid 19.80000 12.13333 70.00000 -9.66739 69.710 -59.877 -130.63 -0.0014931 1 Grid 23.40000 12.13333 70.00000 -9.66739 69.710 -59.877 -130.63 -0.0015023 1 Grid 23.40000 12.13333 70.00000 -9.66739 69.710 -59.877 -130.32 -0.0015023 1 Grid 23.40000 12.13333 70.00000 -9.66739 69.710 -59.874 -130.32 -0.0015023 1 Grid 23.80000 12.13333 70.00000 -9.66739 69.710 -59.874 -130.32 -0.0015023 1 Grid 23.80000 12.13333 70.00000 -6.76395 69.710 -59.879 1 -127.85 -0.0015702 1 Grid 23.80000 12.13333 70.00000 -6.7695 69.710 -59.879 1 -127.85 -0.0015702 1 Grid 23.80000 12.13333 70.00000 -6.73593 69.710 -59.879 1 -110.21 -0.0019106 1 Grid 32.40000 12.13333 70.00000 -6.73593 69.710 -59.879 1 -110.21 -0.0019106 1 Grid 32.40000 12.13333 70.00000 -6.73593 69.710 -59.879 -7.399 -0.0016627 1 Grid 32.40000 12.13333 70.00000 -7.8886 69.710 -0.29343 -7.0996 189.538-6	1	Grid	1.80000	12.13333	70.00000	-0.10216	69.710	-179.58E-6	-0.22121	6.7245E-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.60000 5.40000		70.00000		69.710	-464.55E-6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Grid	7.20000	12.13333	70.00000	-0.83454	69.710	-0.0094156	-1.6910	50.670E-6
1 Grid 12.60000 12.13333 70.00000 -9.02355 69.710 -59.865 -129.02 -0.0015411 1 Grid 14.40000 12.13333 70.00000 -9.68071 69.710 -59.875 -130.18 -0.0015068 1 Grid 16.20000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.52 -0.0014965 1 Grid 18.00000 12.13333 70.00000 -9.67992 69.710 -59.877 -130.52 -0.0014965 1 Grid 19.80000 12.13333 70.00000 -9.76730 69.710 -59.877 -130.63 -0.0014931 1 Grid 21.60000 12.13333 70.00000 -9.76730 69.710 -59.877 -130.61 -0.0014937 1 Grid 21.60000 12.13333 70.00000 -9.6333 69.710 -59.877 -130.61 -0.0014937 1 Grid 22.00000 12.13333 70.00000 -9.6333 69.710 -59.877 -130.61 -0.0014937 1 Grid 22.00000 12.13333 70.00000 -9.6333 69.710 -59.877 -130.61 -0.0014937 1 Grid 27.00000 12.13333 70.00000 -6.73593 69.710 -52.202 1 69.710 -59.879 -10.825 709.596-6 1 Grid 27.00000 12.13333 70.00000 -6.73593 69.710 -5.53.915 -97.339 -0.0016627 1 Grid 30.60000 12.13333 70.00000 -6.73593 69.710 -59.915 -97.339 -0.0016627 1 Grid 32.40000 12.13333 70.00000 -6.73593 69.710 -50.005757 -13.506 356.028-6 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.029433 -7.0966 189.538-6 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.029433 -7.0966 189.538-6	1	Grid	10.80000	12.13333	70.00000	-7.63486	69.710	-59.381	-120.10	-0.0017689
1 Grid 16.20000 12.13333 70.00000 -9.67972 69.710 -59.877 -130.52 -0.0014965 1 Grid 18.00000 12.13333 70.00000 -9.76309 69.710 -59.877 -130.63 -0.0014931 1 Grid 19.80000 12.13333 70.00000 -9.76730 69.710 -59.877 -130.61 -0.0014937 1 Grid 21.60000 12.13333 70.00000 -9.6739 69.710 -59.874 -130.61 -0.0014937 1 Grid 23.40000 12.13333 70.00000 -9.23513 69.710 -59.791 -127.85 -0.0015702 1 Grid 25.20000 12.13333 70.00000 -5.09235 69.710 -22.2902 -0.165 709.589-6 1 Grid 27.00000 12.13333 70.00000 -7.61962 69.710 -57.971 -111.21 -0.0019106 1 Grid 28.80000 12.13333 70.00000 -6.73593 69.710 -55.915 -97.339 -0.001627 1 Grid 30.60000 12.13333 70.00000 -1.75021 69.710 -0.029343 -7.0966 189.538-6 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.29343 -7.0996 189.538-6 1 Grid 32.40000 12.13333 70.00000 -1.82872 69.710 -0.019899 -1.8265 54.3908-6					70.00000		69.710			
1 Grid 19.80000 12.13333 70.00000 -9.76730 69.710 -59.877 -130.61 -0.0014937 1 Grid 21.60000 12.13333 70.00000 -9.66739 69.710 -59.874 -130.32 -0.0015023 1 Grid 22.40000 12.13333 70.00000 -9.23513 69.710 -59.791 -127.85 -0.0015702 1 Grid 25.20000 12.13333 70.00000 -7.61962 69.710 -2.2902 -30.156 709.598-6 1 Grid 27.00000 12.13333 70.00000 -7.61962 69.710 -57.971 -111.21 -0.0019106 1 Grid 28.80000 12.13333 70.00000 -6.73593 69.710 -53.915 -97.339 -0.0015627 1 Grid 30.60000 12.13333 70.00000 -2.88866 69.710 -0.5797 -13.506 356.028-6 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.29343 -7.0996 189.538-6 1 Grid 32.40000 12.13333 70.00000 -1.82872 69.710 -0.129343 -7.0996 189.538-6	1	Grid	16.20000	12.13333	70.00000	-9.67972	69.710	-59.877	-130.52	-0.0014965
1 Grid 23.40000 12.13333 70.00000 -9.23513 69.710 -59.791 -127.85 -0.0015702 1 Grid 25.20000 12.13333 70.00000 -5.0235 69.710 -2.290 -30.156 709.595-6 1 Grid 27.0000 12.13333 70.00000 -7.61962 69.710 -57.971 -111.21 -0.0019106 1 Grid 28.80000 12.13333 70.00000 -6.73593 69.710 -53.915 -73.39 -0.001627 1 Grid 30.60000 12.13333 70.00000 -2.8886 69.710 -53.915 -73.39 -0.001627 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.029343 -7.0.996 189.538-6 1 Grid 34.20000 12.13333 70.00000 -1.82872 69.710 -0.129343 -7.0.996 189.538-6	1	Grid	19.80000	12.13333	70.00000	-9.76730	69.710	-59.877	-130.61	-0.0014937
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Grid	23.40000	12.13333	70.00000	-9.23513	69.710	-59.791	-127.85	-0.0015702
1 Grid 28.80000 12.13333 70.00000 -6.73593 69.710 -53.915 -97.339 -0.0019627 1 Grid 30.60000 12.13333 70.00000 -2.88886 69.710 -0.60757 -13.506 356.02E-6 1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.29343 -7.0996 189.53E-6 1 Grid 34.20000 12.13333 70.00000 -0.82872 69.710 -0.13899 -1.8265 54.390E-6	1	Grid	25.20000	12.13333	70.00000	-5.09235	69.710	-2.2902	-30.156 -111.21	709.59E-6 -0.0019106
1 Grid 32.40000 12.13333 70.00000 -1.75021 69.710 -0.29343 -7.0996 189.53E-6 1 Grid 34.20000 12.13333 70.00000 -0.82872 69.710 -0.013899 -1.8265 54.390E-6	1	Grid	28.80000	12.13333	70.00000	-6.73593	69.710	-53.915	-97.339	-0.0019627
	1	Grid	32.40000	12.13333	70.00000	-1.75021	69.710	-0.29343	-7.0996	189.53E-6

