Basement Impact Assessment

38 Frognal Lane

Introduction

A Basement Impact Assessment (BIA) is required for all planning applications with basements in Camden.

Basement Impact Assessments must be prepared in general accordance with policies and technical procedures contained within the documents listed below.

- Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
- Camden Planning Guidance (CPG): Basements (March 2018).
- <u>Camden Local Plan 2017</u>¹ (: Policy A5 Basements and Policy CC3 Water and flooding.

¹ <u>https://www.camden.gov.uk/localplan</u>

38 Frognal Lane NW3 6PP

Basement Impact Assessment Planning reference no 2020/4667/P

For

MRPP

Project Number: T&K 14604

6th November 2020

Revisions & additional material

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
Initial	7.10.20	Initial Submission	BIA 2020.10.07	NCT		
01	6.11.20	Soils 2020 SI included	BIA 2020.11.06	NCT		

Document Details

Last saved	6 th November 2020
Path	Document1
Author	Norman Train, Train and Kemp
Reviewer	Chris Swainston, Soils Ltd
Project Name	38 Frognal Lane
Planning Reference No.	

Additional supporting documents

Please note – the review process will be quicker if these are submitted as Word documents or searchable PDFs.

D	Version	Produced by
Appendix 2: Soil Reports	2020 and 2014 Investigations	Soils Ltd
Flood Risk Assessment	2	Norman Train
Ground Movement and Building Damage Assessment	0	Norman Train
Surface Water Strategy	Drg 1611-100 P2	Simon Dent Associates

Please list all revisions here: 1

D	Version	Produced by
а		
t		
е		
None		

Contents

Introdu	uction	2
Revisio	ons & additional material	4
Additic	onal supporting documents	5
Conter	nts	6
1.	Non-Technical Summary	8
2. Intro	oduction	10
2.1. Au 2.1.2. 2.2. 2.3.	uthors The BIA has been reviewed and approved by Chris Swainston, BSc (Hons) Geology PGCE FGS CGeol Sources of Information Existing and Proposed Development	10 10 10 11
3.	Desk Study	13
3.1. 3.2. 3.3. 3.4.	Site History Geology Hydrogeology Hydrology, Drainage and Flood Risk	13 13 13 13
4.	Screening	15
4.2. 4.3. 4.4.	Slope Stability Surface Water and Flooding Non-Technical Summary of Screening Process	15 16 17
5.	Scoping	18
5.1. 5.2. 5.3. 5.4. 5.5.	Surface Water and Flooding Slope Stability Drainage Ground Movement and Building Damage Groundwater and Hydrogeology	18 18 18 18 19
6.	Site Investigation/Additional Assessments	21
6.1. 6.2. Ad	Site Investigation dditional Assessments	21 21
7.	Construction Methodology/ Engineering Statements	22
7.1. 7.2. 7.3. 7.4.	Outline Geotechnical Design Parameters Outline Temporary and Permanent Works Proposals Ground Movement and Damage Impact Assessment Control of Construction Works	22 22 22 23
8.	Basement Impact Assessment	24
8.2. an 8.3. Hy	nceptual Site Model d Stability/Slope Stability rdrogeology and Groundwater Flooding rdrology, Surface Water Flooding and Sewer Flooding	24 24 24 24

Appendices

Appendix 1: Desk Study References

• Environment Agency Surface Water Flood Risk

Appendix 2: Site Investigation Reports

Appendix 3: Existing and Proposed Development Drawings Schedule

Appendix 4: Ground Movement and Damage Impact Assessment

Appendix 5: Structural Engineer's Statement

Appendix 6: Arboricultural Report/Surface Water Drainage Strategy

1. Non-Technical Summary

- 1. The site location is 38 Frognal Lane, NW3 6PP. See Location Plan on drawing -PL-010.
- 2. The current site arrangement is a two storey detached house. See schedule of drawings at Appendix 3.
- 3. The proposed development comprises a two storey detached house with a basement.
- 4. The following assessments are presented:
 - Desk Study
 - Screening
 - Scoping
 - Additional evidence/assessments (as required)
 - Site investigation
 - Arboricultural report
 - Ground movement assessment
 - Consultation with adjacent infrastructure/asset owners
 - Flood risk assessments
 - Surface water drainage strategy/SUDS assessment
 - Others
 - Impact Assessment
- 5. The authors of the assessments are:

The lead author is Norman Train, BSc, CEng, FICE, FIStructE, consultant to Train and Kemp with over 40 years' experience in foundation design and structures

The BIA has been reviewed and approved by Chris Swainston, BSc (Hons) Geology PGCE FGS CGeol

- 6. The ground and groundwater conditions beneath the site are Claygate Members overlying London Clay with a perched water table to the base of the Claygate Members
- 7. The construction methods proposed are a contiguous piled wall and reinforced concrete box construction to the basement with traditional masonry and concrete floors over. The contiguous piled wall will be propped during the construction with the lid to the box propping it permanently
- 8. A structural monitoring strategy to control the works and impacts to neighbouring structures will comprise Tell tail crack gauges, as agreed with the adjoining owners party wall surveyor, installed on existing cracks within adjoining properties.
- 9. The BIA has assessed land stability and the impacts of the proposed development on neighbouring structures will be to no greater that Burland Category 1

- 10. The BIA has identified that there are no potential slope stability impacts.
- 11. The BIA has identified that there are no potential hydrological impacts
- 12. The BIA has identified that the basement perimeter piles will intercept the perched water table in the Claygate Members. To mitigate this, a pea shingle layer will be installed around the outside of the basement to intercept the groundwater on the upper side and replenish the water table on the low side.
- 13. As in the FRA, there is a very low flood risk with the proposed development.

2. Introduction

The purpose of this assessment is to consider the effects of a proposed basement development at 38 Frognal Lane, NW3 6PP on the local hydrology, geology and hydrogeology and potential impacts to neighbours and the wider environment. The site location is presented in drawing PL-010.

The BIA approach follows current planning procedure for basements and lightwells adopted by LB Camden and comprises the following elements (CPG Basements):

- Desk Study;
- Screening;
- Scoping;
- Site Investigation, monitoring, interpretation and ground movement assessment;
- Impact Assessment

2.1.Authors

- 2.1.1. The BIA has been authored by Norman Train, BSc, CEng, FICE, FIStructE, consultant to Train and Kemp with over 40 years' experience in foundation design and structures
- 2.1.2. The BIA has been reviewed and approved by Chris Swainston, BSc (Hons) Geology PGCE FGS CGeol

2.2. Sources of Information

The following baseline data have been referenced to complete the BIA in relation to the proposed development:

- In terms of consultation with neighbours, no specific consultation took place prior to the submission of the previous basement application in 2016 (ref. 2014/7752/P). Furthermore, BIA Guidance states that *"the Council will expect consultation with local residents on all basement developments unless the proposed construction work is minimal and will have a negligible effect on the adjoining or nearby properties as evidenced by the applicant to the satisfaction of the Council."* It is considered appropriate therefore that the same approach is taken with respect of this current application noting that the planning application, including the BIA.
- Location Plan (PL-010), Site Plan (PL-011);
- Geological mapping: BGS website base Geological Map or UK;
- Hydrogeological data based on previous and current site investigations AP Geotechnics;

- Current/historical hydrological data with LB Camden Flood Risk Management Strategy, FRMS, 2013;
- Flood risk mapping EA Flood Maps
- LB Camden, Strategic Flood Risk Assessment (produced by URS, 2014);
- LB Camden, Floods in Camden, Report of the Floods Scrutiny Panel (2013);
- LB Camden, Planning Guidance (CPG) Basements (March 2018);
- LB Camden, Camden Geological, Hydrogeological and Hydrological Study Guidance for Subterranean Development (produced by Arup, 2010);
- LB Camden, Local Plan Policy A5 Basements (2017);
- LB Camden's Audit Process Terms of Reference;

2.3. Existing and Proposed Development

- *2.3.1.* The Application site is located towards the top of the slope on Frognal Lane where the slope angle is less than 6°.
- 2.3.2. The site is located on 38 Frognal Lane. The site is located where Chesterford Gardens terminates on Frognal Lane and is sloped. Refer to PL-010 Location Plan, PL-011 Site Plan & PL-204 Street Elevation.
- *2.3.3.* The site currently holds a 2 storey dwelling.
- 2.3.4. To the east of the site is 40 Frognal Lane; a Grade II listed private house. 40 Frognal Lane has a live consent for a basement until 1 May 2021. To the West is located 12 Langland Gardens, a multi-residential building with a basement. Please refer to PL-011 Site Plan, PL-204 Street Elevation & PL-300 Sections AA.
- 2.3.5. Neighbouring buildings include the following Listed properties: 40 Frognal Lane.
- *2.3.6.* Neighbouring gardens and trees are present at 40 Frognal Lane and 12 Langland Gardens and will be protected in accordance with (A5 Basements (Local Plan 2017).

2.3.7.

Existing and Proposed development drawings are presented in the following drawings:

PL-010 Location Plan PL-011 Site Plan PL-099 Basement Plan PL-100 Ground Floor Plan PL-101 First Floor Plan PL-102 Second Floor Plan PL-103 Roof Plan PL-200 Front Elevation _ North PL-201 Side Elevation _ East PL-202 Rear Elevation _ South PL-203 Side Elevation _ West PL-204 Street Elevation PL-300 Sections – AA Pl-305 Sections - BB

- 2.3.8. The proposed development will be the full demolition of the existing building, salvaging as many bricks as possible, along with termination of all utilities to allow construction of the new building. The new basement will be formed with contiguous piled external wall and an internal waterproof concrete box. The perimeter walls will be propped during construction with the lid to the concrete box providing the permanent propping. The reduced level of the basement and the pool excavations will be +86.2m OD and 84.4m OD respectively. Given that the upper ground floor to No 12 Langland Gardens is at +88.8 OD, its foundations will be at 88.0m OD which is higher than basement excavation. Streets in the surrounding area are wide enough for both goods and plant machinery.
- *2.3.9.* The outline construction programme for the proposed development is outlined within the Construction Management Plan

3. Desk Study

3.1. Site History

3.1.1. The property is located on the south side of Frognal Lane, opposite the junction with Chesterford Gardens. The property is detached, modest in scale and set back from the road. Much of the ground floor is screened by a low brick wall, fence and planting. The property is comprised of brick, under clay tiles, with timer casement windows. The front façade of the original property is highly symmetrical. The property is pleasant in its appearance but does not have any special architectural features.

There have been a number of additions to the property, notably an attached garage to its left side, a side return to the right side and a large conservatory to the rear. Various internal alterations have also been made, though none manifest externally. There is a modest garden to the rear, which includes a number of trees.

There have been numerous applications on the site for various alterations and extensions to the property, including the addition of a basement underneath the existing building. However, to date, none of these applications have been implemented.

3.2. Geology

3.2.1. The British Geology Survey, Map of the Geology of UK, indicates that the site is underlain by Claygate Members overlying London Clay. This has been confirmed by the historical site investigations

3.3. Hydrogeology

- *3.3.1.* The site is founded on Claygate Members which are classified as a Secondary A Aquifer with the underlying London Clay being an Unproductive Stratum.
- *3.3.2.* LB Camden data indicates the site is not within a groundwater source protection zone and there are no recorded water abstractions in the area.

3.4. Hydrology, Drainage and Flood Risk

- 3.4.1. CGHH Fig 13, Hampstead Heath Map, shows that the nearest water feature is the Whitestone Pond, 0.75km to the north of the site, at a higher elevation, in a different catchment and on overlying strata and hence too remote to affect the site.
- 3.4.2. CGHH Fig 11, Watercourses, shows that two tributaries of the River Westbourne start in Langland Gardens and Frognal to the south-west, and the east of the site near University College School; these are at some 100m and 200m from the site respectively and will relate to the outcrop of the London Clay. There are no reported springs in the area.

- *3.4.3.* CGHH Fig 14, Hampstead Heath Surface Water Catchment, shows that the Hampstead Ponds catchment is 0.75km to the north of the site. The site is not within the catchment of the Hampstead Heath Pond Chain.
- 3.4.4. The total site area is currently some 590 sq.m and is a mixture of roofs, hardstanding driveways and soft areas with approximately 50:50 permeable/impermeable ratio. The current greenfield rates for the sites are very low and are as follows for the 1 year, 30 year & 100 year event respectively; 0.38 lit/sec, 1.02 lit/sec & 1.41 lit/sec. The existing site survey drawing no. 3798-T by MSA refers.
- 3.4.5. The proposed surface area will comprise a mixture of roofs, hardstandings and soft gardens areas as before however, the external hardstanding areas shall be finished with a drainage cavity board system to both source control flows and provide a treatment train for discharge water. These permeable areas will comprise 280 sq.m with the impermeable roof offering 180 sq.m and the remaining areas to be soft. In addition, all rainwater downpipes shall be provided with water butts to assist in reusing rainwater for irrigation and gardening.
- 3.4.6. The geology of the site indicates infiltration to the ground is not possible. All storm water discharges from the site will be intercepted by an attenuation geocell below ground structure with the final flow control chamber restricting run off from the site to 2.0 lit/sec.; this being the lowest practicable non mechanical flow control device available and replicating as near to existing greenfield run off rates as possible, with a final connection made to the existing drainage and consequent sewer.
- *3.4.7.* The site is classified as low risk of surface water flooding and is not within a Local Flood Risk Zone.
- *3.4.8.* The site is not within a Critical Drainage Area. The Surface Water Management Plan 2013, Fig 3.1, shows LFRZ 3015, Frognal, is to the east of the site.

4. Screening

4.1.1. A screening process has been undertaken and the findings are described below.

Question	Response	Details
1a. Is the site located directly above an aquifer?	Yes-	CGHH Figs 4 and 8
1b. Will the proposed basement extend beneath the water table surface?	Yes-	See Site Investigation in Appendix 2
2. Is the site within 100mof a watercourse, well (used / disused) or potential spring line?	No-	CGHH Fig 11, Watercourses, show that a tributary to the River Westboure starts over 100m to the south in Langland Gardens
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No-	CGHH Fig 14 , Hampstead Heath Surface Water Catchment Areas shows the site is 0.75km south of these catchments
4. Will the proposed basement development result in a change in the proportion of hard surfaced / paved areas?	No-	The proposed basement has no impact on the final surface area of the site.
5. As part of site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to the ground (e.g. via soakaways and/or SUDS)?	No-	The proposed attenuation and flow control will restrict the run off from the site from a 1 in 100 year storm with 40% climate change increase
6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond (not just the pond chains on Hampstead Heath) or spring line?	No-	CGHH Fig 12 Camden Surface Water Features shows the site in not close to any local pond or water feature.

4.2. Slope Stability

Question	Response	Details
1. Does the existing site include slopes, natural or man-made greater than 7 degrees (approximately 1 in 8)?	No-	CGHH Fig 16, Slope Angle Map shows the slopes are less than 7°
2. Will the proposed re-profiling of landscaping at the site change slopes at the property boundary to more than 7 degrees (approximately 1 in 8)?	No-	The current levels will be maintained and there will not be any re-profiling of the landscaping
3. Does the development neighbour land, including railway cuttings and the like, with a slope greater than 7 degrees (approximately 1 in 8)?	No-	CGHH Fig 16, Slope Angle Map shows that the site is remote from any railway cuttings or embankements

4. Is the site within a wider hillside setting in which the general slope is greater than 7 degrees (approximately1 in 8)?	No-	CGHH Fig 16 and OS Contour Map
5. Is the London Clay the shallowest strata at the site?	No-	Geological Maps and Site Investigations show the site is founded on Claygate Members
6. Will any trees be felled as part of the development and/or are any works proposed within any tree protection zones where trees are to be retained?	No	See Arboriculturist's Report in Appendix 6
7. Is there a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site?`	No-	Claygate Members exhibit less seasonal shrink/swell than London Clay and existing house at No 38 is crack free.
8. Is the site within 100m of a watercourse or a potential spring line?	No-	CGHH Fig 11, Watercourses
9. Is the site within an area of previously worked ground?	No-	No historical records
10. Is the site within an aquifer. If so, will the proposed basement extend beneath the water table such that dewatering may be required during construction?	No-	Whilst the basement will extend into the aquifer, the contiguous piled water will form its own barrier to the minor flows and dewatering techniques will not be required.
11. Is the site within 50m of the Hampstead Heath Ponds?	No-	CGHH Fig 13, Hampstead Heath Map shows the ponds are 0.75km to the north
12. Is the site within 5m of a highway or pedestrian right of way?	Yes-	The site has a street frontage along Frognal Lane
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	Yes-	12 Langland Gardens is within 3m of the basement
14. Is the site over (or within the exclusion zone of) any tunnels, e.g. railway lines?	No-	London Underground Norther Line is 0.5km to east of site

4.3. Surface Water and Flooding

Question	Response	Details
1. Is the site within the catchment of the ponds chains on Hampstead Heath?	No-	CGHH Fig 14 , Hampstead Heath Surface Water Catchment Areas shows the site is 0.75km south of these catchments
2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run- off) be materially changed from the existing route?	Yes	The proposed attenuation and flow control will restrict the run off from the site from a 1 in 100 year storm with 40% climate change increase
3. Will the proposed basement development result in a change in the proportion of hard surfaced / paved external areas?	No	The proposed basement has no impact on the final surface area of the site.

4. Will the proposed basement result in changes to the profile of the inflows (instantaneous and long- term) of surface water being received by adjacent properties or downstream watercourses?	No-	Changes in impervious areas are minimal
5. Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?	No-	No changes in the quality of the surface water discharge.
6. Is the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature.	No-	See FRA in Appendix 6

4.4. Non-Technical Summary of Screening Process

- 4.4.1. The screening process identifies the following issues to be carried forward to scoping for further assessment:
 - The site is on a Secondary A Aquifer
 - The basement will extend beneath the water table
 - The basement will be deeper than the foundations of the neighbouring properties
- 4.4.2. The other potential concerns considered within the screening process have been demonstrated to be not applicable or not significant when applied to the proposed development.
 - The site is within 5m of the highway.

5. Scoping

The following issues have been brought forward from the Screening process for further assessment:

5.1. Surface Water and Flooding

- 5.1.1 Although the site is in EA Flood Zone 1 and a Site Specific Flood Risk Assessment is not required, a SSFRA has been completed and is included Appendix 6.
- 5.1.2 The conclusions of the SSFRA are:
 - The reconstruction of the house with a basement will not impact on the flood risk of the area.
 - SUDS will reduce the impact of the surface water discharge into the adopted sewer.
 - The forecourt level should include a mound to a level of +91.0 OD to take cognisance of any backflow onto the site from surface water flowing down Frognal Lane.

5.2. Slope Stability

- 5.2.1. The natural slope on Frognal Lane and Langland Gardens are 1 in 10, which is less than 7°.
- 5.2.2. This is correlated by GHHS Figure 16, which also shows the site is remote from any railway cuttings or embankments .
- 5.2.3. No further assessment is considered necessary. There will be no impacts to slope stability.

5.3. Drainage

- 5.3.1. The application site is not within a critical drainage area.
- 5.3.2. The existing impermeable area of 200m² will increase to 230m² with the proposed development; an increase of 30m². However, there will be a reduction of run off flows by the addition of attenuation storage with a restricted discharge of only 2.0 lit/sec from the site; the lowest practicable non mechanical flow control available.
- 5.3.3. A drainage assessment has been indicated by Simon Dent Associates upon their Drawing 1611 100 in Appendix 6.
- 5.3.4. The assessment and drainage design improves the existing site conditions and reduces the discharge to the adopted drainage infrastructure.

5.4. Ground Movement and Building Damage

5.4.1. The proposed basement will be lower than the foundations to both No 40 Frognal Lane and 12 Langland Gardens.

- 5.4.2. The proposed development will increase the differential foundation depth with neighbours. Construction and excavation activities will cause ground movements that have the potential to damage existing, neighbouring structures.
- 5.4.3. It is considered that the development proposals can be suitably designed to maintain stability. In order to demonstrate this, a site specific ground investigation is presented in Section 6, with structural information and a ground movement assessment presented in Section 7. Conclusions of the impact assessment are provided in Section 8.

5.5. Groundwater and Hydrogeology

- 5.5.1. The Site Investigation have established that the thickness of the Claygate Members beneath the site is 7m with CGHH, Fig 4 showing the London Clay to outcrop 120m down the slope. The thickness of the Claygate Members decreases to the south and west by 1m in 15m.
- 5.5.2. Water will collect to the base of the Claygate Members perching above the impervious London Clay. Given the moderately low permeability of the Claygate Members, it is expected that it will contain water all year round.

Catchment & Macro Groundwater Flows

- 5.5.3. The Claygate Member/London Clay contact is shown on CGHH Fig 4 to pass along Lindfield Gardens, across Langland Gardens and Frognal Lane, at an elevation of approximately 82m AOD. This is coincident with the start of the River Westbourne tributary shown on CGHH Fig 11 as being 100m south-west of the site, within a shallow valley. A second tributary commences beneath University College School, 200m east of the site, again on the Claygate Member/London Clay contact, again at an elevation of approximately 82m AOD, again in a shallow valley feature.
- 5.5.4. The location of these two tributaries, suggests the site is located near a groundwater divide. Hence the area of the catchment contributing to the tributary commencing on Langland Gardens, and in which the site must be located, is relatively small.
- 5.5.5. Based upon the location of the three tributaries identified on CGHH Fig 11, and the extent of the Hampstead Pond Catchment Area on CGHH Fig 14, defines the catchment area for the Langland Gardens tributary as being approximately 10 hectares (200m wide, 500m long). Assuming a typical average recharge into the Claygate Member of no more than 250mm/yr, would yield an average annual groundwater contribution to the tributary of 25,000m³/yr, which equates on average to 1 litre per second.
- 5.5.6. Whilst it is unknown whether these tributaries flow year round or just in winter months, clearly a flow of typically 1 litre per second is fairly minimal, especially if dispersed along a wide seepage horizon.

Groundwater Throughflow beneath the site

- 5.5.7. An estimate of the groundwater throughflow beneath the site can be calculated using Darcy's Law Q = k i a, where:
 - k = permeability, which is taken as being 1×10^{-6} m/s. [See 7.1.1]
 - i = hydraulic gradient, which is taken from the 2020 Site Investigation as being 0.1

a = the cross-sectional area comprising a water table depth of 6m and a site and basement widths of 30m and 20m respectively giving cross sectional areas of 180m² and 120m²

This gives a value of 0.018l/s or $1.5m^3$ /day for the site and 0.012l/s or $1m^3$ /day for the basement. This is very little water and within the capacity of a sump pump during excavations.

Groundwater Flow Obstructions

- 5.5.8. No 12 Langland Gardens, down the slope from No 38, is 17m wide and its lower ground floor is at +86m OD. This lower ground floor obstructs but does not cut off the groundwater flow
- 5.5.9. This means that the proposed basement is in the shadow of No 12 Langland Gardens with the latter defining the status quo with regard to groundwater flow below the site
- 5.5.10. Groundwater flows will eventually move around the impermeable box consequently there is unlikely to be an effect to the catchment of the river tributaries. Even if the site groundwater flows were to be lost, these site groundwater throughflows (estimated at no more than 0.003 l/s) are less than 0.5% of the estimated catchment groundwater baseflow and hence will be immeasurable and negligible.
- 5.5.11. However the proposed basement will impact on the water table, raising the free surface on the upstream side and depressing it on the downstream side.
- 5.5.12. The proposed basement is 14m from the centreline of Frognal Lane. To the rear there are no houses to the south of No 38. No 40 is 19m up the slope to the west of No 38.
- 5.5.13. The magnitude of the groundwater level changes due to construction of the impermeable basement and pool, without further mitigation are difficult to quantify, given the existing basement disturbance to the Claygate Member at the adjacent houses. However experience in similar strata suggests these will be of the order of 0.2 -0.8m. This will be in No 40 Frognal Lane's garden and will not affect the house which is 20m further up the slope

Mitigation Measures

- 5.5.14. As mitigation measures:
 - 5.5.14.1. a pea shingle blanket will be installed around the basement to intercept the groundwater on the high side, allow it to flow around the basement and replenish the water table on the low side.
 - 5.5.14.1.1.Contiguous piles will be used with 150mm gap between 600mm diameter piles giving a 20% pathways beneath the basement slabs

6. Site Investigation/Additional Assessments

6.1. Site Investigation

Soils Ltd have completed two Site Investigations on 38 Frognal Lane in 2014 and again in 2020. Details of these are given in Appendix 2.

<u>2014</u>

The 2014 site investigation comprised two window samplers to a depth of 6m in the forecourt. This established that the Claygate Members extend to a greater depth than 6m.

Standpipes were installed in both window samplers with the groundwater measured in December 2013 and January 2014. Initially the depth was 2.0m [east] and 2.8m [west] rising after a month to 0.8m [east] and 1.5m [west]. Being on the forecourt, the locations were at the same level,18m apart, so the gradient of the phreatic surface across the site in early 2014 was 1 in 20.

<u>2020</u>

The 2020 site investigation comprised a 20m borehole in the forecourt and two 10m window samplers in the rear garden. The 20m borehole gives strength parameters for the pile design. The 10m window samplers held triangulate the depth of the London Clay, which ranges between 5.5m and 7.8m in depth as well as the ground water phreatic surface.

Standpipes were installed in all three holes and were monitored over a 3 month period. The initial readings during the boring of the holes were discounted. The first set of subsequent readings at the beginning of October established that the phreatic surface across the site had a gradient of 1 in10.

6.2.Additional Assessments

- 6.2.1 A Ground Movement and Building Damage Assessment is presented in Appendix 4
- 6.2.2 An Arborcultural Report is presented in Appendix 6

7. Construction Methodology/ Engineering Statements

7.1. Outline Geotechnical Design Parameters

7.1.1. The geotechnical parameters are presented in the Site Investigation Reports in Appendix 2. A falling head permeability test in No 40 Frognal Lane established that the permeability, k, was 4 $\times 10^{-7}$ m/s. Conservatively the throughflow has been based on k =1 x 10^{-6} m/s

7.2. Outline Temporary and Permanent Works Proposals

- 7.2.1. The works proposals include:
 - Demolition of the existing house
 - Installation of contiguous piles to perimeter of basement and piles to basement columns
 - Construction of capping beam or installation of high level wailer system with propping to hold excavation stiff
 - Excavation of basement. This will require the interception of any seepages with a sump and pump, but formal dewatering techniques will not be required. The throughflow in 5.5.7 at less than 0.01l/s is well within the capacity of a single sump pump.
 - Casting of basement raft and perimeter walls in waterproof concrete
 - Removal of wailer and completion of lid to basement box.
 - Drainage strategy/SUDS proposals as SDA Drawing 1611 100

7.3. Ground Movement and Damage Impact Assessment

- 7.3.1. A Ground Movement Assessment (GMA) has been carried out in accordance with CIRIA Report C580.
- 7.3.2. The conceptual model follows the principles in C580, Section 2.5.2 assuming the strains are uniformly distributed over the zone of influence. The strains tabulated in C580 are:
 - 7.3.2.1.at the surface, reducing linearly to zero at the base of the excavation or walling element. This means that on a slope, where the adjoining building is at a different level, it is the net difference in level rather than the excavation depth that defines the zone of influence
 - 7.3.2.2.perpendicular to the excavation. Whilst only applicable to the horizontal strains at excavation corners or changes in the depth of the wall, if the orientation is at an angle, it is the perpendicular component horizontal strain that is appropriate.
- 7.3.3. All structures / properties within the zone of influence have been assessed including No 40 Frognal Lane, 12 Langland Gardens.
- 7.3.4. The ground movements resulting from the works are presented as horizontal and vertical differential settlement strains and plotted on Burland Scale Figures for four locations.

- *7.3.5.* No 40 Frognal Lane and No 12 Langland Gardens were assessed, having been identified as potentially within that zone of influence of the proposed basement.
- *7.3.6.* In accordance with the Burland Scale, the damage impacts are assessed as Category 1 Very Slight or less
- 7.3.7. Propping of the contiguous piles in both the temporary and permanent works will be used to mitigate and reduce ground movements and damage impacts.

7.4. Control of Construction Works

- 7.4.1. The construction works will be controlled in accordance with the contract preliminaries and the engineering specifications
- 7.4.2. The predicted vertical movements in the adjacent buildings are less than 5mm with the differential vertical movements being even smaller again. The predicted damage is Burland Category 1, Very Slight, and level monitoring is neither justified nor practical since the movements are within the closing errors of such surveys. At a pragmatic level Tell Tail crack gauges will be installed, if required by the adjoining owners party wall surveyor, to monitor the movement at any historical cracks.

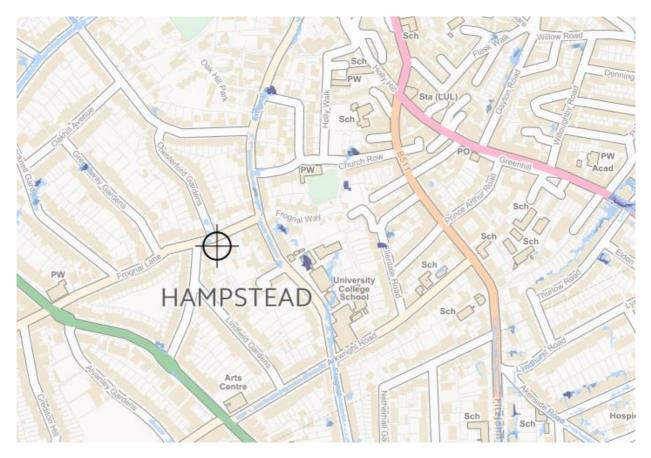
8. Basement Impact Assessment

8.1.Conceptual Site Model

- 8.1.1. The Conceptual Site Model (CSM) is...
 - The proven ground conditions are Claygate Members overlying London Clays
 - The natural slope of the road has been terraced to form the current site.
 - The existing building has shallow foundations 0.8m below ground level.
 - The proposed development will have piled foundations with contiguous piled walls to the basement
 - The depths of neighbouring foundations/basements are typically 0.8m below ground level
 - The site has a street frontage
 - There are no adjacent tunnels or significant utility infrastructure.

8.2.and Stability/Slope Stability

- *8.2.1.*The site investigation has identified that both the Claygate Member and London Clay are suitable founding strata.
- *8.2.2.* The risk of movement and damage to this development due to seasonal movements of the ground are minimal.
- 8.2.3.A Ground Movement Assessment has concluded that the potential Damage to surrounding structures within the zone of influence has been assessed as Burland Scale Category 1.
- 8.2.4. The BIA has concluded that there will not be risk(s) or stability impact(s) to the development and/or adjacent sites due to slopes.


8.3.Hydrogeology and Groundwater Flooding

- *8.3.1.*The BIA has concluded there is a very low risks of groundwater flooding. The local changes to the water table with the obstruction of the basement will be mitigated with a perimeter pea shingle blanket and the gaps between the contiguous beams beneath the basement.
- *8.3.2.* The BIA has concluded there are limited impacts to the wider hydrogeological environment with the construction of the basement are minimal.

8.4. Hydrology, Surface Water Flooding and Sewer Flooding

- 8.4.1.The site specific FRA has concluded there is a low risk of surface water/sewer flooding. Mitigation measures are proposed to reduce the surface water discharge rate with on site storage, as shown on SDA drawing 100, 101, 200 & 201.
- 8.4.2. The BIA has concluded there are no impacts to the wider hydrological environment.

Appendix 1: Desk Study References

EA Surface Water Flooding Map of NW3 6PP showing some ponding to the southern end of Chesterford Gardens , but not on Frognal Lane

Appendix 2: Site Investigation Data

Main Investigation Report

at 38 Frognal Lane, London NW3 6PP

for MRPP

Reference: 18577/MIR_R27 October 2020

Soils Limited

Control Document

Project 38 Frognal Lane, London NW3 6PP

Document Type Main Investigation Report

Document Reference 18577/MIR R27

Document Status Final

Date October 2020

Prepared by T Rudkin BSc. (Hons.), MSc., FGS.

The

First check by Eur Ing R B Higginson BSc, PGDip, CEng, MICE, FGS.

Second check by N J Lambert BSc (Hons), CEnv, FGS, MIEnvSci.

N. Lumbart

This is not a valid document for use in the design of the project unless it is titled Final in the document status box.

Current regulations and good practice were used in the preparation of this report. The recommendations given in this report must be reviewed by an appropriately qualified person at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Association of Geotechnical & Geoenvironmental Specialists

Commission

MRPP commissioned Soils Limited to undertake an intrusive ground investigation and prepare a Main Investigation Report on land at 38 Frognal Lane, London NW3 6PP. The scope of the investigation was outlined in the Soils Limited quotation reference Q23072 Rev. 1, dated 24th July 2020.

This document comprises the Main Investigation Report and incorporates the results, discussion and conclusions to this intrusive works.

A Preliminary Investigation Report (Phase I Desk Study) was not commissioned on the site.

