
MITCHINSON	Project				Job no.	
MACKEN	PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON				19313	
Mitchinson Macken Ltd	Calcs for			Start page no./Revision		
Unit 1	Retaining Wall A-A			1	Α	
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
BN1 1YE	SM	25/09/2020	MM			

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

Retaining wall type Cantilever propped at base

Height of retaining wall stem $h_{\text{stem}} = 3250 \text{ mm}$ Thickness of wall stem $t_{\text{wall}} = 375 \text{ mm}$ Length of toe $l_{\text{toe}} = 2600 \text{ mm}$ Length of heel $l_{\text{heel}} = 200 \text{ mm}$

Overall length of base $I_{base} = I_{toe} + I_{heel} + t_{wall} = 3175 \text{ mm}$

Thickness of base $t_{\text{base}} = 350 \text{ mm}$ Depth of downstand $d_{\text{ds}} = 0 \text{ mm}$ Position of downstand $l_{\text{ds}} = 1500 \text{ mm}$ Thickness of downstand $t_{\text{ds}} = 350 \text{ mm}$

Height of retaining wall $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3600 \text{ mm}$

Depth of cover in front of wall $d_{cover} = 0 \text{ mm}$ Depth of unplanned excavation $d_{exc} = 0 \text{ mm}$ Height of ground water behind wall $h_{water} = 3600 \text{ mm}$

Height of saturated fill above base $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 \text{ mm}) = 3250 \text{ mm}$

Density of wall construction $\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$ Density of base construction $\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$ Angle of rear face of wall $\alpha = 90.0 \text{ deg}$ Angle of soil surface behind wall $\beta = 0.0 \text{ deg}$

Effective height at virtual back of wall $h_{eff} = h_{wall} + l_{heel} \times tan(\beta) = 3600 \text{ mm}$

Retained material details

Mobilisation factor M = 1.2

Moist density of retained material $\gamma_m = 18.0 \text{ kN/m}^3$

Project Job no. PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON 19313 Start page no./Revision Calcs for Mitchinson Macken Ltd Retaining Wall A-A 2 A Unit 1 100 North Road Calcs by Calcs date Checked by Checked date Approved by Approved date BN1 1YE SM 25/09/2020 MM

Saturated density of retained material $\gamma_s = 20.0 \text{ kN/m}^3$ Design shear strength $\phi' = 24.2 \text{ deg}$ Angle of wall friction $\delta = 0.0 \text{ deg}$

Base material details

Stiff clay

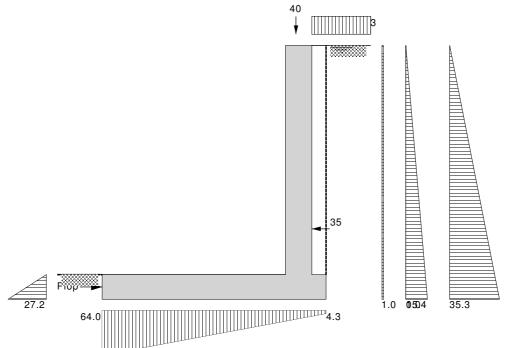
 $\label{eq:main_model} \begin{tabular}{ll} Moist density & $\gamma_{mb} = 20.0 \text{ kN/m}^3$ \\ Design shear strength & $\phi'_b = 22.0 \text{ deg}$ \\ Design base friction & $\delta_b = 22.0 \text{ deg}$ \\ Allowable bearing pressure & $P_{bearing} = 170 \text{ kN/m}^2$ \\ \end{tabular}$

Using Coulomb theory

Active pressure coefficient for retained material

 $K_a = sin(\alpha + \phi')^2 / (sin(\alpha)^2 \times sin(\alpha - \delta) \times [1 + \sqrt{(sin(\phi' + \delta) \times sin(\phi' - \beta) / (sin(\alpha - \delta) \times sin(\alpha + \beta)))}]^2) = \textbf{0.419}$