Job No.	Sheet No.	Rev.		
MGC 29				
Drg. Ref.				
Made by	Date	Checked		

I `	vation	t Garde	ns						
Ref.	Name	x	У	z	δz	Stress: Calc.	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	Level [mOD]	[kN/m²]	[kN/m²]	[µ]
	Grid	0.00000	13.86667	70.00000	-0.03957		-81.840E-6	-0.14559	4.4292E-6
1	Grid Grid	1.80000 3.60000	13.86667 13.86667	70.00000	-0.10068 -0.20680	69.710	-176.35E-6 -450.74E-6	-0.21945 -0.36002	6.6712E-6 10.930E-6
1	Grid Grid	5.40000 7.20000	13.86667 13.86667	70.00000 70.00000	-0.40216 -0.80410	69.710 69.710	-0.0015073 -0.0082554	-0.67375 -1.5918	20.394E-6 47.752E-6
	Grid Grid	9.00000 10.80000	13.86667 13.86667	70.00000	-1.84605 -5.71185	69.710 69.710	-0.18157 -34.105		186.48E-6 -820.17E-6
	Grid Grid	12.60000 14.40000	13.86667 13.86667	70.00000 70.00000	-6.89928 -7.33187	69.710 69.710	-34.426 -34.435	-82.171 -83.223	-643.20E-6 -611.93E-6
1	Grid Grid	16.20000 18.00000	13.86667 13.86667	70.00000 70.00000	-7.52836 -7.61820	69.710 69.710	-34.436 -34.436	-83.553	-601.98E-6 -598.28E-6
1	Grid Grid	19.80000 21.60000	13.86667	70.00000	-7.64439 -7.62184	69.710 69.710	-34.436 -34.436	-83.702	-597.48E-6 -598.66E-6
1	Grid Grid	23.40000	13.86667 13.86667	70.00000	-7.59684 -9.02426	69.710 69.710	-34.457 -59.095	-83.973	-591.10E-6 -0.0016391
1	Grid Grid	27.00000 28.80000	13.86667 13.86667	70.00000	-9.35027 -8.97055	69.710 69.710	-59.902 -59.857	-130.23	-0.0015077 -0.0015429
1	Grid Grid	30.60000	13.86667	70.00000	-7.98034 -4.48125	69.710	-59.649	-123.70	-0.0016836
1	Grid	32.40000 34.20000	13.86667	70.00000 70.00000	-1.08699	69.710 69.710	-29.838 -0.036347	-63.069 -2.9426	-805.86E-6 86.349E-6
1	Grid Grid	36.00000 0.00000	13.86667 15.60000	70.00000	-0.48521 -0.03359	69.710	-0.0031785 -74.616E-6	-0.89680 -0.13884	27.038E-6 4.2242E-6
1	Grid Grid	1.80000 3.60000	15.60000 15.60000	70.00000 70.00000	-0.08919 -0.18338	69.710	-155.46E-6 -377.13E-6	-0.20562 -0.32777	6.2518E-6 9.9538E-6
	Grid Grid	5.40000 7.20000	15.60000 15.60000	70.00000	-0.34977 -0.66992	69.710 69.710	-0.0011635 -0.0057675	-0.58371 -1.2658	17.681E-6 38.047E-6
	Grid Grid	9.00000	15.60000 15.60000	70.00000	-1.43700 -4.63746	69.710 69.710	-0.13928 -33.526	-4.8945 -67.128	136.42E-6 -0.0010194
	Grid Grid	12.60000	15.60000 15.60000	70.00000	-5.50928 -5.85099	69.710 69.710	-33.787 -33.793	-72.076 -72.848	-892.39E-6 -869.38E-6
1	Grid Grid	16.20000 18.00000	15.60000 15.60000	70.00000	-6.01937 -6.10507	69.710 69.710	-33.793 -33.794		-861.28E-6 -857.80E-6
1	Grid Grid	19.80000	15.60000 15.60000	70.00000	-6.14652 -6.17884	69.710	-33.794 -33.795	-73.291 -73.406	-856.01E-6
1	Grid	23.40000	15.60000	70.00000	-6.33714	69.710 69.710	-33.835	-74.592	-852.62E-6 -820.16E-6
1	Grid Grid	25.20000 27.00000	15.60000 15.60000	70.00000	-8.23698 -8.61146	69.710 69.710	-58.898 -59.606		-0.0017604 -0.0016462
1	Grid Grid	28.80000 30.60000	15.60000 15.60000	70.00000 70.00000	-8.40579 -7.76124	69.710 69.710	-59.608 -59.572	-122.33	-0.0016540 -0.0017183
	Grid Grid	32.40000 34.20000	15.60000 15.60000	70.00000	-4.39711 -1.06177	69.710 69.710	-29.803 -0.035679	-62.559 -2.8840	-818.26E-6 84.624E-6
1	Grid Grid	36.00000 0.00000	15.60000 17.33333	70.00000 70.00000	-0.47504 -0.02364	69.710 69.710	-0.0031285 -63.348E-6	-0.88165 -0.12756	26.581E-6 3.8814E-6
1	Grid Grid	1.80000	17.33333 17.33333	70.00000 70.00000	-0.07056 -0.14697	69.710	-124.85E-6 -278.03E-6	-0.18354 -0.27956	5.5817E-6 8.4938E-6
1	Grid Grid	5.40000 7.20000	17.33333 17.33333	70.00000	-0.27360 -0.49140	69.710	-745.95E-6 -0.0028328	-0.46111 -0.86352	13.984E-6 26.055E-6
1	Grid Grid	9.00000	17.33333 17.33333	70.00000	-0.89313 -1.54000	69.710 69.710	-0.025460 -0.23070	-2.1124 -5.8184	62.044E-6 156.22E-6
1	Grid	12.60000	17.33333	70.00000	-1.97021	69.710	-0.26295	-7.2806	197.83E-6
1	Grid Grid	14.40000 16.20000	17.33333 17.33333	70.00000 70.00000	-2.19850 -2.32652	69.710 69.710	-0.26551 -0.26605	-7.7214 -7.9095	211.02E-6 216.71E-6
1	Grid Grid	18.00000 19.80000	17.33333 17.33333	70.00000 70.00000	-2.39925 -2.44229	69.710 69.710	-0.26624 -0.26641	-8.0032 -8.0648	219.55E-6 221.41E-6
1	Grid Grid	21.60000 23.40000	17.33333 17.33333	70.00000	-2.48200 -2.57722	69.710 69.710	-0.26720 -0.27687	-8.1708 -8.6587	224.57E-6 238.55E-6
1	Grid Grid	25.20000 27.00000	17.33333 17.33333	70.00000	-2.82205 -2.91410	69.710 69.710	-0.42091 -0.46232	-10.976 -11.993	296.00E-6 323.21E-6
	Grid Grid	28.80000 30.60000	17.33333 17.33333	70.00000	-2.77485 -2.39602	69.710 69.710	-0.46295 -0.45197	-11.842 -10.832	318.55E-6 288.77E-6
	Grid Grid	32.40000 34.20000	17.33333 17.33333	70.00000	-1.57992 -0.76848	69.710 69.710	-0.23240 -0.012919	-6.2641 -1.7083	169.64E-6 50.876E-6
1	Grid Grid	36.00000	17.33333	70.00000 70.00000	-0.38975 -0.01151	69.710 69.710	-0.0019574 -50.782E-6	-0.69623 -0.11375	21.038E-6 3.4618E-6
1	Grid Grid	1.80000	19.06667 19.06667	70.00000	-0.04861 -0.10632	69.710 69.710	-93.350E-6 -186.84E-6	-0.15802 -0.22825	4.8070E-6 6.9384E-6
1	Grid Grid	5.40000	19.06667	70.00000	-0.19515 -0.32979	69.710	-418.34E-6	-0.34545 -0.55152	10.489E-6 16.708E-6
1	Grid	9.00000	19.06667	70.00000	-0.52313 -0.75334		-0.0031514 -0.0069887	-0.91474	27.587E-6 42.249E-6
1	Grid Grid	12.60000	19.06667 19.06667	70.00000	-0.95183	69.710	-0.0092980	-1.4074 -1.7889	53.664E-6
1	Grid Grid	14.40000 16.20000	19.06667 19.06667	70.00000	-1.09007 -1.17942	69.710 69.710	-0.010054 -0.010314	-2.0045 -2.1230	60.165E-6 63.751E-6
1	Grid Grid	18.00000 19.80000	19.06667 19.06667	70.00000 70.00000	-1.23545 -1.27117	69.710 69.710	-0.010430 -0.010534	-2.1913 -2.2388	65.824E-6 67.261E-6
	Grid Grid	21.60000 23.40000	19.06667 19.06667	70.00000	-1.29917 -1.33234	69.710 69.710	-0.010816 -0.011887	-2.2964 -2.4150	68.992E-6 72.506E-6
	Grid Grid	25.20000 27.00000	19.06667 19.06667	70.00000 70.00000	-1.36566 -1.35230	69.710 69.710	-0.014388 -0.015993	-2.6053 -2.6961	78.079E-6 80.696E-6
	Grid Grid	28.80000 30.60000	19.06667 19.06667	70.00000	-1.25511 -1.05951	69.710 69.710	-0.015902 -0.013977	-2.5797 -2.2128	77.159E-6 66.154E-6
1	Grid Grid	32.40000 34.20000	19.06667 19.06667	70.00000 70.00000	-0.77305 -0.48536	69.710	-0.0084571 -0.0029341	-1.5451 -0.87499	46.312E-6 26.396E-6
1	Grid Grid	36.00000 0.00000	19.06667	70.00000 70.00000	-0.28080 0.00105	69.710	-926.36E-6 -39.076E-6	-0.48783 -0.099294	14.781E-6 3.0223E-6
1	Grid Grid	1.80000	20.80000	70.00000	-0.02675 -0.06811	69.710	-66.699E-6 -119.77E-6	-0.13299 -0.18237	4.0466E-6 5.5466E-6
1	Grid Grid	5.40000 7.20000	20.80000	70.00000	-0.12766 -0.20955	69.710	-226.47E-6 -443.60E-6	-0.25575 -0.36375	7.7728E-6 11.044E-6
1	Grid	9.00000	20.80000	70.00000	-0.31333 -0.42755	69.710	-841.96E-6	-0.51199	15.525E-6
1	Grid Grid Grid	10.80000	20.80000 20.80000 20.80000	70.00000	-0.42755 -0.53257 -0.61554	69.710	-0.0013648 -0.0017840	-0.68187 -0.83236	20.654E-6 25.202E-6 28.502E-6
1	Grid	14.40000 16.20000	20.80000	70.00000	-0.67510	69.710	-0.0020182 -0.0021352	-0.94137 -1.0133	30.682E-6
1	Grid Grid	18.00000 19.80000	20.80000	70.00000	-0.71539 -0.74170	69.710	-0.0021995 -0.0022541	-1.0597 -1.0918	32.091E-6 33.065E-6
	Grid Grid	21.60000	20.80000	70.00000	-0.75886 -0.76909		-0.0023442 -0.0025264	-1.1199 -1.1514	33.914E-6 34.856E-6
	Grid Grid	25.20000 27.00000	20.80000	70.00000	-0.76738 -0.74043	69.710 69.710	-0.0027840 -0.0029375	-1.1777 -1.1677	35.635E-6 35.315E-6
	Grid Grid	28.80000 30.60000	20.80000	70.00000	-0.67599 -0.57078	69.710 69.710	-0.0028387 -0.0024112	-1.0922 -0.93928	33.025E-6 28.403E-6
1	Grid Grid	32.40000 34.20000	20.80000	70.00000 70.00000	-0.43574 -0.29871	69.710	-0.0016549 -890.79E-6	-0.72334 -0.50379	21.891E-6 15.271E-6
1	Grid Grid	36.00000	20.80000	70.00000	-0.18582 0.01270	69.710	-422.85E-6 -29.328E-6	-0.33634 -0.085503	10.211E-6 2.6029E-6
1	Grid Grid	1.80000	22.53333	70.00000	-0.00721 -0.03576	69.710	-46.657E-6 -76.137E-6	-0.11064 -0.14497	3.3673E-6 4.4108E-6
1	Grid	5.40000	22.53333	70.00000	-0.07480	69.710	-126.25E-6	-0.19148	5.8234E-6
1	Grid Grid	7.20000 9.00000	22.53333	70.00000	-0.12516 -0.18507	69.710	-207.92E-6 -326.05E-6	-0.25245 -0.32674	7.6740E-6 9.9271E-6
1	Grid Grid	10.80000	22.53333	70.00000	-0.24899 -0.30926	69.710	-463.32E-6 -584.80E-6	-0.40676 -0.48078	12.353E-6 14.598E-6
1	Grid Grid	14.40000 16.20000	22.53333	70.00000 70.00000	-0.35996 -0.39887	69.710 69.710	-670.48E-6 -724.23E-6	-0.54054 -0.58444	16.411E-6 17.744E-6
1	Grid Grid	18.00000 19.80000	22.53333	70.00000 70.00000	-0.42657 -0.44479	69.710 69.710	-758.57E-6 -785.86E-6	-0.61494 -0.63565	18.670E-6 19.299E-6
1	Grid Grid	21.60000 23.40000	22.53333 22.53333	70.00000	-0.45506 -0.45748	69.710	-817.13E-6 -858.50E-6	-0.64970 -0.65790	19.724E-6 19.970E-6
1	Grid Grid	25.20000 27.00000	22.53333	70.00000	-0.44957 -0.42675	69.710	-899.42E-6 -909.12E-6	-0.65624 -0.63608	19.916E-6 19.301E-6
1	Grid Grid	28.80000 30.60000	22.53333	70.00000	-0.38525 -0.32525	69.710	-857.01E-6 -729.39E-6	-0.58945 -0.51453	17.884E-6 15.613E-6
1	Grid	32.40000	22.53333	70.00000	-0.25279	69.710	-542.61E-6	-0.41946	12.733E-6
1	Grid Grid	34.20000 36.00000	22.53333	70.00000	-0.17876 -0.11354	69.710	-351.36E-6 -206.89E-6	-0.32174 -0.23792	9.7723E-6 7.2314E-6
1	Grid Grid	0.00000 1.80000	24.26667 24.26667	70.00000	0.02266	69.710	-21.755E-6 -32.526E-6	-0.073089 -0.091721	2.2253E-6 2.7921E-6
	Grid Grid	3.60000 5.40000	24.26667 24.26667	70.00000 70.00000	-0.01015 -0.03539	69.710 69.710	-49.088E-6 -73.964E-6	-0.11573 -0.14607	3.5221E-6 4.4445E-6
		\ / : OC							