Standards

The site works, soil descriptions and geotechnical testing was undertaken in accordance with the following standards:

- BS 5930:2015+A1:2020 and BS EN ISO 22476-2&3:2005+A1:2011
- BS EN ISO 14688-1:2002+A1:2013
- BS EN ISO 14688-2:2004+A1:2013
- NHBC Standards 2020
- BRE Digest 240:1993
- BRE Special Digest 1:2005

The geotechnical laboratory testing was performed by GEO Site & Testing Services Ltd (GSTL) in accordance with the methods given in BS 1377:1990 Parts 1 to 8 and their UKAS accredited test methods.

For the preparation of this report, the relevant BS code of practice was adopted for the geotechnical laboratory testing technical specifications, in the absence of the relevant Eurocode specifications (ref: ISO TS 17892).

The sulphate chemical WAC analyses were undertaken by Derwentside Environmental Testing Services (DETS) in accordance with their UKAS and MCERTS accredited test methods or their documented in-house testing procedures. This investigation did not comprise an environmental audit of the site or its environs.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sample borehole implies the specific technique used to produce a trial hole.

Contents

Section	I IntroductionI
1.1	Objective of Investigation1
1.2	Location1
1.3	Site Description1
1.4	Proposed Development1
1.5	Anticipated Geology2
1.5.1	Claygate Member2
1.5.2	London Clay Formation2
1.6	Limitations and Disclaimers2
Section	2 Site Works
2.1	Proposed Project Works
2.1.1	Actual Project Works5
2.2	Ground Conditions
2.3	Ground Conditions Encountered in Trial Holes7
2.3.1	Made Ground7
2.3.2	Claygate Member7
2.3.3	London Clay Formation8
2.4	Roots
2.5	Groundwater9
Section	3 Discussion of Geotechnical In-Situ and Laboratory Testing
3.1	Standard Penetration Tests
3.2	Dynamic Probe Tests
3.3	Falling Head Soakage Tests 11
3.4	Quick Unconsolidated Undrained Triaxial Compression Tests
3.5	Atterberg Limit Tests
3.6	Sulphate and pH Tests12
Section	4 Foundation Design 13
4.1	General
4.1.1	Made Ground and Topsoil 13
4.1.2	Claygate Member
4.1.3	London Clay Formation14
4.2	Foundation Scheme General

Soils Limited

4.2.1	Guidance on Shrinkable Soils 1	5
4.3	Foundation Scheme1	6
4.3.1	Shallow Foundations within Basement1	6
4.3.2	Basement and Stability Requirements1	7
4.3.3	Basement Construction Stability Issues 1	7
4.3.4	Piled Foundations 1	7
4.4	Retaining Wall1	8
4.5	Slope Stability 1	9
4.6	Subsurface Concrete 1	9
4.7	Excavations	\sim
7.7		20
Section		
		21
Section	5 Soil Chemical Analysis2	21 21
Section	5 Soil Chemical Analysis	21 21 21
Section 5.1 5.2	5 Soil Chemical Analysis 2 General 2 Soil Chemical Analysis 2	21 21 21 21
Section 5.1 5.2 5.3	5 Soil Chemical Analysis 2 General 2 Soil Chemical Analysis 2 Duty of Care 2	21 21 21 21 21
Section 5.1 5.2 5.3 5.4	5 Soil Chemical Analysis 2 General 2 Soil Chemical Analysis 2 Duty of Care 2 Excavated Material 2	21 21 21 21 21 21 22 22
Section 5.1 5.2 5.3 5.4 5.5	5 Soil Chemical Analysis 2 General 2 Soil Chemical Analysis 2 Duty of Care 2 Excavated Material 2 Re-use of Excavated Material On-site 2	 21 21 21 21 21 21 21 22 23

List of Figures

Figure 1 – Site Location Map	
Figure 2 – Aerial Photograph	27
Figure 3 – Trial Hole Plan	

List of Tables

Table 2.1 Final Depth of Trial Holes	6
Table 2.2 Ground Conditions	7
Table 2.3 Final Depth of Made Ground	7
Table 2.4 Final Depth of Claygate Member	8
Table 2.5 Final Depth of London Clay Formation	8
Table 2.6 Depth of Root Penetration	8
Table 2.7 Groundwater Monitoring	9

Table 3.2 Soakage Rates11

Table B.1.1 SPT "N" Blow Count Cohesive Classification Table B.2.1 Interpretation of SPT Tests Table B.2.2 Interpretation of DPSH Blow Counts Table B.2.3 Interpretation of QUU Tests Table B.2.4 Interpretation of Atterberg Limit Tests

List of Appendices

Appendix A	Field Work
••	

Appendix A.1	Engineers Logs
Appendix B	Geotechnical In-Situ and Laboratory Testing
Appendix B.1	Classification
Appendix B.2	Interpretation
Appendix B.3	Geotechnical In-Situ and Laboratory Results
Appendix C	Foundation Design
Appendix C.1	Preliminary Pile Design
Appendix D	Chemical Laboratory Testing
Appendix D.1	Chemical Laboratory Results

Appendix E Information Provided by the Client

Section I Introduction

I.I Objective of Investigation

MRPP commissioned Soils Limited to undertake an intrusive ground investigation and to prepare a Main Investigation Report to supply the client and their designers with information regarding ground conditions, to assist in preparing a foundation scheme for development that was appropriate to the settings present on the site.

The investigation was to be undertaken to provide comment on appropriate foundation options for the proposed residential basement development. The investigation was to be made by means of in-situ testing and geotechnical laboratory testing undertaken on soil samples taken from the trial holes.

This report does not include a Basement Impact Assessment (BIA) which is understood to be prepared by others based on the findings of this intrusive site investigation.

A single soil sample was taken for chemical laboratory Waste Acceptance Criteria (WAC) analysis.

No Preliminary Investigation Report (Phase I Desk Study) was commissioned on the site.

I.2 Location

The site was located at 38 Frognal Lane, London NW3 6PP and had an approximate O.S Land Ranger Grid Reference of TQ 260 855.

The site location plan is given in Figure 1.

I.3 Site Description

The application site comprised a two storey house with gravel front driveway and turfed private garden to the rear. The site was situated on a hillside setting with an overall gradient anticipated to be on the order of 10 degrees sloping down to the south-west. The site was levelled into the slope with retaining walls present at the east side of the existing house and gravel driveway.,. The site was lined with mature trees and vegetation and bounded by residential housing in all directions.

An aerial photograph showing the site and its close environs has been included in Figure 2.

I.4 Proposed Development

It was understood the proposed development was to comprise construction of a basement beneath the existing house onsite. The basement formation level of 3.50m bgl and no alterations to the landscaping configuration of the site was presumed.

At the time of report, no proposed development drawings were available. It is recommended this report is revised once these have been issued.

Information provided by the client is presented in Appendix E.

I.5 Anticipated Geology

The 1:50,000 BGS map showed the site to be located upon the bedrock Claygate Member with no recorded overlying superficial deposits. The Claygate Member overlies the London Clay Formation.

I.5.I Claygate Member

The Claygate Member comprises a finely interbedded and thinly laminated sequence of clay, silt and fine grained sand with numerous interbeds of planar and lenticular bedded fine grained fine laminated sands up to 1m thick.

I.5.2 London Clay Formation

The London Clay Formation comprises stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of gypsum (Selenite) are often found within the weathered part of the London Clay, and precautions against sulphate attack to concrete are sometimes required.

The upper boundary member of the London Clay Formation is known as the Claygate Member and marks the transition between the deep water, predominantly clay environment and succeeding shallow-water, sand environment of the Bagshot Formation.

The lower boundary is generally marked by a thin bed of well-rounded flint gravel and/or a glauconitic horizon. The formation overlies the Harwich Formation or where the Harwich Formation is absent the Lambeth Group.

In the north London area the upper part of the London Clay Formation has been disturbed by periglacial action and may contain pockets of sand and gravel.

I.6 Limitations and Disclaimers

This Main Investigation Report relates to the site located at 38 Frognal Lane, London NW3 6PP and was prepared for the sole benefit of MRPP (The "Client"). The report was prepared solely for the brief described in Section 1.1 of this report.

Soils Limited disclaims any responsibility to the Client and others in respect of any matters outside the scope of the above.

This report has been prepared by Soils Limited, with all reasonable skill, care and diligence within the terms of the Contract with the Client, incorporation of our General Conditions of Contract of Business and taking into account the resources devoted to us by agreement with the Client.

The report is personal and confidential to the Client and Soils Limited accept no responsibility of whatever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report wholly at its own risk.

The Client may not assign the benefit of the report or any part to any third party without the written consent of Soils Limited.

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief. As such these do not necessarily address all aspects of ground behaviour at the site.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot by plot basis prior to the construction of foundations. Supplied site surveys may not include substantial shrubs or bushes and is also unlikely to have data or any trees, bushes or shrubs removed prior to or following the site survey.

Where trees are mentioned in the text this means existing trees, substantial bushes or shrubs, recently removed trees (approximately 20 years to full recovery on cohesive soils) and those planned as part of the site landscaping).

It should be noted that a detailed survey of the possible presence or absence of invasive species, such as Japanese Knotweed, is outside of the scope of investigation.

Ownership of land brings with it onerous legal liabilities in respect of harm to the environment. "Contaminated Land" is defined in Section 57 of the Environment Act 1995 as:

"Land which is in such a condition by reason of substances in, on or under the land that significant harm is being caused or that there is a significant possibility of such harm being caused or that pollution of controlled waters is being, or is likely to be caused".

The investigation, analysis or recommendations in respect of contamination are made solely in respect of the prevention of harm to vulnerable receptors, using where possible best practice at the date of preparation of the report. The investigation and report do not address, define or make recommendations in respect of environmental liabilities. A separate environmental audit and liaison with statutory authorities is required to address these issues.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets remains with Soils Limited. License is for the sole use of the client and may not be assigned, transferred or given to a third party.

Section 2 Site Works

2.1 **Proposed Project Works**

The proposed intrusive investigation was designed to provide information on the ground conditions and to aid the design of foundations for the proposed residential basement development. The intended investigation, as outlined within the Soils Limited quotation (Q23072 Rev. 1, dated 24th July 2020), was to comprise the following items:

- 2No. windowless sampler boreholes
- 2No. super heavy dynamic probes
- 2No. 20m deep cable percussion boreholes
- Installation of 3No. up to 10m deep groundwater monitoring well installations
- 2No. falling head soakage tests
- Geotechnical laboratory testing
- Contamination laboratory testing (WAC test plus Haz-waste classification).

2.1.1 Actual Project Works

Given access constraints to the front of the property, the scope was revised to include a single 20m cable percussive borehole and this was agreed by the client. The actual project works were undertaken on between 15th August and 4th September 2020 and comprised:

- 2No. windowless sampler boreholes (WS101 WS102)
- 1No. super heavy dynamic probe (DP101)
- 1No. 20m deep cable percussive borehole
- Installation of 3No. 10m deep groundwater monitoring wells
- 2No. falling head soakage tests (undertaken post-works down monitoring well)
- Geotechnical laboratory testing
- Contamination laboratory testing (WAC test plus Haz-waste classification)

All three trial holes were installed with monitoring standpipes comprising slotted pipe with non-calcareous gravel pack surround from 10m to 1m below ground level (bgl) with bentonite seal above topped with stopcock cover set in concrete.

All trial hole locations have been presented in Figure 3.

Following completion of site works, soil cores were logged and sub sampled so that samples could be sent to the laboratory for both contamination and geotechnical

testing.

2.2 Ground Conditions

Between 25th and 26th August 2020, a single cable percussive borehole (BH1) was drilled to a depth of 20.00m bgl at a location selected by the client. Alternate SPT/U100 testing was undertaken at 1m intervals for the top 5m bgl and at 1.5m intervals thereafter.

On 4th September 2020, two windowless sampler boreholes (WS101 – WS102) were drilled to a depth of 10.00m bgl at locations selected by the client. A single super heavy dynamic probe (DP101) was driven prior and adjacent to WS101 to a depth of 10.00m bgl.

Monitoring standpipes were installed to a depth of 10.00m bgl within each trial hole location to allow for continued monitoring of groundwater levels, where present.

The maximum depths of trial holes have been included in Table 2.1.

All trial holes were scanned with a Cable Avoidance Tool (C.A.T.) and signal generator (Genny) prior to excavation to ensure the health and safety of the operatives.

Table 2.1 Final Depth of Trial Holes

Trial Hole	Depth (m bgl)	Trial Probe	Depth (m bgl)
WSI01 ^w	10.00	DPIOI	10.00
WS102 ^w	10.00		
BHI ^w	20.00		
Note: w - w	ell installation		

The approximate trial hole locations are shown on Figure 3.

The soil conditions encountered were recorded and soil sampling commensurate with the purposes of the investigation was carried out. The depths given on the trial hole logs and quoted in this report were measured from ground level.

The soils encountered from immediately below ground surface have been described in the following manner. Where the soil incorporated an organic content such as either decomposing leaf litter or roots, or has been identified as part of the in-situ weathering profile, it has been described as Topsoil both on the logs and within this report. Where man has clearly either placed the soil, or the composition altered, with say greater than an estimated 5% of a non-natural constituent, it has been referred to as Made Ground both on the log and within this report.

For more complete information about the soils encountered within the general area of the site reference should be made to the detailed records given within Appendix A, but for

the purposes of discussion, the succession of conditions encountered in the trial holes in descending order can be summarised as:

Made Ground (MG) Claygate Member (CLGB) London Clay Formation (LCF)

The ground conditions encountered in the trial holes are summarised in Table 2.2.

Table 2.2 Ground Conditions

Strata	Epoch	Depth Enco (m bgl)	ountered	Typical Thickness	Typical Description
		Тор	Bottom	(m)	
MG	Anthropocene	0.00	0.20 - 1.50	1.00	Dark brown gravelly SAND and CLAY comprising fragments of brick, clinker and flint.
CLGB	Eocene	0.20 – 1.50	4.00 – 5.50	4.00	Grey mottled yellowish brown slightly fine sandy silty CLAY.
LCF	Eocene	4.00 - 5.50	>20.001	Not proven ²	Dark grey silty CLAY.

2.3 Ground Conditions Encountered in Trial Holes

The ground conditions encountered in trial holes have been described below in descending order. The engineering logs are presented in Appendix A.1.

2.3.1 Made Ground

Soils described as Made Ground were encountered in all three trial holes from ground level and persisted to depths ranging between 0.20m and 1.50m bgl.

The Made Ground typically comprised dark brown gravelly SAND and gravelly CLAY. Gravel comprised fragments of brick, clinker, and flint.

The depths of Made Ground have been included in Table 2.3.

Table 2.3 Final	Depth of Made	Ground
-----------------	---------------	--------

Trial Hole	Depth (m bgl)
WS101	1.50
WS102	1.00
BHI	0.20

2.3.2 Claygate Member

Soils described as Claygate Member were encountered underlying the Made Ground and persisted to depths ranging between 4.00m and 5.50m bgl.

The Claygate Member comprised grey mottled yellowish brown slightly fine sandy silty CLAY with occasional black speckling and sand to gravel sized selenite crystals.

The depth of Claygate Member has been included in Table 2.4.

Table 2.4 Final Depth of Claygate Member

Trial Hole	Depth (m bgl)
WS101	5.20
WS102	4.00
BHI	5.50

2.3.3 London Clay Formation

Soils described as London Clay Formation were encountered underlying the Claygate Member and persisted to the full investigatory depth of 10.00m for windowless sampler boreholes and to 25.00m bgl for the cable percussive borehole.

The London Clay Formation comprised dark grey silty CLAY with rare gravel sized selenite crystals and rare gravel sized calcareous shell fragments.

A discrete mudstone band was encountered in WS101 from 4.90m to 5.20 bgl.

The depth of London Clay Formation has been included in Table 2.5.

Table 2.5 Final Depth of London Clay Formation

Trial Hole	Depth (m bgl)
WS101	>10.001
WS102	>10.001
BHI	>20.00'

Note: ¹ Final depth of trial hole.

2.4 Roots

Roots/rootlets were encountered in all three trial holes observed to depths ranging between 1.20m and 3.90m bgl. The depths of root penetration have been included in Table 2.6.

Table 2.6 Depth of Root Penetration

Trial Hole	Depth (m bgl)
WS101	3.90
WS102	3.80
BHI	1.20

Roots may be found to greater depth at other locations on the site particularly close to trees and/or trees that have been removed both within the site and its close environs.

It must be emphasised that the probability of determining the maximum depth of roots from a narrow diameter borehole is low. A direct observation such as from within a trial pit is necessary to gain a better indication of the maximum root depth.

The deeper root penetrated soils were encountered in WS101 and WS102, in proximity to mature trees lining the rear private garden.

2.5 Groundwater

A groundwater strike was only encountered within one trial hole (WS101) recorded at a depth of 6.00m bgl. No definitive water strikes were recorded during the drilling of the remaining trial holes; however, water seepage was noted in BH1 at 2.80m bgl and standing water recorded at 8.50m bgl on completion of drilling.

Changes in groundwater level occur for a number of reasons including seasonal effects and variations in drainage. The investigation was conducted in August/September (2020) when groundwater levels should at their annual minimum (lowest) elevation. Annual maximum (highest) water levels typically occur around March.

Further groundwater monitoring was conducted within the standpipe installed on site following completion of site works and has been presented in Table 2.7.

A single post-works monitoring visit was undertaken at the time of reporting, with an additional two scheduled at monthly intervals, with the final visit due beginning of December 2020.

Trial Hole	Depth to Wate	Base of Well	
	04/09/2020	01/10/2020	(m bgl)
WS101	6.00	2.56	10.00
WS102	DRY	1.81	10.00
BHI	8.50	1.67	10.00

Table 2.7 Groundwater Monitoring

Higher than anticipated water levels were recorded on 1st October 2020 at depths of between 1.67m and 2.56m bgl, likely from the presence of water bearing lenses within the Claygate Member. The results will be updated on completion of the monitoring regime.

Groundwater equilibrium conditions may only be conclusively established if a series of observations are made over a seasonal period via groundwater monitoring wells.

Section 3 Discussion of Geotechnical In-Situ and Laboratory Testing

3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were undertaken in BH1. The results were interpreted based on the classifications outlined in Appendix B.1.

The SPT "N60" values presented have been corrected in accordance with BS EN 22476 Part 3, to account for the rig efficiency, borehole depth, overburden factors etc. Further correction of the 'N' values should therefore not be necessary. The energy ratio is presented on the individual logs within Appendix A.1.

The Claygate Member recorded SPT "N60" values between 9 and 13 classifying the cohesive soils as medium strength with inferred undrained cohesive strengths of 45kPa to 65kPa.

The London Clay Formation recorded SPT "N60" values between 19 and 39 classifying the cohesive soils as high becoming very high, with undrained cohesions of 95kPa to 195kPa increasing with depth.

A full interpretation of the SPT results are outlined in Appendix B.2, Table B.2.1.

3.2 Dynamic Probe Tests

Dynamic probing (DPSH) was undertaken adjacent to WS101 (DP101) to a depth of 10.00m bgl. The results were converted to equivalent SPT "N60" values based on dynamic energy using commercial computer software (Geostru). The results were then interpreted based on the classifications outlined in Appendix B.1.

The SPT "N60" values presented have been corrected in accordance with BS EN 22476 Part 3, to account for the rig efficiency, borehole depth, overburden factors etc. Further correction of the 'N' values should therefore not be necessary. The energy ratio is presented on the individual logs within Appendix B.3.

The Claygate Member recorded equivalent SPT "N60" values between 3 and 6, classifying the cohesive soils as very low to low strength with undrained cohesions of 15kPa to 30kPa, increasing with depth.

The London Clay Formation recorded equivalent SPT "N60" values between 9 and 15 classifying the cohesive soils as medium strength with undrained cohesions of 45kPa to 75kPa, increasing with depth.

A full interpretation of the DPSH tests are outlined in Appendix B.2, Table B.2.2.

3.3 Falling Head Soakage Tests

Two falling head soakage tests were undertaken, within WS101 and WS102. At the time of completing the falling head soakage tests, water was recorded in the standpipes at depths of 2.56m and 1.81m bgl in WS101 and WS102, respectively. Water was added on top of the standing water levels to complete the tests. **Estimated** soakage rates were calculated and outlined in Table 3.1. It must be emphasised that the rates given must not be used for design calculations and full in-situ testing must be undertaken to BRE 365 Soakaway Design standards.

Table 3.1 Soakage Rates

Trial Hole	Test No.	Soakage Rate (Ltr/min)
WS101	I	0.104
WS102	Ι	0.071

3.4 Quick Unconsolidated Undrained Triaxial Compression Tests

Quick Unconsolidated Undrained Triaxial Compression Tests (QUU) were performed on six samples, one obtained from the Claygate Member and five from the London Clay Formation. The strength interpretation was based on the classification outlined in Appendix B.1.

The QUU testing indicated soils of the Claygate Member were of a high strength with an undrained cohesion of 83kPa.

Soils of the London Clay Formation were of a high strength with undrained cohesions of between 94kPa and 144kPa.

A full interpretation of the QUU tests are outlined Table B.2.3, Appendix B.2 and the laboratory report in Appendix B.3.

3.5 Atterberg Limit Tests

Atterberg Limit tests were performed on six samples, two obtained from the Claygate Member and four from the London Clay Formation. The results were classified in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

The Claygate Member was classified as low to medium volume change potential in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

The London Clay Formation was classified as medium to high volume change potential in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

A full interpretation of the Atterberg Limit tests are outlined in Table B.2.4, Appendix B.2 and the laboratory report in Appendix B.3.

3.6 Sulphate and pH Tests

Two samples were taken from the Claygate Member and one from the London Clay Formation for water soluble sulphate (2:1) and pH testing in accordance with Building Research Establishment Special Digest 1, 2005, 'Concrete in Aggressive Ground'.

The tests recorded water soluble sulphate between 216mg/l and 2500mg/l with pH values of 7.4 to 7.7.

The significance of the sulphate and pH test results are discussed in Section 4.6 and the laboratory report in Appendix B.3.

Section 4

Foundation Design

4.1 General

An engineering appraisal of the soil types encountered during the site investigation and likely to be encountered during the redevelopment of this site is presented. Soil descriptions are based on analysis of disturbed samples taken from the trial holes.

4.1.1 Made Ground and Topsoil

The terms *Fill* and *Made Ground (non-engineered fill)* are used to describe material, which has been placed by man either for a particular purpose e.g. to form an embankment, or to dispose of unwanted material. For the former use, the Fill and/or Made Ground may well have been selected for the purpose and placed and compacted in a controlled manner. With the latter, great variations in material type, thickness and degree of compaction invariably occur and there can be deleterious or harmful matter, as well as potentially methanogenic organic material.

The BSI Code of Practice for Foundations, BS 8004:2015, Clause 4.1.2.2 states, 'Spread foundations should not be placed on non-engineered fill unless such use can be justified on the basis of a thorough ground investigation and detailed design.'

Soils described as Made Ground were encountered in all three trial holes from ground level and persisted to depths ranging between 0.20m and 1.50m bgl. The Made Ground typically comprised dark brown gravelly SAND and gravelly CLAY. Gravel comprised fragments of brick, clinker, and flint.

A result of the inherent variability, particularly of uncontrolled Topsoil, Fill and/or Made Ground is that it is usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should, therefore, be taken through any Topsoil and/or Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.

4.1.2 Claygate Member

Soils described as Claygate Member were encountered underlying the Made Ground and persisted to depths ranging between 4.00m and 5.50m bgl. The Claygate Member comprised grey mottled yellowish brown slightly fine sandy silty CLAY with occasional black speckling and sand to gravel sized selenite crystals.

The results from SPT testing inferred that the cohesive soils of the Claygate Member were of medium strength with undrained cohesions of between 45kPa and 65kPa.

The results from DPSH testing inferred that the cohesive soils of the Claygate Member were of a very low to low strength with undrained cohesions of between 15kPa and 30kPa. The results from QUU tests indicated the soils of the Claygate Member were of a high strength with an undrained cohesion of 83kPa.

The results from Atterberg Limits tests confirmed that the soils of the Claygate Member had **low to medium volume change potential** in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

Soils of the Claygate Member are overconsolidated, predominantly cohesive soils and are expected to display moderate bearing and settlement characteristics. The soils of the Claygate Member were considered a suitable bearing stratum, depending on the final depth of the proposed basement.

4.1.3 London Clay Formation

Soils described as London Clay Formation were encountered underlying the Claygate Member and persisted to the full investigatory depth of 10.00m for windowless sampler boreholes and to 25.00m bgl for the cable percussive borehole. The London Clay Formation comprised dark grey silty CLAY with rare gravel sized selenite crystals and rare gravel sized calcareous shell fragments.

A discrete mudstone band was encountered in WS101 from 4.90m to 5.20 bgl.

The results from SPT testing inferred that the London Clay Formation was of high becoming very high strength, with undrained cohesive strengths of 95kPa to 195kPa, increasing with depth.

The results from DPSH testing inferred that the London Clay Formation was of medium strength with undrained cohesions of 45kPa to 75kPa.

The results form QUU testing indicated the soils of the London Clay Formation were of a high strength with undrained cohesions of between 94kPa and 144kPa.

The results from Atterberg Limit tests classified the cohesive London Clay Formation as medium to high volume change potential in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

Soils of the London Clay Formation are heavily overconsolidated cohesive soils and expected to display moderate bearing and settlement characteristics. The London Clay Formation was considered a suitable bearing stratum for the proposed development.

4.2 Foundation Scheme General

It was understood the proposed development was to comprise construction of a basement beneath the existing house onsite. A Basement formation level of 3.50m bgl and no alterations to the landscaping configuration of the site was presumed.

At the time of report, no proposed development drawings were available. It is recommended this report is revised once these have been issued.

Development plans provided by the client are presented in Appendix E.

4.2.1 Guidance on Shrinkable Soils

The Building Research Establishment (BRE) Digests 240, 241 and 242 provide guidance on 'best practice' for the design and construction of foundations on shrinkable soils.

The results from Atterberg Limit tests showed that the Claygate Member had low to medium volume change potential and the London Clay Formation had medium to high volume change potential. in accordance with BRE Digest 240 and NHBC Standards Chapter 4.2.

Medium and high volume change potential must therefore be adopted where foundations pass through the Claygate Member and London Clay Formation, respectively.

The BRE Digest 241 states: "An increasingly common, potentially damaging situation is where trees or hedges have been cut down prior to building. The subsequent long-term swelling of the zone of clay desiccated by the roots, as moisture slowly returns to the ground, can be substantial. The rate at which the ground recovers is very difficult to predict and if there is any doubt that recovery is complete then bored pile foundations with suspended beams and floors should be used".

The stated intention of the NHBC is to ensure that shrinkage and swelling of plastic soils does not adversely affect the structural integrity of foundations to such a degree that remedial works would be required to restore the serviceability of the building. It must be borne in mind that adherence to the NHBC tables and design recommendations may not, in all cases, totally prevent foundation movement and cracking of brickwork might occur.

The BRE Digest 240 suggests: "Two courses of action are open:

Estimate the potential for swelling or shrinkage and try to avoid large changes in the water content, for example by not planting trees near the foundations.

Accept that swelling or shrinkage will occur and take account of it. The foundations can be designed to resist resulting ground movements or the superstructure can be designed to accommodate movement without damage."

The design of foundations suitable to withstand movements is presented in BRE Digest 241 "Low-rise buildings on shrinkable clay soils: Part 2"

4.3 Foundation Scheme

Foundations **must not** be constructed within any Made Ground/Topsoil due to the likely variability and potential for large load induced settlements both total and differential.

Roots/rootlets were encountered in all three trial holes observed to depths ranging between 1.20m and 3.90m bgl. If roots are encountered during the construction phase foundations **must not be placed within any live root penetrated** or desiccated **cohesive soils or those with a volume change potential**. Should the foundation excavations reveal such materials, the excavations **must** be extended to greater depth in order to bypass these unsuitable soils. Excavations must be checked by a suitable person prior to concrete being poured.

Considering the type of development, a traditional strip foundation within the basement may be feasible however, given root/rootlet observations at the trial holes locations, traditional foundations within the basement cannot be recommended at depths shallower than 4.00m bgl. Notwithstanding, constructional challengers of adopting strip foundations at this depth and possible presence of groundwater within discrete granular seams within the Claygate Member may prove piled foundations more economical. Both options have been considered below.

4.3.1 Shallow Foundations within Basement

Foundations constructed within the basement excavation could be considered and the bearing capacity of such foundations is given below. If the foundation is to include lateral load from retained soil, then the distribution of loads on the foundation will be trapezoidal and the maximum pressure will be at the toe of the foundation. In such cases additional analyses must be requested by the client such that the appropriate analyse is undertaken.

If the wall is to have backfill placed on both sides, the backfill must be placed in shallow rises on both sides to maintain similar lateral forces on both sides of the wall.

A proposed basement excavation 3.50m deep would remove an overburden pressure of circa 60kPa, based on a unit weight of 18kN/m³ for the overlying soil.

An "net" allowable bearing capacity of 80kPa was calculated, founding at a minimum depth of 4.00m bgl within the Claygate Member, based on a 5m by 0.75m strip foundation.

Taking account of the removed overburden pressure the "gross" bearing value could be taken as 140kPa.

For the allowable bearing value given above, settlements should not exceed 20mm, provided that excavation bases are carefully bottomed out and blinded, or

concreted as soon after excavation as is possible and kept dry. Settlements may be taken as proportional to the applied foundation pressure for the given size of the foundations.

The use of reinforced trench fill foundations must be used to reduce the potential of differential settlement across foundations.

Settlements may be taken as proportional to the bearing capacity given for the same configuration of foundation i.e. halving the applied loads the settlements would have.

Special care must be taken during foundation excavation in order to establish that any soft/loose spots found within the soils are removed from the base of excavations.

Foundations must not be cast over foundations of former structures and other hard spots.

4.3.2 Basement and Stability Requirements

This report does not comprise a basement impact assessment (BIA), which was understood to be undertaken by others based on the findings of this intrusive site investigation.

4.3.3 Basement Construction Stability Issues

The excavation of the basement **must not** affect the integrity of any adjacent structures beyond the site boundaries. Where there is a sufficient distance between the site boundary and the basement excavation, support may be permitted using a strip foundation to form an earth retaining structure. In other cases, the most suitable form of construction should be within a coffer dam structure using a sheet piles, secant or contiguous concrete piled wall around the periphery of the structure.

Generally cantilevered piled walls have an open face to embedded ratio of about one to two ie. a supported face 3.50m in height would require a penetration into the ground, below the base of the excavation, of about 7.00m. Should the piled wall be purely an unsupported cantilever then it is likely that quite deep section sheet piles or large diameter bored piles would be required. Installing a braced waling to the wall could reduce the sheet section, or diameter of the piles.

4.3.4 Piled Foundations

If adopted, the piled foundations must be taken through any Made Ground and Claygate Member into suitable strength soils of the London Clay Formation.

The construction of a piled foundation is a specialist job with the actual pile working load depending on the particular type pile and installation method. Prior to finalising

the foundation design the advice from a reputable contractor who is familiar with the ground and groundwater conditions present at the site should be sought.

The vertical load capacities are provided for varying diameters and lengths of bored piles taken into the London Clay Formation, based on SPT "N60" values and QUU test results and must only be used for preliminary design purposes. These values have been calculated modelling the Claygate Member and London Clay Formation as granular over the full borehole length. A factor of safety of three was applied to both the shaft and base and depicted by the design line outlined in Appendix C.1. An alpha value of 0.45 and Nc value of 9 was adopted for the clay soils.

The bearing values given in Appendix C.1., are applicable to single piles. Where piles are to be constructed in groups the bearing value of each individual pile should be reduced by a factor of about 0.8 and a calculation made to check the factor of safety against block failure.

From ground level the upper 6m of the pile shaft has been ignored in the preliminary pile design given.

To prevent necking of the green concrete, temporary casing may be required where the pile passes through the Made Ground and below the groundwater table (if encountered). To achieve the full bearing value a pile should penetrate the bearing stratum by at least five times the pile diameter.

No allowance has been made for negative skin friction that could be generated where piles pass through Made Ground deposits underlying the site. The negative skin friction must be applied to the pile working load and must not be factored.

4.4 Retaining Wall

If the foundation is to include lateral load from retained soil, then the distribution of loads on the foundation will be trapezoidal and the maximum pressure will be at the toe of the foundation. The foundation has to resist both overturning and sliding forces. The overturning forces are derived from the loads imposed both by the soils retained, by any line loads from structures to the rear of the wall and by groundwater.

To calculate the lateral loads from the soils their coefficient of active earth pressure must be calculated from effective stress testing.

For the allowable bearing value given above, settlements should not exceed the presented values, provided that excavation bases are carefully bottomed out and blinded, or concreted as soon after excavation as possible and kept dry. Foundations must not be constructed over former structures and other hard spots. The foundations design must be suitable for the conditions present at the site.

The anticipated settlement includes both elastic settlement and long-term drained settlement (in the case of cohesive soils).

4.5 Slope Stability

It must be noted the proposed basement construction will be undertaken on sloped terrain, with the wider hillside setting anticipated to slope down to the south-west at an approximate average angle of 10 degrees.

This report does not include a dedicated slope stability analysis. The following comments are of a general and non-specific nature.