Passive pressure coefficient for base material


$$K_p = sin(90 - \phi'_b)^2 / \left(sin(90 - \delta_b) \times [1 - \sqrt{(sin(\phi'_b + \delta_b) \times sin(\phi'_b) / (sin(90 + \delta_b)))}]^2 \right) = \textbf{4.193}$$

At-rest pressure

At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0.590$

Loading details

Surcharge load on plan $\begin{array}{lll} \text{Surcharge} = 2.5 \text{ kN/m}^2 \\ \text{Applied vertical dead load on wall} & \text{W}_{\text{dead}} = 20.0 \text{ kN/m} \\ \text{Applied vertical live load on wall} & \text{W}_{\text{live}} = 20.0 \text{ kN/m} \\ \text{Position of applied vertical load on wall} & \text{I}_{\text{load}} = 2750 \text{ mm} \\ \text{Applied horizontal dead load on wall} & \text{F}_{\text{dead}} = 35.0 \text{ kN/m} \\ \text{Applied horizontal live load on wall} & \text{F}_{\text{live}} = 0.0 \text{ kN/m} \\ \text{Height of applied horizontal load on wall} & \text{h}_{\text{load}} = 1000 \text{ mm} \\ \end{array}$

Loads shown in kN/m, pressures shown in kN/m²

/ MITCHINSON	Project				Job no.	
MACKEN	PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON				19313	
Mitchinson Macken Ltd	Calcs for			Start page no./Revision		
Unit 1 Retaining Wall A-A			3	Α		
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
BN1 1YE	SM	25/09/2020	MM			

Vertical	forces	on wall

Wall stem $w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 28.8 \text{ kN/m}$ Wall base $w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 26.2 \text{ kN/m}$ Surcharge $w_{sur} = Surcharge \times I_{heel} = 0.5 \text{ kN/m}$ Saturated backfill $w_s = I_{heel} \times h_{sat} \times \gamma_s = 13 \text{ kN/m}$ Applied vertical load $W_v = W_{dead} + W_{live} = 40 \text{ kN/m}$

Total vertical load $W_{total} = w_{wall} + w_{base} + w_{sur} + w_s + W_v = 108.5 \text{ kN/m}$

Horizontal forces on wall

 $F_{sur} = K_a \times Surcharge \times h_{eff} = 3.8 \text{ kN/m}$ Surcharge

Saturated backfill $F_s = 0.5 \times K_a \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = 27.6 \text{ kN/m}$

Water $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 63.6 \text{ kN/m}$

 $F_h = F_{dead} + F_{live} = 35 \text{ kN/m}$ Applied horizontal load

Total horizontal load $F_{total} = F_{sur} + F_s + F_{water} + F_h = 130 \text{ kN/m}$

Calculate propping force

Passive resistance of soil in front of wall $F_p = 0.5 \times K_p \times cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 4.8 \text{ kN/m}$

Propping force $F_{prop} = max(F_{total} - F_p - (W_{total} - w_{sur} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$

 $F_{prop} = 89.7 \text{ kN/m}$

Overturning moments

 $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 6.8 \text{ kNm/m}$ Surcharge Saturated backfill $M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 33.2 \text{ kNm/m}$ Water

 $M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 76.3 \text{ kNm/m}$

Applied horizontal load $M_{hor} = F_h \times h_{load} = \textbf{35} \text{ kNm/m}$

Total overturning moment $M_{ot} = M_{sur} + M_s + M_{water} + M_{hor} = 151.2 \text{ kNm/m}$

Restoring moments

Wall stem $M_{\text{wall}} = w_{\text{wall}} \times (I_{\text{toe}} + t_{\text{wall}} / 2) = 80.2 \text{ kNm/m}$ $M_{base} = w_{base} \times I_{base} / 2 = 41.6 \text{ kNm/m}$ Wall base Saturated backfill $M_{s_r} = w_s \times (I_{base} - I_{heel} / 2) = 40 \text{ kNm/m}$ Design vertical dead load $M_{dead} = W_{dead} \times I_{load} = 55 \text{ kNm/m}$

Total restoring moment $M_{rest} = M_{wall} + M_{base} + M_{s} + M_{dead} = 216.8 \text{ kNm/m}$