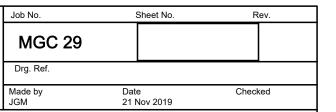
Job No. Sheet No. Rev. MGC 29 Drg. Ref. Made by Date Checked JGM 22 Nov 2019

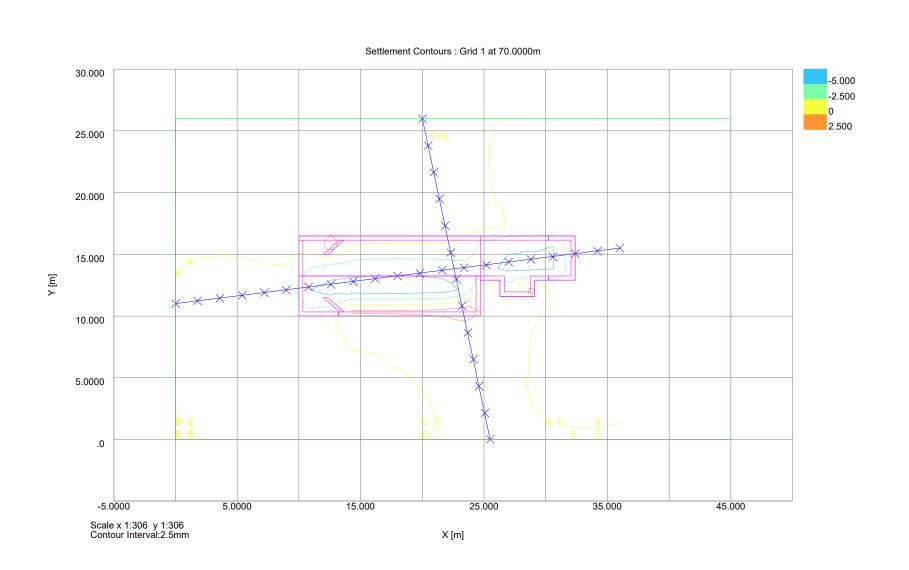
15 Lyncroft Gardens Excavation

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm.]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	Grid	7.20000	24.26667	70.00000	-0.06667	69.710	-109.26E-6	-0.18299	5.5663E-6
1	Grid	9.00000	24.26667	70.00000	-0.10263	69.710	-154.41E-6	-0.22512	6.8462E-6
1	Grid	10.80000	24.26667	70.00000	-0.14045	69.710	-204.04E-6	-0.26910	8.1818E-6
1	Grid	12.60000	24.26667	70.00000	-0.17658	69.710	-249.92E-6	-0.31045	9.4378E-6
1	Grid	14.40000	24.26667	70.00000	-0.20804	69.710	-286.26E-6	-0.34562	10.506E-6
1	Grid	16.20000	24.26667	70.00000	-0.23321	69.710	-312.30E-6	-0.37306	11.340E-6
1	Grid	18.00000	24.26667	70.00000	-0.25172	69.710	-330.53E-6	-0.39293	11.944E-6
	Grid	19.80000	24.26667	70.00000	-0.26392		-344.31E-6	-0.40616	12.346E-6
	Grid	21.60000	24.26667	70.00000	-0.27011	69.710	-356.39E-6	-0.41353	12.569E-6
	Grid	23.40000	24.26667	70.00000	-0.27006		-367.23E-6	-0.41489	12.610E-6
1	Grid	25.20000	24.26667	70.00000	-0.26263	69.710	-373.13E-6	-0.40860	12.417E-6
	Grid	27.00000	24.26667	70.00000	-0.24621		-366.65E-6	-0.39195	11.910E-6
	Grid	28.80000	24.26667	70.00000	-0.21979		-340.67E-6	-0.36281	11.025E-6
	Grid	30.60000	24.26667	70.00000	-0.18421		-293.09E-6	-0.32154	9.7717E-6
	Grid	32.40000	24.26667	70.00000	-0.14266		-230.05E-6	-0.27199	8.2675E-6
	Grid	34.20000	24.26667	70.00000	-0.10006		-164.83E-6	-0.22067	6.7096E-6
	Grid	36.00000	24.26667	70.00000	-0.06119		-110.07E-6	-0.17387	5.2884E-6
	Grid	0.00000	26.00000	70.00000	0.03059		-16.101E-6	-0.062302	1.8971E-6
	Grid	1.80000	26.00000	70.00000	0.02160		-22.840E-6	-0.076144	2.3183E-6
	Grid	3.60000	26.00000	70.00000	0.00918		-32.403E-6	-0.093160	2.8360E-6
	Grid	5.40000	26.00000	70.00000	-0.00688		-45.539E-6	-0.11360	3.4575E-6
	Grid	7.20000	26.00000	70.00000	-0.02633		-62.585E-6	-0.13724	4.1764E-6
	Grid	9.00000	26.00000	70.00000	-0.04829		-82.892E-6	-0.16315	4.9642E-6
	Grid	10.80000	26.00000	70.00000	-0.07123		-104.55E-6	-0.18966	5.7699E-6
	Grid	12.60000	26.00000	70.00000	-0.09333		-125.00E-6	-0.21471	6.5316E-6
	Grid	14.40000	26.00000	70.00000	-0.11299		-142.24E-6	-0.23657	7.1961E-6
	Grid	16.20000	26.00000	70.00000	-0.12914		-155.58E-6	-0.25418	7.7315E-6
	Grid	18.00000	26.00000	70.00000	-0.14126		-165.41E-6	-0.26721	8.1276E-6
	Grid	19.80000	26.00000	70.00000	-0.14925		-172.57E-6	-0.27571	8.3860E-6
	Grid	21.60000	26.00000	70.00000	-0.15304		-177.69E-6	-0.27977	8.5093E-6
	Grid	23.40000	26.00000	70.00000	-0.15239		-180.63E-6	-0.27916	8.4906E-6
	Grid	25.20000	26.00000	70.00000	-0.14679		-180.11E-6	-0.27324	8.3100E-6
	Grid	27.00000	26.00000	70.00000	-0.13572		-174.05E-6	-0.26114	7.9420E-6
	Grid	28.80000	26.00000	70.00000	-0.11906		-160.68E-6	-0.24246	7.3738E-6
	Grid	30.60000	26.00000	70.00000	-0.09753		-139.91E-6	-0.21779	6.6240E-6
	Grid	32.40000	26.00000	70.00000	-0.07291		-114.02E-6	-0.18908	5.7515E-6
	Grid	34.20000	26.00000	70.00000	-0.04764		-87.078E-6	-0.15918	4.8428E-6
1	Grid	36.00000	26.00000	70.00000	-0.02412	69.710	-63.026E-6	-0.13089	3.9828E-6

Results : Consolidation : Displacement Data : Grids

None


Results: Total: Displacement Data: Grids


None

15 Lyncroft Gardens

Excavation and wall loads combined long term

15 Lyncroft Gardens

Excavation and wall loads combined long term

Job No.	Sheet No.	Rev.
MGC 29		
Drg. Ref.		
Made by JGM	Date 21 Nov 2019	Checked

Titles

Job No.: Job Title: Sub-title: Calculation Heading:

MGC 29 15 Lyncroft Gardens Excavation and wall loads combined long term

Initials: Checker: Date Saved: Date Checked: Notes: File Name: File Path:

Lyncoft excavation and wall loads.pdd F:\OneDrive\Documents\Croft Structural Engineers\15 Lyncroft Gardens NW6 1LB\07-GIR Lyncroft\PDISP

History

Date	Time	Ву	Notes
19-Jul-2019	13:04	Maund Geo Consulting	New
19-Jul-2019	14:55	Maund Geo Consulting	
19-Jul-2019	15:12	Maund Geo Consulting	
19-Jul-2019	15:37	Maund Geo Consulting	
25-Jul-2019	13:07	Maund Geo Consulting	
25-Jul-2019	13:53	Maund Geo Consulting	
25-Jul-2019	14:21	Maund Geo Consulting	
02-Aug-2019	11:01	Maund Geo Consulting	
20-Nov-2019	21:02	Maund Geo Consulting	
20-Nov-2019	21:56	Maund Geo Consulting	
21-Nov-2019	09:46	Maund Geo Consulting	
21-Nov-2019	20:37	Maund Geo Consulting	
22-Nov-2019	11:47	Maund Geo Consulting	
22-Nov-2019	12:10	Maund Geo Consulting	
23-Nov-2019	14:21	Maund Geo Consulting	
23-Nov-2019	16:51	Maund Geo Consulting	