Natural slopes, in cohesive soils in England, typically stand with a factor of safety against sliding of about one during periods when the groundwater is at or close to ground level. Factors such as drainage installed into the slope and foliage can enhance the overall or local stability of the slope but generally only marginally.

Interference by man in the profile of a natural slope, the groundwater regime in or around the slope, or in the loading on a slope, can initiate both local and/or overall instability. Natural erosional processes, such as a river or the sea eroding the toe of a slope can, and does, initiate instability.

Manmade slopes, such as railway cuttings, can be stable over long periods of time and then fail decades after their construction (due to equalisation of pore water pressures within the slope). Embankments, if not properly engineered can have failures in the short-term due to excess porewater pressures being setup during construction.

Analyses of slopes generally takes the form of a back analyses of the existing ground profile to permit an assessment of the strength parameters within the soil mass being estimated. Laboratory testing, of various forms depending on the slope type or failure, of soils samples taken through the ground section is then undertaken and the strength parameters found compared to those estimated from the back analyses. The comparison may then be used to provide background data to establish the failure mechanism, to design remedial works or to check the factor of safety against failure of a standing slope. Slope stability analysis must consider the stability of the site and land both upslope and downslope of it.

Initial design parameters can be taken from published values for the residual strength of London Clay Formation and worst-case assumptions of winter groundwater levels, though these would need to be verified by laboratory analysis and groundwater monitoring.

4.6 Subsurface Concrete

Sulphate concentration measured in 2:1 water/soil extracts fell into Class **DS-3** of the BRE Special Digest 1 2005, *'Concrete in Aggressive Ground'*. Table C2 of the Digest

indicated ACEC (Aggressive Chemical Environment for Concrete) site classifications of **AC-3**. The pH of the soils tested ranged between 7.4 and 7.7. The classification given was determined using the mobile groundwater case, in the view of groundwater being encountered. The laboratory results are presented in Appendix B.3.

Concrete to be placed in contact with soil or groundwater must be designed in accordance with the recommendations of Building Research Establishment Special Digest 1 2005, *'Concrete in Aggressive Ground'* taking into account any possible exposure of potentially pyrite bearing natural ground and the pH of the soils.

4.7 Excavations

Shallow excavations in the Made Ground are likely to be marginally stable in the short term at best.

Deeper excavations taken into the Claygate Member are likely to be stable in the short term. Unsupported earth faces formed during excavation may be liable to collapse without warning and suitable safety precautions should therefore be taken to ensure that such earth faces are adequately supported or battered back to a safe angle of repose before excavations are entered by personnel.

Excavations beneath the groundwater table are likely to be unstable and dewatering of foundation trenches may be necessary.

Section 5 Soil Chemical Analysis

5.1 General

The production of a Preliminary Investigation Report (Phase I Desk Study) and preparation of a Conceptual Site Model (CSM) was outside the scope of this investigation. This investigation did not comprise an environmental audit of the site or its environs.

5.2 Soil Chemical Analysis

Soil sampling for contamination purposes was undertaken following instruction from the client and one sample was analysed for a wide range of common brownfield contaminants.

The results of the soil chemical analysis including Waste Acceptance Criteria certificate are presented in Appendix D.1.

5.3 Duty of Care

Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust is generated as a result of construction activities. The site should be securely fenced at all times to prevent unauthorised access.

Washing facilities should be provided and eating restricted to mess huts.

5.4 Excavated Material

Excavated material as waste must be defined or classified prior to any disposal, transport, recycling or re-use at or by an appropriately licensed or exempt carrier and/or off-site disposal facility. The requirements inherent in both Duty of Care and Health and Safety must also be complied with. In order to determine what is to happen, what is suitable, appropriate and most effective in the disposal of wastes, especially those subject to CDM waste management plan requirements, several factors must be considered and competent advice should always be sought.

The amount, type and nature of the material to be removed will in part determine the amount and type of analysis that may be required to comply with current waste guidance, and thereby allow a competent person to suitably classify the material. Often this data is uncertain or unavailable, especially in the early stages of a project, and therefore further investigation, testing and analysis may be required as additional information regarding

the development becomes available.

Wastes must be classified and defined by their solid characteristics to comply with current waste guidance. Existing information and analysis derived for environmental purposes may therefore be suitable for use in this context. Waste Acceptance Criteria (WAC) report the leachability of materials and therefore cannot be used to classify, characterise or define wastes. The only purpose of a WAC analysis is to determine the suitability of a given material for acceptance at one of the three different types of available licenced landfills (inert, stable non-reactive hazardous or hazardous).

WAC analysis was undertaken on the sample and the certificate is included within the analysis report in Appendix D.1.

Other options are available that may lead to significant savings against disposal to landfill and expert advice should always be sought from a competent person to advise on their relative costs or benefits and advise on any additional analysis, sampling or investigation that may be required to reduce remaining uncertainties and comply with current guidance.

Further consideration of results using HazWasteOnlineTM was undertaken to give an indication of potentially hazardous properties and the report is presented in Appendix D.1.

5.5 Re-use of Excavated Material On-site

The re-use of on-site soils may be undertaken either under the Environmental Permitting Regulations 2007 (EPR), in which case soils other than uncontaminated soils are classed as waste, or under the CL:AIRE Voluntary Code of Practice (CoP) which was published in September 2008 and is accepted as an alternative regime to the EPR.

Under the EPR, material that is contaminated but otherwise suitable for re-use is also classified as waste and its re-use should be in accordance with the Environmental Permitting Regulations 2007 (EPR). Environmental Permit Exemptions (EPE) are for the re-use of non-hazardous or inert waste only; hazardous waste cannot be re-used under a permit exemption. EPE apply only to imported inert waste materials; inert material arising on site and recovered on site is not classified as waste and does not require an exemption. It is possible that materials arising on-site will be classified as inert and would not need an exemption.

Environmental Permit Exemptions are only allowed for certain activities, placing controls on the quantities that can be stored and re-used. The re-use of waste shall be within areas and levels defined in planning applications and permissions for the development. An EPE requires a site-specific risk assessment for the receptor site to demonstrate that the materials are suitable for use, i.e. that they will not give rise to harm to human health or pollution of the environment. Under the CL:AIRE voluntary code of practice (CoP) materials excavated on-site are not deemed contaminated if suitable for re-use at specified locations or generally within the site.

Material that may have been classified as hazardous waste under the EPR may be reused. The CoP regime requires that a 'Qualified Person' as defined under the CoP reviews the development of the Materials Management Plan, including review of Risk Assessments and Remediation Strategy/Design Statement together with documentation relating to Planning and Regulatory issues, and signs a Declaration which is forwarded to the Environment Agency and which confirms compliance with the CoP.

Should it be necessary to import materials from another site where materials are excavated and which is not material from a quarry or produced under a WRAP protocol, then an EPE would be necessary for the imported material whether the work was managed under the CoP or the EPR.

5.6 Imported Material

Any soil, which is to be imported onto the site, must undergo chemical analysis to permit classification prior to its importation and placement in order to ascertain its status with specific regard to contamination, i.e. to prove that it is suitable for the purpose for which it is intended.

5.7 Discovery Strategy

There may be areas of contamination not identified during the course of the investigation. Such occurrences may also be discovered during the demolition and construction phases for the redevelopment of the site.

Care should be taken during excavation works especially to investigate any soils, which appear by eye (e.g. such as fibrous materials, large amounts of ash and unusual discolouration), odour (e.g. fuel, oil and chemical type odours or unusual odours such as sweet odours or fishy odours) or wellbeing (e.g. light headedness and/or nausea, burning of nasal passages and blistering or reddening of skin due to contact with soil) to be contaminated or of unusual and/or different character to standard soils or those analysed.

In the event of any discovery of potentially contaminated soils or materials, this discovery should be quarantined and reported to the most senior member of site staff or the designated responsible person at the site for action. The location, type and quantity must be recorded and the Local Authority, and a competent and appropriate third party Engineer/Environmental consultant notified immediately. An approval from the Local authority must be sought prior to implementing any proposed mitigation action.

The discovery strategy must remain on site at all times and must demonstrate a clear allocation of responsibility for reporting and dealing with contamination. A copy of the

strategy must be placed on the health and safety notice board and /or displayed in a prominent area where all site staff are able to take note of and consult the document at any time. Any member of the workforce entering the site to undertake any excavation must be made aware of the potential to discover contamination and the discovery strategy.

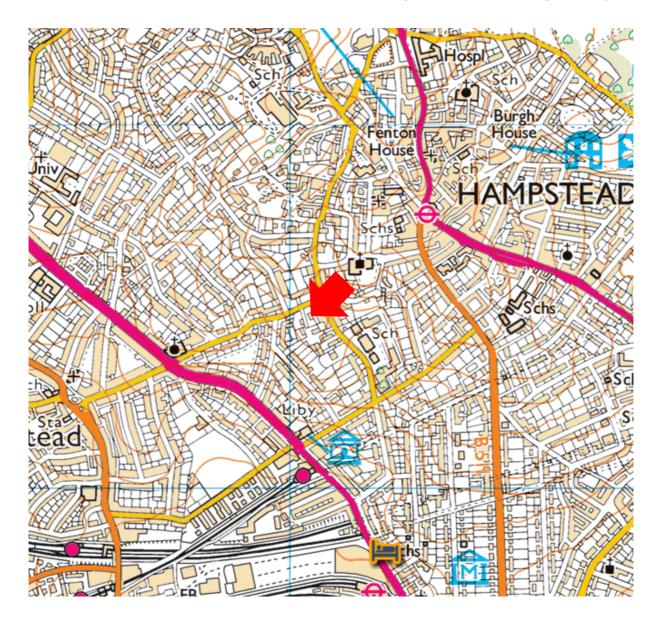

List of Figures

Figure 1 – Site Location Map	
Figure 2 – Aerial Photograph	27
Figure 3 – Trial Hole Plan	

List of Appendices

Appendix A Field Work

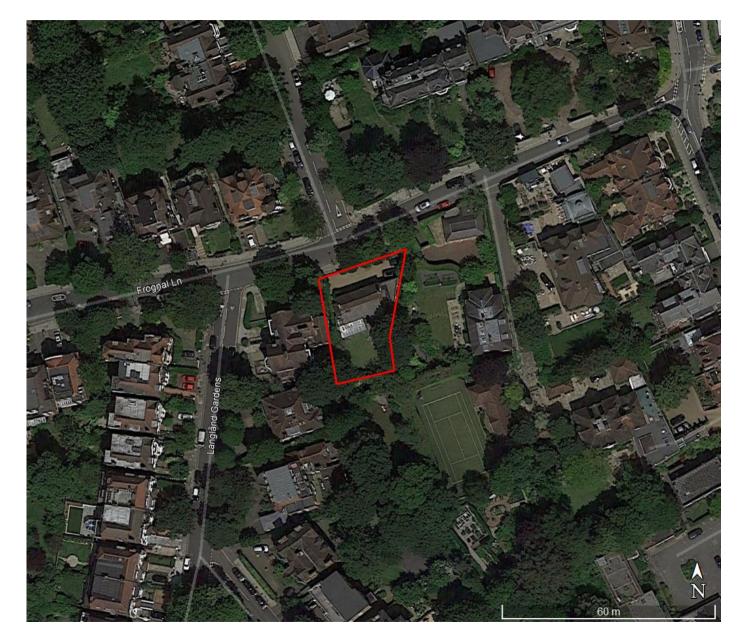

Appendix A.1	Engineers Logs
Appendix B	Geotechnical In-Situ and Laboratory Testing
Appendix B.1	Classification
Appendix B.2	Interpretation
Appendix B.3	Geotechnical In-Situ and Laboratory Results
Appendix C	Foundation Design
Appendix C.1	Preliminary Pile Design
Appendix D	Chemical Laboratory Testing
Appendix D.1	Chemical Laboratory Results
Appendix E	Information Provided by the Client

Figure I – Site Location Map	
Job Number 18577	Project 38 Frognal Lane, London NW3 6PP
Client	Date
MRPP	October 2020

Soils Limited

Figure 2 – Aerial Photograph

Project

38 Frognal Lane, London NW3 6PP

Client MRPP

Date

October 2020

Job Number 18577

Soils Limited

Figure 3 – Trial Hole Plan

Project

38 Frognal Lane, London NW3 6PP

Client MRPP

Date

October 2020

Job Number 18577

Appendix A Field Work

Appendix A.I Engineers Logs

				act Name	38	Frognal L			Client:		MRPI			Hole	E	3H01	
S			Contra	act Numb			End Date:	Logged By:		Checke	ed By:	Statu	IS:	Hole			
				18577) - 26-08-20		W							СР	
_ I M		ΓED	Eastin	g: 526008.		Northing: 18	5472.3	Ground Lev 90.96		Plant U	ando 2000		Date: 09-11-2020	Scal		1:50	
/eather:				T	Teri	mination:					Hammer: AF	3201 En	ergy Ratio: 7	1%		Sheet	
Sarr Depth	iples & In Type	Situ Testing Resul	ts	Level	Depth (m)	Legend			Strata Deta		escription					Grour Water	Bac
				(mAOD) 90.91	(Thickness)		From driller's I	ogs: GRAVEL	. MADE GR	ROUND.					1	Strike	Instal
0.20	D			90.86 90.76	0.20		From driller's I From driller's I	ogs: Compact	ed type 1 sto	one. MAD	E GROUND.			/	ł		
0.50	D						Firm, black sp medium. Occ	eckled, grey a asional rootlet	nd orangish s and woody	brown mo / roots.	ttled, brown, sl	ightly sand	ly CLAY. Sand	is fine to	-		
					(1.00)										-		
1.00	D														-1		. ·.
1.20 1.20 - 1.50	D B			89.76	1.20	××	Firm to stiff, bl	ack speckled,	grey and or	angish bro	wn mottled, bro	own, sandy	/ silty CLAY. Sa	and is fine.	ţ		
1.50 1.50 - 1.95	SPT D	N=8 (1,2/2	,2,2,2)			××									-		
1.50 - 1.95	D					××									-		
						×									-2		
2.30	D					×									-		
2.50 - 2.95	U	Ublow =	= 20		(0.00)	××									-		
					(2.80)	××									-		
3.00	D					×									- 3		
						×											
3.50	SPT	N=11 (1,2/2	2,3,3,3)			× – × – ×									[
3.50 - 3.95	D		, . , - , •)			××									-		
				86.96	4.00	××									-4		
	_			00.00	00		Stiff, slightly o sized selenite	rangish brown crystals. CLA	mottled, slig	ghtly sandy MBER.	CLAY. Sand	s fine. Oc	casional coarse	e sand	-		
4.30	D	Liki a	05												-		
4.50 - 4.95	U	Ublow =	- 20		(4.50)										-		
	_				(1.50)										-		
5.00	D														- 5		
															-		
5.50	D			85.46	5.50	××									t		
						<u>×_×</u> _×	IS IIIIE. KARE (Juarse sand to	nne gravel	sizea selei	me crystals. L		LAY FORMATIO	UN.	-		
6.00 6.00 - 6.45	SPT D	N=16 (2,2/3	3,4,4,5)			××									- 6		
						××									[
						××									-		
						××									-		
7.00	D					××									-7		
						××									-		
7.50 - 7.95	U	Ublow =	= 30			××									-		
					(9.00)	××									-		
8.00	D					××									- 8		
						××									[
8.50	D					××									-		
						××											
9.00	SPT	N=22 (2,3/4	4,6,6,6)			××									-9		
9.00 - 9.45	D		,			××									-		
						××									[
						××									-		
10.00	D					××									- 10		
		of Shift Obse	rvations		Boroha	ole Diamete	r Casing Di	ameter D	marka						10		
Date		Depth (m) Ca) Water (m) Depth (r	n) Dia (mr	n) Depth (m) I	Dia (mm) Roo	marks: otlets observ	ed to 1.2m	bgl.						
					20.00	150	3.00	150									
		Chiselling			<u> </u>		stallation		rike (m) Ca	asing (m)	Sealed (m) T		Rose to (m) R				
rom (m) To		ration	Remar	ks	Top (m 0.00			Dia (mm) 50				Ó	0.00 r	No groundw ecorded du	ring d	rilling. \	Wate
					1.00	10.00		50						seepage at 2			
1					1				Hand	vane (HV)	Hand penetro	meter (HP)) reported in kP	a. PID repo	rted ir	n ppm.	

			Contra	ct Name		Frognal L	ane		Client:		MRF	р		Hole ID:	BH01	
SC			Contra	ct Numb		Start and		Logged		Check	ed By:	Statu	IS:	Hole Typ		
			Easting	18577		25-08-20 Northing:) - 26-08-20	Ground	DW	Plant I	leed:	Drint	Date:	Scale:	СР	
LIM		Γ E D		y. 526008.			5472.3		.96mAOD		ando 2000		09-11-2020		1:50	
Weather:						mination:							ergy Ratio: 71	%	Shee	t 2 of 2
Sam Depth	nples & In Type	Situ Testing Results		Level	Depth (m)	Legend			Strata D		escription				Water	ndwater Backfill/
Deptil	туре	Result		(mAOD)	(Thickness)		Stiff to very st	iff, greyish	brown to bro	ownish arev w	ith depth slig	htly sandy, s	slightly silty CLA	Y. Sand	Strike	Installation
10.50 - 10.95	U	Ublow =	50				is fine. Rare o	coarse sai	nd to fine gra	vel sized sele	nite crystals.	LONDON C	LAY FORMATIC	DN.		
11.00	D													- - 11		
11.50	D													-		
12.00 12.00 - 12.45	SPT D	N=26 (3,4/6,	,6,7,7)											- 12		
13.00	D													- 13		
13.50 - 13.95	U	Ublow =	45													
14.00	D					×× ××								- 14		
14.50	D	N=30 (3,4/6	789)	76.46	14.50	×× ×× ××	Stiff to very st and features i	iff dark bla n occasio	ckish green nal laminatior	mottled, brow ns and lenses	nish grey sligh . LONDON C	ntly sandy, s LAY FORM	ilty CLAY. Sand ATION.	is fine, . - - 15		
15.00 - 15.45																
16.00	D													- 16		
16.50 - 16.95 17.00	U D	Ublow =	50											- - - 17		
17.50	D				(5.50)	×								- - - - - -		
18.00 18.00 - 18.45	SPT D	N=33 (3,4/6,7	7,10,10)											- 18 - 18		
19.00	D													- 19		
19.50 - 19.95	U	Ublow =	60			×× ×× ××										
20.00	D			70.96	20.00					End of Borel	nole at 20.00r	n		20		
St 		of Shift Obser Depth (m) Ca		Water (m					Remarks: Rootlets obs	served to 1.2n	n bgl.					
		Chiselling			-	Ins	tallation		Strike (m)	Casing (m)	Sealed (m)	Water S Time (mins	trikes) Rose to (m) R	emarks		
From (m) To		ration	Remar	ks	Top (m 0.00 1.00	n) Base (m 1.00		Dia (mm) 50 50				Ò	0.00 N	lo groundwater ' ecorded during o eepage at 2.8m	Irilling. \	Water
									На	ind vane (HV)), Hand penetr	ometer (HP) reported in kPa	a. PID reported i	n ppm.	

			Contract Name		Frognal	Lane	Clier	it:	MRF	P	Hole	e ID: V	VS101
			Contract Num			End Date:	Logged By:	Che	ecked By:	Status:	Hole	э Тур	
			18577 Easting:		04 Northing:	-09-20	DW Ground Level:	Pla	nt Used:	Print Date:	Sca	ام:	WS
_ I M	1 І Т	ED	526008	.9	U U	5446.9	90.47mAC		TERRIER	09-11-2020			1:50
/eather:			1	Tei	mination:						I		Sheet 1 o
	T I	Situ Testing	Level	Depth (m	Langed		Strat	a Details	ha Daaamin tian				Groundwa Water Ba
Depth	Туре	Result	(mAOD)	(Thickness	Legend	From driller's	logs: Dark brown, s		ta Description	nal fine to coarse flint and	fine brick		Strike Insta
0.20	ES		90.17	(0.30) 0.30		- ·	uent rootlets. MADE		gravelly SAND (Gravel is angular to sub-a	ngular fine	-	
0.50 - 1.20	WAC			(0.60)			ck and occasional fin				···g-····, ····	-	
			89.57	0.90								-	
				(0.60)			vith a band from 0.1 -			ine to coarse brick, clinker . MADE GROUND.	r and rare	- 1	
1.40	D											-	
1.60	D		88.97	1.50						slightly sandy silty CLAY. s. Occasional rootlets and		-	
						roots 2mm d	iameter. Rare coarse	e to fine grave	el sized sand size	d selenite crystals from 4.	.5m bgl.	- 2	•••
2.10	D					Fine sandy len	NEVIDER. ses at 3.6 and 3.9m bgl.						•••
					×							-	
2.60	D				××							-	
3.10	D				××							- 3	
5.10				(3.40)	×							-	
3.60	D				× × ×							-	
												ŀ	•••
4.10	D											- 4	•••
					××							-	
4.60	D				××							-	
			85.57	4.90	<u>× </u>	Brown calca	reous MUDSTONE.					÷_	
5.10	D		85.27	(0.30) 5.20				mottlad bra	we clightly condu	, silty CLAY. Sand is fine,	and	- 5	•••
5.50	D				XX	features in o	ccasional laminations	. Occasiona	al to rare coarse to	o fine gravel sized sand size		-	
					×— —×	Disturbed sam	ple from 6.0 - 6.5, 7.0 - 7.5m bgl.					-	
												- 6	
					× ×							-	
6.50	D			(2.60)	××							-	
0.00					××							-	
6.90	D				×							- 7	•••
					XX							-	
					X—————————————————————————————————————							-	
7.90	D		82.67	7.80						e crystals, with an angula			•••
						9.7m bgl. LC	selenite crystal at 8.9 ONDON CLAY FORM ple from 8.0 - 8.5, 9.0 - 9.5m bgl	ATION.	y rare line gravels	sized calcareous shells at	. o. r , and	- 8	
8.50	D				××								
5.00					××							ł	
8.90	D			(2.20)	××							-9	
					× ×							-	
9.60	D											ŀ	
												-	
9.90	D		80.47	10.00				End of Bo	orehole at 10.00r	n		10	
S Date	tart & End Time	of Shift Obser	rvations asing (m) Water (n	Boreh	ole Diamete	er Casing [m) Depth (m)	Diameter Remark Dia (mm) Live rootl	S:	1 to 2 0m hel				ıl
_ 210				10.00	150	,		ers onselved	i to ə.əm byl.				
										Water Strikes			
		Chiselling				stallation	Strike (r Dia (mm) 6.00	n) Casing ((m) Sealed (m)	Water Strikes Time (mins) Rose to (m) 20 6.00	Remarks		
rom (m) To	o(m) Dur	ration	Remarks	Top (r 0.00 1.00	1.00	PLAIN	33			20 0.00			
				1.00	10.00		33						
	1												

			Contract Name					Client:				Hole ID		
					Frognal La				Ν	MRPP			WS10)2
S			Contract Numb	er:	Start and Er	nd Date:	Logged I	By:	Checked By:	Sta	tus:	Hole T	/pe:	
			18577		04-0	9-20		DW					WS	i
			Easting:		Northing:		Ground I	Level:	Plant Used:	Prir	it Date:	Scale:		
	1	TED	525999.	2	1854	151.2	90.4	48mAOD	TERRIE	ER	09-11-2020		1:50)
Weather:				Terr	nination:							1	She	et 1 of 1
	moles & l	n Situ Testing			minadon.			Strata Deta	nils					oundwater
Depth	Туре	Resu	Level	Depth (m)	Legend			olidid Doli	Strata Descriptior	 n			Wat	ter Backfill/
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(mAOD)	(Thickness)	-	From driller's	logs: Dark	brown. slightly	clayey SAND. Occ		t and brick gravel.		Strik	ke Installation
0.20	ES		90.18	(0.30) 0.30	C Second	Occasional ro	otlets. MAI	DE GROUND.			·	-		
0.50	ES		50.10	0.00					brown gravelly SAN gravel. MADE GRC		ngular to sub-angular,	fine .		
0.00				(0.60)						50112.				
			89.58	0.90								-		
			89.48	0.90 1.00	××××××××××××××××××××××××××××××××××××××	From driller's	logs: Stiff b	orown CLAY. F	requent brick grave	I. MADE GRO	UND. htly sandy silty CLAY.	·	1	
1.20	D				🚽 🐣 🗕 S	Sand is fine a	and features	in occasional I	aminations and par	tings. Occasio	nal rootlets and woody			
						CLAYGATE N	/IEMBER.		•		crystals from 4.5m bgl			
1.70	D					Firm from 1.5m	bgl. Rare sub-rou	nded, fine to medium n	narl gravel from 3.5m bgl. Bec	coming stiff at 3.7m bgl.				
					×—×							ļ		
					X							-:	2	
2.20	D				XX									
				(3.00)	×							Ļ		
2.70	D				×							ļ		
												-		
0.00												- :	3	
3.20	D				×—×							F		
					X							F		
3.70	D				X							-		
			86.48	4.00	×							-	1	
4.10	D		80.48	4.00	× S	Stiff, grey mo	ttled, brown	, slightly sandy	, silty CLAY. Sand i	is fine, and feat	ures in occasional ne gravel sized sand s	-	•	
						elenite crvst	als.				•	÷		
4.60	D				× *	Sandy lens with inclusions and la	medium to coarse aminations from 5.	e sand sized selenite cr Om bgl.	ystals at 3.65m bgl. Grey mot	tling to 5.9m bgl. Rare	yellowish brown fine gravel sized s	ult _		
4.00														
					××							Ŀ	5	
5.20	D				XX								,	
0.20					×							t i		
				(0.00)	×							-		
5.70	D			(3.30)										
					$\overline{\times}$							L.		
6.20	D				×—×							5	í I	
	_				X									
					X							-		
6.70	D				×							-		
					×							Ļ	7	
					×_×_							-		
7.40	D		83.18	7.30	× s	Stiff to very st	tiff, slightly b	black speckled	brownish grey, silty	CLAY. Rare fin	e gravel sized selenite	e .		
					<u> </u>	Coarse gravel to	cobble sized bro	ravel sized call ken marl nodule at 7.5n	bgl. Occasional fine sand in	top of stratum. Fine gi	ORMATION. avel sized pyritised plant fossil at	F		
7.90	D				×	r.on uyr.						F		
1.90					×							-	3	ŀ.₽.
					×							[
8.40	D				×							Ŀ		
				(2.70)	×_×_							ļ		
8.90	D											ļ		
												-	9	
												ļ		
9.40	D											Ļ		$ \cdot $
					×							ļ		
9.90	D				×							ļ		
			80.48	10.00				End	d of Borehole at 10	0.00m			10	
		d of Shift Obse			le Diameter	Casing D		Remarks:				I		
Date	Time	Depth (m) C	asing (m) Water (m) Depth (n 10.00		Depth (m)	Dia (mm)	ive rootlets ob	served to 3.8m bgl.					
				1										
				1				<u></u>			Strikes			
From (m) T	Го (m) D	Chiselling	Remarks	Top (m		Ilation Type	Dia (mm)	Strike (m) C	asing (m) Sealed	(m) Time (min 0	s) Rose to (m) Rema 0.00 No gro	rks oundwate	r encou	intered.
				0.00	1.00	PLAIN	33			Ŭ				
				1.00	10.00	SLOTTED	33							
							F	I						
								Hand	vane (HV), Hand pe	enetrometer (H	P) reported in kPa. PI) reporte	d in ppn	n.
· · · · · · · · · · · · · · · · · · ·														

Appendix B Geotechnical In-Situ and Laboratory Testing

Appendix B.I Classification

Classification based on SPT "N" values:

The inferred undrained strength of the cohesive soils was based on the SPT "N" blow counts, derived from the relationship suggested by Stroud (1974) and classified using Table B.1.1. (Ref: Stroud, M. A. 1974, "The Standard Penetration Test – its application and interpretation", Proc. ICE Conf. on Penetration Testing in the UK, Birmingham. Thomas Telford, London.).

Table B.I.I SPT "N" Blow Count Cohesive Classification

Undrained Cohesive Strength C _u (kPa)
<10
10 – 20
20 – 40
40 – 75
75 – 150
150 – 300
> 300

Note: (Ref: BS EN ISO 14688-2:2004+A1:2013 Clause 5.3.)

Appendix B.2 Interpretation

Table B.2.1	Interpretation	of SPT Tests
-------------	----------------	--------------

BH	Strata	SPT N60 Blow	Inferred Cohesive Strength
		Counts	
BHI	CLGB	9 – 13	Medium
	0.20 - 5.50		(Cu = 45 - 65kPa)
	Silty CLAY		
	LCF	19 – 39	High to very high
	5.50 - 20.00		(Cu = 95 – 195kPa)
	Silty CLAY		

Table B.2.2 Interpretation of DPSH Blow Counts

DP	Strata	Equivalent SPT N60 Blow Counts	Inferred Cohesive Strength
DPI0I	CLGB	3 – 6	Very low to low
	1.50 – 5.20		$(C_u = 15 - 30 \text{kPa})$
	Silty CLAY		· · ·
	LCF	9 – 15	Medium
	5.20 - 10.00		(C _u = 45 – 75kPa)
	Silty CLAY		

Note: Ground conditions inferred past the base of windowless sampler boreholes.