Check bearing pressure

Surcharge $M_{sur_r} = w_{sur} \times (I_{base} - I_{heel} / 2) = 1.5 \text{ kNm/m}$

Design vertical live load $M_{live} = W_{live} \times I_{load} = 55 \text{ kNm/m}$

 $M_{total} = M_{rest} - M_{ot} + M_{sur} r + M_{live} = 122.1 \text{ kNm/m}$ Total moment for bearing

Total vertical reaction $R = W_{total} = 108.5 \text{ kN/m}$ Distance to reaction $x_{bar} = M_{total} / R = 1125 \text{ mm}$

 $e = abs((I_{base} / 2) - x_{bar}) = 462 \text{ mm}$ Eccentricity of reaction

Reaction acts within middle third of base

 $p_{toe} = (R / l_{base}) + (6 \times R \times e / l_{base}^{2}) = 64 \text{ kN/m}^{2}$ Bearing pressure at toe Bearing pressure at heel $p_{heel} = (R / I_{base}) - (6 \times R \times e / I_{base}^{2}) = 4.3 \text{ kN/m}^{2}$

PASS - Maximum bearing pressure is less than allowable bearing pressure

// MITCHINSON	Project				Job no.	
MACKEN	PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON				19313	
Mitchinson Macken Ltd Calcs for				Start page no./Revision		
Unit 1		Retaining	y Wall A-A		4	Α
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
BN1 1YE	SM	25/09/2020	MM			

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

 $\begin{array}{ll} \mbox{Dead load factor} & \gamma_{\stackrel{\square}{-}} = 1.4 \\ \mbox{Live load factor} & \gamma_{\stackrel{\square}{-}} = 1.6 \\ \mbox{Earth and water pressure factor} & \gamma_{\stackrel{\square}{-}} = 1.4 \end{array}$

Factored vertical forces on wall

Total vertical load $W_{total_f} = W_{wall_f} + W_{base_f} + W_{sur_f} + W_{v_f} = 156 \text{ kN/m}$

Factored horizontal at-rest forces on wall

Surcharge $F_{sur f} = \gamma_{fl} \times K_0 \times Surcharge \times h_{eff} = 8.5 \text{ kN/m}$

Saturated backfill $F_{s_f} = \gamma_{f_e} \times 0.5 \times K_0 \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = 54.5 \text{ kN/m}$

 $F_{water_f} = \gamma_{f_e} \times 0.5 \times h_{water}^2 \times \gamma_{water} \ = \textbf{89 kN/m}$

Applied horizontal load $F_{h_f} = \gamma_{f_e} \times F_{dead} + \gamma_{f_i} \times F_{live} = 49 \text{ kN/m}$

Total horizontal load $F_{total_f} = F_{sur_f} + F_{s_f} + F_{water_f} + F_{h_f} = 201 \text{ kN/m}$

Calculate propping force

Passive resistance of soil in front of wall $F_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = \textbf{6.7}$

kN/m

Propping force $F_{prop_f} = max(F_{total_f} - F_{p_f} - (W_{total_f} - W_{sur_f} - \gamma_{f_i} \times W_{live}) \times tan(\delta_b), \ 0 \ kN/m)$

 $F_{prop_f} = 144.6 \text{ kN/m}$

Factored overturning moments

 $\begin{aligned} &\text{Surcharge} & &M_{\text{sur_f}} = F_{\text{sur_f}} \times \left(h_{\text{eff}} - 2 \times d_{\text{ds}} \right) / \ 2 = \textbf{15.3} \text{ kNm/m} \\ &\text{Saturated backfill} & &M_{\text{s_f}} = F_{\text{s_f}} \times \left(h_{\text{water}} - 3 \times d_{\text{ds}} \right) / \ 3 = \textbf{65.5} \text{ kNm/m} \end{aligned}$

Water $M_{water_f} = F_{water_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 106.8 \text{ kNm/m}$