Analysis Options

General
Global Poisson's ratio: 0.20
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: 45.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic
Elastic: Yes
Analysis: Boussinesq
Stiffness for horizontal displacement calculations: Weighted average
Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

ref.	Name	Level at top		Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
		[mOD]		[kN/m ²]	[kN/m ²]		
- 1	landan al	70 000	25	11250	140000	0 50000	Mana

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain Factor [%]

Soil Zones

Zone	Name	X min	X max	Y min	Y max	Profile	
1	zone 1	0.0	45.000	0.0	26.000	Soil Profile	1

Polygonal Load D		Position : Polygon : Coords.		No. of Rectangles	Value : Normal (local z)
	[m]	[m]	[%]		[kN/m ²]
1 excavation full		(10,10) (24.7,10) (24.7,12.9) (26.3,12.9) (26.3,11.6) (29.1,11.6) (29.1,12.9) (32.4,12.9) (32.4,12.9) (32.4,13.3) (10,13.3) (10,13.3) (10,10)	10.000		-50.000
2 wall2 60 kN/m		(30.2,16.1) (30.2,16.5) (24.7,16.5) (24.7,16.1) (30.2,16.1)	10.000	1	176.00
3 wall3 30 kN/m	70.00000	(30.2,16.1) (30.2,16.5) (32.4,16.5) (32.4,12.9) (30.2,12.9) (30.2,13.3) (32,13.3) (32,16.1) (30.2,16.1)	10.000	3	86.000
4 wall4 60 kN/m	70.00000	(30.2, 12.9) (29.1, 12.9) (29.1, 11.6) (26.3, 11.6) (26.3, 12.9) (24.7, 12.9) (24.7, 13.3) (26.6, 13.3) (26.6, 13.9) (28.8, 13.9) (28.8, 13.3) (30.2, 13.3) (30.2, 13.2)	10.000	5	176.00
5 bay A 60 kN/m	70.00000	(13.3,10.3) (13.7,10.3)	10.000	11	176.00
6 bay b 60 kN/m	70.00000	(12.3,11.5) (12,11.5) (13.3,10.3) (13.3,16.1) (13.7,16.1)	10.000	11	176.00
7 wall 6 30kN/m	70 00000	(12.3,15) (12,15) (13.3,16.1) (10,16.1) (10.3,16.1)	10.000	2	86.000
		(10.3,10.3) (13.2,10.3) (13.2,10) (10,10) (10,16.1)		_	
8 wall 5 100 kN/m	70.00000	(13.2,10) (24.7,10) (24.7,13.3) (24.4,13.3) (24.4,10.3) (13.2,10.3) (13.2,10)	10.000	2	296.00
9 wall 1 100kN/m	70.00000	(10,16.5) (24.7,16.5)	10.000	1	296.00
10 excavation cella	ar 70.00000	(24.7,16.1) (10,16.1) (10,16.5) (10,13.3) (24.7,13.3) (24.7,16.5) (10,16.5) (10,13.3)	10.000	1	-24.000

Job No.	Sheet No.	Re
MGC 29		

15 Lyncroft Gardens

Excavation and wall loads combined long term

Drg. Ref.		
Made by	Date	Checked
JGM	21 Nov 2019	

Position Position : Polygon : Coords. Position Value : : Polygon Rectangles (local z) tolerance Polygonal Loads' Rectangles
No. Centre: Centre: Angle of Wick
x y local x from Width x Depth y [m] [m] [Degrees] [m] [m] [m] [m]
Load 1: excavation full
(Edge 1 optimal)
1 17.35000 11.62500
2 25.50000 14.70000
3 27.70000 14.05000 3 27.70000 14.05000
4 30.75000 14.70000
Load 2: wall2 60 kN/m
(Edge 1 optimal)
1 27.45000 16.32500
Load 3: wall3 30 kN/m
(Edge 2 optimal)
1 32.22500 14.70000
2 31.30000 13.07500 0.0 3.3000 3.6000 90.000 0.35000 -90.000 2.9000 0.35000 -90.000 0.35000 2.2000 -90.000 0.35000 2.2000 3 31.30000 16.32500 Load 4: wall4 60 kN/m (Edge 2 optimal) 1 29.65000 13.07500 2 28.92500 12.42500 3 27.70000 11.77500 -180.00 1.1000 0.35000 -180.00 0.35000 1.6500 -180.00 2.1000 0.35000 3 27.70000 11.77500 42.42500 5 25.50000 13.07500 525.50000 13.07500 525.50000 13.07500 525.50000 13.07500 526.50000 13.07500 52.50605 10.37605 313.51341 10.39342 413.45678 10.41079 513.40414 10.42816 612.82500 10.92500 712.24586 11.42184 812.19122 11.43921 912.13659 11.45658 -180.00 2.1000 0.35000 -180.00 0.35000 1.6500 -180.00 1.6000 0.35000 138.50 0.052430 0.023190 138.50 0.052430 0.023190
138.50 0.052430 0.069570
138.50 0.052430 0.11595
138.50 0.052430 0.11595
138.50 0.052430 0.20871
138.50 1.4735 0.23190
138.50 0.052430 0.20871
138.50 0.052430 0.16233 8 12.19122 11.49518 9 12.13659 11.45658 10 12.08195 11.47395 11 12.02732 11.49132 Load 6: bay b 60 kN/m (Edge 1 optimal) 1 12.02732 15.00868 138.50 0.052430 0.11595 138.50 0.052430 0.069570 138.50 0.052430 0.023190 1 12.02732 15.00868 2 12.08195 15.02605 3 12.13659 15.04342 4 12.19122 15.06079 5 12.24586 15.07816 6 12.82500 15.57500 11.496 0.052430 0.069570 41.496 0.052430 0.11595 41.496 0.052430 0.116233 41.496 0.052430 0.20871 41.496 1.4735 0.23190 41.496 0.052430 0.20871 41.496 0.052430 0.16233 41.496 0.052430 0.16233 41.496 0.052430 0.11595 41.496 0.052430 0.069570 41.496 0.052430 0.023190 7 13.40414 16.07184 8 13.45878 16.08921 9 13.51341 16.10658 10 13.56805 16.12395 11 13.62268 16.14132 11 13.62268 16.14132 Load 7 : wall 6 30kN/m (Edge 2 optimal) 1 10.17500 13.07500 2 11.77500 10.17500 Load 8: wall 5 100 kN/m (Edge 1 optimal) 0.0 0.35000 6.1500 0.0 2.8500 0.35000 ge 1 optimal) 1 18.77500 10.17500 2 24.52500 11.62500 2 24.52500 11.62500 Load 9: wall 1 100kN/m (Edge 2 optimal) 1 17.35000 16.32500 Load 10: excavation cellar (Edge 1 optimal) 1 17.35000 14.87500 0.0 14.700 0.35000 0.0 14.700 3.2500 Displacement Lines Y1 Z1 ¥2 Intervals Calculate Detai [m] [m] [m] [m] [m] [m] Long section 0.00000 11.00000 70.00000 36.00000 15.50000 70.00000 Cross Secton 25.50000 0.00000 70.00000 20.00000 26.00000 70.00000 20 Yes Yes 12 Yes Yes Displacement Grids Intervals Extrusion: Extrusion: Calculate Detailed Along Distance Intervals Results Line [No.] [m] [No.] Y1 z1 [m] [m] [m] [m] [m] [m] Global X 0.00000 0.00000 70.00000 - 26.00000 70.00000 15 36.00000 20 Yes Yes Results: Immediate: Load Centres: Polygonal Stress: Calc. Level [mOD] Stress: Stress: Vertical Sum Princ. kN/m²] [µ]
-99.081 -0.0019449
77.061 0.0057674
-79.713 -0.0023472
-68.989 -0.0027656
16.976 0.0037952
87.161 0.0043431 [mOD] [kN/m²] [m] [m] 21.74929 12.73088 27.45000 16.32500 31.66747 14.70000 27.53025 12.47315 12.82500 10.92500 12.82500 15.57500 1 excavation full 2.99353 -4.60508 -3.46897 0.15873 4.97538 -44.980 3.4036 174.36 -23.709 10.68167 20.07274 12.15667 10.50226 70.00000 -4.55011 0.12206 -76.647 -0.0023149 30.190 -793.42E-6 16.32500 14.87500 Results: Consolidation: Load Centres: Polygonal Results: Total: Load Centres: Polygonal None Results: Immediate: Displacement Data: Lines Calc. Level [mOD] [m]