Table B.2.3 Interpretation of QUU Tests

Location	Stratum	Sample Depth (m bgl)	Moisture Content (%)	Soil Strength	Shear Strength (kPa)
BHI	CLGB	4.50	26	High	83
BHI	LCF	7.50	25	High	130
BHI	LCF	10.50	23	High	144
BHI	LCF	13.50	23	High	94
BHI	LCF	16.50	23	High	117
BHI	LCF	19.50	22	High	135

Note:

Stratum	Moisture Content	Plasticity Index	Passing 425μm	Modified Plasticity	Soil Classification	Volume Change	Potential
	(%)	(%)	Sieve (%)	Index (%)		BRE	NHBC
CLGB	23 - 26	18 - 22	100	18 - 22	CI	Low to medium	Low to medium
LCF	26 - 27	34 - 53	100	34 - 53	CH – CV	Medium to high	Medium to high

Table B.2.4 Interpretation of Atterberg Limit Tests

Note: BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results)

NHBC Volume Change Potential refers to NHBC Standards Chapter 4.2

Soils Classification based on British Soil Classification System

The most common use of the term clay is to describe a soil that contains enough clay-sized material or clay minerals to exhibit cohesive properties. The fraction of clay-sized material required varies, but can be as low as 15%. Unless stated otherwise, this is the sense used in Digest 240. The term can be used to denote the clay minerals. These are specific, naturally occurring chemical compounds, predominately silicates. The term is often used as a particle size descriptor. Soil particles that have a nominal diameter of less than 2 µm are normally considered to be of clay size, but they are not necessarily clay minerals. Some clay minerals are larger than 2 µm and some particles, 'rock flour' for example, can be finer than 2 µm but are not clay minerals. (The Atterberg Limit Tests were undertaken in accordance with BS 1377:Part 2:1990 Clauses 3.2, 4.3 and 5)

Appendix B.3 Geotechnical In-Situ and Laboratory Results

	Newton House, Cros	i ls Limited ss Road, Tadworth KT20 5SR nail: admin@soilslimited.co.ul	k	Probe Log	Probe No. DP101 Sheet 1 of 2
Project Name:	38 Frognal Lane	Project No. 18577	Co-ords:	526008.91E - 185446.87N	Hole Type DP
Location:	London NW3 6PP		Level:	90.4714m AOD	Scale 1:50
Client:	MRPP		Dates:	04-09-2020	Logged By
Depth		Blows/10	0mm		Torque
(m)	10	20	30	40	(Nm)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	5 5 5 5 5				
10 Bomarka	<u>5</u> 6				
Remarks		Fall Height 7 Hammer Weight 6	760mm 63.5kg	Cone Base Diameter 50.5 Final Depth 10m	
			DPSH	Energy Ratio (Er) 65.8	/:\\D

	Newton House, Cros	Is Limited s Road, Tadworth KT20 5SF nail: admin@soilslimited.co.u	R Ik	Probe Log	Probe No. DP101 Sheet 2 of 2
Project Name:	38 Frognal Lane	Project No. 18577	Co-ords:	526008.91E - 185446.87N	Hole Type DP
Location:	London NW3 6PP		Level:	90.4714m AOD	Scale 1:50
Client:	MRPP		Dates:	04-09-2020	Logged By
Depth		Blows/10)0mm		Torque
(m)	10	20	30 I	40	(Nm)
	5				
-					
-					
11					
12					
-					
13					
-					
14					
-					
-					
15					
16					
-					
-					
-					
17					
18					
-					
-					
19					
20					
Remarks		Fall Height	760mm	Cone Base Diameter 50.5m	m T
		Hammer Weight		Final Depth 10m	AGS
		Probe Type	DPSH	Energy Ratio (Er) 65.8%	REGISTERED USER 2020

Contract Number: 50122

Client Ref: 18577 Client PO: 18577

Laboratory Report

Report Date: 06-10-2020

Client Soils Limited **Newton House** Cross Road Tadworth Surrey **KT20 5SR**

Contract Title: Frognal Lane For the attention of: Tim Rudkin

Date Received: 08-09-2020 Date Completed: 06-10-2020

Test Description

Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	6		
		1 Point Liquid & Plastic Limit	6
		BS 1377:1990 - Part 2 : 4.4 & 5.3 - * UKAS	
Quick Undrained Triaxial Compression Test - Multi-stage Loading of a single specimen (100mm diameter)	7		
BS 1377:1990 - Part 7 : 9 - * UKAS			
Disposal of samples for job	1		

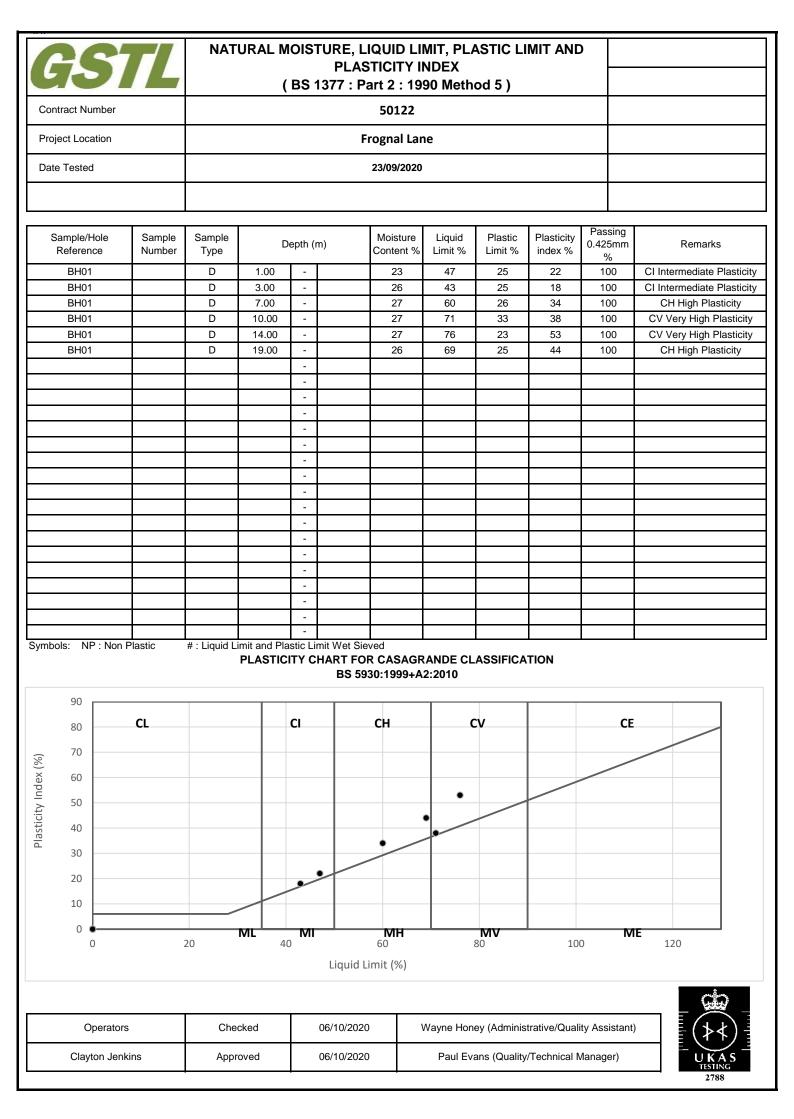
Disposal of samples for job

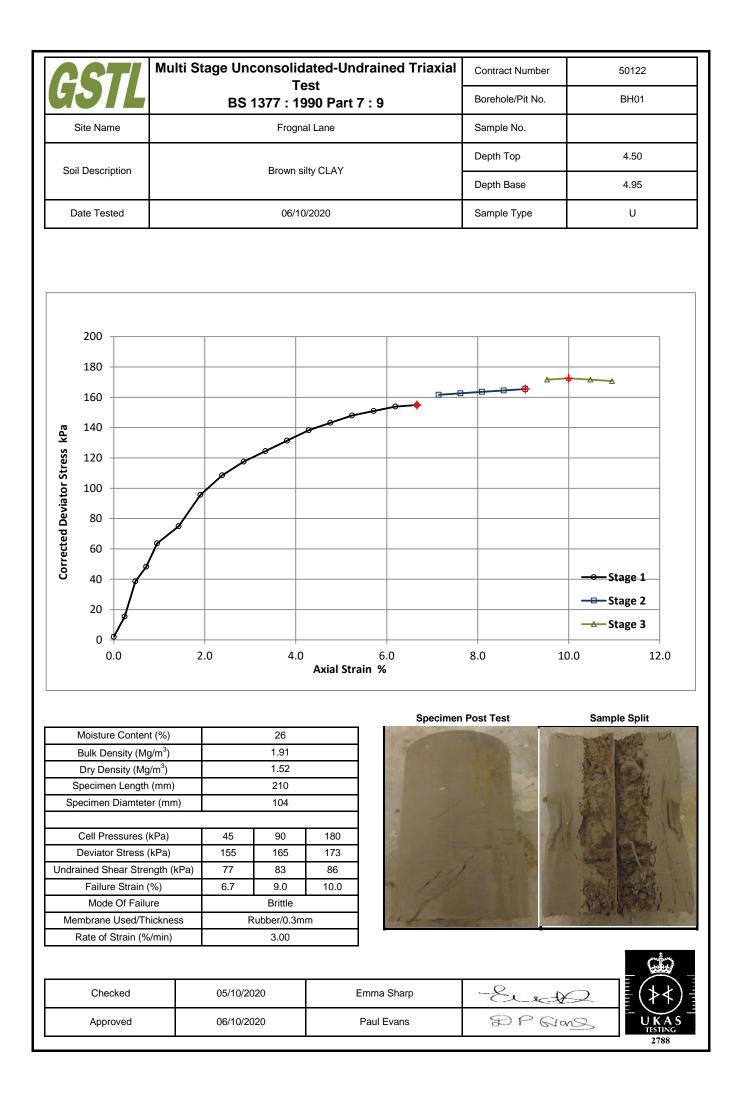
Otv

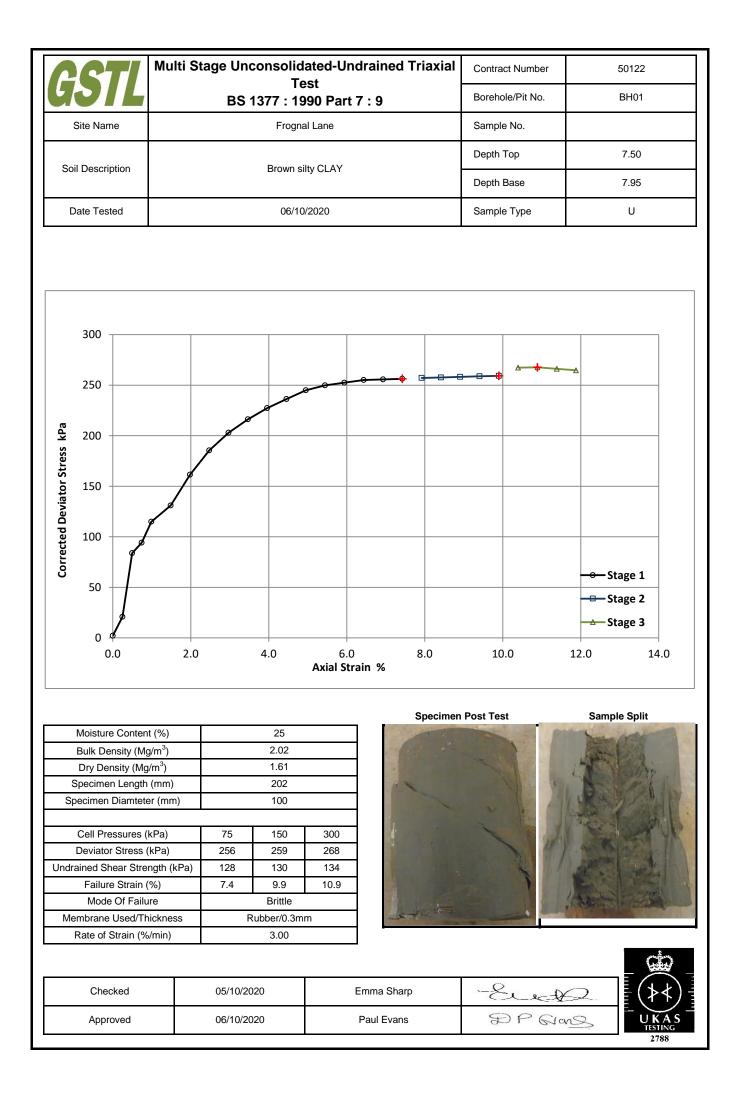
Notes: Observations and Interpretations are outside the UKAS Accreditation

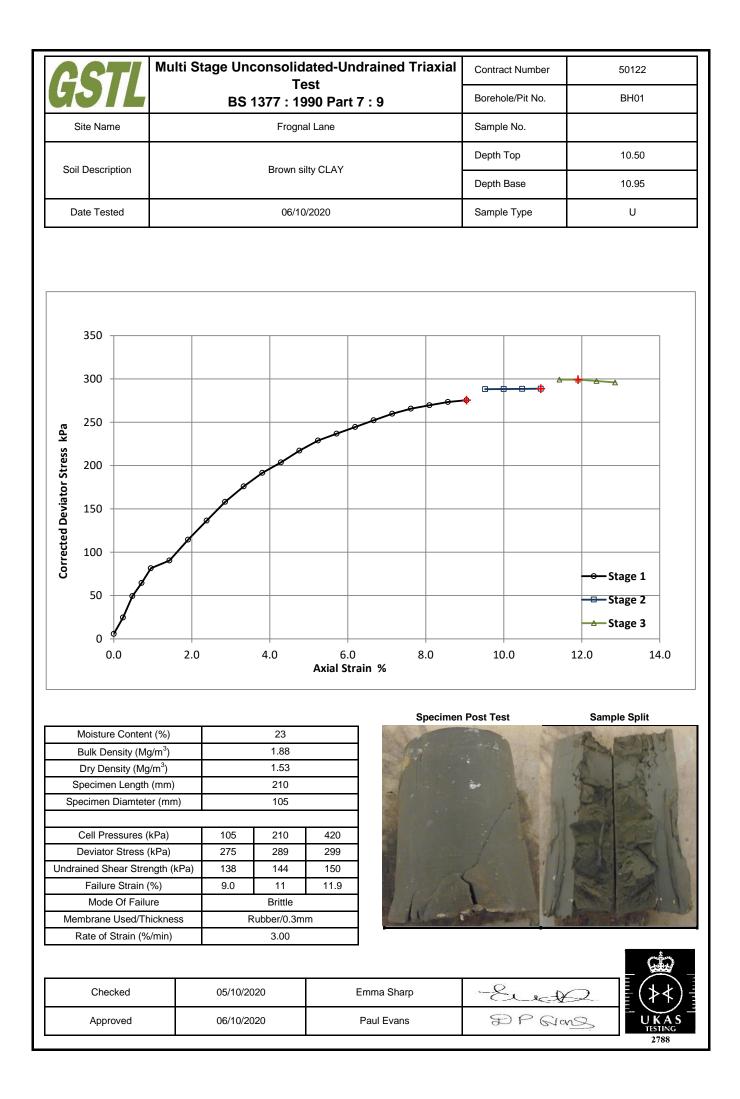
- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

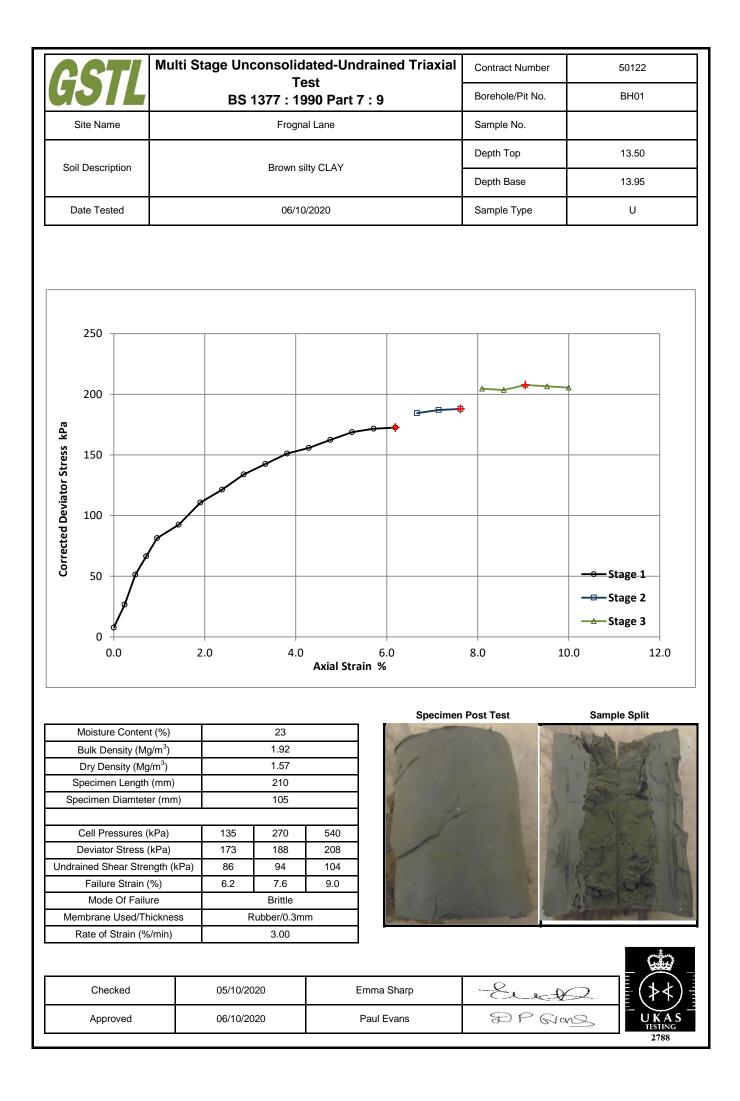
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory. Approved Signatories:

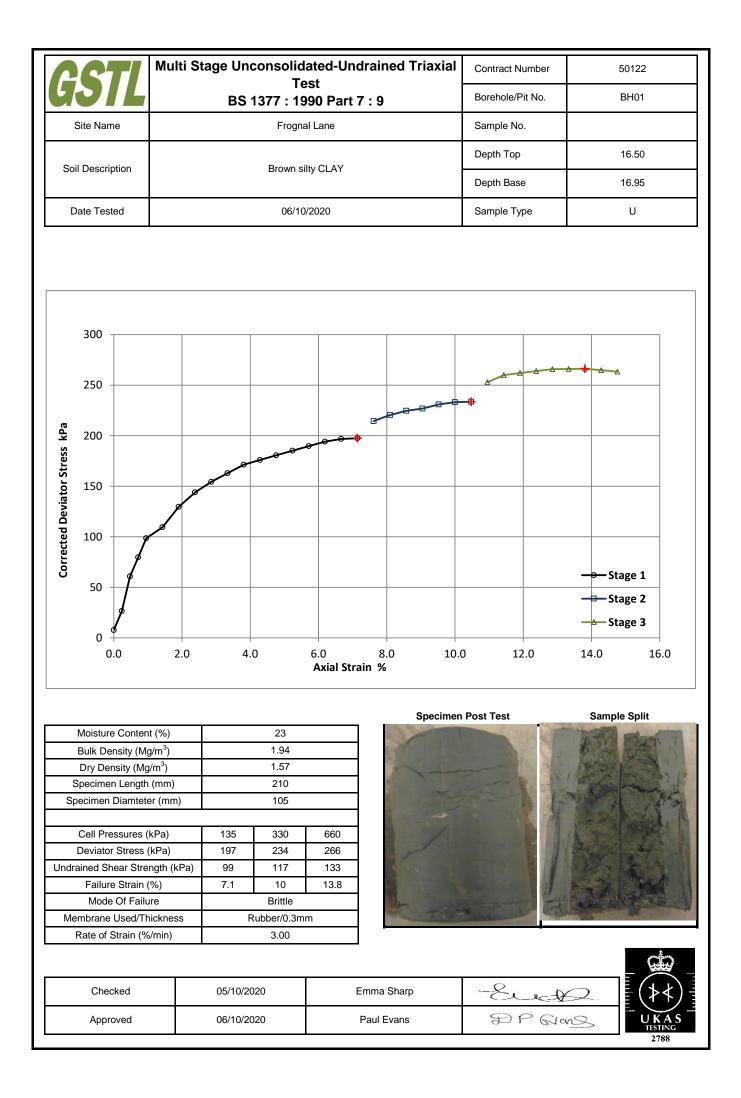

Emma Sharp (Office Manager/Director) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Sean Penn (Administrative/Accounts Assistant) - Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

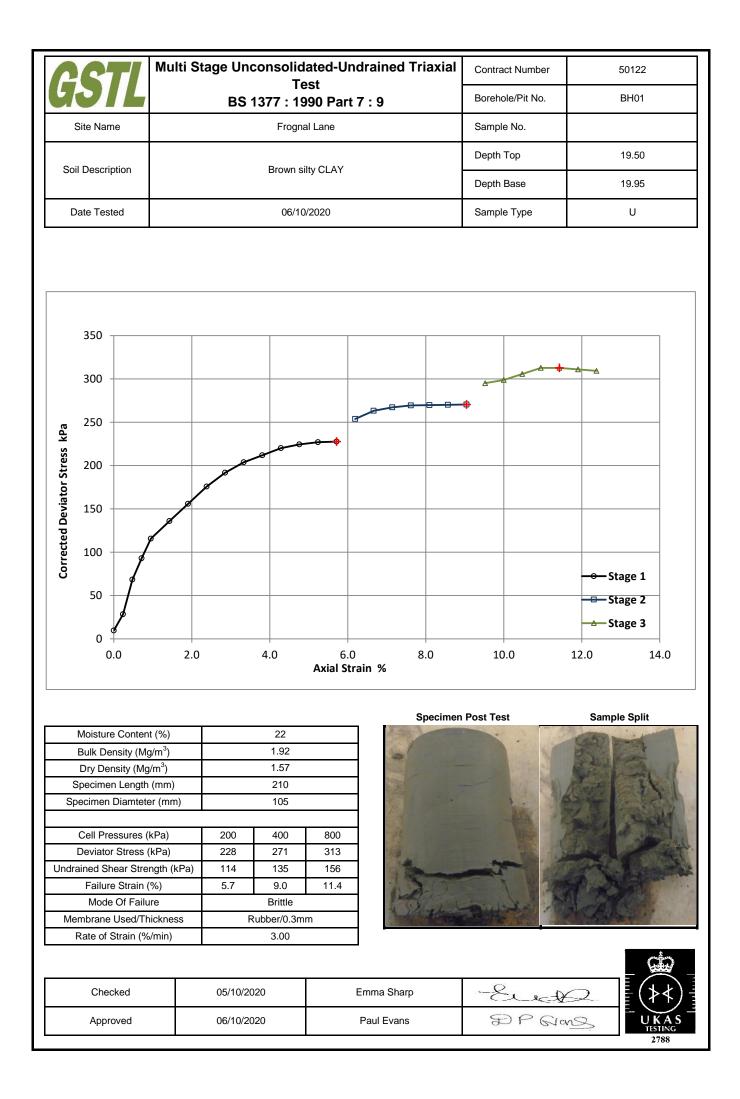

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	50122	
Site Name	Frognal Lane	
Date Tested	23/09/2020	
	DESCRIPTIONS	


Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
BH01		D	1.00	-		Brown silty CLAY.
BH01		D	3.00	-		Greyish brown silty CLAY.
BH01		D	7.00	-		Greyish brown silty CLAY.
BH01		D	10.00	-		Brown silty CLAY.
BH01		D	14.00	-		Brown silty CLAY.
BH01		D	19.00	-		Greyish brown silty CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		




Operators	Checked	06/10/2020	Wayne Honey (Administrative/Quality Assistant)
Clayton Jenkins	Approved	06/10/2020	Paul Evans (Quality/Technical Manager)





Tim Rudkin Soils Ltd Newton House Cross Road Tadworth Surrey KT20 5SR

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 20-10253

Site Reference: 38 Frognal Lane

Project / Job Ref: 18577

Order No: 18577/TR

Sample Receipt Date: 07/09/2020

Sample Scheduled Date: 07/09/2020

Report Issue Number: 1

Reporting Date: 17/09/2020

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate							
DETS Report No: 20-10253			Date Sampled	None Supplied	None Supplied	None Supplied	
Soils Ltd	Soils Ltd Time Sampled				None Supplied	None Supplied	
Site Reference: 38 Frognal Lane			TP / BH No	BH01	BH01	BH01	
Project / Job Ref: 18577			Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 18577/TR			Depth (m)	2.30	5.00	8.00	
Reporting Date: 17/09/2020		D	ETS Sample No	496863	496864	496865	
Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	7.7	7.4	7.7	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	482	5864	2505	
Total Sulphate as SO ₄	%	< 0.02	NONE	0.05	0.59	0.25	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	216	2500	1010	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.22	2.50	1.01	
Total Sulphur	%	< 0.02	NONE	< 0.02	0.39	0.78	
Ammonium as NH ₄	mg/kg	< 0.5	NONE	2.8	5.1	14	
Ammonium as NH ₄	mg/l	< 0.05	NONE	0.28	0.51	1.40	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	50	204	81	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	25	102	40.5	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	7	24	< 3	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	3.5	11.8	< 1.5	
W/S Magnesium	ma/l	< 0.1	NONE	10	94	62	

 W/S Magnesium
 mg/l
 < 0.1</th>
 NONE
 10
 94
 62

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion
 Subcontracted analysis (S)

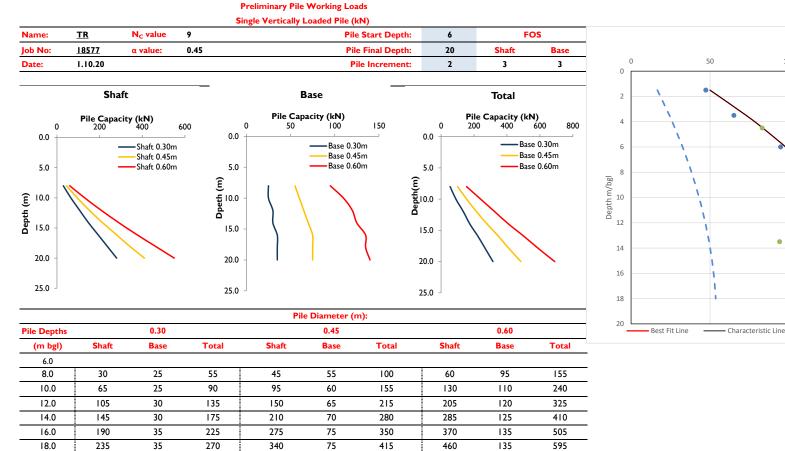
Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 20-10253	
Soils Ltd	
Site Reference: 38 Frognal Lane	
Project / Job Ref: 18577	
Order No: 18577/TR	
Reporting Date: 17/09/2020	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 496863	BH01	None Supplied	2.30	16.2	Light brown sandy clay
^ 496864	BH01	None Supplied	5.00	16.8	Light brown sandy clay
^ 496865	BH01	None Supplied	8.00	14.8	Brown clay

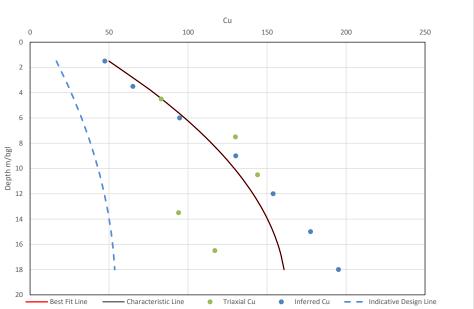
Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample ^{I/S}

Unsuitable Sample ^{US} • no sampling date provided; unable to confirm if samples are within acceptable holding times


oil Analysis Certificate - Methodology & Miscellaneous Information
ETS Report No: 20-10253
oils Ltd
ite Reference: 38 Frognal Lane
roject / Job Ref: 18577
rder No: 18577/TR
eporting Date: 17/09/2020

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
		C12-C16, C16-C21, C21-C40)		
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001


D Dried

Appendix C Foundation Design

Appendix C.I Preliminary Pile Design

20.0

Appendix D Chemical Laboratory Testing

Appendix D.I Chemical Laboratory Results

Tim Rudkin Soils Ltd Newton House Cross Road Tadworth Surrey KT20 5SR

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 20-10416

Site Reference:	38 Frognal Lane
Project / Job Ref:	18577
Order No:	18577
Sample Receipt Date:	10/09/2020
Sample Scheduled Date:	10/09/2020
Report Issue Number:	1
Reporting Date:	23/09/2020

Authorised by:

Mur

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 20-10416			Date Sampled	09/09/20		
Soils Ltd			Time Sampled	None Supplied		
Site Reference: 38 Frognal Lane TP / BH No			WS101			
_						
Project / Job Ref: 18577		1	Additional Refs	None Supplied		
Order No: 18577			Depth (m)	0.50 - 1.20		
Reporting Date: 23/09/2020		D	ETS Sample No	497811		
Determinand	Unit	RL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		
pH	pH Units	N/a	MCERTS	8.1		
Organic Matter	%	< 0.1	MCERTS	1.6		
Arsenic (As)	mg/kg	< 2	MCERTS	22		
W/S Boron	mg/kg	< 1	NONE	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	33		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	20		
Lead (Pb)	mg/kg	< 3	MCERTS	134		
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	14		
Selenium (Se)	mg/kg	< 2	MCERTS	< 3		
Vanadium (V)	mg/kg	< 1	MCERTS	45		
Zinc (Zn)	mg/kg	< 3	MCERTS	73		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs					
DETS Report No: 20-1041	L6		Date Sampled	09/09/20		
Soils Ltd			Time Sampled	None Supplied		
Site Reference: 38 Frognal Lane			TP / BH No	WS101		
Project / Job Ref: 18577		ļ	dditional Refs	None Supplied		
Order No: 18577			Depth (m)	0.50 - 1.20		
Reporting Date: 23/09/2	020	D	TS Sample No	497811		
Determinand	Unit	RL	Accreditation			
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	0.13		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	0.40		
Pyrene	mg/kg	< 0.1	MCERTS	0.37		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.21		
Chrysene	mg/kg	< 0.1	MCERTS	0.17		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.31		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.13		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.26		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.18		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.17		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	2.3		

Soil Analysis Certificate	e - EPH Texas Band	ed				
DETS Report No: 20-104	16		Date Sampled	09/09/20		
Soils Ltd Time Sampled			None Supplied			
Site Reference: 38 Frogn	Site Reference: 38 Frognal Lane TP / BH No			WS101		
Project / Job Ref: 18577			Additional Refs	None Supplied		
Order No: 18577			Depth (m)	0.50 - 1.20		
Reporting Date: 23/09/2	2020	D	ETS Sample No	497811		
Determinand	Unit	RL	Accreditation			
			Accicatation			
EPH Texas (C6 - C8)	mg/kg	< 0.05		< 0.05		
EPH Texas (C6 - C8) EPH Texas (>C8 - C10)	5, 5	< 0.05		< 0.05 < 1		
	mg/kg	< 0.05 < 1	NONE			
EPH Texas (>C8 - C10)	mg/kg	< 0.05 < 1 < 1	NONE MCERTS MCERTS	< 1		
EPH Texas (>C8 - C10) EPH Texas (>C10 - C12)	mg/kg mg/kg mg/kg	< 0.05 < 1 < 1 < 1	NONE MCERTS MCERTS	< 1 < 1		
EPH Texas (>C8 - C10) EPH Texas (>C10 - C12) EPH Texas (>C12 - C16)	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 1 < 1 < 1 < 1 < 1	NONE MCERTS MCERTS MCERTS MCERTS	< 1 < 1 < 1		

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

DETS Report No: 20-10416 Date Sampled			09/09/20		Landfill Wast	te Acceptance (Criteria Li
Soils Ltd		Time Sampled	None Supplied				
Site Reference: 38 Frognal La	ine	TP / BH No	WS101			Stable Non- reactive	
Project / Job Ref: 18577		Additional Refs	None Supplied		Inert Waste Landfill	HAZARDOUS waste in non-	Hazard Was
Order No: 18577		Depth (m)	0.50 - 1.20		Lunam	hazardous Landfill	Land
Reporting Date: 23/09/2020		DETS Sample No	497811				
Determinand	Unit						
TOC ^{MU}	%		0.9		3%	5%	6%
Loss on Ignition	%		1.50				10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10		500		
Total PAH ^{MU}	mg/kg	< 1.7	2.3		100		
pH ^{MU}	pH Units	N/a	8.1			>6	
Acid Neutralisation Capacity	mol/kg (+/-)		< 1			To be evaluated	To b evalua
	,			Cumulative	Limit values	for compliance	
Eluate Analysis			10:1	10:1		EN 12457-3 at L	
Liute Anuiyaia			mg/l	mg/kg	using b5 b	(mg/kg)	., 5 10 1/1
Arsenic ^u			0.01	0.1	0.5		25
Arsenic Barium ^u	-1		< 0.02	< 0.2	20	100	300
	-1		< 0.002	< 0.2	0.04	100	5
	-1						
Chromium ^U	-1		< 0.005	< 0.05	0.5	10	70
Copper ^U	-1		< 0.01	< 0.1	2	50	100
Mercury ^U	-1		< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U	_		0.009	0.09	0.5	10	30
Nickel ^U	4		< 0.007	< 0.07	0.4	10	40
Lead ^U	_		< 0.005	< 0.05	0.5	10	50
Antimony ^U	_		< 0.005	< 0.05	0.06	0.7	5
Selenium ^u			< 0.005	< 0.05	0.1	0.5	7
Zinc ^u			< 0.005	< 0.05	4	50	200
Chloride ^U			2.9	29	800	15000	2500
Fluoride ^U	1		1.3	13	10	150	500
Sulphate ^U	-1		5.2	52	1000	20000	5000
TDS	-1		79	790	4000	60000	10000
Phenol Index	-1		< 0.01	< 0.1	1	-	-
DOC	-1		15	150	500	800	1000
Leach Test Information	1		1.5	100	500	000	1000
					t		
	1		-		1		
	-	-			1		
					1		
Sample Mass (kg)			0.10		1		
Dry Matter (%)			89.6		1		
Moisture (%)			11.8		1		
Stage 1			11.0		1		
Volume Eluate L10 (litres)			0.89		1		
volume Eludie LTO (IIUES)			0.09		1		
					4		

portion Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 20-10416	
Soils Ltd	
Site Reference: 38 Frognal Lane	
Project / Job Ref: 18577	
Order No: 18577	
Reporting Date: 23/09/2020]

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
497811	WS101	None Supplied	0.50 - 1.20	10.5	Red gravelly clay with brick

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

oil Analysis Certificate - Methodology & Miscellaneous Information
ETS Report No: 20-10416
oils Ltd
ite Reference: 38 Frognal Lane
roject / Job Ref: 18577
rder No: 18577
eporting Date: 23/09/2020

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
		C12-C16, C16-C21, C21-C40)		
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D		Gravimetrically determined through extraction with toluene	E011
Soil	D	I OTAL URGANIC CARDON (TUC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
ТОС	Soil	BS EN 12457	13.49	%
Loss on Ignition	Soil	BS EN 12457	17	%
BTEX	Soil	BS EN 12457	14	%
Sum of PCBs	Soil	BS EN 12457	23	%
Mineral Oil	Soil	BS EN 12457	9	%
Total PAH	Soil	BS EN 12457	20	%
pН	Soil	BS EN 12457	0.399	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18	%
Arsenic	Leachate	BS EN 12457	16.63	%
Barium	Leachate	BS EN 12457	14.29	%
Cadmium	Leachate	BS EN 12457	14.44	%
Chromium	Leachate	BS EN 12457	18.06	%
Copper	Leachate	BS EN 12457	21.27	%
Mercury	Leachate	BS EN 12457	24.13	%
Molybdenum	Leachate	BS EN 12457	12.55	%
Nickel	Leachate	BS EN 12457	20.08	%
Lead	Leachate	BS EN 12457	13.43	%
Antimony	Leachate	BS EN 12457	18.85	%
Selenium	Leachate	BS EN 12457	18.91	%
Zinc	Leachate	BS EN 12457	13.71	%
Chloride	Leachate	BS EN 12457	16	%
Fluoride	Leachate	BS EN 12457	19.4	%
Sulphate	Leachate	BS EN 12457	19.63	%
TDS	Leachate	BS EN 12457	12	%
Phenol Index	Leachate	BS EN 12457	14	%
DOC	Leachate	BS EN 12457	10	%
Clay Content	Soil	BS 3882: 2015	15	%
Silt Content	Soil	BS 3882: 2015	14	%
Sand Content	Soil	BS 3882: 2015	13	%
Loss on Ignition	Soil	BS 3882: 2015	17	%
pН	Soil	BS 3882: 2015	0.399	Units
Carbonate	Soil	BS 3882: 2015	16	%
Total Nitrogen	Soil	BS 3882: 2015	12	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24	%
Potassium (Extractable)	Soil	BS 3882: 2015	20	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26	%
Zinc	Soil	BS 3882: 2015	14.9	%
Copper	Soil	BS 3882: 2015	16	%
Nickel	Soil	BS 3882: 2015	17.7	%
Available Sodium	Soil	BS 3882: 2015	23	%
Available Calcium	Soil	BS 3882: 2015	23	%
Electrical Conductivity	Soil	BS 3882: 2015	10	%