Applied horizontal load $M_{hor_f} = F_{h_f} \times h_{load} = 49 \text{ kNm/m}$

Total overturning moment $M_{\text{ot_f}} = M_{\text{sur_f}} + M_{\text{S_f}} + M_{\text{water_f}} + M_{\text{hor_f}} = 236.5 \text{ kNm/m}$

Restoring moments

Design vertical load $M_{v_f} = W_{v_f} \times I_{load} = 165 \text{ kNm/m}$

Total restoring moment $M_{rest_f} = M_{wall_f} + M_{base_f} + M_{sur_r_f} + M_{s_r_f} + M_{v_f} = 394 \text{ kNm/m}$

Factored bearing pressure

Total moment for bearing $M_{total_f} = M_{rest_f} - M_{ot_f} = 157.4 \text{ kNm/m}$

 $\begin{array}{ll} \text{Total vertical reaction} & \text{R}_{\text{f}} = \text{W}_{\text{total}_\text{f}} = \text{156.0 kN/m} \\ \text{Distance to reaction} & \text{x}_{\text{bar}_\text{f}} = \text{M}_{\text{total}_\text{f}} / \text{R}_{\text{f}} = \text{1009 mm} \\ \text{Eccentricity of reaction} & \text{e}_{\text{f}} = \text{abs}((I_{\text{base}} / 2) - x_{\text{bar}_\text{f}}) = \text{578 mm} \\ \end{array}$

Reaction acts outside middle third of base

Bearing pressure at toe $p_{toe_f} = R_f / (1.5 \times x_{bar_f}) = 103 \text{ kN/m}^2$

Bearing pressure at heel	$p_{heel f} = 0 \text{ kN/m}^2 = 0 \text{ kN/m}^2$
Dealling pressure at ricei	pneer f = 0 Kin/iii = 0 Kin/iii

Rate of change of base reaction rate =
$$p_{toe_{\underline{f}}} / (3 \times x_{bar_{\underline{f}}}) = 34.04 \text{ kN/m}^2/\text{m}$$

Bearing pressure at stem / toe
$$p_{\text{stem_toe_f}} = \text{max}(p_{\text{toe_f}} - (\text{rate} \times I_{\text{toe}}), 0 \text{ kN/m}^2) = 14.5 \text{ kN/m}^2$$

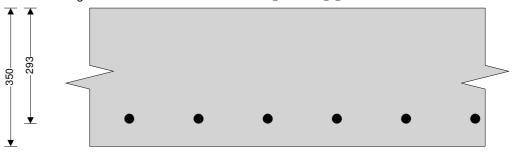
 $p_{\text{stem_mid_f}} = max(p_{\text{toe_f}} \text{ - (rate} \times (I_{\text{toe}} + t_{\text{wall}} \text{ / 2)), 0 kN/m}^2) = \textbf{8.2} \text{ kN/m}^2$ Bearing pressure at mid stem $p_{\text{stem heel f}} = \max(p_{\text{toe f}} - (\text{rate} \times (l_{\text{toe}} + t_{\text{wall}})), 0 \text{ kN/m}^2) = 1.8 \text{ kN/m}^2$ Bearing pressure at stem / heel

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details


Minimum area of reinforcement k = **0.13** % Cover to reinforcement in toe $C_{toe} = 45 \text{ mm}$

Calculate shear for toe design

Shear from bearing pressure $V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 152.9 \text{ kN/m}$ Shear from weight of base $V_{toe\ wt\ base} = \gamma_{f\ d} \times \gamma_{base} \times I_{toe} \times t_{base} = 30.1\ kN/m$ Total shear for toe design $V_{toe} = V_{toe_bear} - V_{toe_wt_base} =$ 122.8 kN/m

Calculate moment for toe design

 $M_{toe_bear} = (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} \ / \ 2)^2 \ / \ 6 = \textbf{277.5} \ kNm/m$ Moment from bearing pressure Moment from weight of base $M_{toe\ wt\ base} = (\gamma_{f\ d} \times \gamma_{base} \times t_{base} \times (l_{toe} + t_{wall}/2)^2/2) = 44.9\ kNm/m$ Total moment for toe design $M_{toe} = M_{toe bear} - M_{toe wt base} = 232.5 \text{ kNm/m}$