15 Lyncroft Gardens

Excavation and wall loads combined long term

Job No.	Sheet No.	Rev.
MGC 29		
Drg. Ref.		
Made by JGM	Date 21 Nov 2019	Checked

Ref.	Name	x	Y	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
	Long section	0.00000	11.00000	70.00000	-0.00361		-6.7074E-6		0.0
	Long section	1.80000	11.22500	70.00000	-0.01060		-15.698E-6	-0.021136	0.0
	Long section	3.60000	11.45000	70.00000	-0.02438		-44.603E-6	-0.038506	1.5238E-6
1	Long section	5.40000	11.67500	70.00000	-0.05467		-166.78E-6	-0.084483	3.3351E-6
	Long section	7.20000	11.90000	70.00000	-0.13515		-880.92E-6	-0.24888	9.7785E-6
1	Long section	9.00000	12.12500	70.00000	-0.42819	69.730	0.018594		44.177E-6
	Long section	10.80000	12.35000	70.00000	-4.84693	69.730	-47.380		-0.0023149
	Long section	12.60000	12.57500	70.00000	-6.20714	69.730	-49.563		-0.0019461
	Long section	14.40000	12.80000	70.00000	-6.39042	69.730	-49.123		-0.0019266
	Long section	16.20000	13.02500	70.00000	-6.21941	69.730	-46.773		-0.0018810
	Long section	18.00000	13.25000	70.00000	-5.53903	69.730	-36.962		-0.0012493
	Long section	19.80000	13.47500	70.00000	-4.75539	69.730	-27.145		-631.03E-6
	Long section	21.60000	13.70000	70.00000	-4.20046	69.730	-24.772		-641.51E-6
	Long section	23.40000	13.92500	70.00000	-3.41781	69.730	-24.125		-826.25E-6
	Long section	25.20000	14.15000	70.00000	-4.81939	69.730	-48.667		-0.0023149
	Long section	27.00000	14.37500	70.00000	-6.03854	69.730	-49.770		-0.0019433
	Long section	28.80000	14.60000	70.00000	-6.16898	69.730	-49.768		-0.0019305
	Long section	30.60000	14.82500	70.00000	-5.83170	69.730	-49.712		-0.0020001
	Long section	32.40000	15.05000	70.00000	-0.45383	69.730	13.320	7.4005	0.0012930
	Long section	34.20000	15.27500	70.00000	-0.27947	69.730		-0.56964	22.413E-6
	Long section	36.00000	15.50000	70.00000	-0.12078		-486.65E-6	-0.18842	7.4244E-6
	Cross Secton	25.50000	0.00000	70.00000	0.00406	69.730		-0.0076120	0.0
	Cross Secton	25.04167	2.16667	70.00000	0.00547	69.730		-84.668E-6	0.0
	Cross Secton	24.58333	4.33333	70.00000	0.01824	69.730	266.80E-6		-1.6432E-6
	Cross Secton	24.12500	6.50000	70.00000	0.08960	69.730	0.0028165		-12.153E-6
	Cross Secton	23.66667	8.66667	70.00000	0.63631	69.730	0.16720		-161.26E-6
	Cross Secton	23.20833	10.83333	70.00000	-2.18817	69.730	-43.343		-0.0031071
	Cross Secton	22.75000	13.00000	70.00000	-5.47279	69.730	-47.173		-0.0020375
	Cross Secton	22.29167	15.16667	70.00000	-1.92685	69.730	-23.275		-0.0012547
	Cross Secton	21.83333	17.33333	70.00000	1.51911	69.730	1.0400		-462.11E-6
	Cross Secton	21.37500	19.50000	70.00000	0.27394	69.730	0.0087096		-33.868E-6
	Cross Secton	20.91667	21.66667	70.00000	0.09585	69.730	816.31E-6		-7.0981E-6
	Cross Secton	20.45833	23.83333	70.00000	0.04619	69.730	156.81E-6		-2.1488E-6
2	Cross Secton	20.00000	26.00000	70.00000	0.02727	69.730	42.862E-6	0.019192	0.0

Results: Consolidation: Displacement Data: Lines

Results: Total: Displacement Data: Lines

Results : Immediate : Displacement Data : Grids

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
l		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	Grid	0.00000	0.00000	70.00000	0.00187	69.730	-1.9723E-6		0.0
	Grid	1.80000	0.00000	70.00000	0.00044	69.730	-2.8753E-6	-0.0089632	0.0
1	Grid	3.60000	0.00000	70.00000	-0.00144	69.730	-4.1040E-6	-0.011228	0.0
	Grid	5.40000	0.00000	70.00000	-0.00369	69.730	-5.6118E-6	-0.013819	0.0
	Grid	7.20000	0.00000	70.00000	-0.00605		-7.1339E-6	-0.016484	0.0
	Grid	9.00000	0.00000	70.00000	-0.00813	69.730	-8.1010E-6	-0.018770	0.0
	Grid	10.80000	0.00000	70.00000	-0.00941	69.730	-7.7873E-6	-0.020137	0.0
1		12.60000	0.00000	70.00000	-0.00956	69.730	-5.7943E-6	-0.020215	0.0
	Grid	14.40000	0.00000	70.00000	-0.00850	69.730 69.730	-2.4571E-6	-0.019019	0.0
	Grid	16.20000	0.00000	70.00000	-0.00646		1.4077E-6	-0.016889	0.0
	Grid Grid	18.00000 19.80000	0.00000	70.00000	-0.00381 -0.00097	69.730	5.1077E-6 8.2197E-6	-0.014259 -0.011552	0.0
	Grid	21.60000	0.00000	70.00000	0.00157	69.730 69.730	10.281E-6		0.0
1	Grid	23.40000	0.00000	70.00000	0.00333	69.730	10.201E-0	-0.0078228	0.0
	Grid	25.20000	0.00000	70.00000	0.00405	69.730		-0.0075522	0.0
	Grid	27.00000	0.00000	70.00000	0.00382	69.730	6.3367E-6		0.0
1	Grid	28.80000	0.00000	70.00000	0.00309	69.730	3.1355E-6	-0.0093200	0.0
	Grid	30.60000	0.00000	70.00000	0.00233	69.730	0.0	-0.010223	0.0
1	Grid	32.40000	0.00000	70.00000	0.00189	69.730	-1.2107E-6	-0.010602	0.0
1	Grid	34.20000	0.00000	70.00000	0.00187	69.730	-2.0323E-6	-0.010387	0.0
	Grid	36.00000	0.00000	70.00000	0.00221	69.730	-2.2199E-6	-0.0096969	0.0
1	Grid	0.00000	1.73333	70.00000	0.00060	69.730	-2.7586E-6	-0.0085035	0.0
	Grid	1.80000	1.73333	70.00000	-0.00165	69.730	-4.3045E-6	-0.011151	0.0
	Grid	3.60000	1.73333	70.00000	-0.00472	69.730	-6.6298E-6	-0.014599	0.0
	Grid	5.40000	1.73333	70.00000	-0.00857	69.730	-9.8082E-6	-0.018825	0.0
1	Grid	7.20000	1.73333	70.00000	-0.01283	69.730	-13.355E-6	-0.023437	0.0
1	Grid Grid	9.00000	1.73333	70.00000	-0.01672 -0.01914	69.730 69.730	-15.655E-6 -14.072E-6	-0.027474 -0.029563	1.0892E-6 1.1723E-6
	Grid	12.60000	1.73333	70.00000	-0.01914		-6.9389E-6	-0.029363	1.1400E-6
	Grid	14.40000	1.73333	70.00000	-0.01928	69.730	4.0880E-6	-0.025230	1.0024E-6
	Grid	16.20000	1.73333	70.00000	-0.01711	69.730	15.423E-6	-0.020212	0.0
1	Grid	18.00000	1.73333	70.00000	-0.00846	69.730	25.046E-6	-0.014662	0.0
	Grid	19.80000	1.73333	70.00000	-0.00338	69.730	32.711E-6	-0.0091999	0.0
1	Grid	21.60000	1.73333	70.00000	0.00115	69.730	37.665E-6	-0.0046658	0.0
	Grid	23.40000	1.73333	70.00000	0.00409	69.730		-0.0023008	0.0
	Grid	25.20000	1.73333	70.00000	0.00476	69.730		-0.0029052	0.0
1	Grid	27.00000	1.73333	70.00000	0.00347	69.730	21.058E-6	-0.0058575	0.0
1	Grid	28.80000	1.73333	70.00000	0.00134	69.730	10.681E-6	-0.0094872	0.0
	Grid	30.60000	1.73333	70.00000	-0.00052	69.730	3.0205E-6	-0.012318	0.0
	Grid	32.40000	1.73333	70.00000	-0.00147	69.730	-1.4301E-6	-0.013701	0.0
	Grid	34.20000	1.73333	70.00000	-0.00143		-3.3450E-6	-0.013692	0.0
	Grid	36.00000	1.73333	70.00000	-0.00066	69.730	-3.6905E-6	-0.012704	0.0
	Grid	0.00000	3.46667	70.00000	-0.00089	69.730	-3.8108E-6	-0.010084	0.0
	Grid Grid	1.80000	3.46667	70.00000	-0.00425 -0.00910	69.730 69.730	-6.4506E-6	-0.013848 -0.019179	0.0
	Grid	5.40000	3.46667	70.00000	-0.00910	69.730	-10.951E-6	-0.019179	1.0449E-6
	Grid	7.20000	3.46667	70.00000	-0.01360	69.730	-18.076E-6	-0.035000	1.3866E-6
1		9.00000	3.46667	70.00000	-0.03386	69.730	-34.361E-6	-0.043022	1.7044E-6
	Grid	10.80000	3.46667	70.00000	-0.03547		-27.482E-6	-0.046403	1.8394E-6
	Grid	12.60000	3.46667	70.00000	-0.03499	69.730	3.1958E-6	-0.041808	1.6606E-6
	Grid	14.40000	3.46667	70.00000	-0.02976	69.730	48.199E-6	-0.030813	
	Grid	16.20000	3.46667	70.00000	-0.02195	69.730	87.120E-6	-0.018135	0.0
	Grid	18.00000	3.46667	70.00000	-0.01306	69.730	114.06E-6	-0.0061104	0.0
1	Grid	19.80000	3.46667	70.00000	-0.00370	69.730	134.19E-6	0.0053002	0.0
	Grid	21.60000	3.46667	70.00000	0.00486	69.730	148.05E-6	0.015020	0.0
	Grid	23.40000	3.46667	70.00000	0.01008	69.730	145.03E-6	0.019280	0.0
	Grid	25.20000	3.46667	70.00000	0.00987	69.730	115.50E-6	0.014855	0.0
	Grid	27.00000	3.46667	70.00000	0.00521	69.730	71.456E-6	0.0041038	0.0
	Grid	28.80000	3.46667	70.00000	-0.00068	69.730	33.819E-6		0.0
1	Grid	30.60000	3.46667	70.00000	-0.00513	69.730	10.107E-6	-0.014948	0.0
	Grid	32.40000	3.46667	70.00000	-0.00712		-1.8852E-6	-0.018634	0.0
	Grid Grid	34.20000	3.46667 3.46667	70.00000	-0.00524	69.730 69.730	-6.2683E-6 -6.6700E-6	-0.018974 -0.017304	0.0
	Grid	0.00000	5.20000	70.00000	-0.00324	69.730	-5.1033E-6	-0.017304	0.0
	Grid	1.80000	5.20000	70.00000	-0.00246	69.730	-9.4847E-6	-0.011724	0.0
1	Grid	3.60000	5.20000	70.00000	-0.01456	69.730	-18.159E-6	-0.016969	0.0
	Grid	5.40000	5.20000	70.00000	-0.02539	69.730	-34.765E-6	-0.023194	1.4968E-6
1	Grid	7.20000	5.20000	70.00000	-0.03979	69.730	-62.297E-6	-0.055382	2.1919E-6
	Grid	9.00000	5.20000	70.00000	-0.05527	69.730	-90.020E-6	-0.074206	2.9361E-6
		10.80000	5.20000	70.00000	-0.06481	69.730	-60.800E-6	-0.080851	3.2035E-6
	Grid	12.60000	5.20000	70.00000	-0.06077	69.730	114.70E-6	-0.058996	2.3565E-6
1	Grid	14.40000	5.20000	70.00000	-0.04549	69.730	370.12E-6	-0.017510	0.0
	Grid	16.20000	5.20000	70.00000	-0.02819	69.730	538.09E-6	0.018540	0.0
	Grid	18.00000	5.20000	70.00000	-0.01168	69.730	618.65E-6		-1.7113E-6
	Grid	19.80000	5.20000	70.00000	0.00582	69.730	674.64E-6		-2.6773E-6
1	Grid	21.60000	5.20000	70.00000	0.02347	69.730	724.77E-6	0.093319	-3.6195E-6