Waste Classification Report

Job name				
18577 38 Frognal Lane				
Description/Comme	ents			
Droinet				
Project				
18577				
Site				
38 Frognal Lane				
So Flogilal Laile				
Related Documents	5			
# Name		Descriptio	n	
None		·		
Waste Stream Temp DETS suite 1	olate			
Classified by				
Name:	Company:		HazWasteOnline™ Training Record:	
Chris Swainston Date: 07 Oct 2020 12:30 GMT Telephone: 02476 629013	Soils Ltd Newton House Cross Road Tadworth KT20 5SR		Course Hazardous Waste Classification Advanced Hazardous Waste Classification	Date 07 Dec 2016 08 Dec 2016
Report				
Created by: Chris Swainst Created date: 07 Oct 2020				
Job summary				
# Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1 <mark>WS101</mark>	0.50 - 1.20	Non Hazardous		2
Appendices	ined and per CLD determ	inondo		Page
Appendix A: Classifier def Appendix B: Rationale for				4 5
Appendix C: Version				6

Classification of sample: WS101

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Depth:	·	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
10.5% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 10.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
2	۲	monohydric phenol	s	P1186		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
3	۲	рН		PH		8.1	pН		8.1	рН	8.1 pH		
4	4		<mark>oxide</mark> } 215-481-4	1327-53-3		22	mg/kg	1.32	26.287	mg/kg	0.00263 %	\checkmark	
5	4		xide; boric oxide } 215-125-8	1303-86-2		<1	mg/kg	3.22	<3.22	mg/kg	<0.000322 %		<lod< td=""></lod<>
6	4			1306-19-0		<0.2	mg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
7	4	<mark>oxide</mark> }	ium(VI) compounds 215-607-8	s { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
8	4	chromium in chrom <mark>oxide (worst case)</mark>	ium(III) compounds			33	mg/kg	1.462	43.648	mg/kg	0.00436 %	~	
9	4	copper {		1317-38-0	-	20	mg/kg	1.252	22.657	mg/kg	0.00227 %	~	
10	4		ounds with the exc		1	134	mg/kg		121.267	mg/kg	0.0121 %	~	
11	4	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	ric sulphide and the		1	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>

Page 2 of 6

HazWasteOnline[™] Report created by Chris Swainston on 07 Oct 2020

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Api	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							В	
	Å	nickel {	kide (nickel monoxid	<mark>e)</mark> }									
12			215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		14	mg/kg	1.273	16.123	mg/kg	0.00161 %	~	
13	4	cadmium sulphose in this Annex }	n compounds with t lenide and those sp			<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
		034-002-00-8											
14	4	•		nadium pentoxide }	_	45	mg/kg	1.785	72.7	mg/kg	0.00727 %	\checkmark	
			215-239-8	1314-62-1	_								
15	4	zinc { zinc oxide }		101110	_	73	mg/kg	1.245	82.23	mg/kg	0.00822 %	\checkmark	
			215-222-5	1314-13-2	-								
16		naphthalene	boo 040 5	01.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-							$\left \right $	
17	۲	acenaphthylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	acenaphthene	205-917-1	200-90-0									
18		aconapriatorio	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	8	fluorene	1			<0.1	malka		<0.1	malka	<0.00001 %		<lod< td=""></lod<>
19			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	8	phenanthrene				0.13	mg/kg		0.118	mg/kg	0.0000118 %	\checkmark	
20			201-581-5	85-01-8		0.10	ing/itg		0.110	iiig/itg		Ň	
21	8	anthracene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>		
		204-371-1 120-12-7								5.5			_
22	8	fluoranthene			0.4	mg/kg		0.362	mg/kg	0.0000362 %	\checkmark		
			205-912-4	206-44-0									
23	8	pyrene			0.37	mg/kg		0.335	mg/kg	0.0000335 %	\checkmark		
			204-927-3	129-00-0									
24		benzo[a]anthracen				0.21	mg/kg		0.19	mg/kg	0.000019 %	\checkmark	
			200-280-6	56-55-3									
25		chrysene				0.17	mg/kg		0.154	mg/kg	0.0000154 %	\checkmark	
		601-048-00-0	205-923-4	218-01-9									
26		benz[e]acephenan		005.00.0		0.31	mg/kg		0.281	mg/kg	0.0000281 %	\checkmark	
			205-911-9	205-99-2	-							$\left \right $	
27		benzo[k]fluoranthe		207.08.0	-	0.13	mg/kg		0.118	mg/kg	0.0000118 %	\checkmark	
			205-916-6	207-08-9	-							+	
28		benzo[a]pyrene; be 601-032-00-3		50.32.8	-	0.26	mg/kg		0.235	mg/kg	0.0000235 %	\checkmark	
		indeno[123-cd]pyre		50-32-8	\vdash							+	
29	8		205-893-2	193-39-5	-	0.18	mg/kg		0.163	mg/kg	0.0000163 %	\checkmark	
\vdash				100-00-0	\vdash								
30		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[ghi]perylene		00 10 0	\vdash								
31	۲	10 11 1	205-883-8	191-24-2	-	0.17	mg/kg		0.154	mg/kg	0.0000154 %	\checkmark	
		TPH (C6 to C40) p			\vdash								
32	9			ТРН	-	<20	mg/kg		<20	mg/kg	<0.002 %		<lod< td=""></lod<>
			1					l		Total:	0.0426 %		

Key

Rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Chris Swainston on 07 Oct 2020

Appendix A: Classifier defined and non CLP determinands

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X) Data source: CLP combined data Data source date: 26 Mar 2019 Hazard Statements: Acute Tox. 3 H301, Acute Tox. 3 H311, Acute Tox. 3 H331, Skin Corr. 1B H314, Skin Corr. 1B H314 >= 3 %, Skin Irrit. 2 H315 1 £ conc. < 3 %, Eye Irrit. 2 H319 1 £ conc. < 3 %, Muta. 2 H341, STOT RE 2 H373, Aquatic Chronic 2 H411

• pH (CAS Number: PH) Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H332 , Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Resp. Sens. 1 H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

[•] lead compounds with the exception of those specified elsewhere in this Annex

CLP index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers many simple lead compounds to be Carcinogenic category 2 Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400 , Aquatic Chronic 1 H410, Skin Irrit. 2 H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Report created by Chris Swainston on 07 Oct 2020

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

Appendix B: Rationale for selection of metal species

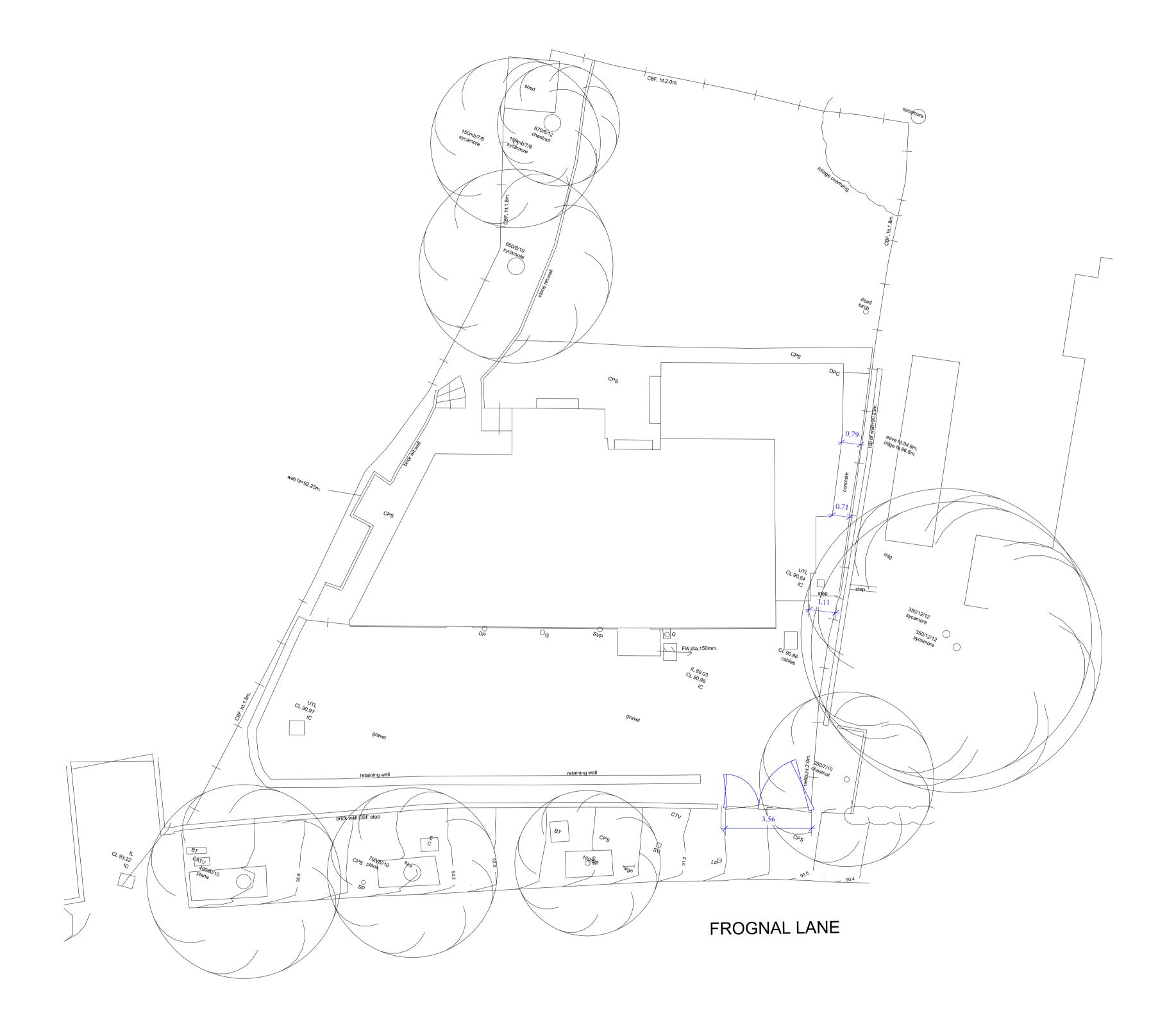
Appendix B. Rationale for Selection of metal species		
arsenic {arsenic trioxide}		
Most likely form in Soils and Made Ground		
boron {diboron trioxide; boric oxide}		
Most likely form in Soils and Made Ground		
cadmium {cadmium oxide}		
Most likely in Soils and Made Ground		
chromium in chromium(VI) compounds {chromium(VI) oxide}		
(enter justification for selecting this species)		
chromium in chromium(III) compounds {chromium(III) oxide (worst case)}		
(enter justification for selecting this species)		
copper {copper(II) oxide}		
Most likely in soil/Made Ground environment		
lead {lead compounds with the exception of those specified elsewhere in this Annex}		
Most likely form of Lead in soils and Made Ground including demolition materials		
mercury {inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex}		
Mercury in soil and Made Ground most likely to combine with organic materials		
nickel {nickel(II) oxide (nickel monoxide)}		
Most likely form in Soils and Made Ground		
selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}		
Most likely form in Soils and Made Ground		
vanadium {divanadium pentaoxide; vanadium pentoxide}		

Most likely form in Soils and Made Ground

HazWasteOnline[™]

Report created by Chris Swainston on 07 Oct 2020

zinc {zinc oxide}


Most likely form of Zinc in Made Ground and soil

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.276.4488.8743 (02 Oct 2020) HazWasteOnline Database: 2020.276.4488.8743 (02 Oct 2020)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Appendix E Information Provided by the Client

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 office@charltonbrown.com Email www.charltonbrown.com Website

Client MRPP

Project

38 Frognal Lane, NW3

Drawing Title

Access Inspection - Site Dimensions

Date	Drawn	Checked
03/08/2020	MCW	
Scale		

1:100

Issue Status

Project Number 20022

Drawing Number Revision SK-00-102

Soils Limited Geotechnical & Environmental Consultants

Newton House Cross Road, Tadworth Surrey KT20 5SR

T 01737 814221W soilslimited.co.uk

Geotechnical & Environmental Consultants

Newton House Cross Road Tadworth Surrey KT20 5SR

T: 44(0)1737 814221

www.soilslimited.co.uk

Fitzpatrick Construction Ltd

Via Email Only: shelly@fitzp.com

FAO: Brian Fitzpatrick

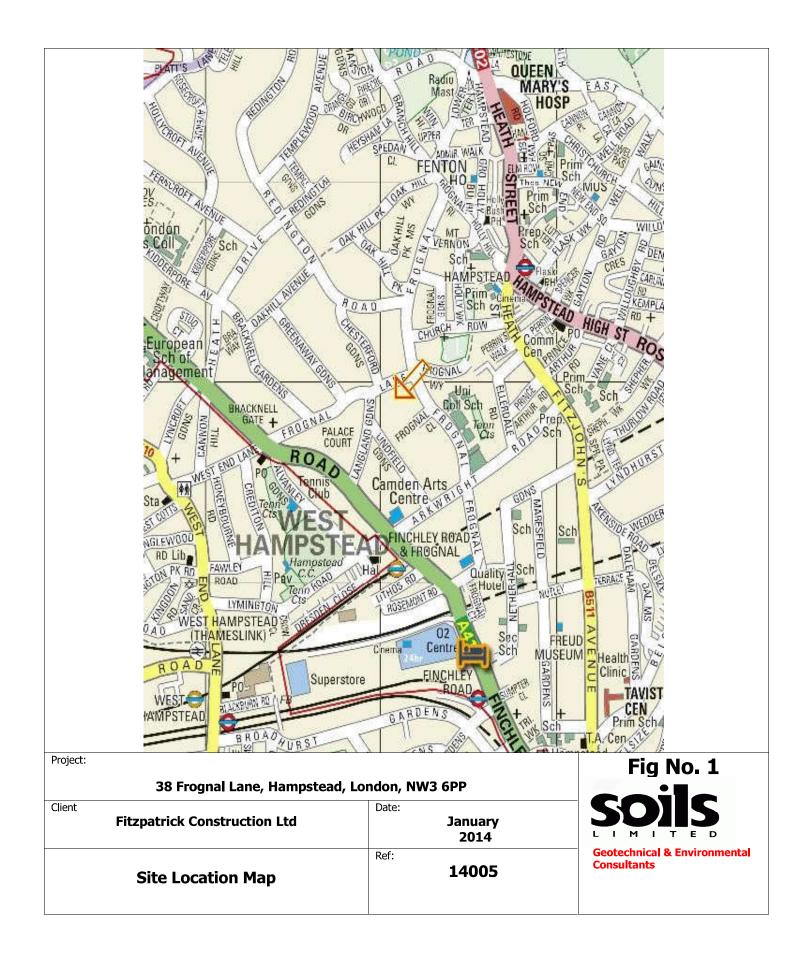
10 January 2014

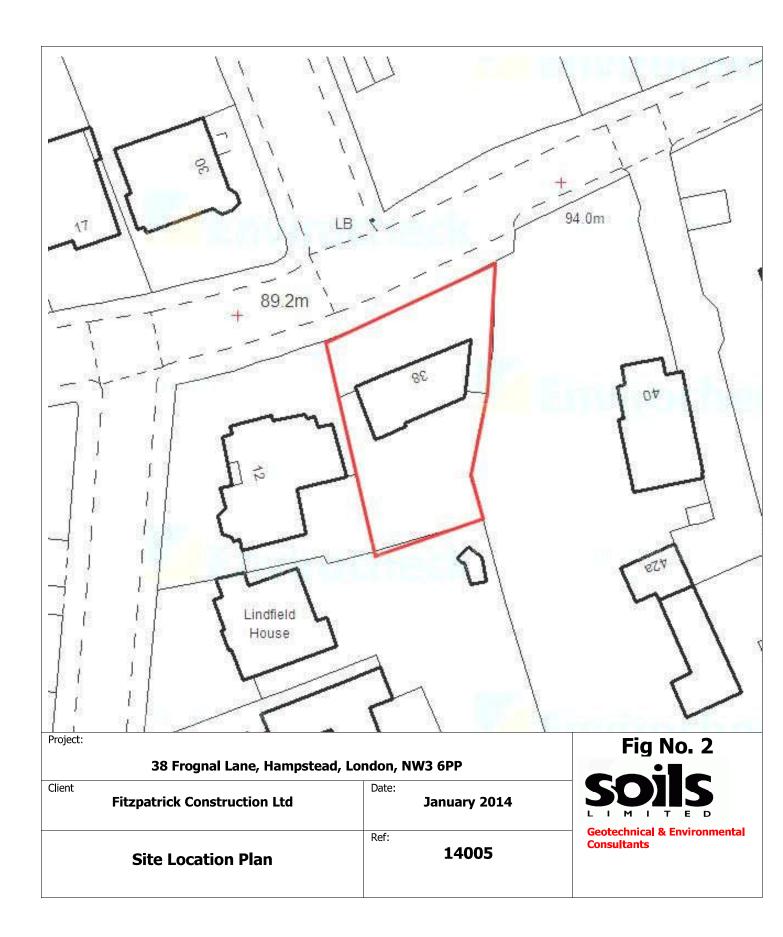
Our ref: 14005/FDL/RG

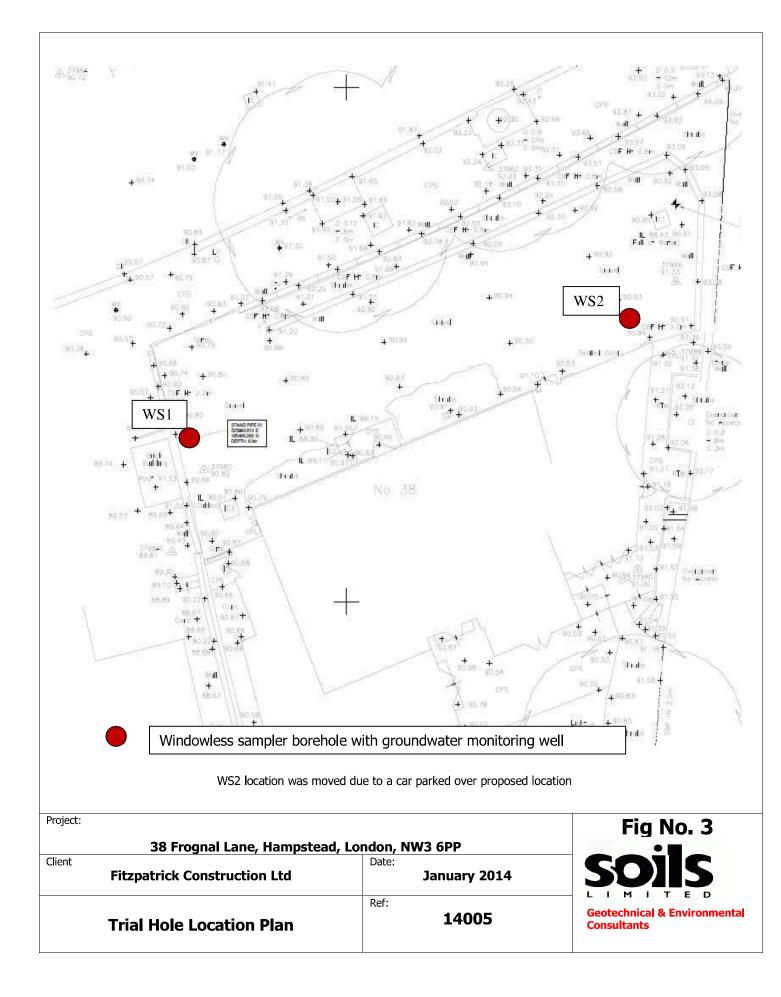
Dear Sir

Re: 38 Frognal Lane, Hampstead, London, NW3 6PP

Please find enclosed the field data on the Ground Investigation undertaken on the aforementioned site.


We trust this is the requested data, though should you have any queries please do not hesitate to contact us.


Yours sincerely


felindi

Roland Galinski rg@soilslimited.co.uk for and on behalf of Soils Limited enc

> Offices: Southampton, Cornwall, Greece Registered office as above Registration number 1612073 (England & Wales) VAT No: 318273558

	Suri Tel: Fax	rey k 017 : 017	(T20 55 37 814) 737 812	SR 221 2557				MIT	E	E	Start Date: End Date: .ogged By:		18/12/2014 18/12/2014 GB		Ground Easting Northin	:	-		
Samples, In-situ Tests & Installations Strata Depth Type Result Stripe Elev Legend Depth/(Thk) 040 D 3.3 0.33 0.33 0.33 0.33 040 D 3.4 0.35 0.33 0.33 0.33 040 D 3.4 0.35 0.33 0.33 0.33 040 D 3.4 0.35 0.33 0.33 0.33 100 D 0.30 0.37 0.37 0.37 0.37 100 D 0.37	Client		Fitzp	atrick Co				ondon,	NW3	8 6PP					Weathe	r:			
Depth Type Result SiPipe Elev Legend Depth(Thk) Description 040 0.8.1	-				sts & I	nstalla	tions				· · ·		S	trata			SN		
Open Hold D S J D		ſ						E	lev L	eaend	Depth/	Thk)			[Descri	otion		
0.03 0.03 0.05 Description Description Description 150 D 0.05 0.05 Set bit bit damages and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and and QLAY which bit is an open data or goals and an open data or goals and QLAY which bit is an open data or goal or g			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		un				X		0.13	0.13	10mm sh	ingle over					
0.80 Ds.J Soft to the dama consider ned same consolution costs. Model 100 D									X		0.35	__	·		tone. MAD	E GROUN	D		
1.50 D Soft between 2 Soft between 2 <t< td=""><td>C</td><td>0.80</td><td>D&J</td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>****</td><td>0.90</td><td>0.55</td><td>Soft to fir</td><td>m dark ora</td><td>angish red</td><td>sandy CLA</td><td>Y with brick</td><td>(</td><td></td></t<>	C	0.80	D&J						8	****	0.90	0.55	Soft to fir	m dark ora	angish red	sandy CLA	Y with brick	(
2.00 D 0		1.00	U			•							GROUND	้					
200 D 3.00 D 3.00 D 3.00 D 3.00 D 3.00 D CAYGATE MEMBER	1	.50	D			•			_			-	Soft to ve greyish m	ery soft ligh	nt orangish wn CLAY a	n brown beo at 2.80m wi	coming dark ith	ζ.	
2.50 D	2	2.00	D			۵ د		-	_			_	occasion	al rootlets.	CLAYGA	TE MEMBE	R		
Loss C Chiseling Hole Depth D	-		5						_			=							
3.50 D 4.00 D 4.50 D 5.50 D 6.00 D Find the test of test of the test of te	2	2.50	D									3.10							
4.00 D	3	3.00	D			۵ د						_							
4.00 D Soft to firm brown doedy fissured CLAY. 4.50 D <						0 1			_										
4.50 D	3	3.50	D			•			_										
4.50 D	2	1.00	D			•					4.00	-	Soft to fir	m brown c	loselv fiss	ured CLAY			
5.00 D 2.00 <t< td=""><td>,</td><td>1.50</td><td>D</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td>CLAYGA</td><td>TE MEMB</td><td>ER</td><td></td><td></td><td></td><td></td></t<>	,	1.50	D						_			_	CLAYGA	TE MEMB	ER				
5.50 D 6.00 D End of Borehole at 6.00 m Finally Progress Water Strike Date Time Poepth Depth Depth	-	+.50	U						_			-							
6.00 D Hold of Borehole at 6.00 m Hole bepth Vater Strike Casing Date Time Post Elapsed Depth Sealed Depth Depth during Depth	5	5.00	D									2.00							
6.00 D Hold Borehole at 6.00 m End of Boreho	5	5.50	D																
Date Time Hole Depth Water Strike Casing Date Time Post Elapsed Depth Depth Depth Date Time Post Elapsed Depth Depth Depth Date Time Post Elapsed Depth Depth Depth Depth Date Time Post Elapsed Depth Dept			-						_			-							
Daily Progress Water Strikes Mater Strikes Chiselling Hole Depth Depth Depth Depth Date Time Post Elapsed Depth Start End Hours Depth Diameter Casing Diameter Value Time Hole Depth Depth Depth Date Time Post Elapsed Depth D		5.00	U								0.00				End of	Borehole a	t 6.00 m		
ate Time Hole Depth Water Strike Casing Date Time Post Elapsed Depth Depth Depth Diameter Diameter Depth <																			
Image: Second	aily Pr	ogres	ss I			Water	Strikes	1			}	1	Chise	lling				Casing	
Depth	-	-				Strike	Casing	Date	Time	Post	Elapse	d Depth	Start	End	Hours				
				Depth	Depth	Depth	Depth				Minute	s Seale	d Depth	Depth		Depth		Deptn	Dia (mi
		1				2.80	-	18/12/2014	0000	-		1	-				· ·		

Roots observed to 2.80m bgl

Fax: 0	orth 7 KT20 5 1737 814 1737 81 1737 81 	Frognal L				L M L T		E	Start Date: End Date: Logged By:	18	18/12/2014 18/12/2014 GB		Easting Northin	-	- - - WS	Shee	<u>ət 1 c</u>
lient:		patrick C	Constru	ction L	₋td								Weathe				
-	lo: 140 mples, li	05 n-situ Te	ets &	nstalle	tions	Τ			. <u></u>	<u> </u>	<u> </u>	Strata	Driller:		SN		
Depth	Type		esult		S/Pipe	E	-lev L	egend	Depth/(1	Thk)			· · · · · ·	Descrip	otion		
<u> </u>							<u> </u>	×	0.13	0.13	10mm shi MADE GF	ingle black		einforcemen			
0.45 0.60		1		1		4	×		2 0.35 	\ `	<u> </u>		estone.M/	ADE GROUN	IND		
0.80	D&J	1		1		4	×	<u> </u>	×		Soft beco	oming firm l	light orang	gish brown s	slightly silty		
1.00	D	1		• ` /			×	<u> </u>	×		CLAY with sandv par	th occasior artings. Cla	onal rootlets avstone bai	s and occas and at 2.30m	siona		
1.50	D	1		•			×	<u></u>	×	크	CLAYGA	TE MEMB	,ÉR				
		1		•			×	<u> </u>	×								
2.00	D	1		•		:	×	<u> </u>	×								
2.50	D	1		•		***	×	<u> </u>	×	, T							
2.00		1		°		*	×	<u> </u>	×	Ē							
3.00	D	1		•			×	<u> </u>	×	5.65							
3.50	D	1		•			×		*	- ^{cd.c}							
0.00		1		• •			×	<u> </u>	×								
4.00	D	1		• *			×		×	1							
4 50	D	1		• * •			×	<u> </u>	×								
4.50	U	1		• ´ 1		d.	×	<u> </u>	×								
5.00	D	1		• ·			×	<u> </u>	×								
5 50		1		• '		4 	×	<u> </u>	×	Ţ							
5.50	D	1				•	×	<u> </u>	×								
6.00	D	1		~	<u>. Н</u> . :		x	$\overline{\times} \xrightarrow{\times} \rightarrow$	<u>→</u> 6.00			·	 ⊏nd of	Borehole at			
		1															
		1															
		1								-							
		1															
		1															
		1								-							
		1															
		1															
		1															
		1															
		1															
		1															
		1															
ily Prog	ress	<u>.</u>	·,	Water	Strikes	+	L _				Chise	lling		Hole		Casing	J
	ime Hole			Strike	Casing		Time	e Post	Elapser	d Depth	Start	End	Hours	Diamet		Diamet	
		Depth				1	1		Minutes	s Sealed	I Depth	Depth	'	Depth	Diam. (mm)	Depth	Dia (m
—	-+-	<u> </u>	+'		<u> </u>	18/12/2014	0000	Depth	in 56 15		 '	──′	 '	├───		 '	
				2.00	-	18/12/2014	0000	1.0	6 15	-	'	1 '	1	1	'	'	
			'		1 1	1	1				'	1 '	'	1	'	'	
1	1		· · ·	1 ,	1 1	1 1	1				· ·	1 '	1	1		1 '	

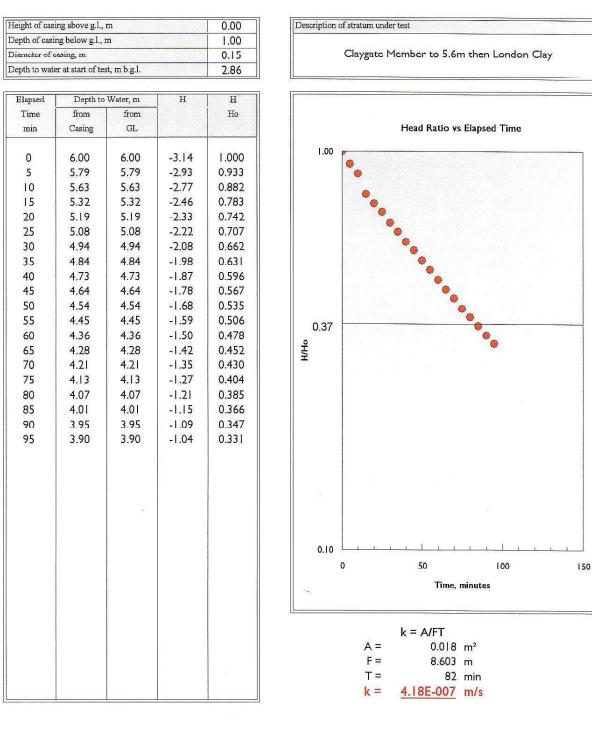
Roots observed to 2.00m bgl

IN SITU PERMEABILITY TEST

HVORSLEV'S TIME LAG

Project: 40 FROGNAL LANE, CAMDEN Client: Arlington Management Services Limited

7.00 m


1.00 m

Project No: 3611 Sheet No: 1/1

Location: BH 1

Test deptł from

to

38 Frognal Lane Hampstead

Basement Impact Assessment

-

SOLU

S

IONS

ING BUSINES

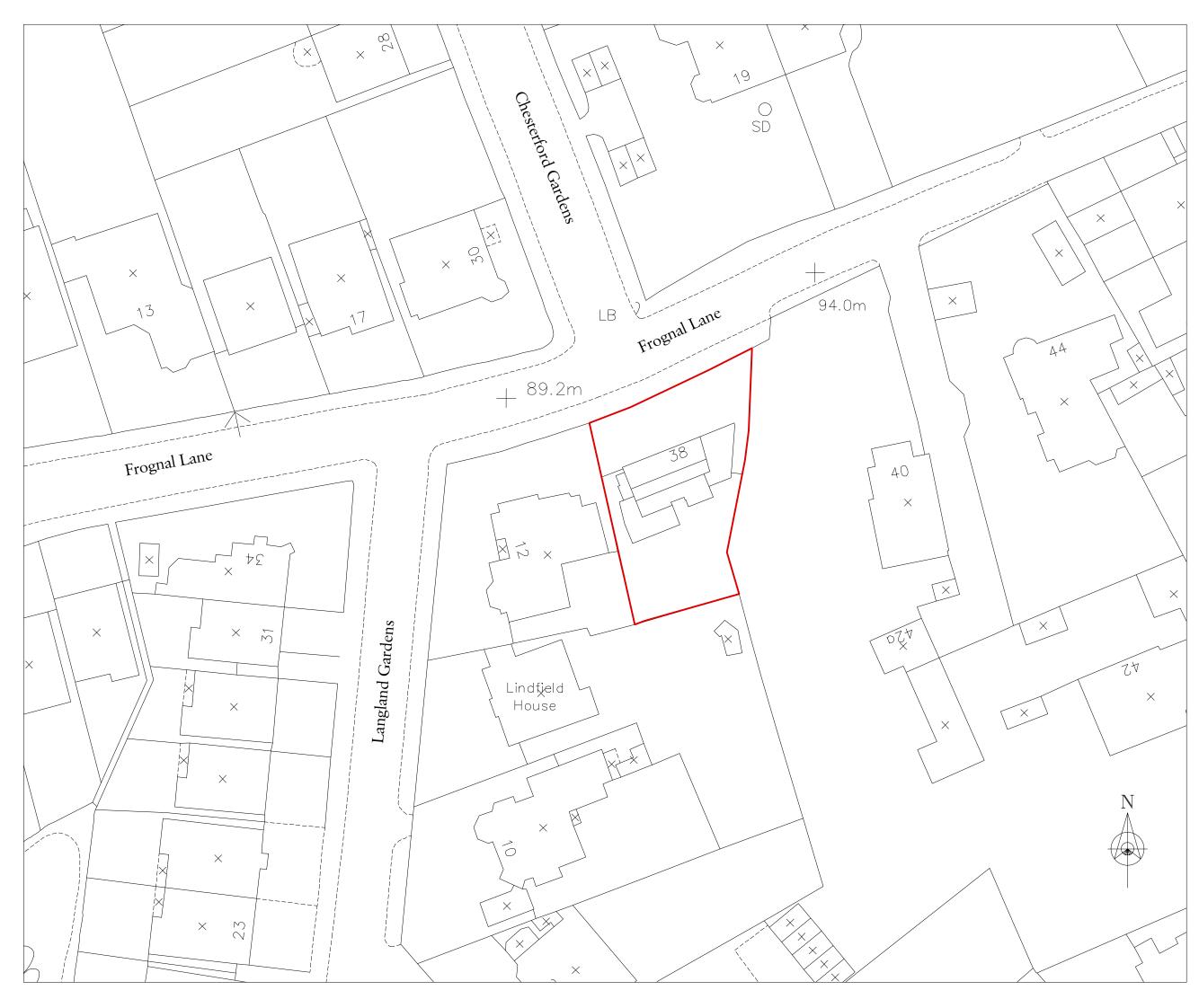
2 A

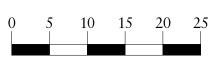
Standpipe Readings

	18.12.13		23.01.14	
Location	Depth BGL	OD	Depth BGL	OD
WS1 [West]	2.8m	+88.0m	1.5m	+89.3m
WS2 [East]	2.0m	+88.9m	0.8m	+90.1m
Difference across site		0.9m		0.8m

Road level at WS2 = +92.8m OD with road gradient at 1 in 10.