— 175<u>-</u>

Check toe in bending

Area of reinforcement provided

Width of toe b = 1000 mm/m

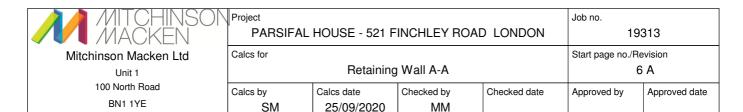
Depth of reinforcement $d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = 292.5 \text{ mm}$ Constant $K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) =$ **0.078**

Compression reinforcement is not required

Lever arm $z_{\text{toe}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{toe}}, 0.225) / 0.9)), 0.95)} \times d_{\text{toe}}$

 $z_{toe} = 265 \text{ mm}$

Area of tension reinforcement required $A_{s_toe_des} = M_{toe} / (0.87 \times f_y \times z_{toe}) = 2020 \text{ mm}^2/\text{m}$


 $A_{s \text{ toe min}} = k \times b \times t_{base} = 455 \text{ mm}^2/\text{m}$ Minimum area of tension reinforcement $A_{s_toe_req} = Max(A_{s_toe_des}, A_{s_toe_min}) = 2020 \text{ mm}^2/\text{m}$ Area of tension reinforcement required

Reinforcement provided

25 mm dia.bars @ 175 mm centres

 $A_{s_toe_prov} = 2805 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = V_{toe} / (b \times d_{toe}) = 0.420 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress $v_{c_toe} = 0.754 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

 $\begin{array}{ll} \mbox{Characteristic strength of concrete} & f_{cu} = \mbox{35 N/mm}^2 \\ \mbox{Characteristic strength of reinforcement} & f_y = \mbox{500 N/mm}^2 \\ \end{array}$

Base details

Minimum area of reinforcement k = 0.13 %Cover to reinforcement in heel $c_{heel} = 40 \text{ mm}$

Calculate shear for heel design

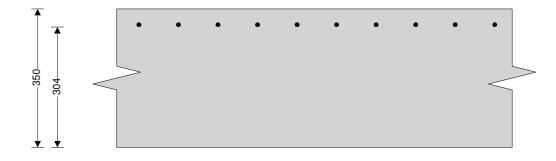
Shear from bearing pressure $V_{heel_bear} = p_{stem_heel_f} \times ((3 \times x_{bar_f}) - I_{toe} - t_{wall}) / 2 = 0 kN/m$

Shear from weight of base $V_{heel_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{heel} \times t_{base} = 2.3 \text{ kN/m}$

Shear from weight of saturated backfill $V_{heel_wt_s} = w_{s_f} = 18.2 \text{ kN/m}$

Shear from surcharge $V_{heel_sur} = w_{sur_f} = 0.8 \text{ kN/m}$

Total shear for heel design $V_{heel_bear} + V_{heel_wt_base} + V_{heel_wt_s} + V_{heel_sur} = \textbf{21.3 kN/m}$


Calculate moment for heel design

Moment from bearing pressure $M_{\text{heel_bear}} = p_{\text{stem_mid_f}} \times ((3 \times x_{\text{bar_f}}) - l_{\text{toe}} - t_{\text{wall}} / 2)^2 / 6 = \textbf{0.1} \text{ kNm/m}$ Moment from weight of base $M_{\text{heel}} = y_{\text{stem_mid_f}} \times ((3 \times x_{\text{bar_f}}) - l_{\text{toe}} - t_{\text{wall}} / 2)^2 / 6 = \textbf{0.1} \text{ kNm/m}$

Moment from weight of saturated backfill $M_{\text{heel_wt_s}} = w_{\text{s_f}} \times \left(I_{\text{heel}} + t_{\text{wall}} \right) / 2 = \textbf{5.2 kNm/m}$ Moment from surcharge $M_{\text{heel_sur}} = w_{\text{sur_f}} \times \left(I_{\text{heel}} + t_{\text{wall}} \right) / 2 = \textbf{0.2 kNm/m}$