15 Lyncroft Gardens

Excavation and wall loads combined long term

Job No.	Sheet No.	Rev.
MGC 29		
Drg. Ref.		
Made by	Date 21 Nov 2019	Checked

Ref.	Name	x	y	z	δz	Stress: Calc.	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
						Level	vertical	sum Princ.	strain
	l Grid	[m] 23.40000	[m] 5.20000	[mOD] 70.00000	[mm] 0.03413	[mOD] 69.730	[kN/m ²] 704.12E-6	[kN/m²]	[µ] -3.9976E-6
1	l Grid	25.20000	5.20000	70.00000	0.02957	69.730	517.76E-6	0.080194	-3.1229E-6
	l Grid l Grid	27.00000 28.80000	5.20000	70.00000	0.01359	69.730 69.730	271.57E-6 111.18E-6	0.0025130	-1.4802E-6 0.0
	l Grid l Grid	30.60000 32.40000	5.20000 5.20000	70.00000	-0.01303 -0.01699	69.730 69.730	31.036E-6 -3.5573E-6	-0.018651 -0.027508	0.0 1.0920E-6
1	l Grid	34.20000	5.20000	70.00000	-0.01603	69.730	-13.628E-6	-0.028134	1.1156E-6
	l Grid l Grid	36.00000 0.00000	5.20000 6.93333	70.00000	-0.01247 -0.00380	69.730 69.730	-13.138E-6 -6.4424E-6	-0.024690 -0.013155	0.0
1	l Grid	1.80000	6.93333	70.00000	-0.01004	69.730	-13.232E-6	-0.020118	0.0
	l Grid l Grid	3.60000 5.40000	6.93333	70.00000	-0.02058 -0.03801	69.730 69.730	-29.128E-6 -67.334E-6	-0.032377 -0.054428	1.2823E-6 2.1534E-6
	l Grid l Grid	7.20000 9.00000	6.93333	70.00000	-0.06513 -0.10042	69.730 69.730	-151.95E-6 -274.25E-6	-0.092562 -0.14599	3.6577E-6 5.7647E-6
	l Grid l Grid	10.80000	6.93333	70.00000 70.00000	-0.12539 -0.10274	69.730 69.730	-159.95E-6 0.0014579	-0.17079 -0.046607	6.7635E-6 2.0245E-6
1	l Grid	14.40000	6.93333	70.00000	-0.04482	69.730	0.0040567	0.17531	-6.4786E-6
	l Grid l Grid	16.20000 18.00000	6.93333	70.00000	-0.00264 0.02630	69.730 69.730	0.0050632	0.29673 0.35218	-11.181E-6 -13.354E-6
1	l Grid l Grid	19.80000 21.60000	6.93333	70.00000 70.00000	0.05864	69.730 69.730	0.0054626 0.0057201	0.40471	-15.421E-6 -18.215E-6
1	l Grid	23.40000	6.93333	70.00000	0.12881	69.730	0.0056336	0.51248	-19.680E-6
	l Grid l Grid	25.20000	6.93333	70.00000	0.10182	69.730 69.730	0.0035119	0.36775 0.15496	-14.185E-6 -6.0044E-6
	l Grid l Grid	28.80000 30.60000	6.93333	70.00000	-0.00382 -0.02782	69.730 69.730	421.22E-6 109.67E-6	0.033462	-1.2786E-6 0.0
1	l Grid	32.40000	6.93333	70.00000	-0.03513	69.730	-9.9895E-6	-0.045791	1.8172E-6
1	l Grid l Grid	34.20000 36.00000	6.93333	70.00000	-0.03162 -0.02375	69.730 69.730	-34.341E-6 -27.982E-6	-0.045419 -0.037028	1.7995E-6 1.4671E-6
	l Grid l Grid	0.00000 1.80000	8.66667 8.66667	70.00000	-0.00449 -0.01193	69.730 69.730	-7.3607E-6 -16.610E-6	-0.013938 -0.022380	0.0
1	l Grid	3.60000	8.66667	70.00000	-0.02562	69.730	-42.286E-6	-0.039085	1.5471E-6
1	l Grid l Grid	5.40000 7.20000	8.66667 8.66667	70.00000 70.00000	-0.05149 -0.10089	69.730 69.730	-121.67E-6 -356.50E-6	-0.075083 -0.15666	2.9672E-6 6.1787E-6
	l Grid l Grid	9.00000	8.66667 8.66667	70.00000	-0.18713 -0.28735	69.730 69.730	379.30E-6 0.0066000	-0.30935 -0.47722	12.330E-6 19.737E-6
	l Grid l Grid	12.60000	8.66667	70.00000	-0.15357 0.19453	69.730	0.045120	0.65088	-20.472E-6
1	l Grid	16.20000	8.66667 8.66667	70.00000 70.00000	0.29532	69.730 69.730	0.15492 0.16348	3.3146 3.7684	-113.17E-6 -130.17E-6
	l Grid l Grid	18.00000 19.80000	8.66667 8.66667	70.00000	0.33587	69.730 69.730	0.16399 0.16441	3.8582 3.9627	-133.68E-6 -137.78E-6
1	l Grid	21.60000	8.66667	70.00000	0.49593	69.730 69.730	0.16608	4.2112	-147.45E-6 -162.32E-6
1	l Grid l Grid	23.40000 25.20000	8.66667 8.66667	70.00000	0.63133	69.730	0.064889	2.4601	-89.964E-6
	l Grid l Grid	27.00000 28.80000	8.66667 8.66667	70.00000 70.00000	0.11819	69.730 69.730	0.0074497	0.58160 0.16003	-22.209E-6 -6.0457E-6
	l Grid l Grid	30.60000	8.66667 8.66667	70.00000 70.00000	-0.05773 -0.07099	69.730 69.730	628.76E-6 -36.369E-6	-0.028831 -0.089594	1.2198E-6 3.5536E-6
1	l Grid	34.20000	8.66667	70.00000	-0.05879	69.730	-98.982E-6	-0.080766	3.1955E-6
	l Grid l Grid	36.00000 0.00000	8.66667 10.40000	70.00000	-0.04092 -0.00407	69.730 69.730	-62.987E-6 -7.1571E-6	-0.058014 -0.013562	2.2963E-6 0.0
	l Grid l Grid	1.80000 3.60000	10.40000	70.00000 70.00000	-0.01172 -0.02684	69.730 69.730	-17.221E-6 -49.450E-6	-0.022349 -0.041410	0.0 1.6386E-6
1	l Grid	5.40000	10.40000	70.00000	-0.05919	69.730	-176.76E-6	-0.089938	3.5505E-6
1	l Grid l Grid	7.20000 9.00000	10.40000	70.00000	-0.13646 -0.33688	69.730 69.730	-754.13E-6 0.027960	-0.23896 -0.55689	9.3996E-6 25.446E-6
	l Grid l Grid	10.80000	10.40000	70.00000	-2.11746 -1.55167	69.730 69.730	-17.052 -13.634	-28.706 -13.064	-891.51E-6 -0.0011055
1	l Grid	14.40000	10.40000	70.00000	2.77544	69.730	53.796	85.959	0.0029954
	l Grid l Grid	16.20000 18.00000	10.40000	70.00000	2.79715 2.82754	69.730 69.730	53.713 53.713		0.0030021
	l Grid l Grid	19.80000 21.60000	10.40000	70.00000	2.90553 3.13654	69.730 69.730	53.714 53.722	85.770 86.485	0.0029932
1	l Grid l Grid	23.40000 25.20000	10.40000	70.00000	4.05917 1.77590	69.730	54.111 4.0131	93.494 27.099	0.0027337
1	l Grid	27.00000	10.40000	70.00000	0.33364	69.730 69.730	0.12383	3.0089	-598.02E-6 -104.74E-6
	l Grid l Grid	28.80000 30.60000	10.40000	70.00000	0.09494	69.730 69.730	0.093439	1.8284	-61.478E-6 -1.1804E-6
1	l Grid l Grid	32.40000 34.20000	10.40000	70.00000 70.00000	-0.14970 -0.10621	69.730 69.730	-114.17E-6 -292.35E-6	-0.21816 -0.15657	8.6499E-6 6.1828E-6
1	l Grid	36.00000	10.40000	70.00000	-0.06548	69.730	-141.97E-6	-0.092526	3.6574E-6
	l Grid l Grid	1.80000	12.13333	70.00000	-0.00229 -0.00857	69.730 69.730	-5.2793E-6 -12.378E-6	-0.011712 -0.018812	0.0
	l Grid l Grid	3.60000 5.40000	12.13333 12.13333	70.00000	-0.02126 -0.05009	69.730	-36.020E-6 -141.92E-6	-0.034414 -0.077147	1.3624E-6 3.0467E-6
1	l Grid	7.20000	12.13333	70.00000	-0.12968	69.730	-798.65E-6	-0.23700	9.3164E-6 44.092E-6
	l Grid l Grid	9.00000	12.13333	70.00000	-0.42767 -4.88010	69.730 69.730	0.018670 -47.423	-1.0543 -84.270	-0.0023032
1	l Grid l Grid	12.60000 14.40000	12.13333	70.00000	-6.10612 -6.46640	69.730 69.730	-49.347 -49.800	-98.038 -102.00	-0.0019857 -0.0018823
	l Grid l Grid	16.20000 18.00000	12.13333	70.00000	-6.55407 -6.55419	69.730	-49.812 -49.812		-0.0018674 -0.0018669
1	l Grid	19.80000	12.13333	70.00000	-6.47902	69.730 69.730	-49.812	-102.25	-0.0018736
	l Grid l Grid	21.60000 23.40000	12.13333	70.00000	-6.18933 -4.54085	69.730 69.730	-49.800 -49.019	-101.27 -87.534	-0.0019113 -0.0023637
	l Grid l Grid	25.20000 27.00000	12.13333	70.00000 70.00000	1.51257 -0.81445	69.730 69.730	4.7641 -18.115	30.841	-657.18E-6 -0.0020933
1	l Grid	28.80000	12.13333	70.00000	3.04769	69.730	58.651	78.561	0.0038676
1	l Grid l Grid	30.60000 32.40000	12.13333	70.00000	-0.38004 -0.32688	69.730 69.730	0.19687 0.068733	-0.22172	-5.6929E-6 16.993E-6
	l Grid l Grid	34.20000	12.13333	70.00000	-0.18222 -0.09541		-388.03E-6 -292.82E-6	-0.30428 -0.14147	12.037E-6 5.5833E-6
1	l Grid	0.00000	13.86667 13.86667	70.00000	0.00063			-0.0085955 -0.012010	0.0
1	l Grid l Grid	3.60000	13.86667	70.00000	-0.00874	69.730	3.1084E-6	-0.017294	0.0
1	l Grid l Grid	5.40000 7.20000	13.86667 13.86667	70.00000	-0.01973 -0.04188	69.730 69.730	60.089E-6 930.55E-6	-0.024545 -0.018686	0.0
1	l Grid l Grid	9.00000	13.86667 13.86667	70.00000 70.00000	-0.08092 -2.34202	69.730 69.730	0.088073 -22.024	0.77849	-20.423E-6 -0.0011195
1	l Grid	12.60000	13.86667	70.00000	-3.60700	69.730	-24.243	-53.321	-770.71E-6
	l Grid l Grid	14.40000 16.20000	13.86667 13.86667	70.00000	-3.98830 -4.14326	69.730 69.730	-24.314 -24.323		-698.86E-6 -677.21E-6
1	l Grid l Grid	18.00000 19.80000	13.86667	70.00000	-4.17744 -4.14121	69.730 69.730	-24.324 -24.324	-56.010 -55.923	-673.62E-6 -677.01E-6
1	l Grid	21.60000	13.86667	70.00000	-3.98840	69.730	-24.319	-55.431	-695.94E-6
1	l Grid l Grid	23.40000 25.20000	13.86667 13.86667	70.00000	-3.44519 -4.26810	69.730 69.730	-24.190 -47.285	-51.956 -78.022	-818.61E-6 -0.0025349
1	l Grid l Grid	27.00000 28.80000	13.86667 13.86667	70.00000	-5.65827 -5.57005	69.730 69.730	-49.389 -48.745	-96.041 -92.166	-0.0020700 -0.0021472
1	l Grid	30.60000	13.86667	70.00000	-5.16026 -0.29405	69.730	-48.658	-89.405	-0.0022464
1	l Grid l Grid	32.40000 34.20000	13.86667 13.86667	70.00000 70.00000	-0.26934		13.478 -0.0013750	-0.53788	0.0012420 21.196E-6
	l Grid l Grid	36.00000 0.00000	13.86667 15.60000	70.00000 70.00000	-0.11943 0.00401	69.730 69.730	-480.20E-6 1.7228E-6	-0.18645 -0.0049988	7.3470E-6 0.0
1	l Grid l Grid	1.80000 3.60000	15.60000 15.60000	70.00000	0.00405	69.730 69.730		-0.0041557 0.0026767	0.0
1	l Grid	5.40000	15.60000	70.00000	0.01767	69.730	297.26E-6	0.039142	-1.5190E-6
1	l Grid l Grid	7.20000 9.00000	15.60000 15.60000	70.00000	0.07630 0.48645	69.730 69.730	0.0033205 0.18480	3.7511	-10.628E-6 -126.95E-6
1	l Grid l Grid	10.80000 12.60000	15.60000 15.60000	70.00000	0.52070 3.35565	69.730 69.730	-17.748 32.325	-3.1161	-0.0019906 0.0013171
1	l Grid	14.40000	15.60000	70.00000	-0.06533	69.730	-19.551	-12.147	-0.0018468
1	l Grid l Grid	16.20000 18.00000	15.60000 15.60000	70.00000	-0.36382 -0.42152	69.730 69.730	-19.671 -19.672	-14.497	-0.0017743 -0.0017680
	l Grid l Grid	19.80000 21.60000	15.60000 15.60000	70.00000 70.00000	-0.43017 -0.43642	69.730 69.730	-19.672 -19.673	-14.510 -14.533	-0.0017674 -0.0017666
	l Grid	23.40000	15.60000	70.00000	-0.66202	69.730	-19.720	-15.934	-0.0017165
	Crid								
1	l Grid l Grid l Grid	25.20000 27.00000 28.80000	15.60000 15.60000 15.60000	70.00000 70.00000 70.00000	-3.69625 -4.67270 -4.87021	69.730 69.730 69.730	-46.404 -47.210 -47.226	-80.545	-0.0026837 -0.0024258 -0.0023947