WS1 and WS2 spaced 18m apart so water table difference of 0.9m gives gradient of 1 in 20.


Extrapolating gradients:


- with water table in WS2 as +90.1m, water table at surface 55m to the west.
- with water table in WS2 as +88.9m, water table at surface 80m to the west.

Appendix 3: Existing and Proposed Development Drawings

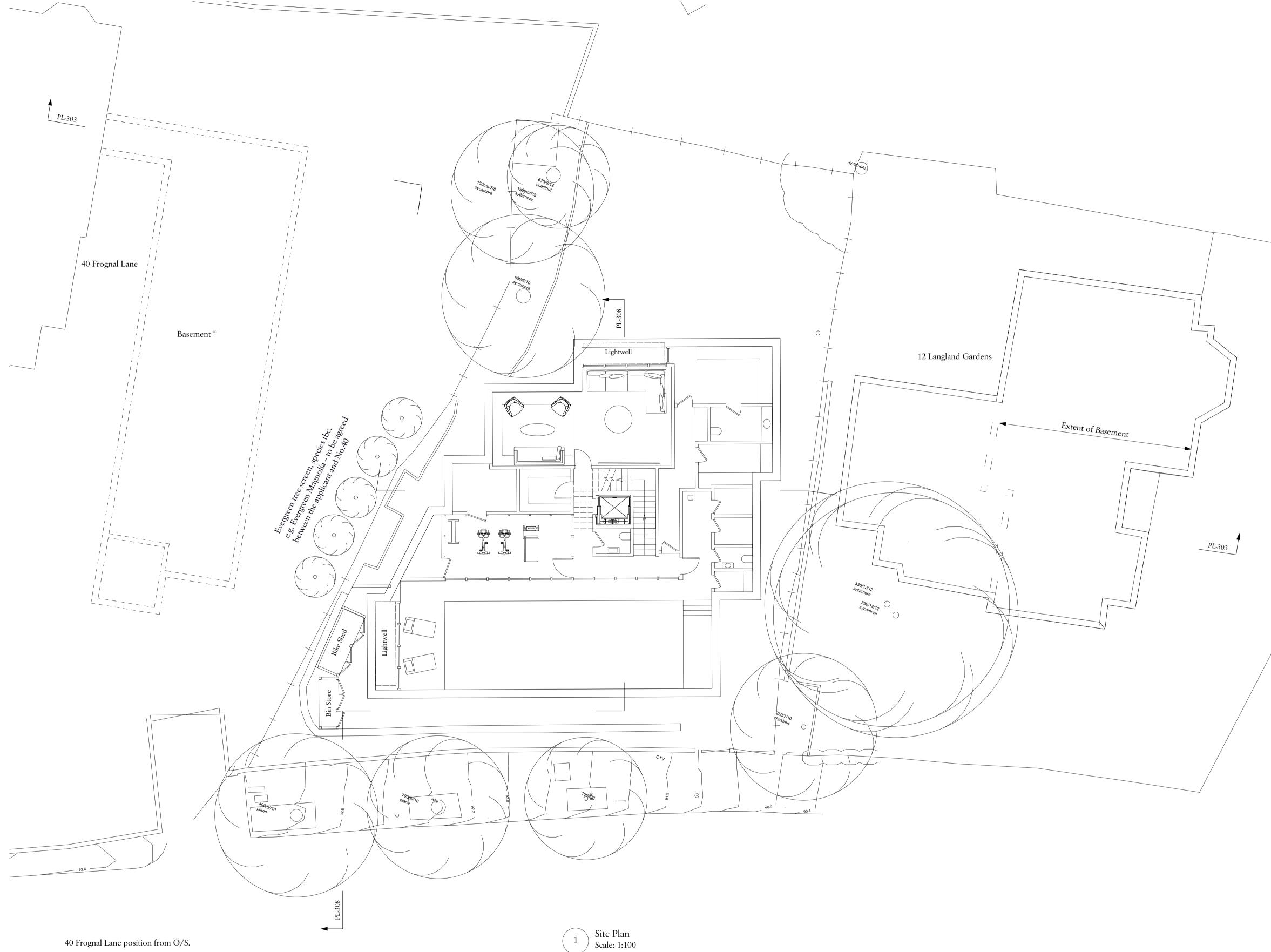
The following Architects drawings form part of the planning application

PL-010 Location Plan PL-011 Site Plan PL-099 Basement Plan PL-100 Ground Floor Plan PL-101 First Floor Plan PL-102 Second Floor Plan PL-103 Roof Plan PL-200 Front Elevation _ North PL-201 Side Elevation _ North PL-202 Rear Elevation _ South PL-203 Side Elevation _ West PL-204 Street Elevation PL-300 Sections - AA PL-305 Sections - BB

Rev Date

Details

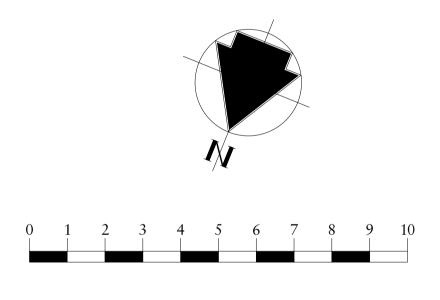
By


Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL				
Telephone	+44(0)20 7794 1234			
Email	office@charltonbrown.com			
Website	www.charltonbrown.com			

Client	
MRPP	

Project 38 Frognal Lane, NW3


Date Drawn Checked 29/09/2020 MCW JM Scale 1:500 @ A1 / 1:1000 @ A3 Issue Status Planning Application Project Number Drawing Number Revision	Drawing Title			
29/09/2020 MCW JM Scale 1:500 @ A1 / 1:1000 @ A3 Issue Status Planning Application Project Number Drawing Number Revision	Location Plan			
Scale 1:500 @ A1 / 1:1000 @ A3 Issue Status Planning Application Project Number Drawing Number Revision	Date		Drawn	Checked
1:500 @ A1 / 1:1000 @ A3 Issue Status Planning Application Project Number Drawing Number Revision	29/09/2020		MCW	JM
Issue Status Planning Application Project Number Drawing Number Revision	Scale			
Planning Application Project Number Drawing Number Revision	1:500 @ A1 / 1:10	000 @ A3		
Project Number Drawing Number Revision	Issue Status			
	Planning Ap	plication		
	,	0		Revision

* Basement Plan derived from Planning application ref: 2014/5915/P Live consent until 1 May 2021

12 Langland Gardens position from O/S.

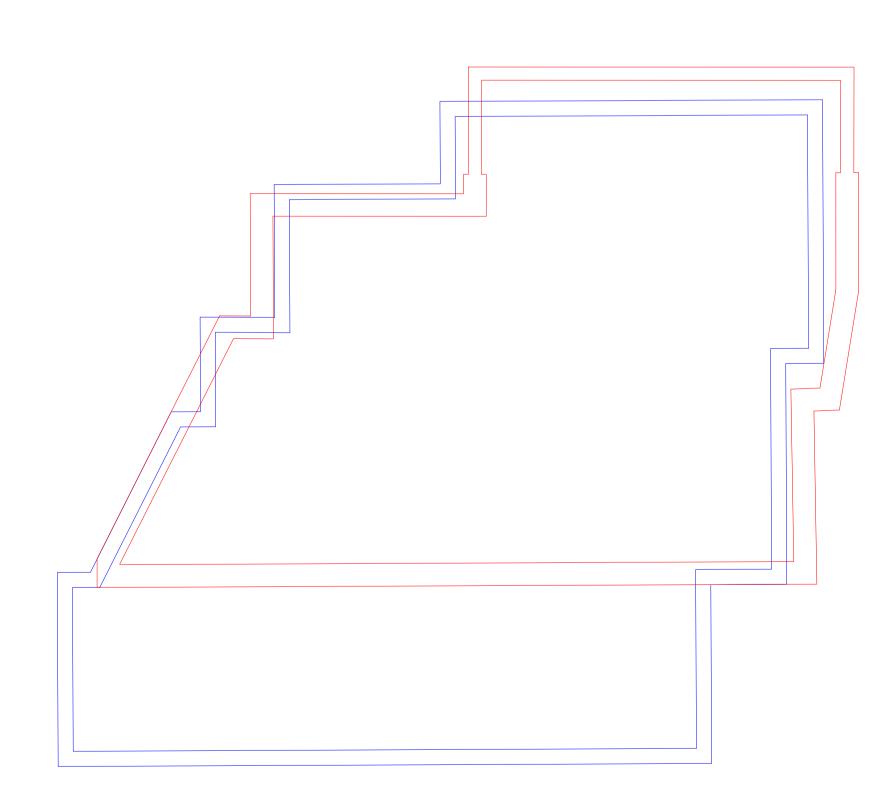


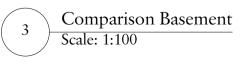
А	17/11/20	Updated Tree Screen	MCW
Rev	Date	Details	By

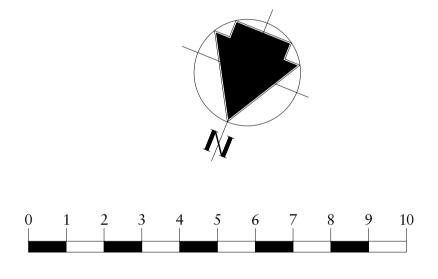
Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 office@charltonbrown.com Email www.charltonbrown.com Website

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Site Plan		
Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number 20022	Drawing Number PL-011	Revision A


Consented Basement Scale: 1:100

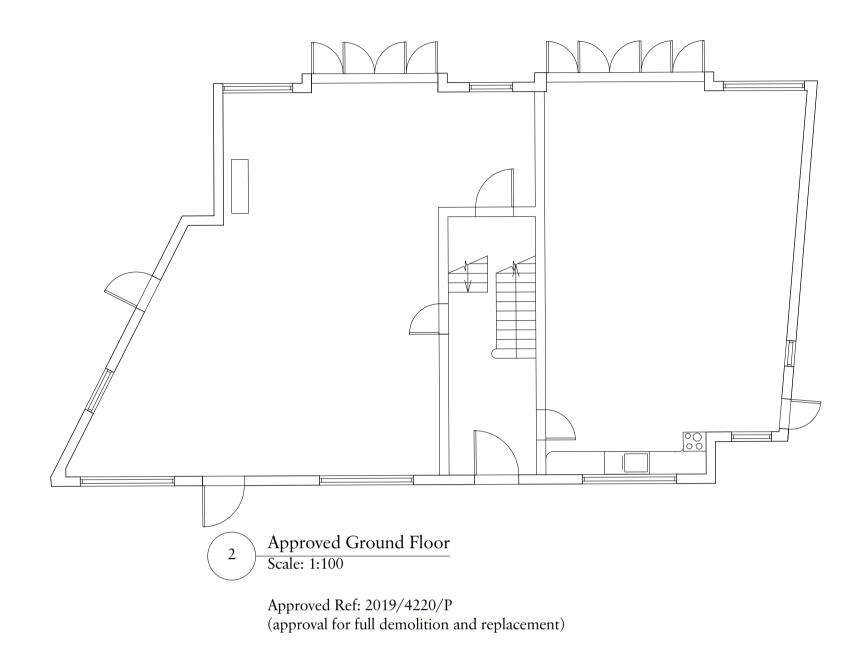

Consent Ref: 2014/5915/P (consent for basement level swimming pool excavation) Expired on 11th May 2019

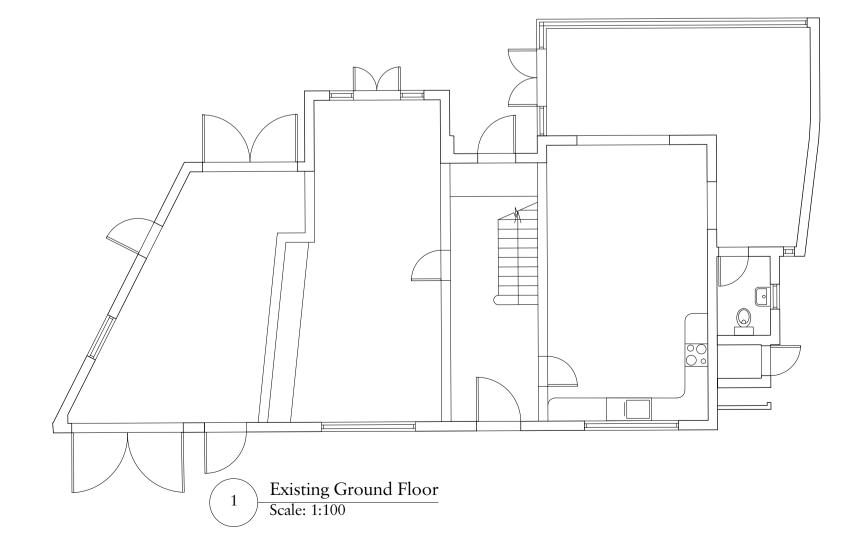


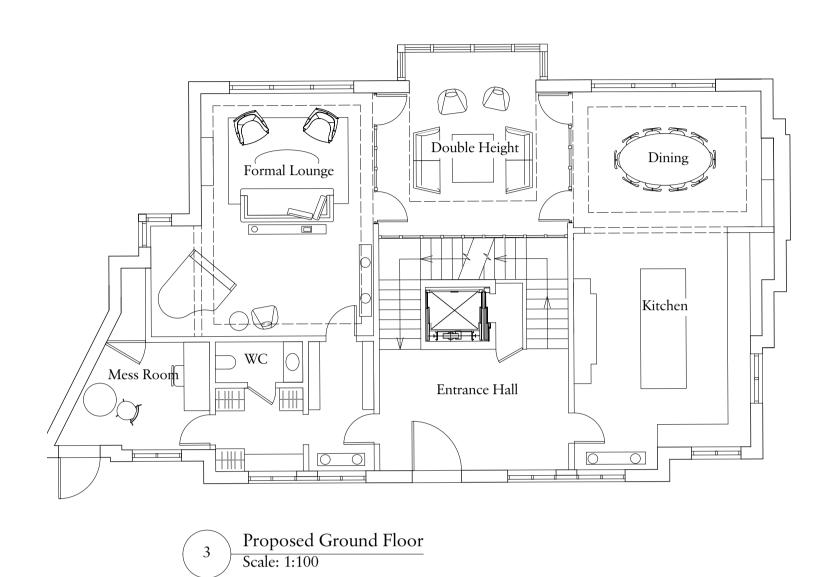
2 Proposed Basement Scale: 1:100

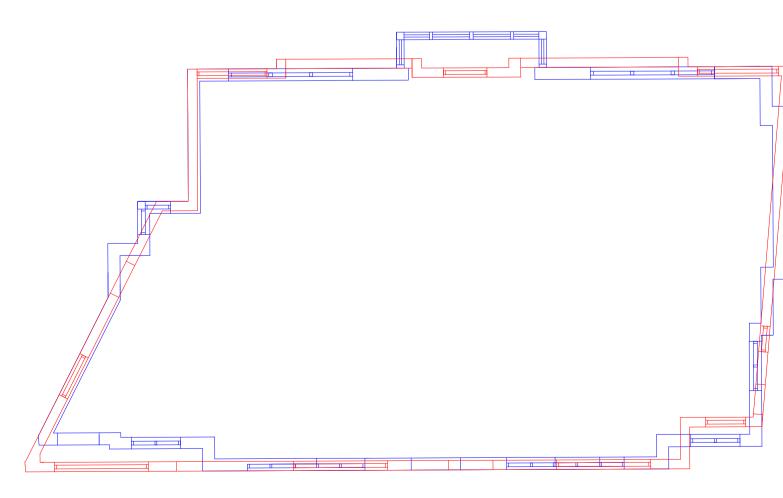
Consented Design Proposed Design

ate

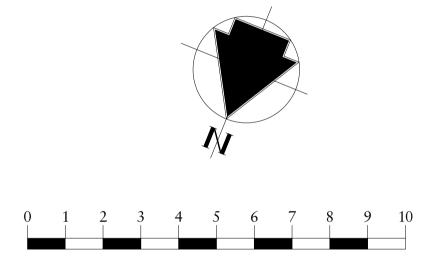

Details


By


Charlton Brown Architecture & Interiors

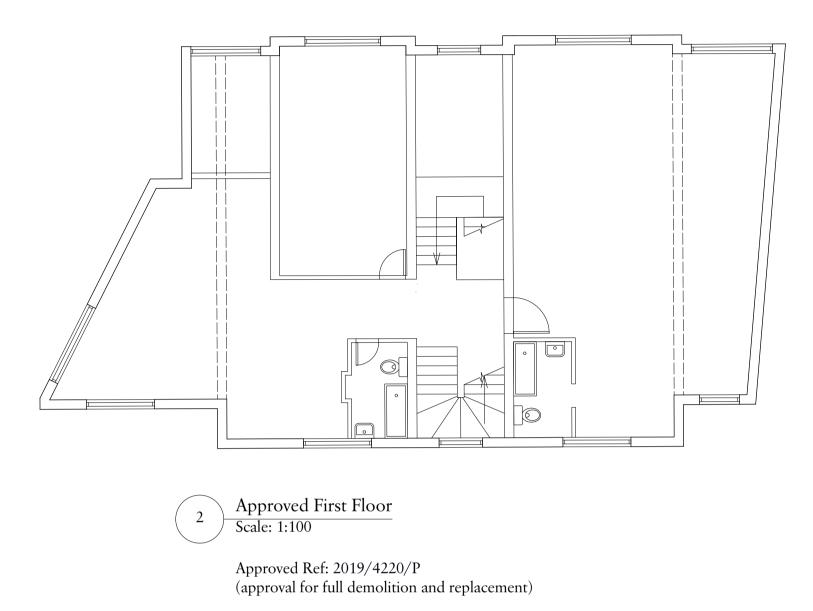

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown.com Website www.charltonbrown.com

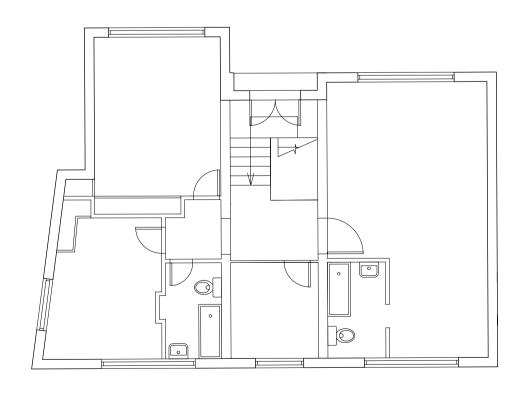
	Client		-NT						
	MRPP		K.						
	Project								
	38 Frognal Lane, N								
	Drawing Tirle								
	Basencent Plan								
د(Date	Drawn	Checked						
Y -	29/09/2020	MCW	JM						
	Scale								
	1:100 @ A1 / 1:200 @ A3								
	Issue Status								
	Planning Application								
	Project Number 20022	Drawing Number PL-099	Revision						



4 Comparison Ground Floor Scale: 1:100

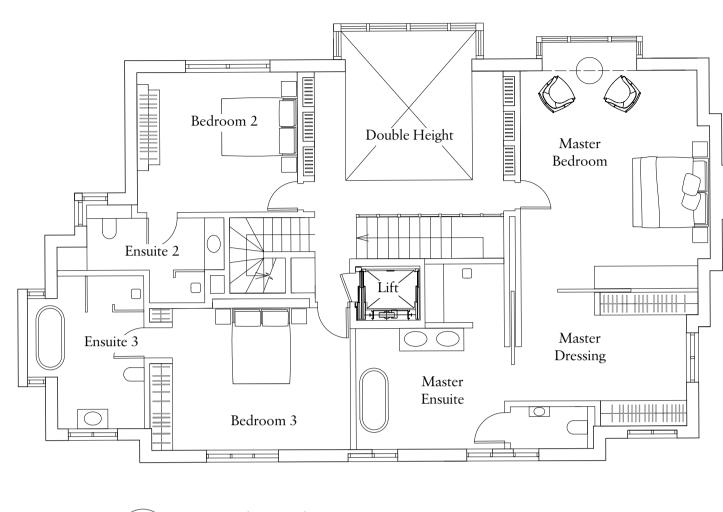
> Approved Design Proposed Design

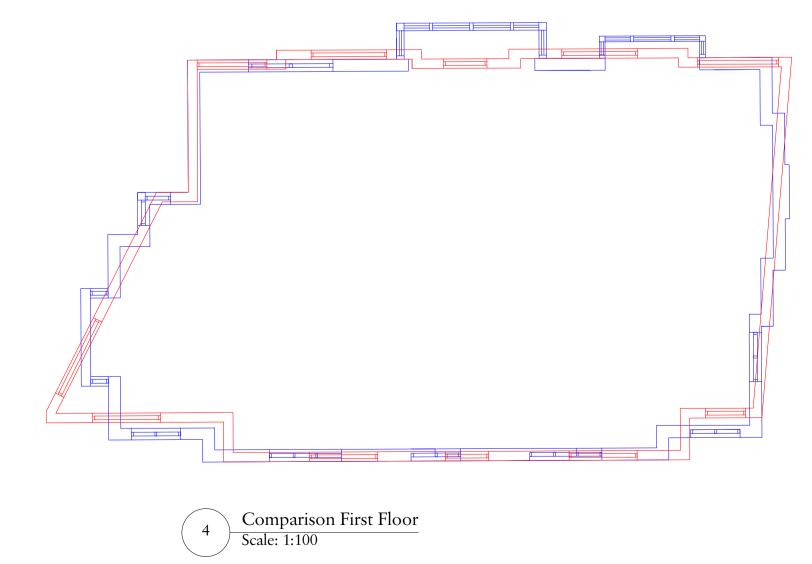


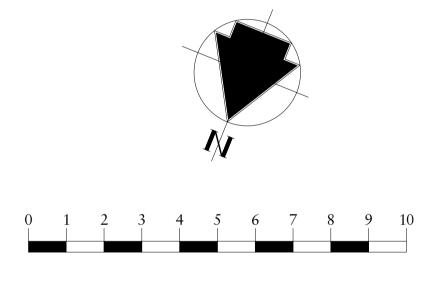

Details

By

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL				
Telephone	+44(0)20 7794 1234			
Email	office@charltonbrown.com			
Website	www.charltonbrown.com			

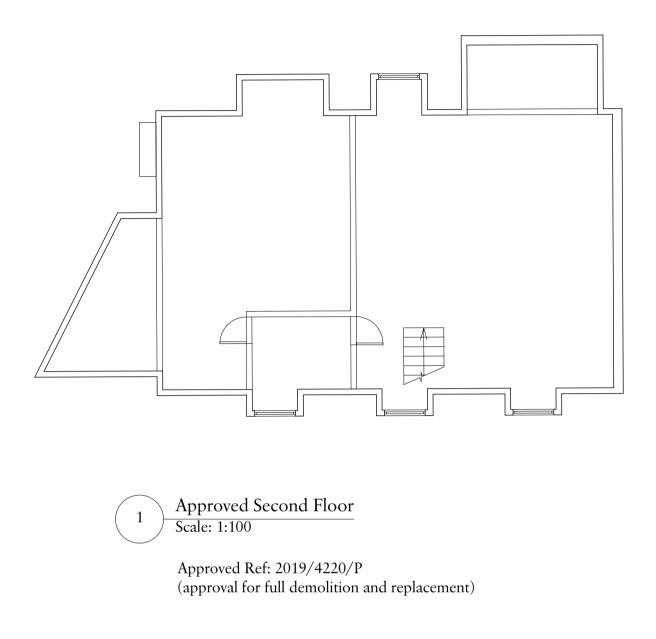

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Ground Floor I	Plan	
Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number 20022	Drawing Number PL-100	Revision

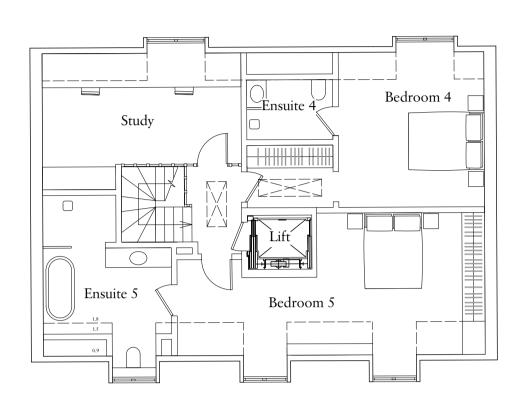



1 Existing First Floor Scale: 1:100

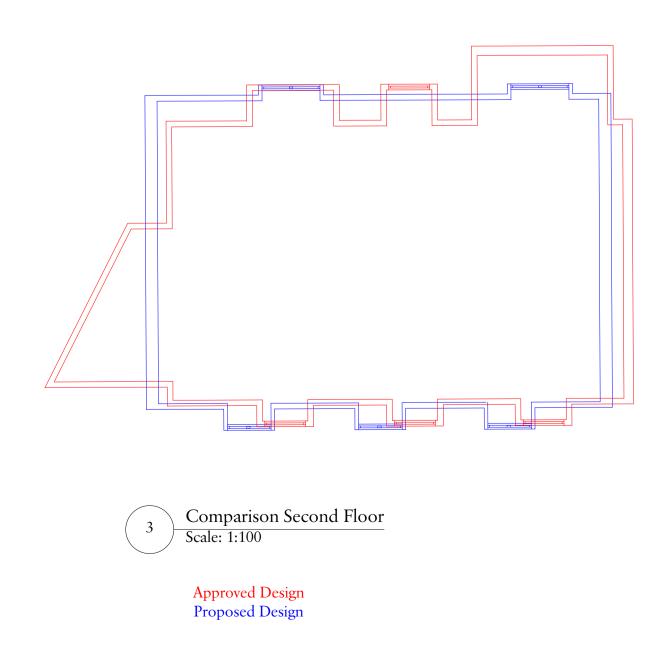
3 Proposed First Floor Scale: 1:100

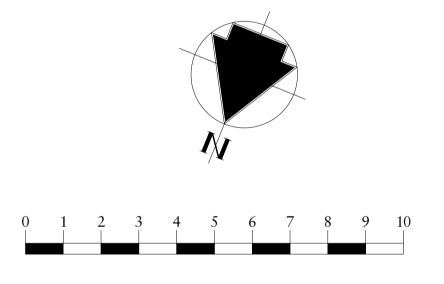
Approved Design Proposed Design




A	16/11/2020	Updated Window Design	MCW
Rev	Date	Details	By

Charlton Brown Architecture & Interiors


The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown.com www.charltonbrown.com Website


Client MRPP Project 38 Frognal Lane, NW3 Drawing Title First Floor Plan Date Drawn Checked 29/09/2020 MCW JM Scale 1:100 @ A1 / 1:200 @ A3 Issue Status Planning Application Project Number 20022 Drawing Number PL-101 Revision А

2 Proposed Second Floor Scale: 1:100

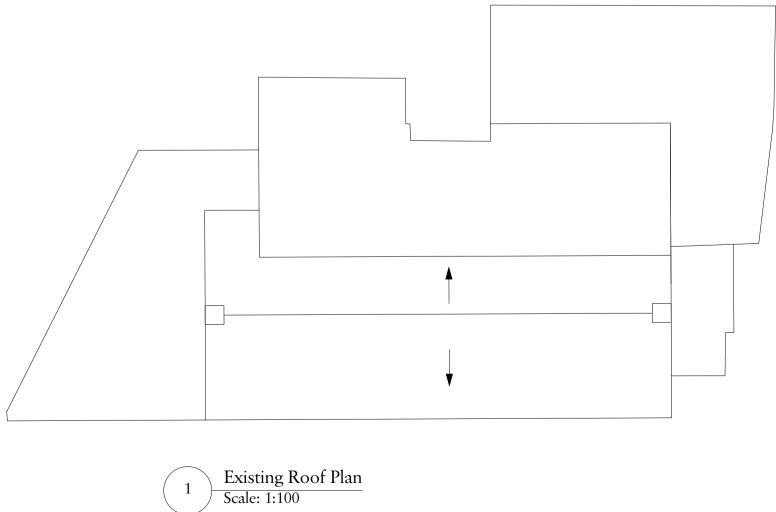
Rev	Date
-----	------

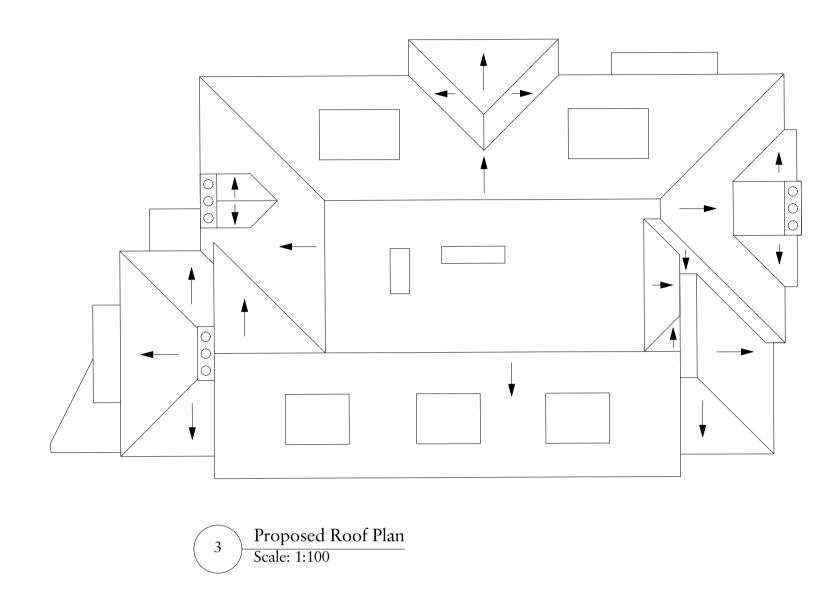
Details

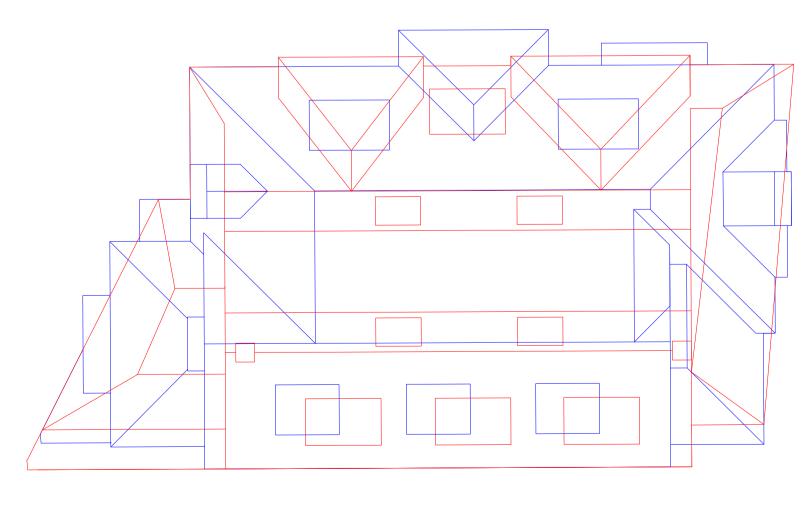
By

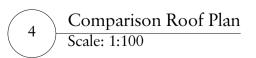

Charlton Brown Architecture & Interiors

The Belveder	e, 2 Back Lane, Hampstead, London, NW3 1HL
Telephone	+44(0)20 7794 1234
Email	office@charltonbrown.com
Website	www.charltonbrown.com

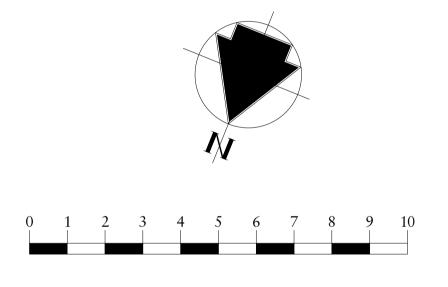

Client	
MRPP	


Project 38 Frognal Lane, NW3 Drawing Title


Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	00 @ A3	
1:100 @ A1 / 1:20 	00 @ A3	