Total moment for heel design $M_{heel} = -M_{heel_bear} + M_{heel_wt_base} + M_{heel_wt_s} + M_{heel_sur} = 6.3 \text{ kNm/m}$

←100**→**

Check heel in bending

Width of heel b = 1000 mm/m

Depth of reinforcement $d_{\text{heel}} = t_{\text{base}} - c_{\text{heel}} - (\phi_{\text{heel}} / 2) = \textbf{304.0} \text{ mm}$

Constant $K_{\text{heel}} = M_{\text{heel}} / (b \times d_{\text{heel}}^2 \times f_{\text{cu}}) = 0.002$

Compression reinforcement is not required

Lever arm $z_{\text{heel}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{heel}}, 0.225) / 0.9))}, 0.95) \times d_{\text{heel}}$

z_{heel} = **289** mm

Area of tension reinforcement required $A_{s_heel_des} = M_{heel} / (0.87 \times f_y \times z_{heel}) = 50 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement

Area of tension reinforcement required

Reinforcement provided

Area of reinforcement provided

 $A_{s_heel_min} = k \times b \times t_{base} = 455 \text{ mm}^2/\text{m}$

 $A_{s_heel_req} = Max(A_{s_heel_des}, A_{s_heel_min}) = 455 \text{ mm}^2/\text{m}$

12 mm dia.bars @ 100 mm centres

 $A_{s_heel_prov} = 1131 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = V_{heel} / (b \times d_{heel}) = 0.070 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress

 $V_{c heel} = 0.545 \text{ N/mm}^2$

 $V_{heel} < V_{c_heel}$ - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

 $\begin{array}{ll} \mbox{Characteristic strength of concrete} & f_{cu} = \mbox{35 N/mm}^2 \\ \mbox{Characteristic strength of reinforcement} & f_y = \mbox{500 N/mm}^2 \\ \end{array}$

Wall details

 $\label{eq:minimum} \begin{tabular}{lll} Minimum area of reinforcement & $k=0.13~\%$ \\ Cover to reinforcement in stem & $c_{stem}=45~mm$ \\ Cover to reinforcement in wall & $c_{wall}=45~mm$ \\ \end{tabular}$

Factored horizontal at-rest forces on stem

Surcharge $F_{\underline{s_sur_f}} = \gamma_{\underline{f_l}} \times K_0 \times Surcharge \times (h_{eff} - t_{base} - d_{ds}) = 7.7 \text{ kN/m}$

Saturated backfill $F_{s_s_f} = 0.5 \times \gamma_{f_e} \times K_0 \times (\gamma_{s^-} \gamma_{water}) \times h_{sat}^2 = \textbf{44.5} \text{ kN/m}$

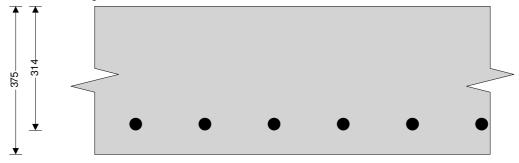
 $F_{s_water_f} = 0.5 \times \gamma_{f_e} \times \gamma_{water} \times h_{sat}^2 = 72.5 \text{ kN/m}$

Applied horizontal load $F_{s_h_f} = \gamma_{f_d} \times F_{dead} + \gamma_{f_l} \times F_{live} = \textbf{49 kN/m}$

Calculate shear for stem design

 $V_{\text{stem}} = F_{s_\text{sur_f}} + F_{s_\text{s}_\text{f}} + F_{s_\text{water_f}} + F_{s_\text{h}_\text{f}} - F_{\text{prop}_\text{f}} = \textbf{29.1 kN/m}$

Calculate moment for stem design


Surcharge $M_{s_sur} = F_{s_sur_f} \times (h_{stem} + t_{base}) / 2 = 13.8 \text{ kNm/m}$

Saturated backfill $M_{s_s} = F_{s_s_f} \times h_{sat} / 3 = 48.2 \text{ kNm/m}$

Water $M_{s_water} = F_{s_water_f} \times h_{sat} / 3 = 78.6 \text{ kNm/m}$

Applied horizontal load $M_{s_hor} = F_{s_h_f} \times (h_{load} - t_{base} / 2) = 40.4 \text{ kNm/m}$