15 Lyncroft Gardens

Excavation and wall loads combined long term

Job No.	Sheet No.	Rev.	
MGC 29			
Drg. Ref.			
Made by	Date 21 Nov 2019	Checked	

Ref.	Name	×	У	z	δz	Stress:	Stress:	Stress:	Vert.
					-	Calc. Level	Vertical	Sum Princ.	Strain
	Grid	[m] 30.60000	[m] 15.60000	[mOD] 70.00000	[mm] -5.02285	[mOD] 69.730	[kN/m²] -48.228		[µ] -0.0022926
1	Grid Grid Grid	32.40000 34.20000 36.00000	15.60000 15.60000 15.60000	70.00000 70.00000 70.00000	-0.26728 -0.26942 -0.12005	69.730 69.730 69.730	13.531 -0.0012949 -479.05E-6	9.5706 -0.53407 -0.18690	0.0012320 21.054E-6 7.3650E-6
1	Grid Grid	0.00000	17.33333 17.33333	70.00000 70.00000	0.00701 0.00972	69.730 69.730	4.3236E-6 15.764E-6	-0.0018813 0.0019529	0.0
1	Grid Grid	3.60000 5.40000	17.33333 17.33333	70.00000 70.00000	0.01727 0.04028	69.730 69.730	64.392E-6 334.79E-6	0.015605 0.067849	0.0 -2.6545E-6
1	Grid Grid Grid	7.20000 9.00000 10.80000	17.33333 17.33333 17.33333	70.00000 70.00000 70.00000	0.12084 0.47950 1.53849	69.730 69.730 69.730	0.0027925 0.067871 0.97663	2.4058	-12.414E-6 -87.453E-6 -428.61E-6
1	Grid Grid	12.60000 14.40000	17.33333	70.00000	1.88528	69.730 69.730	1.0832	16.302	-518.34E-6 -498.09E-6
1	Grid Grid	16.20000 18.00000	17.33333 17.33333	70.00000	1.67069 1.62346	69.730 69.730	1.0428	15.118 15.001	-476.11E-6 -471.62E-6
	Grid Grid Grid	19.80000 21.60000 23.40000	17.33333 17.33333 17.33333	70.00000 70.00000 70.00000	1.59416 1.53424 1.29197	69.730 69.730 69.730	1.0416 1.0405 1.0190	14.949 14.802 13.769	-469.56E-6 -463.87E-6 -425.38E-6
1	Grid Grid Grid	25.20000 27.00000	17.33333	70.00000 70.00000 70.00000	0.45435 -0.05978	69.730 69.730	0.52172 0.39870	6.6151 3.5879	-200.54E-6 -94.981E-6
1	Grid Grid	28.80000 30.60000	17.33333 17.33333	70.00000	-0.23658 -0.45937	69.730 69.730	0.38697 0.12581	2.9043	-69.232E-6 18.929E-6
1	Grid Grid Grid	32.40000 34.20000 36.00000	17.33333 17.33333 17.33333	70.00000 70.00000 70.00000	-0.33874 -0.18607 -0.09751	69.730 69.730 69.730	0.049048 -457.31E-6 -296.71E-6	-0.34857 -0.31001 -0.14365	19.686E-6 12.256E-6 5.6692E-6
1	Grid Grid	0.00000	19.06667	70.00000	0.00905	69.730 69.730	5.2637E-6 16.185E-6	169.10E-6 0.0049862	0.0
1	Grid Grid	3.60000 5.40000	19.06667 19.06667	70.00000	0.02199 0.04337	69.730 69.730	54.586E-6 212.74E-6	0.018585 0.058716	0.0 -2.3063E-6
1	Grid Grid	7.20000 9.00000	19.06667 19.06667	70.00000	0.09608	69.730 69.730	994.79E-6 0.0049243		-7.2291E-6 -21.794E-6
1	Grid Grid Grid	10.80000 12.60000 14.40000	19.06667 19.06667 19.06667	70.00000 70.00000 70.00000	0.38575 0.48275 0.48734	69.730 69.730 69.730	0.013663 0.017876 0.017952	1.2007 1.5509 1.5703	-46.054E-6 -59.460E-6 -60.221E-6
1	Grid Grid	16.20000 18.00000	19.06667 19.06667	70.00000 70.00000	0.45836 0.43156	69.730 69.730	0.017290 0.017057	1.4973 1.4482	-57.399E-6 -55.479E-6
1	Grid Grid	19.80000 21.60000	19.06667 19.06667	70.00000	0.40323	69.730 69.730	0.016917	1.3063	-53.713E-6 -49.913E-6
1	Grid Grid Grid	23.40000 25.20000 27.00000	19.06667 19.06667 19.06667	70.00000 70.00000 70.00000	0.24342 0.06438 -0.09023	69.730 69.730 69.730	0.014240 0.0081824 0.0040152	1.0285 0.48435 0.046922	-39.145E-6 -18.259E-6 -1.3850E-6
1	Grid Grid	28.80000 30.60000	19.06667 19.06667	70.00000	-0.17347 -0.20227	69.730 69.730	0.0023294 109.86E-6	-0.16972 -0.30161	7.0174E-6 11.990E-6
1	Grid Grid	32.40000 34.20000	19.06667 19.06667	70.00000	-0.16993 -0.11348	69.730 69.730	-559.41E-6 -342.28E-6	-0.26988 -0.16836	10.651E-6 6.6450E-6
	Grid Grid Grid	36.00000 0.00000 1.80000	19.06667 20.80000 20.80000	70.00000 70.00000 70.00000	-0.06888 0.01001 0.01408	69.730 69.730 69.730	-151.09E-6 4.8894E-6 12.973E-6	-0.096340 0.0011281 0.0054727	3.8078E-6 0.0 0.0
1	Grid Grid	3.60000 5.40000	20.80000	70.00000 70.00000	0.02190	69.730 69.730	36.108E-6 105.74E-6	0.015685 0.039423	0.0 -1.5529E-6
1	Grid Grid	7.20000 9.00000	20.80000	70.00000	0.06543 0.11071	69.730 69.730	313.04E-6 818.92E-6	0.091986 0.18981	-3.6156E-6 -7.4400E-6
1	Grid Grid	10.80000	20.80000	70.00000	0.16212	69.730 69.730	0.0015426	0.39246	-12.176E-6 -15.345E-6
1	Grid Grid Grid	14.40000 16.20000 18.00000	20.80000 20.80000 20.80000	70.00000 70.00000 70.00000	0.20405 0.19585 0.18115	69.730 69.730 69.730	0.0021204 0.0020736 0.0020188	0.40079	-16.147E-6 -15.669E-6 -14.852E-6
1	Grid Grid	19.80000 21.60000	20.80000	70.00000	0.16068 0.12844	69.730 69.730	0.0019539 0.0018045	0.35178 0.30178	-13.737E-6 -11.769E-6
1	Grid Grid	23.40000 25.20000	20.80000	70.00000	0.07735 0.01141	69.730 69.730	0.0014361 831.88E-6		-8.1773E-6 -3.1457E-6
1	Grid Grid Grid	27.00000 28.80000 30.60000	20.80000 20.80000 20.80000	70.00000 70.00000 70.00000	-0.04870 -0.08646 -0.09862	69.730 69.730 69.730	304.68E-6 -5.6800E-6 -182.49E-6	-0.034871 -0.10700 -0.13530	1.4211E-6 4.2485E-6 5.3512E-6
1	Grid Grid	32.40000 34.20000	20.80000	70.00000 70.00000	-0.08832 -0.06654	69.730 69.730	-203.76E-6 -134.59E-6	-0.12367 -0.091943	4.8868E-6 3.6352E-6