Approved Ref: 2019/4220/P (approval for full demolition and replacement)



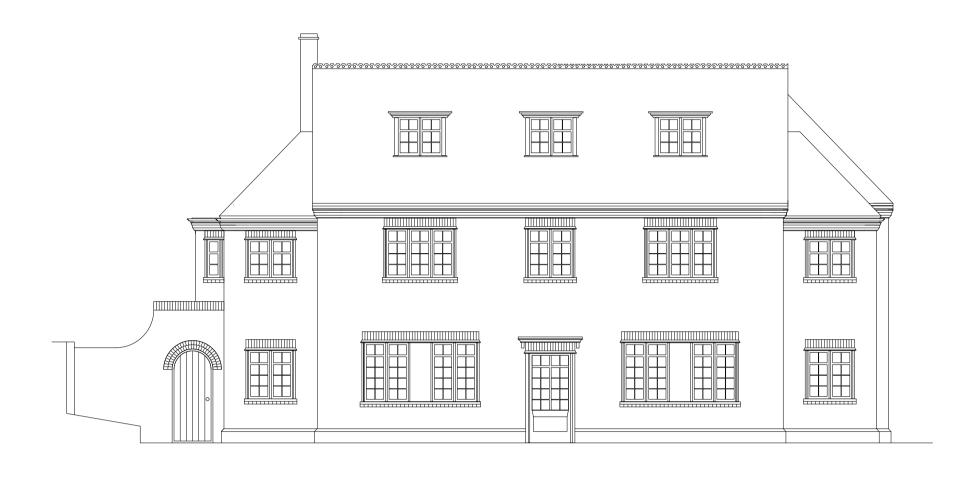
Approved Design Proposed Design

А	17/11/20	Updated Window Design	MCW
Rev	Date	Details	By

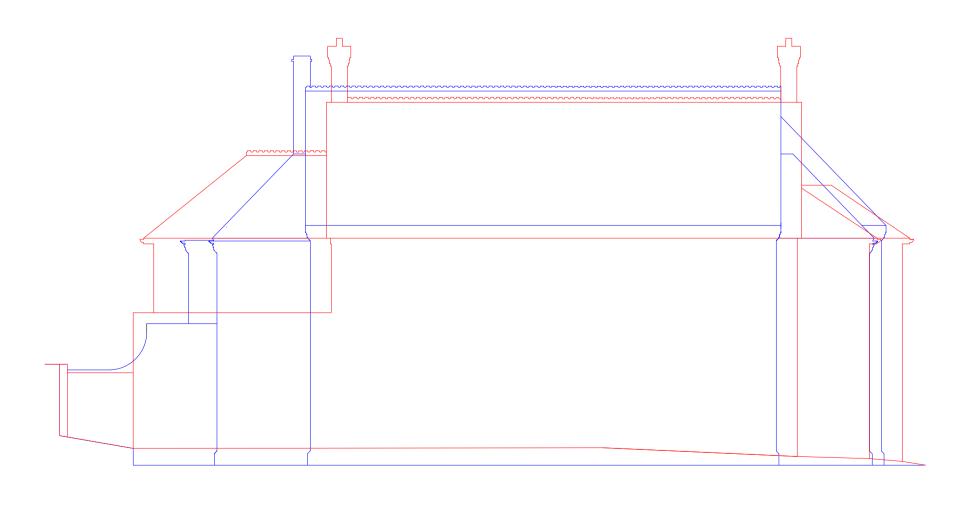
Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown.com www.charltonbrown.com Website

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Roof Plan		
Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:100 @ A1 / 1:2	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number 20022	Drawing Number PL-103	Revision



Approved Front Elevation Scale: 1:100


Approved Ref: 2019/4220/P (approval for full demolition and replacement)

1 Existing Front Elevation Scale: 1:100

3 Proposed Front Elevation Scale: 1:100

4 Approved Front Elevation Scale: 1:100

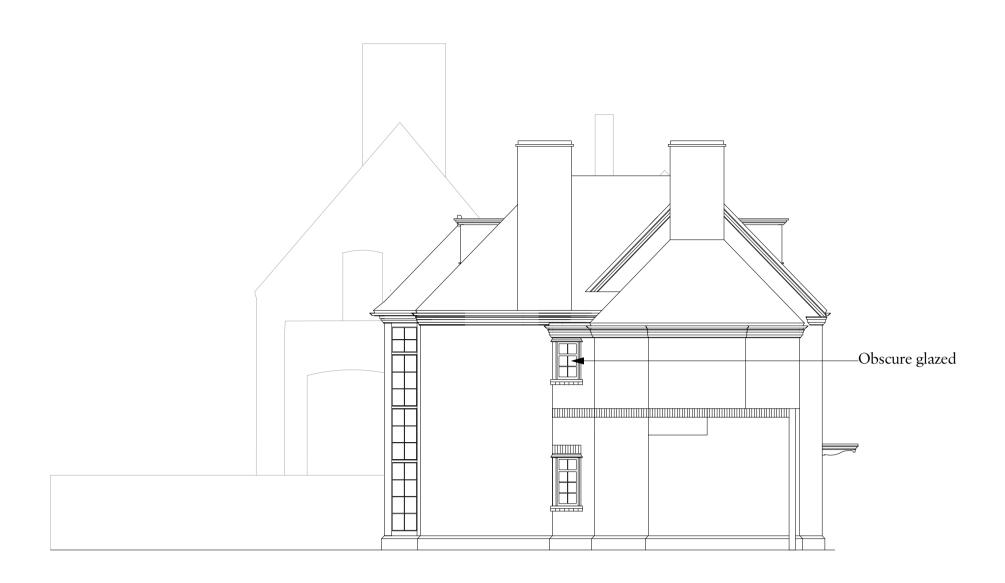
> Approved Design Proposed Design

0 1 2 3 4 5 6 7 8 9 10

A16/11/2020Updated Window DesignMCWRevDateDetailsBy

The Belveder	re, 2 Back Lane, Hampstead, London, NW3 1HL
Telephone	+44(0)20 7794 1234
Email	office@charltonbrown.com
Website	www.charltonbrown.com

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Front Elevation	_ North	
Date	Drawn	Checked
02/10/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number	Drawing Number	Revision
20022	PL-200	А



Approved Side Elevation - East Scale: 1:100

Approved Ref: 2019/4220/P (approval for full demolition and replacement)

3 Proposed Side Elevation - East Scale: 1:100

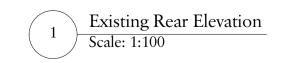
Approved Design Proposed Design

0 1 2 3 4 5 6 7 8 9 10

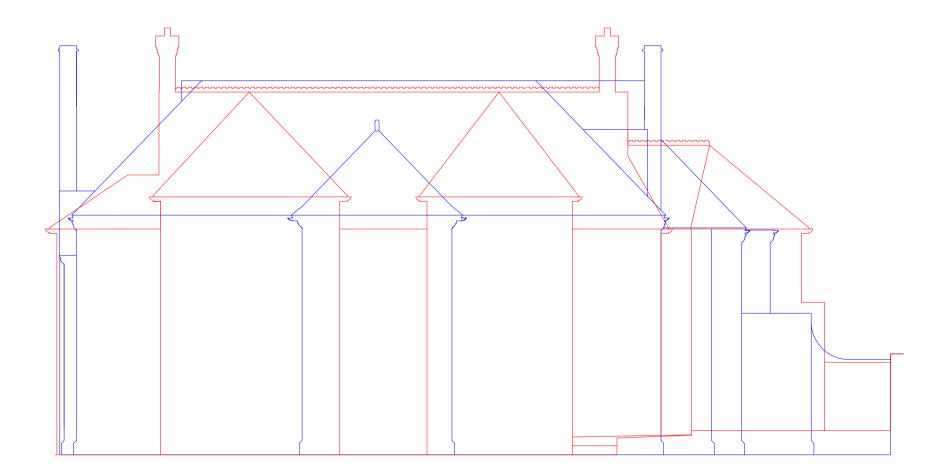
В	16/11/2020	Updated Window Design	MCW
А	13/11/20	Windows added to comparison	MCW
Rev	Date	Details	By

Telephone+44(0)20 7794 1234Emailoffice@charltonbrown.comWebsitewww.charltonbrown.com	

Client		
MRPP		
Project		
38 Frognal Lane, N	NW3	
Drawing Title		
Side Elevation _	East	
Date	Drawn	Checked
02/10/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	0 @ A3	
Issue Status		
Planning App	olication	
Project Number 20022	Drawing Number PL-201	Revision B

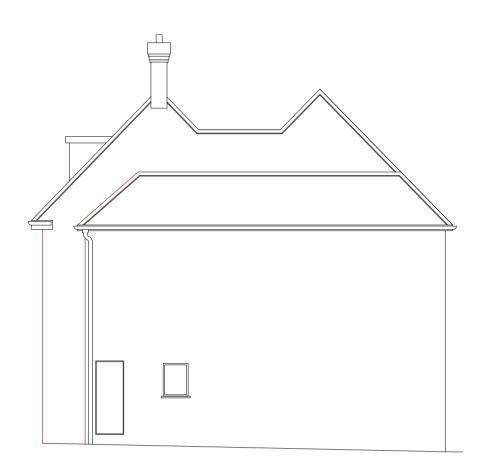


Approved Rear Elevation Scale: 1:100


Approved Ref: 2019/4220/P (approval for full demolition and replacement)

3 Proposed Rear Elevation Scale: 1:100

4 Comparison Rear Elevation Scale: 1:100


Approved Design Proposed Design

0 1 2 3 4 5 6 7 8 9 10

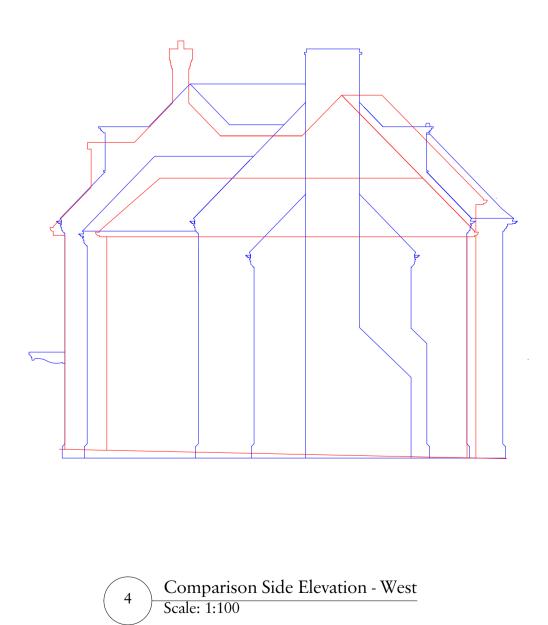
А	17/11/20	Updated Window Design	MCW
Rev	Date	Details	By

The Belveder	The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL				
Telephone	+44(0)20 7794 1234				
Email	office@charltonbrown.com				
Website	www.charltonbrown.com				

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Rear Elevation	_ South	
Date	Drawn	Checked
02/10/2020	MCW	JM
Scale		
1:100 @ A1 / 1:20	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number 20022	Drawing Number PL-202	Revision A

Approved Side Elevation - West Scale: 1:100

Approved Ref: 2019/4220/P (approval for full demolition and replacement)



3 Proposed Side Elevation - West Scale: 1:100

Approved Design Proposed Design

0 1 2 3 4 5 6 7 8 9 10

Rev Date

Details

By

Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 Email office@charltonbrown.com Website www.charltonbrown.com

Client MRPP

_____ Project

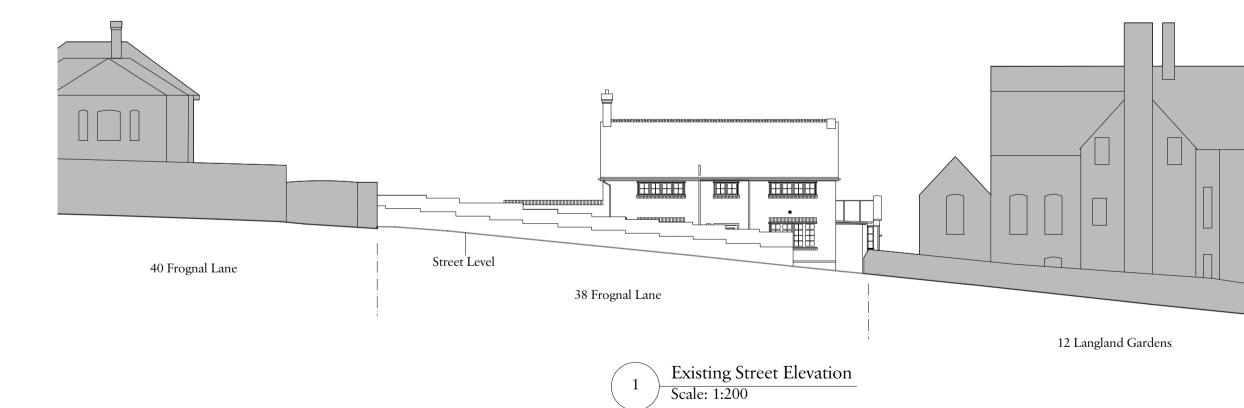
38 Frognal Lane, NW3

Drawing Title

Side Elevation _ West

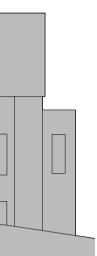
Date Drawn Checked 02/10/2020 MCW JM

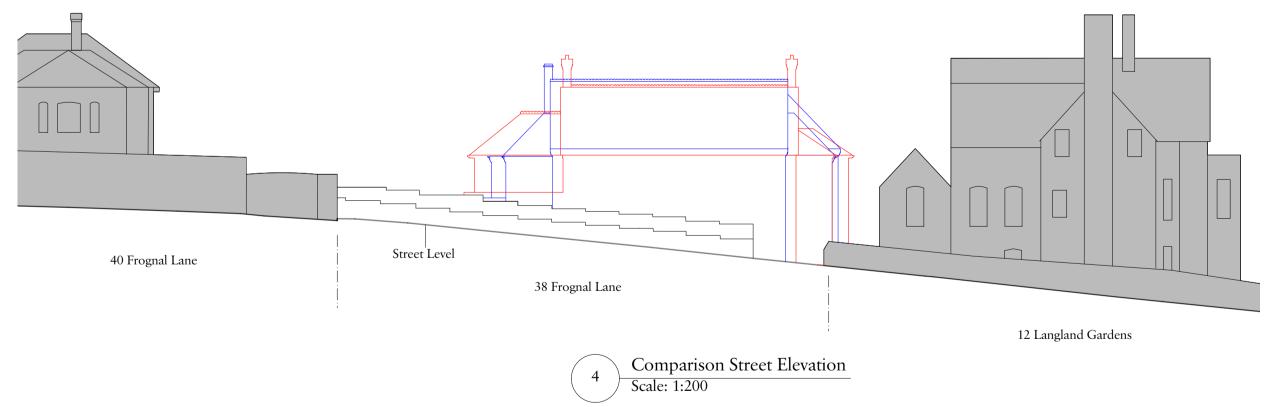
Scale 1:100 @ A1 / 1:200 @ A3


Issue Status

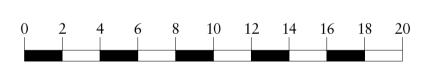
Planning Application

Project Number 20022

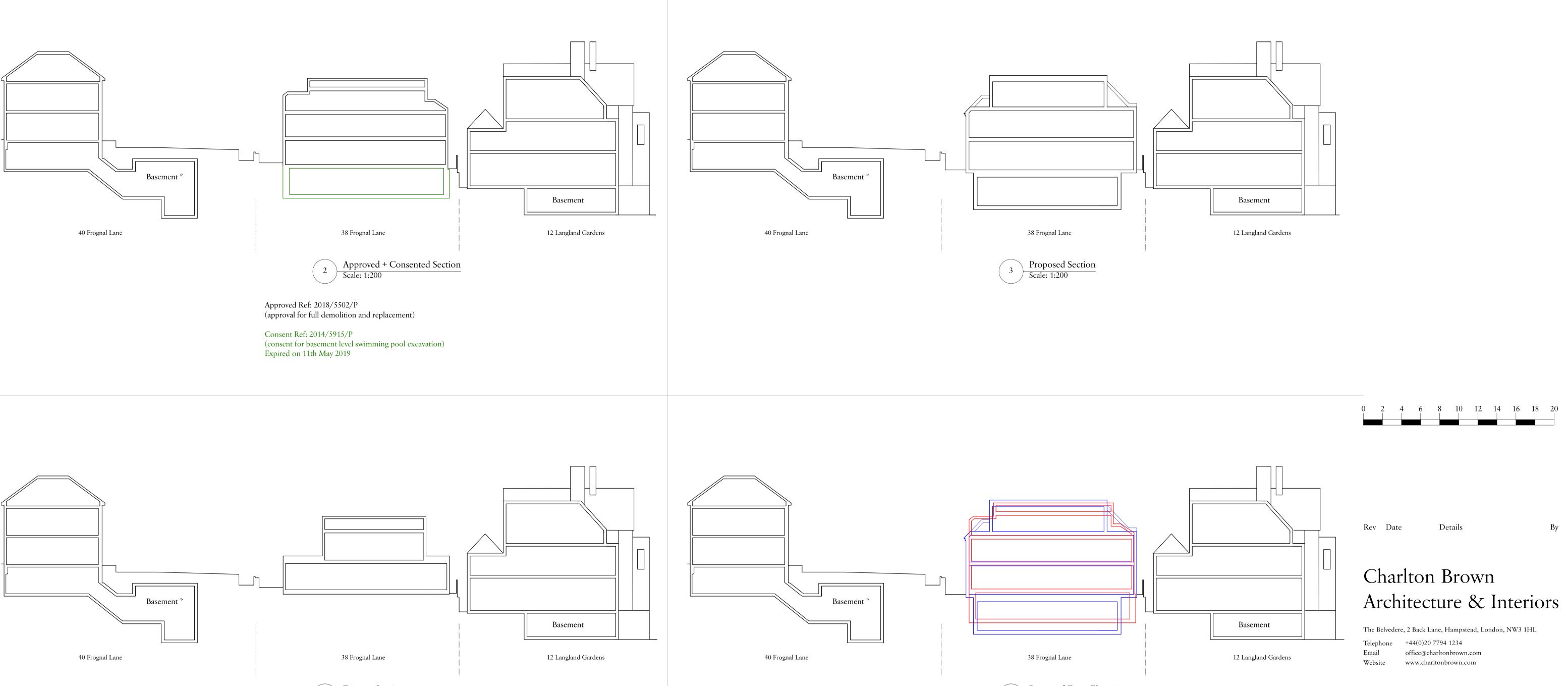

Drawing Number Revision PL-203



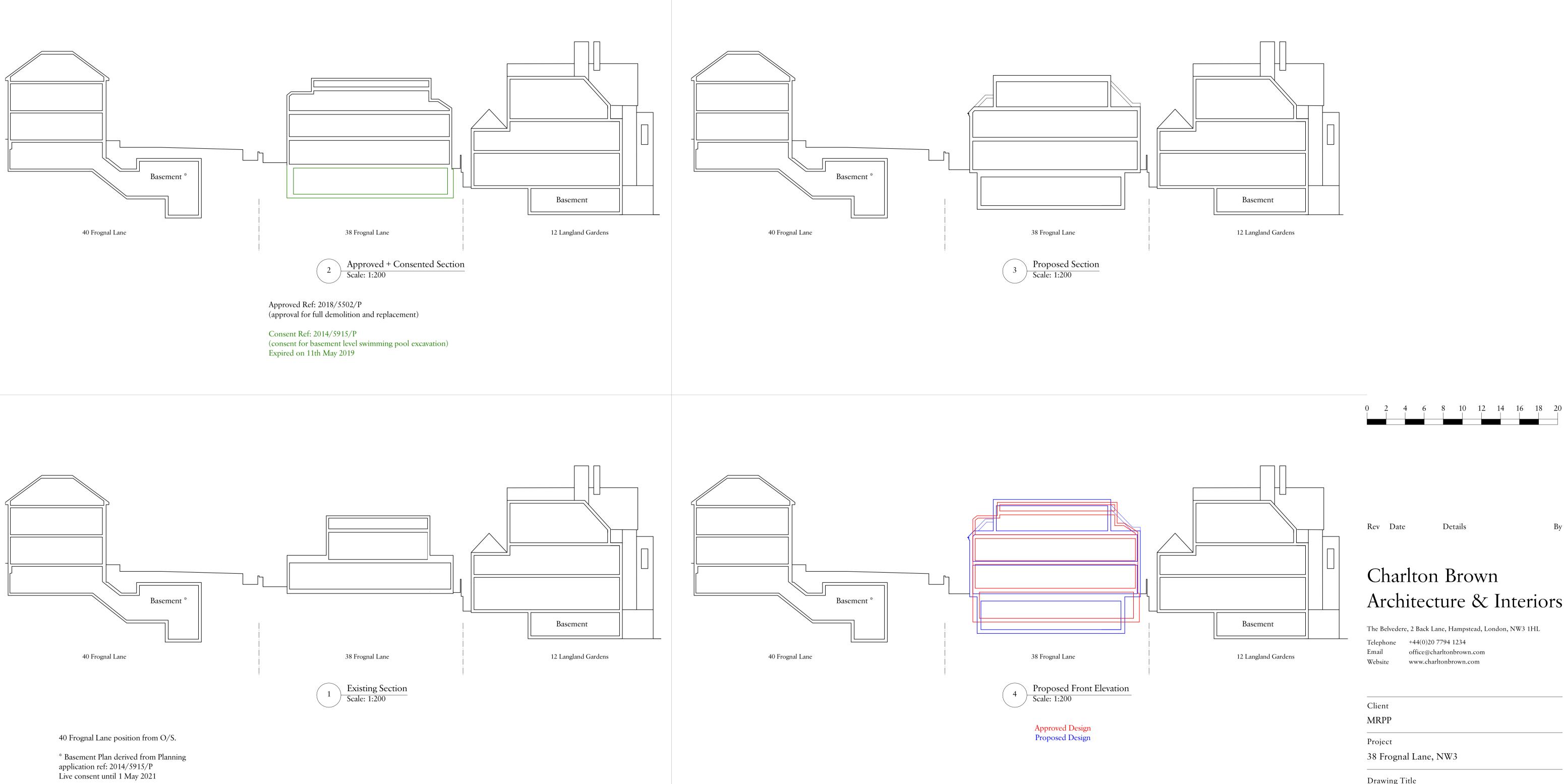
40 Frognal Lane position from O/S.


12 Langland Gardens position from O/S.

Approved Design Proposed Design

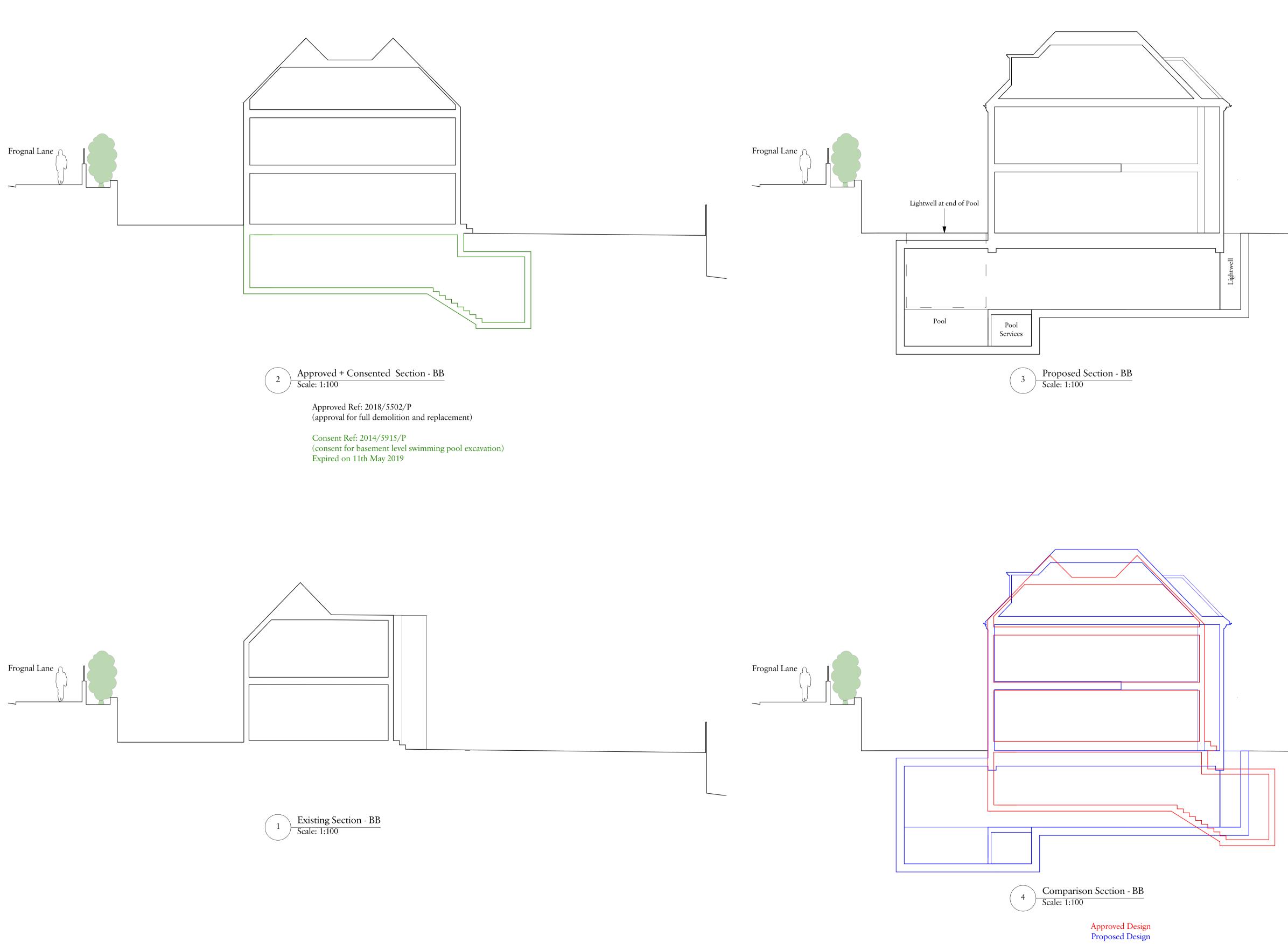


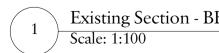
A 17/11/20 Updated Window Design MCW Rev Date Details By


Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL Telephone +44(0)20 7794 1234 office@charltonbrown.com Email Website www.charltonbrown.com

Client		
MRPP		
Project		
38 Frognal Lane,	NW3	
Drawing Title		
Street Elevation		
Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:200 @ A1 / 1:40	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number	Drawing Number	Revision
20022	PL-204	А





12 Langland Gardens position from O/S.

The Belvedere	e, 2 Back Lane, Hampstead, London, NW3 1HL
Telephone	+44(0)20 7794 1234
Email	office@charltonbrown.com
Website	www.charltonbrown.com

Client		
MRPP		
Project		
38 Frognal Lane, N	JW3	
Drawing Title		
Sections - AA		
Date	Drawn	Checked
29/09/2020	MCW	JM
Scale		
1:200 @ A1 / 1:400	0 @ A3	
Issue Status		
Planning App	olication	
Project Number 20022	Drawing Number PL-300	Revision

0 1 2 3 4 5 6 7 8 9 10 1:100

Rev Date Details

Charlton Brown Architecture & Interiors

By

The Belveder	The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL				
Telephone	+44(0)20 7794 1234				
Email	office@charltonbrown.com				
Website	www.charltonbrown.com				

Client MRPP

_____ Project

38 Frognal Lane, NW3

Drawing Title		
Sections - BB		
Date	Drawn	Checked
02/10/2020	MCW	JM
Scale		
1:100 @ A1 / 1:2	00 @ A3	
Issue Status		
Planning Ap	plication	
Project Number	Drawing Number	Revision
20022	PL-305	

Appendix 4: Ground Movement and Damage Impact Assessment

TRAIN&KEMP consulting engineers

Basement Impact Assessment Appendix 4

Ground Movement and Building Damage

Assessment

for

Redevelopment of

38 Frognal Lane, NW3 6PP

Job No: 14604

Revision 0

1 October 2020

Train & Kemp (Consulting Engineers) LLP | 10 Kennington Park Place London SE11 4AS | Limited Liability Partnership No. OC305768

Designated Members M.W. Stone BEng CEng FIStructE T.A. Roberts IEng AMIStructE G.J.G. Tyldesley BEng CEng MIStructE

CONTENTS

0. Non Technical Summary

1. Introduction

- 1.1. Introduction
- 1.2. Authorship

2. Location and Site Description

- 2.1. Location
- 2.2. Topography and Levels
- 2.3. Adjacent Buildings

3. Scheme

- 3.1. Proposed Redevelopment
- 3.2. Basement

4. Site Investigations

- 4.1. Soils Ltd 2014
- 4.2. Soils Ltd 2020

5. Ground Movements associated with Basement Construction

- 5.1. Ground Movements with Basements
- 5.2. Movement associated with Contiguous Piled Walls
- 5.3. Ground Movement Analysis and Results

6. Damage Assessment of Adjacent Buildings

- 6.1. Burland Scale
- 6.2. LB Camden Damage Acceptance Criteria
- 6.3. No 12 Langland Gardens
- 6.4. No 40 Frognal Lane
- 6.5. Monitoring

7. Conclusion

Appendix 1 Site Location Plan and Clearance to Adjacent Properties

Appendix 2 Ground Movement Analysis

0 NON TECHNICAL SUMMARY

- 0.1 As required in Camden CPG on Basements, a Ground Movement and Building Damage Assessment has been completed on the proposed basement at 38 Frognal Lane.
- 0.2 The proposed basement is part of a rebuild of the detached house on the site. The basement is single storey with a deeper front section for a swimming pool and a shallower rear section, which forms a leisure suite.
- 0.3 The site is founded on Claygate Members overlying London Clay and the basement will be formed with a contiguous piled perimeter wall, with the depths adjusted to suit the swimming pool and leisure suite. The piled wall will be propped in both the temporary and permanent conditions. A waterproof concrete box will be constructed within the piled wall.
- 0.4 A ground movement assessment has been undertaken in accordance with CIRIA Report C580, as the industry standard on such movement. The effect of both the deep and shallow basements on the adjacent properties at No 40 Frognal Lane and No 12 Langland Gardens has been completed with the analysis in Appendix 2 and presentation of the potential damage in the graphs in Section 6.
- 0.5 The assessment has established that the movement in the adjacent properties will be limited to Damage Category 1, Very Slight, and hence complies with LB Camden acceptability criteria.

1 INTRODUCTION

1.1 Introduction

- 1.1.1 This Ground Movement and Building Damage Assessment, GM&BD, has been prepared in support of a planning application for the redevelopment of 38 Frognal Lane NW3 6PP, which includes a basement extension.
- 1.1.2 This GM&BD has been prepared in accordance with LB of Camden Planning Guidance on Basements, March 2018.
- 1.1.3 Reference is made to LB Camden Geological, Hydrogeological and Hydrological Study, GHHS, 2010

1.2 Authorship

1.2.1 This GM&BDA has been prepared by Norman Train, a Chartered Civil Engineer and Chartered Structural Engineer with experience in ground movement and damage assessment

2.0 LOCATION AND SITE DESCRIPTION

2.1 Location

- 2.1.1 The site is on the slopes falling from the high ground of Hampstead Heath towards the Finchley Road to the southwest. For the purposes of this assessment the orientation of Frognal Lane is taken as east west with No 38 being on the south side; No 40 Frognal Lane and No 12 Langland Gardens are to the east and west respectively.
- 2.1.2 As shown on T&K drawing 14604-01 in Appendix 1, the site is a parallelogram with the road frontage along Frognal Lane being 25m by some 30m deep, front to rear, giving a plot area of 650m²

2.2 Topography and Levels

2.2.1 The topographical survey shows that the gradient to this part of Frognal Lane is 1 in 10. This gradient is also repeated on Langland Gardens to the south west of the site.

- 2.2.2 The site is located opposite the junction to Chesterford Gardens with the ground rising to the north and east. The adjacent house to the east on Frognal Lane is No 40 which is some 3m higher. The adjacent house to the west is No 12 Langland Gardens; which is some 2m lower.
- 2.2.3 The site is level and it is clear that the ground has been terraced with retaining walls to the back of the pavement and to the front sections of the eastern and western boundaries. The natural fall of the ground means that the level difference is less pronounced towards the rear, where the differences are accommodated within banking and steeper slopes to the perimeter flower beds rather than formal retaining walls.
- 2.2.4 The forecourt off Frognal Lane is at +90.9m OD with the rear garden at +90.5m OD. The passageways to the east and west of the house are +91.3m OD and +90.6m OD respectively, with the maximum height of the eastern and western retaining walls at their northern front ends being 2m and 1m high respectively.