Total moment for stem design $M_{stem} = M_{s sur} + M_{s s} + M_{s water} + M_{s hor} = 181 \text{ kNm/m}$

// MITCHINSON	Project				Job no.	
MACKEN	PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON				19313	
Mitchinson Macken Ltd	Calcs for				Start page no./Re	evision
Unit 1		Retaining	g Wall A-A		8	3 A
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
BN1 1YE	SM	25/09/2020	MM			

Check wall stem in bending

Width of wall stem b = 1000 mm/m

Depth of reinforcement $d_{\text{stem}} = t_{\text{wall}} - c_{\text{stem}} - (\phi_{\text{stem}} / 2) = \textbf{314.0} \text{ mm}$ Constant $K_{\text{stem}} = M_{\text{stem}} / (b \times d_{\text{stem}}^2 \times f_{\text{cu}}) = \textbf{0.052}$

Compression reinforcement is not required

Lever arm $z_{\text{stem}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{stem}}, 0.225) / 0.9)), 0.95)} \times d_{\text{stem}}$

z_{stem} = **294** mm

Area of tension reinforcement required $A_{s_stem_des} = M_{stem} / (0.87 \times f_y \times z_{stem}) = 1413 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement $A_{s_stem_min} = k \times b \times t_{wall} = 488 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{s_stem_req} = Max(A_{s_stem_des}, A_{s_stem_min}) = 1413 \text{ mm}^2/\text{m}$

Reinforcement provided 32 mm dia.bars @ 175 mm centres

Area of reinforcement provided $A_{s_stem_prov} = 4596 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = V_{stem} / (b \times d_{stem}) = 0.093 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = \textbf{4.733 N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

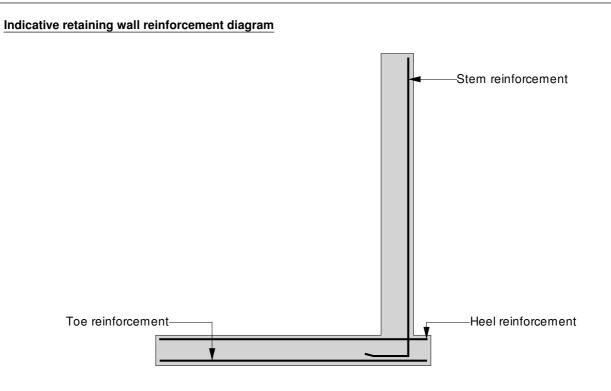
Design concrete shear stress $v_{c \text{ stem}} = 0.853 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

Check retaining wall deflection

Basic span/effective depth ratio $ratio_{bas} = 7$

Design service stress $f_s = 2 \times f_y \times A_{s_stem_req} / (3 \times A_{s_stem_prov}) = \textbf{102.5} \text{ N/mm}^2$


Modification factor factor factor $factor_{tens} = min(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stem}/(b \times d_{stem}^2)))), 2) = 1.69$

Maximum span/effective depth ratio $ratio_{max} = ratio_{bas} \times factor_{tens} = 11.84$

Actual span/effective depth ratio $ratio_{act} = h_{stem} / d_{stem} = 10.35$

PASS - Span to depth ratio is acceptable

MITCHINSON MACKEN	Project PARSIFAL	HOUSE - 521 F	Job no. 19313			
Mitchinson Macken Ltd Unit 1	Calcs for	Retaining	Wall A-A		Start page no./Re	vision A
100 North Road BN1 1YE	Calcs by SM	Calcs date 25/09/2020	Checked by MM	Checked date	Approved by	Approved date

Toe bars - 25 mm dia.@ 175 mm centres - $(2805 \text{ mm}^2/\text{m})$ Heel bars - 12 mm dia.@ 100 mm centres - $(1131 \text{ mm}^2/\text{m})$ Stem bars - 32 mm dia.@ 175 mm centres - $(4596 \text{ mm}^2/\text{m})$