1	Grid Grid	36.00000 0.00000	20.80000	70.00000	-0.04484 0.01010	69.730 69.730	-72.229E-6 3.9084E-6	-0.062103 0.0013159	2.4576E-6 0.0
1	Grid Grid Grid	1.80000 3.60000 5.40000	22.53333 22.53333 22.53333	70.00000 70.00000 70.00000	0.01363 0.01956 0.02937	69.730 69.730 69.730	9.0770E-6 21.299E-6 49.708E-6	0.0046324 0.011315 0.024136	0.0 0.0 0.0
1	Grid Grid	7.20000 9.00000	22.53333	70.00000	0.04443	69.730 69.730	110.29E-6 214.98E-6	0.046556	-1.8357E-6 -3.1254E-6
1	Grid Grid	10.80000 12.60000	22.53333	70.00000	0.08464	69.730 69.730	340.13E-6 431.38E-6	0.11500 0.14055	-4.5263E-6 -5.5299E-6
	Grid Grid Grid	14.40000 16.20000 18.00000	22.53333 22.53333 22.53333	70.00000 70.00000 70.00000	0.10355 0.10042 0.09192	69.730 69.730 69.730	466.18E-6 464.52E-6 448.49E-6	0.14998 0.14703 0.13694	-5.9002E-6 -5.7833E-6 -5.3847E-6
1	Grid Grid	19.80000 21.60000	22.53333 22.53333 22.53333	70.00000 70.00000	0.07862	69.730 69.730	421.00E-6 369.45E-6		-4.7424E-6 -3.7417E-6
1	Grid Grid	23.40000 25.20000	22.53333	70.00000	0.03311	69.730 69.730	278.55E-6 156.39E-6	0.058192 0.013143	-2.2777E-6 0.0
1	Grid Grid Grid	27.00000 28.80000 30.60000	22.53333 22.53333 22.53333	70.00000 70.00000 70.00000	-0.02452 -0.04305 -0.05019	69.730 69.730 69.730	42.643E-6 -33.870E-6 -70.483E-6	-0.028360 -0.056359 -0.067776	1.1313E-6 2.2340E-6 2.6831E-6
1	Grid Grid	32.40000 34.20000	22.53333 22.53333 22.53333	70.00000 70.00000	-0.04722 -0.03816	69.730	-72.333E-6 -54.604E-6	-0.064718 -0.053343	2.5614E-6 2.1118E-6
1	Grid Grid	36.00000 0.00000	22.53333 24.26667	70.00000	-0.02747 0.00963	69.730 69.730	-34.856E-6 2.8580E-6	-0.040353 0.0010985	1.5983E-6 0.0
1	Grid Grid	1.80000 3.60000	24.26667	70.00000	0.01244	69.730 69.730	5.9141E-6 12.068E-6	0.0034051	0.0
1	Grid Grid Grid	5.40000 7.20000 9.00000	24.26667 24.26667 24.26667	70.00000 70.00000 70.00000	0.02286 0.03117 0.04095	69.730 69.730 69.730	23.841E-6 44.087E-6 73.019E-6	0.014311 0.024487 0.037432	0.0 0.0 -1.4778E-6
1	Grid Grid	10.80000 12.60000	24.26667 24.26667	70.00000 70.00000	0.05031 0.05691	69.730 69.730	104.51E-6 128.66E-6	0.050471 0.059972	-1.9918E-6 -2.3662E-6
1		14.40000	24.26667 24.26667	70.00000	0.05939	69.730 69.730	140.25E-6 141.23E-6	0.062480	-2.5197E-6 -2.4643E-6
1	Grid Grid Grid	18.00000 19.80000 21.60000	24.26667 24.26667 24.26667	70.00000 70.00000 70.00000	0.05261 0.04429 0.03278	69.730 69.730 69.730	135.36E-6 123.57E-6 103.97E-6	0.047681	-2.2450E-6 -1.8788E-6 -1.3523E-6
1	Grid Grid	23.40000 25.20000	24.26667 24.26667	70.00000	0.01847	69.730 69.730	75.024E-6 40.007E-6	0.017076	0.0
1	Grid Grid	27.00000 28.80000	24.26667 24.26667	70.00000	-0.01099 -0.02085	69.730 69.730	7.1073E-6 -16.435E-6	-0.019835 -0.032246	0.0 1.2786E-6
	Grid Grid Grid	30.60000 32.40000 34.20000	24.26667	70.00000 70.00000 70.00000	-0.02534 -0.02486	69.730 69.730	-28.125E-6 -29.399E-6	-0.037913 -0.037438	1.5022E-6 1.4832E-6
1	Grid Grid Grid	36.00000 0.00000	24.26667 24.26667 26.00000	70.00000 70.00000 70.00000	-0.02099 -0.01566 0.00889	69.730 69.730 69.730	-24.367E-6 -17.570E-6 1.9831E-6	-0.032951 -0.026925 737.09E-6	1.3056E-6 1.0671E-6 0.0
1	Grid Grid	1.80000 3.60000	26.00000 26.00000	70.00000	0.01103	69.730 69.730	3.7264E-6 6.8103E-6	0.0022571 0.0047028	0.0
1	Grid Grid	5.40000 7.20000	26.00000 26.00000	70.00000	0.01790 0.02271	69.730 69.730	11.921E-6 19.533E-6	0.0083457 0.013233	0.0
1	Grid Grid Grid	9.00000 10.80000 12.60000	26.00000 26.00000 26.00000	70.00000 70.00000 70.00000	0.02794 0.03271 0.03606	69.730 69.730 69.730	29.212E-6 39.150E-6 46.922E-6	0.018905 0.024301 0.028153	0.0 0.0 -1.1124E-6
1	Grid Grid	14.40000 16.20000	26.00000 26.00000	70.00000	0.03731	69.730 69.730	51.031E-6 51.481E-6	0.029634	-1.1707E-6 -1.1297E-6
1	Grid Grid	18.00000 19.80000	26.00000 26.00000	70.00000	0.03310 0.02796	69.730 69.730	48.914E-6 43.624E-6	0.025292 0.019912	0.0
1	Grid Grid Grid	21.60000 23.40000 25.20000	26.00000 26.00000 26.00000	70.00000 70.00000 70.00000	0.02107 0.01289 0.00435	69.730 69.730 69.730	35.460E-6 24.567E-6 12.215E-6	0.012605 0.0037732 -0.0055906	0.0 0.0 0.0
1	Grid Grid Grid	27.00000 28.80000	26.00000 26.00000	70.00000	-0.00330 -0.00889	69.730 69.730 69.730	0.0 -7.8534E-6		0.0
1	Grid Grid	30.60000	26.00000	70.00000	-0.01179 -0.01211	69.730 69.730	-12.437E-6 -13.368E-6	-0.023193 -0.023391	0.0
	Grid Grid	34.20000 36.00000	26.00000 26.00000	70.00000 70.00000	-0.01050 -0.00784	69.730 69.730	-11.857E-6 -9.3270E-6	-0.021503 -0.018541	0.0

М	GC	29

Sheet No.	Rev.

Drg. Ref.

Job No.

 Made by
 Date
 Checked

 JGM
 21 Nov 2019

15 Lyncroft Gardens

Excavation and wall loads combined long term

ei.	Name	x	y	z	0z	Stress:	Stress:	Stress:	vert.
						Calc. Level	Vertical	Sum Princ.	Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]

Results: Consolidation: Displacement Data: Grids

None

Results : Total : Displacement Data : Grids

None