2.3 Existing Site and Building

- 2.3.1 38 Frognal Lane is a detached two storey house with pitched roof that has a single storey attached garage to the east. To the rear is a single storey extension that wraps around onto its western side. There is no basement.
- 2.3.2 The gravel forecourt does not have any formal drainage.
- 2.3.3 As shown on T&K Drawing 14604-01 in Appendix 1, there are three trees in the rear garden and three along the front.
- 2.3.4 Both the foul and surface water connect to the adopted drainage on Frognal Lane which is a combined system.

2.4 Adjacent Buildings

- 2.4.0 <u>Reference:</u> T&K Drawing 14604-01 Site Location and Clearance to Adjacent Properties in Appendix 1.
- 2.4.1 No 40 Frognal Lane is a grade listed detached three storey house with a lower ground floor as a semi basement. No 40 Frognal Lane is 19m to the east of No 38 and its lower ground floor is at +92m OD. There is also a current planning permission for a basement swimming pool in the garden to No 40 which would be 5.5m clear at a depth of +86.5m OD. The swimming pool would be a reinforced concrete box with perimeter concrete piles.
- 2.4.2 No 12 Langland Gardens is 2.5m to the west of No 38 and is split level. The upper ground floor is at +88.8m OD and the lower ground floor, with access from Langland Gardens, is at +86.2m OD.
- 2.4.3 Next to No 12 Langland Gardens is Lindfield House, the back garden of which extends across the whole of the rear boundary to No 38. There are timber outhouses within 2m of this southern boundary, but with the slope of the ground these are estimated to be at +89m OD.

3.0 SCHEME

3.0.0 <u>References:</u> Carlton Brown Architect Drawings 20022 P 099 to 108

3.1 Proposed Redevelopment

- 3.1.1 The proposed redevelopment comprises the demolition of the existing house and the construction of a new two storey house of similar proportions over an extended basement. The front of the basement, beneath the forecourt, will be a swimming pool with the remainder being a leisure suite.
- 3.1.2 The impervious area will increase from 200m² to 230m².

3.1.3 As a rebuild, the house will be constructed bottom upwards. The leisure suite will have columns at around 5m centres, both ways, to support the ground floor and superstructure. The columns will be supported on piles.

3.2 Basement

- 3.2.1 The swimming pool beneath the forecourt will be 4.8m deep internally; the leisure suite behind will be 3m deep internally. The excavated depths will be +84.4m OD and +86.2m OD respectively.
- 3.2.2 The basement will have lightwells to the eastern end of the swimming pool and to the southern side of the leisure suite.
- 3.2.3 The basement will require the construction of a contiguous piled perimeter wall with an inner box of waterproof concrete. As a mitigation against disruption of the groundwater flow, an externally pea shingle layer will be installed around the outside of the piles will act as the groundwater interceptor and redistributor.

4.0 GROUND CONDITIONS AND SITE INVESTIGATIONS

4.0.0 <u>References:</u> The two site investigations are given in BIA Appendix 2.

4.1 Published Ground Conditions

- **4.1.1** The British Geology Survey, Map of the Geology of UK, indicates that the site is underlain by Claygate Members overlying London Clay which outcrops further to the south on Langland Gardens.
- 4.1.2 GHHS Fig 8, Aquifer Designation Map, shows that the Claygate Members are classified as a Secondary A Aquifer. London Clay is classified as an unproductive aquifer.
- 4.1.3 GHHS Fig 9, Slope Angle Map, shows that there are no slopes greater than 7° in the vicinity of the site.

4.2 Soil Ltd 2014

- 4.2.1 Soils Ltd completed a site investigation in 2014 comprising two window samplers to a depth of 6m in the forecourt. This established that the Claygate Members extend to a greater depth than 6m.
- 4.2.2 Standpipes were installed in both window samplers with the groundwater measured in December 2013 and January 2014. Initially the depth to the water was 2.0m [east] and 2.8m [west] rising after a month to 0.8m [east] and 1.5m [west]. Being on the forecourt, the locations were at the same level,18m apart, so the gradient of the phreatic surface across the site in early 2014 was 1 in 20.

4.3 Soil Ltd 2020

- 4.3.1 Soils Ltd site investigation in 2020 comprised a 20m borehole in the forecourt and two 10m window samplers in the rear garden. The 20m borehole gives strength parameters for the pile design. The 10m window samplers established the depth of the London Clay, which ranges between 5.5m and 7.8m in depth.
- 4.3.2 Standpipes were installed in all three holes

5.0 GROUND MOVEMENT ASSOCIATED WITH BASEMENT CONSTRUCTION

5.0.0 <u>Reference:</u> CIRIA Report C580: Embedded Retaining Walls- Guidance for Economic Design; 2003

5.1 Ground Movements with Basements

- 5.1.1 Basement excavation leads to ground movements and with time this can lead to damage and cracking within the zone of influence of the excavation. Assessing the potential damage to buildings requires a Ground Movement Assessment, GMA, to be undertaken first, followed by categorising of the resulting damage to buildings.
- 5.1.2 There are two types of movement.
 - 5.1.2.1 The removal of the soil mass within the basement causes the ground beneath to recover and heave as an upward movement. This can be modelled assuming Boussinesq elastic stress distribution and is greatest in the middle of the excavation. Whilst this recovery will also extend outside the basement, the zone is small.
 - 5.1.2.2 The sides of the excavation tend to rotate into the hole with both horizontal movement and settlement of the ground outside the basement. The settlement is a downward movement. Field measurements of the movements outside basements are presented in CIRIA C580 figures 2.8, 2.9 & 2.11 for stiff clays and 2.12 for sands. The movement to the sides of the excavation is sensitive to the propping or stiffness of the walls
- 5.1.3 Since the field measurements will include the effects of any heave from the removal of the soil mass, the recovery does not have to be considered separately.
- 5.1.4 Based on the fieldwork, CIRIA C580, Tables 2.2 and 2.4 give guidance on the potential movement in stiff clays. There are two aspects to this movement:
 - 5.1.4.1 The relaxation of the soil mass outside the excavation;
 - 5.1.4.2 The settlement associated with the wall construction itself.
- 5.1.5 Each aspect can be resolved into vertical and horizontal components giving four value sets, each of which has its own zones of influence.
- 5.1.6 The build up of the resulting horizontal and vertical movements are given in Appendix 2 assuming:
 - 5.1.6.1 The strains are uniformly distributed over the zone of influence
 - 5.1.6.2 The strains tabulated in C580 are:
 - 5.1.6.2.1 at the surface, reducing linearly to zero at the base of the excavation or walling element. This means that on a slope, where the adjoining building is at a different level, it is the net difference in level rather than the excavation depth that defines the zone of influence
 - 5.1.6.2.2 perpendicular to the excavation. Whilst only applicable to the horizontal strains at excavation corners or changes in the depth of the wall, if the orientation is at an angle, it is the perpendicular component horizontal strain that is appropriate.

5.2 Movement associated with Contiguous Pile Construction

- 5.2.1 C580, Section 2.5.1 states that there is little ground movement with the installation of isolated bored piles. However, with sequential construction to form a wall there is movement in the adjacent ground. This is greatest with secant walls, with contiguous piles having a lesser effect.
- 5.2.2 As 5.1.2.2, the movements associated with the excavation are sensitive to the propping and stiffness of the perimeter wall. The contiguous piles will be held with wailers and props in the construction phase and by the capping beam and lid in the completed works. This means that high support stiffness values can be taken from Table 2.4.
- 5.2.3 The recommended movements for contiguous piles in Table 2.2 with high support excavation in Table 2.4 are:

Element	C580		Horizontal		Vertical	
Element	Table	ε%	Zone of Influence	ε%	Zone of Influence	
Contiguous Piles	2.2	0.04	1.5 piles	0.04	2 piles	
Excavation [High Support Stiffness]	2.4	0.15	4 excavations	0.1	3.5 excavations	

5.3 Ground Movement Analysis and Results

- 5.3.1 The depth of the contiguous piles to the Leisure Suite and Swimming Pool basements are taken as 10m and 15m respectively.
- 5.3.2 The extent of the deeper piles to the pool is shown on T&K drawing 14604-01 in Appendix 1. The clearance of the closest point in the Leisure Suite and Pool to both No 12 Langland Gardens and No 40 Frognal Lane are given as the four locations for analysis. The depth of the foundations of both buildings is taken as 0.8m below the respective floor levels. As 3.2.1, the depth of No 38 basement excavations are taken as +86.2m OD and +84.4m OD
- 5.3.3 Whilst the proposed swimming pool to No 40 is also indicated on T&K 14604/01, it has not been built yet and as reinforced concrete the Burland Categories are not applicable. Consequently it has not been analysed.

Location	Ref	Clear-	Angle	Level		No 38 Basement	
LUCATION	Nei	ance m	to Perp	Floor	Foundation		Level
12 Langland	LG/1	2.5	Perp	+88.8m OD	+88.0m OD	Leisure	+86.2m OD
Gdns	LG/2	6	45°	+88.8m OD	+88.0m OD	Pool	+84.4m OD
40 Frognal	FL/1	19	Perp	+92.0m OD	+91.2m OD	Leisure	+86.2m OD
Lane	FL/2	23	45°	+92.0m OD	+91.2m OD	Pool	+84.4m OD
Proposed No 40 Pool	[FL/3]	5.5			+86.5m OD	Pool	+84.4m OD

- 5.3.4 The two key results that are required in assessing the damage of adjoining brick buildings are:
 - 5.3.4.1 Horizontal Strain ϵ_{H} .
 - 5.3.4.2 Vertical Differential Settlement Δ /L. Note it is the differential settlement and not the total settlement that causes the cracks.
- 5.3.5 The Horizontal Strain ϵ_H and Vertical Differential Settlement Δ/L are the two boxed values in the individual analysis sheets in Appendix 2. Both values are dimensionless and presented as %.

6.0 DAMAGE ASSESSMENT OF ADJACENT PROPERTIES

6.1 Burland Scale

6.1.1 In brittle materials with limited tensile strength, such as brickwork, damage occurs when the tension strains exceed a critical value and cracks form. A limiting strain, ε_{lim}, can be defined for different sizes of cracks, or damage classifications. In brickwork, five categories of damage are defined as.

Category of	Description of Damage	Approx Crack	Limiting
Damage		Width	Strain ε _{lim}
0. Negligible	Hairline	0.1mm	0.05%
 Very Slight 	Fine cracks addressed during decoration	1mm	0.075%
2. Slight	Cracks easily filled with redecoration	<5mm	0.15%
3. Moderate	Patch brick repairs	5mm to 15mm	0.3%
4. Severe	Extensive repairs	15mm to 25mm	Over 0.3%
5. Very Severe	Major rebuilding	>25mm	

6.1.2 Reinforced concrete can resist tension and has ductility and the above correlation of crack width and limiting strains does not hold.

- 6.1.3 The two primary sources of cracking are vertical distortions from differential settlement and tapering cracks arising from the horizontal tension strains from the settlement/rebound wave. Burland suggested that the façade of the building can be considered as a large deep beam with the bending and diagonal strains within it depending on its proportions, i.e. ratio of the Length/Height, L/H. On tall narrow buildings, with L/H below unity, diagonal cracking from differential settlement predominates whereas on long squat buildings or terraces, tension cracks due to bending predominates.
- 6.1.4 The two types of cracking relate to vertical and horizontal strains. Utilising the concept of the limiting strains, envelopes of increasing damage can be developed combining the two types of movement for various building proportions. This is of limited value and it is more useful in practice to develop envelopes of different damage categories for a given façade proportion. The two axes on the Burland Scale charts are vertical differential settlement, Δ/L , and horizontal strains ϵ_H on to which different crack severity envelopes can be plotted
- 6.1.5 The vertical differential settlement and horizontal strains from the Ground Movement Analysis in Appendix 2 is presented on the charts for No 12 Langland Gardens and No 40 Frognal Lane

6.2 LB Camden Damage Acceptance Criteria

6.2.1 LB of Camden CPG on Basements, Para 4.33 requires any potential damage to neighbouring properties is no higher than category 1, Very Slight.

6.3 No 12 Langland Gardens Upper Ground Floor

6.3.1 The western half of No 12 is three storeys with a width of 8m and a height of 10m giving a L/H ratio of just under 1.

12LG/1 Leisure Suite Basement

6.3.2 The horizontal strain ϵ_H and vertical differential settlement Δ/L from Appendix 2 are 0.053% and 0.004% respectively.

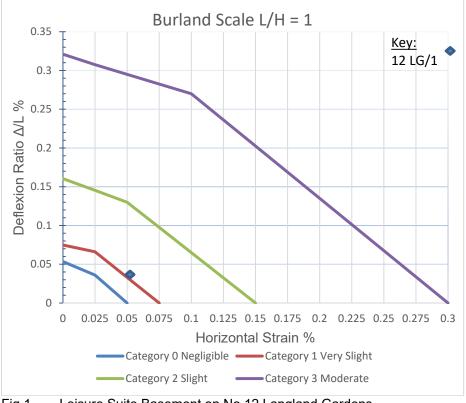
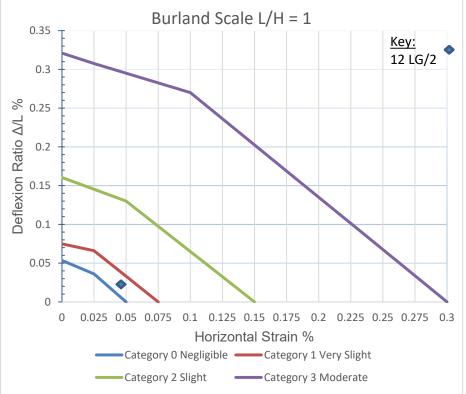


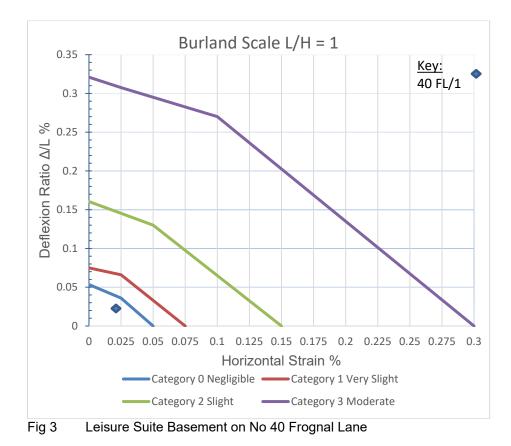
Fig 1 Leisure Suite Basement on No 12 Langland Gardens

6.3.3 As Fig 1, the predicted movement within No 12 Langland Gardens Upper Ground Floor due to the Leisure Suite Basement is on the envelope for Burland Category 1, Very Slight.

12LG/2 Swimming Pool Basement

- 6.3.4 The horizontal strain ϵ_H and vertical differential settlement Δ/L from Appendix 2 are 0.045% and 0.002% respectively.
- 6.3.5 As Fig 2, the predicted movement within No 12 Langland Gardens Upper Ground Floor due to the Swimming Pool Basement is within the envelope for Burland Category 1, Very Slight.




Fig 2 Swimming Pool Base on 12 Langland Gardens

6.4 No 40 Frognal Lane

6.4.1 The main house is three storeys with a width of 9m and a height of 10m giving a L/H ratio of just under 1.

40FL/1: Leisure Suite Basement

6.4.2 The horizontal strain ϵ_H and vertical differential settlement Δ/L from Appendix 2 are 0.024% and 0.002% respectively.

6.4.3 As Fig 3, the predicted movement within No 40 Frognal Lane Lower Ground Floor due to the Leisure Suite Basement is within Burland Category 0, Negligible.

40FL/2: Swimming Pool Basement

6.4.4 The horizontal strain ϵ_H and vertical differential settlement Δ/L from Appendix 2 are 0.042% and 0.002% respectively.

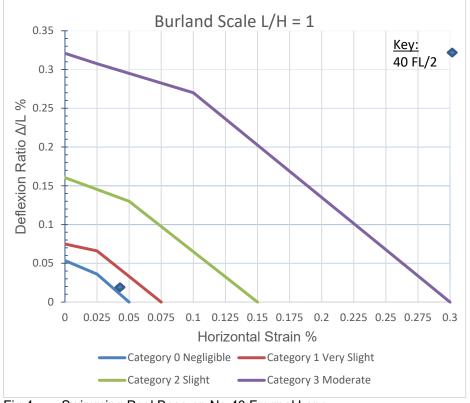
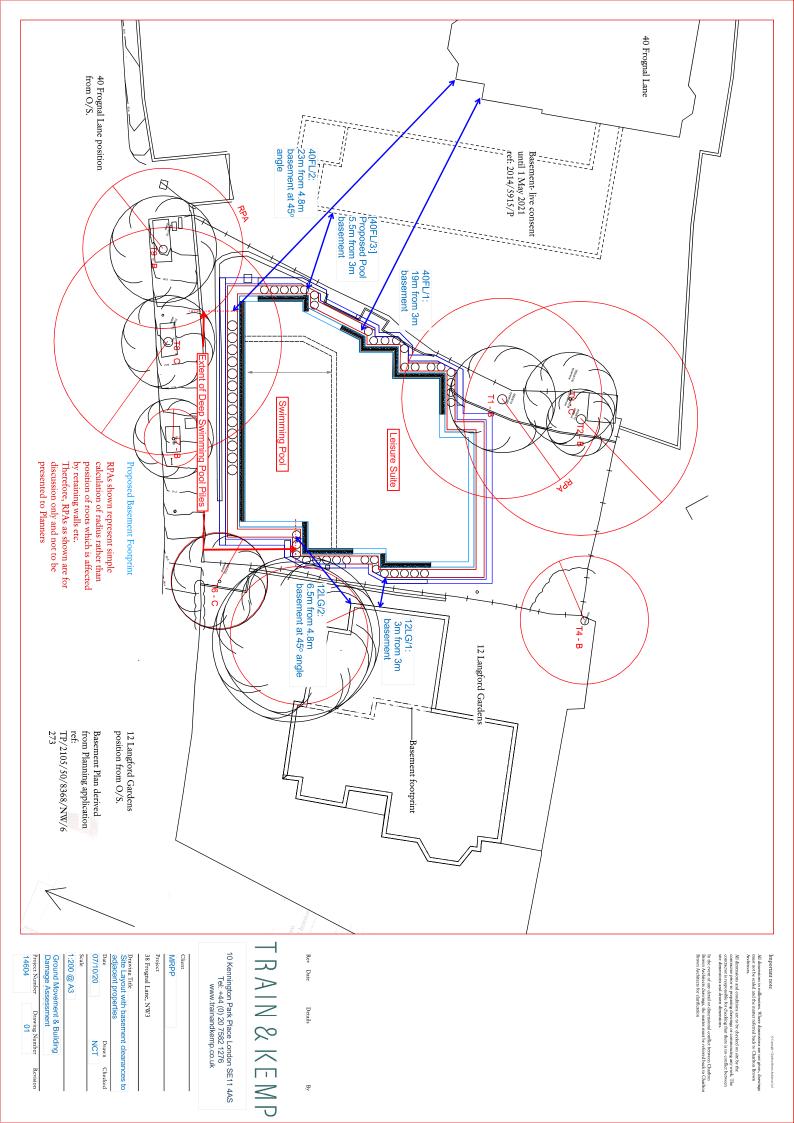


Fig 4 Swimming Pool Base on No 40 Frognal Lane

6.4.5 As Fig 4, the predicted movement within No 40 Frognal Lane Lower Ground Floor due to the Swimming Pool Basement is on the envelope to Burland Category 0, Negligible.

6.5 Monitoring

- 6.5.1 The maximum movements generated in Appendix 2 are 5mm horizontally and 3mm vertically. These are too small for any meaningful surveying monitoring regime.
- 6.5.2 The basement will require party wall awards which in turn will require condition surveys. If the adjoining owner's surveyor wishes for any existing cracks to be monitored with DEMEC gauge or Tell-tale crack monitors, this will be undertaken as part of the award.


7.0 CONCLUSION

7.1 As shown on Figs 1 to 4, the impact of the proposed basement on the adjacent houses is within the acceptance criteria set out in LB Camden CPG on Basements.

N C Train BSc, C.Eng, FIStructE, FICE, FCIArb

Appendix 1 T&K Drawing 14604/01 Site Layout with Clearance to Adjacent Properties

Appendix 2 Ground Movement Analysis

38 Frognal Lane NW3 6PP Ground Movement with 12LG-1 Leisure Suite Basement

C580			010	unc				0-1				i i c					
Table																	
	0.	ntinuaua			Douth		10	-	Zana of Influe								
2.2 Pile Type:		ntiguous	at wild word		Depth		10		Zone of Influe								
Horizontal Str		0.04%	•		g to zero over		1.5		pile lengths =	15 m							
Vertical Strain	1	0.04%	at plie red	ucing	g to zero over		2		pile lengths =	20 m							
2.4 Excavation	Pro	opped High	Level		Depth		4.3	m									
Horizontal Str	ain	0.15%	at pile red	ucing	to zero over		4	excav	ation depths=	17.2 m							
Vertical Strain	1	0.10%	•	-	g to zero over		3.5	excav	vation depths=	15.05 m							
No 12 Langland Ga			ngth 8	m	Height 10	m	L/H=		No 12 UG I			-					
Clearance from bas	ement	3 m						I	No 38 Leisure								
									Depth	Difference	1.8	m					
			Horizonta	Mov	ement						Vorti	cal Movement					
		Pile	10 m		Excavation	1.8	m	Σ	Pile		veru	Excavation			ΣD	iff D	Dist
Position (Clear	Portion	-	mm	Portion	-	mm	mm	Portion	ε	mm	Portion	ε	mm	mm m		m
Contig Wall	-	0.00	0.040%	4.0	0.0	0.150%		6.7	0.00	0.040%	4.0	0.0	0.100%		5.8		
e en lig i tell e					••••			•				••••	•••••				
Building Face	3 m	0.20	0.032%	3.2	1.7	0.087%	1.6	4.8	0.15	0.034%	3.4	1.7	0.052%	0.9	4.3		
																1.0	2
2 m into Bldg	5 m	0.33	0.027%	2.7	2.8	0.046%	0.8	3.5	0.25	0.030%	3.0	2.8	0.021%	0.4	3.4		
																1.2	4
6 m into Bldg	9 m	0.60	0.016%	1.6	Beyond Zone	0.000%	0.0	1.6	0.45	0.022%	2.2	Beyond Zone	0.000%	0.0			-
		0.70	0.0440/		D 17	0.0000/	~ ~		0.55	0.0400/	4.0		0.0000/			0.4	2
8 m into Bldg	11 m	0.73	0.011%	1.1	Beyond Zone				0.55	0.018%	1.8	Beyond Zone	0.000%	0.0		<u> </u>	0.0
		Б.,	ilding Food to	6	Horizontal											2.5	8.0
		Bu	ilding Face to	0		Horizonta Av Horizoi			053%								
					, ,		ilai e	0.0	5570		Vorti	cal Displaceme	nte				
					Ove	r a Distan	ce of	6	m Vertical	Difference	-	uilding Face to		n into	Blda	1.0 m	nm
					010			Av slo		EDist = 0.0		-			•	0.6 m	
								AV 210		0.0	JJZ /0	Differential Se			<u> </u>	0.0 m 0.3 m	
													0.004%	-	<u> </u>	0.0 11	
													5.00-70	1			

08/10/2020

38 Frognal Lane NW3 6PP Ground Movement with 12LG-2 Swimming Pool Basement

C580 Table		Giou			2LG-2	Swimming	FUUI Das	Bennenn		
2.2 Pile Type:	Contiguous		Depth		15 m	Zone of Influ	lence			
Horizontal Strain	-		ucing to zero	over	1.5	pile lengths =				
Vertical Strain	0.04%		ucing to zero		2	pile lengths =				
			0			1 0				
2.4 Excavation	Propped Hig	gh Level	Depth		6.1 m					
Horizontal Strain		at pile red	ucing to zero	over	4 ex	cavation depths=	= 24.4 m			
Vertical Strain	0.10%	at pile red	ucing to zero	over	3.5 ex	cavation depths=	= 21.35 m			
				4.0						
No 12 Langland Garde		_ength 8 i	•	10 m	L/H= 0.8			88.0 m OD		
Angle of basement cor			, ,		0			<u>84</u> m OD		
Clearance from basem	ent 6.5	m				Dept	h Difference	3.6 m		
		Horizontal	Movement					Vertical Movement		
	Pile	15 m	Excavat	ion 3.6	m	Σ Pile		Excavation		Σ Diff Dist
Position Clea			mm Portion			nm Portion		mm Portion	ε mm	mm mm m
-	<i>m</i> 0.00		6.0 0.0	0.150%					0.100% 3.6	
Building Face 6.5	m 0.29	0.028%	4.3 1.8	0.082%	3.0 7	7.2 0.22	0.031%	4.7 1.8	0.048% 1.7	6.4
-										1.0 2
2 m into Bldg 8.5	m 0.38	0.025%	3.7 2.4	0.061%	2.2 5	5.9 0.28	0.029%	4.3 2.4	0.033% 1.2	
										1.9 4
6 m into Bldg 13	m 0.56	0.018%	2.7 3.5	0.020%	0.7 3	3.4 0.42	0.023%	3.5 3.5	0.001% 0.0	
	0.04	0.0440/		7 0 0 0 0 0 0			0.0040/		0.0000/ 0.0	0.4 2
8 m into Bldg 15	m 0.64	0.014%		Zone 0.000%		2.1 0.48	0.021%	3.1 Beyond Zone	: 0.000% 0.0	
				zontal Displace		- 4		. 11		3.3 8.0
		Building Face to	8 m	Horizontal D			dicular to wa			
		Component of Ho	oriz Diff at ang			3.6 mm				
				Av Horizo	ntal ε	0.045%				
								Vertical Displacem		
				Over a Distan			al Difference	0		•
					A	v slope= ΣDiff	$\Sigma Dist = 0.0$			Bldg <u>0.8</u> mm
								Differential S		Δ= 0.1 mm
								Δ/ΣDist=	0.002%	

38 Frognal Lane NW3 6PP Ground Movement with 40FL-1 Leisure Suite Basement

C580			Croar						Ducon						
Table	0	ntiqueue		Donth		10	m 70	one of Influe							
2.2 Pile Type: Horizontal Str		ntiguous 0.04%	at pilo raduai	Depth		10									
Vertical Strain		0.04% 0.04%		ng to zero over		1.5 2	•	lengths =	15 m 20 m						
venical Strain	I	0.04%	at plie reduci	ng to zero over		2	plie	lengths =	20 m						
2.4 Excavation		opped High Lev		Depth		6.1									
Horizontal Str		0.15%		ng to zero over				•	24.4 m						
Vertical Strain	1	0.10%	at pile reduci	ng to zero over		3.5	excavatio	n depths=	21.35 m						
<u>No 40 Frognal Lan</u>	е	Length	9 m	Height 10	m	L/H=	0.9	No 40 LG F	oundation	91.2	m OD				
Clearance from bas		19.0 m ັ		0			No 3	38 Leisure E	Excavation	86	m OD				
Angle of basement	corner	to wall θ =	0 °					Depth	Difference	5.0	m				
5								•							
			<u>Horizontal M</u>	<u>ovement</u>						Vertic	al Movement				
		<u>Pile</u> 10	m	Excavation	5.0	m	Σ	Pile			Excavation			Σ Diff	Dist
Position (Clear	Portion	ε mn	Portion	3	mm	mm	Portion	3	mm	Portion	3	mm	mm mm	m
Contig Wall	0 m	0.00	0.040% 4	0 0.0	0.150%	7.5	11.5	0.00	0.040%	4.0	0.0	0.100%	5.0	9.0	
Building Face	19.0 m	Beyond Zone	0.000% 0	.0 3.8	0.008%	1.4	1.4	0.95	0.002%	0.2	Beyond Zone	0.000%	0.0	0.2	
-		-									-			0.2	2 3
3 m into Bldg	22 m	Beyond Zone	0.000% 0	.0 Beyond Zone	0.000%	0	0.0 Bey	ond Zone	0.000%	0.0	Beyond Zone	0.000%	0.0	0.0	
														0.0) 3
6 m into Bldg	25 m	Beyond Zone	0.000% 0	.0 Beyond Zone			0.0 Bey	ond Zone	0.000%	0.0	Beyond Zone	0.000%	0.0		
					al Displace									0.2	2 6.0
		Buildir	ng Face to	6m H	orizontal D	Diff Δ_{H}	1.4 mm	n perpendi	cular to wa	11					
		Comp	onent of Horiz	Diff at angle θ=	· Δ _H c	osθ =	1.4 mm	1							
		-		-	Av Horizo	ntal ε	0.024	%							
						L				Vertic	al Displaceme	<u>ents</u>			
				Ov	er a Distar	nce of	6.0 m	Vertical	Difference	Bu	ilding Face to	3 r	m into	Bldg 0.2	2 mm
							Av slope	= ΣDiff/Σ	Dist = 0.0	03%	Av Diff on	3 r	m into	Bldg 0.1	l mm
							·				Differential Se				1 mm
											Δ/ΣDist=	0.002%]		

38 Frognal Lane NW3 6PP Ground Movement with 40FL-2 Swimming Pool Basement

C580			Giu		lovement	WILLI 4		2 31				п				
Table	0				D 41		40		7							
2.2 Pile Type: Horizontal Str		ntiguous 0.04%	at pilo rod		Depth		10 1.5	m	Zone of Influe	nce 15 m						
Vertical Strain			•	-	to zero over		1.5		pile lengths =	20 m						
venical Strain	1	0.04%	at plie red	ucing	to zero over		Z		pile lengths =	20 M						
2.4 Excavation	Pro	opped High Lev	el		Depth		6.1	m								
Horizontal Str					to zero over		4	exca	ation depths=	24.4 m						
Vertical Strain	ı	0.10%	at pile red	ucing	to zero over		3.5	exca	/ation depths=	21.35 m						
<u>No 40 Frognal Lan</u> Clearance from bas		Length 23.0 m	9	m	Height 10	m	L/H=	0.9	No 40 LG I No 38 Pool		-	-				
-			45	D												
Angle of basement	comeri	lo wall 0 =	45						Depin	Difference	0.8	m				
			Horizonta	l Mov	ement						Verti	cal Movement				
		Pile 10			Excavation	6.8	m	Σ	Pile		<u></u>	Excavation			Σ Di	ff Dist
Position C	Clear	Portion	3	mm	Portion	3	mm	mm	Portion	3	mm	Portion	3	mm	mm mi	m m
Contig Wall	0 m	0.00	0.040%	4.0	0.0	0.150%	10.2	14.2	0.00	0.040%	4.0	0.0	0.100%	6.8	###	
Building Face	23.0 m	Beyond Zone	0.000%	0.0	3.4	0.023%	5.3	5.3	Beyond Zone	0.000%	0.0	3.4	0.003%	0.2		
	~~ -					0 00 404						D 1 -).2 3.5
3.5 m into Bldg	26.5 m	Beyond Zone	0.000%	0.0	3.9	0.004%	1.02	1.0	Beyond Zone	0.000%	0.0	Beyond Zone	0.000%	0.0).0 3.5
7 m into Bldg	30 m	Beyond Zone	0 000%	00	Beyond Zone	0 000%	0	00	Beyond Zone	0.000%	0.0	Beyond Zone	0 000%	0.0		0.0 3.5
7 minto bidg	50 m	Deyond Zone	0.00070	0.0		0.00070	0	0.0	Deyona Zone	0.00070	0.0	Deyond Zone	0.000 /0	0.0).0 2
9 m into Bldg	32 m	Beyond Zone	0.000%	0.0	Beyond Zone	0.000%	0	0.0	Beyond Zone	0.000%	0.0	Beyond Zone	0.000%	0.0		-
					Horizonta	l Displace	ement).2 9.0
		Buildin	g Face to	9		prizontal D		5.3	mm perpend	icular to wa	all					.2 0.0
			-		iff at angle θ=		osθ =		mm							
		Comp			•	Av Horizo	-		.042%							
								0.	01270		Verti	cal Displaceme	nts			
					Ove	er a Distar	nce of	9.0	m Vertical	Difference	-	uilding Face to		n into	Bldg C).2 mm
								Av s	lope= ΣDiff/Σ	EDist = 0.	003%	Av Diff on	3.5 r	n into	Bldg C).1 mm
												Differential Se		-	$\Delta = 0$).1 mm
												Δ/ΣDist=	0.002%	J		

Appendix 5: Structural Engineer's Statement and Calculations

As a rebuild, the house will be constructed in a sensible and orthodox manner from the bottom upwards. The leisure suite will have columns at around 5m centres, both ways, to support the ground floor slab and superstructure. These basement columns will be supported on piles within the basement box.

The basement will require the construction of a contiguous piled perimeter wall with an inner box of waterproof concrete.

The ground movement analysis assumes the basement walls are held stiff. This will be achieved during construction by wailer and bracing. In the permanent solution the walls will have capping beams and the lid to the basement.

As orthodox construction, there are no unusual features that require preliminary design calculations.